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Abstract

This dissertation is concerned with three-dimensional (3D) sensing and 3D scan
representation. Three-dimensional records are important tools in several, quite
diverse, disciplines; such as medical imaging, archaeology, and mobile robotics.
In the case of mobile robotics (the discipline that is primarily targeted by the
present work), 3D scanning of the environment is useful in several subtasks,
such as mapping, localisation, and extraction of semantic information from
the robot’s environment. This dissertation proposes the normal-distributions
transform, NDT, as a general 3D surface representation with applications in
scan registration, localisation, loop detection, and surface-structure analysis.

Range scanners typically produce data in the form of point clouds. After ap-
plying NDT to the original discrete point samples, the scanned surface is instead
represented by a piecewise smooth function with analytic first- and second-
order derivatives. Such a representation has a number of attractive properties.

The smooth function representation makes it possible to use standard meth-
ods from the numerical optimisation literature, such as Newton’s method, for
scan registration. This dissertation extends the original two-dimensional (2D)
NDT registration algorithm of Biber and Straßer to 3D and introduces a num-
ber of improvements. By using a multiresolution discretisation technique and
trilinear interpolation, some of the discretisation issues present in the basic reg-
istration algorithm can be overcome. With these extensions, the robustness of
the registration algorithm is substantially increased. The 3D-NDT scan registra-
tion algorithm is compared to current de facto standard registration algorithms.
The algorithms are evaluated using exhaustive experiments with both simulated
and real-world scan data. 3D-NDT scan registration with the proposed exten-
sions is shown to be faster and, in most cases, more accurate and more robust
to poor initial pose estimates than the popular ICP scan registration algorithm.
An additional benefit is that 3D-NDT registration provides a reliable confidence
measure of the result with little additional effort.

Furthermore, a kernel-based extension to 3D-NDT for registering coloured
data is proposed. As opposed to the original algorithm, which uses one metric
normal distribution for each quantum of space, Colour-NDT uses three com-
ponents, each associated with a colour. This representation allows coloured
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Abstract
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scans with little geometric features to be registered. When both 3D scan data
and visual-image data are available, it is also possible to do scan registration
using local visual features of the image data. However, approaches based on
local features typically use only a small fraction of the available 3D points for
registration. In contrast, Colour-NDT uses all of the available 3D data. This
dissertation proposes to use a combination of local visual features and Colour-
NDT for robust registration of coloured 3D point clouds in the presence of
strong repetitive textures or dynamic changes between scans.

Also building on NDT, a new approach using 3D laser scans to perform
appearance-based loop detection for mobile robots is proposed. Loop detection
is an important problem in the SLAM (simultaneous localisation and mapping)
domain. 2D laser-based approaches are bound to fail when there is no flat floor.
Two of the problems with 3D approaches that are addressed in this dissertation
are how to handle the greatly increased amount of data and how to efficiently
obtain invariance to 3D rotations. The proposed approach uses only the appear-
ance of 3D point clouds to detect loops and requires no pose information. It
exploits the NDT surface representation to create feature histograms based on
local surface orientation and smoothness. The surface-shape histograms com-
press the input data by two to three orders of magnitude. Because of the high
compression rate, the histograms can be matched efficiently to compare the ap-
pearance of two scans. Rotation invariance is achieved by aligning scans with
respect to dominant surface orientations. In order to automatically determine
the threshold that separates scans at loop closures from others, the proposed
approach uses expectation maximisation to fit a Gamma mixture model to the
output similarity measures. Also included is a discussion of the problem of de-
termining ground truth in the context of loop detection and the difficulties in
comparing the results of the few available methods based on range information.

In order to enable more high-level tasks than scan registration, localisation,
and mapping, it is desirable to also extract semantic information from 3D mod-
els. The ability to automatically segment the map into meaningful components
is necessary to further increase autonomy. Information that may be useful to
extract in a mobile robot context includes walls, doors, and drivable surfaces.
One important task where 3D surface analysis may be useful is boulder detec-
tion for underground mining vehicles. This dissertation presents a method, also
inspired by the NDT surface representation, that provides clues as to where the
pile is, where the bucket should be placed for loading, and where there are ob-
stacles. The points of 3D point clouds are classified based on the surrounding
surface roughness and orientation. Other potential applications of the proposed
algorithm include extraction of drivable paths over uneven surfaces.

In addition to the aforementioned contributions, the dissertation also in-
cludes an overview of range sensors and their utility in mining applications.

Keywords: NDT, 3D sensing, surface representation, registration, loop detec-
tion, surface analysis, mobile robotics, localisation, mapping.
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Sammanfattning på svenska

Tredimensionella (3D) modeller är viktiga verktyg inom många discipliner som
sinsemellan är mycket olika. Ett exempel är medicinsk bildbehandling, där 3D-
bilder används för att visa patienters organ utan att läkaren behöver operera.
Ett annat exempel är arkeologi, där 3D-modeller av antika föremål kan sparas
utan att skadas av en allt mer korrosiv miljö. Digitala 3D-modeller gör det
också möjligt att att analysera arkeologiska fynd på ett sätt som annars inte
vore praktiskt genomförbart. Ytterligare ett användningsområde är inom mobil
robotik, där 3D-modeller av omgivningen är användbara för flera deländamål,
såsom kartläggning, lokalisering och utvinning av semantisk information från
robotens omgivande miljö.

För att kunna använda de tredimensionella modellerna krävs en formell
beskrivning som kan användas för att matematiskt representera dem och lag-
ra dem i en dator. Det centrala temat för den här avhandlingen är en sådan
formell beskrivning, nämligen normalfördelningstransformen, eller NDT (”the
normal-distributions transform” på engelska). NDT tillhandahåller en fördel-
aktig beskrivning av 3D-data. Normalt är sådana data tillgängliga i form av
ostrukturerade ”punktmoln”, det vill säga en samling mätpunkter, var och en
med en viss position. Punkterna, som har uppmätts från en yta, utgör en mo-
dell av det objekt som avlästs. Efter det att NDT tillämpats på ett punktmoln
beskrivs i stället den avlästa ytan som en jämn och styckvis kontinuerlig funk-
tion med analytiska derivator. Jämfört med punktmoln är en sådan beskrivning
fördelaktig på flera sätt.

När man skapar en 3D-modell av ett fysiskt objekt är det ofta så att hela
området man är intresserad av inte kan läsas av på en gång — antingen för att
vissa delar är skymda, för att objektet är för stort eller för att objektet i sig är
fragmenterat. Därför måste man som regel använda sig av så kallad registrering
— det vill säga sammanfogning av de olika delarna — för att skapa en komplett
modell. För att kunna passa ihop delarna av 3D-modellen måste man hitta den
korrekta positionen och orienteringen för alla delar, det vill säga deras poser.
Att passa ihop en fragmenterad 3D-modell kan jämföras med att lägga pussel.
Det gäller att hitta rätt ställe för att passa in varje bit. Att hitta rätt pose är
en uppgift för registreringsalgoritmer. Parvis registrering är processen att hitta
den pose där ett fragment bäst passar ihop med ett annat, under antagandet
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registration. In contrast, Colour-NDT uses all of the available 3D data. This
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domain. 2D laser-based approaches are bound to fail when there is no flat floor.
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press the input data by two to three orders of magnitude. Because of the high
compression rate, the histograms can be matched efficiently to compare the ap-
pearance of two scans. Rotation invariance is achieved by aligning scans with
respect to dominant surface orientations. In order to automatically determine
the threshold that separates scans at loop closures from others, the proposed
approach uses expectation maximisation to fit a Gamma mixture model to the
output similarity measures. Also included is a discussion of the problem of de-
termining ground truth in the context of loop detection and the difficulties in
comparing the results of the few available methods based on range information.

In order to enable more high-level tasks than scan registration, localisation,
and mapping, it is desirable to also extract semantic information from 3D mod-
els. The ability to automatically segment the map into meaningful components
is necessary to further increase autonomy. Information that may be useful to
extract in a mobile robot context includes walls, doors, and drivable surfaces.
One important task where 3D surface analysis may be useful is boulder detec-
tion for underground mining vehicles. This dissertation presents a method, also
inspired by the NDT surface representation, that provides clues as to where the
pile is, where the bucket should be placed for loading, and where there are ob-
stacles. The points of 3D point clouds are classified based on the surrounding
surface roughness and orientation. Other potential applications of the proposed
algorithm include extraction of drivable paths over uneven surfaces.

In addition to the aforementioned contributions, the dissertation also in-
cludes an overview of range sensors and their utility in mining applications.

Keywords: NDT, 3D sensing, surface representation, registration, loop detec-
tion, surface analysis, mobile robotics, localisation, mapping.
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att de två delarna överlappar varandra till viss del. Utgående från en uppskatt-
ning av posen för ett fragment i relation till ett överlappande fragment, får man
med hjälp av en lokal registreringsalgoritm fram en förbättrad uppskattning
av posen. En bra registreringsalgoritm ska vara robust vad gäller stora fel i
den ursprungliga uppskattningen av posen och snabbt producera en pose som
mer exakt passar ihop de två delarna. Förutom för att skapa en sammanfogad
modell är registrering också användbart för pose-spårning för tillämpningar in-
om mobil robotik, där en robot färdas genom ett område medan den läser av
omgivningen och på så sätt skapar delmodeller av sin omgivning. Efter regi-
strering vet man exakt vid vilken position och i vilken riktning varje delmodell
gjorts, och därmed är det möjligt att återskapa robotens väg genom området.
Genom att använda NDT är det möjligt att utföra registrering med hjälp av
standardmetoder från den digra litteratur som finns inom numerisk optimering,
till exempel Newtons metod.

Den här avhandlingen fokuserar framför allt på 3D-avläsning för mobila
robotar, och i första hand riktar den in sig på tillämpningar för autonoma (det
vill säga självgående) underjordiska gruvfordon. Gruvdrift har alltid varit, och
är fortfarande, mycket riskfyllt. Människor som arbetar under jord måste utstå
många faror. Följande citat från en kinesisk gruvarbetare speglar den farliga
arbetsmiljön:

Om jag hade varit högsta chef i Kina skulle jag inte låta människor
jobba i gruvor utan låta dem plantera träd i förorterna i stället. [85]

Många steg har tagits för att förbättra säkerheten, men ännu idag offras många
liv varje år i gruvolyckor. Bara i Kina dör tusentals människor varje år. Enligt
officiell statistik från Kinas statliga administration för arbetssäkerhet dog in-
te mindre än 8 726 människor i gruvolyckor år 2004 — det betyder i snitt
23 personer per dag! Olycksstatistiken är skrämmande, och 2004 var inte nå-
got ovanligt år. Siffrorna är visserligen betydligt lägre i resten av världen, men
säkerhet för underjordisk gruvpersonal är fortfarande en mycket viktig fråga.
Autonoma gruvfordon skulle vara till stor nytta för gruvindustrin, och mät-
ningar i 3D är ett viktigt instrument för att kunna nå det målet. Med hjälp av
3D-registrering är det möjligt att konstruera tredimensionella kartor av gruv-
tunnlar med ett minimum av manuell inblandning. Sådana 3D-modeller kan
användas av framtida autonoma fordon för lokalisering och planering, och de
är också användbara för flera praktiska syften redan idag. Som exempel kan
nämnas att säkerställa att nya tunnlar verkligen har den form och sträckning
de ska ha enligt de ursprungliga planerna. På många platser finns krav på doku-
mentation av hur mycket material som har forslats bort i en gruva, och om det
finns en detaljerad 3D-modell av gruvan är det lätt att mäta den volymen. Re-
gistrering kan också användas för noggrann positionering när man ska utföra
semi-autonom borrning.

Att lokalisera sig i underjordiska gruvor är långt ifrån en enkel uppgift. Ett
enkelt med otillräckligt sätt att uppskatta positionen är att använda så kallad
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död räkning och beräkna förflyttningen utifrån hjulens rotation. Noggrannhe-
ten blir dock dålig, särskilt när hjulen slirar eller fordonet svänger, och fel i
positionen ackumuleras oacceptabelt snabbt. Död räkning kan förbättras med
hjälp av tröghetsnavigering, där man använder en sensor som mäter förflytt-
ning med accelerometrar och gyroskop. Men även då växer felet okontrollerat
över längre avstånd. Ett vanligt, och tillförlitligt, sätt att bestämma positionen
i underjordiska miljöer är att utföra triangulering med en så kallad totalstation,
monterad på stativ. Jämfört med de lasersensorer som är vanliga inom robobo-
tikvärlden går det ohyggligt långsamt att mäta avstånd med totalstationer, och
det krävs också manuellt arbete för att använda en totalstation. Ytterligare ett
alternativ för att lokalisera sig är att skapa infrastruktur, till exempel magnetis-
ka spår i golvet eller särskilda reflektorer med kända positioner. En autonom
maskin ska dock inte behöva vara beroende av sådana modifikationer. När for-
donet är ovan jord är det ibland möjligt att använda globala navigationssatellit-
system, till exempel GPS. Under markytan är det naturligtvis inte möjligt att
använda navigationssatelliter. Även för tillämpningar ovan jord finns det pro-
blem med sådana system. På många platser är det svårt att se tillräckligt många
satelliter, och när mottagaren är nära större byggnader har satellitnavigering
ofta dålig noggrannhet på grund av indirekta signalvägar — det vill säga, satel-
litsignalerna studsar på väggarna. I stället för att förlita sig på någon av ovan
nämnda lokaliseringsmetoder kan ett fordon som är utrustat med en 3D-sensor
i stället använda registrering för att upprätthålla en tillförlitlig uppskattning av
sin pose, på sätt som beskrivs i den här avhandlingen.

Även med noggranna registreringstekniker ackumuleras fel i robotens upp-
fattning om sin pose över längre avstånd. När fordonet väl återvänder till en
tidigare besökt plats är det möjligt att korrigera poseinformationen. Det ac-
kumulerade felet kan då också fördelas över hela robotens väg och på så sätt
kan kartan göras sammanhängande. Det största problemet är att på ett pålitligt
sätt upptäcka att man har varit på en plats förut. När det ackumulerade felet
är stort är det inte möjligt att använda robotens uppfattning om sin position
för att härleda att den återbesöker en viss plats. Det kan därför vara nödvän-
digt att använda utseendet på avläsningar av omgivningen; med andra ord, att
känna igen en plats bara genom att jämföra dess utseende med tidigare avläs-
ningar. Även om det är relativt lätt för en mänsklig observatör att känna igen
två 3D-modeller från samma plats så är det inte alls enkelt att göra det automa-
tiskt med en dator. Problemet att inse att en plats har besökts förut genom att
känna igen en avbildning av den är ett exempel på det mer generella problem
som kallas data-association: att härleda vilka indata som svarar mot samma ex-
terna förutsättningar. NDT tillhandahåller en kompakt men ändå särskiljande
beskrivning av 3D-modeller, som kan utnyttjas för att skapa en kraftigt kom-
primerad utseendedeskriptor som utgör en formell beskrivning av en avläsnings
utseende. Tack vare den höga kompressionsgraden är det möjligt att jämföra ett
mycket stort antal avläsningar på kort tid. Den här avhandlingen presenterar
en NDT-baserad metod som är tillräckligt särskiljande för att med mycket få
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det krävs också manuellt arbete för att använda en totalstation. Ytterligare ett
alternativ för att lokalisera sig är att skapa infrastruktur, till exempel magnetis-
ka spår i golvet eller särskilda reflektorer med kända positioner. En autonom
maskin ska dock inte behöva vara beroende av sådana modifikationer. När for-
donet är ovan jord är det ibland möjligt att använda globala navigationssatellit-
system, till exempel GPS. Under markytan är det naturligtvis inte möjligt att
använda navigationssatelliter. Även för tillämpningar ovan jord finns det pro-
blem med sådana system. På många platser är det svårt att se tillräckligt många
satelliter, och när mottagaren är nära större byggnader har satellitnavigering
ofta dålig noggrannhet på grund av indirekta signalvägar — det vill säga, satel-
litsignalerna studsar på väggarna. I stället för att förlita sig på någon av ovan
nämnda lokaliseringsmetoder kan ett fordon som är utrustat med en 3D-sensor
i stället använda registrering för att upprätthålla en tillförlitlig uppskattning av
sin pose, på sätt som beskrivs i den här avhandlingen.

