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Abstract
In this report background material for some papers are stored. It concerns mod-
elling of laser radar systems for hard targeting. The (returned) laser radar data
is used for parameters estimation, where error-in-variables is assumed. The im-
pulse response for some common (target) shapes are derived. The coordinate
systems in output data is discussed. The system performance is analyzed us-
ing the Cramer-Rao lower bound. The models are developed for a scanning,
monostatic system, but some are general enough for other type of systems.

Keywords: Laser radar, measurement error regression, Cramer-Rao, sys-
tem model
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1 Introduction

In this report we study the properties of data from a generic scanning laser radar
system. Data from the system is modelled with an error-in-variables model (also
called measurement error model). The performance of a least squares �tting
method, the total least squares (TLS) method, is also evaluated. Data from
these type of systems generate detailed 3D maps of the terrain and can be used
for rapid terrain mapping, scene reconstruction and target recognition. This
report contains background data to a few papers:

[5] Christina Grönwall, Thomas Carlsson, and Fredrik Gustafsson, �A Cramer-
Rao lower bound expression for a scanning laser radar system�, Proc.
Reglermötet 2002, Linköpings Universitet, Linköping, Sweden, May 29-
30, 2002.

[6] Christina Grönwall, Tomas Carlsson, and Fredrik Gustafsson, �Performance
analysis of measurement error regression in direct-detection laser radar
imaging�, Proc. ICASSP, vol. VI, pp. 545�548, Hong Kong, China, 6-10
April 2003.

[7] Christina Grönwall, Ove Steinvall, Fredrik Gustafsson, and Tomas Cheva-
lier, �In�uence of Laser Radar Sensor Parameters on Range Measurements
and Shape Fitting Uncertainties�, Submitted to Optical Engineering, Sep-
tember, 2006.

When measuring hard targets with a laser radar, the shape of the returning
pulse depends on the target�s geometric properties. The impulse responses for
some simple geometric shapes are derived in Section 2 and reported in [7].
The returning pulse is used for estimation of time-of-�ight, which gives the
target range estimate. The output from the measurement system and the post-
processing, including fusion with GPS data, is discussed in Section 3. This is
background data to [6]. In Section 4, the measurement model for estimation
of tilted 1D surface is derived and in Section 5 the Cramer-Rao Lower Bound
(CRLB) for line estimation is derived. These results are reported in [5, 6]. The
CRLB results are expressed as functions of system parameters in Section 6, this
is reported in [5].
The results in Section 3 is applicable for systems scanning in a zigzag pat-

tern. The other results can be applied to generic scanning systems and can be
applicable also for staring systems without too much e¤ort.

2 Impulse responses for some common geomet-
ric shapes

2.1 Impulse response for a �at surface, 1D

This subsection contains calculations earlier performed in [2, 13]. They will be
repeated here because the angle � is de�ned di¤erently and some errors in [2,13]
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Figure 1: Geometry for the impulse response in 1D, �at surface.

will be corrected. In this case we assume that the spread of the laser beam is
much smaller in the � dimension compared to the � dimension, i.e. � can be
neglected, see Figure 1.
The distance between the sender/receiver and the target is

R (�) =

q
R2 (�0) + (� � �0)2: (1)

Using the assumptions that

(� � �0)� R (�0)

and
sin� = �0=R (�0) :

we can simplify (1) to

R (�) =
�

sin�
:

We set
k =

1

sin�
(2)

and get
R (�) = k�:

The pulse response is given in [13], eq. (45), in as

h (t) =

ZZ 1

�1
exp

 
�2(� � �0)

2
+ �2

w2

!
�

�
t� 2R (�)

c

�
d�d�; (3)

4



where w is the laser beam�s radius on the target (the footprint), c the speed of
light, � (t) the Dirac function and t time. The radius of the laser beam at the
target, w, at distance R is given by

w = w0

q

20 +


2;

where

w0 =
2�

��
;


0 = 1�
R

Rfocus
;


 =
�R

�w20
;

where w0 is the beam radius at the laser source (the sender), � is the wavelength
of the laser source, � is the beam divergence and Rfocus is the focusing range of
the laser source (a very large number for a collimated beam). For a collimated
beam we have 
0 � 1.
A Dirac function has the following properties:

� (�t) = � (t)

� (at) =
1

a
� (t) ; a > 0

1Z
�1

f(t)� (t� a) dt = f(a); a > 0 and f(t) is continuous

Inserting these properties in (3) we get

h (t) =

1Z
�1

exp

�
�2 �

2

w2

� 1Z
�1

exp

 
�2(� � �0)

2

w2

!
| {z }

f(�)

�

�
t� 2k�

c

�
d�d�;

where the second integral is

1Z
�1

f(�)�

�
t� 2k�

c

�
d� =

1Z
�1

f(�)�

�
2k�

c
� t
�
d� =

1Z
�1

f(�)�

�
2k�

c
� t
�
d� =

1Z
�1

f(�)�

�
2k

c

�
� � t c

2k

��
d� =

c

2k

1Z
�1

f(�)�
�
� � t c

2k

�
d� =

c

2k
f(t

c

2k
):
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The �rst integral is a symmetric function (symmetric around � = 0) that can
be solved by

1Z
�1

exp

�
�2 �

2

w2

�
d� = 2

1Z
0

exp

 
� �2�
w=
p
2
�2
!
d� = 2

r
�
�
w=
p
2
�2
=
p
2�w:

Finally, the impulse response can be expressed as

h (t) =
p
2�w

c

2k
exp�

�
t c2k � �0
w=
p
2

�2
=

r
�

2

cw

k
exp�

�
t c2k � �0
w=
p
2

�2
or

h(t) =

r
�

2

cw

k
exp�

�
t� t0
�0

�2
; (4a)

t0 =
2k�0
c

=
2�0
c sin�

; (4b)

�0 =
2kw

c
p
2
=

p
2kw

c
=

p
2w

c sin�
: (4c)

In [2, 13] we have

t0 =
2�0
c sin�

;

�0 =

p
2w

sin�
:

After a discussion with the authors of [2,13], we agreed that both t0 and �0 must
have c in the denominator, to get correct units. Further, simulation shows that
using t0 and �0 as in [2, 13] does not get correct models of the pulse responses,
while the expressions given in (4) do.

