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Abstract. Using data from extensive vibrational tests of the new aircraft Saab 2000 three different methods
for vibration analysis are studied. These methods are ERA (eigensystem realization algorithm), N4SID (a
subspace method) and PEM (prediction error approach). We find that both the ERA and N4SID methods
give good initial model parameter estimates that can be further improved by the use of PEM. We also find
that all methods give good insights into the vibrational modes.
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1. INTRODUCTION

Analysis of vibrating structures is a very important
industrial task. This concerns both tests and analy-
sis for validating safety and comfort properties and
most often involves analyzing structural modes and
damping properties.

A large number of methods for this have been devel-
oped and the area is both commercially important
and scientifically interesting. The area has, how-
ever, historically not been closely related to the tra-
ditional System Identification methodology.

In this contribution we will study some methods for
vibration analysis and evaluate the results obtained.
The data we worked with is from rather extensive
tests with the new commercial aircraft Saab 2000,
developed by the Saab Aircraft company.

2. THE EXPERIMENT

The experimental results presented herein are part
of a large-scale experimental damping survey per-
formed on the Saab 2000. The study was aimed
at revealing the damping properties and their de-
pendence on deformation of a body-in-green fuse-
lage/wing/nacelle assembly (see Figure 1). It was
suspected before the test, and verified and quan-
tified by the test, that the damping would increase
with increasing vibrational magnitude. The test was
divided into two phases, the first consisting of a con-
ventional ground vibration (normal mode) test at a
low vibrational level and under stationary harmonic
condition. The second phase was a complementary
high vibrational level study. The results of the test
were to be applied in the aircraft load evaluation
and simulation of extremely hard landings (up to 3
m/s sink rate). The results presented in this paper
are mainly from the second phase of the test.

Various excitation locations and magnitudes were
used during the second phase. Snap-back exci-
tations from pre-determined deflection states were
used as structural inputs. Accelerometers and load
cells were used to sense the structural response. An
enormous amount of data were collected during the

Fig. 1. Test specimen. Location of wing and
fuselage accelerometers are shown as dots
(nacelle accelerometers are not shown).
All shown accelerometers sensing vertical
accelerations. Arrows indicate location of
snap-back cables.

test, out of which a selected amount has been used
in this paper. The results presented here were ob-
tained during a wing-tip snap-back excitation from a
moderate initial deflection state (10% of the highest
excitation level used). In this test 21 accelerome-
ters were distributed over the wings (12 accelerom-
eters), the nacelles (6) and fuselage (3). Load cells
were used to register the reactive loads on the sup-
ports and tension in the pre-stressed cables used for
excitation. A sampling rate of 512 Hz was used.

In the first phase of the test, a resonance search and
normal mode test was performed. The resonance
frequencies (in the frequency range from 0 to 40
Hz), modal dampings and normal modes of the test
specimen were obtained at a low vibrational level.
Results from the two test phases are compared in
the results section of this paper.

3. IDENTIFICATION METHODS

Consider the linear time-invariant discrete time
state-space model
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where y(t) € R?, u(t) € R™ and z(t) € R™ with n
equal the order of the system. In (1) we let the time
t be normalized with the sampling period. Assum-
ing all modes are sub-critically damped, the number
of mode pairs described by this model is thus n/2
where each mode is associated with a complex con-
jugate eigenvalue pair of the matrix A.

Given, probably noisy, measured data y:,u¢, t =
0,...,N — 1 from an experiment performed on the
system, the aim of the identification process is to
yield estimates of A, B,C and D in (1) such that
the fit to measured data

V= 2 e yoP 2

is good.

In this paper we will briefly describe three different
approaches to solve the stated problem above and
discuss some fine tuning which can be applied to
further improve the result.

3.1. ERA

The eigensystem realization algorithm (ERA), in-
troduced by Juang and Pappa (1985), can be used
if the measured data is from the free decaying mo-
tion following upon an initial excitation. The algo-
rithm is based on the early realization result by Ho
and Kalman (1966), and utilizes the rank deficiency
property of the block Hankel matrix constructed by
the impulse response of the system. For real mea-
sured data the Hankel matrix is generally always of
full rank and a singular value decomposition (SVD)
is used to infer an appropriate lower rank approxi-
mation.

