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ABSTRACT 
 
Tendinopathies are painful tendon conditions of presumably multifactorial genesis. In tendinosis, as in 
Achilles tendinosis, there is apart from pain also morphological changes which are described as 
degenerative with no signs of inflammation. The exact mechanisms behind these conditions are still, to 
a large extent, unknown. Pain, being the foremost impairing symptom, leads us to the hypothesis that 
nerves are deeply involved in the symptoms and processes of Achilles tendinosis. Locally produced 
nerve signal substances may also be involved in the processes. Knowledge of the innervation patterns 
within the tendon and knowledge on a possible local nerve signal substance production are therefore 
of utmost importance. There is a lack of information on these aspects.  
   The specific aims of this thesis were 1) to investigate the innervation patterns regarding general, 
sensory, cholinergic and sympathetic innervations, and 2) to examine for the possible occurrence of a 
production of nerve signal substances and a presence of receptors related to these in the tendon cells, 
the tenocytes. Painfree normal and tendinosis Achilles tendons were examined. 
   Immunohistochemistry, using antibodies against the general nerve marker PGP9.5, the synthesizing 
enzymes for acetylcholine (choline acetyltransferase; ChAT), and catecholamines (tyrosine 
hydroxylase; TH), the vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), substance 
P and calcitonin gene-related peptide, was applied. Immunohistochemistry was also used for the 
delineation of muscarinic (M2R), adrenergic (α1-AR) and NPY-ergic (Y1 and Y2) receptors. To detect 
mRNA for TH and ChAT, in situ hybridization was used. 
   In normal Achilles tendons, as well as in the tendinosis tendons, there was a very scanty innervation 
within the tendon tissue proper, the main general, sensory and sympathetic innervations being found in 
the paratendinous loose connective tissue. Interestingly, the tenocytes showed immunoreactions for 
ChAT, VAChT, TH, M2R, α1-AR and Y1R. The reactions were clearly more observable in tendons of 
tendinosis patients than in those of controls. The tenocytes of tendinosis patients also displayed 
mRNA reactions for ChAT and TH. Nevertheless, all tenocytes in the tendinosis specimens did not 
show these reactions. Immunoreactions for α1-AR, M2R and Y1R were also seen for blood vessel 
walls.  
   The present thesis shows that there is a very limited innervation within tendon tissue proper, whilst 
there is a substantial innervation in the paratendinous loose connective tissue. It also gives evidence 
for an occurrence of production of catecholamines and acetylcholine in tenocytes, especially for 
tendinosis tendons. Furthermore, that ACh, catecholamines and NPY can have effects on these, as well 
as on blood vessels, via the receptors observed.  
   The observations suggest that Achilles tendon tissue, whilst containing a very scarce innervation,  
exhibits autocrine/paracrine cholinergic/catecholaminergic/NPY-ergic effects that are upregulated in 
tendinosis. These findings are of great importance as the results of such effects may mimic processes 
that are known to occur in tendinosis. That includes effects related to proliferation and angiogenesis, 
and blood vessel and collagen regulating effects.  
    In conclusion, within the Achilles tendon there is a very scarce innervation, whilst there appears to 
be a marked local production of nerve signal substances in Achilles tendinosis, namely in the 
tenocytes, the cells also harbouring receptors for these substances. The observations give a new insight 
into how the tendon tissue of the Achilles tendon is influenced by signal substances and may give 
options for new treatments of Achilles tendinosis.  
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1. INTRODUCTION 
 
 
1.1 The human Achilles tendon 
 
 
1.1.1 History, historic terminology 

  
The Achilles' name originates from ancient Greek mythology and the word itself can be 
analyzed as a combination of ἄχος (akhos) "grief" and λαός (Laos) "a people, tribe, nation”. 
In other words, Achilles is an embodiment of the grief of the people, grief being a theme 
raised numerous times in the Iliad.  
   In the Greek mythology a boy named Achilles, son of king Peleus and a goddess, the Nereid 
Thetis, was to be a hero. Thetis expected her son to be invulnerable and strong. Two 
mytholocical stories have addressed this. In an early version, Thetis anointed Achilles with 
ambrosia (Figure 1), a drink of the gods that reinforced their immortality. Then she put him in 
a fire so that all his mortal parts would burn away, leaving only his immortal anointed parts. 
However, king Peleus interrupted her and pulled Achilles out of the fire before his heel was 
burnt, why it remained vulnerable.  In a later version Thetis dipped Achilles in the river Styx 
in Hades (Figure 2), believing he should become safe from all harm and weapons in the future 
to come. Achilles was held by his foot (heel) when mother Thetis dipped him. Just his heel 
remained dry and was therefore still vulnerable. 

 

 
 

Figure 1. Thetis anoints Achilles with ambrosia 
in 17th - 18th century engraving-etching by  
Johann Balthasar Probst (1673 - 1748), Fine Arts  
Museums of San Francisco.  
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Figure 2. The Goddess Thetis dipping Achilles in the river Styx.  
Donato Creti (1671 - 1749) painting around 1710.  
Museum:  Pinacoteca Nazionale, Bologna, Italy. 

 
Achilles was later in his life wounded in his right foot by an arrow shot by the Trojan prince 
Paris during the Trojan War (Figure 3). He eventually died from this wound. The story gave 
rise to the expression “Achilles heel”, meaning a persons principal weakness (Edwards 1985,  
1988, Hedreen, 1991,  Nagy, 1994). 
 

 
 

 Figure 3.  Achilles is wounded in his right heel by Paris during  
 the Trojan War, subsequently leading to his death. Peter Paul 
 Rubens (1577-1640), painting from 1630-32.   
 Museum Boijmans Van Beuningen, Rotterdam. 

 
Another mythological story claims, according to Homer, that Achilles killed the Trojan hero 
Hector in the Trojan War, pierced his heel tendons and dragged his corpse around the city 
walls for twelve days (Grimal, 1986a, Martinelli, 2000a). Historically, there have thus been 
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discussions about whether to use the term “Hectors` tendon” or the nowadays used “Achilles` 
tendon” (Grimal, 1986b, Martinelli and Maffulli 2000b, Shalabi, 2004a) when depicting the 
heel tendon. 
   The oldest known written record of the tendon inserting into the calcaneal bone being 
named for Achilles tendon, is in 1693 by the Flemish/Dutch anatomist Philip Verheyen. In his 
widely used text Corporis Humani Anatomia, Chapter XV, page 328, he described the 
tendon's location and termed it "the cord of Achilles" ("quae vulgo dicitur chorda Achillis"). 

 
 
 

1.1.2 Background for the development of chronic pain and for the current 
thesis 

 
Lifestyle in the economically growing parts of the world has driven humans to live stressed in 
their minds but physically sedentary. Many studies have shown the benefits from physical 
activity in different diseases, not least the endemic metabolic syndrome inducing 
cardiovascular diseases and diabetes (Pedersen and Saltin, 2006). When it comes to the 
musculoskeletal system our self-selected stressful life puts the biologically prerequisite of 
physical activity at hold, actually decreasing the well-being. This leaves physical activity to 
be irregularly performed, and when implemented, short and maybe too intense. This activity, 
in turn, leads to the risk of overuse problems.  
   The Achilles tendon is one part of the musculo-skeletal system that is prone to give 
symptoms. The Achilles tendon has actually been reported to be one of the most injured 
tendons in the body (Kvist, 1994, Józsa and Kannus, 1997, Alfredson and Lorentzon, 2000a, 
Paavola et al., 2000). The symptoms are, however, not always derived from extensive or 
abrupt changes in physical activity. They also occur among subjects reporting a rather 
sedentary to moderate physical activity lifestyle (Rolf and Movin, 1997).  
   Pain is the most common symptom occurring in the Achilles tendon, and the far most 
impairing one. The etiology and pathogenesis for chronic tendon pain are still not fully 
understood. Although tendon research has progressed reasonably well during the last few 
decades, the molecular and morphological fundamentals of chronic Achilles tendon pain are 
yet to be revealed. A contributing factor is that there still is a scarce knowledge about the 
innervations of the Achilles tendon. This lack of information of how the Achilles tendon is 
innervated is surprising. Many researchers have asked where the pain is coming from and 
have suggested biochemical, and thus not only structural, changes, as pain does not correlate 
that convincing with either collagen rupture or radiologic findings (Adriani et al., 1995, Gotoh 
et al., 1998, Kiss et al., 1998, Khan et al., 1999b). It would therefore be of interest to know 
what nerve signal substances that might be involved in these biochemical changes. 

 
 

1.1.3 Anatomy, fiber typing, tendon insertion 
 

The details of Achilles tendon anatomy have been described elsewere (Józsa and Kannus, 
1997, Maffulli and Almkinders, 2007). In this thesis, the anatomy of the tendon will therefore 
mainly be described in overview terms. Despite the fact that an “Achilles heel” reflects “a 
weakness”, the Achilles tendon is by necessity the largest, toughest and strongest tendon in 
the human body. Its function is thus to lift the entire body weight, sometimes implying a 
heavy load. The Achilles tendon is also called the calcaneal tendon (tendo calcaneus) or the 
triceps surae tendon (Harris and Peduto, 2006), and originates from the two tendon portions 
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formed by the extension of the gastrocnemius, with its medial and lateral head originating 
from the condyles of the femur, and the soleus muscle, and inserts into the calcaneal bone 
(Figure 4). The three muscle parts are together referred to as the triceps surae muscle. The 
gastrocnemial parts of the tendon, which range from 11-26 cm in length, are broad and flat 
near their origin, and become more round and narrow distally, while the soleus part, which 
ranges from 3-11 cm, begins as a band proximally on the posterior surface of the soleus 
muscle and becomes the anterior part of the tendon, ending medially at the insertion (Józsa 
and Kannus, 1997, Jones, 1998, Maffulli, 1999).   
   The gastrocnemius muscle is activated when jumping and running and is composed 
predominantly of type II muscle fibres (Fugle-Meyer et al., 1979). In contrast, the soleus 
muscle has more of a stabilizing function on the foot, especially when standing, and consists 
foremost of type I muscle fibres (Garret et al., 1984). The triceps surae muscle is a stance-
phase muscle that undergoes both eccentric (lengthening) and concentric (shortening) 
contractions during walking and running (Teitz et al., 1997).  
   The thinnest part of the Achilles tendon, with a crossection of 0.4-1.4 cm2 (Kvist, 1994, 
Magnusson and Kjaer, 2003), is located in the midportion of the tendon, 2-6 cm from the 
inserton of the tendon into the calcaneal bone. 
   The myotendinous junction is a highly specialized region were the tension generated by the 
calf muscles is transmitted from intracellular contractile proteins to extracellular connective 
tissue proteins, collagen fibrils, of the tendon. The collagen fibrils insert into deep recesses 
formed by the muscle cells. By this, the contact area increases by 10 to 120-fold reducing the 
force applied per suface unit during muscle contration (Józsa and Kannus, 1997). This 
arrangement is of utmost importance as great mechanical stress arise when the contractile 
force from the muscle is transmitted to the tendon. 
   The tendon insertion into the calcaneal bone is intimately related to the retrocalcaneal bursa 
and the collagen fibers are interspersed into the calcaneal bone forming a stiff 
fibrocartilaginous expansion (Józsa and Kannus, 1997) called the osteotendinous junction, 
also described as an enthesis (Frey et al., 1992). The enthesis is characterized by three 
distinctive fibrocartilages, two in the tendon (enthesial and sesamoid) and one on the heel 
bone (periosteal). Anteriorly to the horseshoe-shaped retrocalcaneal bursa, the Karger´s fat 
pad is protecting the bursa and tendon against the posterior tip of the calcaneal bone (Figure 
4). The retrocalcaneal bursa contains synovial fluid which brings down the friction between 
the bursa walls and subsequently between the Achilles tendon and the calcaneal bone 
(Reinherz et al, 1991).  

 
 



 The human Achilles tendon - Innervation and intratendinous production of nerve signal substances  

15 

 
Figure 4. Medial view of the foot and ankle, left.  

 
 
 

1.1.4 Tendon structure; aspects on architecture and molecular  
composition 

 
 
1.1.4.1 Tendon overall structure  
 
Macroscopically, a tendon is defined as a highly fibrous dense regular connective tissue, 
where the collagen fibers form bundles, and, when healthy, the tendon is known to have a 
brilliant white colour with a glistening appearance and to be fibro-elastic in its texture, 
withstanding considerable loading in working directions. Large human tendons such as the 
Achilles tendon are surrounded by a loose areolar connective tissue, called the paratenon 
(Tuite et al., 1997) and closest to the tendon tissue proper the tissue has the structure of a fine 
connective tissue sheath called the epitenon (Figure 5). This in contrast to smaller tendons in 
the hand and foot that are surrounded by a more dense connective tissue called a tendon 
sheath (Kannus, 2000).  
   Together the epitenon and paratenon are called the peritenon (Józsa and Kannus, 1997). The 
peritenon (also called paratendon) has both a visceral, inner layer continuous with the 
epitenon and a parietal layer, continuous with the deeper fascia (Salzman and Bonor, 1994). 
There is also a middle layer inbetween these two layers, called the mesotenon. The parietal 
layer and mesotenon thus, forming the paratenon. There are thus  three layers consisting of 
fibrous connective tissue with fine blood vessels, lymphatic vessels and nerves, and  forming 
the entity described as the peritenon (Gould and Korson, 1980). The interwoven fibre 
structure forms a tensile system and is working as an elastic sleeve allowing the paratenon to 
stretch several centimetres in length during tendon movement, providing a certain degree of 
tendon gliding (Salzman and Bonor, 1994, Józsa and Kannus, 1997).  
   The fibres of the Achilles tendon rotate about 90 degrees when descending to the calcaneal 
bone, leading the soleus fibres to insert medially whereas the gastrocnemius fibres insert 
laterally (Root et al., 1977).  It has been speculated that this rotation of the tendon portions 
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results in an internal stress especially in the midportion 2-6 cm proximal to the insertion 
(Józsa and Kannus, 1997, Teitz et al., 1997). 
 
1.1.4.2 Ultrastructural architecture of tendon 
 
The dense packing of fibrils forms collagen fibers, which in turn progressively aggregate into 
units forming collagen fiber bundles, namely primary (collagen subfascicles), secondary 
(collagen fascicles) and tertiary (collagen fascicle bundles) ultimately defining the tendon 
(Figure 5). The fiber bundles are able to move slightly relative to each other (pseudo-
elasticity) but the overall elasticity of tendinous tissue is very low (about 3-8%) partly due to 
the texture and partly due to the molecular composition (Putz et al., 1995). It has been 
suggested that proteoglycan bridges between collagen fibrils play a part in transmitting and 
resisting tensile stresses in tendons, contributing to the strength of the tissue (Cribb and Scott, 
1995). 
   Under polarized light microscopy, the collagen fiber bundles of tendons appear crimped 
with alternative dark and light transverse bands with a periodicity of approximately 100 µm 
(Birk et al., 1990). This pattern disappears when the tendon is stretched about 2 %, which 
corresponds to the toe region of the stress-strain curve (Figure 6) and is thought to be related 
to the straightening of the fibers (Józsa et al., 1991). Components defined as knots of collagen 
fibrils termed “fibrillar crimps” (Figure 5) conform with the overall complex ultrastructure of 
the tendon that provides high buffer capacity in harbouring forces of different directions; 
longitudinal, transversal, horizontal and rotational, all being an integral component of the 
musculoskeletal system (Franchi et al., 2007a and 2007b).  
   The fiber bundles are held together by a fibrous dense irregular connective tissue called the 
endotenon (Figure 5), in which small blood vessels and lymphatic vessels and to a small 
extent nerves are harboured, analogous to the situation in the paratenon. These areas allow the 
collagen fiber bundles to move independently of each other (Maffulli and Almekinders, 
2007).To what extent there are nerve fibers in the endotenon of the human Achilles tendon is 
not known. 

 
Figure 5. Tendon ultrastructure. Organization of collagen compounds from 
tropocollagen to the entire tendon. 
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Figure 6. Stress-tension curve. Tendon can be stretched but only to a certain extent. At 4% 
strain the tendon starts to rupture and at 8% strain it is likely to rupture (Józsa and Kannus, 
1997). 

 
 

1.1.4.3 Molecular composition of tendon 
 
The composition of human tendons have been described in terms of three categories of 
proteins: (1) collagens, (2) elastin and other extracellular matrix (ECM) proteins with elastic 
properties such as tenascin-C (Järvinen et al., 2000, Riley et al., 1996) and proteins with 
multi-adhesive properties (e.g. integrins, fibronectin, laminin), also known as non-collagenous 
(glyko-) proteins (NCP), and (3) hyaluronan (glycosaminoglycans; GAGs /proteoglycans).  
   Approximately 70-80% of the dry weight of the tendon tissue is collagen, about 1% is 
elastin and 1% is the other NCPs. Water, accounts for 65-70% of the total wet weight of the 
tendon, and is closely associated with the proteoglycans of the ECM (Movin et al., 1997, 
Kannus, 2000).  
   The water and the proteoglycans probably provide the lubrication and spacing that are 
crucial to the gliding function of the tendon (Woo and Tkach, 1989). As the water-binding 
capacity, foremost provided via the macromolecules (proteoglycans and GAGs), is 
considerably great and as the hydrophilic gel of the matrix can vary in consistence, the 
resistence of the tendon against shear and compressive or decompressive forces is high (Jòzsa 
and Kannus, 1997). Since the tendon has a relatively scarce vasculature, the matrix has a high 
viscosity not only to provide structural support but also for the purpose of mediating and 
harbouring nutrients and gases that are indispensable to the tendon.  
   The paratenon contains mainly two types of collagen, type I and III. The tendon tissue 
proper mainly consists of type I collagen (95%). There is also type III collagen, mainly in the 
endotenon (Riley, 2004), as well as V and VI types. Types III and V play a role in regulating 
fibril diameter (Birk et al., 1990), and collagen type VI, together with decorin (a leucin-rich 
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proeteoglycan), is important in the function of mediating force between the collagen fibrils 
longitudinally (Waggett et al., 1998).    
   The mechanical stability of the tendinous collagen is the most important factor for the 
mechanical strength of a tendon. The tropocollagen or "collagen molecule" is a subunit of 
larger collagen aggregates called fibrils, which are held together by electrostatic chemical 
cross-linking (Kannus, 2000).  
   The main collagenous component in the myotendinous junction is type I collagen as is the 
case in the tendon tissue proper. Also small amounts of type III collagen is found at the 
myotendinous interface. In addition, high concentrations of the ECM adhesive protein 
fibronectin are present on the muscle cell surfaces of the junction.  