2.2 Impulse response for a �at surface, 2D

The description of the pulse response in the previous section is quite straight-
forward but it is sometimes a too simple description. Usually, both � and �
dimensions must be considered. The distance between the sender/receiver and
position (�; �) on the target is

R (�; �) =

q
R2 (�0; �0) + (� � �0)2 + (� � �0)2: (5)

Applying the assumptions

(� � �0)� R (�0; �0) ;

(� � �0)� R (�0; �0) ;
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Figure 2: Geometry of the impulse respones in 2D, �at surface.

and
R (�0; �0) = z

q
1 + tan2 �scan + tan

2 �pitch ;

where

z =
�0

tan�scan
=

�0
tan�pitch

;

we can simplify (5) to

R (�; �) =
�

tan�scan

q
1 + tan2 �scan + tan

2 �pitch .

We de�ne or
k =

1

tan�scan

q
1 + tan2 �scan + tan

2 �pitch (6)

and, again, we have
R (�; �) = k�:

The time and range dependent impulse response can now be written

h (�; �; t) = exp

 
�2(� � �0)

2
+ (� � �0)2

w2

!
�

�
t� 2k�

c

�
:
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The time-only dependent impulse response is retrieved from

h (t) =

ZZ 1

�1
exp

 
�2(� � �0)

2
+ (� � �0)2

w2

!
�

�
t� 2R (�; �)

c

�
d�d�;

=

ZZ 1

�1
exp

 
�2(� � �0)

2

w2

!
exp

 
�2(� � �0)

2

w2

!
�

�
t� 2k�

c

�
d�d�

=

1Z
�1

exp

 
�2(� � �0)

2

w2

! 1Z
�1

exp

 
�2(� � �0)

2

w2

!
�

�
t� 2k�

c

�
d�d�:

The second integral has solution (see previous section)

1Z
�1

exp

 
�2(� � �0)

2

w2

!
�

�
t� 2k�

c

�
d�d� =

c

2k
exp�

�
t� t0
�0

�2
;

t0 =
2k�0
c
;

�0 =

p
2kw

c
:

The �rst integral is formulated as a standard integral (see some mathematics
handbook):

1Z
�1

exp

 
� (� � �0)

2�
w=
p
2
�2
!
d� =

1Z
�1

exp

 
��

2 � 2�0� � �20�
w=
p
2
�2

!
d�

exp

 
�20�

w=
p
2
�2
! 1Z
�1

exp

 
2�0� � �2�
w=
p
2
�2
!
d� =

exp

 
�20�

w=
p
2
�2
!r

�

1
exp

�
�20=1

�
=
p
� exp

 
�20�

w=
p
2
�2 + �20

!
p
� exp

 
�20
1 +

�
w=
p
2
�2�

w=
p
2
�2

!
=
p
� exp

�
�20
2 + w2

w2

�
:

Finally, we get

h(t) =

p
�c

2k
exp

�
�20
2 + w2

w2

�
exp�

�
t� t0
�0

�2
; (7a)

t0 =
2k�0
c
; (7b)

�0 =

p
2wk

c
: (7c)
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Figure 3: Geometry for the impulse response in 2D, �at and tilted surface.

To validate the expression, if we set �pitch = 0, and the results is equal to
(4):

k =
1

tan�scan

p
1 + tan2 �scan

=
1

tan�scan

p
1= cos2 �scan

=
1

tan�scan cos�scan

=
1

sin�scan
:

For �pitch = 0 we have �0 = 0, and thus, exp
�
�20

2+w2

w2

�
= 1.

2.3 Impulse response for a tilted, �at surface, 2D

We now allow the target�s plane to tilt in 2D. We have measurement angles
(�scan ; �pitch) and the tilt of the plane is denoted (�� ; ��). The angles (�scan ; ��)
are parallel with the � axis and (�pitch ; ��) are parallel with the � axis, see Figure
3. The distance between the sender/receiver and position (�; �) on the target is

R (�; �) =

q
R2 (�0; �0) + (� � �0)2 + (� � �0)2: (8)

We apply the assumptions

(� � �0)� R (�0; �0) ;

(� � �0)� R (�0; �0) ;
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and

R (�0; �0) = z

s
1 +

tan2 �scan
1� tan�scan tan��

+
tan2 �pitch

1� tan�pitch tan��
;

where

z =
�0

tan�scan
=

�0
tan�pitch

:

We can now de�ne

k =
1

tan�scan

s
1 +

tan2 �scan
1� tan�scan tan��

+
tan2 �pitch

1� tan�pitch tan��
(9)

and, again, we can simplify (8) to

R (�; �) = k�:

The pulse response is expressed as

h (t) =

ZZ 1

�1
exp

 
�2(� � �0)

2
+ (� � �0)2

w2

!
�

�
t� 2R (�; �)

c

�
d�d�

and has solution (see previous section)

h(t) =

p
�c

2k
exp

�
�20
2 + w2

w2

�
exp�

�
t� t0
�0

�2
; (10)

t0 =
2k�0
c
; (11)

�0 =

p
2wk

c
: (12)

To validate the expression, we set �� = �� = 0 and the result is equal to
(6):

k =
1

tan�scan

s
1 +

tan2 �scan
1� tan�scan tan��

+
tan2 �pitch

1� tan�pitch tan��

=
1

tan�scan

q
1 + tan2 �scan + tan

2 �pitch :

2.4 Impulse response for a cone

If we assume that the laser beam axis and the z axis coincide, i.e., � = 0
compare to above, and that we have rotation-symmetric objects we can use
polar coordinates (r; !). The impulse response can now be written

h (r; !; t) = 4� exp

 
� r2�
w=
p
2
�2
!
�b(�)� (t� 2z (r; !) =c) ;

0 � r � w = rbeam ; 0 � ! � 2�:

10
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Figure 4: Geometry for calculation of the cone�s impulse response.

For a cone with half-angle �, where � = �=2� �, we have z (r; �) = r= tan�
or, equivalently, z (r; �) = r= tan (�=2� �), see Figure 4. By setting � = �=2
we get the laser radar cross section for a �at plate. If we describe the impulse
response as a function of � instead of �, we have

hcone (r; t) = 4� exp

�
�2 r

2

w2

�
�b(�=2� �)�

�
t� 2r

c tan�

�
:

An impulse response that only is time-dependent is given by

hcone (t) = 4��b(�=2� �)
wZ

�w

exp

�
�2 r

2

w2

�
�

�
t� 2r

c tan�

�
dr

Using the properties of Dirac functions, we get
wZ

�w

exp

�
�2 r

2

w2

�
�

�
t� 2r

c tan�

�
dr =

wZ
�w

exp

�
�2 r

2

w2

�
�

�
2

c tan�

�
c tan�

2
t� r

��
dr =

c tan�

2

wZ
�w

exp

�
�2 r

2

w2

�
�

�
r � c tan�

2
t

�
dr =

c tan�

2
exp

 
�2
�
ct tan�

2

�2
w2

!
=

c tan�

2
exp

 
� (ct tan�)

2�p
2w
�2
!
:
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Figure 5: Geometry for calculation of the sphere�s impulse response.

