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Abstract

This paper discusses effects of nonlinearities in black box identification
of one axis of a robot. The used data come from a commercial ABB
robot, IRB1400. A three-mass flexible model for the robot was built in
MathModelica. The nonlinearities in the model are nonlinear friction and
backlash in the gear box.

1 Introduction

In this report we are looking at the effects of nonlinearities in black box identi-
fication of one axis of a robot. We built a model of the robot in MathModelica
and then we used the simulated data in Matlab for the identification [2]. The
data that we use come from a commercial six degrees of freedom ABB robot,
IRB1400. We are only moving axis one, that is the motor in the bottom. All
other motors are not moving. For the model of the arm of the robot we are
using a three-mass flexible model as an approximation, as shown in Figure 1.
The notations for the model are shown in Table 1.

Figure 1: Three-mass flexible model.

The first mass represents the rotating part of the electrical motor, and it is
followed by a gear box. The flexibility in the gear box is in the model represented
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motor angle
arm angle
moment of inertia of the motor

moment of inertia of the arm

moment of inertia of the gear box
friction coefficient of the motor

NN RS

spring constant of the gear box

ko | spring constant of the arm

T motor torque

d, | damping coeflicient in spring of the gear box
d, | damping coeflicient in spring of the arm

r gear box ratio ({iz)

Table 1. Notations.

o (10D [ Ty | Jo | fr (1072) [ K, (10°) [ ko (10°) | 4, | do
4.56 9.92 [ 1.72 3.55 1.50 0446 [ -62]20

Table 2: Physical parameters or the linear model.

by the spring and the damper between the gear box and the second mass. The
second spring and damper represents the flexibility in the robot arm.
Torque balances for the three masses yield to the following equations:

7= Tl + Toviction +7 - dg (ro'm _ ég) kg (10 — 0,) (1)
0=J,b, - d, (r@'m _ ég) — Ky (PO — 0,) + d (ég _ éa) ko (0, —0.) (2)
0=J,0, —d, (9'9 _ éa) — ko (0, — 6,) (3)

The first attempt for the friction is a viscous friction and it is computed via
Thriction = Jm - @m. The parameters for the model are shown in Table 2. These
parameters are from earlier identification of the robot [4].

The model in MathModelica is shown in Figure 2 [3]. For the linear model
the backlash of the gear box is zero and there is no coulomb friction in the
component, Friction implemented.
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Figure 2: MathModelica three-mass flexible model.

The input signal that we have chosen for the model is the same as for
the identification of the parameters of the linear model. It is a chirp signal
[0.5Hz 30Hz] with constant amplitude. The motor velocity is used as output



signal. The sampling rate is 2000 Hz and then down-sampling with a factor of
ten was done. The sample time for the simulation was therefore 5ms. The
measured input signal (motor torque 7) and the output signal (motor velocity
6.) can be found in Figure 3.
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Figure 3: Input and output signal of the linear model.

For the black box identification we have chosen to work with Box-Jenkins
models. Box-Jenkins models can be described, see [1], by

Bt (@)

where B (q), C (q), D(q) and F(q) are parameterized polynomials, u(t) is
the input and e(?) is the noise. We have chosen a order of five and a time delay
of one for the identification. Before the identification in Matlab could be done it
was necessary to low-pass filter the simulated data. The data was filtered with
0.4 -wy = 251% where wp is the Nyquist frequency. The order of the filter we
used was eight.

2 Black Box Identification of the linear model

The difference in the Bode plot of the Box-Jenkins model of the robot and the
Box-Jenkins model of the simulated model is shown in Figure 4.

There is only a small difference for lower frequencies. The frequency for the
second peak and for the second notch is lower for the Box-Jenkins model of the
simulated model. The difference in the phase plot is a result of the negative
damping coeflicient.
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Figure 4: Bode plot of Box-Jenkins models. The model of the messured data
from the robot in black and the model of the simulated robot in grey.



3 Black Box Identification of the Model with
Coulomb Friction
The torque in the friction is defined in three different linear examples. We used

always the same viscous friction coefficient from the identification.
linear case:  Trriction = fm * Om

case 1: Trriction = 0.0355 - sign(0m,) + fin - Om
case 2: Trriction = 0.1 -sign(0p,) + fin - O,
case 3: Trriction = 0.355 - sign(0y,) + fin - Om

The difference in the Bode plot of the Box-Jenkins models with coulomb friction
is shown in Figure 5.
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Figure 5: Bode plot of Box-Jenkins models. Linear model solid line, case 1
dashed line, case 2 dotted line and case 3 is shown with a dash dotted line.

The amplitude in the Bode plot is for lower frequencies decreasing when the
coulomb friction is higher. The frequency of the first notch and the first peak
is not changing with the implementation of a coulomb friction. The frequency
of the second notch and the second peak is higher in case 4 than in the linear
case. The frequency for the second peak is for small coulomb friction (case 1
and 2) a bit lower. Interesting is that the amplitude of the second peak for case
1 is much higher than in the linear case.

When the absolute angular velocity in the friction becomes zero, the friction
becomes stuck, i.e., the absolute angle remains constant. The elements begin to



slide when the friction torque exceeds a threshold value, called the maximum
static friction torque, computed via:

Tstatic max — peak : Tsliding (w = 0) (5)
peak > 1 (6)
Tstiding (w = 0) is the viscous friction torque at zero velocity.

The effect in the Box-Jenkins models of this static friction is shown in Figure 6.
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Figure 6: Bode plot of Box-Jenkins models. Case 2 with peak = 1 solid line,
case 2 with peak = 2 dotted line and case 2 with peak = 5 dashed line.

The effect when implementing a maximum-static-friction in the Bode plot is
for peak = 2 very small. When the peak = 5 the amplitude of the second peak

is lower.

4 Black Box Identification of the Model with
Backlash in the Gear Box

The effect in the Bode plot of the Box-Jenkins models with different total
backlash b in the gear box is shown in Figure 7. The backlash is given in
radians on the arm side.
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Figure 7: Bode plot of the Box-Jenkins models. Solid line no backlash, dashed
line b = 0.0001 rad, dotted line b = 0.0005rad, dashed dotted line b = 0.001 rad.



The frequency of the first and second notch and the first peak in the Bode
plot is lower with a higher backlash. There is no difference in the frequency for
the second peak. It is also interesting that if the backlash is bigger then the
phase in the Bode plot is becoming positive.

We have also reduced the input torque to 50% and 20% of the original input
torque. The effect of this reduction in the Bode plot of the Box-Jenkins models
is shown in Figure 8.
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Figure 8: Bode plot of the Box-Jenkins models with backlash & = 0.0001 rad.
Solid line original input data, dashed line 50% input torque, dotted line 20%
input torque.

The effect in the Bode plot is the same when you increase the backlash with
the original input torque and when you decrease the input torque for a fixed
backlash. The frequency of the first and second notch and the first peak in the
Bode plot is lower when the input torque is lower. There is no difference in the
frequency for the second peak. There is hardly any difference in the Bode plot
of the model with backlash b = 0.0005rad with original input torque and the
model with backlash b = 0.0001 rad and 20% input torque.

5 Conclusions

We have presented Bode plots of black box identification of a simulated model
of a robot arm with different kind of nonlinearities. The nonlinearities we in-



troduced have been sometimes quit big to see the effect in the identification
better. The basic characteristics of the black-box models do not change if we
introduce nonlinearites. The backlash has a influence on the frequencies of the
two notches and the first peak while the friction affects the amplitude over the
whole frequency range and the frequency of the second peak.
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