Assume we are given N = ¢ 4+ r measurements y;
resulting from a free decaying motion started at time
t = 0. Construct the 2 block-Hankel matrices

Yt Y41 - Yt4r—1
Ypy=| v 3)

Yt+q—1 Yttq *** Yttgtr—2

t = 1,2, where ¢ > n and r > n is the number
of block rows and columns respectively. Form the
singular value decomposition

qu(l) = [(71 (72] |:Z(])1 f?z:| |:“;§:| (4)

where the diagonal matrix fh contains the n princi-
pal singular values. If we assume that y; is noise-free
and originates from (1), Y, (1) will be of rank n and

hence 22 = 0. A realization of (1) is then calculated
as

El'=[I,0,...0,], BEL, =[Ln 0y ... 0,] (5)

A=500TY, (WS (6)
B=S*V'E,, C=ELU:31?, D=y, (7)
where I; denotes the ¢ X ¢ identity matrix and 0;
denotgs tAheAz' X 1 zero matrix. The estimated sys-
tem (A, B, C, D) are then related to the original sys-

tem (A, B,C, D) by a similarity transformation. If
we use this algorithm on noisy data or data from

a high order system 35 will not be identically zero
and (/1, B,C, 15) will then be an approximation of
the true system. This approximation does not nec-
essarily minimize (2). However, in general ERA has
been experienced to provide models which are close
to the minimum.

3.2. N4SID - a subspace method

This method is recently developed by Van Over-
schee and De Moor, see Van Overschee and De Moor
(1994). The method handles arbitrary inputs u(t)
and also estimates a noise model and is thus much
more general than ERA. The algorithm determines
a state sequence through an approximate projection
of input and output data. From the state sequence
obtained, it is easy to calculate a minimal state-
space model of the system (1) including a stochastic
rational model of the noise.

We used the N4SID (algorithm 2) and changed the
default division between past and future data such
that the past was changed to be as long as the du-
ration of the exciting input signal. This change was
made to better allow for short duration input.

3.3. Prediction Error Methods

The prediction error methods (PEM) contain the
most known and used methods for system identifi-
cation and has been developed and analyzed exten-
sively during the last three decades. For a unifying
treatment we refer to Ljung (1987).

Here we will concentrate on the state-space model
(1). Since a noise model is not included, the model
(1) is commonly referred to as an output-error form.

The state-space system matrices (A,B,C,D) are pa-
rameterized using a parameter vector 6 to obtain
the predictor ¢(¢|¢). A minimal number of parame-
ters needed is given by the multivariable identifiable
forms, also called canonical forms, see Ljung (1987).

The parameter vector and hence the model is then
obtained by minimizing the squared sum of the pre-
diction errors

N
5 1 N 2
0 = arg m€1n v E lye — 9(t]0)] (8)
t=1

This minimization is in general nonlinear in the pa-
rameters 6 and has to solved by an iterative method,
e.g. a Gauss-Newton algorithm. The success of this
approach is to a large extent dependent on the initial
estimate from which the iterative method is started.
This fact becomes increasingly significant as model
complexity grows.

3.4. Improvements of the estimate

The two first methods ERA and N4SID is funda-
mentally different from PEM since they lack an ex-
plicit criterion of the type (2). For a finite number of
measurements and noisy data we cannot guarantee
that ERA or N4SID are optimal in any sense. How-
ever based on the results from applying these meth-
ods on real data we believe that ERA and N4SID
give quite good initial estimates which often can be
improved by minimizing a prediction error criterion
(8). Experience shows that B and D estimates often
are of lower quality compared with the estimates of
A and C for N4SID if the input has a low degree
of excitation. However B and D can easily be re-
estimated by minimizing (2). Notice that B and D
then are linear in y(t) and, for fixed A and C, sim-
ply can be estimated by an ordinary least-squares



solution.

