

Institutionen för datavetenskap
Department of Computer and Information Science

Master’s Final Thesis

Agile Prototyping

A combination of different approaches into one main process

by

Mohamed A. Abu Baker

LIU-IDA/LITH-EX-A--09/035--SE

2009-06-11

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköpings universitet

581 83 Linköping

Linköping University

Department of Computer and Information Science

Master’s Final Thesis

Agile Prototyping

A combination of different approaches into one main process

by

Mohamed A. Abu Baker

LIU-IDA/LITH-EX-A--09/035--SE

2009-06-11

Supervisor and Examiner:

Professor. Kristian Sandahl

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en

längre tid från publiceringsdatum under förutsättning att inga extra-ordinära

omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva

ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell

forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt

kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver

upphovsmannens medgivande. För att garantera äktheten, säkerheten och

tillgängligheten finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den

omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt

samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant

sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga

anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förlagets

hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible

replacement - for a considerable time from the date of publication barring exceptional

circumstances.

The online availability of the document implies a permanent permission for anyone

to read, to download, to print out single copies for your own use and to use it

unchanged for any non-commercial research and educational purpose. Subsequent

transfers of copyright cannot revoke this permission. All other uses of the document

are conditional on the consent of the copyright owner. The publisher has taken

technical and administrative measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned

when his/her work is accessed as described above and to be protected against

infringement.

For additional information about the Linköping University Electronic Press and its

procedures for publication and for assurance of document integrity, please refer to its

WWW home page: http://www.ep.liu.se/

© [Mohamed A. Abu Baker]

http://www.ep.liu.se/
http://www.ep.liu.se/

Dedicated to my
Mother’s soul and memory

Abstract

__

i

ABSTRACT

Software prototyping is considered to be one of the most important tools that are used by

software engineers nowadays to be able to understand the customer’s requirements, and

develop software products that are efficient, reliable, and acceptable economically.

Software engineers can choose any of the available prototyping approaches to be used,

based on the software that they intend to develop and how fast they would like to go

during the software development. But generally speaking all prototyping approaches are

aimed to help the engineers to understand the customer’s true needs, examine different

software solutions and quality aspect, verification activities…etc, that might affect the

quality of the software underdevelopment, as well as avoiding any potential development

risks.

Abstract

__

ii

A combination of several prototyping approaches, and brainstorming techniques which

have fulfilled the aim of the knowledge extraction approach, have resulted in developing

a prototyping approach that the engineers will use to develop one and only one

throwaway prototype to extract more knowledge than expected, in order to improve the

quality of the software underdevelopment by spending more time studying it from

different points of view.

The knowledge extraction approach, then, was applied to the developed prototyping

approach in which the developed model was treated as software prototype, in order to

gain more knowledge out of it. This activity has resulted in several points of view, and

improvements that were implemented to the developed model and as a result Agile

Prototyping AP, was developed. AP integrated more development approaches to the first

developed prototyping model, such as: agile, documentation, software configuration

management, and fractional factorial design, in which the main aim of developing one,

and only one prototype, to help the engineers gaining more knowledge, and reducing

effort, time, and cost of development was accomplished but still developing software

products with satisfying quality is done by developing an evolutionary prototyping and

building throwaway prototypes on top of it.

Keywords: Agile Prototyping AP, agile, brainstorming, documentation, evolutionary

prototype, fractional factorial design, knowledge extraction approach, prototyping

approach, requirements, software configuration management, software prototyping,

throwaway prototype.

Acknowledgments

__

iii

ACKNOWLEDGMENTS

I would like to thank God for all the good that happened to me, and to all that comes.

I would like to express my deepest gratitude to the woman that always gives, without
asking for return, without complaining. To the woman who taught me how to be just
me, how to be a man, how to be a person that looks forward and have an objective in
life, and a person that can be creative, to the woman that was always available
whenever I needed her, teaching and supporting me, to my MOTHER's soul and

memory. May she rest in peace,,,

My FATHER & SISTERS, I sincerely respect that you were always available whenever I

needed you as well, teaching and supporting me throughout my whole life until this
moments, and for being so generous and patient.

I would like to express my deepest gratitude to Prof. Kristian Sandahl, who has guided
me through my master studies, thanks for being an outstanding supervisor, for giving
me the opportunity to be creative, for being willing to share your time, knowledge, and
experiences, and for being always available whenever me and my colleagues needed
you.

To IDA’s teachers, and administration staff, thanks for your help and support.

Few letters convey how grateful I am to all those I didn’t mention!

YOU ALL THANK YOU!!!

MOHAMED A. ABU BAKER
JUNE 11TH 2009

LINKÖPING - SWEDEN

Table of Contents

__

v

ABSTRACT .. i

ACKNOWLEDGMENTS ... iii

1 INTRODUCTION ... 1

1.1 AIM ...4

1.2 METHODOLOGY ..4

2 THEORETICAL BACKGROUND ... 5

2.1 SOFTWARE DEVELOPMENT ...5

2.1.1 WHAT IS SOFTWARE? ...5

2.1.2 DEVELOPMENT ...6

2.2 SOFTWARE PROTOTYPING ..9

2.3 PROTOTYPING APPROACHES ... 11

2.3.1 THROWAWAY PROTOTYPING .. 13

2.3.2 EVOLUTIONARY PROTOTYPING .. 15

2.3.3 OPERATIONAL PROTOTYPING .. 17

2.4 PROTOTYPING SELECTION .. 19

2.5 SOFTWARE STORMING .. 21

2.6 EXPERIMENT DESIGN .. 23

2.7 SOFTWARE CONFIGURATION MANAGEMENT ... 30

3 MODEL CONSTRUCTION ... 33

3.1 KNOWLEDGE EXTRACTION APPROACH ... 33

3.2 PROTOTYPE USAGES ... 34

3.3 DOCUMENTATION ... 36

3.4 SOFTWARE STORMING .. 38

3.5 MODEL FIRST ATTEMPT ... 39

3.6 INDUSTRIAL VIEW .. 41

3.7 PROTOTYPE KNOWLEDGE EXTRACTION .. 42

4 RESULTS ... 48

5 CONCLUSION .. 53

FURTHER WORK: .. 55

6 REFERENCES .. 56

Chapter 1: Introduction

__

1

1 INTRODUCTION

Nowadays everyone recognizes the importance of information technology, not only in the

industrial countries, but everywhere since the media reached anywhere on the globe. This

happens because computer software and information technology becomes one of the most

important issues in human life. In software engineering field, one of the most important

issues is developing qualitative software products that meet the customer’s requirements,

in order for the humans to use it in every single aspect of life.

In this sense, software engineers are willing to build software that they are certain that

they can and should develop. But this is not the case every time a particular software has

been developed, because the customers themselves are not certain sometimes about their

own requirements, “wish list” [25].

Agile Prototyping: A combination of different approaches

__

2

But, as stated by Schrage, we often hear that the key for the engineers to develop

software with the right requirements is collaboration. But, Schrage continues, how such

collaboration can be achieved? Is it by how genuinely the engineers listen to their

customer’s needs and show how much they care, and how professional they are? [28].

Such collaboration can be achieved by one of the two schools of thought in software

engineering field:

“…one is that of structured system development and the other is that of

prototyping” [29].

However, the concern of this thesis work lies within the second school of thought, which

is Prototyping.

Software prototyping or simply prototyping, becomes one of the most important and

popular tools that is used by the software engineers to explore new computer domains, to

elicit and validate the customer’s requirements “wish list”, as well as to examine software

solutions, quality factors, interface alternatives, and run “back-to-back” test with the

software under-testing [18, 25, 30].

Prototypes are used normally for demonstration with the customers, for requirements

elicitation or validation, as mentioned above. But what does normally happen during such

demonstration? Schrage introduces this question and answers it as follows:

“Well, says the client “customer” with a disconcerting air of disappointment,

that is pretty much what we asked for, but now that we have seen it, we realize

it’s not what we really want. What we really need is … Can we have another

prototype by Thursday?” [28].

Schrage continues:

“Welcome to the worst of both world. The customers now think the developers

are a bunch of propeller-headed prima donnas who don’t grok the imperatives

of business. The developers think the customer is a fickle moron who doesn’t

Chapter 1: Introduction

__

3

know what he wants, but doesn’t hesitate to waste everyone’s time trying to

find out. Perhaps they are both right” [28].

On the other hand, engineers sometimes treat prototypes like their personal toys, with

little effort of extracting and sharing knowledge and experiences of these prototypes [18].

Nevertheless, prototypes help the engineers to foster the clarification of customers’

requirements, try out solutions, obtain feedback from the customers, compare if the

developed software matches the required specifications, provide the engineers with some

insight to the development, and they are tools that help the engineers to reduce risks that

are associated with the software development [12, 18, 19, 25].

Hypothetically, though, prototypes are attractive:

 They lack structure and are difficult to implement when developed in large

systems [29].

 Treated as toys by the engineers, with less effort of knowledge extraction,

they remain without documentation [18].