The time-dependent impulse response is

hcone (t) = 2��b(�=2� �)c tan� exp
 
� (ct tan�)

2�p
2w
�2
!
;

where the tan-function implies that 0 � � < �=2.

2.5 Impulse response for a sphere

For a sphere we have ! = �. We de�ne rT as the sphere�s radius. Using the
geometry in Figure 5, we have

z (2rT � z) = r2

z2 � 2rT z + r2 = 0

z = �1
2
(�2rT )�

1

2

q
(2rT )

2 � 4r2

z = rT �
q
r2T � r2 = rT

�
1�

q
1� r2=r2T

�
; jrj � rT

We approximate the surface to a Lambertian surface, i.e.,

�b(�) = B cos � = B
p
1� sin2 �;

where sin � = r=rT . The time and radius dependent impulse response can now
be written

hsphere (r; t) = 4� exp

�
�2 r

2

w2

�
B
q
1� r2=r2T �

�
t� 2rT

c

�
1�

q
1� r2=r2T

��
:

12



We de�ne
x =

q
1� r2=r2T

and derive

r = rT
p
1� x2

dr

dx
= rT

1

2

�2xp
1� x2

=
�rTxp
1� x2

r = 0) x = 1

r = rT ) x = 0:

We now have

hsphere (x; t) = 4�Bx exp

 
�2
�
rT
p
1� x2

�2
w2

!
�

�
t� 2rT

c
(1� x)

�
:

The time dependent impulse response is

hsphere (t) = �4�B
1Z
0

�rTx2p
1� x2

exp

 
�2
�
rT
p
1� x2

�2
w2

!
�

�
t� 2rT

c
(1� x)

�
dx:

To get the time dependent expression we apply some properties of the Dirac
function,

�

�
t� 2rT

c
(1� x)

�
= �

�
2rT
c

�
ct

2rT
� (1� x)

��
c

2rT
�

�
ct

2rT
� 1 + x

�
=

c

2rT
�

�
x�

�
1� ct

2rT

��
:

We rewrite the impulse response

hsphere (t) = 4�B
c

2rT
rT

1Z
0

f (x) �

�
x�

�
1� ct

2rT

��
dx

= 2�Bc

1Z
0

f (x) �

�
x�

�
1� ct

2rT

��
dx

f (x) =
x2p
1� x2

exp

 
�
�
rT
p
1� x2

�2�
w=
p
2
�2

!

Using the properties of Dirac functions, we get

hsphere (t) = 2�Bcf

�
x = 1� ct

2rT

�
:

13



Let us study the quadratic term:

x2 =

�
1� ct

2rT

�2
= 1� ct

rT
+

�
ct

2rT

�2
and

1� x2 = 1�
�
1� ct

2rT

�2
=
ct

rT
�
�
ct

2rT

�2
=
ct

rT

�
1� ct

4rT

�
:

This gives

f

�
x = 1� ct

2rT

�
=

�
1� ct

2rT

�2
r
1�

�
1� ct

2rT

�2 exp
0BBBBB@�2

 
rT

r
1�

�
1� ct

2rT

�2!2
w2

1CCCCCA

=

�
1� ct

2rT

�2
q

ct
rT

r�
1� ct

4rT

� exp
0BB@�2r

2
T

�
1�

�
1� ct

2rT

�2�
w2

1CCA

=
(2rT )

2q
(2rT )

4

�
1� ct

2rT

�2
q

ct
rT

r�
1� ct

4rT

� exp
0@�2r2T ct

rT

�
1� ct

4rT

�
w2

1A
=

(2rT � ct)2r
16r4T

ct
rT

�
1� ct

4rT

� exp��ct (4rT � ct)2w2

�

=
(2rT � ct)2p
4r2T ct (4rT � ct)

exp

�
�ct (4rT � ct)

2w2

�
=

(2rT � ct)2

2rT
p
ct
p
4rT � ct

exp

�
�ct (4rT � ct)

2w2

�
:

Insert this in the impulse response

hsphere (t) = 2�Bc
(2rT � ct)2

2rT
p
ct
p
4rT � ct

exp

�
�ct (4rT � ct)

2w2

�
=
�B

2rT

r
c

t

(2rT � ct)2p
4rT � ct

exp

�
�ct (4rT � ct)

2w2

�
:

This formula puts some demands on the simulations. First,
p
c=t implies that

t > 0. Second, 1=
p
4rT � ct implies that 4rT � ct > 0, the maximum number of

t for various values on rT are shown in Table 1. In the table we de�ne k = rT =w.

14



w = 0:05 w = 0:5 w = 1
k tmax tmax tmax
0:1 6:73 10�11 6:73 10�10 1:33 10�9

1 6:73 10�10 6:73 10�9 1:33 10�8

5 3:34 10�9 3:34 10�8 6:67 10�8

10 6:73 10�9 6:73 10�8 1:33 10�7

Table 1: Limiting values for the sphere expression.