If further improvements are needed we can estimate
all the system matrices by (8) with e.g. Gauss-
Newton iterations using the previously estimated
model as an initial estimate, preferably converted
with a similarity transformation to some proper
form suited for a small parameterization. This last
step would thus provide a model with best variance
properties if certain assumptions are made on the
noise, see Ljung (1987). The degree of improvement
is application dependent and has, using data from
various experiments, been observed to vary from a
50% reduction of (2) to only marginally improve-
ments.

3.5. Near minimal parameterization

Physical insight into the problem here at hand gives
that, for the low-damped structure under test, over-
damped modes should be neglected. Any such mode
found during the identification process is most likely
a “computational” mode representing noise in the
data. Thus only complex conjugate subcritically
damped modes are retained in the model. If we
assume A to be non-deficient this implies that the
n real states given by ERA and N4SID algorithms
can be transformed into n decoupled complex con-
jugate states out of which only n/2 are required for
a full analysis. The real system equations are thus
transformed into complex ones where the matrices
are given by the complex similarity transform 7T,
which converts A to a diagonal matrix A with the
complex eigenvalues on the diagonal, A = T 1AT,
B =T7!'B and C = CT. One should notice that
half the states are the complex conjugate of the
other half and hence are redundant. Using complex
arithmetic only n/2 states thus need to be consid-
ered. Furthermore, since all states are fully decou-
pled the computational load when solving the sys-
tem equations (1) is minimized. This is extremely
useful when using PEM or in a possible least-squares
calculation of B and D.

The load/acceleration relation of a mechanical sys-
tem implies certain relations on the system matrices.
Defining P = CA™' one has for measured accelera-
tions

C=PA, D=PB. (9)

One can notice that the total number of real val-
ued parameters required to characterize the com-
plex valued system matrices thus is n(m + p + 1).
These are the n parameters of A, (recall all eigen-
values appear in complex conjugate pairs), the nm
parameters of B and the np parameters of P. A the-
oretical minimal parameterization is obtained by a
canonical form which requires n(m + p) number of
parameters, see Ljung (1987). A canonical param-
eterization however does not possess the decoupled
property as the one described. Physical insights are
also lost since the parameters only implicitly define
the eigenvalues and mode shapes.

3.6. System order selection

An important user choice is the number of states,
or modes, to use in (1). The presence of noise and
structural nonlinearities usually make the Hankel
matrix (3) of full rank. However, if a clear gap exists
among the largest and the smallest singular values
of (4), it is natural to regard the largest singular
values as originating from the linear system and the
smallest ones from noise and nonlinearities. This ap-
proach is applicable using ERA or N4SID in which

a similar SVD is performed.

An approach more closely related to the modes is by
use of the measure Modal Amplitude Coherence, 7,
introduced in Juang and Pappa (1985). Recall (7).
The estimated B matrix can thus be expressed as

TR, = B (10)

using the similarity transformation 7" which diago-
nalize A. Construct the complex controllability ma-
trix

C=[B,AB,.. A0 (11)

which also can be seen as the time sequence of the
complex states resulting from an impulse input. No-
tice that row j in C corresponds to eigenvalue j.
Define the matrix

C=r"s)vT (12)

which is the controllability matrix induced by the
measured data and the SVD (4). The coherence pa-
rameter -y; corresponding to eigenvalue j is defined

" cic;|
C;Cy
= MEECe T (13)
(IC;C7IC; ¢
where the subscript denotes row number and (-)* de-
notes conjugate transpose. The parameter vy; takes

values between 0 and 1. Large values thus denote a
high degree of coherence.

The Modal Amplitude Coherence indicator can be
used in a stabilizing diagram to visualize frequency
location and modal accuracy for each model order
estimated. In a stabilizing diagram a bar of length
v; is plotted for each mode and at the level cor-
responding to the model order (see figure 4). The
characteristics of the diagram is that for identified
models with too few states some identified frequen-
cies have low indicators (the bars are short). As
the model order increases these split into two or
more modes with higher coherence indicators. As
the model order increases the identified frequencies
“stabilize”, hence the name stabilizing diagram.

