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Abstract� Using data from extensive vibrational tests of the new aircraft Saab ���� three di�erent methods
for vibration analysis are studied� These methods are ERA �eigensystem realization algorithm�� N	SID �a
subspace method� and PEM �prediction error approach�� We 
nd that both the ERA and N	SID methods
give good initial model parameter estimates that can be further improved by the use of PEM� We also 
nd
that all methods give good insights into the vibrational modes�
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�� INTRODUCTION

Analysis of vibrating structures is a very important
industrial task� This concerns both tests and analy�
sis for validating safety and comfort properties and
most often involves analyzing structural modes and
damping properties�

A large number of methods for this have been devel�
oped and the area is both commercially important
and scienti�cally interesting� The area has� how�
ever� historically not been closely related to the tra�
ditional System Identi�cation methodology�

In this contribution we will study some methods for
vibration analysis and evaluate the results obtained�
The data we worked with is from rather extensive
tests with the new commercial aircraft Saab �����
developed by the Saab Aircraft company�

�� THE EXPERIMENT

The experimental results presented herein are part
of a large�scale experimental damping survey per�
formed on the Saab ����� The study was aimed
at revealing the damping properties and their de�
pendence on deformation of a body�in�green fuse�
lage�wing�nacelle assembly 	see Figure �
� It was
suspected before the test� and veri�ed and quan�
ti�ed by the test� that the damping would increase
with increasing vibrational magnitude� The test was
divided into two phases� the �rst consisting of a con�
ventional ground vibration 	normal mode
 test at a
low vibrational level and under stationary harmonic
condition� The second phase was a complementary
high vibrational level study� The results of the test
were to be applied in the aircraft load evaluation
and simulation of extremely hard landings 	up to �
m�s sink rate
� The results presented in this paper
are mainly from the second phase of the test�

Various excitation locations and magnitudes were
used during the second phase� Snap�back exci�
tations from pre�determined de�ection states were
used as structural inputs� Accelerometers and load
cells were used to sense the structural response� An
enormous amount of data were collected during the

Fig� �� Test specimen� Location of wing and
fuselage accelerometers are shown as dots
	nacelle accelerometers are not shown
�
All shown accelerometers sensing vertical
accelerations� Arrows indicate location of
snap�back cables�

test� out of which a selected amount has been used
in this paper� The results presented here were ob�
tained during a wing�tip snap�back excitation from a
moderate initial de�ection state 	��
 of the highest
excitation level used
� In this test �� accelerome�
ters were distributed over the wings 	�� accelerom�
eters
� the nacelles 	�
 and fuselage 	�
� Load cells
were used to register the reactive loads on the sup�
ports and tension in the pre�stressed cables used for
excitation� A sampling rate of ��� Hz was used�

In the �rst phase of the test� a resonance search and
normal mode test was performed� The resonance
frequencies 	in the frequency range from � to ��
Hz
� modal dampings and normal modes of the test
specimen were obtained at a low vibrational level�
Results from the two test phases are compared in
the results section of this paper�

�� IDENTIFICATION METHODS

Consider the linear time�invariant discrete time
state�space model

x	t� �
 � Ax	t
 � Bu	t

y	t
 � Cx	t
 � Du	t


� 	�




where y	t
 � IRp� u	t
 � IRm and x	t
 � IRn with n
equal the order of the system� In 	�
 we let the time
t be normalized with the sampling period� Assum�
ing all modes are sub�critically damped� the number
of mode pairs described by this model is thus n��
where each mode is associated with a complex con�
jugate eigenvalue pair of the matrix A�

Given� probably noisy� measured data yt� ut� t �
�� � � � � N � � from an experiment performed on the
system� the aim of the identi�cation process is to
yield estimates of A�B�C and D in 	�
 such that
the �t to measured data

V �
�

N

N��X
t��

jyt � y	t
j� 	�


is good�

In this paper we will brie�y describe three di�erent
approaches to solve the stated problem above and
discuss some �ne tuning which can be applied to
further improve the result�

���� ERA

The eigensystem realization algorithm 	ERA
� in�
troduced by Juang and Pappa 	����
� can be used
if the measured data is from the free decaying mo�
tion following upon an initial excitation� The algo�
rithm is based on the early realization result by Ho
and Kalman 	����
� and utilizes the rank de�ciency
property of the block Hankel matrix constructed by
the impulse response of the system� For real mea�
sured data the Hankel matrix is generally always of
full rank and a singular value decomposition 	SVD

is used to infer an appropriate lower rank approxi�
mation�

Assume we are given N � q � r measurements yt
resulting from a free decaying motion started at time
t � �� Construct the � block�Hankel matrices

Yqr	t
 �

�
����

yt yt�� � � � yt�r��

yt��
��� � � �

���
���

���
���

���
yt�q�� yt�q � � � yt�q�r��

�
���� 	�


t � �� �� where q � n and r � n is the number
of block rows and columns respectively� Form the
singular value decomposition

Yqr	�
 �
�

�U� �U�
	 
 ��� �

� ���

�

�V T
�

�V T
�

�
	�


where the diagonal matrix ��� contains the n princi�
pal singular values� If we assume that yt is noise�free
and originates from 	�
� Yqr	�
 will be of rank n and

hence ��� � �� A realization of 	�
 is then calculated
as

ET
p � � Ip �p � � � �p � � ET

m � � Im �p � � � �p � 	�


�A � ��
����
�

�UT
� Yq�r	�
 �V� ��

����
� 	�


�B � ��
���
�

�V T
� Em� �C � ET

p
�U� ��

���
� � �D � y� 	�


where Ii denotes the i � i identity matrix and �i
denotes the i � i zero matrix� The estimated sys�

tem 	 �A� �B� �C� �D
 are then related to the original sys�
tem 	A�B�C�D
 by a similarity transformation� If
we use this algorithm on noisy data or data from

a high order system ��� will not be identically zero

and 	 �A� �B� �C� �D
 will then be an approximation of
the true system� This approximation does not nec�
essarily minimize 	�
� However� in general ERA has
been experienced to provide models which are close
to the minimum�

���� N�SID � a subspace method

This method is recently developed by Van Over�
schee and De Moor� see Van Overschee and De Moor
	����
� The method handles arbitrary inputs u	t

and also estimates a noise model and is thus much
more general than ERA� The algorithm determines
a state sequence through an approximate projection
of input and output data� From the state sequence
obtained� it is easy to calculate a minimal state�
space model of the system 	�
 including a stochastic
rational model of the noise�

We used the N�SID 	algorithm �
 and changed the
default division between past and future data such
that the past was changed to be as long as the du�
ration of the exciting input signal� This change was
made to better allow for short duration input�

���� Prediction Error Methods

The prediction error methods 	PEM
 contain the
most known and used methods for system identi��
cation and has been developed and analyzed exten�
sively during the last three decades� For a unifying
treatment we refer to Ljung 	����
�

Here we will concentrate on the state�space model
	�
� Since a noise model is not included� the model
	�
 is commonly referred to as an output�error form�

The state�space system matrices 	A�B�C�D
 are pa�
rameterized using a parameter vector � to obtain
the predictor �y	tj�
� A minimal number of parame�
ters needed is given by the multivariable identi�able
forms� also called canonical forms� see Ljung 	����
�

The parameter vector and hence the model is then
obtained by minimizing the squared sum of the pre�
diction errors

�� � arg min
�

�

N

NX
t��

jyt � �y	tj�
j� 	�


This minimization is in general nonlinear in the pa�
rameters � and has to solved by an iterative method�
e�g� a Gauss�Newton algorithm� The success of this
approach is to a large extent dependent on the initial
estimate from which the iterative method is started�
This fact becomes increasingly signi�cant as model
complexity grows�

���� Improvements of the estimate

The two �rst methods ERA and N�SID is funda�
mentally di�erent from PEM since they lack an ex�
plicit criterion of the type 	�
� For a �nite number of
measurements and noisy data we cannot guarantee
that ERA or N�SID are optimal in any sense� How�
ever based on the results from applying these meth�
ods on real data we believe that ERA and N�SID
give quite good initial estimates which often can be
improved by minimizing a prediction error criterion
	�
� Experience shows that B and D estimates often
are of lower quality compared with the estimates of
A and C for N�SID if the input has a low degree
of excitation� However B and D can easily be re�
estimated by minimizing 	�
� Notice that B and D
then are linear in y	t
 and� for �xed A and C� sim�
ply can be estimated by an ordinary least�squares



solution�

If further improvements are needed we can estimate
all the system matrices by 	�
 with e�g� Gauss�
Newton iterations using the previously estimated
model as an initial estimate� preferably converted
with a similarity transformation to some proper
form suited for a small parameterization� This last
step would thus provide a model with best variance
properties if certain assumptions are made on the
noise� see Ljung 	����
� The degree of improvement
is application dependent and has� using data from
various experiments� been observed to vary from a
��
 reduction of 	�
 to only marginally improve�
ments�

���� Near minimal parameterization

Physical insight into the problem here at hand gives
that� for the low�damped structure under test� over�
damped modes should be neglected� Any such mode
found during the identi�cation process is most likely
a �computational� mode representing noise in the
data� Thus only complex conjugate subcritically
damped modes are retained in the model� If we
assume A to be non�de�cient this implies that the
n real states given by ERA and N�SID algorithms
can be transformed into n decoupled complex con�
jugate states out of which only n�� are required for
a full analysis� The real system equations are thus
transformed into complex ones where the matrices
are given by the complex similarity transform T �
which converts A to a diagonal matrix �A with the
complex eigenvalues on the diagonal� �A � T��AT �
�B � T��B and �C � CT � One should notice that
half the states are the complex conjugate of the
other half and hence are redundant� Using complex
arithmetic only n�� states thus need to be consid�
ered� Furthermore� since all states are fully decou�
pled the computational load when solving the sys�
tem equations 	�
 is minimized� This is extremely
useful when using PEM or in a possible least�squares
calculation of �B and D�

The load�acceleration relation of a mechanical sys�
tem implies certain relations on the system matrices�
De�ning P � �C �A�� one has for measured accelera�
tions

�C � P �A� D � P �B� 	�


One can notice that the total number of real val�
ued parameters required to characterize the com�
plex valued system matrices thus is n	m � p � �
�

These are the n parameters of �A� 	recall all eigen�
values appear in complex conjugate pairs
� the nm

parameters of �B and the np parameters of P � A the�
oretical minimal parameterization is obtained by a
canonical form which requires n	m � p
 number of
parameters� see Ljung 	����
� A canonical param�
eterization however does not possess the decoupled
property as the one described� Physical insights are
also lost since the parameters only implicitly de�ne
the eigenvalues and mode shapes�

���� System order selection

An important user choice is the number of states�
or modes� to use in 	�
� The presence of noise and
structural nonlinearities usually make the Hankel
matrix 	�
 of full rank� However� if a clear gap exists
among the largest and the smallest singular values
of 	�
� it is natural to regard the largest singular
values as originating from the linear system and the
smallest ones from noise and nonlinearities� This ap�
proach is applicable using ERA or N�SID in which

a similar SVD is performed�

An approach more closely related to the modes is by
use of the measure Modal Amplitude Coherence� ��
introduced in Juang and Pappa 	����
� Recall 	�
�
The estimated B matrix can thus be expressed as

T�� ��
���
�

�V T
� Em � �B 	��


using the similarity transformation T which diago�
nalize A� Construct the complex controllability ma�
trix

C � � �B� �A �B� � � � � �Ar�� �B� 	��


which also can be seen as the time sequence of the
complex states resulting from an impulse input� No�
tice that row j in C corresponds to eigenvalue j�
De�ne the matrix

�C � T�� ��
���
�

�V T
� 	��


which is the controllability matrix induced by the
measured data and the SVD 	�
� The coherence pa�
rameter �j corresponding to eigenvalue j is de�ned
as

�j �
j �CjC

�
j j

	j �Cj �C�j jjCjC
�
j j


���
	��


where the subscript denotes row number and 	�
� de�
notes conjugate transpose� The parameter �j takes
values between � and �� Large values thus denote a
high degree of coherence�

The Modal Amplitude Coherence indicator can be
used in a stabilizing diagram to visualize frequency
location and modal accuracy for each model order
estimated� In a stabilizing diagram a bar of length
�j is plotted for each mode and at the level cor�
responding to the model order 	see �gure �
� The
characteristics of the diagram is that for identi�ed
models with too few states some identi�ed frequen�
cies have low indicators 	the bars are short
� As
the model order increases these split into two or
more modes with higher coherence indicators� As
the model order increases the identi�ed frequencies
�stabilize�� hence the name stabilizing diagram�

The modal Amplitude Coherence is de�ned only for
ERA� For N�SID we can obtain an approximation
which will be of high quality if the number of out�
puts are close to the number of states and if �C has
full rank� In this case we de�ne

�C � �Cy�y�� y�� � � � � yr� 	��


where 	�
y denotes the Moore�Penrose pseudo�
inverse� An approximate Modal Amplitude Coher�
ence� ��j is then derived as

��j �
j �CjC

�
j j

	j �Cj �C�j jjCjC
�
j j


���
	��


���� Validation

An important part of the identi�cation process is to
assess the quality of the estimated model� If several
experiments are performed on the same system un�
der similar conditions we can use one set of measure�
ments for estimation and use the other independent
set to validate the model� If only one data set is
available but consists of a large number of outputs
	here accelerometer measurements
 we can divide
the outputs into two disjoint sets� If the division is
made such that all modes are present in both sets



we can estimate a model using only one set of out�
puts and validate using the other set� In this paper
we have used this latter method�

Assume the estimated model is given by 	 �A� �B� �C� �D

derived using the estimation output set� To validate

this model� we estimate �Cv and �Dv using the valida�
tion outputs� Since both matrices are linear in the

outputs� given �A and �B� �Cv and �Dv are calculated
by minimizing 	�
 using an ordinary least�squares
solution�

As a measure of model quality we will use

Q � � �

sPN��

t��
jyt � �y	t
j�PN

t��
jytj�

	��


which is a normalized estimation error where in�
creasing values of Q indicate better �t and � in�
dicates a perfect �t of the model to the validation
data�

The conventional ground vibrational test 	GVT

also gives estimates of frequencies and modal shapes
at each measurement point� These estimates can
be used to validate the linear models obtained by
ERA� N�SID and PEM� The modal assurance cri�
terion 	MAC
 can be evaluated for each identi�
�ed frequency against the results obtained in the
GVT� MAC is de�ned as the correlation between
the modal vectors of the two di�erent models eval�
uated for each frequency

MACk �
	�c�kgk
�

	�c�k�ck
	g�kgk

	��


where �ck is the kth column of �C and gk is the cor�
responding modal vector obtained in the GVT� An
analogue de�nition is used for the correlation be�
tweeen modes of ERA and N�SID�

���� Frequencies and Dampings

The estimated model is now an abstract model of
the experimental data� Particularly� the eigenval�

ues of the matrix �A give us information about fre�
quency and damping ratio for all identi�ed struc�
tural modes� Denote sampling frequency with f
given in Herz and �k	 �A
� k � �� � � � � n the eigen�

values of �A� For the kth mode the time multiplier

e��k�kt sin		kt
 	��


is acting during a free decaying motion� It is charac�
terized by the frequency 	k 	in rad�s
 and relative
damping ratio 
k� These modal parameters are as�
sociated with a complex conjugate eigenvalue pair
from the real matrix A such that

	k � Im	log �k
f 	��



k � �Re	log �k
f��k 	��


�k � 	k�
p

� � 
�k 	��


where �k is the eigenvalue with positive imaginary
part of the two complex conjugate eigenvalues�

�� RESULTS

A preparation of the output data was made before
the system identi�cation was performed� The data

were resampled 	decimated by a factor two
 at a
lower sampling rate 	��� Hz
 without intermediate
�ltering� A few 	� to �
 leading zero�output sam�
ples were retained in the data set but the absolute
majority of the samples were� of course� samples
following the snap�back triggering� A total of ���
samples were used in the identi�cation� All output
signals were normalized 	pre�conditioned
 such that
they were of equal ��norm� A division of the output
channels into one estimation set and one validation
set was made� In the estimation set outputs from
six wing� �ve nacelle and two fuselage accelerome�
ters were collected� The outputs from two wing� one
nacelle and one fuselage accelerometer composed the
validation data set�

The acceleration response to the snap�back excita�
tion is triggered by the almost instantaneous release
of cable tension� Thereafter the accelerations are
governed by the free decay properties of the struc�
ture� In the identi�cation procedure we were using
a model of the excitation which consisted of a short
duration pulse load to trigger the model response�
The pulse duration was set to be similar to the du�
ration of the load release� i�e� � ms�

Both the ERA and N�SID algorithms have been ap�
plied to the data� Stabilization diagrams are shown
in �gure �� Consistent results were obtained by the
two methods except for a few modes� The most
probable cause to that deviation is that these modes
were barely controllable by the excitation or observ�
able by the selected distribution of accelerometers�

The identi�ed resonance frequencies and dampings
of a model of order �� 	i�e� �� pairs of complex con�
jugate modes
 are given in Table �� Table � gives
the modal assurance criterion 	MAC
 numbers for
a comparison of mode shapes obtained in the nor�
mal mode test and after identi�cation using the two
methods� In Table � only the modes corresponding
to resonances up to �� Hz have been considered since
the GVT was restricted to this range� Comparative
plots of selected responses involving both low and
high frequency modes are shown in �gure ��

The stabilization diagrams show that for a model of
order �� the quality measure Q evaluated on estima�
tion data is ����� and ����� for models estimated by
ERA and N�SID respectively 	after re�estimation of
B and D
� Evaluated on validation data Q increased
to ����� 	N�SID
 and ����� 	ERA
 which indicates
that the system dynamics are well described by the
model�

Prediction error minimization using the described
parameterization was then applied using the N�SID
estimated model as an initial estimate� After an ini�
tial loss of quality 	Q������
 following the low or�
der parameterization 	D becomes constrained
� the
quality was regained and increased using PEM� Af�
ter the minimization Q was ����� evaluated on the
estimation data and to ����� using the validation
data�

�� CONCLUSIONS

We have found that all three methods give good
results in terms of estimated vibrational modes�
N�SID and ERA together with PEM also lead to
models that in simulation can reproduce the mea�
surements very well� ERA and N�SID give quickly
good results� PEM takes more time in these cases
where many parameters are being estimated 	several



Table �� Resonance frequencies and dampings of
models of order �� identi�ed by ERA�
N�SID and PEM�

N�SID ERA PEM N�SID ERA PEM
f �Hz� f �Hz� f �Hz� � ��� � ��� � ���
���� ��	� ��		 ���
 ���� ����
���� ��
� ��
� �
�
 ���� ��
�
��
� ��

 ��
� ��	� ��	� ����
		��� 		��� 	���
 	
��� 	��� 	��
�
		��� 		��
 		��
 	��� 	��� 	�	�
	���� 	���� 	���� 	��	 	��� 	�	�
�	��� ����� ����
 	��	 	��� 	��


�
��� �
��� ���
� ���� ���� 	��
����� �	��
 ����� ���� ���� 	�	�
����� ����	 ����	 ���	 ���
 ����


��� ����� 		��� ���
 ���	 	����

Table �� Resonance frequencies and correlation
of modes 	MAC
 given by the ERA and
N�SID algorithms and obtained during
the normal mode test 	GVT
�

ERA N�SID GVT ERA� ERA� N�SID�
N�SID GVT GVT

�Hz� �Hz� �Hz� MAC MAC MAC
��	� ���� ���� ��
� ���� ����
��
� ���� ���� ���� ���� ���

��

 ��
� ��
� ��
� ���
 ��
	
		��� 		��� � ���� � �
		��
 		��� 	���� ��

 ���� ����
	���� 	���� 	���
 ��

 ��
� ��
�
����� �	��� � ���� � �

� �
��� �
�
	 ��

 � ��
�
�
��
 � ���� � ��
� �

hundreds
� On the other hand� such iterations lead
to a clear improvement 	by ���

 of �t on validation
data

We may also point to the somewhat unconventional
division into validation and estimation sets� In this
case with a transient experiment and many 	��
 out�
puts we found it better to use the whole time record�
but with a selected con�guration of output signals�
as estimation data and the whole time record with
another set of outputs as validation data� This
worked very well in our application�

We also found a signi�cant improvement of the �t
if we re�estimated B and D after ERA and N�SID�
Since these matrices appear linear in the outputs�
keeping the rest constant� they can be estimated
using an ordinary least�squares solution�

The complex parameterization introduced decreases
the numerical complexity substantially when using
PEM and also when estimating B and D� since cal�
culating the output of this complex realization is
extremely simple with all states independent�
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Q at given model order are shown as solid
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