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Abstract
In object reconstruction and recognition based on laser radar data, the range
value’s accuracy is important. The range data accuracy depends on the accuracy
in the laser radar’s detector, especially the algorithm used for time-of-flight es-
timation. In this paper, we model a general direct-detection laser radar system
applicable for hard target measurements. We derive the time and range depen-
dent laser radar cross sections for some simple geometric shapes (plane, cone,
sphere, and parabola). The cross section models are used, in simulations, to find
the proper statistical distribution of uncertainties in time-of-flight range estima-
tions. Three time-of-flight estimation algorithms are analyzed; peak detection,
constant fraction detection and matched filter. The detection performance for
various shape conditions and signal-to-noise ratios are analyzed. Two simple
shape reconstruction examples are shown, and the detector’s performances are
compared with the Cramér-Rao lower bound. The performance of the peak de-
tection and the constant fraction detection is more dependent on the shape and
noise level, compared to the matched filter. For line fitting the matched filter
perform close to the Cramér-Rao lower bound.

Keywords: Range error, laser radar, time-of-flight, peak detection, matched
filter, performance.
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1 Introduction

In object reconstruction and recognition based on laser radar data, the range
values are important. The accuracy in the reconstruction/recognition depends
on the accuracy in range data. Further, the accuracy in the range data depends
on the accuracy in the laser radar receiver, especially the algorithm used for
time-of-flight estimation. The returning laser signal, used for time-of-flight es-
timations, will vary in shape depending on the object’s shape, the atmosphere
and the noise sources in the laser radar system.

In this paper, we model a general direct-detection laser radar system ap-
plicable for hard target measurements. We derive the time and range dependent
laser radar cross sections for some simple geometric shapes (plane, cone, sphere
and parabola). These shapes can describe the entire object or the part that is
registered by an array element. The cross section models are used, in simula-
tions, to find the proper statistical distribution for the range uncertainties and
to analyze the impact of uncertainties in time-of-flight estimations. Three time-
of-flight estimation algorithms are analyzed; peak detection, constant fraction
detection, and matched filtering. The detection properties for various shape
conditions and the detection properties as a function of the signal-to-noise ratio
(SNR) are analyzed. These results apply when the beam diameter on the object
is smaller than the object, which is typically the case for a laser range finder
or a high-resolution scanning laser radar system. We also simulate a spatially
resolved laser radar, similar to a generalized staring array. This gives the shape
of the object which is used for shape fitting (shape reconstruction). Finally, we
study the shape fitting properties, using range data computed with the different
detectors.

The uncertainties in laser radar imaging performance and its effects on object
recognition have been described by several authors [4, 9, 13]. In these papers
the generated laser radar images are considered to be incoherent reflectance
images that have properties similar to passive electro-optical (EO) imaging.
The trade-off between range and spatial resolution is discussed in [12].

The uncertainties in laser radar ranging and the effects on object recognition
are discussed in [6, 17, 18, 19]. In [18, 19] the accuracy and resolution of
range data for a full waveform detector are analyzed. The most well-described
uncertainties in range measurements depend on the optical signal-to-noise ratio,
the atmospheric turbulence/scintillation effects and the uncertainty in beam
pointing. In [17] the effects of the object’s shape and reflection characteristics
are analyzed. In [15], the range jitter due to the uncertainty for the laser
emission time is estimated. Further, there are uncertainties in the estimates of
time-of-flight in the received signal. Due to the interaction with the object, the
atmosphere and the noise sources, the received signal will be broadened and
noisy. This gives an uncertainty in determining the time-of-flight and hence an
uncertainty in the range estimation.