Figure 6: Geometry for calculation of the elliptic parabola�s impulse response.
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2.6 Impulse response for a paraboloid

For an elliptic paraboloid with coe¢ cient k we have z (r) = kr2. For a Lam-
bertian surface we have �b(�) = B cos �, where

tan � = z=r = kr

cos � = 1=
p
1 + tan2 � = 1=

q
1 + (kr)

2
:

The time and radius dependent impulse response is

hparaboloid (r; t) = 4�B
1q

1 + (kr)
2
exp

�
�2 r

2

w2

�
�

�
t� 2kr

2

c

�
or

hparaboloid (r; t) = 4�Bf (r) �

�
t� 2kr

2

c

�
f (r) =

1q
1 + (kr)

2
exp

�
�2 r

2

w2

�

We de�ne
x = r2

and derive

r =
p
x

dr

dx
=

1

2
p
x

r = 0) x = 0

r = w ) x =
p
w:

The Dirac function is now written

�

�
t� 2kr

2

c

�
= �

�
t� 2kx

c

�
=
c

2k
�

�
ct

2k
� x
�
=
c

2k
�

�
x� ct

2k

�
:

The time-dependent impulse response function is formulated

hparaboloid (t) = 4�B

wZ
�w

f (r) �

�
t� 2kr

2

c

�
dr:

= 4�B
c

2k

p
wZ

�
p
w

f (x) �

�
x� ct

2k

�
dx;

f (x) =
1

2
p
x

1p
1 + k2x

exp
�
�2 x
w2

�
:
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The properties of the Dirac function gives

hparaboloid (t) = 4�B
c

2k
f

�
x =

ct

2k

�
;

where

f

�
ct

2k

�
=

1

2
q

ct
2k

1q
1 + k2 ct2k

exp

�
�2 ct

2kw2

�
1

2

1q
ct
2k

�
1 + k ct2

� exp�� ct

kw2

�

=
1

2

1q
ct
2k +

�
ct
2

�2 exp
�
� ct

kw2

�
:

The time-dependent impulse response function is now formulated

hparaboloid (t) = 4�B
c

2k

1

2

1r�
ct
2k +

�
ct
2

�2� exp
�
� ct

kw2

�

= �B
1r

k2

c2

�
ct
2k +

�
ct
2

�2� exp
�
� ct

kw2

�

= �B
1r�

kt
2c +

�
kt
2

�2� exp
�
� ct

kw2

�
:

The inverse root implies that t > 0.

3 The laser radar system�s output

Scanning laser radar systems were originally point scanning, where a laser
pointer was swept in 2D. The TopEye1 , the Riegl2 and the ILRIS3 systems
are examples of point scanning systems. There are also line scanning systems,
like the LOCAAS4 and the Tomahawk5 systems. The TopEye system scans
the object in a zigzag pattern, while the other systems scan in a regular grid
(with some uncertainty). Some subjects in this section are only valid for zigzag
scanning and usually not a problem for systems using regular grid.

1www.topeye.com
2www.riegl.com
3www.optech.ca
4www.missilesand�recontrol.com/our_products/strikeweapons/LOCAAS/product-

locaas.html
5www.designation-systems.net/dusrm/m-109.html
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Figure 7: Example of (raw) data from a helicopter-carried scanning laser radar
system. The arrow marks a vehicle placed in an opening of the forest. This
data set comes from the TopEye system.

From the estimation of the range to the target, R̂ (�; �), the height value z is
calculated using information from the inertia navigation system (INS), mainly

z � f
�
R̂ (�; �) ; �scan; �pitch; < INS parameters >

�
:

Usually, a GPS system is used during the data collection and the laser samples
are fused with the GPS coordinates. Each data point contains (x; y; z; I), where
(x; y) is the position in north-south and east-west, respectively, z is the alti-
tude, and I is the intensity in the returning pulse. This means that the set of
data/image points corresponds to a 3D mapping of the terrain. An data exam-
ple is shown in Figure 7. The scanning is usually performed in another direction
than (x; y). Let us call the direction of the scanning � and the perpendicular
direction for � (for TopEye � is the helicopter�s �ight direction). Thus, the data
collection is performed in the coordinate system (�; �), see Figure 8.

3.1 The relation between � and �

Let us evaluate for which conditions that � can be considered perpendicular to
�. In Figure 9, two consecutive samples in a scan are shown, for down-looking
sampling. The di¤erence in scan angle between two samples, ��, is a function
of the pulse repetition frequency (PRF), fPRF , of the laser and the change of
angle per second of the scanner mirror, _�scan. � is a function of �� and the
�ight height, h, of the helicopter. � is a function of the speed of the helicopter,
v, and the PRF. The di¤erence in scan angle between two samples is

�� =
_�scan
fPRF
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η

ξ

Figure 8: A view of the dimensions of data. (x; y) is the position in north-south
and east-west, respectively, and z is the altitude. The direction of the scanning
gives us a second coordinate system, (�; �).

and from that we get the change in � between two samples as (see Figure 9 and
assuming that � is small)

�� = 2h cos (�) tan

�
��

2

�
� 2h tan

�
_�scan

2 � fPRF

�
:

The change in � between two samples is

�� =
v

fPRF
:

In a typical setting of the TopEye system we have _�scan = 700o=s; fPRF =
7kHz; h = 60m and v = 10m=s. From this setting we get �� � 0; 105m;�� �
1; 43 � 10�3m and � � 0; 78o. For this case it is reasonable to approximate � to
be perpendicular to �.
Let us also identify the maximum angle for the perpendicular approximation,

say that a reasonable limit is ��=�� = 0; 1 (equals � � 5; 7o). ��=�� = 0; 1
corresponds to a helicopter speed of v = 73m=s. Thus, for moderate speeds
� can be considered perpendicular to �. This approximation is valid also for
forward-looking measurements.

4 The measurement error model

In Figure 10 some typical results from scans over objects are shown. The �rst
case (slope) may be a scan of a piece of terrain or a part of a man-made object
(vehicle, building etc.). The second case (step) and the third case (combination
of slope and step) are typical results of scans over man-made objects.
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Figure 9: The distance between two consecutive samples.

Let us derive a model for a scan over a slope (case I in Figure 10). In each
sample m we retrieve

�m = �
0 + e�

zm = z
0 + ez;

where (�m; zm) is the measured coordinate,
�
�0; z0

�
is the unobservable, true

coordinate and (e�; ez) is the noise in (�; z), respectively. e� and ez are assumed
to be independently and identically distributed (i.i.d.) with zero mean and
variance �2e� and �

2
ez , respectively. Note that we have error in both coordinates

and thus, we have a measurement error (ME) regression problem. For the
estimation of a slope we have the following system

S : n1�0 + n2z0 + c = 0 (13a)

n21 + n
2
2 = 1 (13b)

and the model for instant i is

M : n1 (�m;i + e�;i) + n2 (zm;i + ez;i) + c = 0: (14)

The (total) estimation error for instant i can now be de�ned as

"i = n1e�;i + n2ez;i = n1�m;i + n2zm;i + c: (15)

Including the constraint (13b), the parameters that will be estimated are

� = (n1; c)
T
:

The goal is to estimate the parameters with as small uncertainty as possible.
The estimated parameters are denoted �̂ = (n̂1; ĉ)

T and the true parameters of
the system are denoted �0 =

�
n01; c

0
�T
. Using model (14), the equations for the

shapes in Figure 10 can be written as in Tables 2-4.
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x
N

Figure 10: Three typical scans over some arbitrary objects. Case I: slope, Case
II: step, case III: combination of step and slope.

