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Abstract

Transmission power control is essential in WCDMA in order to optimize the band-
width utilization which is critical when variable data rates are used. One remaining
problem is oscillations in the output powers due to round-trip delays in the power
control loops together with the power up-down command device. The oscillations are
naturally quantified using discrete-time describing functions, which are introduced and
applied. More importantly, Time Delay Compensation (TDC) is proposed to mitigate
the oscillations. When employing TDC, the power control algorithm operates more
stable, which is important from a network perspective. Simulations illustrate the oscil-
lations and the benefits of TDC. Moreover, the fading tracking capability is improved
and thus less fading margin is needed. The latest news from standardization is to try
to operate without additional delay when close to a base station. Nevertheless, there
will still be more distant mobile stations for which TDC will be beneficial.

Keywords: Power control, Time delay compensation, Delay analysis, Dynamics,
WCDMA, CDMA, IS-95, Oscillations, Describing functions
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1 Introduction

In order to utilize the available resources in cellular radio systems efficiently, different radio
resource management schemes are needed. One such technique is to control the output
powers of the transmitters. In systems based on CDMA, this is particularly important since
all terminals are communicating using the same spectrum. Most power control algorithms
proposed to date strive to balance the carrier-to-interference ratio (C/I) or the signal-to-
interference ratio (SIR) [1].

Fast fading has to be mitigated when possible, and therefore it is desirable to choose a
high updating interval of the power control algorithm. The signaling bandwidth is kept low
by utilizing only one bit for signaling, where the power is stepwise increased or decreased.
Viterbi [23] proposed a scheme where the transmitter power is increased or decreased based
on the comparison of received SIR and a threshold. The scheme was further investigated
by Ariyavisitakul [5].

Signaling and measuring takes time resulting in time delays in the power control loop,
which in turn affects the dynamics of the closed-loop. This has primarily been considered as
imperfect power control and Sim et. al. [20] concluded that power control is more sensitive to
the delay than to the SIR estimator performance. Chockalingam et. al. [10] indicated, using
simulations and analytically approximated second-order statistics, that the performance is
degraded when subject to delays in the power control loop.

Leibnitz et. al. [18] proposed a Markov chain model to describe the power control dynam-
ics. The horizon of transitions was, however, chosen too short to reveal the presence of
oscillations.

The intuitive behavior of a power control algorithm in operation is that the received SIR
oscillates up and down around the threshold γtgt as in Figure 1a. When subject to delays,
however, the amplitude of the oscillations is larger as seen in Figure 1b. Primarily, time
delays results in oscillations in two different ways

1. Delayed reactions to changes in external disturbances.

2. Internal dynamics of the power control loop.

In this paper, time delay compensation (TDC) [16] is proposed to mitigate oscillations due
to internal dynamics (second item above). As seen in Figure 1a, which represents the same
situation as in Figure 1b, but with TDC in operation, the oscillations are significantly
reduced. This means that the capacity can be better utilized, which is critical when using
variable data rate.

TDC is described using the loglinear model introduced in [8], which is similar to the model
used in [10]. The dynamics are quantified using discrete-time describing functions to predict
the different modes of oscillations.

The rest of the paper is organized as follows. Section 2 introduces the system models, which
are used to describe the power control algorithm in operation. The closed-loop system is
intuitively depicted in a block diagram capturing the dynamics. Time delay compensation
is presented in Section 3, and the dynamics is quantified using discrete-time describing
functions in Sections 4 and 5. The performance improvements using TDC are further
illuminated in simulations in Section 6. Section 7 provide the conclusions.

A reader who only wants to grasp the most important results can peruse Sections 2 and 3,
Proposition 4 in Section 4 and Section 5.
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Figure 1: Received SIR in a typical WCDMA situation, where the power control commands
are delayed by one slot. a) TDC employed, b) no TDC.

2 System Model

Initially, it will be assumed that each mobile station is connected to only one base station,
i.e. any soft handover scheme is not considered. This is chosen to keep the notation simple
and to emphasize the core ideas. The case of soft handover will be considered in more detail
in the end of this section and in Section 3.2. Moreover, the nomenclature is settled to focus
on the uplink (reverse link). However, the downlink (forward link) is treated analogously,
except when stated.

