

Confusions in Writing Use Cases

Ann Johansson
Department of Informatics and Mathematics

University of Trollhättan/Uddevalla
ann.johansson@htu.se

Abstract

Use cases are often very powerful and are popular to
use when defining functional requirements for a
system. UML supports the use of use cases in object-
oriented systems development. However it is not
always clear for systems developers on how to use use
cases. It can be very confusing in knowing what to
include or how to structure use cases. In this study a
weather station system has been analysed with an
object-oriented approach. Some problems occurred on
how to structure scenarios and use cases. Problems
also arose on what to describe in the use cases. The
problems were analysed and assessed in this paper.
The paper points out that the need for guidelines is of
great importance.

1. Introduction

The use case concept is widely used in object-oriented
analysis. And it is also supported by UML. The
simplicity of use cases makes them very powerful.
Jacobson introduced use cases in 1986 and systems
developers immediately found them attractive because
use cases imply the ways in which the user uses a
system. The functionality of a system is defined of a
set of use cases, where each use case represents a
special sequence of interaction [5]. Use cases describes
functional requirements according to Larman [1]. But
people do not find use cases so easy to use. It can be
very confusing in knowing what to include or how to
structure them. It is hard to decide if an interaction
consists of one or more use cases. Cockburn [8] has
found over 18 different definitions of the use case
concept, which differ along the dimension of purpose,
contents, plurality and structure. If is quite apparent
that this confusion can lead to poorly-designed
systems. As Korson [10] claims that he experienced
that use cases more often are misused than used

correctly the consequences can be severe. The
motivation for use case creation is however to gain an
understanding of the problem and a proposed solution
and also to identify candidate classes in the conceptual
class diagram. But creating use cases is by no means a
foolproof process according to Gottesdiener [11].

2. Research method

The study is done within the framework of a systems
development project. The goal for the project was to
develop a weather station system. Object-oriented
method was used for this project and it was
documented by UML. The systems development group
had a few objectives from the employer to fulfil about
the system.

The research is performed as a case study. In the
project it was faced problems in writing use cases in
the analysis phase. There were for example confusions
about defining scenarios. In order to solve the
problems in the confusion of use cases and to assess
the results a literature study was done.

3. Use cases

3.1 Defining the concept

Some various authors describe the use case concept.
Ivar Jacobson introduced the idea of use cases in 1986.
Jacobson, Ericsson and Jacobson [9] in 1995 defined
use cases as “a use case is a sequence of transactions
in a system whose task is to yield a measureable value
for an individual actor of the system” . Larman [1]
describes use cases and their use in a detailed way. He
says that use cases are requirements, primary
functional requirements that indicate what the system
will do. Customers and end users have goal and they

want computer systems to fulfil them. The use case
view is a static model of the requirements as seen by its
end users, analysts and testers [7]. Use cases describe
desired behavior, but they do not dictate how that
behavior will be carried out [4]. “A use case is a
description of a set of sequences of actions, including
variants, that a system performs to yield an observable
result to an actor.” [4].

Quatrani [6] states that uses cases model a dialogue
between an actor and the system. Actors can then be
people or computer systems. She also joins Jacobson et
al’s definition [9]. Quatrani’s rule of thumb is: “ A use
case typically represents a major piece of functionality
that is complete from beginning to end. A use case
must deliver something of value to an actor.” She also
recommends a brief description of a use case in a few
sentences. Then each use case is documented with a
flow of events of what the system should do.

3.2 Scenarios

A scenario is a specific sequence of actions and
interactions between actors and the system. It is also
called a use case instance. Larman [1] points out that a
use case is a collection of related success and failure
scenarios. Cockburn [12] has the same view of a
scenario. The scenarios describe actors using a system
to support a goal. Booch, Rumbaugh and Jacobson [4]
also states that a use case describes a set of sequences.
Each sequence represents the interaction of the things
outside the system with the system itself. If a function
might have many possible variations the use case
describes a set of sequences. Each sequence is called a
scenario. As Booch, Rumbaugh and Jacobson claim,
scenarios are to use cases as instances are to classes. It
means that a scenario is basically one instance of a use
case.

Cockburn [8] discusses about plurality. The question is
if a use case contains more than one use case. May a
use case really be just another name for a scenario?
[12]. A scenario, a sequence of interactions, has no
branching or alternatives. Cockburn [12] states that a
use case is a collection of possible scenarios between
the system under discussion and external actors,
showing how the primary actor’s goal might be
delivered or might fail. The scenarios are separated
according to the conditions encountered, and grouped
together as they have the same goal.