Considering all the above mentioned points, a new prototyping approach needs to be

developed to eliminate the risks that lie with prototyping development, provide a

structured way of prototyping development processes that help the engineers to extract

more knowledge that is enough to be able to improve the quality of the final software

product and reduce development risks, time, effort, resources, and cost.

The following section of this chapter will present a more concrete aim of this thesis work,

followed by the method that was performed to collect all the related information. Chapter

2 presents that theoretical background that this work is built on. Chapter 3 presents the

model construction and its initial validation. Chapter 4 presents the result of this thesis

work, followed by chapter 5, where the conclusion of the thesis is drawn.

Agile Prototyping: A combination of different approaches

__

4

1.1 Aim

The main aim of this thesis work, with respect to all the conducted racehorses in this

field, is to develop a new prototyping approach which benefits from the advantages of the

most known available prototyping approaches, as well as other possible advantages of

development approaches, in order to help the software engineers to be able to extract

more knowledge from software prototypes, to improve the quality of the final software

product, as well as reducing development risks, effort, resources, time, and cost.

1.2 Methodology

The first task was to choose the subject of this thesis work which started with writing a

term paper about the prototypes knowledge extraction in an advanced course in Software

Engineering in autumn 2008 at Linköping’s university. The topic was interesting enough

to continue working on, and for this reason, many different channels and sources of

information were used to collect information related to prototyping and other

development approaches. All the gathered data were accessed through Linköping’s

university database library in which I had access to well-known journals such as IEEE,

and Engineering Village, as well as others. Using the search engine of these known

journals, a variety of scientific articles were accessed. Key words such as: prototyping,

prototyping usages, system development, brainstorming, agile…etc were used to search

for these collected scientific articles.

During the development of this work, several meetings were conducted between me and

my supervisor. We have discussed the gathered information, the processes of developing

the prototype, and the expected results of this work. One of the meetings was conducted

with a real company representative (after the first version of the prototyping model was

developed), in order to get an industrial view on the developed model and improve it.

This industrial view and its impact on the developed model are presented in the model

construction chapter. In a since this could be thought of as a good method, since it did

help in building a prototype that is based on both theory, and practice.

Chapter 2: Theoretical Background

__

5

2 THEORETICAL BACKGROUND

2.1 Software development

2.1.1 What is Software?

Generally speaking, people relate the term software to computer programs. But as

Sommerville defines it, software is not just a computer program, but it is a program with

configuration data and documentation associated to it, which are required for these

programs to operate correctly [30].

Usually a number of separate programs, configuration files (program setup related

information), system documentation (information about system structure), and user

documentation, (user manuals) is what general software systems consist of [30].

Agile Prototyping: A combination of different approaches

__

6

Compared to anything that human beings have ever built, and rather than physical,

Software is logical, and its uniqueness characteristics that supports the logical concept,

and differentiates it from any physical elements are as follows [27]:

1. Software is developed (engineered), not manufactured.

A computer program normally is both hardware (physical elements) and

software (logic), where the former is manufactured using creative human

processes (analysis, design, construction, and testing), and the latter uses

similar processes to be engineered. Both depend on people, but the

accomplished work and the people’s associated work is totally different.

2. Software doesn’t “wear-out”.

When manufacturing hardware, the failure rate is high at the very beginning of

its life, but it drops to a steady-state level for some time when its defects are

corrected by the engineers. This failure rate of hardware starts rises again when

it’s close to wear-out. This isn’t the case with software development.

Normally, at the very beginning of the software development life cycle, its

failure rate that was caused by its defects is high, and when these defects are

corrected, the failure rate drops (unless other errors or defects were

introduced), the failure rate will be idealized and remains in that level until the

software development is finished. So, “software doesn’t wear-out, but it does

deteriorate!” [27].

2.1.2 Development

As proved by [27]: Software is developed or engineered. What is software development

or engineering, then?

Software engineering (development) is, “an engineering discipline that is

concerned with all aspects of software production from the early stage of

system specification to maintaining the system after it has gone into use” [30].

Chapter 2: Theoretical Background

__

7

According to Pfleeger, software engineering is the use of computer and

computing knowledge by a software engineer(s) to develop software that helps

to solve problems, in which they are related to a computer system [25].

Bauer, as referred to in Pressman [27], defines software engineering as

“…the establishment and use of sound engineering principles in order to

obtain economically software that is reliable and work efficiently on real

machines” [22, 27].

Importance of customer satisfaction and delivery, measurements and metrics, mature

processes, all were omitted in Bauer’s definition. Though, this definition says little about

software quality, it still provides a baseline and shows that the software engineer’s real

challenge is: How to develop reliable software economically? What are the appropriate

requirements for efficient software that operates on different real machines? What are the

sound engineering principles that need to be considered when developing a particular

software product? [27].

As referred to in Pressman [27], a more comprehensive software engineering definition is

the one that was developed by IEEE [IEE93], which is;

“Software engineering is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of

software; that is, the application of engineering to software” [14, 27].

All the above definitions on software engineering indicate that software engineers

“developers” in general, build software that they are quite sure that they can develop.

However; this is not always the case. Customers sometimes have some requirements or

features that engineers aren’t certain that they can, or should develop. This happens

because the customers themselves aren’t totally sure about their “wish list”, either [25].

For software developers, to understand the customer’s true needs and be able to develop

the required software with a satisfactory quality, they need processes, methods, and tools.

[27]:

Agile Prototyping: A combination of different approaches

__

8

Process:

For rational and timely software development, to be enabled, and for the

technology layers, to be hold tightly together, certain software engineering

processes are required. Software engineering’s processes for example, can

define a framework and/or establish a set of Key Process Area (KPAs) for

effective software delivery [27].

Methods:

Software engineering’s key characteristic of the state of the art is the

multiplicity of development methods, which enables developers to view the

software development in a unified way. Methods provide the engineers with

the “how to’s” for the software that they want to build. Methods include

descriptive techniques and modeling activities, and they rely on certain basic

principles that cover each of the technological areas. Methods have in common

the concept of creating models of a system which guide the developers to build

software systems, through a process of transformation from requirements to

software product [19, 27].

Tools:

Tools provide software engineers with automated or semi-automated software

packages that support processes, methods, and techniques. These tools can be

integrated and that makes it easier for the developers to use information that

was created by one tool, to be used by another one [26, 27].

As stated above, engineers sometimes aren’t certain if they can or should build

a software based on all items in the customer’s “wish list”, and for them to be

able to understand the customer’s true needs, a certain tool is needed. Such a

tool in software engineering field is known as prototype [25].

Chapter 2: Theoretical Background

__

9

2.2 Software prototyping

As previously mentioned, software prototyping (or simply prototype) is a tool that helps

the engineers to understand the customer’s true needs and investigate the possibility of

developing the required software product. This means that prototypes help elicit

requirements from the customer and validate it, investigate a proposed solution, or even

examine alternative interfaces… etc [25, 30].

Generally, software prototypes as a tool help engineers to obtain a rapid feedback from

the customer about which features they would like to see improved, and which aspects

aren’t useful or clear, or even which are missing. Prototypes help to compare whether the

developed software product matches the required specification or not, provides the

engineers with insight for the technical problems that they might face, some insights

about the future maintenance that might be required, and examine any potential

development risks to be able to avoid them [25, 30, 33].

So, what is a Prototype? Sommerville defines the prototype “software prototype” as:

“…an initial version of a software system that is used to demonstrate concepts,

try out design options, and generally, to find out more about the problem and

its possible solutions” [30].

Even though prototypes are an initial version of the software product, normally, when

building a software prototype, engineers omit many of the real system details that are

related to functionality and performance, and only focus on some particular aspects to be

able to understand them more, e.g. interface, security, specific required mathematical

equation, and so on [25].

From the above prototype definitions, software engineers build several software

prototypes, where each examines a particular software aspect for specific groups within

the development team. However, all these different prototypes will be developed using

the same process, as illustrated in figure (2.1), and contribute to the same exact software

product that engineers are intended to develop. Several prototyping approaches exist to

Agile Prototyping: A combination of different approaches

__

10

help the engineers examine several aspects, as well as demonstration purposes with the

customer. Paper mock-ups, closed-ended “throwaway” prototyping, open-ended

“evolutionary” prototyping, beta-test, brainstorming, and operational prototyping are

some of these approaches, some of which will be presented shortly [1, 2, 17, 23, 25, 27,

30].

Generally speaking; software prototypes can be used in the following phases as:

Requirements:

As requirements’ specification phase is recognized as being a critical issue for

the development of large and complex software products, prototypes can be

used for elicitation and validation of the customer’s desired features [15].

System design:

Many advantages are offered by prototypes in the system design phase, as well

as during the requirement stage. This means that it allows the engineers to

discover whether a proposed solution can help solving the available problems,

helps in communication with customers, supports an interface design;

examines alternative software architectures and quality aspects [25, 30].