2.1 Notation

All values will be represented by values in logarithmic scale (e.g., dB or dBW). Assume that
m active mobile stations transmit using the powers pi(t), i = 1, . . . , m. The signal between
mobile station i and base station j is attenuated by the signal gain gij(t) (< 0). Moreover,
mobile station i is connected to base station ji. Thus the corresponding connected base
station will experience a desired carrier signal

Ci(t) = pi(t) + giji(t)

and an interference plus noise Ii(t). The carrier-to-interference ratio at base station ji is
defined by

γi(t) = pi(t) + giji(t) − Ii(t).

Some authors prefer to use the signal-to-interference ratio (SIR), which in a CDMA setting
is defined by

[SIR]i = [C/I]i + PG,

where PG is the processing gain. As will be seen below, the two quality measures result in
the same dynamic behavior.

Remark. Note that the notation identifies each uplink connection by the number of the
mobile station i.
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2.2 Closed-loop Power Control in WCDMA

In order to avoid extensive signaling in the networks, distributed power control algorithms
are desirable. Furthermore, fast power updates are of interest in order to mitigate the
fast fading when possible. In the WCDMA proposal, the signaling bandwidth is kept low
despite the high update rate by utilizing single-bit signaling [3, 4]. The C/I is estimated
at the receiver and compared to a threshold γtgt,i(t). Then the power control command
si(t) = −1 is sent to the transmitter when above the threshold and si(t) = +1 when below.
The updating procedure can thus be described as

Receiver : ei(t) = γtgt,i(t) − γi(t)
si(t) = sign (ei(t)) (1a)

Transmitter : pi(t + 1) = pi(t) + Δisi(t) (1b)

The step size Δi might be adapted as well. Here, only updates at a much slower rate than
the power updates are considered, which means that it can be considered constant in the
analysis. The effects of updates at faster rates, will be discussed in Section 5.2.

In the actual proposals, SIR is utilized instead of C/I. However, since only the difference
between the estimate and a target value is considered in (1a), this will result in the same
sequence of power control commands si(t). Therefore, C/I will be used in the sequel, but
the reader should remember that the analysis is identical when utilizing SIR.

The target value, γtgt,i(t), is provided by an outer control loop operating at a lower rate [3,
8, 23]. Therefore, this value may be regarded as constant on a short term. Related to the
choice of target values is the following definition [24].

Definition 1
The vector of target values, [γtgt,i], is feasible if there exist a power vector, [pi], that result
in these target values.

In a real system, signaling and estimating takes some time, resulting in time delays in the
closed loop. These time delays can be described using the delay operator in the time domain,
defined by1

si(t − 1) = q−1si(t)
si(t + 1) = qsi(t)

si(t − n) = q−nsi(t).

Applying this scheme to the power update in the transmitter 1b yields

pi(t) =
Δi

q − 1
si(t) (2)

Assume that the power control commands are delayed by np samples before they are actually
considered in the transmitter. Moreover, the estimated C/I is delayed by nm samples before
it is compared to the threshold. Since the command signaling is standardized, these delays
are known exactly in number of samples (or slots). Typical situations in WCDMA are
depicted in Figure 2. As seen in Figure 2b, the transmitter power can be controlled without
excessive loop delay by shifting the slot configurations. This is only possible for mobile
stations relatively close to the base station. IS-95 have an excess delay of 2-3 samples [21].

1Note that t represents time index and not the actual time. An alternative is to include the power update
interval (or sample interval) Ts, and consequently define si(t − nTs) = q−n

Ts
si(t).
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Figure 2: Typical situations in WCDMA describing time of estimation, power command
signaling (PC), and power update. a) np = 1, nm = 0, b) By shifting the slot configurations,
np can be brought down to zero when the mobile station is close to the base station.

Using 2, the closed-loop behavior of the power control algorithm can be depicted as in
Figure 3. This local loop captures the dynamics if the interference Ii(t) can be treated as
independent of the transmitter power pi(t), which is a reasonable approximation in most
cases. However, when the target values γtgt,i(t) are infeasible (see Definition 1), then the
transmitter powers will ramp up until one or several transmitters are using maximum powers.
This effect is referred to as the party effect and is further discussed in [2]. In this article, it
is assumed that the target values are feasible.