In this paper we focus on a laser radar system that returns a single waveform.
The main contributions are the description of the laser radar system in a channel
model context [15], that the range uncertainty can be modelled as Gaussian
distributed and the analysis of how the range uncertainty varies with shape
and signal-to-noise ratio (SNR). The channel model of the laser radar systems
clarifies the system’s properties from a signal processing view. The results can
be generalized to a system returning several echoes and waveform reconstruction
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Figure 1: The laser beam propagation described using channel modelling.

but this is not the scope of this paper.
In Section 2, we present a sensor system model for a staring, monostatic,

direct-detection system applicable for hard target measurements. The model in-
cludes object interaction, atmospheric effects, beam pointing error and receiver
noise. Some common methods for time-of-flight estimation are listed in Section
3. In Section 4, the impulse responses for a few geometric shapes (flat surface,
cone, sphere, and paraboloid) are derived. In Section 5, we validate the model
and Sections 6 we apply the model to estimate the distribution of the ranging
error. In Section 7 we use the model to discuss the impact of ranging error for
shape fitting. The results are discussed in Section 8 and the paper is concluded
in Section 9.

2 Sensor System Model

In this section we present the model of the laser radar system in a channel
model context, see Figure 1. An ideal laser pulse, Ss(x, y, t), is transmitted
from the laser and a modified laser pulse, Sr (x, y, t), is received in the receiver
part of the system. The signal Sr (x, y, t) is used for range estimation. The
laser beam’s interaction with the object and the atmosphere can be described
as multiplicative (modulating) and additive factors that affect the sent laser
pulse. The (sent) laser pulse’s spatial and temporal shape is given by [19]:

Ss(x, y, t) = g(x, y)
(

t

τ

)n

exp
(
− t

τ

)
, (1)

where g(x, y) is the beam’s spatial shape (usually modeled as Gaussian). The
parameter n indicates the laser pulse’s temporal shape. For a normal Q-switched
pulse n = 1 usually gives a good fit. The full width half maximum (FWHM)
for n = 1 is given by Tp = 3.5τ . For n = 2 a more sharp and symmetric pulse
is obtained and we have Tp = 1.22τ . Normally, Tp is 1-5 ns.

For a measurements on a hard target with a monostatic system, the laser
beam interacts with the object according to

S1 (x, y, t) = h(x, y, t)Ss (x, y, t) , (2)

where h (·) is the object’s impulse response, based on the object’s geometrical
and reflectance properties. Some examples of object impulse responses are given
in Section 4. The impulse response, i.e., the object cross section, is given by

h (x, y, t) = 4πρb(x, y)δ(t− 2z (x, y) /c),
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where δ(·) is the Dirac function. The object reflection ρb is modeled by the
bidirectional reflection distribution function (BRDF) [17]

ρb(x, y, θ) =
A

cos6 θ
exp

(
− tan2 θ

s2

)
+ B cosm θ,

where the first part describes the specular components and the second part the
diffuse components for the incidence angle θ. Beam jitter, due to pointing error,
can be modeled by translation of g(x, y) relative to h(x, y, t). If we add speckles,
Fspeckle and turbulence-induced scintillations, Fscint, we have

S3 (x, y, t) = (h(x, y, t) ∗ Ss (x, y, t))FspeckleFscint. (3)

The turbulence-induced scintillations can be modeled as a Log-normal dis-
tributed multiplication factor [1]:

Fscint ∈ 1/SavLN
(
−1

2
σ2

ln I, σln I

)
,

where Sav is the time average of the signal S and σln I is the aperture-averaged
and time-compensated log-intensity variance. The speckle properties is modeled
by a Gamma distributed multiplication factor [5]

Fspeckle ∈ Γ (M,Sav/M)
M = Drec/Dspeckle,

where Drec is the receiver’s aperture diameter and Dspeckle is the average diam-
eter of a speckle cell at the receiver.

Various laser and receiver properties are described by the received peak
power factor [10]

F (t) =
Ep

2τ
exp (−2σatmR)

r2
aper

R2
Tr,

where Ep is the total pulse energy, σatm is the atmosphere’s damping, R is the
(slant) range to the object, raper is the receiver’s aperture and Tr is the receiver’s
total transmission. Including these effects we have

S4 (x, y, t) = S3 (x, y, t)F (t) (4)

The noise sources in the laser radar system consist of system jitter, noise
equivalent power (NEP). The system jitter variance σ2

sj, that gives beam point-
ing error, can for a small jitter be included in the log-intensity variance as

σ2
ln I,tot = σ2

sj + σ2
ln I

and included in the scintillation process. The main noise contributions in the
NEP come from the detector and the amplifier. The standard deviation of the
NEP is modeled

σ2
NEP = σ2

NEP,detector + σ2
NEP,amplifier.