Slope
Linear error
model (ez = 0)

n1 (�m � e�) + n2zm + c = 0
�1 � � � �N

Measurement
error model

n1 (�m � e�) + n2 (zm � ez) + c = 0
�1 � � � �N

Table 2: Linear regression and measurement error models for a slope.

5 The CRLB for measurement error regression

In this section we derive the Cramer-Rao lower bound (CRLB) of the used
ME regression method, for a scan over a slope, see Figure 10 and Table 2.
The CRLB gives us a quality measure of the method. The Cramér-Rao Lower
Bound describes the lower limit achievable for an optimal estimator from a
measurement vector x = (x1; x2; :::; xN ). The optimality is valid if the estimator
is de�ned as minimum variance and unbiased [11,12]. The derivation follows [3].
Numerical illustrations are shown in Section 5.2 and validations in Section 5.3.

5.1 The CRLB expression

Consider the measurement error model (14). The total error for instant i is
de�ned in (15) as

"i = n1e�;i + n2ez;i = n1�i + n2zi + c
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Step

Linear error
model (ez = 0)

n2zm + c1 = 0
n2zm + c2 = 0
n2zm + c3 = 0

�1 � �m � e� � �a
�a � �m � e� � �b
�b � �m � e� � �N

Measurement
error model

n2 (zm � ez) + c1 = 0
n2 (zm � ez) + c2 = 0
n2 (zm � ez) + c3 = 0

�1 � �m � e� � �a
�a � �m � e� � �b
�b � �m � e� � �N

Table 3: Linear regression and measurement error models for a step.

Combination

Linear error
model (ez = 0)

n2zm + c1 = 0
n2zm + c2 = 0
n1�m + n2zm + c = 0
n2zm + c1 = 0

�1 � �m � e� � �a
�a � �m � e� � �b
�b � �m � e� � �c
�c � �m � e� � �N

Measurement
error model

n2 (zm � ez) + c1 = 0
n2 (zm � ez) + c2 = 0
n1 (�m � e�) + n2 (zm � ez) + c = 0
n2 (zm � ez) + c1 = 0

�1 � �m � e� � �a
�a � �m � e� � �b
�b � �m � e� � �c
�c � �m � e� � �N

Table 4: Linear regression and measurement error model for a combination of
a slope and a step.

where "i; i = 1; :::N; is normal distributed with zero mean and variance

�2" = n
2
1�

2
e�
+ n22�

2
ez :

Including the constraint n21 + n
2
2 = 1 we get

"i = n1e�;i +
q
1� n21ez;i = n1�i +

q
1� n21zi + c;

and
�2" = n

2
1�

2
e�
+
�
1� n21

�
�2ez :

The joint conditional density for "= ("1; :::; "N ) is [11,12]

f (" j �) = 1

(2�)
N=2

�N"
exp

 
� 1

2�2"

NX
i=1

"2i

!

and the logarithm is

�f (" j �) = log f (" j �) = �N
2
log (2�)�N log �" �

1

2�2"

NX
i=1

"2i ;
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or explicitly,

�f (" j �) = log f (" j �) = �N
2
log (2�)�N log

r
n21

�
�2e� � �2ez

�
+ �2ez

� 1

2
�
n21

�
�2e� � �2ez

�
+ �2ez

� NX
i=1

�
n1�i +

q
1� n21zi + c

�2
:

The Fisher matrix is de�ned as

J = E

 
@

@�
�f (" j �)

�
@

@�
�f (" j �)

�T!
; (16)

which is a rather messy expression, see Appendix A.2. The CRLB is given by

E

��
� � b���� � b��T� � J�1;

where

J =
N

�2"

0BB@ 2n21

�
�2e�

��2ez
�2

�2"
+ 1

N

NP
i=1i

�
�i � n1p

1�n21
zi

�2
1
N

PN
i=1

�
�i � n1p

1�n21
zi

�
1
N

PN
i=1

�
�i � n1p

1�n21
zi

�
1

1CCA :
(17)

The inverse of such a matrix is

J�1 =

�
a b
b 1

��1
=

� 1
a�b2 � b

a�b2
� b
a�b2

a
a�b2

�
:

The variance of � will then be

V ar
�
n01 � n̂1

�
=
�2"
N

1

det (J)

V ar
�
c0 � ĉ

�
=
�2"
N

1

det (J)

0B@2n21
�
�2e� � �

2
ez

�2
�2"

+
1

N

NX
i=1i

 
�i �

n1p
1� n21

zi

!21CA
det (J) = 2n21

�
�2e� � �

2
ez

�2
�2"

+
1

N

NX
i=1i

 
�i �

n1p
1� n21

zi

!2
�
 
1

N

NX
i=1

 
�i �

n1p
1� n21

zi

!!2
:
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For large N we can approximate 1
N

NP
i=1

�i � E (�) and 1
N

NP
i=1

�2i � E
�
�2
�
. Fur-

ther, V ar(�) = E
�
�2
�
� E2 (�). We now have

V ar
�
n01 � n̂1

�
=
�2"
N

1

det (J)
(18)

V ar
�
c0 � ĉ

�
=
�2"
N

1

det (J)

0B@2n21
�
�2e� � �

2
ez

�2
�2"

+ E

 
� � n1p

1� n21
z

!21CA
(19)

det (J) = 2n21

�
�2e� � �

2
ez

�2
�2"

+ V ar

 
� � n1p

1� n21
z

!
(20)

�2" = n
2
1�

2
e�
+
�
1� n21

�
�2ez : (21)

5.2 Numerical illustrations

The evaluations are performed in Matlab. Default values of the parameters
are N = 100; n1 = 0:5, n2 =

p
1� n21 � 0:87 and c = 0, respectively, and

� = �5 : 1=(N � 1) : 5. From this, z is calculated. Random errors, normal
distributed with zero mean and variance �2e� = �

2
ez are added to the coordinates

� and z; respectively. Default values of the variances are �2e� = �2ez = 0:01.
Note the the constraint n21 + n

2
2 = 1 must be ful�lled to get a unique and

unambiguous model. During a evaluation, the parameters were tested one at a
time and afterwards they were changed back to their default value6 .
The resulting CRLB function when N ! 1 is shown in Figure 11. The

larger number of sample, the lower CRLB values. The resulting CRLB functions
when �2e� ! 1 and �2ez ! 1 are shown in Figure 12 and 13, respectively. The
larger noise variance, the larger CRLB value. The graphs for V ar

�
c0 � ĉ

�
are

quite similar when �2ez ! 1 compared to when �2e� ! 1.
In Figure 14 CRLB as a function of n1 when �2ez = k�2e� is shown. It is

quite interesting that the CRLB function depends on the values of �2e� and �
2
ez .

