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Abstract

In this paper we present a novel non-iterative algorithm for identifying linear time-invariant
discrete time state-space models from frequency response data. We show that the algorithm
recover the true system of order n if n + 2 noise-free frequency response measurements are given
at uniformly spaced frequencies. The algorithm is demonstrated to be related to the recent time-
domain subspace identification algorithms formulated in the frequency domain. The algorithm is
applied to real frequency data, originating from a flexible mechanical structure, with promising
results. In a companion paper robustness and stochastic analysis is performed.
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1 Introduction

Identification of large scale multi-input multi-output (MIMO) systems of high orders is still con-
sidered a challenge. This type of systems are encountered in the mechanical engineering area of
modal analysis and in the control of flexible structures. In most cases it is desired to obtain a single
model in a minimal realization which makes state-space models the best choice which also facilitates
controller design since most modern multivariable design techniques requires a state-space model
of the system.

If time domain measurements are available a vast number of different algorithms exist in the
literature. The algorithms can be divided in two groups; iterative methods and non-iterative
methods. Among the iterative we find the prediction-error methods [14] and among the non-
iterative we find the more recent sub-space based algorithms [16, 20, 13]. The advantage of the
non-iterative methods is the absence of a nonlinear parametric optimization. Hence the methods
always produce a result and never reach local minima. The disadvantages is the poor knowledge of
the performance of the methods with finite data records.



In practice information about a system is often obtained as frequency response samples of the
transfer function at some discrete frequencies. These are usually obtained from high performing
sophisticated data analyzers and data acquisition equipment and are of high quality.

The problem of fitting a real-rational model to a given frequency response has been addressed
by many authors. The most natural way is to model the system as a fraction of two polynomials
(a,b) with real coefficients and solve the problem
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where G;, are the transfer function measurements at frequencies wy. However the solution to

this problem formulation involves a nonlinear parametric optimization just as the prediction error

methods in the time domain.

In early results [10] a linear least-squares formulation was suggested an further refined in [18]
(SK-iterations) by solving a sequence of linear least-square problems. However these methods
do not always converge to the minimum of (1) as pointed out by [21]. A second drawback is
the parameterization of the model. The poles and zeros of the system become very sensitive to
perturbations in the coefficients of the polynomials if the system order is high. This deficiency can
be reduced by introducing other parameterizations ,e.g. orthogonal Chebyshev polynomials [3, 1]
or Zero-Pole-Gain form or the related RPM-parameterization [17].

Some more recent methods are non-iterative and based on Inverse Discrete Fourier transform
techniques to obtain estimates of the impulse response an then apply the realization algorithms by
Ho and Kalman [6], Kung [9] or the ERA-algorithm [7]. These realization algorithms find a minimal
state space realization given the first part of the impulse response (the Markov parameters). The
fundamental problem with this approach is that the estimated impulse response always will be
perturbed since, in reality only a finite number of frequency response measurements are available.
In [8] estimates of the impulse response are constructed by recursive scheme. This approach is
however exact only if the impulse response dies out completely within the number of frequency
points given. For lightly damped systems this approach yields very poor estimates.

In [2] Bayard suggests to first fit a high order rational model using the SK-iterations and
then calculate the impulse response (the Markov parameters) using the high order model. Model
reduction to a low order state-space model is then applied by utilizing the realization algorithm in
[7].

A new frequency domain approach has been proposed by Liu and co workers [12] which is a
frequency domain counterpart of the time domain subspace methods in [16] [13]. This approach
does not require the data to be uniformly spaced in frequencies and also offers some frequency
weighting capabilities.

This paper introduce a novel frequency domain state-space identification algorithm using the
frequency response of a system. The major features of this new approach are: A system of order n
is exactly recovered using n + 2 frequency response samples if the data is noise-free. The algorithm
is non-iterative and involves 3 key steps. First an IDFT is performed to obtain (distorted) impulse
response estimates. Secondly the estimates are used in a realization step, by a singular value de-
composition (SVD), to obtain the A and C' matrices. Even though the impulse response estimates
are distorted, these estimates of A, and C are correct (in the noise-free case). In the third step B
and D are estimated by an ordinary least-squares method. It will also be shown that the subspace
approach of Liu et.al. [12] is related this method if the frequencies are uniformly spaced. As an



illustration we employ the algorithm on real data originating! from a frequency response experi-
ment on a flexible structure from the Jet Propulsion Laboratory, Pasadena, California. These data
has also been used in [5]. The example clearly indicate that the subspace methods are competi-
tive compared with classical iterative least-square methods. In a companion paper the proposed
algorithm is successfully analyzed with respect to robustness to norm bounded perturbations and
consistency when the measurements are corrupted with additive noise.