 
 

1.1.5 Tenocytes and tenoblasts 
 
Tendon tissue is regarded as dense connective tissue and the vast majority of its cells are 
fibroblasts called tenocytes. 90-95% of the cells in tendons are thus tenocytes, the cells partly 
being referred to as tenoblasts (cf below), and to 5-10% chondrocytes, located at the insertion, 
synovial cells, and vascular cells (Kannus, 2000). Many other types of cells such as 
inflammatory cells, macrophages and cells with myofibroblastic appearances can be found in 
a pathologically changed tendon (Józsa and Kannus, 1997), but in principle not in healthy 
tendons (Khan et al., 1999a).  
   The tenocyes of the Achilles tendon tissue proper are specialized fibroblasts that is situated 
within the collagen fascicles. In a healthy tendon, they appear as star-shaped cells in cross 
sections, and they appear as cells lying in rows in parallel with the tendon fibers in 
longitudinal sections. They synthesize both fibrillar (collagens) and non-fibrillar components 
of the extracellular matrix, and are able to reabsorb collagen fibrils (Józsa and Kannus, 1997).     
   Tenocytes are slender, spindle shaped, elongated cells with a sparse cytoplasm (Chuen et 
al., 2004) and are described to have two different cell processes, one being flat extending 
laterally and delineating the collagen fiber bundles (McNeilly et al., 1996), the other running 
longitudinally within the tendon. In this three-dimensional network, intercellular 
communications take place within the rows of tenocytes as well as between them through 
gap-junctions. The gap-junction proteins, connexin 32 and 43, are thought to be of importance 
in co-ordinated response of the tendon cells to mechanical loading, connexin 32 mainly being 
found between cells lying in a row, and connexin 43 linking cells from different rows together 
(McNeilly et al., 1996). Gap junction communication with connexin 32 stimulates and that 
with connexin 43 inhibits collagen synthesis when the tendon cells are subject to loading 
(Waggett et al., 2006).  
   There are yet no specific markers for tenocytes or tenoblasts to differ them from other 
fibrocytes or fibroblasts (Riley, 2005). In the literature, there is also to some extent a 
confusion about how to define the tenocytes and tenoblasts. Nevertheless, certain criteria are 
defined in a study by Chuen and collaborators on the patellar tendon (Chuen et al 2004). It is 
described that tenoblasts are those tendon cells that are rounded, and that have an ovoid 
nucleus, and that  tenocytes are the slender and spindle-shaped tendon cells (c.f. above). 
Furthermore, the tenoblasts are suggested to be an activated form of tenocytes, which are 
needed in situations when high matrix turnover is demanded, e.g. during healing responses 
(Davidson et al. 1997) or that are activated in response to tendon injury (Kakar et al., 1998).   
   In line with the description given above, and in accordance with tendon cells seen in 
“growing tendons” in young individuals, several researchers describe the tendon cells with an 
aberrant (bulky, ovoid, widened, rounded) appearance as being tenoblasts, (Ippolito et al., 
1980, Józsa and Kannus, 1997). The immature tendon cells of newborns are numerous, and 
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are known to vary in appearance (being elongated, ovoid or polygonal), but in the maturing 
process of the tendon, these cells change into the typical appearance of a slender spindle-
shaped form (Kannus, 2000).  
   There is a theory that states that the ovoid tendon cells are derived from connective tissue 
progenitor cells (Muschler and Midura, 2002). 
   Recent research has also shown that the organelles may differ between tenoblasts and 
tenocytes, the tenoblasts, but not the tenocytes, carrying a well developed rough 
endoplasmatic reticulum, but rather few mitochondria in their cytoplasm (González Santander 
et al., 1999). This is analogous to the fibroblast cell being a metabolic activated state of the 
fibrocyte, capable of synthesizing extracellular matrix compounds and collagen (Kannus, 
2000).  
   The proliferation and apoptosis rates of the ovoid tendon cells and their expression of 
procollagen type I (procol I), and heat shock protein 47 (hsp47), have been shown to be 
higher than those of the elongated tendon cells, suggesting that these former cells are more 
active in matrix remodelling (Chuen et al., 2004). The ovoid cells have also been discovered 
to express matrix metalloproteinase 1 (MMP1), bone morphogenetic protein 12 (BMP12), and 
13 (BMP13), and transforming growth factor beta1 (TGFbeta1) in higher levels than the 
elongated cells. These findings are suggested to display differences between the cellular 
activities of tenoblasts and tenocytes (Chuen et al., 2004).  
   Furthermore, studies on mice cell lines indicate, that some tendon cells have properties 
partly resembling mesenchymal stem cells (MSC), as they could differentiate into e.g. 
adipocytes or osteoblasts (Salingcarnboriboon et al., 2003). Studies on human fibroblast cell 
lines support the existence of stem cell-like characteristics for fibroblasts (Rieske et al., 2005).  

 
 

1.1.6  Blood supply 
 
   The blood supply to the Achilles tendon has been investigated in several studies (e.g. Carr 
and Norris, 1989, O`Brien, 1997, 2005, Tuite et al., 1997, Ahmed et al., 1998). Branches of 
the peroneal and posterior tibial arteries supply the Achilles tendon and three regions where 
the blood supply is received to the tendon have been identified: (1) the musculotendinous 
junction, (2) along the length of the tendon, and (3) the tendon-bone junction (Figure 7). 
Vessels originating from the gastrocnemius and soleus muscles supply the tendon at the 
musculotendinous junction. The blood vessels to the distal part of the tendon, at the region of 
the enthesis, originate from an arterial plexus at the posterior part of the calcaneal bone. This 
supply starts at the margin of the insertion and extends up the endotenon for about 2 cm 
proximally (Lagergren and Lindholm, 1959, Karcz et al., 1996, Ahmed et al., 1998, Zantop et 
al., 2003).  
   Tendon tissue predominantly contains extracellular tissue with a low metabolic rate. Hence, 
this tissue is supposed to have a rather low requirement of blood supply, compared to other 
tissues. Qualitative and quantitative histological analyses have actually shown that the tendon 
tissue proper (the central parts of tendons) of the Achilles tendon has a rather poor blood 
supply throughout its length, as determined by the small number of blood vessels per cross-
sectional area. This may suggest that poor vascularity may prevent adequate tissue repair 
following trauma, leading to further weakening of the tendon (Ahmed et al., 1998).       
   The degree of vascularity within tendon tissue has, nevertheless, been shown to vary in the 
human Achilles tendon, the distal and proximal part having similar intravascular volume 
while a lower vascularization volume occurs for the middle part, defined as 2-6 cm from the 
insertion into the calcaneal bone (Józsa and Kannus, 1997, Stein et al., 2000, Zantop et al., 
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2003). The inner part of the enthesis is, however, normally thought to be avascular (Åström et 
al., 1994, Benjamin and McGonagle, 2001).    
   Varying suggestions concerning the blood sypply within the tendon tissue proper of the 
Achilles tendon are, however, reported. Studies using microdialysis technique (Langberg et 
al., 1998) and Laser Doppler flowmetry (Åström, 2000) have thus shown an even distribution 
in blood flow in the tendon, but no conclusion about how this may affect tendon pathology 
has yet been established (Theobald et al., 2005, Langberg et al., 1998). Langberg and 
collaborators showed a fourfold increase in peritendinous blood flow 5 cm proximal to the 
insertion, compared to at 2 cm proximally, when exercising, supporting the concept of giving 
patients exercise to promote circulation to help the healing in the tendon during rehabilitation 
(Langberg et al., 1998). However, in a recent study in 20 cadaveric lower human limbs, it was 
again shown that the mid-section of the Achilles tendon was markedly more hypovascular 
than the rest of the tendon (Chen et al., 2009). Consensus on this issue apparently is awaiting  
further research.  
   The small arterioles, venules and capillaries of the intratendinous networks are the 
microvascular units of the tendon. New imaging techniques can identify these areas as high 
signal foci, morphologically representing blood vessel areas of the connective tissue septa, 
called the endotenon (see above) (Hess et al., 1989, Józsa et al., 1991, Mantel et al., 1996).  
 

 

 
 
Figure 7. Blood supply of the Achilles tendon comes from three regions: The musculotendinous junction 
(A), along the length of the tendon (B),  and the bone-tendon junction (C). 
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1.1.7 Innervation and signal substances 
 
 
1.1.7.1 Nerves, sensory endings, neuropeptides, neurotransmitters and their receptors 
 
There is no detailed study of the innervation of the Achilles tendon from its myotendinous 
junction down to the enthesis. Anatomically, the nerves have been described to derive from 
the attaching muscles and from small nerve fascicles coming from cutanous nerves, especially 
the sural nerve (Figure 8) (Stillwell, 1957b). Animal studies have shown that many of the 
nerve fibres terminate in sensory nerve endings in the connective tissue surrounding the 
tendon, the paratenon (Ackermann et al., 2002). However, a few nerves enter the tendon 
tissue proper following the vascular channels in the endotenon. They also anastomose 
obliquely and transversely inside the tendon, ultimately terminating into nerve endings.  
   Four types of the sensory nerve endings have been decribed in the locomotor system, 
including to some extent in tendons. These include Type I or Ruffini corpuscles (pressure and 
stretching sensors), II or Vater-Pacini corpuscles (pressure sensors, reacting to acceleration 
and deceleration of movement), type III or Golgi tendon organs (tension receptors) and typ IV 
or free nerve endings (pain receptors, also called nociceptors) (Józsa et al., 1993, Józsa and 
Kannus, 1997, Kirkendall and Garrett, 1997, O´Brien, 1997). Both Golgi tendon organs and 
free nerve endings have been found in relation to Achilles tendons, foremost in the 
myotendinous junction and insertion areas (Józsa and Kannus, 1997, Grey et al., 2007).  
   Until recently, the tendon tissue proper of larger tendons has been considered not only to be 
relatively hypovascular but also hyponeural. The innervation that has been identified in the 
Achilles tendon has been stated to be mainly unmyelinated and afferent (Stillwell, 1957a, 
Józsa and Kannus, 1997). In 1994, SP-innervation was found to be scarcely present in the cat 
Achilles tendon (Marshall et al., 1994). In the last decade, several neurotransmitters and 
neuropeptides have been discovered for the human patellar tendon. Studies on the human 
patellar tendon have thus shown presence of sensory (SP- and CGRP-containing) nerve fibers, 
sometimes forming larger nerve bundles (Aune et al., 1996, Lian et al., 2006), in the vicinity 
of blood vessels, and in relation to arteries and some of the small vessels in the loose 
paratendinous connective tissue (Danielson et al., 2006a). Furthermore, sympathetic nerve 
endings have been found in the tendon tissue proper of the patellar tendon, the majority of 
those being clearly related to blood vessels (Lian et al., 2006). Recent research has also shown 
that there is a presence of a sympathetic innervation in the paratendinous connective tissue of 
the patellar tendon and to a small extent in the endotenon of this tendon. The sympathetic 
innervation is especially marked in the paratendinous connective tissue of the patellar tendon 
(Danielson et al., 2007b, Danielson et al., 2008).      
   AChE-containing nerves have been found to be occasionally present in the regions of small 
blood vessels inside the human Achilles tendon (Alfredson et al, 2001a). Besides this 
information, nothing is known concerning cholinergic innervation patterns of the Achilles 
tendon. Apart from the findings of a substantial sympathetic/sensory innervation in the ventral 
paratendinous connective tissue (Andersson et al., 2007), there is also a lack of information on 
the sympathetic and sensory innervations innervation within tendon tissue proper of the 
Achilles tendon of man. There is no information at all concerning the NPY-ergic innervation 
of the human Achilles tendon. These facts are one of the bases for the studies in the present 
thesis.  
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Figue 8. The nerve supply of the Achilles tendon. Innervation of the Achilles tendon occurs via the suralis 
nerve and cutaneous branches, mainly coming from the saphenus and tibialis nerves. The latter branches are 
shown principally in the figure.  
 
 
 

1.1.7.2 Signal substances traditionally associated with neurons but also being produced by 
non-neuronal cells 

 
A lot of effort has been made during the last years into investigating the possible production 
of substances, traditionally found in neuronal cells, in non-neuronal cells. These 
investigations are of importance as a backround for the present thesis. 
   The neurotransmitter acetylcholine (ACh) has thus been found in a variety of immune cells, 
in the epithelium of airways and epidermis, and in smooth muscle cells and endothelial cells 
(Wessler and Kirkpatrick, 2001, Horiuchi et al., 2003, Kawashima and Fujii, 2003). ACh is 
also known to be produced in skin fibroblasts (Grando, 2006) and urothelial cells (Yoshida et 
al., 2008). Cancer cells, such as those in small-cell lung carcinoma (Song et al. 2007), do also 
synthesise and secrete ACh. ACh production also occurs in a variety of lower organisms 
(Horiuchi et al., 2003, Wessler and Kirkpatrik, 2008).  
   Catecholamines are produced in e.g. the suprarenal gland and in various endocrine cells (i.e. 
Zouboulis, 2004). Recent studies in the laboratory at Anatomy suggest that there is local 
production of catecholamines in cells of synovial tissues (unpublished observations). 
Neuropeptide Y (NPY) is produced in non-neuronal cells such as neuroblastoma cells (Dozio 
et al., 2008). 
   Of particular importance for the present thesis are the reports of local production of nerve 
signal substances in tendons. Thus, studies using immunohistochemistery and in situ 
hybridization have given evidence of an occurrence of production of both ACh (Danielson et 
al., 2006b, 2007a) and catecholamines (Danielson, 2007b, 2007c) in the tenocytes of the 
human patellar tendon. Of interest is the fact that these evidences were much more evident in 
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tendinosis patellar tendons than in normal such tendons. Furthermore, results from studies on 
the vesicular glutamate transporter VGluT2 suggest that glutamate is produced and released 
by tenocytes in Achilles and patellar tendons, and much more so in tendinosis tendons than 
normal tendons (Scott et al 2008). mRNA for substance P (SP) has also been shown for 
Achilles tendon tenocytes, particularly in tendinosis tendons (Andersson., 2008). 
   In the recent studies on patellar tendinosis, it was shown that the tenocytes not only showed 
expressions of the enzymes that are related to ACh and catecholamine production but that 
they also showed expressions of  both ACh receptors (muscarinic receptors) (Danielson et al., 
2006b, 2007a) and adrenoceptors (Danielson 2007b). In comparison, fibroblasts, the 
equivalent of tenocytes (tenoblasts), have been shown to express ACh receptors in 
mammalians (Sekhon et al., 2002). Of further importance is the fact that avian tenocytes have 
been shown to express mRNA for α1-adrenoreceptors, as seen via use of the RT-PCR 
technique (Wall et al., 2004). 
   Of interest, with tendinosis in mind, is the fact that 1) both norepinephrine and ACh can 
have proliferative effects and effects on collagen deposition (Oben et al., 2003a, b, Sekhon et 
al., 2002) and 2) proliferation effects concerning both tenocytes and blood vessels, as well as 
changes in the continuity of collagen, occur in tendinosis (e.g. Khan et al 1999a). NPY has 
vasoregulatory as well as angiogenic and proliferative effects (Hansel et al., 2001, Abe et al., 
2007, Grundemar & Håkansson 1993).  
   The observations favouring an occurrence of nerve signal substances and presence of 
associated receptors in the tendinosis patellar tendon suggest that locally delivered nerve 
signal substances may play roles in the pathology of, or in the attempted repair response of, 
tendinosis.  
   There is no evidence as to whether there is a local production of ACh, catecholamines or 
NPY in the Achilles tendon. It is also not known if there are cholinergic or adrenergic 
receptors, nor NPY-ergic receptors, in the tenocytes of the Achilles tendon. That is one 
background for performing the studies in the present thesis. 

 
 
1.1.7.3 ACh, catecholamines and NPY: Enzymes for their production and receptors 

to which they bind 
 

When studying the possible existence of the signal substances described above concerning the 
Achilles tendon, it is of importance to clarify the enzymes for their production, and the 
receptors to which they bind. Aspects on acetylcholine, catacholamines and NPY are 
therefore given. 
   ACh is mainly synthesised by ChAT (choline acetyltransferase). However, also the enzyme 
carnitine acetyltransferase (CarAT) can participate in its synthesis (Tusek, 1982). The 
vesicular acetylcholine transporter (VAChT) shuffles ACh from the cytoplasmic site of 
synthesis into the storage vesicles in the nerve terminals (Tucek 1982, Eiden 1998). Another 
transporter is also involved in ACh metabolism, namely the so called choline transporter 
(CHT1), providing the uptake of choline for ACh synthesis in neurons (Okuda et al., 2000). 
The enzyme that degrades ACh is acetylcholinesterase (AChE).  
   It is well-known that there are five different molecular and pharmacological muscarinic 
acetylcholine receptors (mAChRs): M1, M2, M3, M4 and M5. They all display similar 
pharmacological properties, including activation by acetylcholine (ACh) and muscarine, and 
inhibition by atropine. Nevertheless, they do also demonstrate varying pharmacology and 
properties regarding effector mechanisms (Caulfield and Birdsall, 1998). The muscarinic 
AChRs that are expressed on smooth muscle cells are mainly of the M2 as well as the M3 
subtypes (for a review, see Caulfield and Birdsall, 1998).  
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   As described above, also catecholamines are interpreted to be produced by tenocytes. In the 
previous studies depicting catecholaminergic features in tenocytes for the patellar tendon, 
stainings were made for the rate limiting enzyme in catecholamine production, namely 
tyrosine hydroxylase (TH) (Kaufman, 1995).  
   In blood vessels, adrenergic α1-ARs mediate constriction (Leech and Faber, 1996) and α2A-
ARs mediate relaxation (Chotani et al., 2004). 
   NPY, which belongs to the family of peptides containing peptide YY and pancreatic 
polypeptide, is a 36-aa neurotransmitter/neuromodulator that was isolated from the porcine 
brain (Tatemoto et al 1982). This neuropeptide activates the Y receptors, which are G-protein-
coupled receptors, highest affinity being shown for Y(1), Y(2) and Y(5) receptors (c.f. Lerch 
et al 2005, Lindner et al 2008). NPY is markedly involved in blood vessel regulation 
(Grundemar and Håkanson, 1993, Linder et al., 1996). Given the known effects of NPY, it 
would be of interest to know if there are Y receptors in the human Achilles tendon and to 
what extent they occur in tendinosis. Targeting Y receptors has been suggested for several 
conditions such as obesity, metabolic disorders, hypertension and heart failure (Pedrazzini et 
al., 2003, Pons et al., 2004, Körner et al., 2008). A main feature in most of these conditions is 
the occurrence of large numbers of Y1 receptors in the affected tissue (Abe et al., 2007, 
Körner and Reubi, 2007).  
    There is no information in the literature concerning the presence or absence of cholinergic, 
adrenergic or NPY-ergic receptors in relation to blood vessel walls, or in other structures, for 
the Achilles tendon. That is the fact for man as well as animals. 

  
 

1.1.8 Tendon metabolism  
 

At the molecular level, all three pathways of energy metabolism are represented in the tendon; 
the Krebs cycle, anaerobic glycolysis and the pentose phosphate shunt. The ability to use the 
Krebs cycle and the pentose phosphate shunt decreases with age, whereas the anaerobic 
glycolysis does not (Józsa and Kannus 1997).   