Figure (2.1): Prototype development process [30]

Establish

prototype

objectives

Prototyping

plan

Define

prototype

functionality

Outline

definition

Develop

prototype

Executable

prototype

Evaluate

prototype

Evaluation

report

Chapter 2: Theoretical Background

__

11

Testing:

In a test validation, where the software testers check whether the results of the

test are what they expect, the major problems appear during the testing stage of

the software development. In this case, prototype can be used to run the so-

called “back-to-back” test with the actual software product, as illustrated in

figure (2.2). Testers can run the same test cases in both software prototype, and

the software product under test, and compare the results. If the results of the

test cases are different, this means that there is a system fault, and that the

reasons of these differences need to be investigated [30].

2.3 Prototyping approaches

To prototype, or not to prototype? [13] This is an important question that needs to be

answered by the project team (software engineers) at the very beginning of the software

product development life cycle and even before choosing which prototyping approach to

use. This happens because of several trade-offs that need to be considered by the software

Test data

System
prototype

Application
system

Results
comparator

Difference
report

Figure (2.2): Back-to-back testing [30].

Agile Prototyping: A combination of different approaches

__

12

engineers, whether prototyping is appropriate for the software product that they intend to

develop or not [25].

In a study carried out by Boehm, Gray, and Seewaldt (1984), they found that the software

product that were developed using prototyping, performed as well as those developed

using the traditional design techniques, but with 45% less effort, and 40% fewer lines of

code for those engineers who used prototyping [25].

The above facts guide us to think about the advantages and disadvantages of using

prototyping approaches. In 1992, a study carried out by Hital and Soltan provided a

comparison between prototyping and non-prototyping approaches, from advantages and

disadvantages perspective, and the result is as follows [13]:

1. Prototyping approach:

Advantages

 Provides a superior knowledge elicitation environment by allowing the

user to criticize a working model of the software product.

 Having a demonstration of the software product is likely to occur at the

event of project freezing.

 Expand the testing phase processes throughout the entire software

development life cycle, and that makes the engineers more confident

with their final developed software product.

Disadvantages

 Prototype normally leads to narrow and shallow domain knowledge.

 The obtained feedback from the prototype demonstration, leads towards

a particular venue of solutions and the view of the global solutions, is

not easy to be acquired by the engineers.

 Sometime; it is hard to control because prototype allows too much

flexibility.

 Without fully understanding the domain, prototype enforces the use of

shells.

Chapter 2: Theoretical Background

__

13

2. Non-prototyping approach:

Advantages

 Future development and maintenance are easy, since the software

product’s formal design documentation is enforced.

 A wide and deep understanding of the domain.

 Visibility of the software product development life cycle.

 Selection of the most appropriate tools and software is possible.

Disadvantages

 Hard to adapt to major changes.

 The development process is much harder with vague customer’s

requirements.

 Invisible implementation problems and risks might cause timescale

overrun.

After the development team (engineers) decides whether to prototype or not, it’s time to

choose which prototyping approach is the most appropriate for their software product.

They are as follows:

2.3.1 Throwaway prototyping

Throwaway prototype is a software product that is developed with less tension than that

given to the real software. The main purpose behind it is that it’s intended to help the

customers and the engineers to understand what the required system is supposed to do,

and helps the engineers to learn more about the existing problems. When the engineers

develop such a software product, they will never intend to make it a part of their final

software, because such software is normally poorly structured, inefficient, and with no

errors checking. Moreover, such a software product does not implement any of the

desired functionality. Throwaway prototype helps the engineers to develop the so-called

“quick-and-dirty” software that gets quickly to the heart of the questions that engineers

are seeking to know about [25, 30].

Agile Prototyping: A combination of different approaches

__

14

In simple words, throwaway prototype is a software product that is built as quickly as

possible to implement only requirements that are not clear enough or even requirements,

the external behavior of which is poorly understood. This prototype will be used by the

engineers experimentally, to gain knowledge about which of the requirements are real

and which are not and then discard it [1, 7].

These prototypes are developed only to answer certain questions and then the engineers

will throw-it-away as soon as they get the required knowledge which will help them to

write the Software Requirements Specifications (SRS), incorporate all what they have

learned, and then construct the final software product based on the information that they

gained from that prototype [1, 7, 25, 27, 30]. Throwaway prototype is illustrated in figure

(2.3).

A

B

C

D
E

G

F

User

Developer

Requirements

Design

Code & unit test

Integration test

Software system
test

Throwaway
Prototype

Problem
report &

enhancement

reports

Prototype

System

Figure (2.3): Throwaway prototyping: (A) Build prototype, (B) use
prototype, (C) develop system, (D) deliver system, (E) use system, (F)

report problems, (G) receive, priorities, and schedule changes [1]

Chapter 2: Theoretical Background

__

15

2.3.2 Evolutionary prototyping

Unlike throwaway prototypes, evolutionary prototype is a software product that is

developed not only to answer the engineer’s questions and gain more knowledge, but to

be incorporated into the final software product as well, as illustrated in figure (2.4) and

(2.5). This means that evolutionary prototype is based on the idea of carefully developing

an initial version of the software product, exposing that version to the customer’s

comments and refining it throughout many other versions, iteratively, incrementally, or

both until an adequate software product is ready to be used by the customer [25, 30].

Because the evolutionary prototype will eventually exhibit the final software product

quality requirements (non-functional requirements) which can’t be retrofitted, engineers

are required to be much more careful when developing it. Therefore, specification,

development, and validation activities will be interleaved with feedback activities, rather

than separately [25, 30].

Outline
description

Specification

Development

Validation

Initial version

Final version

Intermediate
versions

Figure (2.4): Evolutionary development [30]

Agile Prototyping: A combination of different approaches

__

16

In other words; evolutionary prototype is a software product that is developed in a quality

manner where software requirements specification and design documentation are

included and the software product is tested thoroughly. Evolutionary prototype is a

software product that implements only the confirmed software specification, and that is

used by the engineers experimentally to examine which of the requirements exist and

haven’t been thought about yet. When such software product development is completed,

the engineers will modify all of the related documentation to incorporate their gained

knowledge, redesign, recode, and retest that software product [1].

Figure (2.5): Evolutionary prototyping: (A) Develop understood parts of the system, (B) deliver
system, (C) use system, (D) report problems, (E) receive, priorities, and schedule changes, (F)
report enhancements, (G) receive, priorities, and schedule changes, and (H) evolve system [1]

Requirements

Design H

A

B

C

D
E

G

F

Developer

Requirements

Design

Code & unit test

Integration test

Software system
test

Developer

User

Problem

report

System

Enhancement

reports

Chapter 2: Theoretical Background

__

17

Davis makes an interesting statement in comparing throwaway and evolutionary

prototyping that were pointed out in his article “Software Requirements: Analysis and

Specification”:

“Throwaway and evolutionary prototyping have almost nothing in common

except the word prototyping” [10].

Davis argues that both prototypes are developed differently; implement different software

functionality which serves different purposes, with different result. These points are

presented in table (2.1) [1].

Table (2.1)

Comparison of Throwaway & Evolutionary prototyping

Characteristics Throwaway Prototyping Evolutionary Prototyping

Development approach Quick and dirty; sloppy Rigorous; not sloppy

What is built Poorly understood parts Well-understood parts
first

Design drivers Development time Ability to modify easily

Goal Verify poorly understood
requirements and then
throw-away

Uncover unknown
requirements and then
evolve

2.3.3 Operational prototyping

Besides the previous comparison between throwaway and evolutionary prototyping,

Davis has some other arguments that engineers have to consider when choosing which

prototyping approach to use with the corresponding system. This means that either

throwaway or evolutionary prototyping alone will not be acceptable for the development

of some systems, where most of these systems’ requirements are either critical to the

design of the system and well understood, or not critical and poorly understood. In such

systems throwaway prototyping alone is not effective, because when the requirements are

poorly understood and they aren’t critical to the system, the user can’t judge their

Agile Prototyping: A combination of different approaches

__

18

importance and adequacy when they are implemented. Furthermore, evolutionary

prototyping is not effective for such systems either, because the poorly understood

requirements can’t be clarified by the evolutionary prototyping. That of course will be

related to the system’s complexity as well [1].

These points were behind the main idea that guided Davis to develop the operational

prototyping. Operational prototyping is based on the idea of building throwaway

prototypes on top of the evolutionary prototype. In this approach, the software

development team starts with building an evolutionary prototype for the critical and well-

understood requirements. At a certain time, this prototype will be demonstrated to the

customer and/or end users by a prototyper (a new development role stated by Davis).

During the demonstration session, the prototyper will build a quick-and-dirty throwaway

prototype on top of the quality baseline “evolutionary prototype” software, if necessary

for the poorly understood requirements. If these new builds satisfy the customer/user, the

prototyper will report back to the development team to be incorporated into the final

software product, and then remove the quick-and-dirty code that was built during the

demonstration session [1]. Operational Prototyping is illustrated in figure (2.6).

A

Figure (2.6): Operational Prototyping [1]

H

B

C

D

E

G F

Developer

Requirements

Design

Code & unit test

Integration test

Software system
test

User

Problem
report &

Enhancement
reports

System

Developer

Chapter 2: Theoretical Background

__

19

2.4 Prototyping selection

The decision that developers “engineers” team make to select one prototyping approach

or another one, is influenced by many factors, such as: the amount of the required

resources for the development, the overlap between critical and well understood

functions, and whether the users need to understand the system’s functionality at the very

beginning of the software development process [1, 3].