2 Problem formulation

We will assume that the true system G is a stable multivariable linear time-invariant discrete time
system with input/output properties characterized by the impulse response coefficients g through
the equation

Y6 =3 geult - k) @)
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where y(t) € IRP, u(t) € IR™ and g5 € IRP*™. If the system is of finite order n it can be described
by a state-space model
x(t+1) = Azx(t)+ Bu(t) 3)
y(t) Cx(t) + Du(t) ’

where y(t) € RP,u(t) € R™, and z(t) € R™. The state-space model (3) is a special case of (2)
with

D, k=0
The frequency response of (2) is
G() = gre * (5)
k=0
which for the state-space model (3) can be written as
G(e?¥) = C(e’*1 — A)'B + D. (6)

The problem formulation is then; Given a finite number M + 1, possibly noisy, samples
G = G(e™) + ex, wi € [0, 7] (7)

of the frequency response of the system find a finite dimensional state-space system (3) of order n,
denoted by G, such that the true system and the identified model are “close”, where the closeness
is quantified by the following distance between the true and estimated transfer functions

16~ Gllso 2 sup(G(e?) — G(e™)). (8)

Here 5(A) denote the largest singular value of the p x m matrix A. Furthermore, denote by o;(A)
the ith singular value, where the ordering is given by o1(A) > 02(4) > ... > 0,.(4) > 0 with
r = min(p, m).

!The authors have received the data from P. Khargonekar but have not yet managed to reach D. Bayard for an
official approval to use the data.



3 The algorithm

If the impulse response coefficients (4) are given, well-known realization algorithms can be used to
obtain state-space realizations, see e.g. [6] and [9]. The algorithm to be presented is closely related
to these results but does not require the true impulse response coefficients to be known.

Assume that frequency response data G(e/“*) on a set of uniformly spaced frequencies, wy =
”—Af;, k=0,...,M are given. Since G is a real transfer function, frequency response data on [0, 7]
can be extended to [0, 27] as follows

G(ejw(1+k/M)> — G*(ejﬂ'(M*k)/M), k=1,....M -1 (9>

where (-)* denotes complex conjugate. Construct the impulse response block Hankel matrix

g1 g2 ... G

. g2 93 - Gri1

qu = . . . . (10)
gq gq—l—l s gq—l—r—l

with number of block rows ¢ > n and block columns r > n and where the first ¢ + r — 1 impulse
response coefficients of G are estimated from the 2M-point Inverse Discrete Fourier Transform
(IDFT) according to

1 2M-1 ' -
Gi= 5y » Gl (PRREM =0, g — 1. (11)
k=0

The size of fIqT is limited by ¢ +r < M.
Compute the singular value decomposition of Hg,

X I3 0 VT
Hy = [Uh Uz][ 01 £, l [‘éT] (12)

where 3 contains the n principal singular values.
The system matrices are then estimated as

i o &1/2 T Ao a1/2
A= ([I(q—np O(Q—I)pxp] Uiy ) ([U(q—nm f(q—l)p] U1¥y ) (13)
C= [Ip OpX(qfl)] 015]}/27 (14)
A~ A~ M . . N . . 2
B, D = arg mipz ‘ G(e??mi/2M =1y _ G(eﬂm/QM_l)‘ (15)
B,D ;)
where ) ) ) ) A
G(z) =D+ C(2f — A)7'B, (16)

and I; denotes the ¢ x ¢ identity matrix and 0;,; denotes the 7 x j zero matrix and AT = (AT A)=1AT
denotes the Moore-Penrose pseudo-inverse of the full-rank matrix A. Notice that B and D appear
linear in (16) and thus (15) can be solved by a linear least-squares solution.



From (11), notice that

27 i i
lim g = G(e72™0) I¥R0GY = g k=0,...,q+ 7 — 1, (17)
M—o0 0
where gj, is the kth impulse response coefficient of G. Let H,, and X;, U;, V;, @ = 1,2 denote the
limits of the matrices in (12-16) as M tends to infinity. The resulting algorithm is then known as
Kung’s algorithm [9], in which B is calculated from

- 1,
S O | &

The realization given by (12-16) in Kung’s algorithm [9] is balanced in the sense that the g-block
row observability matrix

o
CA
0,=| (19)
C A1
and the r-block column controllability matrix
C,=| B AB ... A™'B ] (20)
satisfies
ofo,=c,cl =5, (21)