       A few decades ago, tendon tissue was suggested to be a rather metabolic inactive structure 
and to have a low metabolic turnover. More recent studies have, however, revealed that 
tendon tissue is a tissue with an active energy metabolism, containg cells 
(tenocytes/tenoblasts) that produce molecules. These cells are related to both structural 
effects, producing collagens and other matrix proteins (Józsa and Kannus 1997), and 
signalling effects (Danielson P, 2007), expressing enzymes and receptors normally appearing 
in cells in other tissues, especially in neurons. The biosynthetic function varies over time, but 
is generally high during growth and decreases with aging. Tendon disorders (Kannus, 2000) 
and various loading conditions (Kjaer et al, 2005) may change the levels of this function over 
time.  
   It has been shown that the ECM of tendons has the ability to adapt to loading, e.g. through 
exercise (Kjear et al, 2006). When loading the tendon, there is an increase in collagen 
synthesis and proteolytic metalloproteinase activity. These changes modify the mechanical 
properties and the viscoelastic characteristics of the tissue, decrease its stress-susceptibility 
and probably make it more load-resistant (Riley 2004, Kjaer et al., 2006). 
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1.1.9 Biomechanical aspects  
 
 
1.1.9.1 General aspects 
 
As late as in the 1960s, tendons were considered to be relatively inert and inelastic structures, 
although it is now well accepted that tendons have the ability to store and recoil energy (Kjaer 
et al., 2006).  
   When the calf muscles contract they act on the Achilles tendon, forcing the foot into plantar 
flexion. This contraction enables standing on the toes, walking, running, and jumping. The 
Achilles tendon is subject to a person’s entire body weight during each step and depending 
upon speed, stride, terrain and additional weight being carried or pushed, each Achilles 
tendon may be subjected to substantial forces.  
   In the rat, the mechanical properties of tendons have been shown to change, e.g. leading to 
increased stiffness, during loading (Monti et al., 2003). A strain level above approximately 4 
% starts damaging the tendon fibers and at 8 % the tendon ruptures (ultimate strain) (Józsa 
and Kannus, 1997). Heavy forces are involved in the Achilles tendon function. Forces that are 
12,5 times the body weight during running and 3,6 times the body weight during slow 
walking have been described to act on the tendons (Komi, 1990, Komi et al., 1992) (c.f. Fig 
6). 
   Elastic energy is, to various degrees, stored in tendons. The capability of this is very 
important and the Achilles tendon has been shown to be specialized in this respect. It has been 
shown that the shorter time between the switch from dorsi- to plantarflexion is, the greater is 
the elongation of the tendon. Furthermore, the work that is loaded onto the tendon increases 
with higher switch frequency (Kubo et al., 2000). Plantarflexion immediately preceded by 
dorsiflexion of the foot (as in walking, running and jumping), has been shown to leave a task 
of storing and releasing elastic energy to a larger extent to the tendon, compared to plantar 
flexing the foot solely, presumably due to nearly isometric work of the muscle fibers in the 
calf muscles around the time of the switch (Kawakami et al., 2002). This demonstrates the 
importance of coordinated structural elements in the muscle and tendon to withstand the very 
rapid force shifts that are present in these tissues.  
 
1.1.9.2 Exercise, immobilization and age 
 
   Studies by Kjaer and collaborators have recently shown an increase in matrix turnover, 
blood flow, oxygen demand, and levels of synthesis of collagen synthesis and matrix 
metalloproteinases with mechanical loading (Kjaer et al., 2005). Several studies in animals 
have shown the tendons to become larger, stronger and more resistant to injury and to receive 
increased tensile strength, elastic stiffness and total weight by exercise (Józsa and Kannus, 
1997, Kannus et al., 2000, Buchanan and Marsh, 2001). Younger animals seem to adapt by 
increasing the size and weight of their tendons and mature animals to adapt more by structural 
changes inside the tendon (Kannus et al., 2000).  
   Immobilization results in reductions in the mechanical properties of the tendon (Kirkendall 
and Garrett 1997, O´Brien 1997). Research also indicates that tendons subjected to injury and 
immobilization require mechanical loading to recover (Kjaer, 2004, Ingber, 2005), the 
adequate loading though still remaining unknown. 
   In vivo and in vitro data on tendons during aging are to some degree contradictory, but 
taken together one could argue that most of the studies confirm that the aging processes lead 
to alterations in the biomechanical properties in the muscle-tendon complex, such as a loss of 
elasticity in tendon and a decline in muscle force (Narici and Maganaris, 2006). 
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1.2 Achilles tendinosis 
 
 
1.2.1 Terminology, definition, classification 
 
 
1.2.1.1 Terminology of tendon disorders 
 
The decriptions of tendon diseases and their pathology are historically rather heterogenous.  
   Until the late 1990s the most commonly used nomenclatures included tendinitis (tendonitis), 
peritendinitis (peritendonitis, paratendonitis, paratendinitis), overuse injury of the tendon, 
tenopathy, and tendinopathy (Åström and Rausing, 1995, Järvinen et al., 1997, Khan et al., 
1999a). In addition, partial and total ruptures can be diagnosed. In the insertion area, 
including the region of the retrocalcaneal bursa, descriptive diagnoses such as bursitis, distal 
achillodynia, enthesitis, insertion tendinopathy, insertion tendinitis, insertitis and 
retrocalcanear bursitis are referred to. Often these conditions are temporally distinguished 
and referred to as acute or chronic.  
   A very commonly used and term is tendinopathy This is a generic description of the clinical 
condition in tendons arising from overuse characterized by a clinical combination of pain and 
swelling of the tendon accompanied by impaired ability to perform strenuous activity 
(Järvinen et al., 2001, Sharma and Maffulli, 2006). However, the term tendinopathy, does not 
give any information about the underlying pathology of the tendon disorder (Maffulli et al., 
1998, Khan et al., 1999a).The widespread use of this term underlines the fact that the 
knowledge of the pathogentic processes in painful tendons is to a large extent still lacking.  
   Tendinitis, peritendinitis, and paratendonitis (Kvist et al., 1987) describe conditions with an 
inflammatory component (Puddu et al., 1976), and in clinical practice, these have even been 
the misnomers for conditions in tendons when no inflammatory reactions can be found (Khan 
and Cook, 2003a). During the past decades researchers have, through histological (e.g., Khan 
et al., 1996, Movin, et al., 1997, Järvinen et al., 1997, Teitz et al., 1997, Maffulli et al., 1998, 
Riley, 2004) and intratendinous microdialysis (Alfredson et al, 1999, Alfredson et al, 2001b) 
studies shown that the chronic (more than 3 months of symptoms and signs) painful tendon 
conditions are not inflammatory at the moment in time when tissue is harvested or the 
microdialysis is performed, respectively.  
   Not all tendinopathies are overuse chronic conditions, as one third of the patients with 
Achilles tendinopathy have not participated in vigorous physical activities (Rolf and Movin, 
1997). Several studies have instead suggested a process with partly degenerative tendon tissue 
changes. This started discussions suggesting another term, “tendinosis”, for chronically 
painful tendon conditions (e.g. Khan et al., 1999a, 2002, Alfredson and Lorentzon, 2000a, b). 
Even this term has been under debate. Degenerating and/or mechanically damaging, or other, 
processes are leaving the tendon to loose its features and the tendon tissue becomes yellowish, 
looses its glistening appearance, and changes with respect to biomechanical properties (Kvist, 
1994).  
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1.2.1.2 Definition of tendinosis 
 
Patients having tenderness, swelling and impaired tendon function are generally diagnosed 
to have tendinopathy. If objective evaluation of the tendon, using ultrasound, MRI or biopsies, 
show structural tendon changes in the affected part of the tendon, this is generally defined as 
tendinosis (Alfredson, 2005a).  
   There are also other definitions. One definition implies that tendinosis should be regarded 
only as a histopathological diagnosis (Maffulli et al., 1998, Peers and Lysens, 2005). 
    
 
 

 
 

Fig. 9. The lower limb, right leg. Overview of the anatomy. Location of tendon pathology (inset). Note the 
hyperaemia (symbolically shown) in the midportion Achilles tendnosis. 
 
 
 

1.2.1.3 Classification and grading of tendinosis 
 
Chronic painful Achilles tendon conditions can also be assessed topically, three main areas 
along the tendon being identified; the proximal part (muscle-tendon junction), midportion 
(Midportion Achilles tendinosis) (Movin, 1998) and distal part (Insertional Achilles 
tendinosis) (Fahlström, 2001) (Fig. 9). At the proximal part, “Tennis leg” rupture can occur 
(Johnson, 2000). 
   The severity of Achilles tendinosis has been described to evolve in four stages. From no 
pain during exercise (Stage 1), to a stage when it hurts too much to exercise or run (Stage 4). 
These are expressed in the VISA-A questionnaire (Victorian Institute of Sport Assessment-
Achilles) (Robinson et al., 2001). This questionnaire is a helpful tool in evaluating the 
symptoms, and to assess adequate starting therapeutic interventions, but also to depict work 
ability. A validity investigation of this questionnaire has been performed by (Grävare 
Silbernagel, 2006), where it is stated that it can be used in research as well as in the clinic. 
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   Histopathologic classifications, or rather grading systems, have also been  suggested. 
Åström and Rausing, in 1995, graded the histopathologic appearances from 0 (normal) to 3 
(maximally abnormal) when comparing normal Achilles tendons with Achilles tendons with 
severe tendinosis (Åström and Rausing, 1995). The Bonar scale (Cook et al., 2004a), uses a 
fourpoint scale to semiquantitatively assess histopathological changes in tendinosis.  
 
 
1.2.2 Histopathological tendon tissue changes 

 
The histopathological findings in Achilles tendinosis have been well described by several 
authors (Åström and Rausing, 1995, Józsa and Kannus, 1997, Järvinen et al, 1997, Khan et 
al., 1999a). In tendinosis tendons the collagen is disorganized, and there is an increased 
mucoid ground substance, mostly GAGs (glycose aminoglycanes) (Movin et al., 1997) that is 
deposited between the collagen fascicles. The tenocytes become bulky, plump and ovoid, and 
have more rounded nuclei. Some tenocytes show a fibroblastic or myofibroblastic appearance 
and there is a varying degree of hypercellularity. Ingrowth of small vessels are seen, but no 
inflammatory cells as a sign of inflammation (Khan et al., 1996, 1999a).  

  
 

1.2.3 Diagnostics, symptoms and signs 
 
1.2.3.1 Patient history, physical examination 
 
Physical examination should include thorough inspection to search for muscle atrophy, 
swelling, asymmetry, and erythema of the tendon, range-of-motion testing, palpation for 
tenderness, and tiptoeing that simulates tendon loading in order to clarify if this reproduces 
pain (Wilson and Best, 2005). The Achilles tendon is easy to inspect and palpate with the 
patients standing on their knees on the examination bench, allowing their feet to hang over the 
side. The continuity of the muscle-tendon complex can be assessed through the calf muscle 
squeeze test (Grävare Silbernagel, 2006). If the muscle tendon unit is intact the foot will 
plantarflex during the test. Clinically it is important to avoid missing an Achilles tendon 
rupture as the treatment is totally different compared to that of tendinosis. A total rupture 
leaves an inability of tiptoeing and the calf muscle squeeze test is thus  negative in affected 
patients (Grävare Silbernagel, 2006). 

 
1.2.3.2 Diagnosis and imaging 
 
Classification can be taken further by different imaging techniques such as magnetic 
resonance imaging (MRI) and ultrasonography (US).  
   US techniques for examining the musculoskeletal system became widely accepted and 
spread in the beginning of the 1980`s (Moss and Mowat, 1983, Laine 1984). In its simplest 
forms and concerning Achilles tendinosis, US shows changes in the tendon consisting of 
localized widening, an irregular fibre structure of collagen and hypoechoic areas 
(Archambault et al., 1998, Öhberg et al., 2001b), whereas MRI shows a localized widening 
and increased signal intensity (e.g. Shalabi et al., 2002, 2004). US, at its best using high-
resolution probes (Grechenig et al., 2002) and/or colour power Doppler flowmetry, can 
measure the velocity (colour Doppler velocity; CDV) and direction of the blood flow in the 
tendon tissue proper and in the paratendinous connective tissue. Both these methods 
contribute to reveal hypoechoic areas, irregular tendon structure, localized tendon widening, 
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increased blood flow due to hypervascularity (neovascularisation), and paratenon thickening 
(Öhberg et al., 2001a, Öhberg and Alfredson, 2002, Leung and Grifith, 2008). MRI and US 
are regarded as the methods of choice in the investigation of the Achilles tendon, both being 
described to be justified in tendon diagnostics in general and to have a good correlation to 
surgical and histological findings (Neuhold et al., 1992, Lehtinen et al., 1994., Paavola et al., 
1998, Åström et al., 1996, Movin et al, 1998, Jacobson, 1999, Goodwin, 2000, Rasmussen, 
2000). Both methods do also show a relatively good correlation with clinical assessment 
(Archambault et al., 1998, Khan et al., 2003b, Movin et al., 1998)   
   Clinically, the severity of pain and functional impairment has been shown to be correlated 
to increased mean intratendinous MR signal in the painful chronic midportion Achilles 
tendopathy (Gärdin et al., 2006), and clinical outcome to be positively associated with graded 
MRI, i.e. the better clinical outcome, the lesser are the grades of MR signal abnormality 
(Khan et al., 1999b, 2003b). 

  
1.2.3.3 Symptoms and signs 
 
While acute overloading often leads to ruptures and tears in the soft tissue of the 
musculoskeletal system, the clinical symptoms of Achilles tendinosis do instead include 
gradually increasing load-related localized pain, morning stiffness, tenderness and swelling in 
the morphologically changed zones (Alfredson and Lorentzon, 2000a, b, Kader et al., 2002, 
Wilson and Best, 2005).  In initial stages, pain disappears during warm up allowing the 
affected indviduals to proceed with, their physical activity, but thereafter the pain gradually 
progresses, and ultimately the pain totally inhibits loading (Rolf, 1995). Many patients have 
had pain for many months, or pain that comes and goes during long periods, when they seek 
for help. Initially, pain often starts subsequently to heavy physical activity, but as injury 
progresses some patients start feeling pain during physical activity. Sometimes daily activities 
such as walking are eliciting pain, and in some severe cases patients even report pain at night. 
The tenderness is located in the midportion of the Achilles tendon, 2-6 cm proximal to the 
tendon insertion. Often there is a thickening of the tendon in the more chronic stages (Grävare 
Silbernagel, 2006).    
   The symptoms do not always correlate positively to the actual function of the muscle-
tendon unit. In a study on 37 patients suffering from Achilles tendinopathy in the midportion 
of the tendon, with symptoms for >2 months, symptoms and function were evaluated at the 
initiation of the study and after 1 year, using the Swedish version of the Victorian Institute of 
Sports Assessment-Achilles questionnaire (VISA-A-S) for defining the symptoms, and a 
validated test battery for evaluation of the lower leg muscle-tendon function. A rehabilitation 
programme, under the supervision of a physiotherapist, was utilized for 6 months. Only 25% 
(4/16) of the patients who had full symptomatic recovery had achieved full recovery of 
muscle-tendon function as measured by the test battery (Silbernagel et al., 2007). This shows 
the importance of further research and development of validated treatment follow-up studies.  
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1.2.4 Epidemiology  
 

Midportion Achilles tendinopathy has been reported to account for 55-65% of all the Achilles 
tendon injuries (Kvist , 1991, 1994, Järvinen, 1992, Järvinen et al., 2005).  
Achilles tendinopathy is mostly seen in middle-aged people, 30-60 years old (Kvist, 1994 
Paavola et al., 2000 and 2002, Alfredson et al., 2003c). 30% have bilateral injuries (Öhberg 
and Alfredson, 2004a, Grävare Silbernagel, 2006). The incidence has increased during the 
past decades as a result of greater participation in recreational and competitive sporting 
activities. In a study on 3336 competetive and recreactionallly active patients, 698 patients 
were found to have Achilles tendon complaints, of whom, 66 % had Achilles tendinopathy 
(Kvist, 1991). Jörgensen and collaborators reported that Achilles tendinopathy accounted for 
10.5% of all overuse injuries in badminton players (Jörgensen and Winge, 1990), and and in 
several studies it has been reported that the incidence of Achilles tendinopathy among runners 
is 6-18% (Clement et al., 1984, Soma and Mandelbaum, 1994, Józsa and Kannus.,  1997, 
Lysholm and Wiklander, 1987). 
   Treatment studies show that men is accounting for 45-86% of cases with Achilles 
tendinosis, with the lower percentages in the more recent studies (Nelen et al., 1989, 
Alfredson et al 1998, Paavola et al., 2000, Mafi et al., 2001, Öhberg and Alfredson, 2002). In 
a recent study it was stated that Achilles tendinopathy is equally common in men and women 
(Grävare Silbernagel, 2006). 
   It is nowadays stated that the condition is spread among people with a rather sedentary 
lifestyle (Alfredson and Lorentzon, 2000a). In a study of 58 patients with tendinoses, 31% of 
these did not participate in active sports or in any vigorous physical activity (Rolf and Movin, 
1997).  
   The musculotendinous junction has been described to be the weakest point in the muscle-
tendon complex, the junction having a pronounced force absorbing function. This area is at 
risk for strain injuries, especially through acute high force loading (Józsa and Kannus, 1997). 
Acute injuries with ruptures, specifically in the distal medial head of the gastrocnemius, often 
referred to as "tennis leg”, is more common than chronic lesions.  
  

 
 

1.2.5 Etiology, pathogenesis  
  
It is very important to establish the underlying pathology of Achilles tendinopathy/tendinosis 
as a basis for effective validated high level of evidence treatment methods. Although overuse 
is described to be commonly involed in the condition (Leadbetter, 1992, Józsa and Kannus, 
1997), the etiology of Achilles tendinopathy is, still not fully understood. Many basic risk 
factors have despite this been suggested, presumably to a great extent valid even for Achilles 
tendinosis as it has been stated that as much as 90% of cases with Achilles tendinopathy may 
be tendinosis (Åström and Rausing, 1995).  
   It is out of the scope of this thesis to describe all ris-factors in detail. To summarize, they 
can be devided into intrinsic risk factors (e.g. anatomic misalignment and high body weight) 
and extrinsic risk factors (e.g. training errors, sedentary lifestyle). Involvement of biochemical 
factors, exercise in excess of healing capacity, lack of rest, ECM matrix changes, existence of 
insufficient vascular beds, occurrence of hypoxia/anoxia, and an overexpression of NO-
synthase have been discussed. For further information, literature is recommended (e.g. Kvist, 
1991, Józsa and Kannus, 1997, Riley, 2005, Holmes and Lin, 2006, Jonsson, 2009, Grävare 
Silbernagel, 2006).  
   When a lesion as in chronic Achilles tendinopathy already has arisen, it is considered to be 
associated with hyperaemia from an uncertain origin. The findings of hyperaemia in Achilles 
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tendinosis patients are confirmed in several studies (e.g. Öhberg et al., 2001b, Knobloch et al., 
2006).  Thus, studies on Achilles tendons using ultrasonografic Doppler teqnique have shown 
signs of increased vascularity inside and outside the ventral part of the area with tendon 
tumification changes (measured as increased blood flow and interpreted as 
neovascularisation) in midportion Achilles tendinosis but not in any of the pain-free control 
tendons.  
   In women, oral contraceptives or hormone replacement therapy is a risk factor for Achilles 
tendinosis (Holmes and Lin, 2006), although the mechanisms for this is still unclear.  
   To summarize, the etiology of chronic Achilles tendinosis, it is in principle discussed in 
terms of three main theories: A mechanical, a vascular, and a neural theory. None of these 
theories solely fully explain the intriguing questions of chronic painful midportion tendinosis. 
Maybe an interface theory combining these is the way to go in the future. 

  
 

1.3 Tendon healing in general 
 

The tendon is believed to undergo three phases during the process of healing in response to 
advanced tendon disease/injury. This was first shown in animal studies (Parry et al., 1978, 
Reddy et al., 1999). Approximately the same phases are believed to occur in humans (Sharma 
and Maffulli, 2006). In the acute inflammatory phase, that renders 3-7 days after injury, the 
infiltrating inflammatory cells remove damaged tissue. Initially vasoactive and chemotactic 
factors are also being released. Increased vascular permeability, initiation of angiogenesis, 
stimulation of tenocyte proliferation, and recruitment of more inflammatory cells occurs 
(Murphy et al., 1994). This cascade of events is thought initiate tenocytes to migrate to the 
wound and start synthesizing type III collagen (Oakes, 2003). After a few days, a remodeling 
phase starts and type III collagen synthesis peaks during this stage. This stage lasts for a few 
weeks and during which glycosaminoglycan and water content remain high (Oakes, 2003). A 
third stage involving further modelling commences after approximately 6 weeks, were the 
healing tissue is resized and reshaped. A decrease in cellularity and in collagen and 
glycosaminoglycan synthesis occurs. The first step in this stage is consolidation, which 
continues up to 10 weeks (Tillman and Chasan, 1996). In this period, the repair tissue changes 
from cellular to fibrous and the tenocyte metabolism is high. The collagen fibres become 
aligned in the direction of stress (Hooley and Cohen, 1979) and a higher proportion of type I 
collagen is synthesized (Abrahamsson, 1991). After approximately 10 weeks, the maturation 
stage occurs, with gradual change of fibrous tissue to scar-like tendon tissue over the course 
of one year (Hooley and Cohen, 1979). In the latter half of this stage, the tenocyte metabolism 
and tendon vascularity decline (Amiel et al, 1987). 
   Unfortunately, the repair process after tendon rupture often results in a morphologically 
different and biomechanically inferior structure compared to the normal tendon. In animal 
studies, impaired tendon healing has been reported to have negative effects. The 
biomechanical properties are changed, e.g. tensile strength and energy absorption are reduced 
(Kader et al., 2002). The tenocytes in regenerated tissue are described to have greater amounts 
of rough endoplasmatic reticulum and contractile proteins (actin and myosin), and 
furthermore, the tenocytes are more abundant and less uniformly distributed (Postacchini F et 
al., 1978). There is still little knowledge of how the healing process in detail is proceeding, 
specifically regarding the collagen restitution process.  
   Adequate tissue perfusion and oxygenation is regarded as an absolute prerequisite for a 
successful repair of a tissue, since essential wound healing mechanisms such as collagen 
deposition are oxygen-dependent reactions (Beckert et al., 2007). 
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   The results from a study on the rat suggested early nerve regeneration to be a prerequisite 
for healing as an orchestrated, temporal appearance of nerve fibers expressing peptides with 
different actions in early healing of ruptured Achilles tendon was found (Lin et al., 2001). 
NOS (nitric oxide synthase) has been shown to be overexpressed in the healing process of the 
Achilles tendon. NOS activity is expressed in a temporal fashion in healing fibroblasts, whilst 
in normal tendons, very little NOS activity is found (Murrell, 2007). Studies in human tendon 
cells, show that nitric oxide can enhance collagen synthesis in vitro (Xia et al., 2006). 
   Furthermore, nerve signal substances have been described to participate in tendon healing in 
animals (Messner et al., 1999, Ackermann et al., 2001, 2002). Detailed information on nerve 
signal substances within the tendon tissue proper in the human Achilles tendon is therefore 
needed. Thus, it might be asked as to whether such signal substances are expected to play 
roles in remodelling in Achilles tendinosis.  
 
 

 
1.4 Tendon and pain 

 
Pain symptoms in individuals with tendinosis tell us very little about the pathology behind it. 
How pain is mediated in healthy tendons and tendons with tendinosis still remains a puzzling 
issue. Nevertheless, the existence of a sensory innervation inside and around tendons (the 
patellar tendon) (Danielsson et al., 2006a), in the ventral peritendinous tissue of Achilles 
tendons (Andersson et al., 2007), give aspects on this issue. Neuroanatomical changes, like 
the occurrence of nerve sprouting and disorganized small nerve fibers in patellar tendinosis 
(Sanchis-Alfonso et al., 2001) are also interesting. Furthermore, neurovascular ingrowth has 
been suggested to be a possible source of pain in chronic midportion Achilles tendinosis 
(Alfredson et al., 2003c). 
   Regarding tendon pain, a “biochemical model” has been discussed during recent years. The 
presence of biochemical mediators that may influence nociceptors, inside or around the 
tendon, have thus been suggested to be of importance (Khan, 2000, Danielson 2007, 2009). 
There may thus e.g. be an involvement of the nociceptor neuropeptides SP and CGRP. The 
SP-preferred neurokinin 1 receptor (NK-1 R) has actually been detected in the Achilles 
tendon, particularly in tendinosis (Forsgren et al., 2005, Andersson et al., 2008).  
   Of interest is the fact that glutamate and the related receptor NMDAR1 (N-methyl D-
aspartate1 receptor) have been found in tendons. In the Achilles tendon, Alfredson and 
collaborators showed higher levels of glutamate in tendinosis than in normals in a 
microdialysis study (Alfredson et al 1999), and moreover a presence of NMDAR1 in relation 
to nerves has been revealed (Alfredson et al., 2001a).  
   In addition to these findings, mechanical loading is found to elicit increased interstitial 
concentrations of the nociceptive agent bradykinin, which is known to cause vasodilation in 
resistance vessels and to be involved in regulation of tissue blood flow, in the paratendinous 
connective tissue of human tendon (Langberg et al., 2002). It also is of interest, to notice that 
ACh seems to play a modulating role in peripheral nociception (Wess et al., 2003) and is even 
capable of inducing pain (Vogelsang et al., 1995). In the muscarinic cholinergic receptor 
family, the M2 receptor is of special interest as it may be involved in mediating nociception 
(Haberberger and Bodenbenner, 2000), and to have an antinociceptive potential (Bernadini et 
al.,  2002). 
   There is no information as to whether there is local production of ACh, being possibly 
related to the “biochemical pain model” for Achilles tendinosis. Nor is it known if M2 
receptors are present in Achilles tendon tissue. It is also of importance to clarify the patterns 
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for catecholaminergic signal substances. It is known that the efferent sympathetic nervous 
system can enhance pain (Baron et al., 1999). 
 
 
A new method to treat tendinosis pain: Polidocanol injection therapy 
A newly developed technique using sclerosing Polidocanol injections targeting the area with 
the increased blood flow has been developed concerning Achilles tendinosis. The injections 
reduce the blood flow and after a series of injections, a majority of patients experience a relief 
of the pain. Follow-up studies have thereto shown no signs of Doppler detectable blood flow, 
interpreted as an absence of neovessels (Lind et al., 2006).  
This technique has also been utilized with success in patellar tendinosis (Alfredson and 
Öhberg, 2005a, Hoksrud et al., 2006) and lateral epichondylitis (Zeisig et al., 2006). 

 
 

1.5 Final comments: What became the focus in the studies of 
this thesis 

 
As seen above, many aspects are of great interest concerning the structure and function of the 
normal Achilles tendon and concerning the events that occur when it is diseased. Focus was in 
the present thesis devoted to the nerve signal substances ACh, catecholamines and NPY, and 
to their receptors, as well as to the innervation patterns of the normal and diseased tendon 
(Achilles tendinosis). There is a lack of knowledge in these respects. This is a drawback as 
effects of locally produced signal substances and the innervation are likely to be of great 
importance in tendinosis. 
     My personal aim for making the studies that developed  into this thesis was hereby  to try 
to contribute to the process of revealing the “Achilles heel of the chronic Achilles tendon 
pain”, the scarcity or even total lack of information on the above aspects being a “weak point” 
(“an Achilles heel”). In the extension of the findings that are made, I hope we could discover 
more of the mechanisms that occur in Achilles tendinosis and to get new ideas of future 
treatment regimes for the condition. 
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2.  AIMS 
 
 
The overall aim of this thesis was to learn more about the characteristics of the normal and 
midportion tendinosis Achilles tendon, specifically regarding the innervation patterns and the 
intercellular communication systems. 
 
 
The specific aims were 
 
1) to investigate the innervation patterns of the normal and tendinosis Achilles tendon 

regarding 
  

a) general innervation (PGP 9.5) [I].   
 

b) sensory innervation (SP/CGRP) [I]. 
 

c) presence or not of cholinergic markers (VAChT/ChAT), and the presence or not of 
muscarinic M2 receptors [II]. 

 
d) sympathetic innervation/NPY-ergic innervation (TH/ NPY) [III, IV], and the presence 

or not of α1 adrenoreceptors [III] and Y1 and Y2 receptors [IV] 
 

 
2) to examine for the possible occurrence of a non-neural local intercellular 

communication system as shown by evidence of production of signal substances and 
presence of their receptors in normal and tendinosis Achilles tendons. This was done 
by investigating the possible occurrence in tenocytes of  

 
a) the ACh synthesizing enzyme ChAT, ChAT mRNA, VAChT and M2 receptors [II]. 

 
b) the catecholamine-synthesizing enzyme TH, TH mRNA  and of α1 adrenoreceptors [III]. 

 
c) NPY [III, IV], Y1 and Y2 receptors [IV] 

 
3) to study  the pattern of morphologic derangements of Achilles mid-portion tendinosis 

tendons in relation to the aspects described above. 
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3.  MATERIAL AND METHODS 
 
 

3.1 Subjects 
 

 
3.1.1 Subjects in total  
 
The subjects participating in the studies of this thesis were either symptomatic patients with 
midportion Achilles tendinosis (Table 1), or asymptomatic individuals with normal Achilles 
tendons (controls; normals) (Table 2). In total, samples from 49 individuals, 27 females and 
22 males (Table 3) were analyzed. All participants choose on a voluntary basis to be included 
in the research program. They were otherwise healthy, free from medication and were non-
smokers.   
 
 
3.1.2 Achilles tendinosis patients  
 
This group consisted of in total 42 patients surgically treated for chronic painful midportion 
Achilles tendinosis (Table 1), diagnosed through clinical examination combined with 
ultrasonography or MRI. Their level of physical activity varied from low recreational to elite 
sport levels.  The duration of symptoms varied from 12-36 months (mean: 19 months), and 
there was activity related pain in a tender thickening of the Achilles tendon midportion 
(located 2–6 cm cranial to the tendon insertion into the calcaneus bone). The tender 
thickening of the tendon corresponded to a region were tissue changes were revealed by 
ultrasonography (localized widening, irregular structure and focal hypo-echoic regions) or 
MRI (localized widening, increased signal intensity).  
   Sixteen patients in the tendinosis group (8 females, 8 males) in Study IV, the subgroup, had 
been subjected to sclerosing Polidocanol injection treatment (Table 3) for 3-5 times before 
tissue samples were harvested (for details of this treatment see Öhberg and Alfredson 2002, 
Alfredson and Öhberg, 2005a, b). The patients had prior to the injection treatment undergone 
eccentric training with poor clinical results.  
 
 
3.1.3 Controls 
 
In this group, 10 individuals (Table 2) were included as normal controls. All had pain-free and 
normal Achilles tendons at clinical examination. Ultrasonography showed normal tendons 
(normal tendon thickness and no structural changes or hypoechoic areas). The level of 
physical activity varied from low to moderate recreational activities (jogging, work-out, 
walking, cycling).  
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Code Age Study Comment 
ATK1 46 years I, II, III, IV  
ATK2 49 I, II, III, IV  
ATK3 51 I   
ATK4 56 I, II, III, IV  
ATK5 46 I, II, III, IV  
ATK6 48 I, II, III, IV  
ATK7 42 I, II, III, IV  
ATK8 50 I, II, III, IV        
ATK9 55 I, II, III, IV  
ATK10 49 I, II, III, IV  
ATK11 34 I, II, III, IV  
ATK12 49 I, II, III,   
ATK13 41 I, II, III, IV  
ATK14 51 II, III, IV  
ATK15 54 IV Scl 
ATK16 39 IV Scl 
ATK17 49 IV Scl 
ATK18 57 IV                Scl 
ATK19 56 IV Scl 
ATK20 57 IV Scl 
ATK21 36  IV Scl 
ATK22 58  IV Scl  
ATM1 44 II, III, IV  
ATM2 42 II, III, IV  
ATM3 51 I, II, III, IV  
ATM4 35 I, II, III, IV  
ATM5 38 I, II, III, IV  
ATM6 54 I, IV  
ATM7 36 I, IV  
ATM8 42 I, II, III, IV  
ATM9 46 I, II, III, IV  
ATM10 47 I, II, III, IV Scl 
ATM11 42 IV Scl 
ATM12 41 IV Scl 
ATM13 36 IV                  Scl 
ATM14 61 IV Scl 
ATM15 26 IV Scl 
ATM16 40 IV Scl 
ATM17 48 IV Scl 

 
Table 1: Patients with symptomatic Achilles tendons from whom biopsies were harvested; painful midportion 
Achilles tendinosis. ATK: female, ATM: male. Scl: Biopsies harvested from patients previously treated with 3-5 
injections of sclerosing Polidocanol.  
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Code Age Study 
AK1 42 years I, IV 
AK2 22 I, II, III, IV 
AK3 44 I, II, III, IV 
AK4 46 I, II, III, IV 
AK5 46 I, II, III, IV 
   
AM1 32 II, III, IV 
AM2 34 I, II, III 
AM3 45 I, II, III 
AM4 40 I, II, III, IV 
AM5 60 I, IV 
 
Table 2: Subjects with asymptomatic Achilles tendons from whom biopsies were harvested; controls. AK: 
female, AM: male  
 
 
 Study I Study II Study III  Study IV 

(all) 
Study IV 
(subgroup) 

 

       
Subjects 30 29 29 45   

M/F 12/18 12/17 12/17 20/25 (cf below)  
Age (range) 45 (22-60) 41.8 (22-56) 41.8 (22-56) 45.4 (22-61)   

       
Tendinosis 21 21 21 37 16  

M/F 8/13 8/13 8/13 17/20  8/8  
Age (range) 45 (34-56) 45 (34-56) 45(34-56) 46.2 (26-61) 46.8 (26-61)  
       

Controls 9 8 8 8   
M/F 4/5 4/4 4/4 3/5   
Age (range) 41.2 (22-60) 38.5 (22-46) 38.5 (22-46) 41.5 (22-60)   

 
Table 3.  Overview of subjects for all studies. M/F: Male/Female, Age: mean age. Study IV (Subgroup): 
Patients previously treated with 3-5 injections of sclerosing Polidocanol. It was not possible to use specimens 
from all 49 individuals in all studies. 

 
 

3.1.4 Inclusion and exclusion criteria 
 

Achilles tendinosis   
 
Inclusion criteria 

o Pain in the Achilles tendon for more than 3 months 
o Clinical symptoms: tender thickening in the Achilles tendon midportion, and 

ultrasound or MRI verified tendinosis changes corresponding to the region with 
clinical findings 
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Exclusion criteria 

o Acute or chronic inflammatory diseases 
o Diseases or injuries causing radiating pain in the lower limb 
o Smokers 
 

 
Controls 
 
Inclusion criteria 

o No ongoing or previous pain inthe Achilles tendon 
o Normal findings on ultrasonography 
o Good health – on no medication  
o No diseases or injuries affecting the lower extremities  
o Non smokers 

 
 
 

3.2 Ethics 
 
All studies included in this thesis were approved by the Committee of Ethics at the Faculty of 
Medicine, Umeå University, and by the Regional Ethical Review Board in Umeå. All 
experiments, contacts with participating subjects, study design and implementation were 
conducted according to the principles in the Declaration of Helsinki 2000, 5th revision. 
 
 
3.3 Sampling and tissue processing 
 
All surgical procedures were performed under strict sterile conditions. A local anesthetic (4-5 
ml Prilocaine hydrochloride, 10 mg/ml; Södertälje, Sweden) was injected into the skin and 
subcutaneous tissue in the controls, whilst the tendinosis patients were submitted to general 
anaesthesia during the surgical treatment. 
   The biopsies from the controls were carefully taken from the midportion of the Achilles 
tendon (2-6 cm from the tendon insertion), and corresponding to the level were the tissue 
samples were harvested in the tendinosis subjects (cf below). The biopsies from the tendinosis 
tendons were taken during surgical treatment. In study I-IV the biopsies were taken from the 
central and dorsal parts of the tendon (measuring approximately 2 mm in width and 1-5 mm 
in length). In the subgroup in study IV, the biopsies were taken from the ventral part of the 
tendon. 
   The tissue samples from both tendinosis and normal tendons were processed in two 
different ways. They were either chemically fixed before freezing, or were directly frozen 
after the sampling process, i.e. were processed chemically unfixed. Usually, two different 
samples were taken from the same individual. Both chemically fixed and unfixed samples 
were thus available from a majority of the individuals studied. In order to fixate the 
specimens, they were treated by immersion overnight at 4°C in a solution of 4% 
formaldehyde in 0.1 M phosphate buffer, pH 7.0, and were then thoroughly washed in 
Tyrode’s solution, containing 10% sucrose. They were then mounted and frozen in propane, 
chilled with liquid nitrogen, and thereafter stored at –80°C until sectioning. The specimens 
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that were not chemically fixed were frozen directly after transport to the laboratory. The 
chemically fixed and the unfixed specimens were mounted on thin cardboard in OCT 
embedding medium (Miles Laboratories, Naperville, Illinois). The specimens were further 
processed for immunohistochemistry 
   Concerning tissue samples for processing with in situ hybridization (ISH), both unfixed and 
fixed biopsies were utilized, and postfixation according to the ISH protocol was performed (cf 
below 3.6). 

 
 
3.4 Sectioning and mounting   
  
After having been frozen and stored at –80°C, the samples were cut in a cryostat.  
Consecutive series of sections, that had a thickness of 7-10 microns, were produced. The 
sections were mounted on slides pre-coated with crome-alun gelatin, and were then left to dry, 
whereupon they were ready to be processed either for immunohistochemistry 
(immunofluorescence by TRITC/FITC or enzymatic antigen detection (PAP)) or to be stained 
with hematoxylin-eosin in order to display the tissue morphology. For in situ hybridization, 
see below (3.6). 

 
 
 

3.5 Immunohistochemistry (IH) 
 
 

3.5.1 Immunofluorescence (TRITC, FITC) methods  
 

These methods were used for demonstration of α1-AR (III), αSMA (II), CD 31 (II), CGRP (I), 
ChAT (II), M2R (II), NPY (III, IV), PGP9.5 (I), SP (I), TH (III), VAChT (II), Vim (II), Y1R 
(IV), and Y2R (IV). All antibodies were polyclonals, except for the antibodies used to detect 
CD 31, αSMA and Vim, which were monoclonals. 
Sections to be processed for α1-AR, ChAT, NPY, TH, and VAChT, were first pretreated with 
acid potassium permanganate for 2 min, a procedure that was used to enhance specific 
immunofluorescence reactions (Hansson and Forsgren, 1995), followed by rinsing three times 
for 5 min each in phosphate-buffered saline (PBS). Then followed incubation for 20 min in a 
1% solution of detergent Triton X-100 (Kebo Lab, Stockholm) in 0.01 M PBS, pH 7.2, 
containing 0.1 % sodium azide as preservative, and again rinsing three times for 5 min each in 
PBS. 
   The sections were thereafter incubated for 15 min at room temperature in 5 % normal swine 
serum (code: X0901; Dakopatts, Glostrup, Denmark) in PBS supplemented with 0.1 % bovine 
serum albumin (BSA) for α1-AR, CGRP, NPY, M2R, PGP9.5, SP, TH, and VAChT (Sigma 
antibody) immunostaining  or in 5 % normal donkey serum (code: 017-000-121; Jackson 
ImmunoReserach, PA) in PBS supplemented with 0.1 % BSA for ChAT, VAChT (Santa Cruz 
antibody), Y1R and Y2R immunostainings. Then the sections were incubated with the 
primary antibody, diluted in PBS with BSA, or in only PBS for ChAT and VAChT (Santa 
Cruz antibody), in a humid environment. Incubation was performed overnight at 4°C or for 60 
min at 37°C. After incubation with specific antiserum, and three 5 min washes in PBS, 
another incubation in normal swine serum (or normal donkey serum) followed as described 
above, after which the sections were incubated with secondary antibody corresponding to 
tetramethylrhodamine isothiocyanate (TRITC)-conjugated swine antirabbit IgG (code: R0156; 
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Dakopatts, Glostrup, Denmark), diluted 1:40 in PBS with BSA, for 30 min at 37°C for α1-AR, 
M2R, NPY, TH, VAChT (Sigma) staining or with FITC-conjugated AffiniPure donkey 
antigoat IgG (Jackson ImmunoResearch, PA, 705-095-147), diluted 1:100 in PBS, for 30 min 
at 37°C, for ChAT, VAChT (Santa Cruz), Y1R and Y2R demonstration. After a last 3 x 5 min 
wash in PBS, the sections were finally mounted in Vectashield microscopy mounting 
medium. 
   Concerning immunostaining for the monoclonal antibodies (αSMA, CD31 and Vim) the 
following exceptions from the above scheme was used: The normal serum used was normal 
rabbit serum and the secondary antibody was TRITC-conjugated rabbit anti-mouse IgG 
(Dakopatts, Glostrup, Denmark, Z0259), diluted 1:40. 

 
 

3.5.2 Double-staining 
 
For double-labeling, the sections were incubated with antibodies raised in rabbits and mice. 
Rabbit antibodies raised against M2Rs and mouse monoclonal antibodies raised against CD31 
or alpha smooth muscle actin (Table 4) were used as primary antibodies. Incubation for each 
was made for 60 min at 37°C. 
   As secondary antisera, the same TRITC-conjugated swine antirabbit IgG as described above 
was used, as well as FITC-conjugated rabbit antimouse IgG or donkey antimouse IgG 
(Dakopatts, Glostrup, Denmark) secondary antbodies. Incubation with each secondary 
antiserum lasted for 30 min, and was performed at 37°C. When FITC-conjugated donkey 
antimouse IgG was utilized, normal donkey serum was used instead of normal rabbit serum. 

 
 

3.5.3 Peroxidase antiperoxidase (PAP) teqnique  
 

Concerning demonstration of CD31(II), CGRP(I), M2R(II), NPY(III), Neurofilament (II), 
PGP 9.5 (I), SP (I), and TH (III) (Table 2), PAP staining was used. 
   In order to reveal epitopes hidden by the formaldehyde fixation, microwave antigen 
retrieval was used as a first step for NPY (III) and TH (III) detection. The slides were hereby 
initially placed in plastic Koplin jars filled with 0.01 mol/l citrate buffer, pH 6.0. Thereafter 
the jars were placed in a microwave oven (55°C) and were then boiled at 650 W for 5 min x 
3. After each cycle, the slides were transferred to new jars with fresh citrate buffer (0.01 
mol/l, pH 6.0) and cooled down to room temperature. After 20 min cooling, the sections were 
rinsed in PBS buffer for 5 min x 3.  
   After a possible antigen retrieval as described bove (performed as an alternative for TH and 
NPY detection in III), all sections to be processed with the PAP technique were initially 
pretreated with acid potassium permanganate for two min, after which followed rinsing in 
PBS for 5 min x  3. Thereafter the slides were incubated in a 1 % Triton X-100 solution 
(Kebo Lab) in 0.01 M PBS, pH 7.4, for 20 min, and then washed in PBS 5 min x 3, after 
which endogenous peroxidase activity was blocked by 30 min incubation in 1 % H2O2. After 
subsequent washing in PBS 5 min x 3, the sections were incubated with 5 % normal swine 
serum (code: X0901; Dakopatts, Glostrup, Denmark) in PBS supplemented with 0.1 % BSA 
for 15 min at room temperature. Incubation with primary antibody, diluted in PBS with BSA, 
was thereafter performed for 60 min at 37°C. After an additional washing in PBS 5 min x 3 
and another incubation with normal swine serum as described above, the secondary antibody 
was applied (swine anti-rabbit, diluted 1:100 in PBS with BSA; code: Z196; Dakopatts, 
Glostrup, Denmark). The sections were thereafter further rinsed in PBS 5 min x 3, then 
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incubated for 30 min in room temperature with peroxidase-labeled IgG immunoglobulin 
(1:100; PAP-rabbit; code: Z0113, Dakopatts, Denmark), prepared from horseradish 
peroxidase and polyclonal rabbit anti-horseradish peroxidase and to which the secondary 
antibody used is known to bind. Thereafter followed, again rinsing in PBS for 5 min x 3, and 
development in diaminobenzidine (DAB) solution for 5 min. Before dehydration, the sections 
were dipped for 20 sec in Mayers hematoxylin for delineating general tissue morphology. 
After that the sections were dehydrated and finally mounted in DPX microscopy mounting 
medium.  
   Concerning the staining for CD31, the pattern of staining was somewhat different: Normal 
rabbit serum was used, and the secondary antibody corresponded to rabbit anti-mouse (1:50; 
Dakopatts, Glostrup, Denmark; Z0259) and PAP-mouse (1:100; P0850) was utilized. 

  
 

3.5.4 En Vision® detection 
    
To visualize VAChT (II), the EnVision® detection was found to give the most clear-cut 
delineated immunoreactions. 
   As in the PAP staining technique, microwave antigen retrieval was used (c.f. above), and 
after this the slides were left cooling for 20 min. The sections were then rinsed in PBS buffer 
for 5 min x 3, thereafter pretreated with acid potassium permanganate for two min, and again 
rinsed in PBS for 5 min x  3. The slides were subsequently incubated in a 1 % Triton X-100 
solution in 0.01 M PBS, pH 7.4, for 20 min after which followed rinsing in PBS 5 min x 3. To 
block endogenous peroxidase activity, the sections were incubated in 1 % H2O2 for 30 min. 
The sections were washed in PBS 5 min x  3, and then incubated with normal 5 % goat serum 
in PBS supplemented with 0.1 % BSA for 15 min. Incubation with primary antibody 
(antibody against VAChT from Sigma) was performed for 60 min at room temperature. After 
again washing in PBS 5 min x 3, another incubation with normal goat serum as described 
above was performed, and then the secondary antibody complex was applied (Dako 
EnVision®+, goat antirabbit IgG conjugated to a peroxidase-tagged polymer, code K4002; 
undiluted; DakoCytomation, Glostrup, Denmark) for incubation at room temperature for 30 
min. The sections were thereafter again rinsed in PBS 5 x 3, and then developed in 
diaminobenzidine (DAB) solution for 5 min. Prior to dehydration the sections were dipped for 
20 sec in Mayers hematoxylin in order to delineate general tissue morphology. The sections 
were dehydrated and finally mounted in Pertex microscopy mounting medium for 
examination. 

 
3.5.5 Hematoxylin-eosin staining 
  
Hematoxylin-eosin staining of parallel sections to those processed for IH and ISH were 
performed to delineate tissue morphology in all studies (I-IV). This staining method involves 
application of the basic dye hematoxylin, which colors basophilic structures such as nucleic 
acids, ribosomes and cell nucleus blue-purple, and eosin, which colors eosinophilic structures 
such as intracellular proteins in the cytoplasm the or extracellular proteins bright pink. 
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3.5.6 Primary antibodies 
 
Polyclonal and monoclonal antibodies were used as primary antibodies in the immunohistochemical 
stainings (Table 4). The study in which the respective antibody was utilized is presented in Table 4. 

 
Antigen Antibody 

Code 
Source Raised 

in 
Raised against (antigen) Dilution  Tissue Method 

for 
staining 

Study 

αSMA M0851 Dakopatts, 
Glostrup, 
Denmark 

Mouse N-terminal decapeptide of human 
alpha-smooth muscle actin 

1:2000 Unfixed TRITC II 

α1-AR PC160 Oncogene, Boston, 
MA, USA 

Rabbit Synthetic peptide 
(KFSREKKAAKT) corresp to aa 
339-349 of the human α1-AR 

1:100 Fixed TRITC III 

CD31 M0823 Dakopatts, 
Glostrup, 
Denmark 

Mouse CD31 of membrane preparation of 
human spleen 

1:100, 
1:40 

Unfixed TRITC, 
PAP 

II 

CGRP RPN-1842 Amersham 
International, 
Buckinghamshire, 
UK 

Rabbit Synthetic rat α-CGRP 
conjugated to BSA 

1:100 Fixed TRITC I 

CGRP PEPA27 Serotec, Oxford, 
UK 

Rabbit Synthetic rat α-CGRP conjugated to 
BSA 

1:100  Fixed TRITC, 
PAP 

I 

ChAT AB144P Chemicon, 
Temecula CA 

Goat Human placental ChAT enzyme 1:25 -  
1:50 

Fixed FITC II 

M2R M9558 Sigma, St Louis, 
MO 

Rabbit Purified GST fusion protein of a 
part of the i3 intracellular loop of 
human M2R corresp to aa residues 
227-356 

1:100 Unfixed TRITC, 
PAP 

II 

M2R AB5166 Chemicon, 
Temecula, CA 

Rabbit Purified GST fusion protein of a 
part of the i3 intracellular loop of 
human M2R corresp to aa residues 
225-356 

1:100 Unfixed TRITC, 
PAP 

II 

Neurofilament N4142 Sigma, St Louis, 
MO 

Rabbit Purified neurofilament 200 from 
bovine spinal cord 

1:100 Fixed PAP II 

NPY PC223L Oncogene, Boston, 
MA, USA 

Rabbit Synthetic peptide corresp to porcine 
NPY  

1:500 - 
1:1000 

Fixed TRITC, 
PAP 

IV,  III 

PGP 9.5 7863-0504 Biogenesis, Poole, 
UK 

Rabbit Native brain 
PGP9.5 

1:1000 Fixed TRITC 
PAP 

I 

PGP 9.5 PH164.XS Bindingsite, 
Birmingham, UK 

Sheep 24-aminoacid sequence of  PGP9.5 1:1000 Fixed PAP I 

SP i675/002 UCB, Brussels, 
Belgium 

Rabbit Synthetic SP conjugated to bovine 
thyroglobulin 

1:100 - 
1:200 

Fixed TRITC I 

SP 8450-0004 Biogenesis, Poole, 
UK 

Rabbit BSA-conjugated SP 1:100 - 
1:200 

Fixed TRITC, 
PAP 

I 

TH P40101 Pel-Freez, Rogers, 
Arkansas, USA  

Rabbit Denatured tyrosine hydroxylase 1:50 – 
1:100 

Fixed TRITC, 
PAP 

III 

Vim MON3005 Sanbio, Uden, the 
Netherlands 

Mouse  Porcine Vimentin 1:1000 Unfixed TRITC II 

VAChT v5387 Sigma, St Louis, 
MO 

Rabbit Synthetic peptide corresp to the C-
terminal of rat VAChT, aa residues 
512–530, conjugated to keyhole 
limpet hemocyanin 

1:100 Fixed TRITC, 
EnVision 

II 

VAChT sc-7716 Santa Cruz, CA Goat C-terminus of VAChT of human 
origin 

1:25 - 
1:100 

Fixed FITC II 

Y1R sc21992 Santa Cruz, CA Goat Peptide mapping near the C-
terminus of the Y1R of human 
origin 

1:100 Fixed FITC  IV 

Y2R sc14736 Santa Cruz, CA Goat Peptide mapping near the C-
terminus of the Y2R of human 
origin 

1:100 Fixed FITC  IV 

 
Table 4:  Properties of primary antibodies. aa; amino acids. Antibodies raised in mouse were monoclonals; 
those raised in rabbit, goat and sheep were polyclonal antibodies.  
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3.5.7 Control stainings 
  

To confirm the validity of the methods iterated test stainings on reference tissues were 
performed in parallel with staining of sections from normal and tendinosis tendon tissue 
samples. These corresponded to specimens of unfixed and chemically fixed human colonic 
tissue (II, III), rat spinal cord (II), rat superior cervical ganglion, rat adrenal medulla, and rat 
fetal heart (III). Eventually it turned out that the above mentioned protocols for stainings were 
the most appropriate to delineate specific immunoreactions        
   Preabsorption stainings were furthermore used in all the studies (Table 5). Sections were 
here submitted to incubation with antisera that had previously been preabsorbed with their 
corresponding antigen overnight at 4°C. Replacement of the primary antibodies with normal 
serum (I-III) or with PBS together with 0.1 % BSA (III) were used as further control stainings. 
As a control for the evaluation of double-staining, either one of the primary antibodies was 
omitted whilst both secondary antibodies were applied (II).  
 

 
 
   

Preabsorption 
Antigen 

Preabsorption 
antigen code 

Source of antigen Antibody to be 
evaluated 

Concentration used1  Papers 

CGRP C2806 Sigma, St Louis, MO PEPA27 10-20  I 

ChAT AG220 Chemicon, Temecula 
CA 

AB144P 20  II 

M2R AB5166- 
peptide 

Chemicon, Temecula, 
CA 

AB5166 50-100  II 

NPY sc115P NeoMPS, Strasbourg, 
France 

PC223L 50  III, IV 

VAChT sc-7716 P Santa Cruz, CA sc-7716 150  II 

SP S3144 Sigma, St Louis, MO 8450-0004 10-20  I 

SP S6883 Sigma, St Louis, MO  8450-0004 50  I 

Y1R sc21992P Santa Cruz, CA sc21992P 20  IV 

Y2R sc14736P Santa Cruz, CA sc14736 20 IV 

 
Table 5: Corresponding antigens and antibodies used for preabsorption controls.   

1μg antigen/mL antiserum 

 
 

3.6 In situ hybridization (ISH) 
 

In two studies (II, III), in situ hybridization (ISH), a type of hybridization histochemistry 
method that uses a labeled complementary DNA strand (i.e., a probe), to localize a specific 
mRNA sequence in a section, was utilized. 
   In study II, a GreenStar* digoxigenin (DIG)-hyperlabeled oligonucleotide 
ssDNA probe for the detection of human ChAT mRNA (GD1001-CS, custom made;    
GeneDetect, New Zealand) and in study III, a digoxigenin (DIG)-hyperlabeled 
oligonucleotide probe (ssDNA) for detection of human TH mRNA was used (for details, see 
Table 4). In both studies, these probes were utilized on sections from biopsies from two of the 
tendinosis tendons and one of the control tendons.  
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   In situ hybridization was performed according to the protocol from Panoskaltsis-Mortari 
and Bucy 1995. An alkaline phosphatase (AP)-labeled anti-DIG antibody (raised in sheep; 
catalog no.: 11 093 274 910, Roche), with a few modifications, was used for detection.  
   A cryostat equipped with a knife washed in 70% ethanol in diethylpyrocarbonate (DEPC)-
H2O were utilized for a series of cryosections (10 μm thick) that were cut and then mounted 
onto Super Frost Plus slides (no. 041300, Menzel-Gläser). Sections were air-dried at room 
temperature for 30 min and thereafter fixed for 60 min at room temperature in a 
paraformaldehyde solution (4% paraformaldehyde in 0.1 M PBS), that was first passed 
through a 0.45-μm sterile filter.  
   Out of 3 M NaCl and 0.3 M sodium citrate, pH 7.0 (+20°C), a 20× SSC (saline sodium 
citrate) solution was prepared. This solution was autoclaved, and diluted 10× with DEPC-H2O 
to obtain a 2× SSC solution, in which the slides then were washed for 2x10 min.  
Subsequently the sections were incubated in 0.2 M HCl for 8 min at room temperature to 
inhibit endogenous alkaline phosphatase acitivity, and then acetylated by incubation for 15 
min at room temperature in a mixture of 195 mL DEPC-H2O, 2.7 mL l tiethanolamine, 0.355 
mL HCl, and 0.5 ml acetic anhydride being added after the slides had been placed in their 
slide holder. The slides were then again rinsed in 2× SSC. The ssDNA probe (50 ng in Study 
II and 100 ng i n Study III) was added to 15 μL hybridization solution (500 μL formamide, 
200 μL 20× SSC, 50 μL 20× Denhardt’s solution, 50 μL heatdenatured herring sperm DNA 
(10 mg/ml), 25 μL bakers yeast RNA (10 mg/ml), and 175 μL dextran sulfate (50%) in a total 
volume of 1.0 mL) in a 1.5-mL Eppendorf tube, denaturated for 5 min in 80°C, and then 
placed on ice.  
   To each section, the probe-containing hybridization solution was applied, and the sections 
were then sealed for incubation at 56°C overnight by a cover-slip and nail polish. The sections 
were thereafter washed at room temperature in 2× SSC for 2×10 min, and in STE-buffer (500 
mM NaCL, 20 mM TRIS-HCl pH 7.5, 1 mM EDTA) for 5 min. They were then placed for 
incubation in 100 μL RNase A (40 μg/ mL in STE) for 30 min at 37°C, washed for 20 min at 
56°C in 2× SSC, 50% formamide (25 ml 100%, 25 mL 2× SSC buffer), and rinsed at room 
temperature in firstly in 1× SSC for 2×5 min,  and then in 0.5× SSC for another 2×5 min. 
Thereafter the slides were washed for 5 min in buffer 1 (100 mM TRIS-HCl pH 7.5, 150 mM 
NaCl), followed by incubation in buffer 1 containing 4% normal horse serum (NHS) for 60 
min at room temperature in a humid chamber, and after that in 100 μL AP-labeled anti-DIG 
antibody (diluted 1:500 in buffer 1 with 4% NHS) for 60 min at room temperature in a humid 
chamber. The sldes were then washed in buffer 1 for 2×10 min, and in buffer 2 (100 mM 
TRIS-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2) for 2×5 min. Subsequently the enzyme 
(AP) substrate solution (20 μL NBT/BCIP [Nitro blue tetrazolium chloride/5-Bromo-4-
chloro-3-indolyl phosphate; toluidine salt (gives a dark blue indigo staining as an oxidation 
product after been reacting with the AP-substrate)] in 1 mL buffer 2 with 10 μL levamisole) 
was sterile-filtered through a 22 μm filter and added to the sections, and the slides were 
incubated upside down in the dark at 4°C overnight. The color reaction was therafter stopped 
by placing the slides in buffer 3 (10 mM TRIS-HCl pH 8.0, 1 mM EDTA). Counter-staining 
of the slides in methylgreen (0.5%-0.5 g/100 mL) was then performed, using the following 
procedure: the slides were dipped for 30 s in 75% ethanol, for 30 s in 95% ethanol, and for 4-
5 s in 0.5% methylgreen, and thereafter washed x3 in pure (99.5%) ethanol. The sections were 
lastly mounted in Pertex mounting medium. 
As controls the corresponding sense DIG-hyperlabeled ssDNA probe (negative control) and 
the antisense probe β-actin probe (GD5000-OP) from GeneDetect, New Zealand (positive 
control) was used. 
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Probe Code Source Dilution Fixation 