γtgt,i(t) pi(t)ei(t)+ ++

−
q−np

q−nm

Δi

q−1Σ Σ

giji(t) − Ii(t)

γi(t)

si(t)

Receiver Transmitter

Figure 3: WCDMA inner loop power control, where the power control commands are delayed
by np samples and the measurements by nm samples.

In a real systems, the power control commands may be corrupted by disturbances resulting
in command errors. This is modeled by the stochastic multiplicative disturbance xi(t) with
probability function

pX(x) = (1 − pCE)δ(x − 1) + pCEδ(x + 1),

i.e., the command error probability is pCE. Moreover, the output powers are limited to the
set [pmin, pmax]. A more detailed block diagram incorporating these components is given in
Figure 4.
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Figure 4: WCDMA inner loop power control as in Figure 3, but with power command errors
xi(t) and limited dynamic range.

2.3 Comparison to Carrier-based Power Control

In some systems, e.g., IS-95, a similar scheme is employed, but the power control commands
are determined by comparing the received carrier power to a threshold [22]. As in the
previous section, the closed power control loop can be described by the block diagram in
Figure 5. Since the dynamics is equivalent to the dynamics in Figure 4, analysis of the C/I
based power control will hold in this case as well. We can thus without loss of generality
focus on the C/I-based control.

Ctgt,i(t) pi(t)ei(t)+ ++

−

xi(t)

×q−np

q−nm

Δi

q−1Σ Σ

giji(t)

Ci(t)

si(t)

Receiver Transmitter

Figure 5: Carrier-based inner loop power control, which is dynamically equivalent to Fig-
ure 4.

2.4 Soft and Softer Handover

When the quality of service is degraded, it may be beneficial to connect to several base
stations. A typical situation is when the mobile station is moving from one cell to another.
During a transition phase, the mobile station will be connected to both base stations to
preserve an acceptable connection. The number of connected base stations is referred to
as the active set (AS). This active set includes the base station with the strongest received
signal and the base stations within a window of size hm (handover margin). However, the
active set contains at most ASmax number of base stations. For uplink power control, the
mobile station should adjust the power with the largest step in the “down” direction ordered
by the power control commands received from each base station in the active set [3].

A related strategy is to connect to several (normally two) sectors at the same base station.
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This is referred to as softer handover.

3 Time Delay Compensation

As indicated by Figure 1, round-trip delays in the power control loop result in oscillations.
Basically, the main reason is that the algorithm overreacts since the receiver has not seen
the effect of the previous issued command when the next one is to be issued. A solution is
to compensate for the delay when determining which power control command to issue. The
core idea is to adjust the measured C/I according to the power control commands that have
been sent but whose effect have not yet been experienced by the receiver [16].

3.1 Algorithms and Implementations

As discussed above, the commands not yet experienced have to be compensated for. This
is accomplished by adjusting the measured C/I as

γ̃i(t) = γi(t) + Δi

np+nm∑
j=1

q−jsi(t)

Time delay compensation can thus be implemented as

Algorithm 1 (Time Delay Compensation I)

1.Adjust the measured C/I

γ̃i(t) = γi(t) + Δi

np+nm∑
j=1

q−jsi(t).

2.Compare to the threshold

ei(t) = γtgt,i(t) − γ̃i(t).

3.Compute the power control command

si(t) = sign(ei(t)).

Remark. In the typical WCDMA case np = 1, nm = 0, the measurement is adjusted
simply by γ̃i(t) = γi(t) + Δisi(t − 1).

Rewrite the compensation term in order to see the effects of TDC more clearly.

Δi

np+nm∑
j=1

q−jsi(t) = Δiq
−1 1 − q−np−nm

1 − q−1
si(t) = (1 − q−(np+nm)) · Δi

q − 1
si(t) (3)

Introduce p̃i(t) to monitor the powers to be used in the transmitter (cf. (1b))

p̃i(t + 1) = p̃i(t) + Δisi(t) ⇐⇒ p̃i(t) =
Δi

q − 1
si(t)
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Together with (3), this yields

Δi

np+nm∑
j=1

q−jsi(t) = (1 − q−(np+nm))p̃i(t) = p̃i(t) − p̃i(t − np − nm)

The compensation can thus be written as

γ̃i(t) = γi(t) + p̃i(t) − p̃i(t − np − nm).