Även med noggranna registreringstekniker ackumuleras fel i robotens upp-
fattning om sin pose över längre avstånd. När fordonet väl återvänder till en
tidigare besökt plats är det möjligt att korrigera poseinformationen. Det ac-
kumulerade felet kan då också fördelas över hela robotens väg och på så sätt
kan kartan göras sammanhängande. Det största problemet är att på ett pålitligt
sätt upptäcka att man har varit på en plats förut. När det ackumulerade felet
är stort är det inte möjligt att använda robotens uppfattning om sin position
för att härleda att den återbesöker en viss plats. Det kan därför vara nödvän-
digt att använda utseendet på avläsningar av omgivningen; med andra ord, att
känna igen en plats bara genom att jämföra dess utseende med tidigare avläs-
ningar. Även om det är relativt lätt för en mänsklig observatör att känna igen
två 3D-modeller från samma plats så är det inte alls enkelt att göra det automa-
tiskt med en dator. Problemet att inse att en plats har besökts förut genom att
känna igen en avbildning av den är ett exempel på det mer generella problem
som kallas data-association: att härleda vilka indata som svarar mot samma ex-
terna förutsättningar. NDT tillhandahåller en kompakt men ändå särskiljande
beskrivning av 3D-modeller, som kan utnyttjas för att skapa en kraftigt kom-
primerad utseendedeskriptor som utgör en formell beskrivning av en avläsnings
utseende. Tack vare den höga kompressionsgraden är det möjligt att jämföra ett
mycket stort antal avläsningar på kort tid. Den här avhandlingen presenterar
en NDT-baserad metod som är tillräckligt särskiljande för att med mycket få
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falsklarm kunna detektera en stor del av de avläsningar som skapats på samma
plats.

För att kunna utföra uppgifter på en högre abstraktionsnivå än vad som
krävs för registrering, lokalisering och kartläggning är det önskvärt att kunna
utläsa semantisk information från de tillgängliga 3D-modellerna. Att ha en san-
ningsenlig 3D-karta är en sak, men att automatiskt kunna dela upp kartan i
meningsfulla komponenter och att ”förstå” vad de representerar är nödvändigt
för att ytterligare kunna utöka autonomiteten. När det gäller mobila robotar
kan det bland annat vara användbart att kunna utskilja var väggar och dörrar
finns och vilka ytor som går att köra på. I en underjordisk gruvapplikation
är blockdetektering en viktig uppgift där semantisk analys i 3D kan vara an-
vändbar. De semi-autonoma gruvmaskiner som finns idag är kapabla att följa
tunnlar och dumpa sin last på särskilda platser. Autonom lastning av material
är å andra sidan till stor del fortfarande ett olöst problem. Givet en hög med
material som ska lastas i maskinens skopa är det i allmänhet inte att rekommen-
dera att köra skopan in i högen i blindo. I gruvor finns det ofta hinder i högen i
form av stora stenblock. För att fylla skopan är det nödvändigt att undvika för
stora stenblock. Den här avhandlingen presenterar en metod, också den inspi-
rerad av NDT, som kan ge ledtrådar om var högen är, var skopan bör placeras
för lastning, och var det finns hinder.
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Chapter 1

Introduction

Three-dimensional records of objects and whole environments are an important
tool in several, and quite diverse, disciplines. One example is medical imaging,
where three-dimensional (3D) images are used to show the inside of patients’
bodies in a noninvasive way. Another one is archaeology, where 3D records
of artifacts can be preserved without being damaged by an increasingly acid
environment. 3D modelling also makes it possible to analyse objects in ways
not otherwise feasible. Yet another example is mobile robotics — the discipline
that is primarily targeted by the work in this dissertation — where 3D scanning
of the environment is useful for several subtasks, such as mapping, localisation,
and extraction of semantic information from the robot’s environment.

3D scans can be represented in a number of ways. The central theme of this
dissertation is one such scan representation: the normal-distributions transform,
or NDT. The normal-distributions transform transform provides an attractive
representation of range-scan data, which are normally available in the form of
unstructured point clouds. After applying NDT, the scanned surface is instead
represented as a piecewise smooth and continuous function with analytic first-
and second-order derivatives. Such a representation of the data is advantageous
in several ways.

When performing 3D imaging, it is often the case that the whole area of in-
terest cannot be captured in a single scan; be it because of occlusions, because it
is too large, or because the object in question is fragmented in itself. Therefore
it is typically necessary to perform 3D scan registration — fitting the pieces to-
gether — in order to produce a complete model. In order to align the piecewise
scans (solving the jigsaw puzzle, so to speak) it is necessary to find the correct
position and orientation of each scan; that is, its pose. Finding the best pose is
the task of registration algorithms. Pairwise registration is the process of find-
ing the pose that best aligns one scan with another, assuming that there is some
overlap between the surfaces of the two scans. Given an initial estimate of the
relative pose difference between the two scans, local registration algorithms try
to improve that estimate. A good scan-registration algorithm should be robust
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to large errors in the initial pose estimate and quickly produce a refined pose
that precisely aligns the two scans. Scan registration is furthermore useful for
pose tracking in mobile robotics. After registration, the precise position and
orientation at which each scan was made are known, making it possible to re-
cover the robot’s trajectory. Using the NDT representation of the scan data, it
is possible to use standard methods from the numerical-optimisation literature,
such as Newton’s method, to perform scan registration.

This dissertation mainly focuses on 3D scanning for mobile robots, and the
primary intended application is autonomous underground mining vehicles. Un-
derground mining is, and always has been, a very dangerous enterprise. People
working underground have had to endure many dangers. The risk of suffoca-
tion, falling rocks, explosions, and gas poisoning are only a few examples. Min-
ing is one of the jobs that are sometimes referred to as “triple-D tasks”: dull,
dirty, and dangerous. The following quote from a Chinese miner is testament
to that:

If I’d been the boss in China, I wouldn’t allow people to work in
mines. I would have them plant trees in the suburbs instead. [85]

Many steps have been taken to improve safety, but even today a large number
of lives are lost each year in mine accidents. In China alone, thousands of peo-
ple are killed every year. According to official statistics from the Chinese state
administration of work safety [21], no less than 8 726 people died in mine acci-
dents in 2004 — that means an average of 23 persons per day! The death rate
is horrifying, and the year 2004 was not unusual. The numbers are much lower
in the rest of the world, but safety for underground personnel in mines is still
a very important issue. Autonomous underground vehicles would be of great
benefit to the mining industry, and 3D scanning is one important instrument in
accomplishing that goal. With 3D scan registration, it is possible to construct
metric 3D mine-tunnel maps with a minimum of human intervention. Such 3D
models can be used by future autonomous vehicles, and they are also useful for
several practical purposes today, such as verifying that newly-built tunnels have
the desired shape compared to the original plans. In many countries the amount
of material that has been removed from the ground must be documented and
reported, and if a detailed 3D model of the mine exists, the volume is easy
to measure. Scan registration may also be used for precise positioning when
performing semi-automated rock-face drilling.

Localisation in underground mines is far from trivial. A naive way is to
use dead reckoning from wheel odometry. However, the accuracy of odom-
etry quickly deteriorates because of wheel slip and other inaccuracies. Dead
reckoning can be improved by using an inertial measurement unit that mea-
sures changes in pose with accelerometers and gyroscopes. But even then, the
error grows unboundedly over time. A common, and accurate, way of deter-
mining positions in underground operations is to use triangulation with tripod-
mounted total stations. Setting up and using a total station is excruciatingly
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slow compared to the laser range finders commonly used in the robotics com-
munity. It also requires someone to operate the device. Further options include
adding infrastructure to the environment; for example, in the form of magnetic
“rails” or special beacons with known positions. A truly autonomous vehicle
should not be dependent on such modifications to the environment. When the
vehicle is aboveground, it may be possible to use a global navigation satellite
system, such as GPS. Underground, it is of course impossible to use navigation
satellites. Even for aboveground applications, such systems can be problematic.
There are many places where it is hard to get a direct line of sight to a sufficient
number of satellites, and when driving close to large buildings, satellite naviga-
tion is often inaccurate because of indirect signal paths — the satellite signals
bounce off the walls. Instead of relying on any of these approaches, a vehicle
that is equipped with a 3D range scanner may instead use scan registration to
maintain an estimate of its pose, as described in this dissertation.

However, even with accurate scan registration techniques, pose errors will
accumulate over distance. Once the vehicle closes a loop and returns to a pre-
viously visited location, it is possible to correct the pose estimate. The accu-
mulated error may also be distributed over the covered trajectory, thus making
the map consistent. The problem is how to reliably detect loop closure. When
the accumulated pose error is large, it is not possible to use the robot’s pose
estimate to deduce that a loop has been closed. It may be necessary to detect
loop closure from the appearance of scans, which means recognising a place
just by comparing its appearance to that of previous scans. While it is relatively
easy for a human observer to recognise two scans acquired at the same place,
it is not at all trivial to do so automatically with a computer. Detecting loop
closure by recognising a view is an example of the more general problem of
data association: determining which inputs correspond to the same external
conditions. The normal-distributions transform provides a compact but still de-
scriptive representation of 3D scans, which can be exploited to create a highly
compressed appearance descriptor that constitutes a formal representation of
the appearance of a scan. Because of the high compression ratio, it is possible to
compare a vast number of scans in short time. Loop closure is detected when-
ever two similar scans are found. This dissertation proposes an NDT-based
loop-detection method that is discriminative enough to successfully detect a
large part of scans that are acquired at the same place with a very low number
of false detections.

In order to enable more high-level tasks than scan registration, localisation,
and mapping, it is desirable to extract semantic information from the available
3D models. Having a truthful 3D map is one thing, but being able to automat-
ically segment the map into meaningful components and “understand” what
they represent will be necessary in order to further increase autonomy. Infor-
mation that may be useful to extract in a mobile robot context includes walls,
doors, and drivable surfaces. In an underground mining application, one impor-
tant task where 3D surface analysis may be useful is boulder detection. Current
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semi-autonomous mining vehicles are capable of following tunnels and dump-
ing their load at specific sites. Autonomous loading of material, on the other
hand, largely remains an open problem. When confronted with a pile of ma-
terial that is to be loaded into the bucket of the machine, it is in general not
advisable simply to dig into the pile blindly. In mines, there are commonly ob-
stacles in the form of large boulders in the pile. In order to fill the bucket, it is
necessary to avoid any oversized boulders. This dissertation presents a method,
also inspired by the NDT surface representation, that provides clues as to where
the pile is, where the bucket should be placed for loading, and where there are
obstacles.

1.1 Contributions

These are the main contributions of the present work:

3D-NDT surface representation. The 3D normal-distributions transform pro-
vides a compact albeit expressive representation of surface shape with
several attractive properties for use in registration, loop detection, and
surface shape analysis.

3D-NDT registration with extensions. Using the 3D-NDT surface representa-
tion makes it possible to use standard numerical optimisation methods
with attractive convergence properties for scan registration. By using a
multiresolution discretisation technique and trilinear interpolation, some
of the discretisation issues present in the basic 3D-NDT registration algo-
rithm can be overcome. With these extensions, the robustness of the reg-
istration algorithm is substantially increased. 3D-NDT scan registration
with the proposed extensions is shown to be more accurate and more ro-
bust to poor initial pose estimates than current standard scan registration
methods, and also to perform faster.

Colour-NDT registration. For registering scans based on surface shape, it is
necessary that their geometric structure provides sufficient constraints to
find an exact match. When the geometric features are insufficient, it is nec-
essary to use other features of the scanned surface for registration. Colour-
NDT is a kernel-based extension to 3D-NDT for exploiting colour infor-
mation in order to accurately register coloured 3D scan data.

Appearance-based loop detection from 3D laser scans. The NDT surface rep-
resentation can also be used to construct an appearance descriptor that
makes it possible to perform fast loop detection by comparing histograms
of local surface orientation and shape.

Boulder detection from 3D laser scans. It is difficult in general to detect over-
sized boulders in a pile of rock. A method inspired by NDT can be used
to analyse the surface structure of rock piles and guide an autonomous
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loader so that it avoids such obstacles. The same method can potentially
also be used to extract drivable surfaces from 3D scans.

1.2 Outline

Following this introduction, Chapter 2 gives an overview of common concepts
that are important to the rest of the text, including a more detailed description
of the registration problem, as well as notes on rotation representations and
scan-subsampling strategies. Chapter 3 is a survey of range sensor hardware,
discussing the advantages and disadvantages of different sensor modalities in
a mine mapping application. Chapter 4 is a short reference of the platforms
that have been used to collect data for experimentally validating the proposed
approaches.

Part II is concerned with the problem of scan registration. Related work
on registration is discussed in Chapter 5, after which the normal-distributions
transform (which is the main theme of this dissertation) and variants of it are
described in detail in Chapters 6 and 7.

Further applications of 3D-NDT for mobile robots are covered in Part III.
Chapter 8 describes a novel approach to loop detection from 3D laser data,
along with experiments to validate the effectiveness of the approach. Chapter 9
shows a technique for surface-shape classification and how it can be used for
boulder detection for an autonomous wheel loader.

The dissertation is summarised in Chapter 10, which also includes a discus-
sion of current limitations and open problems as well as possible directions for
future work.

Finally, a brief reference of the notation used in this text is supplied in Ap-
pendix A. Appendix B includes alternative 3D transformation functions for use
with 3D-NDT scan registration. Appendix C gives a more complete picture of
the performed experiments by providing plots of the experimental results that
have been considered too bulky to include in the main text. A symbol index is
included at the end.

1.3 Good-use right

Regarding the intended application that is targeted in this dissertation, it needs
to be said (in accordance with the Uppsala Code of Ethics for Scientists [44])
that there is a number of economical, social, and ecological concerns associated
with the use of autonomous mining vehicles.

Clearly, there are many benefits of automating hazardous tasks, as stated
with emphasis in the previous text. Freeing humans from dangerous and dull
tasks is, as phrased by Norbert Wiener [107], “the human use of human be-
ings”. However — considering the current typical power balance between work-
ers and employers, in the mining industry as elsewhere — the immediate effect
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for miners when introducing autonomous vehicles will most likely not be im-
proved work conditions and a healthier environment, but simply losing their
income. Given that one of the main motivations behind this work is to improve
the quality of life for people in the mining industry, I believe that more research
on how to create a just and sustainable economic system is required for these
benefits to be enjoyed by all involved parties.

The environmental effects (both in mining areas and on a global scale) of
increasing the ore-extraction rate must also be considered before automated
mining systems are widely deployed.

It should also be noted that it is possible to use the results presented in this
dissertation for autonomous mobile robots in other, less beneficial, applications.
I therefore include the following “good-use right” declaration:

It is strictly prohibited to use or to develop, in a direct or indirect way, any
of the scientific contributions of the author contained in this work by any army
or armed group in the world, for military purposes and for any other use which
is against human rights or the environment.

8

Chapter 2

Common concepts

2.1 Points, positions, and poses

In the following, scan points are often denoted by a vector �x representing their
position in space. A scan point may have many other properties as well, such
as colour and information about surface orientation, but the most interesting
property in this context is usually its position, so �x and the term “point” will
often be used interchangeably for a scan point and its position.

The concept of a pose is central to scan registration and localisation. A
pose in this context is a combination of a position and an orientation. More
specifically, a pose is represented by a rotation about the coordinate-system
origin followed by a translation.