Antisense probe1, 
recognizing human TH 
mRNA 

GD1811-OP GeneDetect, New 
Zealand 

100 ng in 15 μL 
hybridization solution 

Postfixation according to 
ISH protocol 

Antisense probe2, 
recognizing human 
ChAT mRNA  

GD1001-CS 
(custom made) 

GeneDetect®, New 
Zealand 

100 ng in 15 μL 
hybridization solution 

Postfixation according to 
ISH protocol 

     

 
Table 6: GreenStar* DIG-hyperlabeled oligonucleotide probe. Sequence: 

1AACCGCGGGGACATGATGGCCT 
2CCATAGCAGCAGAACATCTCCGTGGTTGTGGGCACCTGGCTAGTGGAGAG 

  
  
3.7 Evaluation by microscopy 

 
All sections were evaluated by two (D.B., and S.F. (I, IV)) or three (D.B., S.F., and P.D. (II, 
III)) indepentdent microscopists.  All sections immunoassayed for a specific antigen were 
examined consecutively and iteratively by each microscopist. This made it possible to 
perform a semi-quantitative assessment of the degrees of intensity and the frequency of the 
immunostainings. 

Either a Leitz Orthoplan photomicroscope (I) equipped with epifluorscence optics, or a 
Zeiss Axioscope with epifluorescence optics and an Olympus DP70 digital camera, was used 
(II- IV). 
 

 
3.8 Statistics 
 
In Study IV, statistics were used in the evaluation process. The statistic material of was rather 
limited, with small non-paired samples sizes (37 tendinoses tendons and 8 controls), with non-
continuous variables. For these reasons, the Mann-Whitney test was used to compare the groups.  
The statistical software applied was SPSS 11.0 (SPSS, Chicago, Ill, USA) for Macintosh. P <0.05 
was considered significant. The Spearman rank correlation test was used for age-related 
correlation analyses. 
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4. RESULTS    
  
4.1 Morphological characteristics 

   
4.1.1 Overall morphology of the tissue  

  
Htx-eosin staining was used to display the general morphology.  
   Achilles tendon specimens from controls consisted of tendon tissue proper and 
paratendinous connective tissue. The border between the two tissue types was readily defined 
microscopically (III: Fig.1). The tendon tissue proper consisted of large groups of collagen 
fibrils lying in parallel alignmen, inbetween which narrow channels with loose connective 
tissue, containing blood vessels and nerve structures, were running (I: Fig. 2).    
The paratendinous connective tissue mainly consisted of loose connective tissue (with 
collagen fibrils showing wavy courses) (III: Figs. 1a, b), and blood vessels (large  
arterioles/venules and occasionally even arteries/veins  and nerve structures.  
Vascularity was more prominent in the paratendinous connective tissue than inside the 
tendon.  
   During surgery for Achilles tendinosis, the tissue from which samples were taken, did not to 
show the typical tendon tissue features (glistening white, regular parallel appearance of 
makroscopic “fiber bundles”, (c.f. Khan et al., 1999a), but was amorphous and grey to the 
naked eye. Macroscopically, it was also often observed that the outer part (the paratendinous 
connective tissue) had coalesced with the tendon tissue proper in these specimens. 

There was a great variability in the morphology among the specimens of the tendinosis 
group and within the same specimen of this group. Some regions in the tendinosis specimens 
showed a rather normal histologic tendon appearance with collagen fibrils of parallel 
alignment (II: Fig. 1) and fairly slender tenocytes, while others exhibited irregular collagen 
fibre structure and aberrant tenocytes (cf below) (III: Figs. 1c, d). In some specimens severe 
derangement was noted.  
   Vascularity was in general more prominent in the tendon tissue proper in the tendinosis 
group (hypervascularity) than in the tendon tissue proper of the control specimens. In both 
types of specimens, the blood vessels were more abundant in the paratendinous connective 
tissue than in the tendon tissue proper. Perivascular cells, frequently forming groups of cells, 
occurred in association with the finest blood vessels in several tendinosis tendon specimens. 
   In Study IV, the tissue samples were taken from both the ventral and the dorsal side of the 
tendon. No obvious differences in morphology of the tendon tissue proper were noticed 
between these biopsies. 

 
 

4.1.2 Morphology and frequency of the tenocytes (II, IV) 
 

Most of the tendon tissue samples of controls harboured typical slender, spindle-shaped, fairly 
straight tenocytes. The tendon tissue proper of the specimens was relatively hypovascular and 
hypocellular (III; Fig. 1). Variability in tenocyte appearance was, however, identified in some 
controls, and very occasionally, hypercellularity occurred in limited parts of the specimens.  
   In the tendinosis specimens, there was a much higher degree of variability in tenocyte 
appearance and hypercellularity was common. Most tendinosis tissue samples exhibited a 
large number of tenocytes, whereas in a few specimens the tenocyte number almost resembled 
that found in control tendons. Many of the tenocytes in the tendinosis specimens had a 
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disfigured shape; from “bulky” and “wavy” to rounded, widened appearances. The amount of 
aberrant cells varied between different tendinosis specimens, but also within the same 
specimen. In most tissue samples, the number of “abnormal” tenocytes was higher than was 
the number of the tenocytes with normal (slender, spindle-shaped, straight) appearances.  

 
 
 

4.2 Summary of results in relation to aims and methods 
 
 

4.2.1 Study I 
 
The innervation pattern of the human Achilles tendon: studies of the normal and 
tendinosis tendon using markers for general and sensory innervation 
 
Aims 
- to describe the general and sensory innervation patterns in the midportion of the painless 
normal Achilles tendon and the chronic painful midportion Achilles tendinosis via markers 
for general (protein gene-product, PGP9.5) and sensory (substance P, SP and calcitonin gene-
related petide, CGRP) innervation. 
- to investigate if there are differences between the normal Achilles tendon and the Achilles 
tendinosis tendon.  

 
Subjects and methods 

  The investigation included tissue samples from 30 individuals, 21 patients suffering from 
chronic Achilles tendinosis, and 9 individuals, who had painless, and clinically normal 
Achilles tendons. For further details, see Material and methods.                                                                          

       Immunohistochemistry with the immunofluorescence technique and the PAP technique 
 was used.  

 
Main results 
In Achilles tendon specimens of controls, PGP9.5-like immunoreactions (LI) were seen in 
nerve fascicles and nerve fibers of the tendon tissue proper. These were located inside the 
channels of loose connective tissue, the endotenon, but foremost in the paratendinous loose 
connective tissue.  
   The large nerve fascicles occurred in the vicinity of blood vessels (I: Figs. 1, 4) and the 
smaller nerve fibers were found in association with the media–adventitia junction of arterioles 
(I: Fig. 3). On the whole, the nerve structures appeared to be more abundant in the 
paratendinous loose connective tissue compared to the tendon tissue proper.  
   In the tendinosis Achilles tendons, the same innervations patterns as in the controls were 
seen. However, in some specimens, PGP9.5-immunoreactive varicose fibers were found to be 
intimately associated with fine blood vessels (I: Fig. 8). 
   In control Achilles tendon specimens, nerve fibers exhibiting CGRP-LI and SP-LI could, to 
a small extent, be seen in association with the blood vessels of the tendon tissue proper. SP-LI 
(I: Fig. 2b) and CGRP-LI (I: Fig. 4) were also detected in nerve fascicles in the paratendinous 
connective tissue. Immunoreactions for CGRP appeared to be more marked than those for SP.   
In Achilles tendinosis specimens, nerve fibers displaying CGRP-LI (Figs. 6b, 7) and SP-LI 
were also seen in nerve fascicles and in perivascular locations.  
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   On the whole, CGRP and SP immunoreactions were only observed in association with a 
subpopulation of the blood vessels, and thereto seldom deep in the tendon. Overall, the 
SP/CGRP innervation was very sparse.     
   Sensory corpuscles (mechanoreceptors) were occasionally observed in the paratendinous 
loose connective tissue (I: Fig. 9). They appeared as lamellated (Pacinian) corpuscles (c.f. 
Halata et al. 1999, Albuerne et al. 2000). 

 
 

4.2.2 Study II 
 
Presence of a non-neuronal cholinergic system and occurrence of up- and 
down-regulation in expression of M2 muscarinic acetylcholine receptors: 
new aspects of importance regarding Achilles tendon tendinosis 
(tendinopathy)  
 
Aims 
- to investigate the innervation patterns of the normal and tendinosis Achilles tendons 
regarding cholinergic innervation by studying the immunohistochemical expression patterns 
of VAChT, ChAT and M2R in nerve structures, blood vessel walls and tenocytes.  
- to investigate if local production of acetylcholine (ACh) can be evidenced at both the protein 
and mRNA levels as a prerequisite for an existence of a non-neuronal cholinergic system in 
the Achilles tendon. 
- to clarify differences between normal Achilles tendon and midportion Achilles tendinosis 

 
Subjects and methods 
Achilles tendon tissue samples were taken from the midportion in 29 individuals, 21  
individuals of these were suffering from chronic painful midportion Achilles tendinosis.  

      Another group defined as the normal control group consisted of 8 individuals. For  
further details c.f. Material and methods. 
   Immunohistochemistry using antibodies against VAChT, ChAT, and M2Rs were performed. 
Antibodies against Vimentin, CD31, αSMA were used as tissue markers. Double staining for 
M2R/CD31 and M2R/αSMA, and in situ hybridization to reveal ChAT mRNA, was utilized.  

 
Main results 
   ChAT or VAChT immunoreactivities were not detected in nerve fascicles nor in 
perivascular nerve fibers. That was the case in control Achilles tendon specimens as well as in 
tendinosis specimens, including in the innervaion in the paratendinous connective tissue of 
both types of specimens. VAChT-LI was occasionally seen in the cells of the blood vessel 
walls. 
   The tenocytes of control tendons exhibited only weak or no immunoreactions for ChAT. In 
tenocytes in tendinosis tendons, ChAT immunoreactions were much more clearly detected. 
The reactions were especially marked in specimens harbouring a high degree of 
hypercellularity, and an abundance of disfigured tenocytes (II: Fig. 12). Nevertheless, the 
degrees of ChAT-LI showed substantial variations between different tenocytes within the 
specimens and also between different tendinosis specimens. Not all disfigured tenocytes 
showed ChAT-LI in the tendinosis tissue samples, and those with a more slender appearance 
in these samples were never seen to be ChAT immunoreactive. 
   Tenocytes in tendinosis tendons clearly exhibited AP reactions after incubation for ChAT 
mRNA (II: Figs. 16a, 17). Variability within the specimens as well as between the tissue 
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samples was the rule also in this repect (II: Figs. 16, 17). The most prominent reactions were 
displayed in tenocytes that not showed the normal straight and slender appearance. Tenocytes 
in tissue samples from control Achilles tendons did only in a few cases exhibit faint AP 
reactions for ChAT mRNA. 
   Concerning VAChT in tendinosis specimens, specific immunoreactions could most clearly 
be seen in aberrant tenocytes in tendinosis specimens, particularly in samples with high cell 
density, (II: Fig. 14a, b). However, as was the case for ChAT, there was a wide variation in 
reactions between different tenocytes. 
   M2R immunoreactions, found in blood vessel walls in normal (II: Figs. 2a, 3a) and 
tendinosis tendons (II: Figs. 2b, 3b, 4a, b), appeared as punctuate labelings. In the in the walls 
of the large vessels, the reactions were mainly confined to the innermost located cells (II: 
Figs. 4a,b). In tendinosis specimens with hypercellularity and hypervascularity, a high degree 
of immunoreactivity was noticeable (II: Figs. 2b, 3b, c, 4a), whilst in tendinosis specimens 
with a markedly aberrant morphology, only occasional immunoreaction (II: Figs. 5a–c) was 
noted, or the specimens were not immunostained at all. As revealed by double-staining, the 
M2R immunoreactivity in vessel walls was to a large extent co-localized with the endothelial 
marker CD31 (II: Fig. 7a–c). 
   M2R immunoreactivity was to some degree also detected in nerve fascicles and perivascular 
nerve fibers in both control and tendinosis tendons. 
   In normal tendons, a moderate to high degree of M2 immunoreactivity was detected in 
tenocytes, whilst in tendinosis specimens with hypercellularity and hypervascularity a high 
degree of immunoreactivity (II: Figs. 2b, 3b, c, 4a) was regurlarly detected in these cells. In 
tendinosis specimens, in which the tenocytes showed a markedly rounded/widened 
appearance, immunoreaction was only occasionally noted (II: Figs. 5a–c, Fig. 6).  
   In the double stainings, that were used to further reveal the distribution of M2R, neither 
αSMA nor CD31 immunoreactions were detected in tenocytes, but these cells were regularly 
exhibiting pronounced vimentin immunoreactions (II: Fig. 10).  

 
 

4.2.3 Study III 
 
Immunohistochemical and in situ hybridization observations favor a local 
catecholamine production in the human Achilles tendon 
 
Aims 
- to reveal the general pattern of sympathetic innervation and the possible occurrence of 
adrenergic receptors in the Achilles tendon.  
- to reveal if a local catecholamine production in tenocytes can be evidenced both at protein 
and in mRNA levels. 
- to describe differences between the normal Achilles tendon and midportion Achilles 
tendnosis 
 
Subjects and methods 
Tissue samples from 29 individuals were studied. Biopsies were taken from 21 Achilles 
tendinosis patients and biopsies from 8 individuals with pain-free and clinically normal 
Achilles tendons. For further details, see Material and methods. 
   All specimens were subjected to immunohistochemical processing. TH and NPY was 
displayed via TRITC and PAP stainings, and α1- adrenoreceptors were visualized via TRITC.  
   In situ hydridization was performed to display the presence of TH mRNA.  
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 Main results 
   TH- (III: Fig. 2a) and NPY- LI were sometimes detected in the nerve fascicles of the 
paratendinous loose connective tissue in control and tendinosis Achilles tendons, but only 
exceptionally in the tendon tissue proper. Fine immunoreactive nerve fibers also lay more or 
less in association with the media-adventitia junction of the vessles (III: Fig. 3a). In most 
specimens though, the walls of the blood vessels, did not show neither TH nor NPY 
immunoreactivity (III: Figs. 2b, c, 3b). 
   On the whole, no convincing differences could be seen between the specimens from 
controls and tendinosis patients with respect to the magnitudes of NPY and TH 
immunoreactivities in blood vessel walls. 
   Tenocytes showed intracellular punctuate TH immunoreactions (III: Figs. 4c) in both 
control and tendinosis tendon specimens (III: Figs. 4a, b). A variability within and between 
specimens, was, however, noted in this respect. Thus, immunolabeled tenocytes could be seen 
to be intermingled with non-immunolabeled cells (III: Fig. 4a). The TH immunoreactions 
were in general more marked in tendinosis specimens compared to control tendon tissue 
samples. The most distinct reactions appeared in cells that were widened/cylindrical or 
rounded (Fig. 4b) or very wavy in appearance, and foremost in specimens showing 
hypercellularity.  
   The tenocytes in tendinosis tendons also displayed reactions for TH mRNA after having 
been processed by ISH. Overall, the abnormal tenocytes, displaying rounded (III: Fig. 6a), 
wavy and widened (III: Fig. 6b) and bizarre and rounded (III: Fig. 6c) appearances were 
showing the most marked reactions.  
   α1- AR immunoreactions could be detected in nerve fascicles, and in blood vessel walls 
(Fig. 5b). α1-AR-LI was also detected in tenocytes, particularly in tendinosis specimens (III: 
Fig. 5a). The tenocytes showing the most prominent α1-AR-LI were those that not showed the 
typical normal features of slender, straight tenocytes. In some tendinosis specimens, it was 
noted that the disfigured, in these cases mostly widened, tenocytes showing α1-AR-LI, were 
lined up in rows. At high magnification, the immunoreactions in the tenocytes showed a 
granular appearance (III: Figs. 5a, 5a inset). 

 
 

4.2.4 Study IV 
 

Precence of the neuropeptide Y1 receptor in tenocytes and bood vessel walls 
in the Achilles tendon 
 
Aim 
- to clarify the NPYergic innervation pattern by investigating the possible occurrence of NPY 
and the NPY receptors Y1 and Y2 in normal and tendinosis Achilles tendons of man. 
- to investigate if NPY is related to local production and function in the Achilles tendon 
- to map differences between normal the Achilles tendon and midportion Achilles tendnosis 

 
Subjects and methods 
Achilles tendon specimens from 45 individuals, one group consisting of 37 patients with 
painful midportion Achilles tendinosis were examined. 16 individuals of this group had 
previously been treated with sclerosing Polidocanol injections 3-5 times in order to reduce 
pain. The other main group consisted of 8 individuals with painless, normal Achilles tendons.  
   Immunohistochemistry was utilizeded, using antibodies against NPY (TRITC)  and Y1R 
and Y2R (FITC), and immunofluorescence. A semi-quantitative evaluation was performed 
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concerning levels of Y1R immunoreactions on the tenocytes. A 4-graded (1-4) scale was 
hereby used, were grade 1 corresponded to very weak reactions and grade 4 to very strong 
reactions. 

