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ABSTRACT

In this contribution three examples of techniques that
can be used for state order estimation of hidden
Markov models are given� The methods are also exem�
pli�ed using real laser range data� and the computa�
tional burden of the three methods is discussed� Two
techniques� Maximum Description Length and Maxi�
mum a Posteriori Estimate� are shown to be very sim�
ilar under certain circumstances� The third technique�
Predictive Least Squares� is novel in this context�

� INTRODUCTION

A phenomenon that often occurs in the segmentation
process is the spurious jumping in the state estimate
of a hidden Markov model �HMM� when more states
than needed are used� The reason for that is that the
algorithms use all available degrees of freedom� i�e��
the algorithms actually segment the signal�image into
M segments if the signal model	s underlying Markov
chain has M states� There is obviously a need for es�
timation of the number of states before applying the
segmentation routine�

Example ��� Assume that a white noise sequence� de�

picted in Fig� �� is given� The natural choice for the number

of states to model the white noise sequence is �� since there

are no jumps in the signal� If we� however� choose a two�

state Markov chain and apply the Baum�Welch algorithm to

segment the signal into two segments the result is the one

found in Fig� ��

The paper is organized as follows� First a problem for�
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Figure �� Left� White noise sequence with variance ��

Right� Resulting segmentation of the white noise signal

using two states�

mulation and a motivation for looking into this kind
of issues� is given� Then the three algortihms are pre�
sented� and �nally a example including data from a
laser range radar system� is presented�

� PROBLEM FORMULATION

We will �rst introduce the concept of hidden Markov

models �HMM��

De�nition � An HMM is a doubly stochastic process

with one underlying process that is not observable� but

can only be observed through another set of output pro�

cesses that produce the observed data� The underlying

hidden process is a Markov chain�

The HMMs are being used extensively in a variety of
areas� The standard issue is how to estimate the pa�
rameters in the model producing the output and how
to estimate the unobserved Markov chain sequence�



There is a vast literature on the above mentioned topic�
see for example 
�� �
� An often circumvented problem
is how to decide on how many states to use in the as�
sumed hidden Markov chain� In practice� when one is
confronted with � e�g�� a segmentation problem� that
kind of information is seldom known� However� it is�
crucial for the result of the applied algorithm�

� THREE ALGORITHMS

In this section the three proposed algorithms are pre�
sented� The complete derivation of the expressions will
be left out in this paper� For a complete version of the
paper see 
�
� The hidden Markov sequence will be de�
noted by zt�t� � meaning the sequence from time instant
t� to t�� The subscript is suppressed when t� � ��
and the superscript is suppressed when t� � t�� The
observed process is denoted by yt�t� �

��� Minimum Description Length

Assume a sequence yN is given and we know it has
been generated by a �nite state source� but we do not
know the number of states M�� In the sequel M� will
denote the �true� value of the model state order� M is
the auxiliary variable denoting the model state order
which is tested by the algorithm and �M the estimate of
the model state order� Usually a criterion is calculated
for di�erent values of M and then an �M is chosen as
an estimate� The desired result is� of course� that �M �
M��

Assume that for every M we have a code �M � A code
can be described as a mapping from the source symbols
to a series of bits� The mapping takes into account the
distribution of the symbols� All the information the�
oretic techniques boil down to �nding an appropriate
code �M for coding the sequence yN � calculating the
code length for di�erent codes and then picking the M
for which the code �M gives the shortest code length
when coding yN � We have chosen the minimum de�
scription length �MDL� 
�
 as coding principle� Shortly�
the MDL principle can be summarized as choosing the
model that minimizes the number of bits it takes to de�
scribe the given sequence� Note that not only the data
are encoded� using the model� but also the model it�
self� i�e�� the real�valued parameters in the model� How
does this apply in the HMM case� The overall num�
ber of bits will be the sum of the number of bits for
describing the data and the model� If the number of

parameters in the chosen model is denoted by d and
M is the number of states the following expression is
obtained