The modal Amplitude Coherence is defined only for
ERA. For N4SID we can obtain an approximation
which will be of high quality if the number of out-
puts are close to the number of states and if C' has
full rank. In this case we define

C=Cys,y2, ...,y (14)

where (-)' denotes the Moore-Penrose pseudo-
inverse. An approximate Modal Amplitude Coher-
ence, 7; is then derived as

B C:cx
= A (15)
(1C;CFNC;Cr )

3.7. Validation

An important part of the identification process is to
assess the quality of the estimated model. If several
experiments are performed on the same system un-
der similar conditions we can use one set of measure-
ments for estimation and use the other independent
set to validate the model. If only one data set is
available but consists of a large number of outputs
(here accelerometer measurements) we can divide
the outputs into two disjoint sets. If the division is
made such that all modes are present in both sets



we can estimate a model using only one set of out-
puts and validate using the other set. In this paper
we have used this latter method.

Assume the estimated model is given by (A,B,C,D)
derived using the estimation output set. To validate
this model, we estimate C, and D, using the valida-
tion outputs. Since both matrices are linear in the
outputs, given A and B, C, and D, are calculated
by minimizing (2) using an ordinary least-squares
solution.

As a measure of model quality we will use

Zt 0 |yt )|2
Zt 1|yt|2

which is a normalized estimation error where in-
creasing values of @ indicate better fit and 1 in-
dicates a perfect fit of the model to the validation
data.

(16)

The conventional ground vibrational test (GVT)
also gives estimates of frequencies and modal shapes
at each measurement point. These estimates can
be used to validate the linear models obtained by
ERA, N4SID and PEM. The modal assurance cri-
terion (MAC) can be evaluated for each identi-
fied frequency against the results obtained in the
GVT. MAC is defined as the correlation between
the modal vectors of the two different models eval-
uated for each frequency

_ (Ggw)?
MACk = e (aian) an

where ¢ is the kth column of C' and gy, is the cor-
responding modal vector obtained in the GVT. An
analogue definition is used for the correlation be-
tweeen modes of ERA and N4SID.

3.8. Frequencies and Dampings

The estimated model is now an abstract model of
the experimental data. Particularly, the eigenval-

ues of the matrix A give us information about fre-
quency and damping ratio for all identified struc-
tural modes. Denote sampling frequency with f
given in Herz and /\k(ﬁ), k = 1,...,n the eigen-
values of A. For the kth mode the time multiplier
e Skt

sin(wxt) (18)

is acting during a free decaying motion. It is charac-
terized by the frequency wy (in rad/s) and relative
damping ratio ;. These modal parameters are as-
sociated with a complex conjugate eigenvalue pair
from the real matrix A such that

wr = Im(log Ax) f (19)
(k= —Re(log )\k)f/ﬂk (20)

U =we//1 - (21)

where )y is the eigenvalue with positive imaginary
part of the two complex conjugate eigenvalues.

4. RESULTS

A preparation of the output data was made before
the system identification was performed. The data

were resampled (decimated by a factor two) at a
lower sampling rate (256 Hz) without intermediate
filtering. A few (2 to 5) leading zero-output sam-
ples were retained in the data set but the absolute
majority of the samples were, of course, samples
following the snap-back triggering. A total of 600
samples were used in the identification. All output
signals were normalized (pre-conditioned) such that
they were of equal 2-norm. A division of the output
channels into one estimation set and one validation
set was made. In the estimation set outputs from
six wing, five nacelle and two fuselage accelerome-
ters were collected. The outputs from two wing, one
nacelle and one fuselage accelerometer composed the
validation data set.

The acceleration response to the snap-back excita-
tion is triggered by the almost instantaneous release
of cable tension. Thereafter the accelerations are
governed by the free decay properties of the struc-
ture. In the identification procedure we were using
a model of the excitation which consisted of a short
duration pulse load to trigger the model response.
The pulse duration was set to be similar to the du-
ration of the load release, i.e. 6 ms.

Both the ERA and N4SID algorithms have been ap-
plied to the data. Stabilization diagrams are shown
in figure 4. Consistent results were obtained by the
two methods except for a few modes. The most
probable cause to that deviation is that these modes
were barely controllable by the excitation or observ-
able by the selected distribution of accelerometers.

The identified resonance frequencies and dampings
of a model of order 22 (i.e. 11 pairs of complex con-
jugate modes) are given in Table 1. Table 2 gives
the modal assurance criterion (MAC) numbers for
a comparison of mode shapes obtained in the nor-
mal mode test and after identification using the two
methods. In Table 2 only the modes corresponding
to resonances up to 40 Hz have been considered since
the GVT was restricted to this range. Comparative
plots of selected responses involving both low and
high frequency modes are shown in figure 2.

The stabilization diagrams show that for a model of
order 22 the quality measure () evaluated on estima-
tion data is 0.711 and 0.710 for models estimated by
ERA and N4SID respectively (after re-estimation of
B and D). Evaluated on validation data @ increased
to 0.793 (N4SID) and 0.792 (ERA) which indicates
that the system dynamics are well described by the
model.

Prediction error minimization using the described
parameterization was then applied using the N4SID
estimated model as an initial estimate. After an ini-
tial loss of quality (Q=0.696) following the low or-
der parameterization (D becomes constrained), the
quality was regained and increased using PEM. Af-
ter the minimization @ was 0.737 evaluated on the
estimation data and to 0.812 using the validation
data.

5. CONCLUSIONS

We have found that all three methods give good
results in terms of estimated vibrational modes.
N4SID and ERA together with PEM also lead to
models that in simulation can reproduce the mea-
surements very well. ERA and N4SID give quickly
good results. PEM takes more time in these cases
where many parameters are being estimated (several



Table 1. Resonance frequencies and dampings of
models of order 22 identified by ERA,
N4SID and PEM.

N4SID ERA PEM  N4SID ERA PEM
f(Hz) f(Hz) f(Hz) () () ((%)
4.08 4.10 4.11 0.49 0.35 0.50
4.33 4.98 4.74 29.7 3.50 0.78
4.94 4.97 4.94 0.18 0.13 0.20
11.42 11.53 10.67 17.22 1.04 16.90
11.88 11.87 11.87 1.32 1.28 1.16
16.58 16.58 16.58 1.21 1.22 1.16
31.68 30.25 34.39 14.1 1.30 12.99
37.35 37.08 36.98 3.25 4.43 1.8
58.45 51.09 58.26 0.88 34.4 1.15
60.40 58.51 60.41 0.31 0.89 0.42
97.08 60.42 113.0 48.9 0.31 14.42
Table 2. Resonance frequencies and correlation
of modes (MAC) given by the ERA and
N4SID algorithms and obtained during
the normal mode test (GVT).
ERA N4SID__GVT  BRA/ ERA/ N4SID/
N4SID GVT GVT
(Hz) (Hz) (Hz) MAC MAC MAC
4.10 4.08 4.22 0.98 0.88 0.86
4.98 4.33 5.63 0.46 0.64 0.87
4.97 4.94 5.76 0.98 0.89 0.91
11.52 11.42 - 0.60 - -
11.87 11.88  12.05 0.99 0.88 0.88
16.58 16.58 16.89 0.99 0.94 0.95
30.25 31.68 - 0.62 - -
- 37.35 3791 0.99 - 0.75
37.09 - 38.0 - 0.72 -
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hundreds). On the other hand, such iterations lead
to a clear improvement (by 2.5%) of fit on validation
data

We may also point to the somewhat unconventional
division into validation and estimation sets. In this
case with a transient experiment and many (21) out-
puts we found it better to use the whole time record,
but with a selected configuration of output signals,
as estimation data and the whole time record with
another set of outputs as validation data. This
worked very well in our application.

We also found a significant improvement of the fit
if we re-estimated B and D after ERA and N4SID.
Since these matrices appear linear in the outputs,
keeping the rest constant, they can be estimated
using an ordinary least-squares solution.

The complex parameterization introduced decreases
the numerical complexity substantially when using
PEM and also when estimating B and D, since cal-
culating the output of this complex realization is
extremely simple with all states independent.
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