2.2 Notes on rotations

The representation of scan poses is central to scan registration. In two dimen-
sions, translation can be straightforwardly represented as a 2D vector and
rotation as a scalar representing the counter-clockwise rotation angle. Three-
dimensional translations can with the same ease be represented by 3D vectors.
General rotations in 3D, however, are another matter. This section covers a
number of alternatives. Please refer to Altmann [1] for an exhaustive reference
on rotations or Diebel [28] for a more compact but thorough review.

2.2.1 3D rotation representations

Let’s consider the following 3D rotation representations:

Euler angles One of the most common 3D rotation representations is to use
three scalars, representing consecutive rotations around the three principal axes
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x, y, and z. This is the so-called Euler-angle representation. For example, the
Euler-angle vector

[φx, φy, φz] (2.1)

may represent a combined transformation where the scan is first rotated with
angle φz around the z axis, then φy around the y axis, and finally φx around the
x axis. The rotation sequence does not have to be z-y-x; arbitrary 3D rotations
can also be represented using the sequences x-y-x or x-z-x, for example.

Euler angles are relatively easy to understand and easy to implement. How-
ever, using Euler angles as a representation of general rotation has some de-
fects: mainly that Euler angles are not always unique, and that under certain
conditions, they can lead to a situation called gimbal lock, where one degree of
freedom is lost. Intuitively, gimbal lock can be understood by considering that
changes in the first and third angles are indistinguishable when the second angle
is at some critical value. For example, for a vehicle that is initially horizontal, if
the rotation sequence is x-y-z and the second angle (pitch) is 90◦, the vehicle is
pointing straight up. Then, the roll (rotation around the vehicle’s longitudinal
axis) and yaw (rotation around the vehicle’s vertical axis) are indistinguishable:
gimbal lock has occured.

It is strategic to start with the largest rotation when using Euler angles.
For mobile robot scan registration, the largest error is usually the yaw angle
(around the vertical axis), which corresponds to the z rotation in this work.

Rotation matrices Arbitrary three-dimensional rotations can also be repre-
sented as special orthogonal 3 × 3 matrices. Special orthogonal matrices have
the following properties: the transpose is equal to the inverse, and the determi-
nant is equal to one. Multiplying two rotation matrices yields another rotation
matrix that represents the sequence of the original matrices applied in order. In
fact, Euler angle rotations are commonly implemented as a product of three
rotation matrices, one for each rotation axis. The Euler rotation example (2.1)
can be expressed as the rotation matrix

RxRyRz =





cycz cysz −sy

sxsycz − cxsz sxsysz + cxcz sxcy

cxsycz + sxsz cxsysz − sxcz cxcy



 , (2.2)

where ci = cos φi and si = sin φi.
When using rotation matrices, it is important to make sure that they are

always orthogonal, an operation that can be relatively costly in terms of pro-
cessing time. Due to numerical inaccuracies, the product of several rotation
matrices will inevitably drift from orthogonality. A nonorthogonal matrix no
longer represents rotation alone, but also a skew transformation that changes
the shape when applied to a point cloud.

Quaternions Quaternions provide a more compact representation than the
nine numbers required for a rotation matrix. Quaternions are a 4D noncommu-
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tative extension of the complex numbers, with one entry for the real part, and
three entries for the imaginary parts. To represent a rotation as a quaternion,
the real part represents cos (φ/2) and the imaginary part represents�r · sin (φ/2),
where φ is the angle of rotation and�r is a unit vector along the axis of rotation.

Quaternions are popular in the field of computer graphics, primarily be-
cause they avoid the problem of gimbal lock and allow an easy way to express
interpolations between rotations; for example, when distributing rotation error
among a sequence of scans. A slight disadvantage of the quaternion representa-
tion is that the values do not have any obvious meaning, like Euler angles do.
A more severe problem is that quaternions used for rotation must be of unit
length. Normalising a quaternion is less expensive than making a 3 × 3 matrix
orthogonal. However, the unit-length constraint is problematic when quater-
nions are included in the objective function of an optimisation problem. The
unit-length constraint is quadratic in form, and it is not always straightforward
to impose such a constraint when applying a numerical optimisation algorithm.

4D axis/angle Another representation is to use one scalar angle and a unit-
length 3D vector describing the axis around which to rotate: (�r, φ). This repre-
sentation is similar to quaternions, and it is straightforward to convert between
the axis/angle and quaternion representation:

(�r, φ) ↔
[

cos (φ/2)
�r sin (φ/2)

]

. (2.3)

The axis/angle representation may be more intuitive than the quaternion
because the axis and angle can be directly read from the values �r and φ. Both
representations are functionally equivalent. The problem with these two repre-
sentations is that four variables are required, but 3D rotation only has three
degrees of freedom. The same rotation can be encoded using an infinite number
of rotation axes, as long as their directions are the same. Alternatively, the axis
must be constrained to unit length.

“Rotation vectors” Recognising the extraneous parameter of the quaternion
and axis/angle representation, 3D rotations can also be stored in a “rotation
vector”, where the direction of the vector identifies the axis of rotation and the
length of the vector is proportional to the rotation angle. The rotation vector
representation of rotating a vector around axis�r with angle φ is simply

φ�r, (2.4)

assuming that ��r� = 1.
This representation, just like quaternions and the axis/angle representation,

avoids gimbal lock. Additionally, it requires no nonlinear constraint when used
in numerical optimisation. Even though this notation looks like a vector, ro-
tations are not proper vectors: It is not possible to combine rotation vectors
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using ordinary vector algebra. Instead, when combining two rotation vectors,
one can convert both to quaternions, perform a quaternion multiplication, and
convert the result back to a rotation vector.

2.2.2 Summary

In the work on scan registration using 3D-NDT (in Chapter 6), Euler angles
with the sequence z-y-x will be used. The rationale for using Euler angles in
this case is to avoid incorporating a nonlinear constraint in the numerical opti-
misation method. For the relatively small angles encountered when performing
scan registration, gimbal lock is not likely to occur. Therefore the potential
drawbacks of Euler angles are assessed to be outweighed by the easier problem
formulation.

In the text, however, rotations will most commonly be described using the
axis/angle representation, because it is easier to understand and envision.

2.3 Registration

Pairwise registration is the problem of matching two scans when the relative
pose difference between the scans is unknown. Given two scans with some de-
gree of overlap, the output of a registration algorithm is an estimate of the
transformation that will bring one scan (which will be referred to as the cur-
rent scan) into the correct pose in the coordinate system of the other scan (the
reference scan), When the two scans match properly, they are said to be in
registration. (It is, however, not trivial to clearly define when two scans match
“properly”. The problem of determining ground truth for registration will be
discussed in Chapter 6.)

In contrast to global surface-matching algorithms, the class of local regis-
tration algorithms search locally in pose space, starting from an initial pose
estimate given as input to the algorithm. Consequently, registration algorithms
may find an incorrect transformation if the initial pose is far from the best one.
The initial pose estimate can be selected manually or, in the case of a mobile
robot, can be determined from odometry data. If no prior information is avail-
able, the initial pose estimate may simply be zero translation and rotation.

Scan registration can be used for pose tracking; that is, localisation by re-
peatedly updating the robot’s pose estimate when the pose at a previous time
step is known. It can also be used for modelling. By registering a sequence of
scans, it is possible to construct a model of an object when it is not possible to
cover the whole area of interest in one scan. If the “object” is large, such as an
underground mine, the “model” is a metric map of the environment.

Part II is devoted to scan registration.

12

2.4 Notes on sampling

When registering high-resolution scans, it is often practical to use only a subset
of the available scan points in order to improve execution speed.

Subsampling can be done in a number of ways. The simplest way is to use
either uniform subsampling, where every nth point from the scan is selected, or
to pick a uniformly random selection of points. “Uniformly” in this case does
not correspond to a uniform distribution of points, but to the probability of
selecting a certain point.

In many cases, not least when scanning in corridors and tunnels, the dis-
tribution of points is very much denser near the scanner location than farther
out. If points are sampled in a uniformly random manner, the sampled subset
will have a similarly uneven distribution. Few or no points may be sampled
from important geometric structure at the far ends of the scan, resulting in
poor registration. To overcome this problem, it is common to use some form of
spatially distributed sampling in order to make sure that the sample density is
even across the whole scan volume. The way this has been done in the present
work is by creating a grid structure with cells of equal size and placing the
points of the scan in the corresponding cells. The cell size of this sampling grid
is typically between 0.1 and 0.2 m. A random point is drawn from a random
cell until the required number of points is reached. If the distribution of cells is
adequate, this strategy will give an even distribution of points.

Rusinkiewicz [90] has given an overview of different sampling strategies. If
topology data in the form of mesh faces or surface normals at the points are
available, it is possible to subsample in a more selective manner; for example,
choosing points where the normal gradient is high or choosing points so that
the distributions of normal directions is as wide as possible. The preferred strat-
egy for choosing points varies with the general shape of the surfaces. Surfaces
that are generally flat and featureless, such as long corridors, are notoriously
difficult to register accurately, but choosing samples so that the distribution
of normals is as wide as possible forces the algorithm to pick more samples
from the features that do exist (bulges, crevices and the like), and may increase
the chance of finding a correct match. On the other hand, since many points
are discarded in that kind of selective sampling, the registration becomes more
sensitive to errors in the few remaining points.

Surface normals have not been computed for the point clouds used in this
dissertation, and therefore selective sampling based on curvature will not be
used.

2.5 SLAM

Simultaneous localisation and mapping, or SLAM, is a central research topic
in the mobile robotics community. It is an active research topic, and has been
for many years now. Given a map, it is possible to perform localisation by
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dissertation, and therefore selective sampling based on curvature will not be
used.

2.5 SLAM

Simultaneous localisation and mapping, or SLAM, is a central research topic
in the mobile robotics community. It is an active research topic, and has been
for many years now. Given a map, it is possible to perform localisation by
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comparing observations from the world with the data in the map. Vice versa,
if localisation can be provided (for example, from GPS), it is not difficult to
construct a map by merging successive observations at their respective poses.
However, performing localisation and mapping simultaneously is not at all triv-
ial. It can be thought of as a “chicken or the egg” dilemma: which comes first,
the map or the localisation capability?

One popular approach to the SLAM problem is to perform optimisation on
a constraint network, or pose graph. A map can be represented as a pose graph,
with local submaps at each node of the graph and edges connecting adjacent
submaps. In graph-based SLAM solutions, the following steps are commonly
included:

1. registration,

2. pose-covariance estimation,

3. loop detection,

4. relaxation.

Successive views from the robot are registered in order to track the pose of the
robot (localisation) and build a metric map (mapping). For each view (or for
submaps generated from a set of views), a node is inserted into a scene graph,
with an edge connecting the current submap to its neighbours. A covariance es-
timate of the relative pose between neighbouring submaps is also required, and
is attached to the edges of the graph. Once the robot detects that it has returned
to a previously visited place, the error that has accumulated over the traversed
loop can be computed. The map is reformed to a consistent state by performing
relaxation of the graph, based on the covariance estimates associated with each
edge.

There are also other approaches to solving the SLAM problem; see, for ex-
ample, the much-cited SLAM review of Thrun [103]. Frese et al. [35] have pub-
lished a multilevel relaxation algorithm for graph-based SLAM. Their article
also nicely describes the problem and related approaches. Much more informa-
tion on SLAM and methods to solve it can be found in the Springer Handbook
of Robotics [94].

The first two items in the list above will be addressed primarily in Chapter 6,
and a method for 3D loop detection is proposed in Chapter 8. Pose-graph re-
laxation is not directly addressed in this dissertation. Please refer, for example,
to the 3D relaxation methods of Grisetti et al. [43] and Borrman et al. [10]
instead.
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Chapter 3

Range sensing

This chapter describes how to acquire the range data needed for metric 3D
mapping. There are several types of measuring devices that can be used for
scanning and creating a 3D model of a scene. The following text is an overview
of some common range measurement principles and a discussion on their utility
with the primary perspective of modelling an underground mine system.

For other in-depth references to sensors, please refer to the books by Ev-
erett [31] or Webster [106].

3.1 Range sensors

Most of the sensor types discussed in this section are based on the same prin-
ciple: sending out an energy beam of some sort and measuring the reflected
energy when it comes back. They have several properties in common. They are
all vulnerable to the effects of specular reflection to some degree.

Most surfaces are diffuse with respect to visible light; that is, they reflect
incoming light in all directions. For a perfectly diffuse surface, the intensity of
the reflected energy is the same from all viewing angles, and is proportional to
the cosine of the angle of incidence. The more specular, or shiny, a surface is,
the more of incoming energy is reflected away in an angle equal to the angle
of incidence. This effect can be seen when pointing the beam of a flashlight
towards a mirror, which is a highly specular surface for visible light. The lit
spot on the mirror itself is barely visible, because almost all light is deflected in
a specular fashion, but when looking at a nearby wall, the spot of light shows
up clearly because the wallpaper is diffuse. The proportions of specular and
diffuse reflection for a given surface depend on its microscopic structure, and
are different for different wavelengths. The longer the waves of the incoming
energy, the rougher the surface has to be in order to be a diffuse reflector. As
an analogy, one can imagine throwing a ball at a structured surface, as in Fig-
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Figure 3.1: The same surface can be both a specular and diffuse reflector, depending
on the wavelengths of the incoming energy. The images on the bottom row illustrate a
perfectly diffuse, a moderately specular, and a perfectly specular surface, respectively.

ure 3.1. A large ball will bounce away (specular reflection), while a smaller ball
is more likely to bounce back, or in some other direction (diffuse reflection).1

Specular reflection can lead to serious misreadings. For example, if the beam
bounces off a wall at a shallow angle, the sensor’s maximum distance will be
reported instead of the actual distance to the wall. Or, if the beam originates
from point A, bounces off object B and then is reflected diffusely from object C
back to the sensor, the measured distance will be (A → B → C → A)/2 instead
of A → B.

In general, a shorter wavelength leads to higher range resolution (more ac-
curate range readings) and less specular reflection (less missing readings from
shiny surfaces) but a shorter maximum range due to absorption and scattering
(attenuation). Gas and particles in the air absorb and scatter the energy, making
less of the beam return to the receiver, consequently decreasing the reliability of
the measurement.

Instead of having a single sensor which is rotated to scan the full environ-
ment, it may be tempting to use multiple sensors measuring simultaneously in
different directions to increase the scanning rate. Doing so can result in prob-
lems with crosstalk — bounced or direct impulses from nearby sensors — if
the sensors are not properly shielded or the environment is highly specular.
Crosstalk effects are especially pronounced in confined spaces.

1These examples are taken from Everett [31].
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3.1.1 Radar

The term radar is an acronym for “radio detecting and ranging”, and has tradi-
tionally been used for range-finding devices that use radio waves. However, in
1977 the IEEE redefined it so as to include all electromagnetic means for target
location and tracking [31]. Nevertheless, this section only considers radio wave
range finders.

Perhaps the most well-known application of radars is for military vessels
at sea or in the air. When used on ships or airplanes, the goal is to detect the
location and bearing of far away objects in a mostly empty space, which is
an application where radar performs especially well. Because radar uses com-
paratively long wavelengths, it can be used over very long ranges, although
the resolution is poor compared to sensors with shorter wavelengths. Furter-
more, radar is not vulnerable to dust, fog, rain, snow, vacuum, or changing
light conditions. A unique feature of radar is that it can detect multiple objects
downrange. It does not penetrate steel or solid rock, however.

In a mine tunnel setting, there are several drawbacks of using radar for de-
tailed model building. Radar wavelengths are very long in comparison to laser
range finders. This means that the maximum angle of incidence is rather lim-
ited. In a tunnel environment, the long wavelength puts a limit on the distance
ahead where the tunnel wall can be accurately measured.

Another possible limitation is the potentially large piece of hardware needed
for an accurate radar. For precise modelling, a narrow so-called pencil beam is
required. The resolution depends on the wavelength of the emitted beam as
well as the aperture of the antenna. The beam width is inversely proportional
to the antenna aperture for a given frequency. Using millimetre-wave radar, it
is possible to get high resolution with a relatively small aperture, at the expense
of range, but very narrow beams still require impractical antenna sizes for our
application. At 77 GHz, which is a common millimetre-wave radar frequency,
a 1◦ beam requires an aperture of 224 mm [32]. Larger apertures would make
it difficult to mount the antenna on a mining vehicle.