When k is large, �2e� is small and we have the linear regression case. When k is
large and n1 = �1, we have a noise free system, which gives the �dips� in the
CRLB graph.

5.3 Validation

The performance of the estimation method will be investigated in some Monte
Carlo simulations. The performance will be evaluated in terms of correctness in
estimates of � = (n1; c)

T .

6File: ~stina/crb/crb_simulation.m
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Figure 11: CRLB as a function of the number of samples, N . ME regression
model.
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Figure 12: CRLB as a function of �e
�
, ME regression model.
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Figure 13: CRLB as a function of �ez , ME regression model.
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Figure 14: CRLB as a function of n1 when �ez = k�e� , ME regression model.
Plus: k=0.001, circles: k=0.01, dots: k=0.1, solid: k=1, dashed: k=10, dash-
dotted: k=100.
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We start with an exact (error free) description of a straight line, see (13a).
True values of n1; n2 are n1 = 0:5 and n2 =

p
1� n21 � 0:87, respectively,

and � = �5 : 1=(N � 1) : 5. From this, z is calculated. Random errors,
normal distributed with zero mean and variance �2e� = �2ez are added to the
coordinates � and z; respectively. The noise is generated separately for the
� and z coordinates. Then the parameters are estimated using TLS [4, 9] on
the perturbed data set. The simulations are repeated for increasing number
of samples N . Further, the simulations are repeated for �2e� = �2ez = 0:01,
�2e� = �

2
ez = 1 and for both cases with c = 0 and c = 100.

The statistical properties of the estimates are studied by the mean square
error (MSE), de�ned as (see [9], page 244)

MSE
�
�̂
�
= E

��
�̂ � �0

�T �
�̂ � �0

��
(22)

and estimated by

MSE
�
�̂
�
=
1

J

JX
j=1

�
�̂ � �0

�T �
�̂ � �0

�
:

The MSE is averaged over 100 sets (i.e., J = 100). The CRLB (theoretical
limit) is plotted together with the MSE for each case. The test was performed
in Matlab7 .

5.3.1 What can we expect in the validation?

Let us study (18)-(19) under the circumstances that we have in the validation.
First, when �2e� = �

2
ez we have

V ar
�
n01 � n̂1

�
=
�2"
N

1

det (J)
(23)

V ar
�
c0 � ĉ

�
=
�2"
N

1

det (J)
E

 
� � n1p

1� n21
z

!2
(24)

det (J) = V ar

 
� � n1p

1� n21
z

!
(25)

�2" = �
2
ez : (26)

Let us study this expression a bit further. Inserting

z = �n1
n2
� � c

n2

in the expression of the determinant gives

det (J) = V ar

�
�

�
1 +

n21
n22

�
+
n1
n22
c

�
=

�
1 +

n21
n22

�2
V ar(�) =

1

n42
V ar(�);

7File: ~stina/crb/crb_validation.m
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where � is a variable and c is a constant. Inserting z = �n1
n2
�� c

n2
in E

�
� � n1p

1�n21
z

�2
we get

E

 
� � n1p

1� n21
z

!2
= V ar

�
� � n1

n2
z

�
+

�
E

�
� � n1

n2
z

��2
=
1

n42
V ar(�) +

�
E (�)� n1

n2
E (z)

�2
=
1

n42
V ar(�) +

�
E (�) +

n21
n22
E (�) +

n1
n22
c

�2
=
1

n42
V ar(�) +

�
1

n22
E (�) +

n1
n22
c

�2
:

Inserting that E (�i) = 0 in this validation, we now have

V ar
�
n01 � n̂1

�
=
�2ez
N

n42
V ar(�)

(27)

V ar
�
c0 � ĉ

�
=
�2ez
N

 
1 +

(n1c)
2

V ar(�)

!
(28)

det (J) =
1

n42
V ar(�): (29)

From this we get that V ar
�
n01 � n̂1

�
s 1

N ; V ar
�
n01 � n̂1

�
s �2ez and that

V ar
�
n01 � n̂1

�
does not depend on the value of c. Further, V ar

�
n01 � n̂1

�
s

1
V ar(�)

, so we will have a smaller estimation error in n1 when V ar(�) is large.

Concerning �2ez , V ar
�
n01 � n̂1

�
will have a 100 times higher value when �2ez = 1

than when �2ez = 0:01:
We also see that V ar

�
c0 � ĉ

�
s 1

N ; V ar
�
c0 � ĉ

�
s �2ez and V ar

�
c0 � ĉ

�
s

c2. We see that V ar
�
c0 � ĉ

�
too will have a 100 times higher value when

�2ez = 1 than when �2ez = 0:01. Concerning dependencies on V ar(�) and c,
when c = 0 or V ar(�)� (n1c)

2, V ar
�
c0 � ĉ

�
will have a 104 times higher value

when c = 100 than when c = 1. When c = 0 or V ar(�) � (n1c)
2
V ar

�
c0 � ĉ

�
will be independent on V ar(�).

5.3.2 Results

The �gures describing the test cases are listed in Table 5. Let us �rst study case
I (Figure 15). We can see that the CRLB and MSE graphs follow each other,
this means that the method performs as good as possible for this test case. If
we compare case I (Figure 15) and case II (Figure 16), we see that the graphs
in case II is 100 times higher. This comes from the fact that �2e� and �

2
ez are

100 times larger than in case I.
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c = 0 c = 100
�e� = �ez = 0:1 Case I: Figure 15 Case III: Figure 17
�e� = �ez = 1 Case II: Figure 16 Case IV: Figure 18

Table 5: List of �gures for ME validation.
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Figure 15: Case I: ME regression, �e� = �ez = 0:1; c = 0. Solid line: CRLB,
dashed: MSE from Monte Carlo validation.