The NEP uncertainty in the received signal, is approximated by a Gaussian
distribution, i.e.,

nNEP (t) ∈ N
(
0, σ2

NEP

)
.

4



A measurement depends on that photons are reaching the receiver’s detector.
The photons’ arrival at the detector is modeled by a Poisson process

Fph ∈ Po (m) ,

where m is the mean number of arrivals within a time interval T [16]. In hard
target measurements good conditions are usually assumed, which means that
many photons are detected in every time interval. In this case the detection
probability at the detector is close to 1, thus Fph = 1.

Including these noise sources we end up with a received signal as

Sr (x, y, t) = S4 (x, y, t) + nNEP (t) (5a)
= Ss (x, y, t)h(x, y, t)FspeckleFscintF (t) + nNEP (t) . (5b)

The signal Sr can be divided into one part that is a function of both time and
space and one part that is only time dependent:

Sr (x, y, t) = Sr1 (x, y, t) Sr2 (t) + nNEP (t) ,

Sr1 (x, y, t) = 4πg(x, y)ρb(x, y)δ(t− 2z (x, y) /c),

Sr2 (t) =
(

t

τ

)n

exp
(
− t

τ

)
FspeckleFscintF (t) .

This signal is used for estimation of time-of-flight, from which the object range
is calculated, see Section 3. The estimated object range can be considered a
function of Sr (x, y, t),

R̂ (x, y, z) = f1 (Sr (x, y, t)) . (6)

This relation is analyzed in Section 6. Range data can later be used for shape
fitting, where the parameter vector θ described the estimated shape:

θ̂ = f2

(
R̂ (x, y, z)

)
, (7)

which is analyzed in Section 7.

3 Detection Methods

There are three common detection schemes; peak detection, constant fraction
discrimination (also called 50% leading edge detection), and matched filter de-
tection (also called correlation detection). For peak detection the estimated ob-
ject range R̂ is calculated using the time-of-flight corresponding to the largest
value in Sr (t), i.e.,

R̂PD = fPD (Sr (t)) =
c

2
arg max

t
Sr (t)− R̂offset

PD . (8)

For constant fraction the rising edge at half peak power is detected, i.e.,

R̂CF = fCF (Sr (t)) =
c

2
solt

{
Sr (t) =

1
2

max
t

Sr (t)
}
− R̂offset

CF . (9)
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Figure 2: Example of detections. Left: the returning pulse Sr (t) with peak
detection (*) and constant fraction (o). Middle: Ss (t), Right: matched filter
output C (t) with peak detection (*). Arbitrary axis.

and for the matched filter we correlate the output signal with the input signal.
The correlation peak gives the estimated time-of-flight

C (t) = Sr (t) ∗ Ss(−t),

R̂MF = fMF (Sr (t)) =
c

2
arg max

t
C (t)− R̂offset

MF , (10)

where ∗ is convolution in time. A detection example is shown in Figure 2.
In all detection methods we compensate for the rise time in Ss (t), the offsets

are determined by applying the algorithms on the input signal:

R̂offset
PD =

c

2
arg max

t
Ss (t)

R̂offset
CF =

c

2
solt

{
Ss (t) =

1
2

max
t

Ss (t)
}

R̂offset
MF =

c

2
arg max

t
Ss (t) ∗ Ss(−t)

4 Impulse Response for Some Common Geo-
metric shapes

In [17], the time independent cross sections, or impulse responses, for planes,
spheres, paraboloids and cones are given. Below we will derive the time and
spatially dependent impulse responses for a plane, cone, sphere and paraboloid.
For details we refer to [7]. We assume that the laser beam is centered around
the object’s rotational symmetry axis.