Unfortunately, a single narrow beam is impossible to achieve in practice.
The radiation pattern always includes a number of side lobes — less intense
beams that spread out around the main beam (see Figure 3.2). The reflections
of these lobes will interfere with the main signal and lead to noisier results, not
least in confined spaces, where all lobes will reflect off of nearby surfaces.

3.1.2 Lidar

Range-sensing devices using laser are commonly referred to as lidars: “light
detecting and ranging”, or ladars: “laser detecting and ranging”. In this text,
laser range finders will be called lidars, or simply laser scanners.

In contrast to the beams of radars and sonars, a laser beam can be made
highly focused, without side lobes. This is also an effect of the short wavelength.
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Figure 3.1: The same surface can be both a specular and diffuse reflector, depending
on the wavelengths of the incoming energy. The images on the bottom row illustrate a
perfectly diffuse, a moderately specular, and a perfectly specular surface, respectively.

ure 3.1. A large ball will bounce away (specular reflection), while a smaller ball
is more likely to bounce back, or in some other direction (diffuse reflection).1
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back to the sensor, the measured distance will be (A → B → C → A)/2 instead
of A → B.
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(attenuation). Gas and particles in the air absorb and scatter the energy, making
less of the beam return to the receiver, consequently decreasing the reliability of
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ment, it may be tempting to use multiple sensors measuring simultaneously in
different directions to increase the scanning rate. Doing so can result in prob-
lems with crosstalk — bounced or direct impulses from nearby sensors — if
the sensors are not properly shielded or the environment is highly specular.
Crosstalk effects are especially pronounced in confined spaces.

1These examples are taken from Everett [31].
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Figure 3.2: Two representations of a radar radiation pattern. The graph on the left shows
the gain of the antenna at different angles from the front. To the right is a schematic
representation of a top view of the antenna. The shaded regions are intended to show
the gain and not the range of the lobes. (This figure is adapted from Foessel-Bunting
[32].)

The main drawback of laser sensors when compared to radars is the sensi-
tivity to attenuation and scattering when scanning dusty or foggy environments,
though infrared laser is better at penetrating smoke and dust than visible light.
Recent lidar devices can measure multiple echoes per beam, so that one can
measure both the dust and the surface beyond it.

The distance to an object can be measured either using triangulation or by
measuring the time of flight of the emitted beam, or its phase shift.

Triangulation

A triangulation-based lidar measures the position of the spot illuminated by
the laser beam as seen from the receiver, corresponding to the distance r2 in
Figure 3.3. Using this measurement, the angle θ can be determined, and when
θ is known, calculating the range r is straightforward, using the known quan-
tities φ and r3. Performing active triangulation in this way works well for a
single scan point. It may be tempting to project an array of laser points onto
the surface in order to get a full frame of range measurements at each point
in time, instead of sweeping a single point over the surface. An example of an
experimental device that uses a lattice in such a way was shown by Tateishi
et al. in 2008 [101]. Their device is capable of producing 19 × 19 pixel range
images at the very high refresh rate of 200 Hz. However, a major drawback of
this approach is that, because the laser points are identical, it is difficult to mea-
sure surfaces with sharp edges. It is generally not possible to uniquely identify
each laser point when some of them are hidden behind an edge and therefore
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Figure 3.3: Active triangulation. The range r is measured by deducing the angle β from
r2 and the known quantities φ and r3.

not visible from the receiver. Laser triangulation shares this disadvantage with
projected light triangulation, which will be described further in Section 3.1.5.

Interest from the car industry is leading the pressure for cheaper laser range
finders, and a recent example with very low production cost, aimed at the con-
sumer market, has been presented by Konolige et al. [60]. Their lidar acquires
a 360◦ planar scan with 1◦ resolution at 10 Hz with 3 cm accuracy out to 6 m
distance. The hardware cost is listed at no more than 30 USD (2008). The sen-
sor consists of a 10 cm wide housing that contains a rotating block on which a
laser module (using visible red light) and a CMOS imaging sensor are mounted.
Included is also a digital signal processing unit for subpixel interpolation. Using
a revolving block instead of a fixed laser diod shining at a rotating mirror (as
is common for the time-of-flight lidars that will be mentioned shortly) makes
it possible to miniaturise the sensor and therefore reduce the cost. However,
because of the short maximum range, it is not useful in a mining application.

Time of flight

Another method for lidars is to emit rapid laser pulses and deduce the range by
measuring the time needed for a pulse to return. Assuming that the laser travels
through a known medium (such as air), measuring the distance is possible using
timers with very high resolution. This is a very accurate method, but also quite
expensive due to the electronics required.

A prominent example of time-of-flight lidars are the SICK LMS laser scan-
ners, commonly used in the mobile robotics community. The SICK scanners are
2D sensors by design, sweeping a laser point to produce a 180◦ planar range
scan. Mounting a planar range scanner on a pan/tilt unit makes it possible to
acquire 3D scans. Such 3D scanning devices have been used in many robotic
research applications [4, 76, 78, 80, 99], as well as in this work. An example
of this kind of setup can be seen in Figure 3.4. Depending on the configuration
of the pan/tilt unit, the scan can be either pitching, rolling, or yawing; as de-
scribed by Wulf and Wagner [108]. The different configurations are shown in
Figure 3.5.
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Figure 3.2: Two representations of a radar radiation pattern. The graph on the left shows
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not visible from the receiver. Laser triangulation shares this disadvantage with
projected light triangulation, which will be described further in Section 3.1.5.

Interest from the car industry is leading the pressure for cheaper laser range
finders, and a recent example with very low production cost, aimed at the con-
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distance. The hardware cost is listed at no more than 30 USD (2008). The sen-
sor consists of a 10 cm wide housing that contains a rotating block on which a
laser module (using visible red light) and a CMOS imaging sensor are mounted.
Included is also a digital signal processing unit for subpixel interpolation. Using
a revolving block instead of a fixed laser diod shining at a rotating mirror (as
is common for the time-of-flight lidars that will be mentioned shortly) makes
it possible to miniaturise the sensor and therefore reduce the cost. However,
because of the short maximum range, it is not useful in a mining application.

Time of flight

Another method for lidars is to emit rapid laser pulses and deduce the range by
measuring the time needed for a pulse to return. Assuming that the laser travels
through a known medium (such as air), measuring the distance is possible using
timers with very high resolution. This is a very accurate method, but also quite
expensive due to the electronics required.

A prominent example of time-of-flight lidars are the SICK LMS laser scan-
ners, commonly used in the mobile robotics community. The SICK scanners are
2D sensors by design, sweeping a laser point to produce a 180◦ planar range
scan. Mounting a planar range scanner on a pan/tilt unit makes it possible to
acquire 3D scans. Such 3D scanning devices have been used in many robotic
research applications [4, 76, 78, 80, 99], as well as in this work. An example
of this kind of setup can be seen in Figure 3.4. Depending on the configuration
of the pan/tilt unit, the scan can be either pitching, rolling, or yawing; as de-
scribed by Wulf and Wagner [108]. The different configurations are shown in
Figure 3.5.
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Figure 3.4: A SICK LMS 200 lidar, mounted on a pan/tilt unit to produce 3D scans.

(a) Pitching scan

(b) Yawing scan

(c) Rolling scan

Figure 3.5: 3D scanning methods for 2D lidars, showing how the lidar is actuated and
the density of the resulting point cloud. (This figure is reprinted from the original paper
by Wulf and Wagner [108].)
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More recently, time-of-flight lidars that are designed to produce 3D scans
have become available, such as the Velodyne HDL-64E. This sensor uses a verti-
cal array of 64 lasers so that the sensor’s vertical field of view is approximately
25◦. The whole unit revolves, producing a full 360◦ horizontal field of view.
The accuracy and range resolution of the Velodyne scanner matches the SICK
lidars, but because of the use of multiple lasers the data rate is vastly higher.
The Velodyne HDL-64E produces over 1.3 million distance measurements per
second and omnidirectional 3D scans at up to 16 Hz. Getting 3D laser data
at such high rates is very attractive for mobile robot applications, and several
of the participants in the 2007 DARPA Urban Challenge used this device. At
present the cost of the Velodyne lidar (75 000 USD in 2006) prevents its use
in many applications, but in the near future full-3D lidars are likely to become
more common.

Phase shift

The phase shift of the incoming beam compared with the outgoing beam can
also be used to determine the distance to the closest surface, as illustrated in
Figure 3.6. The phase shift of the actual light waves is typically not measured,
but the light is modulated with a given frequency and the phase shift of the
modulated signal is measured. Using a lower modulation frequency effectively
increases the maximum range without any negative effects from increased spec-
ular reflection. If the measured shift in phase between the transmitted and the
received signal is φ, the distance r to the target surface can be formulated as

r =
φwm

4π
=

φC

4πfm
(3.1)

where wm is the modulation wavelength, C is the speed of light and fm is the
modulation frequency [31]. The phase shift can be measured by processing the
two signals and averaging the result over several modulation cycles.

One important negative aspect of using phase shift is that there is a maxi-
mum range given by the modulation frequency after which the signal “wraps
around”. For example, as long as a single beam is used, it is not possible to re-
liably tell the difference between an object located wm + 0.1 m from the sensor
and one which is only 0.1 m or 2wm + 0.1 away.

3.1.3 Sonar

Sonar sensors are similar to radars and lidars, but measure the time of flight of
sound pulses instead of radio waves or light.

Traditionally, sonars have mostly been used for underwater applications,
such as submarines or fishing equipment. Since the speed of sound is greater
in water the wavelength is longer, and thus the range resolution is not as good
as that of a wave with the same frequency in air. But the main advantage of
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increases the maximum range without any negative effects from increased spec-
ular reflection. If the measured shift in phase between the transmitted and the
received signal is φ, the distance r to the target surface can be formulated as

r =
φwm

4π
=

φC

4πfm
(3.1)

where wm is the modulation wavelength, C is the speed of light and fm is the
modulation frequency [31]. The phase shift can be measured by processing the
two signals and averaging the result over several modulation cycles.

One important negative aspect of using phase shift is that there is a maxi-
mum range given by the modulation frequency after which the signal “wraps
around”. For example, as long as a single beam is used, it is not possible to re-
liably tell the difference between an object located wm + 0.1 m from the sensor
and one which is only 0.1 m or 2wm + 0.1 away.

3.1.3 Sonar

Sonar sensors are similar to radars and lidars, but measure the time of flight of
sound pulses instead of radio waves or light.

Traditionally, sonars have mostly been used for underwater applications,
such as submarines or fishing equipment. Since the speed of sound is greater
in water the wavelength is longer, and thus the range resolution is not as good
as that of a wave with the same frequency in air. But the main advantage of
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Figure 3.6: Phase shift measurement: x is the distance corresponding to the differential
phase φ. This figure is adapted from Everett [31].
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Figure 3.7: Wrong range measured because of sonar-beam spread (the spread of the
sonar beam is somewhat exaggerated in this figure).

underwater sonar is its range capacity. Water, being virtually incompressible,
allows sound waves to travel hundreds or even thousands of kilometres.

Sonars are inexpensive, but it is often difficult to get accurate range readings
using sonars. The nature of sound waves makes it difficult to focus a sound
beam. The resulting lack of angular resolution disqualifies sonar for detailed
3D modelling, but can be an advantage when using sonar as a safety measure,
to detect people in the vicinity of the vehicle. The large spread of the beam
also affects the range resolution: When the beam hits a surface at a shallow
angle, the measured distance is shorter than the true distance, as illustrated in
Figure 3.7.

Because of the low production cost, sonars are popular in robotic applica-
tions with lower demands on accuracy, and for obstacle avoidance.

3.1.4 Stereo vision

In contrast to most of the previously discussed sensor types, with stereo vision
it is possible to produce a full two-dimensional range image at once.

Stereo 3D sensing uses two parallel cameras, and exploits one of the effects
used by humans to recognise depth. Stereo vision uses passive triangulation
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to compute a range image. First, a point of interest is located in one image.
A common method for picking interesting points is to use the scale-invariant
feature transform (SIFT, [62]) in order to locate pixels whose surrounding tex-
ture makes it possible to reliably recognise them from multiple viewpoints. The
same point is recognised in the other image, based on the surrounding texture.
Then, the distances of both points are measured with respect to some common
reference, and the range is calculated using the angles which can be derived
from these distances, just as for active triangulation (Figure 3.3).

Not all pixels in the camera image can be used for range measurements,
only the ones that are recognisable as features, and therefore the attainable
resolution for stereo vision is limited and context dependent. In a low-contrast
environment, only a small number of points are possible to extract from each
image.

Another problem is that the range accuracy decreases with the distance to
the measured surface and increases with the baseline length. The baseline is the
distance between the two cameras. Because the measured point must be seen by
both cameras, the sensor will be blind at the closest range, unless the cameras
can verge (so that the sensor can “cross its eyes”), and this minimum distance
increases with the baseline length. So a stereo-vision sensor that aims to be
accurate for long distances (several metres away) will not be able to measure
things that are close to the sensor.

Although the input rate of stereo vision is high and the hardware is both in-
expensive and simple, the disadvantages mentioned above are problematic. The
main problems are that range accuracy is worse than that of electromagnetic
range finders and that untextured surfaces are difficult or impossible to mea-
sure, because there is no good way of recognising corresponding points from
the two camera viewpoints [46].

3.1.5 Projected-light triangulation

Yet another method for 3D scanning is to project a light pattern onto the scene
and analyse the shape of the pattern as seen by a video camera. This is another
example of active triangulation. Several different patterns are mentioned in the
literature. Some examples include a bar code of sorts, with alternating black
and white parallel stripes of different widths, a wedge, or a continuous colour
gradient [58, 91]. The projected pattern is observed by the camera, and the
stripes are identified in the resulting image. For each pixel, the distance is deter-
mined with triangulation between the pixel viewing ray and the corresponding
plane of light emitted by the projector. The resolution depends on the pattern
and the resolution of the camera. If a stripe pattern is used, only points along
the stripe borders can be measured. If a continuous gradient is used, the full
resolution of the camera can be used, but only if the surface is single-coloured.

One drawback when scanning scenes as large as mine tunnels is the diffi-
culty of getting sufficient edge sharpness for the light pattern. To get a bright
image, the diameter of the projector lens must be large when using conven-
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Sonars are inexpensive, but it is often difficult to get accurate range readings
using sonars. The nature of sound waves makes it difficult to focus a sound
beam. The resulting lack of angular resolution disqualifies sonar for detailed
3D modelling, but can be an advantage when using sonar as a safety measure,
to detect people in the vicinity of the vehicle. The large spread of the beam
also affects the range resolution: When the beam hits a surface at a shallow
angle, the measured distance is shorter than the true distance, as illustrated in
Figure 3.7.

Because of the low production cost, sonars are popular in robotic applica-
tions with lower demands on accuracy, and for obstacle avoidance.

3.1.4 Stereo vision

In contrast to most of the previously discussed sensor types, with stereo vision
it is possible to produce a full two-dimensional range image at once.

Stereo 3D sensing uses two parallel cameras, and exploits one of the effects
used by humans to recognise depth. Stereo vision uses passive triangulation
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to compute a range image. First, a point of interest is located in one image.
A common method for picking interesting points is to use the scale-invariant
feature transform (SIFT, [62]) in order to locate pixels whose surrounding tex-
ture makes it possible to reliably recognise them from multiple viewpoints. The
same point is recognised in the other image, based on the surrounding texture.
Then, the distances of both points are measured with respect to some common
reference, and the range is calculated using the angles which can be derived
from these distances, just as for active triangulation (Figure 3.3).