Requirements also play an important role in the selection decision, as illustrated in figure

(2.7) where the range of the requirements’ understanding is presented vertically,

engineers knows what the customer exactly wants when the requirements are well

understood. The engineers know that the customer needs something that they are not

certain about its behavior in the system when the requirements are poorly understood, or

that the engineers don’t know at all what they are supposed to develop when the

requirements are totally unknown [1].

The criticality of the requirements is presented horizontally, where the critical

requirements to the design mean that architecture will be driven from it eventually. On

the other hand, the non-critical requirements to the design mean that the architecture will

not be driven from it [1].

Not critical to Design Critical to Design

Well understood

Poorly understood

Unknown

E

P

E

P

T

P

T

P

A

C

E

B

D

F

Figure (2.7): Range of problem requirements, and the role of
throwaway (TP) and evolutionary (EP) prototyping [1]

Agile Prototyping: A combination of different approaches

__

20

This figure shows the importance of throwaway prototyping when its implemented to the

poorly understood requirements and migrates them to well understood ones, by lifting the

requirements from level C to A, and from D to B, because the engineers don’t want to be

engaged into the architecture until they have totally understood the critical requirements.

They will not use the evolutionary prototyping unless level A is much bigger than C, and

B is bigger than D [1].

Software engineers sometimes call throwaway and evolutionary prototyping “Rapid

Prototyping”, because both involve building software products to understand and answer

questions about the customer’s requirements. The term “Rapid” distinguishes software

prototyping from those in other engineering disciplines, in which their prototypes are

typically a complete solution [25]. In that sense, operational prototyping can be

considered as Rapid Prototyping Approach as well.

Prototyping or modeling helps software engineers to explore questions about the

customer’s requirements, but to decide which is better than the other depends on what

questions the engineers have, and how well they can be expressed by the software

modeling or prototyping, and how fast it can be built [25].

Regardless which approach will be used by the software engineers for software

prototyping, they will have to decide how they will organize the development of that

approach “e.g. evolutionary prototyping” into releases. Incremental and iterative

developments are the most popular approaches “philosophies” for release development.

The former approach is the process of partitioning the documented customer’s

requirements, into subsystems based on functionality. These subsystems will represent

the inputs of the incremental planning process and each will be assigned a release based

on their priorities and criticality. The engineers will start working with the first increment

which is often the core product, or, in other words, the basic requirements. The

engineers, then, will continue the software development by adding new subsystems and

functionalities in each new release. On the other hand, iterative development is the

process of developing the whole required system product at the very beginning and

Chapter 2: Theoretical Background

__

21

improve the system functionality each new release [25, 27, 30]. Figure (2.8) presents the

incremental and iterative models.

2.5 Software storming

Sometimes software engineers intend to combine brainstorming and software

development principles together which help them to develop a knowledge-based system

for problem assessment and quick solutions. Such combination is known as software

storming, which is considered to be a rapid prototyping methodology [24].

While brainstorming is characterized by a critical mass of expertise for rapid generation

of ideas, software development engineering is usually a structured, orderly system

development, in which many of the inherited notations are in conflict with each other

[24].

Since software development is defined previously, we need to define brainstorming in

order to have the required knowledge about software storming. As defined by Osborn [2];

brainstorming is the process of

“…using the brain to storm a creative problem and to do so in commando

fashion with each stormer audaciously attacking the same objective” [2].

Incremental Development

Iterative Development

Figure (2.8): The incremental and iterative models [25]

Agile Prototyping: A combination of different approaches

__

22

In other words, brainstorming is

“…a technique by which a group attempts to generate ideas or find solutions

for a specific problem by amassing ideas spontaneously and without judgment”

[17].

So, what is software storming then? Software storming is the process of combining two

problem solving approaches, brainstorming and rapid prototyping, to help the engineers

minimizing the time between the targeted software specification and its implementation,

whereas in the brainstorming sessions the domain experts and the engineers will interact

in an unstructured way to stimulate ideas from each other. These ideas then will be

considered, expanded, or even rejected in an attempt to solve their particular problems

that occur to the software that they are intended to develop [24]. On the other hand,

prototyping primary purpose is to build systems based on the storming session quickly,

while reducing time and expenses. Software storming will help the engineers to build

such software prototype with more significant functionality than a standard prototyping

approach will do and with less development time, by forcing the importance of involving

the end-user into the software product development process [23].

Three significant differences between software storming and any other prototyping

approach are worth mentioning [23]:

 The interaction between the domain experts, during the software

development process where the engineers will incorporate their gained

knowledge, into the system being developed and monitor the system

behavior.

 The storming activities are videotaped “documented”, to archive the

engineers discoveries that were made about the targeted domain

problems, and gain feedback to improve the engineer’s storming

techniques by reviewing these tapes.

 Two main phases are included in the storming process; the storm phase

of intense development, and the follow-on phase that extends the initial

Chapter 2: Theoretical Background

__

23

development prototype into a software product that can be

demonstrated.

2.6 Experiment design

When the engineers collect certain data related to the product that they are intended to

develop, and treat these data systematically, this will help them to base their decisions on

facts and perform the required level of quality. However, during the product development

and processes operation, the accumulated data is naturally not enough. Therefore,

engineers need to have experiments that are planned and performed early in their product

development life cycle. Such experiments will provide the engineers with knowledge that

is gained rapidly about the values that have to be selected for their product development,

so that they can develop the best possible software product at a lower cost [5].

Among a variety of methods available for experiments design, Fractional Factorial

Design (FFD) is commonly used to evaluate prototypes and validate system performance,

in which the prototype or system validation is treated as an experiment. With many

different factors, internal and external, on which the computer based systems

performance depend. For the engineers to be able to design system that satisfies the

required performance or to validate it, these internal and external factors influences must

be known and examined [31].

Performance is an important characteristic for software products where different aspects

must be on focus, based on customer’s requirements or system preferences. In other

words, performance is generally measured by ratio type during system prototype or

validation [11, 31].

Fractional factorial design can be used to examine these performance aspects. So, what is

Fractional Factorial Design, then? It is:

“…a methodology that is originated from the planning and performance of

experiments and it’s a subtype of Factorial Design (FD)” [21, 31].

Agile Prototyping: A combination of different approaches

__

24

FFD supports the selection and combination of different factors to be investigated. This is

the main difference compared to one-factor-at-a-time approach [5, 11, 16, 31].

As noted by Berling and Bunesen, compared to other methods, fractional factorial design

has the following advantages [31]:

 Possibility of calculating the effects of each factor and interaction

between them.

 Engineers can gain more knowledge by expanding the configuration

with more test cases based on the previous performances.

 As more and more knowledge is gained, the effort will be minimized.

 “The planning, performance, and analysis of the experiment or its

evaluation, are structured and straightforward” [31].

 As more gained knowledge, as fewer needed test cases.

Compared to full factorial design, engineers can run fewer test in fractional factorial

design, if they thought that the factors interaction effects can be disregarded. The

following table shows full factorial design for two factors (A) and (B) in two levels (+)

and (-), which resulted in four test runs [5]. A full factorial design for factors (A) and (B)

is presented in the following table.

Table (2.2)

Design matrix of a full factorial design with two factors on two levels

 Run
Factor

A B AxB

1 - - +

2 + - -

3 - + -

4 + + +

Chapter 2: Theoretical Background

__

25

But if the engineers are sure that there is no interaction between the above two factors (A)

and (B), they can introduce a third one (C), which will replace the values of the column

(AxB), presented in the previous table. This way the engineers will be able to examine

three factors (A), (B), and (C) with four test runs in a fractional factorial design which

were needed only for two factors, (A) and (B), in a full factorial design [5]. Fractional

factorial design for factor (A), (B), and (C) is presented in the following table.

However, it will not be possible to notice the effect of factor (C) in the above figure, if

there is still an interaction between (A) and (B) that the engineers didn’t notice, neither

the interaction between (A) and (B), or any other combination effect in such a case would

be easy to point. Therefore, factor (C) and the interaction (AxB) are said to be aliased. In

that case, it is not possible to know if the main factor, whether it’s (A), (B), or (C), is

active or not. An extension for the test runs will solve such problem, but that will result in

a full factorial design. Therefore, and in such case, with more and more test runs in a

fractional factorial design, enough information will be gained to support the engineers in

their decision about which are the best possible combinations that can be achieved for

better software quality [5, 31].

The following figure shows a fractional factorial design for the three above factors (A),

(B), and (C). And in case of discarding any factor, (C) for example, the result will be a

full factorial design for two factors (A) and (B). In both cases, two or three factors, four

test runs are conducted [5].

Table (2.3)

Design matrix of a fractional factorial design with three factors on two levels

 Run
Factor

A B C

1 - - +

2 + - -

3 - + -

4 + + +

Agile Prototyping: A combination of different approaches

__

26

Here engineers can look at their prototype, or the system performance validation as an

experiment, but with replacing the factors of the experiment with other factors that

influence the software that they are intended to develop, and replacing the variables of

the experiment responses with measures for the system performance. The performance

measure in this case can be, for example, successful sent data packages in a data network

per time unit [31].