4.1 Time and Range Dependent Impulse Responses

The impulse response for the time and spatially dependent cross section is given
by

h (x, y, t) = 4πg (x, y) ρb(x, y)δ(t− 2R (x, y) /c).
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The laser beam’s spatial shape is included as it effects the cross section. For
all cases we assume that the BRDF function is constant over the object surface
and only depends on the incident angle θ, i.e., ρb(x, y) = ρb(θ) and that the
beam profile is Gaussian, i.e.

g(x, y) = exp

(
− (x− x0)

2 + (y − y0)
2(

w/
√

2
)2

)
,

where w if the laser beam’s radius. In Figure 3 we define the geometry for a
measurement on a plane with angle of incidence equal to φ. If the laser beam is
elliptic with approximately no spread in y, we have R (x, y) ≈ x/ sinφx. For the
2D case, we have R (x, y) ≈ x/ tanφx

√
1 + tan2 φx + tan2 φy and the impulse

response is [7]

hplane (x, y, t) = exp

(
−2

(x− x0)
2 + (y − y0)

2

w2

)
δ

(
t− 2R (x, y)

c

)
. (11)

If we assume that the laser beam axis and the z axis coincide, i.e., φ = 0, and
that we have rotation-symmetric objects we can use polar coordinates (r, ω), see
Figure 4. The impulse response can now be written

h (r, ω, t) = 4π exp

(
− r2(

w/
√

2
)2
)

ρb(θ)δ (t− 2z (r, ω) /c) , (12)

0 ≤ r ≤ w = rbeam, 0 ≤ ω ≤ 2π.

• For a cone with half-angle α, where α = π/2 − θ, we have z (r, α) =
r/ tanα or, equivalently, z (r, θ) = r/ tan (π/2− θ). The BRDF function
can be modeled as ρb(π/2−α). By setting α = π/2 we get the laser radar
cross section for a flat plane.

• For a sphere we have ω = θ and z (r) = rT −
√

r2
T − r2, where rT is the

sphere’s radius. If we assume that the sphere’s surface is Lambertian [10],
we have ρb(θ) = cos θ =

√
1− r2/r2

T .

• For an elliptic paraboloid with coefficient k we have z (r) = kr2. For a

Lambertian surface, we have ρb(θ) = cos θ = 1/

√
1 + (rk)2.

Inserting these expressions in (12) we get

hcone (r, t) = 4πρb(π/2− α) exp
(
−2

r2

w2

)
δ

(
t− 2r

c tanα

)
, (13)

hsphere (r, t) = 4π
√

1− r2/r2
T exp

(
−2

r2

w2

)
δ

(
t− 2rT

c

(
1−

√
1− r2/r2

T

))
,

(14)

hparaboloid (r, t) = 4π
1√

1 + (rk)2
exp

(
−2

r2

w2

)
δ

(
t− 2kr2

c

)
. (15)
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4.2 Time Dependent Impulse Responses

The time-only dependent expressions are retrieved by integrating over the sur-
face (x, y, z) or radius r, respectively, and using the properties of the Dirac
function [7]. For the plane, we have

hplane (t) =
√

π

2
cw

k
exp

(
−
(

t− t′

τ0

)2
)

, (16a)

k = 1/ tanφx

√
1 + tan2 φx + tan2 φy, (16b)

t′ = 2kx0/c, (16c)

τ0 =
√

2kw/c, (16d)

and for the rotation-symmetric objects we have

hcone (t) = 2πρb(π/2− α)c tanα exp

(
− (ct tanα)2

2w2

)
, (17)

hsphere (t) =
π

2rT

√
c

t

(2rT − ct)2√
4rT − ct

exp
(
−ct (4rT − ct)

2w2

)
, (18)

hparaboloid (t) = π
1√

kt
2c +

(
kt
2

)2 exp
(
− ct

kw2

)
. (19)