As Cockburn [12] suggests the characteristic
information for a use case is:
1. Primary Actor or actors
2. Goal
3. Scenarios used

The characteristic information for a scenario is:
1. Primary actor

2. Goal
3. Conditions under which scenarios occurs
4. Scenario result (goal delivery or failure)

3.3 Relationships between use cases

There can be different types of relations between use
cases. According to Pilone [2] use cases can be related
using generalisation, extension or inclusion. Use case
generalisation behaves exactly like class
generalisation, where the specialised use case inherits
the behavior from the generalised use case. An
included use case is not used by itself, in can be used
only in a part of a larger, separate use case. Use case
extensions is used to encapsulate a distinct flow of
events that are not considered part of the normal or
basic flow. Booch, Rumbaugh and Jacobson [4] also
describe generalisation, extension and inclusion. To
use theses three types of relations too often can
however be resulted in that the use case diagram can be
complicated to understand [5].

A rather different way to organise use case is presented
by Si Alhir [3]. He suggests that use case should be
organised hierachically. Then the use cases are refined
into a set of smaller use case. The refining use cases
are subordinate to the use cases of the whole.

3.4 Contents in use cases

According to Larman [1] use cases are text documents
and they can be written in different formats, black-box
versus white-box visibility type and in varying degrees
of formality; brief, casual and fully dressed. Black-box
use cases specify what the system have to do (the
functional requirements) and the “how” decision
should be concerned in the design. Fully dressed use
cases are more detailed and are structured. Berard [13]
have found that it is hard to have an adequate sense of
the proper level of detail in use cases.

White-box type of use cases is used in the design. They
show how the use cases really can be used in the
collaboration between objects and classes [5].

According to Gottesdiener [11] the nonfunctional
requirements and GUI constructs should be kept out
from the use case text. Cockburn [12] also claims that
it is most useful to stay away from the dialog interface
during requirements gathering. It is both time-
consuming and subject to change when the final user
interface is designed.

4. The weather station project

A system to get different information from a weather
station was analysed and designed. The system should

be able to fetch, process, store and display current
weather data from the weather station as well as
historical data from a database. The system should also
display a weather prediction based on a comparison of
the current weather and stored weather data. A picture
from a web camera should also display current
weather. A special group of users should be able to

compute some weather statistics from the weather
system.

Trying to find use cases and actors for the weather
system started the project. The use cases and the actors
can be seen in figure 1.

webCamera

Shutdown System

Change Own Password

Change Anyone's Password

Log In

Log Out

Show Help

Retrive New Weather Picture

Show Current Weather Data

Change Time Interval

Manage Passwords

weatherStation

user_normal

user_advanced

user_administrato
r

Basic System Functions

Predict Weather

Show Weather History

Show Statistics

Add User

Remove User

User Administration
database

Update User Information

Figure 1 The use case diagram for the weather station system

5. The assessment of results

The writing of use cases started with a high-level
description and then greater detailed use cases are
described iteratively. This effective way to write use
cases was recommended by Gottesdiener [11]. Most of
the use cases were completed to fully dressed after the
iterations [1]. The striving has been to structure and
describe the use cases in detail.

5.1 Assessment of relationships and scenarios

The use case “Manage passwords” is used to illustrate
problems in relationships and scenarios in writing use
cases (figure 2).

Use case: Manage passwords

Primary actors: User, administrator
Interests: User, administrator

Brief Description
The user or administrator request change of password.
The system displays the correct dialog depending on
the group membership (admin or not)

Flow of Events

Basic Flow

1. The user request change of password

Alternative Flows

1a. If it is the administrator requesting change of
password, see use case Change everybody’s password.
1b. If it is not the administrator requesting change of
password, see use case Change own password.

Pre-conditions
User/administrator logged in.

Post-conditions
A successful change of password.

Figure 2 Use case: Manage passwords

As a use case has only one main success scenario or
basic flow the use case “Manage passwords”, has
references to two other use cases (see figure 2,
alternative flows) [1]. The user goal is however not
fulfilled by the use case “Manage passwords”. It has to
be continued in one of the two use cases, which are
related and referenced in the alternative flows. This use
case is not however in accordance with Quatrani’s
statement that the functionality has to constitute “a
functionality that is complete from beginning to end”
[6]. According to Quatrani should the use case
“Manage passwords” have one main flow, with
references to subflows in the very same use case. But
Pilone [2] writes about use case inclusion. In the

exemplified use case “Manage passwords” and the
related use cases “Change anybody’s password” and
“Change own password” can the relation be regarded
as use case inclusion. The included use case is not used
by itself. The containing use case will be stated in the
flow of events when it is invoked. May the solution of
the use case “Manage passwords” can be considered as
a successful solution as the included use cases never
would happen outside of the context of the larger goal.
On the contrary the larger goal can never happen and
be completed without any of the included use cases
either. In this point of view the solution may be less
successful. According to Booch, Rumbaugh and
Jacobson [4] a scenario is an instance of a use case.
The included use cases are then scenarios, or instances
of the use case “Manage passwords”. To address
Cockburns [12] statement the use case “Manage
passwords” could have two scenarios; the “change
anybody’s password” and the “change own password”.