Basically the compensation can be seen as operating in two phases. Monitoring the powers
to be used in the transmitter, p̃i(t), and subtracting the old power and add the new power to
the measured C/I. This can be formulated as the algorithm below. Note that when consider
this as an implementation, the limited dynamic range must be considered.

Algorithm 2 (Time Delay Compensation II)

1.Adjust the measured C/I

γ̃i(t) = γi(t) + p̃i(t) − p̃i(t − np − nm).

2.Compare to the threshold

ei(t) = γtgt,i(t) − γ̃i(t).

3.Compute the power control command

si(t) = sign(ei(t)).

4.Monitor in the receiver the powers to be used by the transmitter

p̃i(t + 1) = max(pmin, min(pmax, p̃i(t) + Δist(t))).

Introduce

H(q) = −(1 − q−(np+nm)).

Based on Figure 3, the operation of this algorithm is naturally represented by the block
diagram in Figure 6. Note that limited dynamics range is not included for simplicity. Read-
ers with a background in control recognize the relations to the Smith-predictor, discussed
e.g., in [6]. The benefits of TDC are illuminated by rewriting this block diagram. After
some “block diagram algebra” exercise, the diagram can be rewritten as in Figure 7. The
merits of TDC are then evident, since it cancels the internal round-trip delays in the loop.
However, external signals and disturbances are still delayed, and it takes some time before
changes in γtgt,i(t), giji(t) and Ii(t) are reflected in the measurement γi(t).

3.2 Applicability

TDC is applicable to both uplink and downlink power control in WCDMA and IS-95, as well
as systems where the transmitter powers are controlled analogously. One problem arises for
the uplink when employing soft handover. While in operation, a base station is unaware
of whether an issued control command is applied or not. As stated in Section 2.4, the
mobile station decreases the power if at least one base station has issued a down command.
Therefore, TDC should be disabled in the uplink while in soft handover. The applicability
to the downlink when in soft handover as well as in softer handover is depending on the
combining strategy in the receiver.

A similar situation is prevalent when the power command error probability is high. The
benefits of TDC will then be degraded. This is further discussed in Section 6.
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ΣΣ

−

++ ei(t) pi(t)γtgt,i(t)

γi(t)

Δi

q−1

Δi

q−1

giji(t) − Ii(t)
p̃i(t)

q−np

q−nm

H(q)

Receiver

Transmitter

Figure 6: Time delay compensation (TDC) can be implemented as an internal feedback by
monitoring the powers to be used by the transmitter, p̃i(t).

ΣΣ

−

+ ei(t) pi(t)γtgt,i(t)

γi(t)γ̃i(t)

Δi

q−1

giji(t) − Ii(t)

q−np

q−nm

q−nm

1 − qnp+nmH(q)

= 1 + qnp+nm(1 − q−(np+nm)) = qnp+nm

Figure 7: By rewriting the diagram in Figure 6, it is evident how TDC cancels the round-trip
delays in the control loop. External signals and disturbances are still delayed before they
are reflected in γ(t).

4 Describing Functions

In this section we develop the underlying theory, first in a simple case to stress the main
ideas, and then with focus to the power control local loops. The theory of describing
functions or limit cycles are further discussed by Glad [12], Atherton [7] and Phillips and
Nagle [19]. The applicability to power control in cellular radio systems have been addressed
by Gunnarsson et. al. in [8, 9, 14, 15]

4.1 A Local Loop with one Nonlinearity

Basically, we are focusing on loops that consist of a linear part with transfer function G(q)
and a static nonlinearity described by the function f(·) resulting in a loop as in Figure 8.
Note that we have assumed a zero input to the loop, and nonzero inputs are further studied
in Section 4.2.
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e(t)
f(e) G(q)

w(t) y(t)

Figure 8: Block diagram of a nonlinear system, separated in one linear and one nonlinear
component.

Nonlinearities in the loop normally result in an oscillatory behavior. This will be studied
by assuming that there is an oscillation in the error signal e(t), and then try to verify this
assumption.