5 System Model Validation

The system model (5) is validated with real waveform data from a scanning sys-
tem1. We do not have enough information about the real laser radar system and
the simulated waveform is found using gray-box identification. The validation
data consists of three measurements on a gravel road, with measurement set-up
according to Table 1. Using this data we can validate the impulse response ex-
pression for the plane model. The real waveforms and the simulation result are
shown in Figure 5. The simulated signal follows the real signals except for the
last down-going flank. This is probably due to (for the authors) unknown time
constants in the receiver electronics. Unevenness in the road may also affect the
returning waveform. The noise in the simulated system is similar to the noise
in real data. We believe that the model describe the system dynamics in large
and is valid for our analysis.

6 Impact of Uncertainties in the Time-of-Flight
Estimation

We will now use the model to analyze the properties of the detection methods
(8)-(10). In other words, the expression (6) is studied. For the time depen-
dent impulse response, we will study the detection properties for various shape
conditions and the detection properties as a function of the signal-to-noise ratio

1Data comes from the TopEye system, see www.topeye.com.
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Table 1: Parameter values used in the validation.
Laser radar Value Object Value
Wavelength (λ) 1.064 µm BRDF (A, s, B, m)

(
0, 10−6, 0.5, 1

)
Beam divergence 10−3 rad Vertical range z = R (0, 0) 215 m
Beam shape n 1.9 Object slant angle φ 20 deg
Beam shape τ Tp/1.4
Tp 4 ns Atmosphere Value
Ep 3 · 10−6 J Dspeckle 0.0011 m
raper 0.05 m σln I 4.94 · 10−5

Tr 0.7 σatm 5.53 · 10−6 m−1

Sav 1
Drec 0.1 m Simulation Value
σNEP,detector 9.91 · 10−8 W Time resolution 10−9 s
σNEP,amplifier 8.0 · 10−8 W Range resolution n.a.
σsj 0

210 215 220 225 230 235
­0.2

0

0.2

0.4

0.6

0.8

1

1.2

211 212 213 214 215 216 217
­0.03

­0.02

­0.01

0

0.01

0.02

0.03

0.04

Figure 5: Model validation. Solid lines: measurements from the real laser radar
system, dashed: simulation. Left: whole waveform, right: noise part.
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Table 2: Parameter values used in the simulations.
Laser radar Value Object Value
Wavelength (λ) 1.06 µm BRDF

(A, s, B, m)

(
0, 10−6, 1, 1

)
Beam divergence 10−3 rad Vertical range

z = R (0, 0)
1000 m

Tp 3 ns
Beam shape n 1 Atmosphere Value
Beam shape τ Tp/3.5 Dspeckle 0.0011 m
Ep 10−3 J (SNR

fix)
σln I 1.2 · 10−4

Ep 10−6 − 10−2 J
(SNR vary)

σatm 5.5 · 10−5 m−1

raper 0.05 m
Tr 0.7 Simulation Value
Sav 1 Time resolution 10−10 s
Drec 0.1 m Range resolu-

tion
0.01 m

σNEP,detector 9.9 · 10−8 W
σNEP,amplifier 8.0 · 10−8 W
σsj 0

(SNR). The detection properties are studied by the estimation error in the range
estimate

∆R = R̂−R0,

where R̂ is estimated with one of the detection algorithms and R0 is the true
range. We define SNR as

SNR =
max |Sr|

σNEP
.

The parameter settings that are used in the simulations are summarized
in Table 2. The simulations are performed in Matlab2. We assume that the
atmosphere’s impact is low (low turbulence and long visual range) and that there
is no beam jitter present. The object’s surface have Lambertian properties. The
beam divergence is 10−3 rad, which results in a beam radius of approximately
0.5 m on the object.

6.1 Determination of Range Error Distribution

The distribution of the range errors has been determined by fitting several data
sets to some common statistical distributions, among them exponential and
Gaussian distribution. The Gaussian distribution is estimated by the algorithm
normfit.m, which returns 95% confidence intervals for the parameter estimates.
In Figure 6 a range error histogram and the estimated Gaussian distribution are
shown. Similar results were obtained for all simulations in this paper.

