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Abstract

In this paper we present a novel non�iterative algorithm for identifying linear time�invariant

discrete time state�space models from frequency response data� We show that the algorithm

recover the true system of order n if n�� noise�free frequency response measurements are given

at uniformly spaced frequencies� The algorithm is demonstrated to be related to the recent time�

domain subspace identi�cation algorithms formulated in the frequency domain� The algorithm is

applied to real frequency data� originating from a �exible mechanical structure� with promising

results� In a companion paper robustness and stochastic analysis is performed�

Keywords� system identi�cation� state�space methods� frequency response�

� Introduction

Identi�cation of large scale multi�input multi�output �MIMO� systems of high orders is still con�
sidered a challenge� This type of systems are encountered in the mechanical engineering area of
modal analysis and in the control of �exible structures� In most cases it is desired to obtain a single
model in a minimal realization which makes state�space models the best choice which also facilitates
controller design since most modern multivariable design techniques requires a state�space model
of the system�

If time domain measurements are available a vast number of di	erent algorithms exist in the
literature� The algorithms can be divided in two groups
 iterative methods and non�iterative
methods� Among the iterative we �nd the prediction�error methods ��
� and among the non�
iterative we �nd the more recent sub�space based algorithms ���� ��� ���� The advantage of the
non�iterative methods is the absence of a nonlinear parametric optimization� Hence the methods
always produce a result and never reach local minima� The disadvantages is the poor knowledge of
the performance of the methods with �nite data records�
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In practice information about a system is often obtained as frequency response samples of the
transfer function at some discrete frequencies� These are usually obtained from high performing
sophisticated data analyzers and data acquisition equipment and are of high quality�

The problem of �tting a real�rational model to a given frequency response has been addressed
by many authors� The most natural way is to model the system as a fraction of two polynomials
�a� b� with real coe�cients and solve the problem

�a�ei����b�ei�� � argmin
a�b

NX
k��

j
b�ei�k �

a�ei�k�
�Gkj

� ���

where Gk are the transfer function measurements at frequencies �k� However the solution to
this problem formulation involves a nonlinear parametric optimization just as the prediction error
methods in the time domain�

In early results ���� a linear least�squares formulation was suggested an further re�ned in ����
�SK�iterations� by solving a sequence of linear least�square problems� However these methods
do not always converge to the minimum of ��� as pointed out by ����� A second drawback is
the parameterization of the model� The poles and zeros of the system become very sensitive to
perturbations in the coe�cients of the polynomials if the system order is high� This de�ciency can
be reduced by introducing other parameterizations �e�g� orthogonal Chebyshev polynomials ��� ��
or Zero�Pole�Gain form or the related RPM�parameterization �����

Some more recent methods are non�iterative and based on Inverse Discrete Fourier transform
techniques to obtain estimates of the impulse response an then apply the realization algorithms by
Ho and Kalman ���� Kung ��� or the ERA�algorithm ���� These realization algorithms �nd a minimal
state space realization given the �rst part of the impulse response �the Markov parameters�� The
fundamental problem with this approach is that the estimated impulse response always will be
perturbed since� in reality only a �nite number of frequency response measurements are available�
In ��� estimates of the impulse response are constructed by recursive scheme� This approach is
however exact only if the impulse response dies out completely within the number of frequency
points given� For lightly damped systems this approach yields very poor estimates�

In ��� Bayard suggests to �rst �t a high order rational model using the SK�iterations and
then calculate the impulse response �the Markov parameters� using the high order model� Model
reduction to a low order state�space model is then applied by utilizing the realization algorithm in
����

A new frequency domain approach has been proposed by Liu and co workers ���� which is a
frequency domain counterpart of the time domain subspace methods in ���� ����� This approach
does not require the data to be uniformly spaced in frequencies and also o	ers some frequency
weighting capabilities�

This paper introduce a novel frequency domain state�space identi�cation algorithm using the
frequency response of a system� The major features of this new approach are� A system of order n
is exactly recovered using n�� frequency response samples if the data is noise�free� The algorithm
is non�iterative and involves � key steps� First an IDFT is performed to obtain �distorted� impulse
response estimates� Secondly the estimates are used in a realization step� by a singular value de�
composition �SVD�� to obtain the A and C matrices� Even though the impulse response estimates
are distorted� these estimates of A� and C are correct �in the noise�free case�� In the third step B
and D are estimated by an ordinary least�squares method� It will also be shown that the subspace
approach of Liu et�al� ���� is related this method if the frequencies are uniformly spaced� As an
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illustration we employ the algorithm on real data originating� from a frequency response experi�
ment on a �exible structure from the Jet Propulsion Laboratory� Pasadena� California� These data
has also been used in ���� The example clearly indicate that the subspace methods are competi�
tive compared with classical iterative least�square methods� In a companion paper the proposed
algorithm is successfully analyzed with respect to robustness to norm bounded perturbations and
consistency when the measurements are corrupted with additive noise�

� Problem formulation

We will assume that the true system G is a stable multivariable linear time�invariant discrete time
system with input�output properties characterized by the impulse response coe�cients gk through
the equation

y�t� �
�X
k��

gku�t� k� ���

where y�t� � IRp� u�t� � IRm and gk � IR
p�m� If the system is of �nite order n it can be described

by a state�space model
x�t� �� � Ax�t� �Bu�t�

y�t� � Cx�t� �Du�t�
� ���

where y�t� � IRp� u�t� � IRm� and x�t� � IRn� The state�space model ��� is a special case of ���
with

gk �

�
D� k � �
CAk��B� k � �

� �
�

The frequency response of ��� is

G�ej�� �
�X
k��

gke
�j�k ���

which for the state�space model ��� can be written as

G�ej�� � C�ej�I �A���B �D� ���

The problem formulation is then
 Given a �nite number M � �� possibly noisy� samples

Gk � G�ej�k� � ek� �k � ��� �� ���

of the frequency response of the system �nd a �nite dimensional state�space system ��� of order n�
denoted by �G� such that the true system and the identi�ed model are �close�� where the closeness
is quanti�ed by the following distance between the true and estimated transfer functions

jjG� �Gjj�
�
� sup

�
���G�ej��� �G�ej���� ���

Here ���A� denote the largest singular value of the p�m matrix A� Furthermore� denote by �i�A�
the ith singular value� where the ordering is given by ���A� � ���A� � � � � � �r�A� � � with
r � min�p�m��

�The authors have received the data from P� Khargonekar but have not yet managed to reach D� Bayard for an

o�cial approval to use the data�
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� The algorithm

If the impulse response coe�cients �
� are given� well�known realization algorithms can be used to
obtain state�space realizations� see e�g� ��� and ���� The algorithm to be presented is closely related
to these results but does not require the true impulse response coe�cients to be known�

Assume that frequency response data G�ej�k� on a set of uniformly spaced frequencies� �k �
�k
M � k � �� � � � �M are given� Since G is a real transfer function� frequency response data on ��� ��
can be extended to ��� ��� as follows

G�ej����k�M�� � G��ej��M�k��M �� k � �� � � � �M � � ���

where ���� denotes complex conjugate� Construct the impulse response block Hankel matrix

�Hqr �

�
�����
�g� �g� � � � �gr
�g� �g	 � � � �gr��
���

���
� � �

���
�gq �gq�� � � � �gq�r��

�
����� ����

with number of block rows q � n and block columns r � n and where the �rst q � r � � impulse
response coe�cients of G are estimated from the �M �point Inverse Discrete Fourier Transform
�IDFT� according to

�gi �
�

�M

�M��X
k��

G�ej��k��M � ej��ik��M � i � �� � � � � q � r � �� ����

The size of �Hqr is limited by q � r �M �
Compute the singular value decomposition of �Hqr

�Hqr � � �U� �U��

	
� � �

� � �


 	
�V T
�
�V T
�



����

where � � contains the n principal singular values�
The system matrices are then estimated as