 
Main results 
NPY immunoreactions could be detected in nerve fascicles and perivascularly (IV: Fig. 1a), 
particularly in the paratendinous loose connective tissue. Nevertheless, there was, on the hole, a 
very scanty NPY innervation in both normal and tendinosis tendons.  
   NPY immunoreactions were not detected in tenocytes in any of the specimens from either 
controls or tendinosis patients.  
   Y1R immunoreactions could not be detected in the nerve fascicles. On the other hand, the 
smooth muscle cells of the blood vessel walls exhibited marked immunoreactions for the Y1R. In 
the endothelial layer, there were no immunoreactions; valid for both large (IV: Figs. 2a, 3b, d) and 
smaller (IV: Figs. 3a, 3d) blood vessels as well, and for both normal and tendinosis tendons. No 
convincing differences were revealed with respect to the immunoreactivity intensity concerning 
the blood vessles between specimens from control tendons compared to those from tendinosis 
tendons. 
   Y2R immunorections were not detectable in perivascular nerve fibers, nor in cells of the 
blood vessel walls (IV: Fig 3c) nor in the nerve fascicles. This was true for the paratendinous 
loose connectivte tissue as well as for the tendon tissue proper, and for both controls and 
tendinosis tendon specimens. 
   Y1R immunoreactions were, on the other hand, seen in tenocytes of both control (IV: Fig. 5a) 
and tendinosis (IV: Figs. 5b, c) tendons. The intensities of the immunoreactions were particularly 
marked in the tendinosis specimens (IV: Figs. 5b, c, 6). In aberrant tenocytes, foremost those with 
a rounded/widened appearance, marked immunoreactions appeared to be displayed on the plasma 
membrane, i.e. the exteriors of the cells (IV: Fig. 5c). 
   A semiquantitative analysis was made. This showed that the Y1R immunoreactions for the 
tenocytes in the tendinosis group were stronger than those in the non-tendinosis group (p<0.01). 
When comparing scores of specimens from males with those from females in the tendinosis group 
no statistical difference could be established. In the Spearman rank correlation test no correlations 
between age and immunoreactions intensity values were found. A comparison of the intensities of 
Y1R immunoreactions in tenocytes of the tendinosis patients that had been treated with 
Polidocanol injections with those tendinosis patients that not had been given this treatment 
showed no statistically significant difference between the two subgroups (IV: Fig. 6; treated, and 
IV: Figs. 4a, 5b,c; non-treated). 
   Y2R immunorections were not detected in the tenocytes (Fig 4b), neither in controls nor in 
tendinosis specimens. 
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4.3 Brief summary of the results 
 
 

The present studies display features concerning the innervation patterns and the expression of 
signal substances and their receptors in normal and midportion tendinosis Achilles tendons 
(Table 7). The investigations show that there on the whole is a difference in the magnitude of 
the innervation deep inside the tendon compared to that in the paratendinous loose connective 
tissue outside the tendon. The deeper parts of the tendon tissue proper are found to exhibit a 
relatively scarce innervation, whilst the innervation is more pronounced in the paratendinous 
loose connective tissue. Of particular interest are the findings suggesting production of nerve 
signal substances in Achilles tendinosis specimens, and the findings of marked receptor 
immunoreactivities in these tendons.  

 
 

 
Compound 

Nerve fascicles and peri- 
vascular nerve fibers 

 
Vessel  

 
          Tenocytes 

Paratentendinous 
loose connective 
tissue 

Tendon  
tissue  
proper 

walls Controls Achilles 
tendinoses 

PGP9.5  ++   + - - - 
SP/CGRP  + (+) - not examined not examined 
ChAT/VAChT  -  - -/(+) + +++ 
TH  + (+) - + +++ 
NPY (+) (+) -  -  - 
   
M2R + + - ++ + - ++ + ++ - +++ 
α1R + + + ++ ++ 
Y1R ++ ++ ++ ++ +++ 
Y2R  -  -  -  -  - 
 

Table 7. The table shows the magnitudes of innervations at the level of the paratendinous loose 
connective tissue  and the tendon tissue proper concerning the substances/enzymes investigated 
(PGP9.5, SP/CGRP, ChAT/VAChT, TH, NPY). ++: moderate, +: low, (+): sparse, -: no innervation. 
Furthermore, the degrees of expressions for the receptors in nerve structures and vessel walls are 
summarized (M2R, α1R, Y1R, Y2R). ++: moderate, +: low levels of immunoreactions, -: no 
immunoreactions.The magnitudes of expressions seen in the tenocyte populations are also depicted. 
+++: pronounced, ++: moderate, +: low, (+): sparse, -: no immunoreactions. The immunoreactions 
were in these cases seen in a subpopulation of the tenocytes. 
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5. DISCUSSION 
  
    

5.1 Overall comments 
 

Chronic painful midportion Achilles tendinosis is a common tendinopathy that often, but  
not exclusively, is seen in response of overuse (Maffulli et al., 1998). Despite being the  
strongest tendon in the human body, the Achilles tendon is one of the tendons that is more 
prone to injury than others (Rees et al., 2009), presumably to a certain extent due to its 
functional duties absorbing substantial forces when walking, running and jumping (Józsa and 
Kannus, 1997). In mid-portion Achilles tendinosis, as well as in Achilles tendon ruptures, 
many risk factors have been speculated upon (c.f. Introduction), but overall it has been 
established that degenerative tissue changes are deeply involved in tendinosis. The 
prerequisites that are needed prior to these changes do still to this date remain an enigma. 
Furthermore, another fact is, that the occurrence of degenerative processes does for many 
patients not manifest clinically, i.e. they do not have any symptoms such as pain or swelling. 
In a study where 891 tendon ruptures were examined, 397 of these being confined to Achilles 
tendons, two-thirds of the patients had no symptoms prior to rupture, but 97% had 
degenerative changes, compared to controls, of whom 34% had such changes (Kannus and 
Józsa, 1991). The reason of this lack of clinical symptoms, foremost pain, despite 
degenerative changes, is still mainly unknown.  
 
 
5.2 Overall scope the thesis   

 
In the present thesis, the patterns concerning local productions of nerve signal  
substances and their receptors were evaluated. The results provide evidence for the  
occurrence of a local production, in tenocytes, of nerve signal substances and presence of  
corresponding receptors, normally found in neurons. The findings presented in this thesis  
do also delineate the appearances concerning signal substances in relation to the  
morphological changes that occur in tendinosis. Furthermore, the innervation  
patterns of the human Achilles tendon are shown.   

 
 

5.3 Locally produced nerve signal substances and their 
receptors 

 
 

5.3.1 Expression patterns; presumable functions 
 
The results of this thesis show that the tenocytes in Achilles tendinosis tendons 1) display 
expressions for ChAT, VAChT and TH, suggesting that they synthesize ACh and 
catecholamines, 2) show expressions for the M2 receptors and α1-receptors, favouring that the 
cells are under influence by ACh and catecholamines. The tenocytes of these tendons also 
exhibited marked reactions for the Y1 receptor.  
   The observations may imply that both ACh and catecholamines may be produced by the 
tenocytes in tendinosis tendons. The fact that NPY-expression was not detected in the cells 
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must not mean that they do not produce NPY. The production levels may be very low, or 
alternately the release rate is very high.  

   A central finding was that the immunoexpression levels concerning ChAT, VAChT, M2R, 
TH, α1AR and Y1R were clearly more pronounced in the tenocytes of tendinosis tendons than 
in those of the control tendons. These observations show that the expression levels had 
increased in parallel with tendinosis manifestation. The observations furthermore suggest that 
more pronounced signal substance effects on the tenocytes are likely to take place when 
tendinosis has evolved. There is thus a marked morphological basis for occurrence of 
autocrine/paracrine events in the tendon, involving the cholinergic, catecholaminergic and 
NPY-ergic systems. Furthermore, it is evident that the “biochemical concept” (Khan et al., 
2000, Wang et al., 2006), as being a concept for the symptoms and signs that occur in 
tendinosis, should be further considered when interpreting the processis of Achilles 
tendinosis. 
   It is obvious that ACh (Phillips et al., 2000, Jacobi et al., 2002), catecholamines (Leech and 
Faber, 1996, Zhang and Faber, 2001,  Anesini and Borda, 2002), and NPY (Grundemar & 
Håkansson 1993, Hansel et al., 2001, Abe et al., 2007) have functions in common, that relates 
to proliferative, angiogenic, and blood vessel regulating effects. Interestingly, 
hypercellularity, hypervascularity and angiogenesis occur in tendinosis (e.g. Åström and 
Rausing, 1995, Movin et al., 1997, Khan et al., 1999a, Maffulli et al., 2004). It is thus possible 
that effects via M2R, α1AR and Y1R are important in the tendinosis process as being related 
to these phenomena. 
    A receptor that was very markedly expressed in the tenocytes, particularly in tendinosis 
tendons, was the Y1R. Interestingly, the Y1R has marked effects in several conditions. Apart 
from blood vessel regulating and proliferative effects (Pons et al., 2008), these include effects 
on tumor cell proliferation (Ruscica, et al., 2007) and effects on the immune system (Wheway 
et al., 2007).  

 It appears as if there is a continuous process in terms of signal substance production and 
expression of receptors for these substances. The more evident the tendinosis features was, the 
more evident were the signal substance/receptor immunoreactions. However, it was also 
evident that there was a heterenogeneity in tendon tissue concerning expressions or not of 
signal substances and their receptors. Some cells in the tendons were thus non-reactive. 

 
 

5.3.2 There are especially expressions in tendon cells with  
tenoblast appearances 

 
It was evident that especially tendon cells with rounded/oval appearances were 
immunolabelled. These tendon cells are generally considered to represent the tenoblast cell 
type of tendon cells (c.f. Introduction), i.e. cells with a high metabolic rate and being an 
activated form of tenocytes. As the tenoblasts are activated in response to injury (Kakar et al. 
1998), it is logic that these particular cells exhibit marked signal substance reactions.  
    When discussing the characteristics of tenoblasts, it is of relevance to comment on those of 
fibroblasts, i.e. the counterparts to tenoblasts/tenocytes in other tissues. Active fibroblasts can 
be recognized by their abundant rough endoplamic reticulum. Inactive fibroblasts, which are 
also called fibrocytes, are smaller and spindle shaped and have a less pronounced rough 
endoplasmic reticulum. The fibroblasts are often crowded in the tissue and are often locally 
aligned in parallell in clusters (McNeilly et al., 1996, Ralphs et al., 1998). The latter 
morphological features were often seen for the rounded/oval tendon cells in the present 
studies. 
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 The main function of fibroblasts is to maintain the structural integrity of connective tissue 
by continuously secreting precursors of the extracellular matrix. Fibroblasts make collagens, 
glycosaminoglycans, reticular and elastic fibers, and glycoproteins. Tissue damage stimulates 
fibrocytes, inducing mitosis of these.The apparent counterpart in the tendons (the tenoblasts) 
in tendinosis do apparently also show a high metabolic rate concerning signal substance 
production.   

 It was, however, also a fact that some tendon cells with rounded/oval appearances exhibited 
a low level of expression of M2R. One possibility is that the receptors in these cells have been 
degraded in response to a very high and long-lasting metabolic activity.  

 Results of recent studies suggest that also other signal substances than those examined here 
are produced by tenocytes. That includes glutamate (c.f. Introduction), neurotrophins (Bagge 
et al., 2009) and VEGF (Petersen et al., 2003). 

 
 

5.4  Innervation patterns 
 
The present findings show that there is a scarce innervation inside the tendon, and that most of 
the innervation is located to the paratendinous connective tissue outside the tendon and here 
being located close to blood vessels. This was seen in the stainings performed for the general 
nerve marker PGP9.5. The existence of a scarce innervation inside the tendon, conform to 
observations made for the patellar tendon (Danielson, 2007). 
    The findings show that there indeed is a morphological correlate for the occurrence of 
nerve-related effects at the level of the paratendinous connective tissue. There was an 
existence of sensory and sympathetic components in this innervation. SP is a neuropeptide 
that has been demonstrated in the innervation of the paratendinous region in both rat Achilles 
tendons (Messner et al., 1999) and cat popliteus tendons (Marshall et al., 1994). 
   The paratendinous connective tissue located dorsally to the tendon tissue proper was the 
tissue examined in the present thesis. As judged from recent studies performed in the research 
group, it is obvious that there is actually a more marked nerve supply in the paratendinous 
tissue located ventrally to the Achilles tendon (c.f. Andersson et al., 2007). 
    The observations of innervation in association with blood vessels at the the level of the 
paratendinous loose connective tissue are of interest from a clinical point of view. Ultrasound 
and color Doppler-guided sclerosing of blood vessels via injections at this level do thus 
drastically decrease tendinosis pain (Öhberg and Alfredson, 2002, Alfredson and Öhberg, 
2005b). 
   Interestingly, fine nerve fibers exhibiting PGP9.5- as well as to some extent SP- and CGRP-
LI could sometimes be detected in association with small blood vessels in tendinosis tendons. 
This can be related to an effect of the nerves in relation to angiogenesis. It is thus previously 
shown that neuropeptides can have effects in relation to angiogenesis (Fan et al., 1993). This 
aspect will be further discussed below.  
    The sympathetic innervation pattern (III) was found to follow the general innervation 
pattern. However, the sympathetic innervation was rather scanty. The magnitude of the 
NPYergic innervation was very scanty. The cholinergic markers, a transporter for ACh 
(VAChT) and the enzyme that is responsible for ACh synthesis (ChAT), could not be detected 
in nerve structures at all (II). In accordance with this finding, nerve fibers displaying AChE 
activity have only been very occasionally detected in tendinosis Achilles tendons (Alfredson 
et al., 2001a). This implies that there in principle is a very low or almost non-existing 
cholinergic innervation in relation to the Achilles tendon. In comparison, immunoreactions for 
ChAT were also not seen with certainty in nerve structures in the patellar tendon (Danielson 
et al., 2006b).  
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5.5 The locally produced signal substances and the 
innervations in relation to tendon pain  

  
 

It would be very interesting to know if and to what extent the locally produced signal 
substances are related to tendinous pain.  
   There were no nerve fibers in close relation to the tenocytes and the great part of the 
innervation is located in the paratendinous connective tissue. Nevertheless, it might be that 
neuropeptides/neurotransmitters to some extent can reach receptors at rather distant sites 
within the tissue. In any case, it is known that stimulation of adrenergic  as well as ACh 
receptors can modulate pain (Vogelsang et al., 1995, Baron et al., 1999). 
   The source of the pain in tendinopathy is in any case likely to be derived from sensitised 
nerve endings within the tendon and particularly from nerve endings in the paratendinous 
connective tissues. Here it should be recalled that the number of nerve fibers within tendon 
tissue proper of the Achilles tendon was very low. Ingrowth of nerves, in parallell with that of 
blood vessles, has been suggested to occur for tendinosis tendons (Alfredson et al., 2003c). 
Maybe this nerve ingrowth to some extent is related to pain-effects. 
   A well known phenomenon is that there may be interactions between sensory and 
sympathetic nerve fibers. These may partly  be mediated via receptors on the sensory nerve 
fibers (Wong, 1993). It can therefore not be excluded that sympathetic/sensory influences can 
be involved in the pain mechanisms in the paratendinous connective tissue in Achilles 
tendinosis. The morphologic correlate for this is more evident in the paratendinous connective 
tissue located ventrally (Andersson et al., 2007), than dorsally (here examined) in relation to 
the tendon proper. 
   It is of interest to note that the nociceptive role of SP is known to be additive with that of 
glutamate in mice (Murray et al., 1991) and that glutamate has been found to have excitotoxic 
effects in the CNS (Camacho and Massieu, 2006). Glutamate and one its receptors, the 
NMDAR1 (Alfredson et al., 1999, 2001a, 2001b), have been found in the Achilles tendon, 
and in a very recent study, coexistence of up-regulated NMDA receptor 1 and glutamate on 
nerves, vessels and transformed tenocytes has been discovered in patellar tendinopathy 
(Schizas et al., 2009), suggesting a regulatory role in intensified pain signalling.  
 
 
 5.6 Relation to histopathology, exercise, the collagen and  
    apoptosis  

 
A general feature when examining all the specimens in these studies was the fact that there 
were marked inter-individal morphologic variations between the specimens of both groups, as 
well as within the specimens as such. The variability in morphology in tendinosis specimens 
in our studies is in principle in accordance with that found in previous investigations (Åström 
1995 and Rausing, Józsa and Kannus 1997, Khan, 1999a, Shalabi, 2004).  
    Metabolic activity, circulatory responses and collagen turnover are all strikingly increased 
in tendons after exercise, all leading to remodelling and defending of tendon tissue against 
quality loss. The time pattern of this adaptation may limit athletic training, and help us to 
understand why overuse injuries occur in work, sport and recreational activities (Kjaer et al., 
2005). It is presumable that effects of locally produced signal substances are highly involved 
in these adaptations. The adaptations include effects on collagen structure. It is actually well-
known that there is a tendency for discontinuity of the collagen in tendinosis (Khan et al 
1999a). Here it should be remembered that both ACh (Oben et al., 2003b) and norepinephrine 
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(Oben et al., 2003a) can induce collagen in myofibroblastic cells. Furthermore, that the use of 
an ACh agonist has effects on collagen production (Jacobi et al., 2002).  
   In summarizing tendon biomechanical behaviour in vivo, Magnusson and collaborators 
suggested that “human tendons are metabolically active, especially during exercise, and 
exhibit visco-elastic properties that enable them to interact with the contractile element and 
mediate the outcome of muscle contraction and whole body performance”. These authors also 
concluded that the tendon properties are worsened by chronic disuse and ageing, but that 
training can partly mitigate these changes (Magnusson et al., 2008). It would be very 
interesting to know if and to what extent the levels of signal substance productions in the 
tenocytes/tenoblasts are influenced by training/exercise.  
    It is well-known that tenocytes in tendinosis tendons may be subject to apoptosis (Yuan et 
al., 2003). Signal substances may hereby have an effect in modifying this process. It is thus 
known that interference with adrenergic effects can influence apoptotic/degenerative events, 
beta-adrenoceptor antibodies inducing apoptosis in rat cardiocytes (Staudt et al,.  2003).  

 
 

5.7 The vasculature 
 

The blood vessel were consistently equipped with M2, α1 and Y1 receptors. These 
observations suggest that they are under marked influences via effects on these receptors. It is 
a well-known fact that the sympathetic nervous system and also NPY are involved in 
cardiovascular regulation (Pons et al., 2008). NPY can hereby potentiate the effects of alpha-
adrenergic agonists (Linder et al., 1996). The observations of M2 immunoreactions in the 
endothelial parts of the blood vessel walls suggest that vasodilatory mechanisms occur in the 
Achilles tendon via effects of ACh.   
    Previous studies have indicated that neovascularization occurs at certain stages in 
tendinosis (Öhberg et al 2001b, Alfredson et al 2003c, Cook et al. 2004b) and that 
neuropeptides on the whole can have effects in relation to angiogenesis (e.g., Fan et al. 1993). 
In comparison, ingrowth of blood vessels is suggested to be associated with ingrowth of 
nerves in vertebral discs (Brown et al., 1997). The aspects of angiogenesis for tendinosis 
tendons are further discussed below. 
    In experimental studies in which Achilles tendon disorder corresponding to tendinosis was 
induced in the rat, increased numbers of nerve filaments and increased immunoreactivity to 
CGRP and SP occurred in parallel with the occurrence of hypervascularization at 7–11 weeks 
after treatment (Messner et al. 1999). The vasculature has also been postulated to have a 
qualitative significance, in that tendon grafts promote a revascularisation allowing normal 
function of the tissue, while a vascular response in chronic tendinopathy apparently does not 
lead to repair or resolution of the condition (Fenwick et al., 2002). 