For this simulation of measurements on a plane with φx = 5deg, we can see
that the peak detection and matched filter are unbiased while the leading edge

2Matlab is a product of The Mathworks, Inc., see www.mathworks.com.
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Figure 6: Histogram of 1000 simulations and estimated Gaussian distribution
for a plane with φx = 5 deg. The estimated means and standard deviations are
given to the left of the curves. Top: peak detection, middle: constant fraction
detection, bottom: matched filter. Values given in meters.

detector contains bias. The standard deviation is approximately 10−2 meter for
the peak detection. The standard deviation in the constant fraction detection
is ten times smaller and for the matched filter hundred times smaller, compared
to the peak detection. We draw the conclusion that in this type of system the
range error can be modeled as Gaussian distributed.

6.2 Range Error Properties for Various Shapes

In this test we vary the object’s shape properties while having SNR constant
and large (SNR= 7 ·103 ≈ 38 dB). For the plane (16), the tilt angle φx (φy = 0)
will vary, for the cone (17) we vary the half-cone angle and for the paraboloid
(19) we vary the coefficient k. For the sphere (18) we vary the relation between
the beam radius r and the object radius rT , defined as

kT = rT /r.

For the cone and parabola we set kT = 10. For each object setup, we estimate
the range 1000 times and estimate the Gaussian distribution for the data set.

The results for the different object types are shown in Figures 7-10, the
estimated mean value E (∆R) and standard deviation std(∆R) are shown. For
all shapes, the peak detection has a very large standard deviation compared to
constant fraction detection and matched filter detection. The results for the
plane indicates that constant fraction detection is not satisfactory when the
plane deviates from being perpendicular to the laser beam. For all detection
methods, the error increases when the pulse is broadened, i.e., when φx increases.
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Figure 7: The |E (∆R)| and std(∆R) as a function of slant angle φx for a plane.

For the cone can we see that the estimation error decreases when the half-cone
angle increases. This is expected, as the cone approaches a vertical flat plane
when the half-cone angle increases. The range estimation error is very small
for both spheres and parabolas. For the sphere the surface that the laser beam
hits have decreasing curvature when kT increases, this explains the decreasing
estimation error. In this case the matched filter has the best performance.
For the parabola, the curvature increases when k increases, which explains the
small variation in the estimation error for different k values. Also in this case
the matched filter has the best performance. After these tests we conclude the
range error can be modeled as Gaussian distributed, with bias b and variance
σ2

R that varies with the object’s shape, i.e.,

∆R ∈ N
(
b, σ2

R

)
.

6.3 Range Error as a Function of SNR

In this case we calculate the statistics of the range error as a function of SNR.
The SNR is varied by varying the laser peak power Ep. The tests are performed
for a plane (16) with φx = 5deg and a sphere (18) with kT = 10. The Gaussian
distribution is estimated using the same approach as above.

The results are shown in Figures 11-12. For all cases, the mean and standard
deviation of the estimation error decrease when the SNR increases. The matched
filter is less affected by the noise compared to the other detection methods. Both
the peak detection and the constant fraction detection produces rather high bias.
The peak detection method has a rather large standard deviation even when the
SNR is high.
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Figure 8: The |E (∆R)| and std(∆R) as a function of half-cone angle α for a
cone.
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Figure 9: The |E (∆R)| and std(∆R) as a function of kT for a sphere.
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Figure 10: The |E (∆R)| and std(∆R) as a function of parabola curve coefficient
k.
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Figure 11: The |E (∆R)| and std(∆R) as a function of SNR for a plane with
φx = 5 deg.
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Figure 12: The |E (∆R)| and std(∆R) as a function of SNR for a sphere with
kT = 10.