2.6.1 Real life example

To clearly present how fractional factorial design methodology can be used for software

prototyping or validation of system performance, a real life example that was carried out

as a case study by Berling and Runeson at Ericsson Microwave Systems AB (EMW), is

presented.

The study was carried out in a unit of developing radar systems by several hundred

engineers, using incremental development processes and in each increment, the system’s

functionality is increased, using the following software development phases [31]:

1 Design unit

1.1 Requirements specification.

1.2 System and sub-system design.

(+)

(-)

(+) (-) A

B

4 3

1 2

(-)

(+)

(+)

(-)

(+) (-) A

C

4

3

1

2

B

Figure (2.9): Fractional factorial design for three factor (right), & full
factorial design for two factors (left) [5]

Chapter 2: Theoretical Background

__

27

2 Programming unit

2.1 Coding.

2.2 Sub-system test.

3 Test unit

3.1 Integration.

3.2 Verification.

3.3 Validation.

When thinking about performance evaluation of such systems, it can be conducted early

during the design phase (prototypes or advanced simulators are used), in order to define

the system parameters values, or it can be conducted late during the validation phase (run

the system in its real environment), in order to demonstrate the quality of the system or its

behavior. Validation is considered to be one of the last performed activities of the system

development life cycle which involve testing to ensure that the customer’s wish list is met

[31].

In this case study, the evaluation of the system was performed during the prototype

design of a new radar system to investigate which factors affect the false and real target

rates. The evaluation results, then, were used to set the system’s parameters values and

test cases planning for validation [31].

The target system of this case study was a radar system that is operated on an aircraft

which is designed to detect and track aircraft and ships and highly depends on the

surrounding environment, the schematic description of which is illustrated in following

figure [31].

Antenna

Environment Operator

Command &
Control User

Interface

Automatic
Tracking
Function

Signal Data
Processor Converter

Figure (2.10): Schematic description of target system
components [31]

Agile Prototyping: A combination of different approaches

__

28

In the above figure, the surrounding environment areas are scanned by the antenna and

defined by the operators. The received radar signals by the antenna are converted into

digitized data which are considered to be signals that will be processed by the signal data

processor to separate aircraft and ships signals from others such as: noise, ground, and

sea clutters. These signals normally represent aircraft and ships positions and movements

and will be tracked in the automatic tracking function, which controls the direction of the

beam to update the tracks and search for new ones. This will enable an efficient use of the

radar energy. The command and control user interface is used to present the signals of the

tracked aircraft and ships [31].

During the prototype development of this system and as a result of a brainstorming

meeting with field experts, 11 factors were considered to influence the false and real

target rate and were recommended to be tested during the design phase. During the

design phase, it was discovered that factor B, one of the above 11 factors, was chosen

wrongly and it was discarded by the engineers [31].

The discard of factor B left the engineers with 10 factors. Thinking of complete factorial

design with two-levels for these 10 factors “+” and “-” resulted in 2
10

 = 1,024 test cases,

which were considered unreasonable by the engineers. Therefore, they have chosen to use

fractional factorial design in this case study with an advantage of using only 16 test cases

for the first evaluation, as illustrated in the following table, and a disadvantage of

confounding the main and interaction effects [31].

Chapter 2: Theoretical Background

__

29

Table (2.4)

Fractional Factorial Design Chosen with two-levels

 Run
Factor

A C D E F G H J K L

1 - - - - - - - + + +

2 + - - + - + + - - -

3 - - - + + - + - - +

4 + - - - + + - + + -

5 - + - + + + - - + -

6 + + - - + - + + - +

7 - + - - - + + + - -

8 + + - + - - - - + +

9 - - + - + + + - + +

10 + - + + + - - + - -

11 - - + + - + - + - +

12 + - + - - - + - + -

13 - + + + - - + + + -

14 + + + - - + - - - +

15 - + + - + - - - - -

16 + + + + + + + + + +

However, the first evaluation and the following ones resulted in gaining more knowledge

and guided the engineers towards additional runs to dissolve the confounded factors and

to decide which factors can be removed from the prototype design [31]

As resulted in this case study, 112 test cases were enough to gain knowledge and draw

conclusions on the effect and interaction of 10 factors of false and real targets that are

detected by the radar system, instead of 1,024 test cases using full factorial design on

two-levels [31].

Agile Prototyping: A combination of different approaches

__

30

2.7 Software configuration management

Software products have become an essential part of human life, and with the passing of

time, the complexity of these software and its environments is increased. When

developing software products, the development team expects that changes are going to

take place several times during the development processes, just like any other aspect in

our life. However, changes in the software field are critical issues to the success or failure

of development. Therefore, engineers are required to monitor and handle these changes

efficiently to be able to succeed in developing software with considerable quality.

The following are examples of changes that naturally take place during any software

development processes [6]:

 The elicited customer’s requirements, even if it’s agreed on by all

stakeholders and baselined, it’s likely to be changed.

 Software design, code, test cases, and plans are commonly changed

throughout the development stages, so that the engineers can achieve a

better quality.

 Bugs are normally detected during development, or after delivery,

which will have some effects that require to be changed.

Software configuration management is widely used in the software field to handle such

changes; so, what is Software Configuration Management?

Software Configuration Management or simply Configuration Management is:

“…a process that ensures that the descriptions of the project’s products are

correct and complete and it involves identifying and controlling the functional

and physical design characteristics of products and their support

documentation” [17].

Chapter 2: Theoretical Background

__

31

But as defined by Daniel [9] and from software quality point of view, where software

configuration management is considered to be part of software quality assurance SQA;

“…an SQA component, responsible for applying (computerized and non-

computerized) technical tools and administrative procedure enables

completion of the tasks required to maintain Software Configuration Items

SCIs and software configuration versions” [9].

In other words, software configuration management can be considered as a framework

that helps engineers to manage all changes that might happen throughout the

development processes with structured and orderly processes.

For the engineers to use software configuration management effectively and succeed in

their projects, they need to identify the Software Configuration Items SCIs, the subject

matter, and the heart of software configuration management.

Software Configuration Items SCIs are:

“…approved units of software code, a document, or piece of hardware that is

designed for configuration management, and treated as distinct entity in the

software configuration management process” [9].

A variety of tools is available to support software configuration management. However, a

successful one is the one that helps the engineers to visualize the entire product changes,

tracking software versions, configuration items, and team working coordination, as well

as building and delivering different releases. The following are general capabilities that

are required for any software configuration management tool [20]:

Version control, which is the heart of any SCM tool that helps the engineers

keeping track of the components’ changes and their history throughout the

software development life cycle.

Change management, which is the processes related to evaluating, testing,

managing, and implementing configuration management, reports, and changes

requests.

Agile Prototyping: A combination of different approaches

__

32

Configuration control, which is the process of identifying and selecting

different software/hardware components to be configuration items and assign

them to different versions.

Build management, which is the process of building versions or subset of

versions of a product, based on their selected configuration components. It’s a

process that allows the engineers to keep records of the built versions and their

environments, as well as the version of any selected component.

Process management has a wide scope in SCM, and it’s a process that

supports engineers to carry out the software development life cycle processes

repeatedly, in a streamlined way, and in an automated fashion.

Chapter 3: Model Construction

__

33

3 MODEL CONSTRUCTION

3.1 Knowledge extraction approach

The main idea behind this thesis work was to find a way to keep the developed prototype

“throwaway prototype” for some time after the engineers have got answers to their

question and gained knowledge that helped them to develop the main software product, to

examine the possibility of gaining more knowledge from the developed prototype, about

the suggested solution(s), or even to gain knowledge about other design issues that the

engineers haven’t thought about when they intend to develop the prototype in the first

place, in order to develop more efficient, reliable, and economical software product that

satisfies the customers. The following figure illustrates the knowledge extraction

approach.

Agile Prototyping: A combination of different approaches

__

34

 Original point of
view

Other points of view

Prototype

Time

K
n

o
w

le
d

ge

Prototype
Ex

p
ec

te
d

M

o
re

Figure (3.1): Knowledge approach

In order to gain a reasonable outcome from the knowledge extraction approach and for

the engineers to gain more knowledge than expected as illustrated in the above figure, the

engineers need to keep the prototype that has being developed, even if they have got

answers to all their questions and spend more time studying and investigating that

prototype product from different points of view which have not be considered before.

This way might result in gaining additional knowledge that helps the engineers to

improve the quality of the software product under development.

The time that the engineers are required to spend studying that prototype must have some

constrains that the engineers themselves have to define, and that of course will be based

on the type and the criticality of the software product which they intent to develop.

3.2 Prototype usages

Software prototypes are used in different ways to serve and support different software

development teams and processes. Whereas the requirements’ engineers use it for

elicitation, validation and demonstration with the customers, the software’s architects will

use it to examine different quality aspects, interface alternatives, and examine different

Chapter 3: Model Construction

__

35

proposed solutions, and the software testers will use it for comparison and back-to-back

test session with the software under test. [15, 25, 30].

It’s clear that the purposes of each prototype and the results are different from each other.