�A �
�h
I�q���p ��q���p�p

i
�U� � 

���
�

�y �h
��q���p�p I�q���p

i
�U� � 

���
�

�
����

�C �
h
Ip �p��q���

i
�U� � 

���
� � ��
�

�B� �D � argmin

B� 
D

MX
i��




 G�ej��i��M���� �G�ej��i��M���



� ����

where
�G�z� � �D � �C�zI � �A��� �B� ����

and Ii denotes the i�i identity matrix and �i�j denotes the i�j zero matrix and A
y � �ATA���AT

denotes the Moore�Penrose pseudo�inverse of the full�rank matrix A� Notice that B and D appear
linear in ���� and thus ���� can be solved by a linear least�squares solution�






From ����� notice that

lim
M��

�gk �

Z ��

�
G�ej���� ej��k�d� � gk� k � �� � � � � q � r � �� ����

where gk is the kth impulse response coe�cient of G� Let Hqr and  i� Ui� Vi� i � �� � denote the
limits of the matrices in ���!��� as M tends to in�nity� The resulting algorithm is then known as
Kung"s algorithm ���� in which �B is calculated from

�B �  
���
� V T

�

	
Im

�m��r���



� ����

The realization given by ������� in Kung"s algorithm ��� is balanced in the sense that the q�block
row observability matrix

Oq �

�
�����

C

CA
���

CAq��

�
����� ����

and the r�block column controllability matrix

Cr �
h
B AB � � � Ar��B

i
����

satis�es
OT
q Oq � CrC

T
r �  � ����

A true balanced realization will thus be obtained only if both q and r tend to in�nity� In this
limiting case  � equals the Hankel singular values of the system G� see �
�� For �nite q and r the
Hankel singular values of G are underestimated by  �� Although the singular values  � do not
play any role �except for a selection of a base for the state�space variables� in the construction of
a state�space model for G� they will be essential in the selection of a model order in the presence
of unmodelled dynamics and noise� �Notice that A and C can be calculated from �����
� letting
 � � In�� As q and r increase� the singular values of Hqr also increase in the absence of noise�
However� small singular values of Hqr and corresponding left and right singular vectors will be less
reliable in the presence of noise� Therefore q and r should be chosen su�ciently large to obtain  �

as large as possible and the model order should be kept as low as possible� We will formalize these
observations in a succeeding section�

The spectral radius of a square n� n matrix is de�ned as

	�A� � maxfj
j � 
 � 
�A�g ����

where 
�A� are the eigenvalues of A�
The usefulness of the above presented algorithm in the case of �niteM follows from the following

key theorem�

Theorem ��� Let G be an nth order system represented by ���� Assume that 	 � 	�A� � �� Then
n�� noiseless equidistant frequency response measurements of G on ��� �� are su�cient to identify
G by the above algorithm ���	
� and

� � � �� � 	�M ���  �� ����
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Proof� Since G is a stable transfer function� it can be represented by the following Taylor series

G�z� � D � C�zI �A���B � D �
�X
k��

CAk��Bz�k �
�X
k��

gkz
�k� 	 � jzj� ��
�

Notice that �gk can be written as

�gk �
�X
i��

g�k � �iM� � CAk��

�
�X
i��

A�iM

�
B � CAk���I �A�M ���B � CAk�� #B ����

and therefore �Hqr can be factored as

�Hqr � Oq
#Cr � Oq � #B A #B � � � Ar�� #B�� ����

Hence� if r � n and q � n� then � � � � and the column range spaces of Hqr and �Hqr will be equal�
Thus �A� �C� �G are related to A�C and G by a square nonsingular matrix S as

�A � S��AS
 �C � CS
 �G � �D � C�zI �A���S �B� ����

Since ���� has a unique solution� we get �B � S��B� �D � D� Then �A�B�C�D� and � �A� �B� �C� �D�
are similar� Letting q � n� �� r � n� M � n� �� we satisfy the condition q � r � �M �

For the second part� notice that �Hqr
�HT
qr� ���	�M ���HqrH

T
qr is positive semide�nite if

#Cr #C
T
r �

�� � 	�M ���CrC
T
r is positive semide�nite which is true�

In the algorithm given by ���!���� the singular values of �Hqr only in�uence the basis chosen for
the state�space variables and not the transfer function G� Since in a realistic problem� � � is never
zero due to noise and unmodelled dynamics� a clear separation between the singular values of � �

and � � must be obtained in order to choose a model order unambiguously� Theorem ��� gives a
bound on the distortion of the smallest singular value due to aliasing caused by the �nite �M �point
inverse DFT�

��� Model order selection by cross validation

Model validation is what distinguishes system identi�cation from curve �tting� In system iden�
ti�cation it is assumed that the measured data is generated by a �nite dimensional system with
some additive noise� To �nd a good model order selection criteria is then an interesting problem
since increasing the model order always decrease the estimation error evaluated on the estimation
data �unless numerical problems occur or� if iterative methods are used� local minima are reached��
If we increase the model order above the true order the model will start to �t to the noise� In
time domain identi�cation a common solution to this is cross validation� see ����
 divide the data
set in two parts and use one part for the identi�cation and the other part for model validation�
If the model order of the estimated model now increase over the correct model order we will see
no decrease in the model quality using the independent validation data set� If the true system
however is of in�nite dimension cross validation techniques will not give the same guidance since an
increased model order always will approximate the underlying in�nite dimensional system better
since the amount of unmodelled dynamics will decrease� However utilizing the cross validation step
will tell us if the data is noisy measurements of a �nite dimensional system or is from a noise free
in�nite dimensional system�

�



In the frequency domain� cross validation is easily performed by dividing the frequency measure�
ments in two disjoint sets
 estimation data and validation data� The most natural division is to take
every other frequency point as the estimation data and the rest as validation data� This division
also preserves the uniformly spaced frequencies� A model is then estimated using the estimation
data only� The quality of the model is assessed by comparing the estimated transfer function with
the validation data set and a proper model order can then be inferred�

� Frequency domain subspace identi�cation

In ���� a sub�space based frequency domain identi�cation algorithm is described� The algorithm is a
frequency domain counterpart to the known algorithms in the time domain ���� ��� ��� and others�
We will brie�y describe the approach by ���� and show a relation with the presented algorithm
��!���� To simplify notation we restrict ourself to single�input single�output systems� However
with more notational e	ort the same derivation holds for multivariable systems�

Consider the state�space system ���� By concatenating outputs and inputs as

yq�k� �

�
�����

y�k�
y�k � ��

���
y�k � q � ��

�
����� 
 uq�k� �

�
�����

u�k�
u�k � ��

���
u�k � q � ��

�
����� � ����

and introducing the Toeplitz matrix

$q �

�
�����

D � � � � �
CB D � � � �
���

���
� � �

���
CAq��B CAq�	B � � � D

�
����� ����

we obtain the relation
yq�k� � Oqx�k� � $quq�k� ����

where Oq is the extended observability matrix ����� On taking the Fourier transform of both sides
of ����� we obtain

W ���Y ��� � OqX��� � $qW ���U��� ����

with

W ��� �
h
� ej� ej�� � � � ej��q���

iT
� ����

Assume that Y ��� and U��� are given at a discrete set of frequencies �k � ��� ��� k � �� � � � �M and
use these samples to de�ne the following matrices


Wq�M �
h
W ���� W ���� � � � W ��M �

i
����

�



Yq�M �Wq�M

�
������

Y ���� � � � � �

� Y ���� � � �
���

���
���

� � �
���

� � � � � � � Y ��M �

�
������ ��
�

Uq�M �Wq�M

�
������

U���� � � � � �

� U���� � � �
���

���
���

� � �
���

� � � � � � � U��M �

�
������ ����

XM �
h
X���� X���� � � � X��M �

i
����

Notice that Wq�M is a Vandermonde matrix and thus always have full rank if the frequencies are
distinct� With the matrices above and ���� we arrive at the complex matrix equation