7 Impact of Range Error in Shape Fitting

A common step in object reconstruction and recognition is surface/shape fitting.
In this section we study the expression (7) further. Based on the previous section
we can model range data as

R̂ (x, y, z) ∈ N
(
R0 + b, σ2

R

)
,

where R0 is the true but unknown range, b and σ2
R are the shape and SNR de-

pendent bias and variance, respectively. The estimation variance in the shape’s
parameter can be expressed as a function of the true parameter values and the
total uncertainty in the system, using the Cramér-Rao lower bound (CRLB)
[11]. The CRLB describes the lower bound for the variance error of an unbi-
ased estimator. The lower limit can be reached if the estimator is defined as
minimum variance and unbiased [11]. For parameter θ the CRLB is written

CRLB ≤ Var
(
θ̂
)

.
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An approach for model-based plane fitting, based on measurement error
regression, is described in [3]. A plane in (x, y, z) is described as

n1x + n2y + n3z + c = 0 (20a)

n2
1 + n2

2 + n2
3 = 1, (20b)

where the normal vector n =(n1, n2, n3)
T defines the tilt of the plane and c the

distance to origin. The parameters in the model are θplane = (n1, n2, n3, c). The
CRLB expression for a line/plane parameter estimation in noise can be found
in [6]. The sphere is modeled as

x = z′1 + r′ cos ω sin γ (21a)
y = z′2 + r′ sinω sin γ, (21b)
z = z′3 + r′ cos γ, (21c)

where the (z′1, z
′
2, z

′
3) is the origin and r′ is the radius of the sphere. The para-

meter vector is θsphere = (z′1, z
′
2, z

′
3, r

′).
We will present shape fitting of lines and circles and investigate how the pa-

rameter estimation performance depends on the detection principle. The shape
fitting properties, using data detected with the different detectors, is studied in
increasing noise. Parametric fit of line and circle are used and the detectors’ per-
formances are evaluated in terms of correctness in parameter estimate. There
are 100 samples equally distributed over the surface. The statistical properties
of the estimates are studied by the mean squared error (MSE) and bias, which
are averaged over 100 sets. The MSE and the bias for parameter θj are defined
as

MSE
(
θ̂j

)
= E

(
θ̂j − θ0

j

)2

+ E2
(
θ̂j − θ0

j

)
= Var

(
θ̂j

)
+ bias2

(
θ̂j

)
,

where θ0
j is the true, but unknown, parameter and θ̂j is the estimate.

We use the time and range dependent impulse response in Section 4.1. For
the plane model (11) we set φx = 5deg and φy = 0 to get a line. The parametric
line description used in line fitting is achieved by setting n3 = 0 in (20). The line
is fitted using the mixed least squares-total least squares algorithm [3, 8], which
allows errors in variables. The circle model equals the sphere model (14) and we
set kT = rT /r = 1. In the parametric sphere description used for circle fitting
(21) we set γ = π/2 and z′3 = 0. The circle fitting algorithm [2] is iterative and
needs initialization. We initialize with the true parameters, which means that
we get the best possible performance of the algorithm.

Examples of range data detected with the matched filter and estimated
curves are shown in Figure 13. The statistics for the fitting results are shown
in Figures 14-15. The input (range) data is not compensated for bias, which
means that the bias is transferred to the parameter estimation. The parameter
estimations produced using peak detection and constant fraction contain bias
and have quite large standard deviation, especially for line fitting. For both the
line and the circle the matched filter is less affected by the noise compared to
the other detection methods.
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Figure 13: Example of shape fitting based on matched filter detection. Top:
line fitting with low SNR (left) and high SNR (right). Bottom: circle fitting
with low SNR (left) and high SNR (right).

When there is additive Gaussian white noise, the matched filter is a real-
ization of the optimal detector [14]. This implies that the range error can be
applied as input uncertainty in the CRLB calculation. Usually a theoretical
value of σR is used. This is not available in this case and the variance estimated
by the matched filter is used instead. The CRLB limit is shown in Figure 14,
the limit is close to the matched filter result. This is expected for an efficient
estimator as the matched filter, that produces range estimates with very small
bias.