Not all pixels in the camera image can be used for range measurements,
only the ones that are recognisable as features, and therefore the attainable
resolution for stereo vision is limited and context dependent. In a low-contrast
environment, only a small number of points are possible to extract from each
image.

Another problem is that the range accuracy decreases with the distance to
the measured surface and increases with the baseline length. The baseline is the
distance between the two cameras. Because the measured point must be seen by
both cameras, the sensor will be blind at the closest range, unless the cameras
can verge (so that the sensor can “cross its eyes”), and this minimum distance
increases with the baseline length. So a stereo-vision sensor that aims to be
accurate for long distances (several metres away) will not be able to measure
things that are close to the sensor.

Although the input rate of stereo vision is high and the hardware is both in-
expensive and simple, the disadvantages mentioned above are problematic. The
main problems are that range accuracy is worse than that of electromagnetic
range finders and that untextured surfaces are difficult or impossible to mea-
sure, because there is no good way of recognising corresponding points from
the two camera viewpoints [46].

3.1.5 Projected-light triangulation

Yet another method for 3D scanning is to project a light pattern onto the scene
and analyse the shape of the pattern as seen by a video camera. This is another
example of active triangulation. Several different patterns are mentioned in the
literature. Some examples include a bar code of sorts, with alternating black
and white parallel stripes of different widths, a wedge, or a continuous colour
gradient [58, 91]. The projected pattern is observed by the camera, and the
stripes are identified in the resulting image. For each pixel, the distance is deter-
mined with triangulation between the pixel viewing ray and the corresponding
plane of light emitted by the projector. The resolution depends on the pattern
and the resolution of the camera. If a stripe pattern is used, only points along
the stripe borders can be measured. If a continuous gradient is used, the full
resolution of the camera can be used, but only if the surface is single-coloured.

One drawback when scanning scenes as large as mine tunnels is the diffi-
culty of getting sufficient edge sharpness for the light pattern. To get a bright
image, the diameter of the projector lens must be large when using conven-
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tional projector methods. A large diameter leads to a shallow depth of field
of the projected pattern: It will only be sharp at a specific distance from the
projector.

If a fixed stripe pattern is used, it is difficult to use projected-light triangula-
tion for surfaces with discontinuities. The reason is that it is difficult to identify
a certain stripe when it “jumps” between the two sides of an edge. This diffi-
culty can be overcome by using a series of alternating patterns. Then, each pixel
is identified by observing how it changes from light to dark over time, instead
of identifying it from the light pattern showing in the neighbouring pixels. Each
stripe has a unique on-off pattern, and the stripe can be identified by observing
its history over the last few frames. This way, discontinuous and moderately
textured surfaces can be measured, but the method is on the other hand likely
to fail if the object or sensor moves. This rules out using it for navigation or on
a moving vehicle.

3.1.6 Time-of-flight cameras

A new type of range sensor that has only become available in recent years are so-
called time-of-flight cameras. Even though the common term for these sensors
is time-of-flight cameras, they do in fact measure phase shift. The working prin-
ciple of these cameras is to illuminate the scene with modulated near-infrared
light using an array of LEDs. The camera computes a range value for each pixel
of the image based on the phase shift of the incoming modulated light and also
records the reflectance. The result is two images: one grey-scale image from the
reflectance values and one depth map with a full frame of range values.

The key advantage of time-of-flight cameras compared to lidars is that they
produce a full frame of range measurements (typically up to 160 × 120 pixels
for current models) at almost normal video frame rates (around 15 Hz). For
the PMD[vision] 19k sensor, which was used for some of the work in this
dissertation, the data rate is around 288 000 points per second, compared to
13 000 for the SICK LMS 200 lidar, which must also be rotated to see more
than a single scan plane. In addition to the high data rate, another advantage
of time-of-flight cameras is that the hardware is relatively inexpensive.

There are several drawbacks, however, that currently prevent the use of
time-of-flight cameras for underground localisation and mapping. One is that
the noise level of the sensors is significant. Elaborate methods are required to
filter the output data as well as to calibrate the camera in order to avoid sys-
tematic errors. Recently, several research groups have published methods for
calibration and noise filtering of time-of-flight cameras [50, 72]. The sensors
are also sensitive to the amount of background illumination compared to the
strength of the camera’s active illumination. There are presently no available
models designed for outdoor use, although such sensors can be anticipated. Yet
another problem is to find a proper exposure time. With a too short exposure
time, not enough light will be recorded from farther surfaces. With a too long
exposure time, nearby or light-coloured surfaces will get over-saturated, result-
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ing in “holes” in the range data. Furthermore, the risk for motion blur increases
with a longer exposure time. One way to deal with the exposure-time problem
is to use multiple exposures. Perhaps the most severe drawbacks with respect to
mine mapping are the limited field of view and the short maximum range. For
the PMD[vision] 19k, the maximum range is 7.5 m and the viewing angle is 40◦,
compared to at least 30 m and 180◦ for common lidars. It would, of course, be
possible to fit the camera with a more wide-angle lens in order to cover a larger
field of view, but the problem is the infra-red illumination. It is difficult and
expensive to illuminate a larger part of the scene. A very high-powered LED ar-
ray would be required. With a brighter LED array, the maximum range could
potentially be higher and the sensitivity to background illumination lower. Still,
as with phase-shift lidars, the maximum range is also governed by the phase
shift wrap-around effect. Using multiple light sources with different modula-
tion wave lengths, it may be possible to overcome the wrap-around problem to
some extent.

As the technology matures, we can hope that future time-of-flight cameras
will overcome most of these limitations. As of today, these sensors are not useful
for underground localisation and mapping.

3.1.7 Summary

It seems quite clear that only lidars will produce scans with enough accuracy
and range to be used for mine-tunnel profiling; the main advantages being high
accuracy and resolution and also the relatively low sensitivity to specular re-
flection. However, if the difficulties of time-of-flight cameras can be overcome,
they pose a promising solution for the future.

However, none of the methods discussed in this dissertation are restricted
to any particular type of sensor. Any sensor that can produce an unstructured
3D point cloud may be used. For using Colour-NDT (Chapter 7), a colour
camera that is calibrated for use in coordination with a 3D range sensor is also
required.

3.2 Scanning while moving

Lidars have very good accuracy and range characteristics, but making a full
3D scan takes a few seconds, because the laser beam has to be swept over
the whole scene. Therefore a common mode of collecting scan data in mobile
robot applications is to stop the robot while the scan is being made. For an
autonomous mine vehicle, it is not acceptable to stop every few metres to make
a scan. It is necessary to be able to perform 3D scanning while moving, without
too much noise in the scan data.

If the vehicle moves slowly over a flat surface and the wheel odometry is
reliable over the short distance covered while making the scan, the motion dur-
ing scanning can easily be compensated for using only the odometry. However,
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tional projector methods. A large diameter leads to a shallow depth of field
of the projected pattern: It will only be sharp at a specific distance from the
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of the image based on the phase shift of the incoming modulated light and also
records the reflectance. The result is two images: one grey-scale image from the
reflectance values and one depth map with a full frame of range values.

The key advantage of time-of-flight cameras compared to lidars is that they
produce a full frame of range measurements (typically up to 160 × 120 pixels
for current models) at almost normal video frame rates (around 15 Hz). For
the PMD[vision] 19k sensor, which was used for some of the work in this
dissertation, the data rate is around 288 000 points per second, compared to
13 000 for the SICK LMS 200 lidar, which must also be rotated to see more
than a single scan plane. In addition to the high data rate, another advantage
of time-of-flight cameras is that the hardware is relatively inexpensive.

There are several drawbacks, however, that currently prevent the use of
time-of-flight cameras for underground localisation and mapping. One is that
the noise level of the sensors is significant. Elaborate methods are required to
filter the output data as well as to calibrate the camera in order to avoid sys-
tematic errors. Recently, several research groups have published methods for
calibration and noise filtering of time-of-flight cameras [50, 72]. The sensors
are also sensitive to the amount of background illumination compared to the
strength of the camera’s active illumination. There are presently no available
models designed for outdoor use, although such sensors can be anticipated. Yet
another problem is to find a proper exposure time. With a too short exposure
time, not enough light will be recorded from farther surfaces. With a too long
exposure time, nearby or light-coloured surfaces will get over-saturated, result-

24

ing in “holes” in the range data. Furthermore, the risk for motion blur increases
with a longer exposure time. One way to deal with the exposure-time problem
is to use multiple exposures. Perhaps the most severe drawbacks with respect to
mine mapping are the limited field of view and the short maximum range. For
the PMD[vision] 19k, the maximum range is 7.5 m and the viewing angle is 40◦,
compared to at least 30 m and 180◦ for common lidars. It would, of course, be
possible to fit the camera with a more wide-angle lens in order to cover a larger
field of view, but the problem is the infra-red illumination. It is difficult and
expensive to illuminate a larger part of the scene. A very high-powered LED ar-
ray would be required. With a brighter LED array, the maximum range could
potentially be higher and the sensitivity to background illumination lower. Still,
as with phase-shift lidars, the maximum range is also governed by the phase
shift wrap-around effect. Using multiple light sources with different modula-
tion wave lengths, it may be possible to overcome the wrap-around problem to
some extent.

As the technology matures, we can hope that future time-of-flight cameras
will overcome most of these limitations. As of today, these sensors are not useful
for underground localisation and mapping.

3.1.7 Summary

It seems quite clear that only lidars will produce scans with enough accuracy
and range to be used for mine-tunnel profiling; the main advantages being high
accuracy and resolution and also the relatively low sensitivity to specular re-
flection. However, if the difficulties of time-of-flight cameras can be overcome,
they pose a promising solution for the future.

However, none of the methods discussed in this dissertation are restricted
to any particular type of sensor. Any sensor that can produce an unstructured
3D point cloud may be used. For using Colour-NDT (Chapter 7), a colour
camera that is calibrated for use in coordination with a 3D range sensor is also
required.

3.2 Scanning while moving

Lidars have very good accuracy and range characteristics, but making a full
3D scan takes a few seconds, because the laser beam has to be swept over
the whole scene. Therefore a common mode of collecting scan data in mobile
robot applications is to stop the robot while the scan is being made. For an
autonomous mine vehicle, it is not acceptable to stop every few metres to make
a scan. It is necessary to be able to perform 3D scanning while moving, without
too much noise in the scan data.

If the vehicle moves slowly over a flat surface and the wheel odometry is
reliable over the short distance covered while making the scan, the motion dur-
ing scanning can easily be compensated for using only the odometry. However,
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wheel odometry is notoriously inexact, and especially so while the vehicle is
turning. With the help of an inertial measurement unit (IMU) the odometry can
be made slightly more reliable. An IMU contains 3D accelerometers and gyros
to measure the translation and rotation in 3D-space. Using an IMU makes it
possible to compensate for vertical movement and pitch and roll rotations to
some extent, although IMUs also suffer from noise and sensor drift. It would
be interesting to investigate to what extent the motion of a mine vehicle in a
realistic scenario can be filtered using an IMU and if such filtering is enough to
get acceptable 3D scans while moving.

One approach for correcting laser scans under general vehicle motion with-
out relying on expensive sensors has been presented by Harrison and New-
man [45]. Their method assumes that vertical planes can be found in the scan.
The exact trajectory of the robot while the scan was made is recovered by mak-
ing near-vertical planes perfectly vertical. The method has been shown to work
well in an outdoor campus environment. Unfortunately, walls that are uneven
and only nearly vertical are common in underground mines and other unstruc-
tured environments, so the method of Harrison and Newman cannot be used
there.

An interesting method for compensating for motion while scanning was
recently published by Stoyanov and Lilienthal [98]. Using a SICK 2D lidar spin-
ning around the vertical axis (thus performing yawing scans, as depicted in Fig-
ure 3.5), their method exploits the fact that after each revolution of the scanner,
it should re-observe a part of the scene. ICP scan registration (which will be de-
scribed in Section 5.1) on the scan points that correspond to the same surface
can be used to find the accumulated pose error between the start and end of
the scan, after which the multilevel relaxation algorithm of Frese et al. [35] is
used to distribute the error over the scan. Currently the method of Stoyanov
and Lilienthal is limited to planar motion (assuming a flat floor). It would be
interesting to see how it can be extended to the fully three-dimensional case
with six degrees of freedom.

Bosse and Zlot [15] also recently presented a promising method for contin-
uous 3D scan registration with a spinning 2D laser. A remarkable property of
the method of Bosse and Zlot is that they use only laser data and require no
odometry or IMU information. The experimental platform used in their work
is equipped with a SICK lidar mounted on a spinning platform to produce
rolling 3D scans at a speed of 2 Hz. Their approach is based on an interesting
scan-registration technique that shares some properties of the ICP and NDT
algorithms, which will be covered in Chapters 5 and 6. Instead of matching
points directly, Bosse and Zlot construct a 3D grid and estimate local surface
descriptors from the surface within each grid cell in the form of ellipsoids. (The
ellipsoids are essentially the same as the Gaussian functions used by NDT.)
They further compute eccentricity parameters showing how planar, linear, or
spherical the ellipsoids are in a fashion similar to the method for loop detec-
tion that is described in Chapter 8. The timestamp of each scan point is also
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recorded in the data structure that is used for registration. Standard scan regis-
tration tries to find the relative pose between two scans. The method of Bosse
and Zlot instead tries to find the trajectory during one scan. The time spent
for making a scan is discretised into separate time steps. The ellipsoids in the
current scan are grouped based on their timestamp. The algorithm iteratively
tries to find the best pose for the group of ellipsoids associated with each time
step. The ellipsoids that were measured close to a certain time step should, as a
group, match some of the ellipsoids of the reference scan. The estimated poses
at each sampled time step are used to compute an interpolated cubic spline for
the continuous trajectory, which is then used to correct the scan.

With the advent of general-purpose methods that can correct 3D scans made
by tilting or rotating 2D lidars under general vehicle motion, it is likely that the
main limitation of such range sensors — their low data acquisition speed — can
be overcome. It can therefore be expected that such relatively inexpensive sen-
sor setups will continue to be common in the mobile robot research community
and also be useful in industrial production environments. Looking beyond the
nearest time horizon, it seems likely that fully-3D lidars, such as the Velodyne,
or new generations of time-of-flight cameras will be the 3D range sensors of
choice.

The methods proposed in the later parts of this dissertation do not depend
on the way in which the 3D point clouds are acquired, as long as there is a
sensor setup that produces scans without too much distortion.
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and Lilienthal is limited to planar motion (assuming a flat floor). It would be
interesting to see how it can be extended to the fully three-dimensional case
with six degrees of freedom.
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uous 3D scan registration with a spinning 2D laser. A remarkable property of
the method of Bosse and Zlot is that they use only laser data and require no
odometry or IMU information. The experimental platform used in their work
is equipped with a SICK lidar mounted on a spinning platform to produce
rolling 3D scans at a speed of 2 Hz. Their approach is based on an interesting
scan-registration technique that shares some properties of the ICP and NDT
algorithms, which will be covered in Chapters 5 and 6. Instead of matching
points directly, Bosse and Zlot construct a 3D grid and estimate local surface
descriptors from the surface within each grid cell in the form of ellipsoids. (The
ellipsoids are essentially the same as the Gaussian functions used by NDT.)
They further compute eccentricity parameters showing how planar, linear, or
spherical the ellipsoids are in a fashion similar to the method for loop detec-
tion that is described in Chapter 8. The timestamp of each scan point is also
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recorded in the data structure that is used for registration. Standard scan regis-
tration tries to find the relative pose between two scans. The method of Bosse
and Zlot instead tries to find the trajectory during one scan. The time spent
for making a scan is discretised into separate time steps. The ellipsoids in the
current scan are grouped based on their timestamp. The algorithm iteratively
tries to find the best pose for the group of ellipsoids associated with each time
step. The ellipsoids that were measured close to a certain time step should, as a
group, match some of the ellipsoids of the reference scan. The estimated poses
at each sampled time step are used to compute an interpolated cubic spline for
the continuous trajectory, which is then used to correct the scan.