We proceed by making the N -periodic hypothesis

e(t) = E sin(Ωet) = E sin
(

2π

N
t

)
,

where E is the amplitude of the oscillation and Ωe is the normalized angular frequency. In
order to simplify the calculations we assume for a moment that f(·) is odd. The compu-
tations using a general static nonlinearity are analogous, but a little bit more complicated,
and we will return to a general f(·) further on. Since the nonlinearity is static, w(t) is N -
periodic as well. Using discrete time Fourier series expansion, the signal w(t) is decomposed
into its Fourier components as

w(t) =f(E sin(Ωet) = A1(E, N) sin(Ωet + φ1(E, N)) +
+ A2(E, N) sin(2Ωet + φ2(E, N)) + . . .

Recall that a sinusoid X̂ sin(ΩX t) fed through a linear system H(q) results in the output

X̂
∣∣H(eiΩX )

∣∣ sin(ΩX t + arg(H(eiΩX ))),

after the transients have decayed. Now let us make the assumption that the linear system
G(q) will attenuate the harmonics much more than the fundamental frequency. This is the
only approximation we will make, and it yields

y(t) ≈ A1(E, N)
∣∣G(eiΩe )

∣∣ sin(Ωet + φ1(E, N) + arg(G(eiΩe ))). (4)

Figure 8 yields

y(t) = −e(t) = −E sin(Ωet) = E sin(Ωet + π). (5)

Recall that Ωe = 2π
N . By combining Equations (4) and (5) we state that we will get an

oscillation if there exists a solution to the following equations

A1(E, N)
∣∣∣G(ei 2π

N )
∣∣∣ = E (6a)

φ1(E, N) + arg(G(ei 2π
N )) = π + 2πν. (6b)

By utilizing the complex Fourier coefficient C1(E, N), this can be written more compact
by defining the complex number

Yf (E, N) =
A1(E, N)eiφ1(E,N)

E
=

2i

E
C1(E, N), (7)

which will be referred to as the describing function. Then (6) can be rewritten as

Yf (E, N)G(ei 2π
N ) = −1, (8)
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4.2 Nonzero Input

When considering nonzero inputs in general, the analysis becomes more complex. In some
cases, however, such as the power control case, some simplifications are readily available.
Consider the power control update in (1) and include the delays as in Figure 3. This yields

pi(t + 1) = pi(t) + Δisign(γtgt,i − pi(t − np − nm) − giji(t − nm) + Ii(t − nm)).

Introduce p̃i(t) = pi(t) − γtgt,i + giji(t + np) − Ii(t + np), and assume that the power gain
and the interference are constant over the delay horizon (np + nm samples). Hence

p̃i(t + 1) = p̃i(t) + Δisign(−p̃i(t − np − nm)),

which is the zero input case. The imperfect assumption of constant gain and interference
over the delay horizon can be considered by incorporating an unknown phase shift in the
definition of the describing function. Note that this phase shift δe ∈ [0, 2π/N [ will not affect
the issued power control commands, since

si(t) = sign(E sin(Ωet)) = sign(E sin(Ωet + δe)).

Therefore, the following definition of the describing function is plausible when the input
can be assumed to be nonzero, and the imperfection of that assumption is captured by an
unknown phase.

Definition 2 (Discrete-Time Describing Functions)
The describing function of the static nonlinearity f(·) is defined (cf. (7)) by

Yf (E, N) =
2i

E
C1(E, N),

where the complex Fourier coefficient C1(E, N) is given by

C1(E, N) =
1
N

N−1∑
t=0

f (E sin(Ωet + δe)) e−i(Ωet+δe).

The definition can be written more compact

Yf (E, N) =
2i

NE

N−1∑
t=0

f (E sin(Ωet + δe)) e−i(Ωet+δe).

When employing the definition, several solutions might satisfy the equations due to the
unknown phase. For relays, the following is intuitive

Proposition 3 (Even-period oscillations)
For a stable oscillation in the relay case, the period N has to be even. While in operation,
single cycles of odd periods might be present, but they will be regarded as transitions
between even-period cycles.