Yq�M � OqXM �$qUq�M ����

which is the frequency domain counterpart of the time domain equation in �����

��� Observability Range Space Extraction in Frequency Domain

There are several methods to extract the observability range space from ����� In ����� the real
matrices Oq� $q and the complex matrix XM are unknown� We begin with the construction of the
following three matrices

U � �Uq�M � U�q�M �� X � �XM � X�M �� Y � �Yq�M � Y �q�M �� ����

Then� from ����� we obtain
Y � OqX � $q U � ����

Following the time domain work in ���� we form the following matrix

U� � I � UH �UUH��� U �
��

assuming that U has full rank and multiply ���� from right by U� to obtain

Y U� � OqX U�� �
��

Notice that rank�U�� � �M � qm since U� projects onto the subspace of IR�M that is orthogonal
to the range space of UH � Hence� multiplication of �
�� from right by UH yields

U�UH � UH � UH�UUH���UUH � UH
�
I � �UUH���UUH

�
� � �
��

The relation �
�� is used in ���� to arrive at

YYH � YUH�UUH����YUH�H � Oq

�
XXH �XUH�UUH����XUH�H

�
OT
q � �
��

which also can be written as
Y U�YH � OqX U� XHOT

q �

�

�



since U��U��H � U�� The imaginary parts of the above equation are zero� The observability range
space is then estimated by performing a SVD on Y U�YH and we can then proceed as ���!���� If
frequencies are close and�or q is large UUH might be close to singular and ���� propose to use the
pseudo�inverse with a proper threshold for zero when forming �UUH��� in �
��� An even better
way of forming U� without forming the ill�conditioned UUH is by using the SVD


E V H � U �
��

with E � Cq�q� V � C�M�q and the singular values in the diagonal matrix  � IRq�q� Using the
properties of the SVD we easily obtain

U� � I�M � V V H � �
��

Now assume that U��k� � �� �k and hence Y ��k� � Gk� the frequency response of the system�
Extend the frequencies as ���� Given frequency response data construct the following matrix

Gq��M �

�
������

G�ej��� G�ej��� � � � G�ej��M���

ej�� G�ej��� ej�� G�ej��� � � �
���

���
���

� � �
���

ej���q��� G�ej��� ej���q��� G�ej��� � � � ej��M���q��� G�ej��M���

�
������ �
��

This matrix is equal to Y except for a permutation of the columns� Using the notation Xq��M for
the sampled state frequency response matrix� we can derive the following equation as a special case
of ����

Gq��M � OqXq��M � $qWq��M �
��

Since Wq��M has full rank and r � M � Wq��M has a right annihilator W�

q��M and multiplying �
��

from right by W�

q��M � we get

Gq��MW�

q��M � OqXq��MW�

q��M �
��

Let us assume that equidistant frequency response data G�ej�k�M �� k � �� � � � �M are available�
Then Wq��M is annihilated by the following matrix

W�

q�r �
�

�M

�
�����

� � � � � �

ej����M ej����M � � � ej��r��M

���
���

���
���

ej����M�����M ej����M�����M � � � ej��r��M�����M

�
����� � ����

Furthermore� the �i�� i���th entry of Gq��MW�
q�r
 is calculated as

Gq��MW�

q�r �i�� i�� �
�

�M

�M��X
k��

G�ej��k��M � ej��k �i��i������M ����

� �gi�i� � i� � ��
 i� � � � � � q� i� � � � � � r�

which is the �M �point DFT of the frequency response data� Hence Gq��MW�
q�r �

�Hqr from ����
and thus the method of ���� and the algorithm ��!��� are related� The major di	erence from the
the algorithm in ���� is the use of a low rank annihilator W�

q��M instead of the full rank annihilator
�
��� This di	erence turns out to be signi�cant in the stochastic analysis in �����

�



� An example

To illustrate the performance of the presented algorithm we will use a real data set obtained from
the Jet Propulsion Laboratory� Pasadena� California� The data origin from a frequency response
experiment on a �exible structure� As a comparison we will also use the nonlinear least�squares
algorithm invfreqz in Matlab Signal Processing Toolbox� see ����� on the same data� invfreqz is
a two step method� First a rational model is �tted using a linear least�square method� see ����� In
the second step an iterative nonlinear optimization is performed to minimize the sum of the squared
identi�cation errors� Since an optimization is involved local minima may be reached during the
second step�

The same data set has also been used in ��� and we will below relate their results to ours�
The JPL�data consists of a total of M � ��� complex frequency samples Gk� k � � � � � ��� in

the frequency range �ck � ������ ���� rad�s uniformly spaced and origin from a �exible structure and
hence has several lightly damped modes� Our aim is to construct a discrete time model matching
the given frequency response� For the discrete time models we map the continuous frequencies to
discrete frequency points according to

�k �
��ck
�cM

�

This is the equivalent of zero order hold sampling of a continuous time system choosing �cN as the
Nyquist frequency�

��� Model quality assessment

In order to compare di	erent estimated models we use two indicators based on the experimental
data�

	 The largest distance between estimated model and measured data

jjG� �Gjj�e
�
� max

k
jGk � �G�ei�k�j�

	 The L� norm of the error

jjG� �Gjj�e
�
�

vuut �

M

MX
k��

jGk � �G�ei�k�j��

where the subscript e indicates that the measures are only estimates of the true norms�

��� Results

In all estimations the number of block rows q and columns r of ���� were chosen to be q � r � ���
to obtain a maximal size Hankel matrix� Figure � depicts the magnitude of the measured frequency
data together with an estimated model of order �
 using algorithm ������� The estimated model
accurately picks up all the eleven dominant peaks� Increasing model order further improves the �t�
Figure � shows the results of estimation of models of order n � �
��� using the algorithm presented
in this paper and the nonlinear least�squares method �invfreqz�� In the �gure the jjG� �Gjj�e error
is given and the jjG� �Gjj�e error have the same characteristics� For model order �
 our algorithm

��
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Figure �� Magnitude of measured transfer function �solid line� and estimated model of order �

using algorithm ��!��� �dashed line�

produces jjG� �Gjj�e � ���� and for model order 
� we obtained jjG� �Gjj�e � ���� It is quite clear
that� for this data� the algorithm outperform the least�squares method for all model orders� This
data set has also been used by Gu and Khargonekar in the paper ���� They present a model of order
�
 with jjG� �Gjj�e � �� which was obtained by SK iterations� see ����� By introducing a second
step and increasing model order to 
� they reduced the error to jjG� �Gjj�e � ���� Comparing these
results with our results indicates that the herein presented algorithm is a promising alternative to
existing methods� The algorithm proposed in ���� produce almost identical results as the algorithm
��!��� which is not surprising since� as we have demonstrated� for uniformly spaced frequencies the
two methods are closely related�

����� Validation

In order to validate the estimates we divided the JPL�data in two sets as described previously� In
�gure � the results of estimating models of order ��!
� is given� It is interesting to notice that
the identi�cation error measured on the validation data keeps decreasing which indicates that the
JPL�data is fairly noise free and origins from a system of a high order� possibly in�nite�

� Conclusions

We have in this paper presented a non�iterative frequency domain state�space identi�cation algo�
rithm� If the frequency data is noise�free and generated by an nth order system we show that only
n� � equidistant frequency response samples are required to exactly recover the true system� We
also demonstrate that the algorithm is related to an existing algorithm ����� The proposed algo�
rithm is used to identify a state space model from real data originating from a �exible structure
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Error for NNLS estimates and subspace estimates

Figure �� jjG � �Gjj�e error for di	erent model orders� �%� Algorithm ��!���� ��� Nonlinear
least�squares method�

and a comparison is made with a nonlinear least�square iterative method� The results suggest that
the algorithm outperforms the nonlinear�least squares algorithm �invfreqz� and is therefore an
appealing alternative to classical iterative methods�

References

��� J� L� Adcock� Curve �tter for pole�zero analysis� Hewlett�Packard Journal� pages ��!���
January �����

��� D� S� Bayard� An algorithm for state�space frequency domain identi�cation without windowing
distortions� In Proc� of the �	st IEEE Conference on Decision and Control� Tucson� Arizona�
pages ����!����� December �����

��� R� L� Dailey and M� S� Lukich� Mimo transfer function curve �ttting using chebyshev polyno�
mials� In Proc� of the SIAM �
th Anniversary Meeting� Denver� Colorado� �����

�
� K� Glover� All optimal hankel�norm approximations of linear multivariable systems and their
L��error bounds� International Journal of Control� ����������!����� ���
�

��� G� Gu and P� P� Khargonekar� Frequency domain identi�cation of lightly damped systems�
The jpl example� In Proc� of the American Control Conference� San Francisco� CA� pages
����!����� �����

��� B� L� Ho and R� E� Kalman� E	ective construction of linear state�variable models from in�
put�output functions� Regelungstechnik� �
������
�!���� �����

��



15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

Model order n

E
rr

or

Estimation error on estimation data and validation data

Figure �� jjG � �Gjj�e error on estimation data ��� and validation data �%� for di	erent model
orders using algorithm ��!����

��� J� N� Juang and R� S� Pappa� An eigensystem realization algorithm for modal parameter
identi�cation and model reduction� J� of Guidence� Control and Dynamics� ��������!����
�����

��� J� N� Juang and H� Suzuki� An eigensystem realization algorithm in frequency domain for
modal parameter identi�cation� Journal of Vibration� Acoustics� Stress� and Reliability in
Design� �����
!��� January �����

��� S� Y� Kung� A new identi�cation and model reduction algorithm via singular value decom�
position� In Proc� of 	�th Asilomar Conference on Circuits� Systems and Computers� Paci�c
Grove� CA� pages ���!��
� �����

���� E� C� Levy� Complex curve �tting� IRE trans� on automatic control� AC�
���!

� May �����

���� J� Little and L� Shure� Signal Processing Toolbox� The Mathworks� Inc�� �����

���� K� Liu� R� N� Jacques� and D� W� Miller� Frequency domain structural system identi�cation
by observability range space extraction� Technical report� Space Engineering Research Center�
MIT Cambridge� MA ������ September ����� Submitted for review for ���
 ACC and ASME
Journal of Dynamic Systems� Measurment and Control�

���� K� Liu and R� E� Skelton� Q�markov covariance equivalent realization and its application to
�exible structure identi�cation� AIAA Journal of Guidance� Control and Dynamics� ���������!
���� �����

��



��
� L� Ljung� System Identi�cation� Theory for the User� Prentice�Hall� Englewood Cli	s� New
Jersey� �����

���� T� McKelvey� H� Ak&cay� and L� Ljung� E�cient construction of transfer functions from fre�
quency response data� Technical report� Report LiTH�ISY�xxxx� Dep� of EE� Link'oping Uni�
versity� S���� �� Link'oping� Sweden� ���
�

���� M� Moonen� B� De Moor� L� Vandenberghe� and J� Vandewalle� On� and o	�line identi�cation
of linear state�space models� International Journal of Control� 
��������!���� �����

���� L� E� Pfe	er� The rpm toolbox� A system for �tting linear models to frequency response data�
In Proc� of 	��� MATLAB Conference� Cambridge� MA� October �����

���� C� K� Sanathanan and J� Koerner� Transfer function synthesis as a ratio of two complex
polynomials� IEEE Trans� Automatic Control� ����!��� January �����

���� P� Stoica� P� Eykho	� P� Janssen� and T� S'oderstr'om� Model structure selection by cross
validation� International Journal of Control� 
����
�!����� �����

���� M� Verhagen� A novel non�iterative mimo state space model identi�cation technique� In
Proc� �th IFAC�IFORS Symp� on Identi�cation and System parameter estimation� Budapest�
Hungary� pages �
��!�
��� July �����

���� A� H� Whit�eld� Asymptotic behaviour of transfer function synthesis methods� Int� Journal
of Control� 
���������!����� �����

�



