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ABSTRACT 
We propose two artificial neural network 
models which use the ionization current for 
estimation of the position of the pressure peak 
and the air-fuel ratio. 
The pressure peak position model produces 
estimates on a cycle-by-cycle basis for each 
of the cylinders. These estimates are twice 
as good as estimates obtained from a linear 
model. 
The air-fuel ratio model uses the universal 
exhaust gas oxygen sensor as reference; it 
produces estimates that are ten times better 
than estimates obtained from a linear model. 

one needs some measurements of the combus- 
tion process quality. These measurements are, 
e.g., the air-fuel ratio (AFR) and the position 
of the pressure peak (PMAX) . 
The AFR can be used in a feedback con- 
trol loop as shown in several papers, 
see [Bush941 [Hasegawa94] and references 
therein. To achieve optimal performance from 
the three-way catalytic converter, the AFR 
has to be kept within a window as small as 
0.1 air/fuel ratios around the stoichiometric 
level [Heywood88]. To achieve such precision, 
the measurement need not only be accurate but 
also continuous, as in the case of the universal 
exhaust gas oxygen sensor (UEGO). However, 
the UEGO sensor has two drawbacks, the 
price is too high for mounting in commercial 
automobiles and the sensor dynamics are slow. 
The latter makes it difficult to use for control 
under transient conditions. Furthermore, if the 
sensor would be mounted in a commercial car 
it would be difficult to achieve good control on 
a cylinder to cylinder basis, unless one sensor 
per cylinder were mounted. This is due to 
individual components such as fuel injectors 
and intake port geometries. Difference between 
individual cylinders in the air fuel mixture in 
the order of * 7% is reported in [Heywood88]. 
There is thus a need for a cheap cycle-by-cycle, 
individual cylinder measurement. 
The PMAX can be used to achieve 
optimal ignition timing as shown 
in [Eriksson96] [Eriksson97]. Optimal ig- 
nition timing can boost the efficiency by 5% 
and increase the power by 10%. Conventionally 
the PMAX has been measured using piezo- 

INTRODUCTION 
To optimize the performance and reduce the 
emission levels of an internal combustion engine 
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Figure 1: Typical ionization current. The curve 
is an average over 100 consecutive combustion 
cycles under constant external conditions. 

electric pressure sensors mounted within the 
cylinder; however, this is expensive and another 
technique would be desirable. 
In a previous paper [Linde95] we show that 
the AFR of a two-stroke chain saw engine 
can be estimated using the ionization current 
measured over the conventional spark plug'. 
In this paper we show that both the AFR 
and PMAX can be estimated on a four stroke 
Ope1 1600cc engine. The prominent features 
of the ionization current signal, figure 1, are 
the cheap electric measurement setup and the 
lack of need for mounting extra sensors within 
the cylinder. The drawback is the high noise 
level, figure 2. We have choosen non-linear 
feed-forward artificial neural networks (ANN)2 
to model the problem. 

THE IONIZATION CURRENT 
It has been shown that it is possible to extract 
information about several quality properties of 
the combustion process in a cost effective man- 
ner from the ionization current, see [Auzins95]. 
Examples are misfire detection, knock detec- 
tion, cam phase sensing, AFR estimation, and 

'The technique for measuring the ionization current 
using t h e  spark plug is patented by Mecel AB which is 
a subsidiary company of General Motors. 

'A general introduction to ANNs can be found in 
e.g., [Haykin94]. 
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Figure 2: 50 consecutive ionization currents for 
the same conditions. The variations make it 
difficult to interpret the signal on a cycle-by- 
cycle basis. 

PMAX estimation. Misfire detection and indi- 
vidual cylinder knock detection are already im- 
plemented in commercial automobiles. 
The measurement of the ionization current is 
made by applying a voltage over the gap of 
the spark plug, and the current is measured on 
the secondary side (low voltage) of the ignition 
coil. To have individual measurements from the 
cylinders, each cylinder must be equipped with 
one ignition coil. The coils have to be able to de- 
liver a short high energy spark, so that the spark 
duration does not overlap with the period in the 
combustion process one wants to measure. 
The ionization current is formed by a number of 
factors; in the first phase of the combustion cy- 
cle the formation of compounds which affect the 
ionization current is rather complicated, and the 
full process is not known. In the later part of the 
combustion cycle the most influential compound 
that shapes the ionization current is NO; in 
this stage the pressure also influences the signal. 
A more detailed general chemical and physical 
analysis of the ionization current can be found 
in [Saitzkoff96] and is studied more directed to- 
wards the AFR and the PMAX in [Reinmann97] 
and [ S ai tzkoff9 71, respectively. 