However, two main facts need to be pointed out, which are:

First, all teams, requirements engineers, system’s architects, and software

testers use the same exact prototype development process to develop their own

prototype.

Second, all these prototypes with their different purposes and uses, will all

contribute to one, and only one software product by the end.

Here the question is: Why not developing one, and only one prototype product that serves

requirements engineers, system’s architects, and software testers, each for their own

benefits? Thinking of developing only one prototype to serve different teams with

different issues, might seems really hard. However, several benefits of using only one

prototype can be pointed out, and they are as follows:

 Developing only one software prototype instead of many, will help the

development team to reduce development effort, time, resources, and cost.

When the system’s architects, and software testers use the same prototype that

were used by the requirements engineers for requirements elicitation and

validation, this can result in transferring the same exact customer’s

requirements. Thus, the development teams are certain about what they are

intended to develop.

While using the same software prototype that was used for elicitation and

validation, system’s architects and software testers can start to think a bit early

about the tools they need to use, any specific procedures they need to consider,

or any other related development and testing issues that might need to be taken

care of, in order to improve a software with a satisfactory quality.

Agile Prototyping: A combination of different approaches

__

36

Attacking the same software prototype, with different points of view –

requirements, architects, and testing – and evaluation procedures; this might

result in gaining more knowledge about that software prototype, even more

than expected.

In order to be able to achieve these above benefits of developing only one software

prototype, specific prototyping team must be built and requirements engineers, system’s

architects, and software testers representatives should be a part of it.

3.3 Documentation

Generally, when any development team works to develop “engineer” any software

product, they intend to keep a set of documentation recording their results. Engineers and

customers refer to these sets of documentation from time to time, during the software

product development and maintenance stages. These sets of documentation are not only

for use with the customer, but they are useful for internal communication between

developers and teams as well. Such software documentation is mandatory for all kinds of

software. Even though prototypes are software products, they still remain undocumented.

[18, 25, 30].

Schneider has pointed several issues representing why prototypes remains undocumented,

and they are as follows:

Documentation activities will slow down the prototypes rapid development

processes.

Prototypes are adapted to faster changes which are hard for any systematic

documentation approach to follow; on the contrary, it will create

documentation overhead.

Since many prototypes are dirty-developed and will be abandoned at some

point of time, why engineers spend time documenting it and what could they

learn from dirty-prototypes.

Chapter 3: Model Construction

__

37

On the other hand, some other important points have to be considered as well, which are:

Normally prototypes are developed by a small group of engineers, or even a

single one. What if this group, or this single engineer who has the prototype

knowledge, left the development group for any reason? [18] What will happen

then?

What if the engineer(s) wants to review and extract additional knowledge

which they have missed from the software prototype that they have already

thrown-away?

What if they would like to investigate other new features, which depend on the

architecture of the software prototype which isn’t available anymore? Are they

going to lose effort, time, and cost to build that software prototype from the

beginning again, to be able to investigate these new features? What were the

objective(s) of developing that software prototype in the first place? Who has

such knowledge?

These above mentioned points and some others show the importance of documentation,

even for a prototype which in fact is a software product that needs to be treated

respectively to gain the maximum knowledge out of it, in order to be able to develop the

final software product with satisfactory quality.

With this new approach, if the engineers get to spend some time documenting the

prototype under development, they can avoid the risk that was mentioned above. Another

point is that such prototype documentation can help reducing effort, time, and cost when

it contributes to the final software product documentation. Just as we think of

evolutionary prototyping and that it will be incorporated into the final software product,

engineers can think of the prototype documentation as evolutionary documentation that

can be incorporated into the final software documentation.

Besides the traditional documentation approaches, there are others such as video-taping

[18, 23]. Such documentation can help the engineers to gain more knowledge, by

reviewing their video-documentation, just like brainstorming enforces the use of video-

Agile Prototyping: A combination of different approaches

__

38

taping to improve the engineers storming techniques, by reviewing the storming tapes

[23]. Here, when the engineers review these tapes, their role will be automatically

changed from engineers “developers, or demonstrators” to listeners. This is yet another

point of view to be used, when thinking about the same prototype that they have

developed [18, 23] and yet spending more time with the prototype and gaining more

knowledge to improve their software quality in which this point supports the main idea

behind this model construction as well.

3.4 Software storming

As defined before, brainstorming is a technique to generate ideas and find solutions

without judgment [17, 23]. This technique works almost in every field, wherever

creativity is required. However, it is known as software storming in the software

engineering field.

The main point behind combining it into this prototyping approach is to bring the

requirements engineers, system’s architects, and software testers together to storm wide,

though different points of view, objectives, and evaluation methods and procedures, to be

incorporated into one and only one software prototype that serves all team’s purposes and

helps them gaining more knowledge about that software prototype.

Requirements
representative

Testing
representative

Design
representative

Brainstorming
 Objective

 Functionality

 Evaluation

Figure (3.2): Storming sessions with requirements, design, and testing representatives

Chapter 3: Model Construction

__

39

3.5 Model first attempt

A combination of all the above presented issues of knowledge extraction, has resulted in

the following first attempt of the prototype approach.

As illustrated in the following figure, this model works as follows:

 It will start with the initial collected requirements “wish-list” from the

customer by the requirements engineers, in which it will be shared as it

is and presented to the other development teams system’s architects,

and software testers.

 Each team will start setting its own visions, objectives, evaluation

methods and criteria, any other questions and issues that it would like

or is going to investigate. These different points from those different

teams will be used as the main inputs to the first brain “software”

storming session.

 During the first storming session where representatives from

requirements engineers, system’s architects, and software testers are

there, general objectives’ functionalities and evaluation criteria that

satisfy all development requirements will be stormed to develop the

main prototype “base-line”.

 Based on the storming results, the first version of the prototype will be

developed and documented. Notice that only one software prototype

will be developed!

 A working software prototype then, will be used by each development

team, where each will use it for their own purposes and report their

feedback to the storming group with modifications, or new visions,

objectives, evaluation methods.

Agile Prototyping: A combination of different approaches

__

40

Feedback

One

Prototype

Team’s visions &

objectives

Initial

Requirements

Requirements

representative

Testing

representative

Design

representative

Requirements Team

Elicit Requirements from

Customer

Design Team Testing

Team

Brainstorming
 Objective

 Functionality

 Evaluation

Prototype

 Development

 Documentation

Requirements

Team

Design

 Team

Testing

Team

Feedback

Feedback

Figure (3.3) Prototype
knowledge extraction process

Chapter 3: Model Construction

__

41

 The next storming session will be based on inputs from the

development team’s feedback, and of course any other changes

suggested by the customers, or from the monitoring phase that is related

to the storming technique itself. During this session and the other

following sessions, where the main software prototype will be

developed with new functionalities and objectives, iteratively or

incrementally, more and more knowledge will be gained and that will

help the development team to improve their software quality.

 This circle of storming session with inputs from the teams feedback, to

generate and attack ideas to improve the software quality and outputs,

as guides to the next development task, will be repeated indefinitely

until the development team finishes the final software product with

satisfactory quality, or jump out at some point, if they can’t develop

that particular software.

3.6 Industrial view

On the 4
th

 of March 2009, a meeting was conducted between me, Peter Aronsson, and my

supervisor Kristian Sandahl, where I got the chance to present the first developed

prototype approach and discuss the idea behind its development.

In that meeting, Peter Aronsson represented the Swedish branch of a company called

MathCore, which helps professional engineers to understand and improve their products

by developing and supplying them with products and services for that purpose.

During the discussion of the idea behind the approach, Peter mentioned several points

that were not thought of during the development of this approach. These points are as

follows:

 Software prototyping development environment is one of the important

issues that engineers need to think about. For example, developing a

prototype in Java seems to be easier than developing the same prototype

Agile Prototyping: A combination of different approaches

__

42

in C++. But, what if the engineers did develop the prototype in Java,

while the final software product is going to be developed in C++? This

might lead to some software development risks that will not be clear

during the prototyping phase and will be faced only when developing

the final software in its target environment.

 It’s important to think about and consider the final software product or

the project size when developing the software prototypes, because it

will have some effects on the effort, time, recourses, and cost of

development compared to the final software product.

 Reuse of some developed prototypes into a new prototype can be

considered as an advantage to reduce time, effort, recourses, and cost.

But, such reuse requires the engineers to be careful thinking about that

first prototype and its development process. This will consume time,

effort, recourses and cost at the beginning.

 It’s good to have a certain amount of documentation, so that the

engineers will be able to save the prototype knowledge formally and

refer to it in the future, but if and only if the documentation process will

not slow down the rapid development processes of the prototype.

However, prototypes normally remain undocumented.

All these above mentioned points, and some others presented in the following section,

will be considered as improvement opportunities for the next version of the prototyping

approach.

3.7 Prototype knowledge extraction

Since the main idea behind this model was to extract knowledge by spending more time

in order to produce a better quality as mentioned before, a clever question emerged

during the development of this approach which is: Why not considering this model as a

Chapter 3: Model Construction

__

43

software prototype in itself and spend more time with this model to study it, and gain

more knowledge from it to improve its quality?