If we compare case I and case III (Figure 17), we see that V ar
�
n01 � n̂1

�
is

not e¤ected by that c = 100. This is is in order, as V ar
�
n01 � n̂1

�
is independent

of c, see (27). We also see that the graph of V ar
�
c0 � ĉ

�
is about 104 times

higher than in case I, this is because c2 = 104. For both V ar
�
n01 � n̂1

�
and

V ar
�
c0 � ĉ

�
the CRLB and MSE graphs follow each other, this means that the

method performs as good as possible for this test case.
Comparing case I and case IV (Figure 18), we see that the graph of V ar

�
n01 � n̂1

�
is about 102 times higher than in case I, this is because �2e� and �

2
ez is 100 times

larger than in case I. The graph of V ar
�
c0 � ĉ

�
is about 106 times higher than

in case I, this is because �2ezc
2 is 106 times larger than in case I.

For all cases the MSE values from the Monte Carlo simulations follow the
theoretical CRLB expressions. This means that this estimation method has the
possibility, under good circumstances, to return the best estimates possible.
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Figure 16: Case II: ME regression, �e� = �ez = 1; c = 0. Solid line: CRLB,
dashed: MSE from Monte Carlo validation.
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Figure 17: Case III: ME regression, �e� = �ez = 0:1; c = 100. Solid line: CRLB,
dashed: MSE from Monte Carlo validation.
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Figure 18: Case IV: ME regression, �e� = �ez = 1; c = 100. Solid line: CRLB,
dashed: MSE from Monte Carlo validation.

6 CRLB as a function of system parameters

Let us repeat the CRLB expression:

V ar
�
n01 � n̂1

�
=
�2"
N

1

det (J)
(30)

V ar
�
c0 � ĉ

�
=
�2"
N

1

det (J)

0B@2n21
�
�2e� � �

2
ez

�2
�2"

+ E

 
� � n1p

1� n21
z

!21CA
(31)

det (J) = 2n21

�
�2e� � �

2
ez

�2
�2"

+ V ar

 
� � n1p

1� n21
z

!
(32)

�2" = n
2
1�

2
e�
+
�
1� n21

�
�2ez : (33)

6.1 1D case

For the 1D case the expressions of � and z are (see Section 2.1):

� = R̂ sin (�) ;

z = R̂ cos (�) ;
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where R̂ is the slant range (from laser to center of laser beam on target) esti-
mated by the detector. Inserting these expressions in the CRLB equations we
get

V ar
�
n01 � n̂1

�
=
�2"
N

1

det (J)
;

V ar
�
c0 � ĉ

�
=
�2"
N

1

det (J)

8><>:2n21
�
�2e� � �

2
ez

�2
�2"

+ E

0@R̂2 sin (�)� n1p
1� n21

cos (�)

!21A
9>=>; ;

det (J) = 2n21

�
�2e� � �

2
ez

�2
�2"

+ V ar

(
R̂

 
sin (�)� n1p

1� n21
cos (�)

!)
;

�2" = n
2
1�

2
e�
+
�
1� n21

�
�2ez :

Using GUM [10],expressions of �2e� and �
2
ez can be found by

� = f�

�
R̂; �

�
; z = fz

�
R̂; �

�
�2e� =

�
@

@R̂
f�

�
R̂; �

��2
�2eR̂ +

�
@

@�
f�

�
R̂; �

��2
�2e� ;

�2ez =

�
@

@R̂
fz

�
R̂; �

��2
�2eR̂ +

�
@

@�
fz

�
R̂; �

��2
�2e� ;

or explicitly,

�2e� = sin
2 (�)�2e

R̂

+ R̂2 cos2 (�)�2e�

�2ez = cos
2 (�)�2e

R̂

+ R̂2 sin2 (�)�2e� ;

where �2e� is the variance of the error in �, �
2
eR̂
is the variance in the error in R̂;

R̂ = R0 + eR. Thus, we have the total error variance

�2" = n
2
1

�
sin2 (�)�2e

R̂

+ R̂2 cos2 (�)�2e�

�
+
�
1� n21

� �
cos2 (�)�2e

R̂

+ R̂2 sin2 (�)�2e�

�
=
�
n21 sin

2 (�) +
�
1� n21

�
cos2 (�)

�
�2e

R̂

+
�
n21 cos

2 (�) +
�
1� n21

�
sin2 (�)

�
R̂2�2e� :

6.2 2D case

For a �at 2D surface the expressions for � and z are (see Section 2.2):

� = R̂ (�0; �0)
tan (�scan)p

1 + tan2 (�scan) + tan
2 (�pitch)

(34)

z = R̂ (�0; �0)
1p

1 + tan2 (�scan) + tan
2 (�pitch)

; (35)
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where R̂ (�0; �0) is the slant range estimated by the detector. The variance of
the errors in (�; z) measurements,

�
�e� ; �ez

�
can be expressed as functions of

R̂ (�0; �0) ; �scan and �pitch using GUM [10]. More detailed calculations of the
measurement uncertainties in the TopEye system are performed in [1].
Let us study the variance expression in det (J):

V ar

 
� � n1p

1� n21
z

!
= V ar

 
R̂ (�0; �0)p

1 + tan2 (�scan) + tan
2 (�pitch)

 
tan (�scan)�

n1p
1� n21

!!
:

Using GUM [10],expressions of �2e� and �
2
ez can be found by

� = f�

�
R̂; �scan; �pitch

�
; z = fz

�
R̂; �scan; �pitch

�
;

�2e� =

�
@

@R̂
f�

�
R̂; �scan; �pitch

��2
�2eR̂ +

�
@

@�scan
f�

�
R̂; �scan; �pitch

��2
�2e�scan

+

�
@

@�pitch
f�

�
R̂; �scan; �pitch

��2
�2e�pitch

;

�2ez =

�
@

@R̂
fz

�
R̂; �scan; �pitch

��2
�2eR̂ +

�
@

@�scan
fz

�
R̂; �scan; �pitch

��2
�2e�scan

+

�
@

@�pitch
fz

�
R̂; �scan; �pitch

��2
�2e�pitch

;

Calculations give

�2e� = �
2
eR̂
+(

1 + tan2 (�scan)p
1 + tan2 (�scan) + tan

2 (�pitch)
�

tan2 (�scan)
�
1 + tan2 (�scan)

��
1 + tan2 (�scan) + tan

2 (�pitch)
�3=2

)2
�2e�scan

+

(
�
tan (�scan) tan (�pitch)

�
1 + tan2 (�pitch)

��
1 + tan2 (�scan) + tan

2 (�pitch)
�3=2

)2
�2e�pitch

and

�2ez = �
2
eR̂
+

(
�

tan (�scan)
�
1 + tan2 (�scan)

��
1 + tan2 (�scan) + tan

2 (�pitch)
�3=2

)2
�2e�scan

+

(
�

tan (�pitch)
�
1 + tan2 (�pitch)

��
1 + tan2 (�scan) + tan

2 (�pitch)
�3=2

)2
�2e�pitch

:
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A Calculation of CRLB

A.1 Various calculations

Some calculations that have been checked in Maple:

d

dn1

 
�N log

r
n21

�
�2e� � �2ez

�
+ �2ez

!