The ionization current signal, figure 1, has 
three phases; the ignition phase, the flame front 
phase, and the post flame phase. 
The ignition phase is in the range from ignition 
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Figure 3: Ionization current vs. air-fuel ratio. 
The slope of the second peak correlates with the 
air-fuel-ratio. The curves is an average over 100 
consecutive combustion cycles under constant 
external conditions. 

to about 10 degrees after ignition, the high peak 
of the ionization current shows mainly coil ring- 
ings due to capacitance and inductance of the 
coil and cable. 
In the flame front phase, between 10 and 20 
degrees after ignition, the slope of the peak 
depends on the development of the flame; the 
derivatives of the slopes show correlation to the 
air-fuel ratio, as shown in figure 3. 
The post flame phase begins after about 20 de- 
grees after ignition and continues until no more 
ions are present in the spark plug gap. The sig- 
nal in this phase depends mainly on the pressure 
development within the cylinder. The positions 
of the peaks in the ionization current show clear 
correlations with the cylinder pressure peak po- 
sition, as shown in figure 4. 

ESTIMATION OF T H E  PRESSURE 
PEAK POSITION 
By using the ionization current we can achieve 
measurements of the activity within each of the 
cylinders. Estimating the PMAX on a cycle-by- 
cycle basis makes it possible to control the igni- 
tion in order to achieve optimal ignition timing. 
Further, the cycle-by-cycle interpretation makes 
it possible to control the ignition efficiently even 
under transient conditions. 
The ionization current was sampled at every de- 

Figure 4: Ionization current vs. Cylinder pres- 
sure. The third peak of the ionization current 
correlates with the cylinder pressure peak. The 
curves is an average over 100 consecutive com- 
bustion cycles under constant external condi- 
tions. 

gree of the combustion cycle, resulting in 92 
samples per combustion cycle (-30 to 61 de- 
grees relative to top dead center (TDC)). A win- 
dow of the ionization current was chosen, from 
6 degrees ATDC to 35 degrees ATDC, the part 
where the ionization current shows the best cor- 
relation with the pressure, figure 4. In order 
to further minimize the representation of the 
ionization current, we use principal components 
analysis (PCA), see e.g. [Haykin94], and retain 
the first 7 PCA variables which hold 99.5% of 
the energy of the original signal. Another use- 
ful property of PCA is decorrelated variables. 
In addition to the PCA variables, the model 
takes the RPM, torque, and ignition as input 
variables. The model uses a linear output cor- 
responding to the position of the pressure peak 
in degrees ATDC. This makes a total of 10 in- 
puts and one output. 
The ANN model was trained using the RPROP 
algorithm [Riedmiller93]. To prevent the model 
from overfitting to the noise, early stopping was 
used as a method of regularization. 
The results are compared with both a linear 
model and residual variance estimated by the 
the &test [Pi94]. The &test is a method for 
finding variable dependencies using conditional 
probabilities of vector component distances. 
Table 1 shows an estimate of the best possi- 
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Model NMSE 
ANN Model 0.212f0.0163 
Linear Model 0.406f0.013 

Table 1: Performance of the two PMAX mod- 
els. The ANN model performs about 2 times 
better than the linear model. (The f part is 
the confidence limits based on the size of the 
dataset .) 

6 -test 
0.233f0.004 
0.410f0.007 

ble residual variance, which is equivalent to the 
normalized mean square error, 
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where ay2 is the variance of the reference, Y 
and Y are the reference and the estimate, re- 
spectivly. 
In the table the performance of a linear model 
and an ANN model with 15 hidden neurons arc 
also shown. The results of the linear model and 
the ANN model arc calculated using a hold out 
data set, i.e., data points used for neither fit- 
ting nor selecting the models. The ANN model 
perform twice as good as the linear model, and 
the NMSE arc within the margin of error of the 
optimal NMSE estimated by the 6-test. 
Figure 5 shows the residiial of the ANN model. 
The correlation between the estimated PMAX 
and the mcasurcd PMAX is shown in figure 6. 