A true balanced realization will thus be obtained only if both ¢ and r tend to infinity. In this
limiting case ¥; equals the Hankel singular values of the system G, see [4]. For finite ¢ and r the
Hankel singular values of G are underestimated by ¥;. Although the singular values ¥; do not
play any role (except for a selection of a base for the state-space variables) in the construction of
a state-space model for G, they will be essential in the selection of a model order in the presence
of unmodelled dynamics and noise. (Notice that A and C can be calculated from (12-14) letting
¥1 = I). As ¢ and r increase, the singular values of H,, also increase in the absence of noise.
However, small singular values of Hg, and corresponding left and right singular vectors will be less
reliable in the presence of noise. Therefore ¢ and r should be chosen sufficiently large to obtain ¥4
as large as possible and the model order should be kept as low as possible. We will formalize these
observations in a succeeding section.
The spectral radius of a square n x n matrix is defined as

p(A) = max{|A] : A € M(A)} (22)

where A(A) are the eigenvalues of A.
The usefulness of the above presented algorithm in the case of finite M follows from the following
key theorem.

Theorem 3.1 Let G be an nth order system represented by (3). Assume that p = p(A) < 1. Then

n+ 2 noiseless equidistant frequency response measurements of G on [0, 7| are sufficient to identify
G by the above algorithm (9-16) and

S > (14 M)t o). (23)



Proof: Since G is a stable transfer function, it can be represented by the following Taylor series

G(z)=D+C(zI—A) 'B=D+> CA*" 'Bz" =3 gz ¥, p<|al. (24)
k=1 k=0

Notice that g5 can be written as

gr=>_g(k+2iM)=CA"" (Z AW) B=CA" N 1-A™)"'p= cAF'B  (25)
1=0 1=0

and therefore fIqT can be factored as
Hy =0,C. = OB AB ... A™'D). (26)

Hence, if » > n and ¢ > n, then S5 = 0 and the column range spaces of Hgy, and I:Iqr will be equal.
Thus A, C, G are related to A,C and G by a square nonsingular matrix S as

A=571'48; C=0CS; G=D+C(zI -A)"'SB. (27)
Since (15) has a unique solution, we get B =SB, D = D. Then (A,B,C, D) and (A,E,C’,f))
are similar. Letting g =n+ 1, r =n, M = n + 2, we satisfy the condition ¢ +r < 2M.
For the second part: notice that ﬁqrﬁqTr -1+ p2M)*2Hq,«H£, is positive semidefinite if (f,«(,;,,T —
(14 p*M)=2¢,CT is positive semidefinite which is true. |
In the algorithm given by (12-15), the singular values of ﬁqr only influence the basis chosen for
the state-space variables and not the transfer function G. Since in a realistic problem, 3y is never
zero due to noise and unmodelled dynamics, a clear separation between the singular values of )
and Yy must be obtained in order to choose a model order unambiguously. Theorem 3.1 gives a
bound on the distortion of the smallest singular value due to aliasing caused by the finite 2M-point
inverse DFT.

3.1 Model order selection by cross validation

Model validation is what distinguishes system identification from curve fitting. In system iden-
tification it is assumed that the measured data is generated by a finite dimensional system with
some additive noise. To find a good model order selection criteria is then an interesting problem
since increasing the model order always decrease the estimation error evaluated on the estimation
data (unless numerical problems occur or, if iterative methods are used, local minima are reached).
If we increase the model order above the true order the model will start to fit to the noise. In
time domain identification a common solution to this is cross validation, see [19]; divide the data
set in two parts and use one part for the identification and the other part for model validation.
If the model order of the estimated model now increase over the correct model order we will see
no decrease in the model quality using the independent validation data set. If the true system
however is of infinite dimension cross validation techniques will not give the same guidance since an
increased model order always will approximate the underlying infinite dimensional system better
since the amount of unmodelled dynamics will decrease. However utilizing the cross validation step
will tell us if the data is noisy measurements of a finite dimensional system or is from a noise free
infinite dimensional system.



In the frequency domain, cross validation is easily performed by dividing the frequency measure-
ments in two disjoint sets; estimation data and validation data. The most natural division is to take
every other frequency point as the estimation data and the rest as validation data. This division
also preserves the uniformly spaced frequencies. A model is then estimated using the estimation
data only. The quality of the model is assessed by comparing the estimated transfer function with
the validation data set and a proper model order can then be inferred.

4 Frequency domain subspace identification

In [12] a sub-space based frequency domain identification algorithm is described. The algorithm is a
frequency domain counterpart to the known algorithms in the time domain [16, 20, 13] and others.
We will briefly describe the approach by [12] and show a relation with the presented algorithm
(9-16). To simplify notation we restrict ourself to single-input single-output systems. However
with more notational effort the same derivation holds for multivariable systems.