8 Discussion

In this paper we model a laser radar system that is not subject to beam jitter.
For the single pulse simulations, Section 6, the results are applicable to both
scanning and staring systems. For the simulation of a sensor array, Section 7,
the results are applicable for an idealized staring sensor. To simulate a scanning
array, the beam jitter must be included. The beam jitter can be modeled by
multiplying the laser pulse (1) with a Gaussian distributed point direction (x, y).

We also assume that we have good measurement conditions where the num-
ber of signal photo electrons exceed the noise electrons. In the case of few
returning photons, the Poisson process will have larger impact on the returning
pulse. This is discussed in [16].
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Figure 14: The MSE of parameter estimates as a function of SNR for line with
φx = 5 deg, φy = 0deg.
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Figure 15: The MSE of parameter estimates as a function of SNR for circle with
kT = 1.
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In all tests performed in this paper the matched filter has the best perfor-
mance. For all shapes, the peak detection has a very large standard deviation
compared to constant fraction detection and matched filter detection. The per-
formance of the peak detection and the constant fraction detection is more
dependent on the shape, compared to the matched filter. Further, the matched
filter is less affected by the noise compared to the other detection methods.
The properties of the matched filter, see for example [14], gives that it is an
optimal detector in additive white Gaussian noise, which is the case in these
tests. Further, the output SNR from a matched filter depends on the energy of
the returned signal rather than its detailed characteristics. This results in an
output signal with few fluctuation from the matched filter, which simplifies the
following peak detection.

If we compare scanning and staring laser radar systems, the type of uncer-
tainties and their impact differ. For example, the spatial uncertainty between
the samples will be larger in a scanning system due to beam jitter. It would be
interesting to compare the range accuracy and resolution for a scanning system
with that of a staring system. The performance of both system types can be
modeled using the ideas presented in this paper.

The results show that the matched filter detection usually has better perfor-
mance compared to peak detection and constant fraction discrimination. The
two first principles are more common in real laser radar systems while the
matched filer is common in telecommunication applications [14]. One reason
why matched filter is uncommon in laser radar applications is that for many
applications the performance of peak detection and constant fraction have been
good enough, especially in single-pixel systems. The new generation scanning
and staring laser radar systems give other opportunities in object recognition
and reconstruction where the object details can be extracted and used. Another
aspect is the sampling frequency, in telecommunication the sampling frequency
can be up to a few tens of MHz while in laser radar systems the frequencies
lies in the GHz domain. To perform matched filtering in real time at those
speeds is today not practically possible. There may be applications where the
data accuracy is so important that the cost of memory, hardware implementa-
tions, and post-processing is worth the effort. The accuracy in peak detection
and constant fraction can also be improved if the bias and variance that these
detection principles produce is taken into account.

9 Conclusions

In this paper, laser radar cross section models for plane, cone, sphere, and
parabola have been derived. The cross section models are used, in simulations,
to analyze the impact of uncertainties in time-of-flight estimations. Three time-
of-flight estimation algorithms have been analyzed; peak detection, constant
fraction detection, and matched filter.

These simulations show that the estimation error can be assumed to have
Gaussian distribution. This is an important result in laser radar system and
laser radar data modeling.

For all shapes, the peak detection has a very large standard deviation com-
pared to constant fraction detection and matched filter detection. The results
for the plane indicates that constant fraction detection is not satisfactory when
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the received pulse is broadened. The range estimation error is very small for
both spheres and parabolas. Also in these cases the matched filter has the best
performance. Naturally, the mean and standard deviation of the estimation er-
ror decreases when the SNR increases. The matched filter is less affected by the
noise compared to the other detection methods. The peak detection method
has a rather large standard deviation even when the SNR is high.

Also in the case on shape fitting the matched filter is less affected by the
noise compared to the other detection methods. For line fitting the Cramér-Rao
lower bound is calculated and the matched filter simulation results are close to
this bound.
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