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Abstract

The combination of tracking and regularization in re-
cursive identification is studied. It is shown that reg-
ularization of the information matrix corresponds to a
normalization of the covariance matrix, and that sev-
eral of the proposed methods for dealing with covari-
ance matrix blow up can be interpreted as approximate
implementations of covariance matrix normalization.

1 Introduction

In order for a recursive identification algorithm to have
ability to track time varying systems and signals it is
necessary to prevent the algorithm gain from tending
to zero. This can be achieved by using, for example, ex-
ponential forgetting or covariance modification, see e.g.
[1]. Such methods, however, make the algorithms sensi-
tive for poor excitation. It therefore becomes necessary
to introduce some safety mechanism that handles this
situation. Several methods for dealing with this prob-
lem have been proposed. In [2], [3] and [4] different
kinds of scalings of the covariance matrix are discussed.
The results in [5] are closely related to the results that
will be presented below, but in our approach the results
are derived in a more straightforward way.

2 Recursive Parameter Estimation

We shall consider systems that can be described by a
linear regression of the type

Yt = 90;[9t—1 + v (1)

where y; denotes the measured output signal and v, is a
disturbance. The regression vector ¢; contains delayed
versions of the input signal u; and the output signal y;.
Finally the vector 6; contains the, possibly time vary-
ing, parameters of the system. For identification of the
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parameters 6; we shall consider algorithms of recursive
least squares (RLS) type given by the structure

B = 01 + Pyspe(ye — o7 01-1) (2)

where Py; is a symmetric matrix. We shall apply the
terminology from state estimation, see [6], and split
the update of P, into a measurement step and a time
step. The measurement update is simplest formulated
in terms of the information matrix Ry, defined by

Ry = Py 3)
The measurement update is then given by, see [6],
Ryt = Ryjp—1 + ey (4)
Applying the matrix inversion lemma gives the well
known equation
Pyi_10e07 Prji—1
1+ ol Py—1s

Pt|t = Pt|t71 - (5)
Formulating the parameter estimation problem as the
minimization of a weighted least squares criterion, see
[1], the time update becomes

_ 1
Pt+1\t = )\_Pt\t (6)
t
where 0 < A\¢ < 1 is the forgetting factor, or equiva-
lently -
Riy1)e = MRy (7)

By, on the other hand, assuming that the parameter
vector of the true system varies according to a random
walk the parameter estimation problem can be formu-
lated as a state estimation problem, and the Kalman
filter can be applied. The time update is then given by

pt+1|t =Py + A (8)

where A; is a symmetric matrix. Equation (8) together
with the measurement update give, what is sometimes
denoted, RLS with covariance resetting. Using the ma-
trix inversion lemma equation (8) can be expressed, see
[6], as

Riy1t = Ry — Rep[Repe + Atfl]_lRtht 9)



3 Regularization

A standard method for preventing the information ma-
trix from becoming singular is to add a positive defi-
nite matrix to the information matrix to ensure that
it always is invertible. This operation can be easily
incorporated in a third update step given by

Riprjp = R+ 1 (10)

where p is a positive scalar. Combining equations (9),
(10) and (4) give

Rij1je41 = Rt|t_Rt\t[Rt\t+At_1]71Rt|t+90t+190;+1+,u"]

(11)
in the Kalman filter case, while we for RLS with expo-
nential forgetting obtain

Rip1)e41 = AeRype + Pryrpf +p-T (12)

This is the form a, so called, Levenberg-Marquardt reg-
ularization is carried out as discussed in, for example,
[1]. It is obvious that we by adding the scaled iden-
tity matrix to the information matrix prevent it from
becoming singular. The updating of the covariance ma-
trix, corresponding to equation (10), is now obtained
by applying the matrix inversion lemma. This yields

Piiaje = P (I + pPryap) ™" (13)

i.e. the regularization of the information matrix cor-
responds to a normalization of the covariance matrix.
The covariance matrix update in the Kalman filter case
is hence given by

Pyt 19198 Pyt
1+ ¢! Pyje_1pt

pt+1\t =Py — + Ay (14)

together with the normalization in equation (13). Ap-
plying the same ideas to the RLS algorithm with ex-
ponential forgetting gives that the covariance matrix is
given by

Pt|t—1<Pt<PtTPt|t—1
1+ o Py_1:

_ 1
Py = )\_t(Pt|t—1 - (15)

together with the normalization in equation (13).

4 Related Algorithms

The normalization in equation (13) requires a matrix
inversion and multiplication of two full rank matrices,
and therefore a simpler operation could be of interest.
One such simplification is achieved by replacing PtH‘t
in the second factor by the unit matrix. The normal-
ization hence becomes

Pt+1\t = mptﬂlt (16)

i.e. the covariance matrix is scaled by a positive scalar
less than one. Combining equation (16) with the time
update in equation (8) yields

1 1
Py = TED) Py + TED) Ay (17)
Equation (17) together, the measurement update and
the choice A; = I is the, so called, Recursive Least
Squares with Stabilized Forgetting, (RLS-SF) pre-
sented in [4]. This algorithm furthermore appears to
be almost identical to the Selective Forgetting method
(SF1) proposed in [3]. A related approach is to measure
the magnitude of the matrix to be inverted in equation
(13) by the trace of Pt+1|t, and to replace equation (13)

by
C

Pt+1|t = pt+1|t (18)

trace(Pyy1t)

This then gives the constant-trace algorithm discussed
in [2]. Finally, another way of approximating the nor-
malization operation is to use that

(I + pPryape) "t = I — pPray (19)
for small p. Inserted in equation (13) this gives

Pt+1\t = Pt+1\t - ,ul3t2+1|t (20)

With some slight changes of time indices we get
the Exponential Forgetting and Resetting Algorithm
(EFRA), presented in [7], in which a term proportional
to the square of the covariance matrix is subtracted
from the covariance matrix.
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