Consider the state-space system (3). By concatenating outputs and inputs as

y(k) u(k)
y(k+1) u(k +1)
yalk) = |  uglk) = | , (28)
y(k+q—1) u(k+q—1)
and introducing the Toeplitz matrix
D 0 ... 0
CB D ... 0
Lg= : : N (29)
CAY2B CAT3B ... D
we obtain the relation
yq(k) = Oqa(k) + Tyug(k) (30)

where O, is the extended observability matrix (19). On taking the Fourier transform of both sides
of (30), we obtain

W(w)Y (w) = Oy X (w) + T W (w)U(w) (31)
with
: : : T
W (w) = [ 1 elv i ... giw(g—1) ] . (32)
Assume that Y (w) and U(w) are given at a discrete set of frequencies wy, € [0,7], k =1,..., M and

use these samples to define the following matrices;

Wont = | W(w1) Wwa) - W(wn) | (33)



[ Y(w) 0 0 }

Yyur =Woar | ° Y(f"Z) ‘ (34)
0 Y(;M)J
[ U(wy) 0 0 W

Upnt = Wonr | ° U(f‘”) (35)
R,

Xi=[ X)) X(@) - X(ow) | (36)

Notice that Wy as is a Vandermonde matrix and thus always have full rank if the frequencies are
distinct. With the matrices above and (30) we arrive at the complex matrix equation

Your = OqXM + LUgm (37)

which is the frequency domain counterpart of the time domain equation in [16].

4.1 Observability Range Space Extraction in Frequency Domain

There are several methods to extract the observability range space from (37). In (37), the real
matrices Og, I'q and the complex matrix Xj; are unknown. We begin with the construction of the
following three matrices

U= [UlLM) U;,M]a X = [XMa X])tﬂa Y= [Y%Ma quM] (38)

Then, from (37), we obtain
Y=0,X+T,U. (39)

Following the time domain work in [16] we form the following matrix
ut =1-u" Uutu (40)
assuming that ¢ has full rank and multiply (39) from right by ¢/~ to obtain
yut=0,xut. (41)

Notice that rank(U+) = 2M — gm since U+ projects onto the subspace of IR?M that is orthogonal
to the range space of . Hence, multiplication of (40) from right by U yields

utut =y —u @) i = ot (1 - @ut) T uu') = o (42)
The relation (42) is used in [12] to arrive at

VI = yu @)y uty = o, (vt - xu wu)Hauty!) of. (43)

which also can be written as
yutyt =ox ut x"or (44)

8



since U+ (U)H = U+, The imaginary parts of the above equation are zero. The observability range
space is then estimated by performing a SVD on ) Y and we can then proceed as (13-16). If
frequencies are close and/or ¢ is large U™ might be close to singular and [12] propose to use the
pseudo-inverse with a proper threshold for zero when forming (UU™)~! in (43). An even better
way of forming U+ without forming the ill-conditioned UU* is by using the SVD;

ExvHE =y (45)

with F € C7%4, V € C€**4 and the singular values in the diagonal matrix ¥ € IR?%4. Using the
properties of the SVD we easily obtain

Ut = I — Vv, (46)

Now assume that U(wy) = 1, Vk and hence Y (wi) = Gy, the frequency response of the system.
Extend the frequencies as (9). Given frequency response data construct the following matrix

G(ejwo) G(ej“’l) - G(ejw2M71)
Jjwo Jwo Jwi Jwi :
Gyont = el¥0 G(elw0) el¥t G(elvr) (47)
ejwo(q—l). G(ejwo) ejw1(q—1)‘ G(ejwl) . ejWQM—l(q_l)‘ G(ej“&M*l)

This matrix is equal to ) except for a permutation of the columns. Using the notation Xy 25/ for
the sampled state frequency response matrix, we can derive the following equation as a special case
of (37)

Ggam = OgXgan + TgWyanm (48)
Since Wy 2ns has full rank and r» < M , W, 2ar has a right annihilator I/qu2 »r and multiplying (48)
from right by VVQJ’-2 Mo We get

GaonWianr = O XgauWaan (49)

Let us assume that equidistant frequency response data G (ej”k/ My k=0,...,M are available.
Then W 2ps is annihilated by the following matrix

1 1 1
1 ej27r/2M e]'471'/2M o ej27rr/2M
Wir = 531 ; ; s s | o0
QI2T(2M=1)/2M  jan(2M—=1)/2M . j27r(2M—1)/2M
Furthermore, the (i1,42)-th entry of GgapnWg5; is calculated as
| M1
Lo jork j2nk (in-+ir—
GgamWy, (i1,i2) = oYYi 2 G(e72mk/2My pr2mk (iztin—1)/2M (51)

= gi(is+i1—1); i1 =1...q, 45 =1...7,
which is the 2M-point DFT of the frequency response data. Hence Gq,gMWqJ’-T = I:Iqr from (10)
and thus the method of [12] and the algorithm (9-16) are related. The major difference from the

the algorithm in [12] is the use of a low rank annihilator WqLQM instead of the full rank annihilator
(40). This difference turns out to be significant in the stochastic analysis in [15].