ESTIMATION OF T H E  AIR-FUEL 
RATIO 
The model for estimating the AFR is similar to 
the one we use for estimating PMAX. The differ- 
ence is the slow dynamics of the UEGO sensor, 
in comparison with the ionization current. Since 
we have no feasible option other than using the 
UEGO, we must compensate for the averaging 
effect that the sensor introduces. The compen- 
sation we do here is to average over several con- 
secutive ionization currents. We thereby model 
the UEGO sensor instead of the true cycle-by- 
cycle AFR. 

3The confidence limits estimated by bootstrapping. 

, , , Residual dip Pmax e,stimation , , , 

Figure 5 :  Residual of the pressure peak estima- 
tion. The residual are based on a hold out data 
set which was not used for building the model. 

0 

Figure 6: Correlation between the estimated 
PMAX and the measured PMAX. The correla- 
tion shown here is based on a hold out data set 
which was not used for building the model. 

The model for AFR estimation uses the same 
variables as the one we propose for the PMAX 
estimation, except for the averaging. The win- 
dow of interest was chosen from 10 degrees after 
ignition to 60 degrees after ignition. The linear 
output corresponds to the AFR. 
We iise the same method for evaliiation of the 
model as in the previous section; the ANN 
model was compared with both the &-test and 
with a linear model. Results arc as shown in 
lable 2. The ANN model performs an order of 
a magnitude better than the linear model, and 
the results are within the margin of error of the 
optimal NMSE estimated by the 6-test. 
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Residual of the AFR estimation 
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Figure 7: Residual of the AFR estimation. The 
residual are based on a hold out data set which 
was not used for building the model. 
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Figure 8: Correlation between the estimated 
AFR and the UEGO AFR. The correlation 
shown here is based on a hold out data set which 
was not used for building the model. 

Figure 7 shows the residual of the ANN model. 
The correlation between the estimated AFR and 
the UEGO AFR is shown in figure 8. 

DATA 
The data was collected on a four cylinder 16 
valve Ope1 1600cc engine. The measurements 
were made using an AVL670, the pressure trans- 
ducer used was of a piezo-electric type, and 
the UEGO sensor was an NGK TL-7111-Wl 
mounted 3 cm downstream from the exhaust 
valve. 

4The confidence limits estimated by bootstrapping. 

I I 

Linear Model I 0.212f.0.008 I 0.207&0.004 

Table 2: Performance of the two AFR models. 
The ANN model performs about 10 times better 
than the linear model. (The f part is the con- 
fidence limits based on the size of the dataset.) 

r RPM 1 13. 20. 22. 25. 25, 25, 40 ( ~ 1 0 0 )  I 

1 Lambda 1 0.90, 0.95, 0.98, 1.00, 1.02, 1.05, 1.10 I 
Table 3: The operating points in the data set 
used for building and validating the models. A 
total of 49 x 500 data points were used. 

The engine was run under seven different RPM, 
torque, and ignition conditions, and, within 
each of the conditions, seven different AFR. 
This results in a total of 49 operating points, 
listed in table 3. Data from 500 consecutive 
combustion cycles were collected for each of the 
operating points. 

CONCLUSIONS 
We have demonstrated that it is possible to use 
the ionization current signal to get good esti- 
mates of the air-fuel ratio and the position of the 
pressure peak for each individual cylinder. This 
allows independent control of the cylinders, and 
in the PMAX case even on a cycle-by-cycle basis. 
The AFR model produces an average of several 
consecutive combustion cycles, due to the slow 
dynamics of the UEGO sensor used as a ref- 
erence, which degrades the performance of the 
control at transients. 
The non-linear ANN models we propose pro- 
duce significantly better estimates than linear 
models. In the AFR case, the ANN model is 
in the order of a magnitude better, and in the 
PMAX case, the ANN model is twice as good as 
the linear model. The models are also compared 
with a non-parametric test, the &test, which 
shows that the proposed ANN models are close 
to optimal, or even optimal. 
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