V � log�

�
�

N

NX
i��

e�i

�
� �d�M�M � �� � ��

log�N

N
�

The expression above has to be calculated for di�erent
M � and the state order estimate is the M which gives
minimal V �

��� Predictive Least Squares

The predictive least squares �PLS� idea originates from

�
� We start with a basic regression problem� As�
sume two sets of observations yN and xN �i�� where
i � �� � � � �M � are given� The usual procedure when ap�
plying least squares is to introduce a model class and
to pick a predictor for yt� The predictor is denoted by
�yt��� y

t���� The ideal predictor should then minimize

E��yt � �yt��� y
t������ ���

If the expectation in ��� is replaced with a sample mean
the following estimate is obtained

�� � argmin
�

�

N

NX
t��

�yt � �yt����
�� ���

Note that the estimate of � is based on the whole data
set� The PLS approach is to change the predictor to
�yt��t��� y

t���� i�e�� at every time instant the parameter
vector � minimizing the criterion ��� is calculated using
past data only� The parameter vector estimate will
vary in time� since the number of data on which it
is based� grows� If then all the prediction errors are
accumulated we the following criterion is obtained

VPLS�M� �

NX
t��

�yt � �yt��t��� y
t������

where M is the number of regressors x included�

In the HMM case we �rst have to calculate the one step
predictor and then go through the PLS procedure for
the HMM case� We also point out di�culties in prov�
ing consistency� although in simulations the method
shows good results� The procedure is to use the EM
algorithm� see for example 
�
� to estimate the state se�
quence and the probabilities �i�t� � P �ztjY

t�� where



zt is the state of the Markov chain at time instant t�
and Y t is the data sequence up to and including time
instant t� The prediction �yt�� � Efyt��jy

tg and can
be calculated as follows

P �yt��jy
t� �

X
i

P �yt��jy
t� zt � i�P �zt � ijyt�

�
X
j

X
i

P �yt��jzt�� � j� yt� zt � i� �

P �zt�� � jjzt � i� yt�P �zt � ijyt�

�
X
j

X
i

P �yt��jzt�� � j� yt�qij�i�t��

where qij is the transition probabilities for the hid�
den Markov chain� Taking expectation of the variable
fyt��jy

tg results in

�yt�� �
X
j

X
i

Efyt��jzt�� � j� ytgqij�i�t�� ���

where the expectation usually is straightforward to cal�
culate�

Since we do not know anything about the behavior
of the PLS�criterion as a function of M we have to
adopt an ad hoc rule when actually searching for the
minimum of the criterion� The procedure of calculating
the PLS�criterion for di�erent model state orders M is
rather computationally costly� For every M a new EM
algorithm has to be run�

The procedure when using the EM algorithm and PLS
is the following�

�� Decide which model state orders that are to be
tested�

�� Decide what search strategy to use when testing
di�erent number of states�

�� Run the EM algorithms in accordance to the de�
cided strategy testing the di�erent state orders�

�� Sum the �honest� prediction errors�

�� Chose the state order that gives the lowest accu�
mulated cost�

In step two� with the word �strategy� we mean the
order in which the di�erent EM algorithms for di�erent
model state orders should be tested�

In step four and �ve� at time instant t the EM al�
gorithms are run on the data up to t and yt�� is pre�
dicted according to ���� The squared errors ��t���M� �
�yt��� �yt���M��� are summed up and �nally when the
row is completely processed we choose the number of
states to equal the number of states of the model which
minimized the PLS criterion�

How to choose the number of states to test is an intri�
cate question� In our simulations we have chosen an ad

hoc solution� we simply start from one state� and then
increase the number of states by one until the PLS cri�
terion stops to decrease and starts to increase� The
usual behavior of the PLS criterion for di�erent M is
a rapid drop when we increase M and then when M

passes the right number of states� i�e�� M � M�� the
PLS criterion starts to increase slowly� As the estimate
we simply choose the value of M if the PLS criterion
starts to increase for M � �� The drawback of this
procedure is that some a priori knowledge about the
number of states is needed to avoid numerous testings�
In our application we know that usually the number
of states are one or two� It is very unlikely that we
will need more than four states� This knowledge� of
course� in�uences our testing strategy �start with one
state and then increase the number by one�� General
advice is di�cult to give�

Example ��� In this example the PLS�method for model

state order estimation is applied to a synthetic signal� We

�rst generate a sequence of states from a three�state Markov

chain� Noise is then added according to the following rela�

tion

yt � zt � ���et�

where et is zero mean and Gaussian white noise with vari�

ance ��

If then the previously described PLS procedure is applied in

state order to estimate the number of states of the Markov

chain we obtain the following accumulated error shown in

Fig� ��

The behavior of the PLS�criterion in Example ��� is
typical� The quick drop when increasing the model
state order towards the true one� After the true model
state order is passed the trend is not so obvious� De�
pending on the realization and if short data sets are
used the model state order can be overestimated�

Consistency of the Estimate One important ques�
tion regarding the estimate is� of course� the conver�
gence of the estimate when the number of data tends
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Figure �� Resulting accumulated error obtained when

using PLS and an increasing number of states of the

hidden Markov chain� The minimum is obtained for

three states which is in accordance with the problem

statement�

to in�nity� This question proves to be very di�cult
to answer and we have not arrived at a satisfactory
treatment of that matter�

��� Maximum a Posteriori Estimate

The last approach is based on using a bank of Kalman
�lters when estimating the model parameters of the
model behind the observed data� and the state se�
quence� The Kalman �lters also give the distribution
of the estimates� so for example the distribution of the
data assuming no underlying Markov chain is given by
the following expression

P �yN � � ����N��

�
NY
i��

detSt

�����
e�

�

�
VN �

where St is given by the following equations

St � 	TPt��	t ��t

Pt � Pt�� � Pt��	tS
��
t 	Tt Pt���

VN is the normalized sum of prediction errors and 	 is
a known vector�

When a Markov chain withM states is introduced� and
after some calculations� the following expression for the
likelihood of the data is obtained

�
�

N
logP �yN jzN �M� �

TMX
i�T�

VN�i�

N
�

TMX
i�T�

d�i� logN�i�

N
�

���

In the expression above d�i� denotes the number of
parameters of the output process model corresponding
to di�erent Markov chain states� Ti denotes the set
of time instants where the Markov chain is in state i

and N�i� denotes the number of elements in Ti� The
result is striking in its similarity with Rissanen	s MDL
criterion� If we have prior knowledge of the transition
matrix Q� or maybe have it as a design parameter� we
can calculate the a posteriori probability for the states
in a straightforward way�

� EXAMPLE

In this section the MDL approach is tested using an
image obtained by a laser range radar� The pixel val�
ues are the distance to the terrain measured by a laser�
The objective with the segmentation algorithm� in this
case the EM algorithm� is to �nd objects in the im�
age that di�er from the background� in other words a
�rst step towards object recognition� The test image
that is used here shows a shield in the middle of the
image� and in the upper right corner there are some
bushes� The way to interpret the segmented image is
to look at connected areas with the same segment la�
bel� and then do further investigation by taking the
estimated parameters of the observed model� variance
of the residuals� etc� into account� The problem we
are stressing here is that usually the user has to pick
the number of hidden states of the Markov chain for
each row �or �x one for all rows� since the image is
segmented row by row� Here we used the above pro�
posed MDL loss function� Similar results are obtained
by using the MAP loss function� The estimation rou�
tine� however� is di�erent in that case� In Fig� � the
original laser image and the resulting segmentation is
shown� Note that in the area �in front� of the shield
only one hidden state is used� and that way spurious
jumping as in Fig� � is avoided�

� CONCLUSIONS

Three di�erent algorithms for state order estimation
of hidden Markov models are compared� The per�
formance and computational complexity of each algo�
rithm is investigated� In the paper it is shown under
what circumstances MDL and the MAP estimate coin�
cide�
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Figure �� Left� The raw data obtained from the laser
system� The z�axis is the distance to the terrain�
Right� Resulting segmentation of the laser range radar
image using EM and the MDL strategy�
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