5 An example

To illustrate the performance of the presented algorithm we will use a real data set obtained from
the Jet Propulsion Laboratory, Pasadena, California. The data origin from a frequency response
experiment on a flexible structure. As a comparison we will also use the nonlinear least-squares
algorithm invfreqz in Matlab Signal Processing Toolbox, see [11], on the same data. invfreqz is
a two step method: First a rational model is fitted using a linear least-square method, see [10]. In
the second step an iterative nonlinear optimization is performed to minimize the sum of the squared
identification errors. Since an optimization is involved local minima may be reached during the
second step.

The same data set has also been used in [5] and we will below relate their results to ours.

The JPL-data consists of a total of M = 512 complex frequency samples Gy, k¥ = 1...512 in
the frequency range wy, € [1.23,628] rad/s uniformly spaced and origin from a flexible structure and
hence has several lightly damped modes. Our aim is to construct a discrete time model matching
the given frequency response. For the discrete time models we map the continuous frequencies to

discrete frequency points according to
Wy,

W = ch\/[ .
This is the equivalent of zero order hold sampling of a continuous time system choosing w§; as the
Nyquist frequency.

5.1 Model quality assessment

In order to compare different estimated models we use two indicators based on the experimental
data:

e The largest distance between estimated model and measured data

& - Gllooe—maXIGk— G(e™)).

e The Ly norm of the error

1G = Gllae 2 \J Z |Gr — G(etr) 2.

where the subscript e indicates that the measures are only estimates of the true norms.

5.2 Results

In all estimations the number of block rows ¢ and columns r of (10) were chosen to be ¢ = r = 512
to obtain a maximal size Hankel matrix. Figure 1 depicts the magnitude of the measured frequency
data together with an estimated model of order 24 using algorithm (9-16). The estimated model
accurately picks up all the eleven dominant peaks. Increasing model order further improves the fit.
Figure 2 shows the results of estimation of models of order n = 24—62 using the algorithm presented
in this paper and the nonlinear least-squares method (invfreqz). In the figure the ||G—G||oce error
is given and the ||G' — G|z error have the same characteristics. For model order 24 our algorithm

10



Measured and estimated transfer function, model order 24
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Figure 1: Magnitude of measured transfer function (solid line) and estimated model of order 24
using algorithm (9-16) (dashed line)

produces ||G' — G||soe = 13.2 and for model order 42 we obtained ||G — G||oce = 2.3. Tt is quite clear
that, for this data, the algorithm outperform the least-squares method for all model orders. This
data set has also been used by Gu and Khargonekar in the paper [5]. They present a model of order
24 with ||G — G||sce = 13 which was obtained by SK iterations, see [18]. By introducing a second
step and increasing model order to 42 they reduced the error to ||G'— G||se = 6.1. Comparing these
results with our results indicates that the herein presented algorithm is a promising alternative to
existing methods. The algorithm proposed in [12] produce almost identical results as the algorithm
(9-16) which is not surprising since, as we have demonstrated, for uniformly spaced frequencies the
two methods are closely related.

5.2.1 Validation

In order to validate the estimates we divided the JPL-data in two sets as described previously. In
figure 3 the results of estimating models of order 19-43 is given. It is interesting to notice that
the identification error measured on the validation data keeps decreasing which indicates that the
JPL-data is fairly noise free and origins from a system of a high order, possibly infinite.

6 Conclusions

We have in this paper presented a non-iterative frequency domain state-space identification algo-
rithm. If the frequency data is noise-free and generated by an nth order system we show that only
n + 2 equidistant frequency response samples are required to exactly recover the true system. We
also demonstrate that the algorithm is related to an existing algorithm [12]. The proposed algo-
rithm is used to identify a state space model from real data originating from a flexible structure

11



Error for NNLS estimates and subspace estimates
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Figure 2: ||G — G||se error for different model orders. “*” Algorithm (9-16), “+” Nonlinear
least-squares method.

and a comparison is made with a nonlinear least-square iterative method. The results suggest that
the algorithm outperforms the nonlinear-least squares algorithm (invfreqz) and is therefore an
appealing alternative to classical iterative methods.
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