This question had great impact on the improvement of this approach. By the end of the

first attempt of developing this approach (presented above), I have started studying it

from different points of view with the support of my supervisor and other scientific

papers in the software engineering field.

At this point, lots of other questions started emerging as well; the following is a

presentation of these questions and the corresponding improvements “answers” that were

applied to the first attempt of this approach to improve it:

Q1. This model is another prototyping development approach. What is its

relation to the other prototyping approaches?

At the very beginning, this approach was thought of as a throwaway prototype

development process and that the engineers will eventually throw-it-away. But,

with the feedback cycles to and from the storming group, and the iterative and

incremental development of the prototype that will eventually result in a

valuable software product, do engineers really want to throw-it-away, then?

At this point, with all these feedback cycles, this approach is closer to be

evolutionary rather than throwaway prototyping. However, the comparison that

was made by Davis [10] between throwaway and evolutionary prototyping

which resulted in developing the operational prototyping, had some important

issues that can be incorporated into this approach for better knowledge

extraction. This means that this model will start with developing an evolutionary

prototype, and that a special prototyper will build throwaway prototypes on top

of it, if necessary and for demonstration purpose with the customer.

The last word in the above paragraph is customer! This word leaded to the next question.

Agile Prototyping: A combination of different approaches

__

44

Q2. What is the role of the customer/end-user in this approach?

The customer and/or end-user involvement in the software development

processes were suggested by recent innovations in prototyping. However,

engineers don’t go far enough bringing them into their processes [23]. Neither

did the prototyping approach that I have developed and presented previously go

that far, but the next improved version of this approach will do so. In this case,

the customer involvement is going to be clear during the storming sessions, and

that of course for better knowledge, as well as demonstration for the end-users

with the special prototyper in each new prototype release.

Q3. This approach will eventually result in several versions of the

prototype. How can the engineers keep track of all these versions, keeping

in mind that documentation will slow-down the rapid development? And

how can they decide which version has the better performance and quality

factor combination than the other?

Software configuration management is the best approach that can be used by the

engineers to keep track of all changes during the whole prototype development

process. For the engineers to be able to decide which of the developed versions

is better than the other, they will need to review the software configuration

documents with the support of the fractional factorial design which will be used

by the system’s architects, in order to examine the best possible combinations of

the required quality factors, by treating the different developed versions as an

experiment, and it will be used by the software testers to examine which is the

best possible combination of test cases that can be applied to verify the software

efficiency and error proof if possible. And of course system’s architects and

software testers will document everything in their evolutionary documentation

and in the software configuration documents.

Chapter 3: Model Construction

__

45

Q4. How many times the engineers need to repeat the activity loop of this

approach?

The main outlines for the evolutionary prototype development and improvement

will always be a result of the storming sessions, where the possibility of

developing the whole software or not, is visible. The storming group is

responsible for making the main decision such as: start developing a prototype

and extracting knowledge, continue developing a prototype by improving its

quality or introducing new functionality and gain more knowledge, or jump-out

at a certain point in time, if the accumulated knowledge is not enough or it was

an indicator to stop developing the whole software.

Q5. Does this approach use any activity or practices from any other

development approach?

Yes! The incorporated idea of having a special prototyper role for demonstration

purpose with the customer from the operation prototyping will be changed a bit

by having two prototypers using the pair programming practice from extreme

programming XP [4, 25, 30].

The prototypers will build the throwaway prototype on top of the evolutionary

prototype on the customer site, where; one will be thinking strategically, and the

other technically, to produce the throwaway “dirty” code. In other words, the

one who is thinking strategically “observer”, will observe the other programmer,

the direction, and the possible effects of the throwaway code on the whole

software. The other one who is thinking technically “driver”; has the control of

the keyboard to implement the changes that will satisfy the customer/end-user,

and they will exchange their roles from time to time [4, 25, 30, 32]. This practice

will result in gaining more knowledge which the prototypers will report back to

the storming engineers who decide about it, as well as document it in the

software configuration documentation.

Agile Prototyping: A combination of different approaches

__

46

Q6. Since XP is an Agile development approach, does this model have any

specific relation to Agile approach?

With different points of view that were used to study the model, the answer is

YES! The challenges of Agile manifesto will be all satisfied by the next version

of the model, and these challenges are satisfied as follows:

 Individuals and interaction over processes and tools

This point will be satisfied by the storming session’s activities, since a

representative from each team, requirements, architect, and testing, will take a

part of the storming sessions, for an interactive meeting to generate ideas,

exchange knowledge, and find solutions. The teams will benefit from it more

than the traditional information transformation, e.g. e-mail, documentation, or

any other means of communication.

 Working software over comprehensive documentation

This approach enforces documentation, but it will be limited and only for the

gained knowledge and for the configuration items for tracking the changes, until

the storming group “engineers” decides to finish the whole software

development. Then, they will start working at the documents as evolutionary

documentation as discussed before.

 Customer collaboration over contract and negotiation

This challenge will be satisfied by incorporating the customer in the storming

sessions for better knowledge about the required system, and in the

demonstration for feedback about the implemented functionality.

 Responding to change over following a plan

Here the feedback from all development teams and the customer request of

changes, will be the main inputs to the storming sessions. And as soon as more

knowledge is gained, more changes, of course, will be implemented to the next

Chapter 3: Model Construction

__

47

version of the prototype, in order to achieve a better quality, if and only if the

gained knowledge will help them to improve the quality of the software

underdevelopment.

Q7. Does this prototyping approach have any name that indicates its use?

The name of this model came from a technical point of view which is based on

the answer of the previous question. This prototyping approach is called Agile

Prototyping.

Agile comes from a technical perspective because this model satisfied all

the challenges that were listed in the agile manifesto.

The answers of all above mentioned questions have resulted in a valuable improvement

for the previous presented model. All this improvements and its effects on the model are

presented in the result chapter.

Agile Prototyping: A combination of different approaches

__

48

4 RESULTS

The result of this work is in fact a combination of different prototyping approaches and

some activities from other development approaches into one main prototype process that

is called Agile Prototyping AP. The main aim of the model is to help the engineers to

gain more knowledge about the software product that they are intended to develop and

produce a satisfactory quality. This new prototyping approach AP is illustrated in figure

(4.1), and it works as follows:

 The requirements team (as always), will elicit the initial requirements from the

customer/end-users. These initial requirements will be then transferred as they

are to the other development teams “system’s architects and software testers”,

by a presentation and documentation, if available.

Chapter 4: Results

__

49

Figure (4.2): Agile
Prototyping.

Jump out!

Evolutionary prototype

development

&

Evolutionary Documentation

Requirement
s engieers

System’s
architects

Software
testers

Brainstorming
 Objective

 Functionality

 Evaluation

Customer

Requirements
representative

Testing
representative

Design
representative

Team’s visions &
objectives

Initial
Requirement

s

Requirements Team

Elicit Requirements from
Customer

Design
Team

Testing
Team

Only ONE
Prototype

Team’s feedback

Function
request,
change.
& SCM

End-user

Prototypers

Agile Prototyping: A combination of different approaches

__

50

 All teams “requirements, architects, and testing” will setup their own visions,

objectives that they would like to achieve, the team’s specific issues, and

evaluation procedures and criteria will be set as well, in order to reach the

required level of quality that can be accepted by the customer/user, and send it

all to the storming group with the team’s representatives.

 The brain “software” storming represents the heart of this approach. The

storming team must have a representative of all teams as well as a customer

representative, in order to share their visions and objectives of the software that

they intend to develop. During the first storming session, general objectives

and functionality to be developed on the first evolutionary prototype “baseline

software” will be set, which will represent the basic functions that the rest of

the system will depend on, as well as the different evaluation criteria that the

storming group thinks will help them to decide soon, whether they will be able

to complete the whole software development, or not.

 As an output from the first storming session, the prototype team will start

building one and only one, evolutionary “baseline” prototype. When this

prototype is finished, the same copy of it will be sent to the different teams

“requirements, architects, and testing”, where each will use it for their own

purposes, and will apply their own evaluation procedures to it, in order to gain

the maximum possible knowledge from it as follows;

o The requirements engineers will use it to validate the gathered

requirements and elicit more from the customer. This task will be done by

the two special prototypers that will be part of the demonstration session

with the customer/end-user, where the customer/end-user will interact

directly with the prototype. If the customer has asked for any improvement

for the existed functionalities, or asked for any new ones, or even to

remove any of it, the prototypers then will build a throwaway code “dirty-

code” on top of the evolutionary “baseline” prototype, and then ask the

customer/end-user to try it again. If these new changes satisfy the

Chapter 4: Results

__

51

customer/end-user, the prototypers will have then to report them as features

enhancement or request, as well as reporting it back to their team

“requirements team”. The prototypers then will remove the dirty code and

save it as a configuration item in the configuration documents and

repository.

o The system’s architect will use the developed prototype to examine which

different combination of functionalities, quality requirements, alternative

technical solutions, environmental constrains, interface alternatives…etc,

will provide them with the best possible quality for the software

underdevelopment. For this purpose, they will use the fractional factorial

design, or even a full factorial design, if the combination set isn’t large

with information that can be collected from the configuration documents

and software, to be able to extract knowledge from that prototype. Then,

they will have to report their feedback which will be used as input for the

next storming session.

o The software testing will use the prototype with the support of fractional

factorial design, or the full factorial design and the configuration

information, to examine which is the best possible test case combinations

that can be used to verify the software functionalities and quality aspects,

as well as reduce the required test cases to examine the whole software

product with acceptable code coverage, to eliminate effort, time and cost of

testing, as well as gaining more knowledge that they need to report as

feedback to the storming team.