The discrete-time describing functions analysis is summarized in the following proposition

Proposition 4 (Discrete-Time Describing Functions Analysis)
Consider the situation in Figure 8, where the loop is separated in a linear (G(q)) and a
nonlinear (f(·)) part. Then the oscillation in the error signal e(t) is approximated by the
procedure

10



1. Determine the discrete-time describing function of the nonlinearity as

Yf (E, N) =
2i

NE

N−1∑
t=0

f (E sin(Ωet + δe)) e−i(Ωet+δe),

where N is even, Ωe = 2π
N and δe ∈ [0, 2π/N [.

2. Compute G(q)|q=e2πi/N .

3. Solve the following equation for E and N .

Yf (E, N)G
(
ei 2π

N

)
= −1 (9)

If a solution exist, then the oscillation is approximated by

e(t) = E sin
(

2π

N
t + δe

)
.

If several solutions exist, then several modes of oscillation is possible.

4.3 Describing Function of the Relay

The describing function is given by Definition 2. In the relay case, the complex Fourier
coefficient C1(E, N) in Definition 2 can be computed as

C1(E, N) =
1
N

N−1∑
t=0

f (E sin(Ωet + δe)) e−i(Ωet+δe) =

=
1
N

N/2−1∑
t=0

e−i(Ωet+δe) − 1
N

N−1∑
t=N/2

e−i(Ωet+δe) =

=
1
N

e−iδe
[
1 − e−iπ

] N/2−1∑
t=0

e−iΩet =

=
2

N sin
(

π
N

)ei( π
N −π

2 −δe)

The describing function is then given by Definition 2 as

Yf (E, N) =
4

NE sin
(

π
N

)ei( π
N −δe) (10)

5 Describing Functions Analysis

The dynamical behavior of the local loop with a relay can be analyzed using describing
functions based on assumptions of oscillations in the loop.

5.1 Quantitative Analysis

Consider the process outlined in Proposition 4:

1. The describing function of the relay is provided in (10).

11



2. The linear part of Figure 3 is given by

G(q) =
Δi

qnp+nm(q − 1)

Hence

G(q)|q=e2πi/N =
Δi

2 sin(π/N)
e−i(π

2 + π
N + 2π

N (np+nm)) (11)

3. Equations (9), (10) yield and (11)

2Δi

NE sin2 π
N

e−i(π
2 +δe+ 2π

N (np+nm)) = −1 = e−i(π+2πν) (12)

Solve for N by comparing the arguments of each side. The procedure is illustrated
for the typical WCDMA case np = 1, nm = 0 in Figure 9. Note that the left hand

2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

N

Figure 9: The argument of the left hand side of Equation (12)
is represented by a shaded area due to the unknown phase δe. The right hand side argument
is described by the dashed line. As seen in the graph, there are two possible solutions, N0 = 4
and N0 = 6.

side is depending on the unknown phase δe, resulting in the shaded area in the figure.
The right hand side is described by the dashed line. From the figure, we conclude
that there are two modes of oscillations in the closed-loop: N0 = 4 and N0 = 6. The
corresponding amplitudes can be computed by solving (12) for E, which yields

E0 =
2Δi

N0 sin2 π
N0

. (13)

Table 1 summarizes some predicted oscillations for various delays.

The approximation of the amplitude E turns out to be not as accurate as the approximation
of the period N . As an alternative to (13), one may consider to use

E0 =
N0

4
Δi. (14)

The approximation is intuitive, since this is exactly the amplitude of a discrete-time trian-
gular wave with period N0 and step size Δi.
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n = np + nm Oscillation modes
0 N0 = 2, E0 = Δi

1 N0 = 4, E0 = Δi

N0 = 6, E0 = 1.33Δi

2 N0 = 8, E0 = 1.7Δi

N0 = 10, E0 = 2.1Δi

3 N0 = 12, E0 = 2.5Δi

N0 = 14, E0 = 2.9Δi

Table 1: Predicted oscillation modes for various delays.

5.2 Discussion

The benefits of employing TDC is further illuminated by Table 1. Since TDC cancels the
internal round-trip delays in the loop, as concluded in Section 3.1, the period of oscillations
is reduced to a minimum.