 
 

5.8 Does the up-regulation of signal substance  
production/receptor levels have a healing effect? 

 
It might be asked as to wether the up-regulation of signal substance production/receptor levels 
is a drawback for tendon tissue or if it has a positive outcome. The occurrence of proliferative, 
angiogenic, vascular and collagen-modifying functions should here be recalled. An increase in 
tenocyte numbers is likely to be of positive character in view of the collagen production 
function that the tenocytes have. The angiogenesis process may also be important for the 
tissue to cope with an increasing demand. Angiogenesis processes initiated by effects of 
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neuropeptides may actually participate in healing processes (Brain 1997). NPY is one of the 
neuropeptides which have angiogenic effects (Abe et al., 2007).  
     It is a fact that neuropeptides like SP are reported to have healing and growth promoting 
effects in tendons (Steyaert et al., 2006). SP is actually considered to exhibit healing effects 
also for other tissues (Katz et al., 2003). In an experimental study, artificially ruptured rat 
Achilles tendons were found to elicit extensive nerve ingrowth into the rupture site in the 
early phase of healing, followed by almost complete fiber disappearance and that this may 
prove that the observed temporal occurrence of different neuropeptides in this situation 
reflects a role of the peripheral nervous system in synchronously regulating nociception and 
healing (Ackermann et al., 2002). The fact that the effects of ACh may include “wound 
healing” (Grando, 2006) is also noteworthy. It is furthermore interesting to note that locally 
produced ACh in inflammatory cells in inflammatory conditions is considered to have anti-
inflammatory effects (Kawashima and Fujii, 2004). 
    The increase in signal substance production/function is likely to influence tissue 
organization and function and to be intimately coupled to the occurrence of an increase in the 
metabolic activity of the tendinosis tendons. However, it cannot be excluded that the high 
levels of signal substance production/function may have a negative effect in the long run, 
eventually leading to tissue deterioration. Concerning another factor shown to be locally 
produced in tendons, VEGF, it is considered that this growth factor plays a significant role for 
the pathogenetic processus during degenerative tendon disease (Pufe et al., 2005). VEGF 
may, on the other hand, be this important growth factor for vessel regeneration (Rosenbaum et 
al. 2008).There have been a few studies suggesting there is an importance of various 
angiogenic growth factors in normal tendon healing (e.g. Chang et al., 1997, Duffy et al., 
1995, Kuroda et al., 2000). 
Healing of tendon has also been studied with regard to the involvement of stem cells. Still 
though, studies on human tendons are lacking in this respect. In vitro studies and animal 
studies on rabbit healing tendon parts have shown the tendons to heal better when applying 
mesenchymal stemcells (MSCs) (Young et al., 1998, Chong et al., 2007).. MSCs have thereto 
been shown to express high levels of vascular endothelial growth factor  

 
 

5.9 Existing treatments;  
              Do the findings in the present thesis suggest new 
             treatments? 
 

Although it is not the principal scope of the present thesis to evaluate the outcomes of 
treatments for overuse tendon injuries, certain aspects shall be commented on.  
    Non-invasive treatments such as performance of relative rest stretching, analgesics (Wilson 
and Best, 2005), cryotherapy (Bleakley et al., 2004), deep friction massage in combination 
with stretching (Cyriax, 1980, Kvist, 1991) altering biomechanics by heel pads (Lowdon et 
al., 1984), or orthotics (Sergesser et al., 1995), therapeutic ultrasound (Enwemeka, 1989), 
extracorporeal shockwave therapy (Costa et al., 2005), and low level laser treatment 
Stergioulas et al., 2008), may have effects. Complete immobilization should be avoided to 
prevent muscular atrophy and deconditioning. NSAID´s instead of analgetics is not a 
convincing strategy (Åström and Westlin., 1992) 
   A very favourable treatment method has been found to be eccentric training. Initially 
eccentric training was performed without tendon pain (Curwin, 1984). Alfredson and 
collaborators modified the eccentric training regimen in using painful training, heavier loads 
and single leg exercises (Alfredson et al., 1998). Eccentric exercise has gradually been proven 
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beneficial in Achilles tendinosis (Fahlström M et al., 2003, Jonsson et al., 2008) and patellar 
tendinosis (Roos et al., 2004, Jonsson P  and Alfredson, 2005, de Vos et al., 2007, Rompe et 
al., 2007) and superior short-term and medium-term results have been shown compared to 
concentric training (Mafi et al., 2001). Eccentric training has been shown to normalize the 
Achilles tendon structure, decrease its thickness (Öhberg et al., 2004b, Shalabi et al., 2004) 
and blood flow (Öhberg et al., 2004b, Knobloch et al., 2007). There is still, however, a lack of 
evidence showing exactly why eccentric training gives this relief in pain and the 
rearrangement of the tendon structures. Are locally produced signal substances involved? 
    Earlier studies implying inflammatory genesis suggested injections of corticosteroids to be 
used, but these drugs should be used with caution. Recent research has made it obvious that 
these should be avoided, not least due to a high rupture risk (Åström, 1998, Csizy and 
Hintermann, 2001). Sonography-guided intratendinous injections of hyperosmolar dextrose 
have been shown to decrease clinical symptoms, tendon thickness and neovascularity in 
chronic Achilles tendinosis patients (Maxwell et al., 2007).  
    A recently developed method that has been found to be very successful is, as described in 
Introduction, a treatment by which sonography-guided Polidocanol injections are given 
outside the tendon tissue proper. Via this treatment, the vessels entering the tendon from the 
ventral side are sclerosed. This treatment has shown good clinical results (Alfredson and 
Öhberg, 2005b, Lind et al., 2006, Willberg et al., 2008). In the early period after sclerosing 
Polidacanol treatment Doppler ultrasonography have revealed increased intratendinous 
vascularity postulated to be possibly related to a healing respons (Alfredson and Öhberg, 
2006). Nevertheless, not all patients with Achilles tendinosis are cured by Polidacanol 
injections. In one study in the present thesis (IV), it was found that the immunoexpression 
levels for Y1 in blood vessel walls (as well as on tenocytes), were as marked for tendons of 
patients who had been sclerosed as those found for tendinosis patients that not had been 
sclerosed. It should here be pointed out that these patients had not been cured in response to 
the sclerosing treatment. Numerous other drugs or substances have been used as injection 
treatments for chronic tendon disorders. Various interpretations about the healing 
improvement potential of these substances have been made, but few stand up to scrutiny. 
     Surgery is recommended to be considered if an athlete has been treated for 3 to 6 months 
without progress conservatively (Angermann and Hovgaard, 1999). Different procedures for 
this have been utilized. The specimens examined in the present thesis represent excised 
material from tendon parts for which tendinosis tissue appearance macroscopically was 
clearly observed. 
    The results of the present studies show that there are marked reactions for M2 receptors, as 
well as α1 and Y1 receptors in especially tendinosis tendons. That was the case for blood 
vessel walls as well as tenocytes. The observations show that there is a morphological 
correlate for an achievement of effects via interfering with all these receptors. Here it should 
be recalled that adrenergic agonists/blockers and medications that block or increase effects of 
ACh and adrenergic effects are since long used in practise medicine. An interesting aspect of 
today is that medications that increase ACh effects are used with positive outcome for 
Alzeheimer´s disease (Shah et al., 2008). The compounds used for achieving these effects are 
AChE blockers. The possibility that interference with cholinergic effects might be worthwhile 
for different aspects concerningt the locomotor system has recently been reviewed (Forsgren 
et al., 2009). 
   Concerning the Y1 receptor, it is suggested that targeting this receptor may be favourable 
for certain cancers (Körner et al., 2008) and for the establishment of a modification of 
vascular remodelling in cardiovascular disease (Abe et al., 2007). Another field in which 
targeting NPY may be favourable is obesity (Pedrazzini et al., 2003).  
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    Future treatment methods for tendinosis may possibly involve mesenchymal stem cells. A 
few promising results have been reported in animal studies (Young et al., 1998, Smith et al., 
2003, Smith and Webbon, 2005, Chong et al., 2007). Interesting studies, in rabbit, also show 
that tenocytes have a potential, similar to different MSCs, of being used as graft cells in the 
healing process after an artificial rupture (Kryger et al., 2007). Gene therapy has also shown 
promising results but no large randomized controlled trials have so far been reported 
(Hoffmann and Gross, 2009). Even gene therapies have been tested in rat with promising 
results (Bolt et al., 2008, Hou et al., 2009). In recent years animal studies have found growth 
factor treatment to be beneficial to promote tendon healing; bFGF (Rickert et al., 2005, Tang 
et al., 2008), VEGF (Zhang et al., 2003 , Pufe T et al., 2005), TGFβ1 (Kashiwagi et al., 2004), 
PDGF (Thomopousolos et al., 2007). Another interesting treatment possibility would 
probably be glutamate antagonists, as both NMDA receptor and glutamate are found in 
tendon and are involved in mediating pain in the CNS (Chizh, 2002). NMDA receptor 
antagonists are already in clinical use in other diseases. That includes the use of the NMDA 
receptor antagonist memantine for Mb Alzheimer.  

  
 

5.10 Study design, limitations, and aspects of research 
approaches 

  
In the present thesis, an observational analytic epidemiological study design, the case-control 
study, was used. The study design itself has the limitations of being retrospective, and non-
randomized to its nature. The cases were collected prospectively, with cases added as they 
occured.  
    The reports (I-IV) are descriptive to their charactaristics, describing the morphology in 
Achilles tendons with or without tendinosis, especially regarding innervations and signal 
substances and their receptors, but do not concern the exposure circumstances.  
    To establish causality of Achilles tendinosis, longitudinal studies would be preferable. This 
is a difficult task. Another approach is to use animal models and then conduct a longitudinal 
study in which tissue samples are taken after various fixed time intervals. Outcome of such 
studies are of importance in order to better understand the temporal course of development of 
Achilles tendinos. Some animal tendinosis models do actually exist (Warden, 2007). The 
importance of the signal substances here examined has not been evaluated in these. An animal 
experiment model is currently being used with this aspect in focus in our research group. Yet 
another approach would be to use cell culturing as an experimental model for tendinosis. Such 
studies are currently being initiated in our laboratory.   
   There were appearances that to some extent were of histopathological type also in some of 
the samples of the controls, but they were never as severe as in any specimen from the 
tendinosis samples. Notable is that our inclusion criteria for controls included individuals that 
had normal painless Achilles tendon at clinical examination and normal tendon findings on 
ultrasonography, while the morphologic changes were discovered subsequently in the 
evaluation process through microscopy. 
     The tissue samples were carefully taken with emphasis on minimizing tissue trauma in the 
controls. It should also be remembered that the samples of the controls were taken rather 
superficially, whilst in the tendinosis group, the tissue samples were taken during surgical 
treatment and were taken more deeply in the tendon tissue. 
   Tissue samples of tendinosis patients were in all studies taken from the dorsal and central 
parts of the tendon. In a subgroup in study IV (patients previously treated with Polidocanol), 
tissue samples were harvested from the ventral side of the tendon. This was done because 
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ultrasound and Doppler examination showed structural tendon changes and high blood flow 
localised to the ventral side. At this time, new research findings had shown a correlation 
between the combination of structural tendon changes and locally high blood flow, and pain 
during tendon loading activity (Öhberg et al., 2001b, Alfredson et al, 2003c). 

 
 

5.11 Social impact of tendinosis pain  
 
Quite many individuals are impaired in the functions of  their daily life and/or in their 
physical activity or sport activities when suffering from midportion Achilles tendinosis. As is 
the case for many other diseases, this substantially decreases quality of life and can in certain 
cases even have economic consequences. Athletes, at least those that are at the elite level, are 
often doomed to be dependent on sponsorships for their economics. Continuous high 
performance level over time is in this context of utmost importance. Elite athletes may 
actually have to give up their sport careers due to Achilles tendinosis.  
     A sedentary lifestyle is not to prefer, as one of the most threatening health-problems of our 
time, the metabolic syndrome, could be the outcome. Midportion Achilles tendinosis, being, a 
not-life-threatening disease, is laying in the “border zone” of government health insurance 
systems (at least just now in Sweden), making it rather important to find reliable, high quality 
and effective treatments in the future. It is therefore necessary to further develop the already 
existing treatments and to develop new treatments. 

 
 

6 FINAL REMARKS AND CONCLUSIONS 
 

Achilles tendinopathy can be resistant to treatment, and symptoms may persist despite both 
conservative and surgical intervention. The pathology of overuse tendinopathy is mainly 
thought to be non-inflammatory, with a degenerative or failed healing tendon response. 
Neovascularisation evident on Doppler ultrasound correlates well with pain and poor 
function. The diagnosis of Achilles tendinopathy requires excellent differential diagnosis and 
an understanding of the role of tendon imaging. Conservative treatment must include exercise, 
with a bias to eccentric contractions. Paratendinous injections, as well as eccentric training, 
decrease neovascularity, relieve pain and improve outcome. Although surgery is the last resort 
in those patients failing conservative management, it is still unclear how the removal of 
adhesions and excision of affected tendinopathic areas affects healing and vascularity, or 
resolves pain. 
    The results in the present thesis depict the innervation patterns in the inner parts of the 
Achilles tendon as well as outside the (in the paratendinous connective tissue). The results 
also show that quantitative as well as qualitative structural and biochemical changes occur 
inside the tendon; a non-neuronal paracrine/autocrine system being altered as a part of these 
processes in tendinosis. The signal substances ACh, catecholamines and NPY are involved. 
The observations give evidence for the occurrence of local productions of ACh and 
catecholamines. There is a marked morphologic correlate for an occurrence of effects of ACh, 
catecholamines and NPY not only in the vasculature but also on the tenocytes. Of utmost 
importance is the fact that these observations were the most marked in the tendinosis tendons.  
Potential autocrine/paracrine effects related to ACh, catecholamines and NPY are likely to be 
of great importance during the process of tendinosis. What remains to be defined is the 
importance of the presumable proliferative, angiogenic, collagen-modifying and 
degenerative/apoptotice effects of these substances in the disease process.  
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POPULÄRVETENSKAPLIG SAMMANFATTNING  
 
Besvär från hälsenan (Akillessenan) är relativt vanligt förekommande. Det kan handla om att 
senan delvis eller helt gått av men det kan ännu hellre handla s.k. kronisk hälsenesmärta 
(Akillestendinos), med svullnad, stelhet och typiska mikroskopiska såväl som 
röntgenologiska avvikelser jämfört med normala ej smärtande hälsenor. Akillestendinos 
uppstår successivt och förekommer t.ex. hos löpare som belastar benen under många och 
långa löpträningspass med en stor snabbt alternerande belastning på hälsenorna som följd. 
Även personer som är idrottsligt passiva kan få besvären. Tidigare trodde man det rörde sig 
om ett inflammatoriskt tillstånd, varför behandlingen ofta bestod av vila och 
inflammationsdämpande mediciner. Numera vet man dock att det i princip inte rör sig om ett 
inflammatoriskt tillstånd.  
   Många har spekulerat i och även forskat i hur Akillestendinos uppstår. En del hävdar att det 
rör sig om en kombination av åldersförändringar (degeneration) och upprepad och/eller 
felaktig belastning utan tillräcklig vila mellan belastningstillfällena, andra att det rör sig om 
anatomiska eller molekylära brister eller förändringar. Denna avhandling utgör ett bidrag till 
denna forskning och inriktar sig främst på att undersöka vilken typ av nerver och deras 
signalsubstanser (nervtransmittorer) och mottagarmolekyler (receptorer) som kan återfinnas i 
hälsenor och huruvida antalet, typen och var de förekommer förändras efter utveckling av 
kronisk hälsenesmärta. Avhandlingen belyser även hur senvävnadens celler (tenocyter) och 
blodkärlens celler uttrycker dessa ämnen. 
    Vävnadsprover från kroniskt smärtande (tendinotiska) och normala Akillessenor studeras 
med mikroskopiska metoder (immunohistokemi och in situ hybridisering). Vidare studeras 
vävnaden med sedvanliga mikroskopiska metoder.  
    Avhandlingen visar att innervering främst finns utanför själva senvävnaden (tendon tissue 
proper), nämligen i den luckra bindväven i det som kallas paratenon. Innerveringen består 
främst av en sympatisk innervering men även till delar av en sensorisk sådan. Det är på det 
hela taget väldigt sparsamt med innervering i bindvävssepta i tendon tissue proper.  
    Det mest intressanta med avhandlingen är att det visas att tenocyterna uppvisar reaktioner 
för enzymer som deltar i bildandet av nervsignalsubstanserna acetylkolin och katekolamniner.  
Det är av extra stor relevans att dessa fynd mycket tydligare ses i de kroniskt smärtande 
(tendinotiska) senorna än i normala smärfria senor. Dessutom ses förekomst av receptorer för 
dessa substanser i tenocyterna. Även i detta fall ses de tydligaste reaktionerna i de 
tendinotiska senorna. Tenocyterna uppvisar även ett höggradigt uttryck för receptor för 
nervsignalsubstansen NPY. 
    Vidare ses tydliga reaktioner för receptorer för nervsignalsubstanserna i blodkärlsväggar.  
    Fynden visar att det de facto finns ett underlag för erhållande av smärtsensationer i den 
luckra paratendinösa vävnaden och att substanserna ifråga kan påverka blodkärlen i vävnaden. 
Intressant nog talar även fynden för att det sker en lokal produktion av nervsignalsubstanser i 
senorna, nämligen i tenocyterna och att detta sker betydligt mer i kroniskt smärtande än 
normala senor. Vidare talar fynden för att substanserna ifråga har effekter på tenocyterna, 
eftersom de uppvisar receptorer för dessa. Allt detta talar för att s.k. autokrina/parakrina 
effekter avseende flera signalsubstanser i avsevärd omfattning sker vid tendinos. Dessa skulle 
kunna tänkas vara relaterade till proliferativa, blodkärlsbildande/blodkärlsreglerande 
funktioner och effekter avseende senornas kollagen. 
    Fynden visar på en ny aspekt avseende Akillesenans vävnad, nämligen att 
nervsignalsubstanser kan tillhandahållas i denna trots att innerveringen är mycket sparsam. 
Fynden ger alltså ny förståelse för existensen av substanser i senvävnaden som kan ha stor 
betydelse för tendinos-processen. Förhoppningen är att de nya fynden ska leda till utveckling 
av nya alternativa behandlingsmetoder.  
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