 The next storming session will depend on all teams’ feedback, as well as the

features enhancement or request documents, as inputs for the storming

activity. The storming team, then, will storm the new gained knowledge and

decides whether to proceed with the development by directing the prototype

team to iteratively or incrementally add new functionalities or enhance the

existing ones to gain more knowledge for the next session, or jump out (this

Agile Prototyping: A combination of different approaches

__

52

typically after several cycles, since the first few ones might not be enough for

such a decision).

 Since the baseline is an evolutionary prototype product that will be

incorporated into the final product, this circle will be repeated indefinitely

until the software underdevelopment is completed with a satisfactory quality,

which can be used by the customer/user. The storming team will have the full

picture of any particular software development and they will decide whether

to continue developing, or just jump out as explained above.

Chapter 5: Conclusion

__

53

5 CONCLUSION

Software engineers consider software prototypes as a powerful tool that helps them to

elicit and understand the customers’ requirements, so that they can develop the required

software. Software prototypes are used by different development teams for different

purposes, such as: examining alternative solutions, quality aspects, interface alternatives,

and validation, as well as some other development issues in which the main objective is

to provide the engineers with enough knowledge to be able to make the right decisions at

the right time.

Different prototyping approaches and models are available for use. However, in this

thesis work, a combination of different prototyping approaches, practices from different

development approaches into one process was accomplished to satisfy the main idea

Agile Prototyping: A combination of different approaches

__

54

behind this work which was: extracting more knowledge than expected from software

prototypes to improve the quality of the software underdevelopment.

The first attempt to develop a new prototype approach resulted in a process that combines

brainstorming techniques with knowledge extraction approach to develop one and only

one prototype that can be used by different development teams, in order to minimize the

overall development effort, time, and cost.

The first developed version of this model was treated as a software prototype in itself to

be able to apply the knowledge extraction approach to it, improve it, and validate it as

well. This activity resulted in several questions and the improvements applied to the

model, were based on the answers to these questions.

The next improved version of this new prototyping approach is called Agile Prototyping

AP. AP is a prototyping approach that is based on the idea of knowledge extraction,

combined with brainstorming techniques, and integrated with documentation, software

configuration management, and fractional factorial design.

The main idea behind AP is to develop one and only one software prototype, to help the

engineers gain more knowledge about the software product that they intent to develop.

Brainstorming represents the heart of AP, where all decisions regarding the software

underdevelopment will be taken during the storming sessions that different development

teams, as well as the customer, represented during it.

AP is an evolutionary prototype which aimed to implement the customer’s basic

requirements, and with the incorporated role of prototypers for demonstration and

requirements elicitation, a throwaway prototype will be built on top of the evolutionary

baseline prototype, if necessary. With several cycles from and into the storming sessions,

more and more knowledge will be gained to improve the overall quality of the final

software product, or to decide jumping out of the project.

The result of the integrated documentation into AP is known as evolutionary

documentation, which will be incorporated into the final software, in order to reduce

effort, time, and cost. Software configuration management were introduced to help the

Chapter 5: Conclusion

__

55

engineers to keep track of the rapid changes and to be examined by the fractional

factorial design, to help the engineers to find the best possible combinations of

functionalities, quality aspects, interface alternatives, test cases…etc, in order to develop

software products with quality that can be considered satisfactory by the customers.

Further work:

 Write a scientific paper, and publish it in a well known journal.

 Implement the model into student’s course project, related to system

development.

 Integrate the model with OpenUP, an Eclipse Process Framework (EPF).

 Write another scientific paper about the new results.

Agile Prototyping: A combination of different approaches

__

56

6 REFERENCES

[1] Alan M. Davis (1992): Operational prototyping: a new development approach, IEEE

Software, 70-78.

[2] Alex F. Osborn (1953): Applied Imagination, Charles Scribner’s Sons. New York, pp

297-307.

[3] Alexander L. & Davis A., (1991): Criteria for the Selection of a Software Process

Model, Proc. Campsac, CS Press, Los Alamitos, Calif, 521-528.

[4] Alexia N.B., Raghvinder S.S., and Colin J.N. (2007): Adoption of XP Practices in the

Industry – A Survey, John Wiley & Sons, Ltd, 283-294.

[5] Bergman B., & Klefsjö B., (2003): Quality from Customer Needs to Customer

Satisfaction, 2
nd

 Edition.

[6] Bersoff E.H. & Davis A. (1991): Impacts of Life Cycle Models on Software,

Communications of the ACM, V.34, 104-118.

[7] Carla Burns (1991): Proto – A software requirements specification, Analysis &

Validation Tool, IEEE, 196-203.

References

__

57

[8] Christina H., Yvonne D., Björn G., & Stefan Z. (2006): How agile are industrial

software development practices? The Journal of Systems and Software, 1295-1311.

[9] Daniel G. (2004): Software Quality Assurance – From Theory to implementation,

Pearson Addison Wesley ISBN 0-201-70945-7.

[10] Davis A., (1990): Software Requirements: Analysis and Specification, Prentice Hall,

Englewood Cliffs, N. J.

[11] Fenton N. E., & Pfleeger S. L., (1998): Software Metric: A Rigorous and Practical

Approach, 2
nd

 Edition, Thomson Computer Press.

[12] Fuller A., Croll P., Garcia O., (2001): Why Software Engineering is Riskier than

ever, IEEE, 113-119.

[13] Haila D.K. and Soltan H. (1992): To Prototype or not to Prototype? That is the

Question, Software Engineering Journal, 388-392.

[14] IEEE Standards Collection: Software Engineering, IEEE Standard 610.12-1990,

IEEE1993.

[15] James L.S., Carla L.B, Davis S., and Hollis B. (1995): A Case Study on Rapid

Systems Prototyping and its Impact on System Evolution, IEEE, 125-130.

[16] Joseph G.V. (2005): The Efficiencies of Fractional Factorial Designs, American

Statistical Association and the American Society for Quality, VOL. 47, NO. 4, 488-494.

[17] Kathy Schwalbe. (2007): Information technology project management, 5
th

 edition,

International Student Edition.

[18] Kurt Schneider (1996): Prototypes as Assets, not Toys. Proc of ICSE-18, 522-531.

[19] Loucopoulos P., Black W. J., Sutcliffe G., & Layzell P. J., (1987): Towards a

Unified View of System Development Methods, International Journal of Information

Management, 205-218.

Agile Prototyping: A combination of different approaches

__

58

[20] Midha A.K. (1997): Software Configuration Management for the 21st Century, Bell

Labs Technical Journal, 154-165.

[21] Montgomery D. C., (2000): Design and Analysis of Experiments, 5
th

 Edition, John

Wiley & Sons.

[22] Naur P., & B. Randall (eds.), (1969): Software Engineering: A report on a

Conference Sponsored by the NATOScience Committee¸ NATO.

[23] Pamela, W; Karl, S; Richard, W; David Vogel, Corporation (1989): Software

Storming, Combining Rapid Prototyping and Knowledge Engineering. IEEE Computer,

39-47.

[24] Peter B. P., Pamela W. J., Karl S. K., Richard O. N., Richard W. T., & David V.,

(1989): A Software Storming Approach to Rapid Prototyping, IEEE, 368-376.

[25] Pfleeger, S. L. and Atlee, J. M. (2005): Software Engineering Theory and Practice,

3
rd

 edition, Pearson Education International.

[26] Prashant P., & John T. N., (1990): System Life Cycle Methods: An Evaluation of

Their Applicability, IEEE, 141-149.

[27] Roger S, Pressman; Darrel Ince (2000): Software Engineering A Practitioner’s

Approach, European Adaptation, 5
th

 edition.

[28] Schrage M. (2004): Never Go to a Client Meeting without a Prototype, IEEE

Computer Society, 42-45.

[29] Shoval P. & Pliskin N. (1988): Structured Prototyping: Integrating Prototyping into

Structured System Development, Information & Management, Elsevier Science

Publishers B. V., 19-30.

[30] Sommerville, I. (2006): Software Engineering 8
th

 edition, Addison-Wesley.

References

__

59

[31] Tomas Berling, & Per Runeson (2003): Efficient Evaluation of Multifactor

Development System Performance Using Fractional Factorial Design. IEEE computer

society, 769-781.

[32] Williams L. (2001): Integration Pair Programming into a Software Development

Process, IEEE, 27-36.

[33] Wikipedia: http://en.wikipedia.org/wiki/Software_prototyping, December 14
th

 2008.

http://en.wikipedia.org/wiki/Software_prototyping