5.2 Assessment of contents in the use cases

The use case “Show weather statistics” is used to
illustrate problems in deciding interaction details and
level of contents in the use cases (figure 3).

Use case: Show weather statistics

Primary actor: Advanced user
Interests: Advanced user

Brief Description
The user requests weather statistics. The system
collects the weather data from the database and
presents the result on the screen.

Flow of Events

Basic Flow

1. The user requests statistics of the weather.
2. The system displays the “Statistics” dialog.
3. The user chooses between statistics for the last day,
the last week or the last month.
4. The system collects weather data for the specified
time interval from the database.
5. The system presents the data on the screen.

Alternative Flows

4a-5. The database is unavailable:
 1. The system displays an error message.

Pre-conditions
Advanced user logged in.
The user is member of the advanced user group

Post-conditions
The statistics asked for were presented on the screen.

Figure 3 Use case: Show weather statistics

Interaction detail has to do about what is going to be
described or not in the use case, in which level
interaction will be described. The semantic interface
level is chosen in the use case “Show weather
statistics”[12]. This level will capture the actor’s
intention. It is only described that the system displays
the dialog for “Statistics”. Then the user can choose
between statistics for the last day, the last week or the
last month. None of the events say anything about how
the user interface is designed. There is not described
how the user can choose, from a pull-down list how the
user can choose among the alternatives in other ways.
Ambler [14] also claims that use cases should not
describe what the user interface looks like or how it
works.

Use cases often need to be more elaborate than they are
in the brief format, where the use case is described in a
one-paragraph summary [1]. In the use case “Weather
statistics” the use case is described in more detail than
in the casual format. The casual format describes the
use case in informal paragraphs and contains multiple
paragraphs that cover various scenarios. The use case
“Show weather statistics” is more elaborated, as fully
dressed format. All steps and variations are written.
However they may have been written in more detail.
The Basic Flow is the same as the Main Success
Scenario. Still the Special Requirements, Technology
and Data Variations List, Frequency of Occurrence and
Open Issues are not taken into account, as described by
Larman [1].

6. Conclusions

This paper points out that it is not too easy to
distinguish between the concept of use case and the
concept of scenario. Need of guidelines is of great
importance, especially during the first system
development projects. Iterations are also very
important to complete the use cases in a useful way.
The use cases have to be described in detail in a fully
dressed format.

7. References

[1] Larman, C, 2001, Applying UML and Patterns, An
Introduction to Object-Oriented Analysis and Design and the
Unified Process, Prentice Hall
[2] Pilone, D, 2003, UML, Pocket Reference, O’Reilly
[3] Si Alhir, S, 1998, UML in a Nutshell, O’Reilly
[4] Booch, G, Rumbaugh, J, Jacobson, I, 1998, Pearson
Education
[5] Kruchten, P, 2002, Rational Unified Process, An
Introduction, Addison-Wesley
[6] Quatrani, T, 1999, Visual Modeling with Rational Rose
2000 and UML, Addison-Wesley
[7] Royce, W, 1998, Software Project Management, A
Unified Framework, Pearson Education

[8]Cockburn. A, 2001, Writing Effective Use Cases,
Addison-Wesley
[9] Jacobson, I, Ericsson, M, Jacobson, A, 1995, The Object
Advantage: Business Engineering With Object Technology,
Addison-Wesley
[10] Korson. T, The Misuse of Use Cases (Managing
Requirements), http://www.korson-mcgregor.com/publi
cations/korson/Korson9803om.htm, 2003-10-17
[11] Gottesdiener, E, Top Ten Ways Project Teams Misuse
Use Cases – and How to Correct Them,
http://www.thereationaledge.com/content/jul_02/t_mis
useUseCases2_eg.jsp, 2003-10-17
[12] Cockburn, A 1997, Structuring Use Cases with Goals,
Journal of Object-Oriented Programming, Sep-Oct 1997 and
Nov-Dec 1997
[13] Berard, e, V, Be Careful With “Use Cases”,
http://www.tota.com/pub/use_cases.htm, 2003-10-17
[14] Ambler, S, W, Use Case Modeling Tips, http://www-
106.ibm.com/developerworks/java/library/ws-tip-uml-
2.html, 2003-10-17