With the advent of general-purpose methods that can correct 3D scans made
by tilting or rotating 2D lidars under general vehicle motion, it is likely that the
main limitation of such range sensors — their low data acquisition speed — can
be overcome. It can therefore be expected that such relatively inexpensive sen-
sor setups will continue to be common in the mobile robot research community
and also be useful in industrial production environments. Looking beyond the
nearest time horizon, it seems likely that fully-3D lidars, such as the Velodyne,
or new generations of time-of-flight cameras will be the 3D range sensors of
choice.

The methods proposed in the later parts of this dissertation do not depend
on the way in which the 3D point clouds are acquired, as long as there is a
sensor setup that produces scans without too much distortion.
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Chapter 4

Platforms and environments

Before continuing to the main parts of the dissertation, let’s take a moment to
have a look at the experimental platforms used for data collection and experi-
mental validation in the following chapters, as well as the vehicles and environ-
ments of the intended mining application.

4.1 Tjorven

Tjorven is an ActivMedia Pioneer P3-AT equipped with an onboard computer
and an array of sensors. This robot has been used for various mapping projects
at the AASS research institute. Tjorven is shown in Figure 4.1. The sensors
that are relevant for this work are a SICK lidar mounted on a pan/tilt unit and
wheel encoders that provide 2D odometry. The pan/tilt unit enables Tjorven to
create pitching 3D scans with 180◦ horizontal and about 100◦ vertical field of
view. Other sensors include an omnidirectional camera and a differential GPS
antenna. For the work on registration of coloured point clouds (Chapter 7), a
PMD[vision] time-of-flight camera was mounted on top of the laser scanner.

The names of the robot platforms at AASS are all taken from the children’s
stories of Astrid Lindgren. Tjorven is the name of a rather plucky girl in the
stories about the people of Saltkråkan (“Seacrow Island” in English).

4.2 Alfred

Alfred (Figure 4.2) is a custom robot platform based on a Permobil electric
wheelchair. The hardware was set up by a group of students from Halmstad
University (Högskolan i Halmstad). On top of the basic hardware platform is a
SICK lidar, mounted on a continuously rotating motor with slip-ring contacts
that makes it possible to create omnidirectional (yawing) 3D scans. A Hokuyo
2D lidar, used for providing 2D localisation, is also mounted on Alfred. The
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wheel encoders that provide 2D odometry. The pan/tilt unit enables Tjorven to
create pitching 3D scans with 180◦ horizontal and about 100◦ vertical field of
view. Other sensors include an omnidirectional camera and a differential GPS
antenna. For the work on registration of coloured point clouds (Chapter 7), a
PMD[vision] time-of-flight camera was mounted on top of the laser scanner.

The names of the robot platforms at AASS are all taken from the children’s
stories of Astrid Lindgren. Tjorven is the name of a rather plucky girl in the
stories about the people of Saltkråkan (“Seacrow Island” in English).

4.2 Alfred

Alfred (Figure 4.2) is a custom robot platform based on a Permobil electric
wheelchair. The hardware was set up by a group of students from Halmstad
University (Högskolan i Halmstad). On top of the basic hardware platform is a
SICK lidar, mounted on a continuously rotating motor with slip-ring contacts
that makes it possible to create omnidirectional (yawing) 3D scans. A Hokuyo
2D lidar, used for providing 2D localisation, is also mounted on Alfred. The
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(a) Standard setup. In addition to the laser
scanner used for 3D mapping, Tjorven is also
equipped with a digital camera, an array of

sonars, and a differential GPS system.

(b) The sensor setup used in the
colour-registration experiments. The

time-of-flight camera is mounted on top of the
SICK laser scanner.

Figure 4.1: Tjorven.

body of the robot can be raised and lowered using a hydraulic lift mechanism.
Alfred was used to collect some of the data used for loop detection in Chapter 8.

The name Alfred is taken from the farmhand in the Astrid Lindgren books
about Emil. Alfred is big, strong, and kind; much like the electric wheelchair
used in this platform.

4.3 Kurt3D

The robot Kurt3D of Osnabrück University (shown in Figure 4.3) was used for
collecting some of the data used for the work on place recognition in Chapter 8
and the performance comparisons of ICP and NDT in Section 6.4.2.

Kurt3D is a relatively high-speed mobile robot platform, moving at a con-
trolled pace of up to 4 m/s (14 km/h). The motors allow for speeds up to 5.4 m/s
(19 km/h), but the current computer hardware and algorithms can not control
it reliably at such speeds. The robot is equipped with a SICK laser scanner as
well as two digital colour cameras.

The 3D range sensor on Kurt3D is, similarly to Tjorven, a tiltable 3D laser
scanner. A small servo motor has been attached to the scanner to perform a
controlled pitch motion. The field of view and other scanner characteristics are
very similar to those of Tjorven.
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Figure 4.3: Kurt3D in the Kvarntorp mine.
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Figure 4.4: The sensor-equipped semi-autonomous Atlas Copco ST1010 load/haul/
dump vehicle at the test site in the Kvarntorp mine.

4.4 Underground mining vehicles

For the main application of this work, the intention is to use Atlas Copco’s
underground mining vehicles. A prototype semi-autonomous vehicle (shown in
Figure 4.4) is currently running in the Kvarntorp mine outside of Örebro. It is
an Atlas Copco ST1010 load/haul/dump vehicle with video cameras and two
fixed 2D SICK lidars — one in the front and one in the back. The vehicle is also
equipped with an IMU and wheel encoders that provide odometry estimates.
The task of load/haul/dump vehicles is to repeatedly load broken rock into the
bucket of the vehicle, haul it to a dump point, and dump it there.

A machine similar to the one shown in Figure 4.4 has been field tested
in the Kemi mine in northern Finland. These vehicles can follow prerecorded
routes with behaviour-based navigation using tunnel-following behaviours and
automatically dump their load at the route’s end point. By adding motors to the
lidars, as has already been done for some other Atlas Copco vehicles, the load/
haul/dump vehicles could acquire 3D scans of their environment and make use
of the algorithms described in this dissertation for localisation, mapping, and
automated loading.
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4.5 Kvarntorp

Several of the data sets used for evaluating the methods proposed in this dis-
sertation were collected in the Kvarntorp mine. The Kvarntorp mine is located
south of Örebro in Sweden. This mine is no longer in production, but was once
used to mine sandstone. The mine consists of slightly more than 40 km of tun-
nels, all in one level. Parts of the mine are currently used as archives and storage
facilities, while others are used as a test bed for mining equipment.

Because of the excavation technique used in sandstone mines, the tunnels
have a rather characteristic shape with flat ceiling and straight walls, whereas
other underground mine tunnels have more rounded and often much narrower
tunnels. Parts of the mine that are used as a test site for mining vehicles have
artificial walls erected along some tunnels, used to simulated narrower tunnels.

Even though the floor and ceiling are relatively flat, the unevenness of the
floor makes a wheeled vehicle tilt considerably while driving over it. The rough-
ness is comparable to that of a gravel road. Therefore, using 2D techniques
instead of the 3D algorithms used in this work (thereby disregarding tilt angles
and changes in floor height) inevitably leads to errors.
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Figure 4.4: The sensor-equipped semi-autonomous Atlas Copco ST1010 load/haul/
dump vehicle at the test site in the Kvarntorp mine.
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Chapter 5

Related work on scan
registration

Scan registration is an important process in several areas. It is used for con-
structing models from partial scans in disciplines as diverse as medical imag-
ing, archaeology, and robotics. It is also useful for enabling mobile robot self-
localisation. It is a subject that has received considerable attention in the past,
and continues to do so. This chapter covers some relevant previous work on
scan registration. The NDT scan-registration algorithm, which constitutes one
of the main topics of the thesis, will be described further in Chapter 6. Related
variants of the NDT algorithm will be addressed in Section 6.5. Chapter 7 is
concerned with registration of coloured 3D point clouds. Related work specific
to coloured data will be covered in Section 7.1.

5.1 ICP

The iterative closest point (ICP) algorithm is widely used today for registration
of 3D point clouds. The two seminal papers on ICP were written by Besl and
McKay [6] and Chen and Medioni [20]. Since its conception, a large number
of variants have been developed. A good survey of different variations of ICP
was presented by Rusinkiewicz [90]. To summarize the algorithm concisely:
ICP iteratively refines the relative pose of two overlapping scans by minimising
the sum of squared distances between corresponding points in the two scans.
Corresponding point pairs are identified by the point-to-point distance.

The first step is to find corresponding point pairs in the current scan and
the reference scan. For each point in the current scan, the chosen corresponding
point is its closest neighbour (by Euclidean distance) in the reference scan. A
basic limitation of ICP is that the nearest neighbour point does not in general
correspond to the same point on the scanned surface, especially if the two scans
are far apart. In successful applications of ICP, it nevertheless converges to a
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Figure 5.1: Registering two scans from a mine tunnel using ICP. The lighter scan is
being matched to the darker scan. The point-to-point correspondences are shown with
arrows.

useful solution, given its iterative nature. The search for nearest neighbours is
where most of the execution time is spent. The pairing of closest points at one
ICP iteration is illustrated in Figure 5.1.

It can be beneficial to weight the point pairs, assigning more weight to cou-
ples that are more likely to correspond to the same surface points. A reason-
able weighting criterion may be to set the weight inversely proportional to the
point-to-point distance, so that points further apart have lower weights than
points with close neighbours. However, for tunnel or corridor data, such linear
weighting can degrade performance. Because most points along the walls and
ceiling will generally be well-aligned, their influence will overwhelm point pairs
with larger distances, which correspond to corners and other features that are
important for acquiring a good match.

In addition to any weighting performed, some outlier pairs should also be
rejected entirely. Point-pair rejection can be seen as a special case of point-pair
weighting. A common criterion is to reject all point pairs with a distance above
a certain threshold. Additionally, point pairs that include a boundary point
from the reference scan should always be rejected. Otherwise, points from non-
overlapping sections of the data may cause a systematic “drag” bias — see
Figure 5.2. However, it is difficult to determine the boundary points for point
cloud data. In previously published work [67], we used a decreasing distance
threshold for outlier rejection: starting with a large distance threshold and de-
creasing it towards zero for each iteration. The rationale for using this method
was that point pairs that are separated by a large distance would be used in early
iterations to bring the scans closer. In later iterations, pairs where the points are
far from each other are likely to be incorrect correspondences — not just the
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non-overlapping points overlapping points

optimal translationresulting translation

Figure 5.2: When the two scans do not overlap completely, allowing point pairs on the
boundaries can introduce a systematic bias to the alignment process. The thin arrows
in this figure show point-pair correspondences. The shaded correspondences, which in-
clude boundary points, should be disregarded to get a good match.

result of a large error in the initial pose estimate — and should be rejected.
However, the best choices of weighting and rejection strategies depend on the
characteristics of the data. The experiments performed in this work (shown in
Appendix C) suggest that such a decreasing distance threshold in fact makes
ICP less robust to large initial pose errors in many cases.

After reliable point pairs have been established, the measured distances be-
tween the point pairs are minimised and the process is repeated again, with
a new selection of points, until the algorithm has converged. There is a closed-
form solution for determining the transformation that minimises the total point-
to-point error, which is described in the paper by Besl and McKay [6].

The two largest problems with ICP are that, firstly, it is a point-based
method that does not consider the local shape of the surface around each point;
and secondly, that the nearest-neighbour search in the algorithm’s central loop
is computationally expensive.

Chen and Medioni’s version of ICP [20] uses point-to-plane corresponden-
ces instead of point-to-point. In their method, the error metric that the algo-
rithm minimises is the distance between points in the current scan and tangent
planes of points in the reference scan, allowing the scans to “slide” against each
other. However, in difficult cases, where there are few geometric constraints
(which is commonly the case in underground mine tunnels) or when the initial
pose error is large, point-to-plane ICP can fail to converge because of too much
sliding; something that has been noted both by Gelfand et al. [38] and Mitra et
al. [73].

Regarding convergence speed, Besl and McKay also described an acceler-
ated version of ICP, where the pose-update vector is elongated if its direction
during the last three iterations has been nearly the same. A common conver-
gence pattern for ICP is to take large steps towards the solution during the first
few iterations, and then take smaller and smaller steps as it gets closer to an
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Figure 5.3: Accelerated ICP. The plane represents pose space, and the vertical axis
shows the mean squared distance between all point pairs. The pose space is in fact six-
dimensional when performing 3D registration, but for a problem with two pose dimen-
sions (for example, 2D translation and no rotation), the pose space can be represented
by a plane. Determining the accelerated pose update is done analogously independent
of the number of pose dimensions. Point �pi is the pose at iteration i. The parabolic in-
terpolant and linear approximation are drawn along the direction specified by �pi+1 −�pi.
Unaccelerated ICP chooses �pi+1 as the next update, but accelerated ICP chooses either
the linear or parabolic update.

optimum [6]. Such convergence behaviour is common in optimisation methods
in general. Accelerated ICP generally increases the step size during the later iter-
ations, reducing the number of required iterations. Each ICP iteration returns
a point in pose space. Accelerated ICP considers the angle between consecutive
poses, and if the vector between the poses at iterations i and i − 1 has a similar
direction to that between i − 1 and i − 2, then two alternative candidates to
the pose at iteration i + 1 are computed; one based on a linear approximation
of the error as a function of the pose at iterations i, i − 1, and i − 2, and one
based on a parabolic interpolant between the three points. The pose computed
from the linear approximation is the zero crossing of the least-squares line,
and the parabolic one is taken from the extreme point of the parabola. This
is illustrated in Figure 5.3. Simon [96] improved this acceleration scheme by
decoupling the rotation and translation components of the transformation. If
rotation and translation are handled independently of each other, both compo-
nents can be accelerated as much as possible at each step. If only the translation
component has been consistent enough to be accelerated, the coupled accelera-
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tion scheme would not do anything, while the decoupled scheme can accelerate
the translation vector and leave the rotation. However, accelerated ICP was
found to “overshoot” in some cases when testing with the mine data described
in Section 6.4, and the accelerated version is therefore not covered in the results.

The speed bottleneck of ICP is the nearest-neighbour search at each itera-
tion. If there are m points in the reference scan and n points in the current scan,
a brute-force search requires O(mn) time. To speed up the nearest-neighbour
search, the points in the reference scan are commonly stored in a kD tree struc-
ture [37]. A kD tree is a strictly binary tree where each internal node represents
a partition of the k-dimensional input space. The root node represents the en-
tire space. Each internal node has two child nodes, each of which represents
a binary partition of the parent’s subspace. Each leaf node contains the points
that are located within a small subspace. A kD tree nearest-neighbour query is
illustrated in Figure 5.4. The algorithm for a kD tree nearest-neighbour query
is shown in Algorithm 1.

Searching a kD tree for the closest point to a query point �x means traversing
the tree to find the leaf node containing �x. But in some cases there may be a
closer neighbour in a leaf other than the one that is visited first. This is deter-
mined with the so-called ball-within-bounds test (see line 30 of Algorithm 1). In
those cases the search algorithm needs to backtrack and visit the other branches
of the tree whose nodes intersect with a sphere that is centred at the query point
and has the same radius as the distance between the query point and the closest
match. The test to determine which other cells need to be examined is called
the bounds-overlap-ball test (see lines 14 and 19 of Algorithm 1).

A kD tree with one point per leaf node is optimal in the sense that such a
structure is guaranteed to require the least number of distance computations
when performing the search. In practice, however, it is often more efficient
to have larger bins in order to minimise the amount of back-tracking. The
optimal bin size depends on the point distribution of the data. Greenspan and
Yurick [41] recommend somewhere between 10 and 20 points per bin as a
general default setting for efficient queries.