: �Nn1
�2e�

��2ez
n21�

2
e�
�n21�2ez+�

2
ez

d

dn1

0@� 1

2
�
n21

�
�2e� � �2ez

�
+ �2ez

�
1A

: n1
�2e�

��2ez�
n21�

2
e�
�n21�2ez+�

2
ez

�2
d

dn1

�
n1�i +

q
1� n21zi + c

�2
: �2

�
n1�i +

p
(�n21 + 1)zi + c

� ��i
q
(�n21+1)+zin1q
(�n21+1)

d

dc

�
n1�i +

q
1� n21zi + c

�2
: 2n1�i + 2

p
(�n21 + 1)zi + 2c

d

dn1

�
n1�i +

q
1� n21zi + c

�

: �
��i

q
(�n21+1)+zin1q
(�n21+1)

d

dc

�
n1�i +

q
1� n21zi + c

�
: 1

A.2 Calculation of the Fisher information matrix (J)

The Fisher information matrix is (see (16))

J = E

 
@

@�
�f (" j �)

�
@

@�
�f (" j �)

�T!
;

35



where

�f (" j �) = �N
2
log (2�)�N log

r
n21

�
�2e� � �2ez

�
+ �2ez

� 1

2
�
n21

�
�2e� � �2ez

�
+ �2ez

� NX
i=1

�
n1�i +

q
1� n21zi + c

�2
;

� = (n1; c)
T
:

Di¤erentiation (on �) gives

@

@n1
�f (" j �) = �Nn1

�2e� � �
2
ez

n21�
2
e�
� n21�2ez + �2ez
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2
ez�

n21�
2
e�
� n21�2ez + �2ez

�2 NX
i=1

�
n1�i +

q
1� n21zi + c

�2

+
1

n21

�
�2e� � �2ez

�
+ �2ez

NX
i=1

�
n1�i +

q
1� n21zi + c

�
��i
p
1� n21 + zin1p
1� n21

;

@
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�f (" j �) = � 1

n21

�
�2e� � �2ez

�
+ �2ez

NX
i=1

n1�i +
q
1� n21zi + c;

which can be rewritten as

@
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2
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;
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"i:

The matrix multiplication in J can be expressed as
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(36)
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where
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Using the calculations of moments and variances (see Section A.3) we can
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calculate the elements in the Fisher information matrix J :
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Thus, the Fisher matrix is
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A.3 Calculation of moments for "

Let us study the statistical properties of "= ("1; :::; "N ). The moments will be
calculated using the characteristic function. The characteristic function 'X (x)
for the normal distributed stochastic variable X is (see for example [8])

X 2 N
�
�; �2

�
; 'X (x) = exp

�
j�x� 1

2
�2x2

�
;

where j is indicating complex numbers. From the characteristic function the
moments can be generated by di¤erentiation:

'
(k)
X (x) = jkE

�
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�
:

We will also use some properties of expectation values and variances:

E
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Setting " = 0 we get the moments:
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and from the moments we get the variances by V ar
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To calculate the expectation values in J we assume that "i; "j are indepen-

dent for j 6= i and further that �i can be considered constant in the calculations
below. The expectations of the di¤erent parts of J can now be calculated:
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and
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Finally,
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B Calculation of (15) in [3]

In [3] we have the model

M : qx = (�p+ ��p)K + �q;

where �p is a 1� 3 vector, ��p 2 N
�
0; �2I

�
is the perturbation, �q 2 N

�
0; �2

�
is

the observation error and N (�) denoted normal distribution. K 2 R3�1 is the
parameters that will be estimated. The total error for the ith observation is

"i = qx � �pK = ��pK + �q;

where "i 2 N
�
0; B�2

�
; B = 1 +KTK = 1 +K2

1 +K
2
2 +K

2
3 :The general term

in the Fisher information matrix is given in [3], eq. (15), as
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:

This results will be derived below.
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where
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=
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=
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The variance V ar
�
"2i
�
is calculated using the characteristic function; A 2

N
�
0; B�2

�
; " 2 A and thus, the characteristic function is 'A (") = exp

�
� 1
2B�

2"2
�
.

Di¤erentiation of 'A (") gives
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From this we can calculate the moments:

E (A) = j
d
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= � d2

d"2
'A (0) = B�

2;

E
�
A3
�
= �j d
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�
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and from the moments we get the variances by using V ar
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Thus, we have
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This expression can also be written
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For a linear regression we have
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C CRLB for linear regression

C.1 CRLB when �ez = 0

When �2ez = 0, equations the Fisher matrix (17) will be simpli�ed to
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N
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2
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The variances of � will then be
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!
: (41)

C.2 Validation

In this section we will investigate the Cramer-Rao lower bound (CRLB) for
linear regression, i.e., when ez = 0. The calculations will follow [3]. Consider
the measurement error model (14). The total error for instant i is de�ned as "i:

n1 (�i � e�;i) + n2zi + c = 0;
"i = n1e�;i = n1�i + n2zi + c;

n21 + n
2
2 = 1:

The total error "i; i = 1; :::N; is normal distributed with zero mean and variance

�2" = n
2
1�

2
e�
:

The joint conditional density for "= ("1; :::; "N ) is

f (" j �) = 1
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�N"
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and the logarithm is

�f (" j �) = log f (" j �) = �N
2
log (2�)�N log �" �
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Applying the following di¤erentiations:
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The Fisher matrix is
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Using the calculations of expectation values in Appendix A.2, but setting �2" =
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, we get
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and

E

�
@

@n1

@

@c
�f (" j �)

�
=

1

n21�
2
e�

NX
i=1

 
�i �

n1p
(�n21 + 1)

zi

!
:

The CRLB is given by
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This equation equals (37) :
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