Assume that the power gain and the interference are relatively slowly varying compared to
the updating rate of the power control algorithm. Then the dominating oscillation originates
from the internal dynamics together with the relay. This oscillative behavior is typical when
nonlinear elements are present [7]. Therefore, relays should be avoided when possible. In the
power control algorithm implementation, however, the benefits of a low command signaling
bandwidth justifies the use of a relay.

One possible way of utilizing two bits is to use one for power up/down commands and one
for step size up/down commands. This will incorporate yet another relay in the control loop
resulting in an even more complex oscillative behavior for which compensation is compli-
cated. From a dynamics point of view, it is better to increase/decrease the step size more
seldom.

6 Simulations

In this section, system simulations will back-up and illuminate the obtained analytical results
and approximations from the previous sections. The simulation model will primarily be used
to generate a realistic interference environment, and the focus will be on a specific user.
Power gain is modeled as proposed by Hata [17] (path loss), Gudmundson [13] (shadow
fading) and Clarke [11] (fast fading). Some of the important parameters2 are summarized
in Table 2

Antennas Sectorized
Cell radius 2000 m
Control sample interval Ts = 0.625 ms
Slots per frame 16
Power command delay 1 slot
Shadow fading std.dev. 10 dB
Shadow fading corr. dist. 29 m
Mean mobile station speed 10 m/s

Table 2: System simulation parameters for a typical WCDMA case.

2The simulator has not yet been adapted to the new standard with 15 slots per frame.
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First, consider the system in operation without TDC. As seen in Figure 10a, the oscillation is
fairly stable and the correspondence with the predicted oscillation in Table 1 is good. When
employing TDC, the oscillations are more or less mitigated, and the algorithm tracks the
target value much better. Less fading margin is needed to reside permanently above some
critical level, which is turn increases the capacity. Furthermore, a more stable operation
result in a more stable overall system.
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Figure 10: Control error ei(t) = γtgt,i(t) − γi(t) for the typical case of one slot delay. The
correspondence to the predicted oscillations in Table 1 is good. a) No TDC, b) TDC.

As stated in Section 3.2, power command errors may reduce the performance of TDC.
Consider the case described in Figure 4 with command error probability pCE = 0.05. The
error signals together with the multiplicative disturbance xi(t) are depicted in Figure 11.
As expected, command error will result in bursty errors in C/I, but the algorithm recovers
fast.

Increased power command error probability degrades the performance gradually. By using
the error standard deviation, the variations in the error signals can be quantified. Fig-
ure 12 captures the degradation in the performance of TDC with increased command error
probability, but it is still beneficial compared to without TDC.

From the simulations we conclude that TDC is beneficial to employ despite power command
errors. The benefits are more emphasized when the command error probability is low.
Furthermore is was illuminated that describing functions provide relevant predictions of
oscillations in the local loops.
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Figure 11: Same case as in Figure 10, but with command errors (pCE = 0.05). a) Multi-
plicative disturbance xi(t), b) error without TDC c) error with TDC.

7 Conclusions

A common implementation of power control in many DS-CDMA cellular systems is to
utilize a power up-down command device. This device together with round-trip delays in
the power control loops result in oscillations in output powers as well as in received SIR.
By utilizing a loglinear model and the introduced discrete-time describing functions we
quantify the different modes of oscillations. Both period and amplitude of the oscillation
can be determined with good accuracy.

More importantly, Time Delay Compensation (TDC) is proposed to mitigate the oscillations.
When employing TDC, the power control algorithm operates more stable, which is important
from a network perspective. The scheme is simple to implement, and the main idea is to
adjust the measured SIR according to the power control commands that have been sent but
whose effect have not yet been experienced by the receiver. Moreover, the fading tracking
capability is improved and thus less fading margin is needed.

Simulations illustrate the oscillations and the accuracy of predicted oscillations obtained
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Figure 12: Standard deviation of the received SIR error in a typical WCDMA situation,
where the power control commands are delayed by one slot. a) TDC employed, b) no TDC.

from describing function analysis. TDC is beneficial to employ despite power command
errors. Furthermore is was illuminated that describing functions provide relevant predictions
of oscillations in the local loops.

The latest news from standardization is to try to operate without additional delay when
close to a base station. Nevertheless, there will still be more distant mobile stations for
which TDC will be beneficial.
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