Using a kD tree, the expected search time for one ICP iteration is O(n log m),
with n points in the current scan and m points in the reference scan. Building the
tree structure requires O(m log m) additional time. This is a great improvement
compared to brute-force search, but searching for corresponding points still
takes up a large portion of ICP’s total running time. Typical point counts for
the scans used in this work are m ≈ 100 000 points in the reference scan, and
n ≈ 20 000 points in the (subsampled) current scan.

It is possible to improve the running time by considering approximate near-
est neighbours instead of searching for the actual closest neighbour, as proposed
by Greenspan and Yurick [41]. Given the approximate and iterative nature of
ICP, it is not necessary in practice to determine the actual nearest neighbour
for each point. In fact, given noisy input data with outliers, the true nearest
neighbour may not even be the best choice. If the demands on the neighbour
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by Greenspan and Yurick [41]. Given the approximate and iterative nature of
ICP, it is not necessary in practice to determine the actual nearest neighbour
for each point. In fact, given noisy input data with outliers, the true nearest
neighbour may not even be the best choice. If the demands on the neighbour
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Algorithm 1 Nearest-neighbour search in a kD tree, returning the closest point
to point �x in the subtree rooted at node N.

kd-nn-search(�x, N) ⇒ (�q, r, done)

Require: �x is the query point and N is the root of the tree in which to search.
Each internal node N stores two sub-nodes Nleft and Nright, as well as an
index kn that specifies the dimension along which N splits the space, and
a scalar dn that determines the split point between the two sub-trees. Leaf
nodes also contain a set Q of data points, where |Q| > 0.

Ensure: �q is the nearest neighbour of query point �x, r is the distance between �x
and �q, done is true if the closest neighbour point has been found.

1: if N is a leaf node then
2: �q ← arg min�qi

��x − �qi�
3: r ← ��x − �q�
4: else {N is an internal node}
5: d ← �x[kn] − dn

6: if d < 0 then
7: (�q, r, done) ⇐ kd-nn-search(�x, Nleft)
8: else
9: (�q, r, done) ⇐ kd-nn-search(�x, Nright)

10: end if
11: if done �= true then {Backtracking}
12: if d < 0 then
13: {Bounds-overlap-ball test:}
14: if the sphere centred at �x with radius r overlaps Nright then
15: (�q′, r′, done) ⇐ kd-nn-search(�x, Nright)
16: end if
17: else
18: {Bounds-overlap-ball test:}
19: if the sphere centred at �x with radius r overlaps Nleft then
20: (�q′, r′, done) ⇐ kd-nn-search(�x, Nleft)
21: end if
22: end if
23: if r′ < r then
24: �q ← �q′

25: r ← r′

26: end if
27: end if
28: end if
29: {Ball-within-bounds test:}
30: if r > distance from �x to closest boundary of N then
31: return (�q, r, false)
32: else
33: return (�q, r, true)
34: end if
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Figure 5.4: Nearest-neighbour search in a kD tree with three points per bin. The tree
structure is shown on the left, and the spatial subdivision on the right. The query point
is �x, and it is contained by the leaf node aba. The closest point within this node is �q,
but because the minimum ball centred at �x and containing �q overlaps the bounds of the
node, the search algorithm needs to backtrack and traverse nodes aab and abb, too. The
true nearest neighbour of �x is �q′ in node aab.

search can be lowered, only requiring that the distance between the returned
point and the actual nearest neighbour is less than some distance ǫ, line 30 of
Algorithm 1 can be changed to

if ��x − �q� − ǫ > distance from �x to closest boundary of N then

With this modification, the algorithm performs less backtracking than Algo-
rithm 1, and therefore performs faster on most data. If the demands are re-
laxed even further, the linear search through the points in leaf nodes can also
be skipped. Instead, the mean or median value of the points within each bin
can be computed when the tree is created, and used as approximations of the
nearest neighbour, as done by Nüchter et al. [78].

Nüchter et al. [82] have also used cached kD trees for speedier point queries.
In a cached kD tree, each node stores a pointer to its parent in addition to the
child-node pointers. At the first ICP iteration, a pointer to the queried leaf node
is returned in addition to the closest point. During later iterations, the nearest-
neighbour search starts with the previously found leaf node, and if that node
does not contain a nearest neighbour, the search algorithm can use the parent
pointers to find neighbouring leaf nodes instead of having to traverse the whole
tree from the root again.

Another class of search methods to be considered as an alternative to kD
trees is the so-called Elias methods. These are strictly grid-based methods, in
which the space is subdivided into a lattice of congruent and non-overlapping
cells, as opposed to the hierarchical and more adaptive structure of a kD tree.
For each query point, looking up which grid cell it belongs to is fast (it can be
done in constant time if it is feasible to store the grid in an array). This cell and,
if needed, non-empty cells around it are then searched in a concentric pattern
to find the closest neighbour. See for example Greenspan et al. [42] for more
details on this. Elias methods are less attractive to use on data where most cells
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Algorithm 1 Nearest-neighbour search in a kD tree, returning the closest point
to point �x in the subtree rooted at node N.

kd-nn-search(�x, N) ⇒ (�q, r, done)

Require: �x is the query point and N is the root of the tree in which to search.
Each internal node N stores two sub-nodes Nleft and Nright, as well as an
index kn that specifies the dimension along which N splits the space, and
a scalar dn that determines the split point between the two sub-trees. Leaf
nodes also contain a set Q of data points, where |Q| > 0.

Ensure: �q is the nearest neighbour of query point �x, r is the distance between �x
and �q, done is true if the closest neighbour point has been found.

1: if N is a leaf node then
2: �q ← arg min�qi

��x − �qi�
3: r ← ��x − �q�
4: else {N is an internal node}
5: d ← �x[kn] − dn

6: if d < 0 then
7: (�q, r, done) ⇐ kd-nn-search(�x, Nleft)
8: else
9: (�q, r, done) ⇐ kd-nn-search(�x, Nright)

10: end if
11: if done �= true then {Backtracking}
12: if d < 0 then
13: {Bounds-overlap-ball test:}
14: if the sphere centred at �x with radius r overlaps Nright then
15: (�q′, r′, done) ⇐ kd-nn-search(�x, Nright)
16: end if
17: else
18: {Bounds-overlap-ball test:}
19: if the sphere centred at �x with radius r overlaps Nleft then
20: (�q′, r′, done) ⇐ kd-nn-search(�x, Nleft)
21: end if
22: end if
23: if r′ < r then
24: �q ← �q′

25: r ← r′

26: end if
27: end if
28: end if
29: {Ball-within-bounds test:}
30: if r > distance from �x to closest boundary of N then
31: return (�q, r, false)
32: else
33: return (�q, r, true)
34: end if
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Figure 5.4: Nearest-neighbour search in a kD tree with three points per bin. The tree
structure is shown on the left, and the spatial subdivision on the right. The query point
is �x, and it is contained by the leaf node aba. The closest point within this node is �q,
but because the minimum ball centred at �x and containing �q overlaps the bounds of the
node, the search algorithm needs to backtrack and traverse nodes aab and abb, too. The
true nearest neighbour of �x is �q′ in node aab.

search can be lowered, only requiring that the distance between the returned
point and the actual nearest neighbour is less than some distance ǫ, line 30 of
Algorithm 1 can be changed to

if ��x − �q� − ǫ > distance from �x to closest boundary of N then

With this modification, the algorithm performs less backtracking than Algo-
rithm 1, and therefore performs faster on most data. If the demands are re-
laxed even further, the linear search through the points in leaf nodes can also
be skipped. Instead, the mean or median value of the points within each bin
can be computed when the tree is created, and used as approximations of the
nearest neighbour, as done by Nüchter et al. [78].

Nüchter et al. [82] have also used cached kD trees for speedier point queries.
In a cached kD tree, each node stores a pointer to its parent in addition to the
child-node pointers. At the first ICP iteration, a pointer to the queried leaf node
is returned in addition to the closest point. During later iterations, the nearest-
neighbour search starts with the previously found leaf node, and if that node
does not contain a nearest neighbour, the search algorithm can use the parent
pointers to find neighbouring leaf nodes instead of having to traverse the whole
tree from the root again.

Another class of search methods to be considered as an alternative to kD
trees is the so-called Elias methods. These are strictly grid-based methods, in
which the space is subdivided into a lattice of congruent and non-overlapping
cells, as opposed to the hierarchical and more adaptive structure of a kD tree.
For each query point, looking up which grid cell it belongs to is fast (it can be
done in constant time if it is feasible to store the grid in an array). This cell and,
if needed, non-empty cells around it are then searched in a concentric pattern
to find the closest neighbour. See for example Greenspan et al. [42] for more
details on this. Elias methods are less attractive to use on data where most cells
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are unoccupied. For such data, many query points will be in unoccupied cells,
and the search algorithm will have to investigate many surrounding cells before
finding one with a potential nearest neighbour. With such data, the memory de-
mands of Elias methods are also higher than for a tree structure. In the optimal
case, however, finding the right cell is a constant-time operation, whereas a kD
tree query takes O( log m) time. Whether it is better to use an Elias structure or
a tree depends on the shape of the data at hand.

5.2 IDC

The iterative dual correspondences (IDC) algorithm, proposed by Lu and Mil-
ios [63], is an extension to ICP that primarily aims to speed up the convergence
of the rotational part of the pose estimation when matching 2D range scans.

IDC uses two rules for finding correspondences. In each iteration, the ro-
tation/translation tuple τ1 = (R1,�t1) is determined using the closest points, as
for ICP. Without applying transformation τ1, a new set of corresponding points
are selected using another criterion: “the matching range-point rule”. This cri-
terion uses the polar coordinates [φ, r] of points (where φ is the angle and r
the range), and searches for corresponding points within an angular interval.
In two dimensions the interval is formulated as [φ − tφ, φ + tφ], where tφ is a
bound for how far the algorithm should search. The matching range-point rule
is formulated as follows:

corresponding(�x) = arg min
�x′

(|r − r′|), (5.1)

where �x = [φ, r] and �x′ = [φ′, r′], and φ − tφ ≤ φ′ ≤ φ + tφ. In other words,
the corresponding point is the one within the specified angular interval that has
the most similar range coordinate. A second transformation τ2 = (R2,�t2) is
computed using the correspondences found with this method, and the transfor-
mation that is applied before the next iteration is τ3 = (R2,�t1).

If this should be adapted to three dimensions, the interval [φ − tφ, φ + tφ]
would instead be a rectangular “window”. For a 3D point �x with polar coor-
dinates [φ, θ, r], where φ and θ are the latitudinal and longitudinal angles, the
window would extend from [φ − tφ, θ − tθ] to [φ + tφ, θ + tθ].

In a comparison by Burguera et al. [18] including ICP and IDC, IDC was
found to be more robust when the error of the initial pose estimate was large
but less accurate than ICP when the initial pose error was small.

5.3 pIC

Montesano, Minguez, and Montano [74] have presented a registration algo-
rithm called the probabilistic iterative correspondence method, or pIC.

This method tries to incorporate information about the uncertainties from
both scanning noise and the uncertainty of the initial pose estimate. The scan
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points as well as the initial pose estimate are considered random variables
with zero-mean Gaussian noise and covariance matrices determined from prior
knowledge of the sensor configuration and robot odometry. When using pIC,
the initial set of possible correspondences is first reduced to a subset that con-
tains all the points in one scan that are statistically compatible with the ones in
the other. The criterion for pairing statistically compatible points is based on
the Mahalanobis distance dm(�x,�y) between point �x and �y,

d2
m(�x,�y) = ��x −�y�Σ

−1 ��x −�y� , (5.2)

where Σ is a predefined covariance matrix describing the combined uncertainty
of the scanner and the pose estimate. Two points are considered compatible
if the Mahalanobis distance between them is less then a confidence threshold.
The set of points passing this confidence test defines a set A, and the expectation
that point �yi ∈ A is the best correspondence for point �x is found by integrating
over all possible locations of �x and all possible locations of the sensor according
to their Gaussian estimates.

In their paper, Montesano et al. compared pIC to IDC and ICP with respect
to the robustness to initial pose estimates. The pIC algorithm converged to the
correct solution in all of their trials, after about 25% as many iterations as
ICP needed. Their ICP implementation failed in 7% of the trials. The execution
times of the algorithms were not compared in the paper.

5.4 Point-based probabilistic registration

Hähnel and Burgard [51] have presented another, probabilistic, registration al-
gorithm. This algorithm treats the measurements from the reference scan as
probability functions instead of discrete points.

To compute the likelihood of a scan point from the current scan, a ray is
traced from the current estimate of the scanner pose, along the direction asso-
ciated with each measurement from the current scan, to the closest surface in
the reference scan. The reference scan is first triangulated, in order to create
a surface. The length of the ray is taken as the estimated range of this mea-
surement. The likelihood of the scan point is computed from a mixture of a
Gaussian that is centred at the estimated range, with a variance tuned to the
characteristics of the scanner, and a uniform distribution, which is also tuned to
the accuracy of the scanner. The probability of the measured distance r (that is,
the distance to scan point �x) given the expected distance (the mean of the Gaus-
sian) is computed by evaluating the mixture model computed for the distance
between scan point �x and the triangulated reference scan surface. The expected
distance according to the ray direction of �x, reference scan Y , and pose �p, is
denoted de(�x,Y , �p). The likelihood that the current scan is located at pose �p is
described as the product

∏

�x∈X

p
(
�x | de(�x,Y , �p)

)
. (5.3)
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are unoccupied. For such data, many query points will be in unoccupied cells,
and the search algorithm will have to investigate many surrounding cells before
finding one with a potential nearest neighbour. With such data, the memory de-
mands of Elias methods are also higher than for a tree structure. In the optimal
case, however, finding the right cell is a constant-time operation, whereas a kD
tree query takes O( log m) time. Whether it is better to use an Elias structure or
a tree depends on the shape of the data at hand.

5.2 IDC

The iterative dual correspondences (IDC) algorithm, proposed by Lu and Mil-
ios [63], is an extension to ICP that primarily aims to speed up the convergence
of the rotational part of the pose estimation when matching 2D range scans.

IDC uses two rules for finding correspondences. In each iteration, the ro-
tation/translation tuple τ1 = (R1,�t1) is determined using the closest points, as
for ICP. Without applying transformation τ1, a new set of corresponding points
are selected using another criterion: “the matching range-point rule”. This cri-
terion uses the polar coordinates [φ, r] of points (where φ is the angle and r
the range), and searches for corresponding points within an angular interval.
In two dimensions the interval is formulated as [φ − tφ, φ + tφ], where tφ is a
bound for how far the algorithm should search. The matching range-point rule
is formulated as follows:

corresponding(�x) = arg min
�x′

(|r − r′|), (5.1)

where �x = [φ, r] and �x′ = [φ′, r′], and φ − tφ ≤ φ′ ≤ φ + tφ. In other words,
the corresponding point is the one within the specified angular interval that has
the most similar range coordinate. A second transformation τ2 = (R2,�t2) is
computed using the correspondences found with this method, and the transfor-
mation that is applied before the next iteration is τ3 = (R2,�t1).

If this should be adapted to three dimensions, the interval [φ − tφ, φ + tφ]
would instead be a rectangular “window”. For a 3D point �x with polar coor-
dinates [φ, θ, r], where φ and θ are the latitudinal and longitudinal angles, the
window would extend from [φ − tφ, θ − tθ] to [φ + tφ, θ + tθ].

In a comparison by Burguera et al. [18] including ICP and IDC, IDC was
found to be more robust when the error of the initial pose estimate was large
but less accurate than ICP when the initial pose error was small.

5.3 pIC

Montesano, Minguez, and Montano [74] have presented a registration algo-
rithm called the probabilistic iterative correspondence method, or pIC.

This method tries to incorporate information about the uncertainties from
both scanning noise and the uncertainty of the initial pose estimate. The scan
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points as well as the initial pose estimate are considered random variables
with zero-mean Gaussian noise and covariance matrices determined from prior
knowledge of the sensor configuration and robot odometry. When using pIC,
the initial set of possible correspondences is first reduced to a subset that con-
tains all the points in one scan that are statistically compatible with the ones in
the other. The criterion for pairing statistically compatible points is based on
the Mahalanobis distance dm(�x,�y) between point �x and �y,

d2
m(�x,�y) = ��x −�y�Σ

−1 ��x −�y� , (5.2)

where Σ is a predefined covariance matrix describing the combined uncertainty
of the scanner and the pose estimate. Two points are considered compatible
if the Mahalanobis distance between them is less then a confidence threshold.
The set of points passing this confidence test defines a set A, and the expectation
that point �yi ∈ A is the best correspondence for point �x is found by integrating
over all possible locations of �x and all possible locations of the sensor according
to their Gaussian estimates.

In their paper, Montesano et al. compared pIC to IDC and ICP with respect
to the robustness to initial pose estimates. The pIC algorithm converged to the
correct solution in all of their trials, after about 25% as many iterations as
ICP needed. Their ICP implementation failed in 7% of the trials. The execution
times of the algorithms were not compared in the paper.

5.4 Point-based probabilistic registration

Hähnel and Burgard [51] have presented another, probabilistic, registration al-
gorithm. This algorithm treats the measurements from the reference scan as
probability functions instead of discrete points.

To compute the likelihood of a scan point from the current scan, a ray is
traced from the current estimate of the scanner pose, along the direction asso-
ciated with each measurement from the current scan, to the closest surface in
the reference scan. The reference scan is first triangulated, in order to create
a surface. The length of the ray is taken as the estimated range of this mea-
surement. The likelihood of the scan point is computed from a mixture of a
Gaussian that is centred at the estimated range, with a variance tuned to the
characteristics of the scanner, and a uniform distribution, which is also tuned to
the accuracy of the scanner. The probability of the measured distance r (that is,
the distance to scan point �x) given the expected distance (the mean of the Gaus-
sian) is computed by evaluating the mixture model computed for the distance
between scan point �x and the triangulated reference scan surface. The expected
distance according to the ray direction of �x, reference scan Y , and pose �p, is
denoted de(�x,Y , �p). The likelihood that the current scan is located at pose �p is
described as the product

∏
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)
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The algorithm tries to optimise the value of Equation 5.3. In their paper, Hähnel
and Burgard presented results from one pair of 3D scans of a large building, and
showed that their algorithm gave more accurate matches than ICP on this data
set. The paper does not specify the time required to triangulate the reference
scan surface and to iteratively perform raytracing for all points in the current
scan.

5.5 NDT

The normal-distributions transform (NDT) method for registration of 2D data
was introduced by Biber and Straßer [7]. The key element in this algorithm is its
representation of the reference scan. Instead of matching the current scan to the
points of the reference scan directly, the likelihood of finding a surface point at
a certain position is modelled by a linear combination of normal distributions.

The normal distributions give a piecewise smooth representation of the ref-
erence scan, with continuous first- and second-order derivatives. Using this rep-
resentation, it is possible to apply standard numerical optimisation methods
for registration. General numerical optimisation is a very well-studied prob-
lem, and many fast and reliable methods for optimising functions like a sum
of normal distributions have been developed and tested over time; for example,
Newton’s method.

Because the points in the reference scan are not used directly for matching,
there is no need for the computationally expensive nearest-neighbour search
of ICP and the other related methods described in previous sections. Comput-
ing the normal distributions is a one-off task that is done during a single pass
through the points of the reference scan.

NDT is the main focus of the work covered in this dissertation. The algo-
rithm will be described in more detail in Chapter 6. Related work on NDT scan
registration by other authors is covered in Section 6.5 — the current chapter
mainly covers alternatives to NDT. The NDT surface representation can also
be useful for applications other than scan registration. Further applications will
be discussed in Part III.

5.6 Gaussian fields

Boughorbel et al. [16] have developed a registration criterion based on Gaus-
sian fields, similar to the normal distributions of NDT. The basic idea of this
approach is to use a Gaussian mixture model to measure both the spatial dis-
tance between points from two scans and the similarity of the local surface
around points.

Points are compared in a multi-dimensional space that consists of the spatial
dimensions plus a number of attribute dimensions. The attributes used to mea-
sure the visual similarity are 3D moments as described by Sharp et al. [93]. The
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measure of proximity and similarity between two points �x and �y from different
scans is formulated as

F(�x,�y) = exp

(

−��x −�y�2

d 2
g

− (S(�x) − S(�y))
T
D−1(S(�x) − S(�y))

)

, (5.4)

where S(�x) is the 3D-moments shape description of the surface around �x. Equa-
tion 5.4 describes a Gaussian function, centred at �y and decaying radially in
metric and attribute space. The parameter dg specifies the decay rate with re-
spect to the spatial distance, and the diagonal matrix D specifies the penalty
associated with difference in attributes. The criterion for measuring the fitness
of a pose is defined as the sum

∑

i,j F(�xi,�yj) over all point pairs.

5.7 Quadratic patches

Another approach to 3D registration has been proposed by Mitra et al. [73].
The idea behind their algorithm is to describe the reference scan surface implic-
itly, using quadratic approximants to the squared distance function from the
surface, as compared to the normal distributions used by NDT or the original
point cloud data used by ICP. Registration then becomes the task of minimising
the sum of the distance functions when evaluated at the points of the current
scan. The approximants used in this algorithm are second-order approxima-
tions of the local surface shape with analytic derivatives, which makes it pos-
sible to use Newton optimisation to solve the registration problem with this
surface representation, too.

For each point in the reference scan the normal vector �n and the two direc-
tions of principal curvature are first computed. The objective function used in
registration is is a weighted sum of the squared distance functions from each
point �x in the current scan to three planes: the two principal planes and the
tangent plane at the closest reference scan surface point �y.

One way to use the approximants is to compute them on demand for each
point in the reference scan, using the normal vector and the two principal cur-
vature directions at that point. The normal and principal-curvature vectors are
computed in a preprocessing step, and the distance functions are computed at
each iteration of the registration process. The other method presented by the
authors is to subdivide the space occupied by the reference scan into a grid. For
each grid cell (both cells that are occupied by the surface and empty cells), a
quadratic patch is fitted to the squared distance to the scan surface. The second
method is rather similar to the NDT versions described in Section 6.3. For all
points in the current scan, the algorithm queries the cell structure for the cor-
responding approximant to the squared distance function to the surface, and
uses these values as the score of the current pose estimate.

The squared distance function used by Mitra et al. is in fact a generalisation
of the error metrics used by the most common versions of ICP: the point-to-
point distance and the point-to-plane distance. In their paper, they showed that
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The algorithm tries to optimise the value of Equation 5.3. In their paper, Hähnel
and Burgard presented results from one pair of 3D scans of a large building, and
showed that their algorithm gave more accurate matches than ICP on this data
set. The paper does not specify the time required to triangulate the reference
scan surface and to iteratively perform raytracing for all points in the current
scan.

5.5 NDT

The normal-distributions transform (NDT) method for registration of 2D data
was introduced by Biber and Straßer [7]. The key element in this algorithm is its
representation of the reference scan. Instead of matching the current scan to the
points of the reference scan directly, the likelihood of finding a surface point at
a certain position is modelled by a linear combination of normal distributions.

The normal distributions give a piecewise smooth representation of the ref-
erence scan, with continuous first- and second-order derivatives. Using this rep-
resentation, it is possible to apply standard numerical optimisation methods
for registration. General numerical optimisation is a very well-studied prob-
lem, and many fast and reliable methods for optimising functions like a sum
of normal distributions have been developed and tested over time; for example,
Newton’s method.

Because the points in the reference scan are not used directly for matching,
there is no need for the computationally expensive nearest-neighbour search
of ICP and the other related methods described in previous sections. Comput-
ing the normal distributions is a one-off task that is done during a single pass
through the points of the reference scan.

NDT is the main focus of the work covered in this dissertation. The algo-
rithm will be described in more detail in Chapter 6. Related work on NDT scan
registration by other authors is covered in Section 6.5 — the current chapter
mainly covers alternatives to NDT. The NDT surface representation can also
be useful for applications other than scan registration. Further applications will
be discussed in Part III.

5.6 Gaussian fields

Boughorbel et al. [16] have developed a registration criterion based on Gaus-
sian fields, similar to the normal distributions of NDT. The basic idea of this
approach is to use a Gaussian mixture model to measure both the spatial dis-
tance between points from two scans and the similarity of the local surface
around points.

Points are compared in a multi-dimensional space that consists of the spatial
dimensions plus a number of attribute dimensions. The attributes used to mea-
sure the visual similarity are 3D moments as described by Sharp et al. [93]. The
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measure of proximity and similarity between two points �x and �y from different
scans is formulated as

F(�x,�y) = exp

(

−��x −�y�2

d 2
g

− (S(�x) − S(�y))
T
D−1(S(�x) − S(�y))

)

, (5.4)

where S(�x) is the 3D-moments shape description of the surface around �x. Equa-
tion 5.4 describes a Gaussian function, centred at �y and decaying radially in
metric and attribute space. The parameter dg specifies the decay rate with re-
spect to the spatial distance, and the diagonal matrix D specifies the penalty
associated with difference in attributes. The criterion for measuring the fitness
of a pose is defined as the sum

∑

i,j F(�xi,�yj) over all point pairs.

5.7 Quadratic patches

Another approach to 3D registration has been proposed by Mitra et al. [73].
The idea behind their algorithm is to describe the reference scan surface implic-
itly, using quadratic approximants to the squared distance function from the
surface, as compared to the normal distributions used by NDT or the original
point cloud data used by ICP. Registration then becomes the task of minimising
the sum of the distance functions when evaluated at the points of the current
scan. The approximants used in this algorithm are second-order approxima-
tions of the local surface shape with analytic derivatives, which makes it pos-
sible to use Newton optimisation to solve the registration problem with this
surface representation, too.

For each point in the reference scan the normal vector �n and the two direc-
tions of principal curvature are first computed. The objective function used in
registration is is a weighted sum of the squared distance functions from each
point �x in the current scan to three planes: the two principal planes and the
tangent plane at the closest reference scan surface point �y.

One way to use the approximants is to compute them on demand for each
point in the reference scan, using the normal vector and the two principal cur-
vature directions at that point. The normal and principal-curvature vectors are
computed in a preprocessing step, and the distance functions are computed at
each iteration of the registration process. The other method presented by the
authors is to subdivide the space occupied by the reference scan into a grid. For
each grid cell (both cells that are occupied by the surface and empty cells), a
quadratic patch is fitted to the squared distance to the scan surface. The second
method is rather similar to the NDT versions described in Section 6.3. For all
points in the current scan, the algorithm queries the cell structure for the cor-
responding approximant to the squared distance function to the surface, and
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point distance and the point-to-plane distance. In their paper, they showed that
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the suggested functions lead to more reliable registration from a larger number
of initial pose estimates than point-to-plane ICP. The algorithm behaves like
point-to-point ICP (stable with regard to the initial error, but slower) when the
scans are far from each other, and like point-to-plane ICP (faster, but less stable
with regard to the initial error) when the scans are almost in registration.

Comparing the quadratic patches to NDT, the quadratic patches approx-
imate both the position and the curvature of the surface, while the normal
distributions used in NDT only give an estimate of the position. As long as the
surface is smooth and the cells are small enough so that the surface is approx-
imately unimodal within each cell, quadratic patches are a more descriptive
representation of the surface than the normal distribution of points within the
cell. Mitra et al. use the fitting error of the quadratic patch to deal with the
problem of choosing a good cell size, by building an octree cell structure that
has small cells where required and large cells where that is sufficient. Neigh-
bouring cells are merged if a patch fitted to the surface in the larger cell has
an acceptable fitting error. A similar adaptive gridding method has been imple-
mented for NDT (see Section 6.3.2). For very noisy data, it can be expected
that surface patches would be an inappropriate model of the scan data, com-
pared to the normal-distribution representation. The quadratic patches assume
that the scan points are sampled from a piecewise smooth surface, which is
not always the case. In the mine-mapping application, the walls of the tunnels
are quite rough, and the the sample spacing is at a larger scale than the sur-
face roughness for areas of the tunnel far away from the scanner. Using only
the scan points or an approximated surface fitted to the scan points is likely
to lead to misalignment of scans proportional to the roughness of the walls,
which will behave like noisy measurements. Smoothing the surface with NDT
is reasonable in that case. Though the storage requirements for the quadratic
fit representation are smaller than storing the point clouds themselves, they are
somewhat larger than for NDT, because distance approximants are stored for
all cells (requiring nine parameters per cell), and not just the occupied ones. To
the best of my knowledge, Mitra et al. have not reported the execution times of
their algorithm, but it would be interesting to compare the speed and accuracy
of their approach to that of NDT.

5.8 Likelihood-field matching

Recently, another registration method similar to NDT was presented by Bur-
guera, González, and Oliver [18].

Burguera et al. are chiefly concerned with registration of 2D sonar scans.
The low angular resolution of sonars compared to lidars is a problem when ob-
taining point-to-point correspondences for scan registration. Therefore a num-
ber of consecutive scans are aggregated using the robot’s odometry in order
to generate scans with more points. This addition can be applied to any scan
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registration algorithm, and Burguera et al. have introduced a new family of
algorithms with this addition: sNDT, sICP, and so forth [17].

Their algorithm, called LF/SoG (short for “likelihood field defined as a sum
of Gaussians”), is quite similar to NDT in that points in one scan are matched
to normal distributions based on the points in the other scan. The main dif-
ference is that the identity matrix is used as a covariance estimate instead of
the actual covariance matrix of neighbouring points. Instead of an explicit grid
discretisation, Burguera et al. resample the reference scan by moving a circular
window over the scan, substituting readings inside the window by their centre
of gravity. A Gaussian is placed at each point of the resampled scan with the
mean vector at the points’s position and the identity matrix as the covariance
estimate. During registration, all Gaussians within a certain distance are used
when evaluating the fitness function at a point, and not just the closest one.

In their IROS 2008 contribution [18], LF/SoG with a 5 cm resampling win-
dow was compared to sICP, spIC, and sIDC, as well as sNDT with 1 m cell
size. LF/SoG was shown to be the most robust method, followed by sNDT, and
the ICP-related algorithms sICP, spIC, and sIDC coming out last. It is unclear
why it should be better to use the identity matrix instead of a covariance matrix
computed from the distribution of neighbouring points. My hypothesis is that
the result can be explained by the different discretisation scales of NDT and
LF/SoG used in the paper, but that remains to be tested.

5.9 CRF matching

Conditional random fields (CRFs) are a general probabilistic framework, first
presented by Lafferty et al. [61], for building probabilistic models of relational
information. In contrast to hidden Markov models or Markov random fields,
which are generative models, CRFs do not require that observations are inde-
pendent. CRFs originated in the field of computer linguistics, where they have
been applied to tasks such as labelling sentences by their parts of speech.

Ramos et al. [86] have shown how conditional random fields can be used for
2D scan matching. In their algorithm, a CRF is created that contains a hidden
node for each point in the current scan. The goal is to associate each hidden
node with its corresponding point in the reference scan. Each hidden node is
also connected to a data node that corresponds to certain features associated
with the individual scan points. The model parameters are learnt from labelled
training data.

The main benefits of CRF scan matching are, firstly, that it is part of a prob-
abilistic framework that makes it easy to include various user-defined features;
and secondly, that it is very robust to initial pose errors: The algorithm can
use local-shape features to associate scan points when necessary, or distance (as
ICP or NDT do) when this feature is more relevant.

The CRF approach to scan registration is certainly interesting, but so far
there are also considerable issues. Most importantly, the algorithm presented
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there are also considerable issues. Most importantly, the algorithm presented
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by Ramos et al. will not scale well to the 3D case, with scans that have sev-
eral thousand points. The computational complexity is linear in the number of
points in the current scan, but quadratic in the number of scan points in the
reference scan. The reported execution times are 0.1 s for scans with 90 points
and 1 s already for scans with 180 points. Furthermore, several of the features
that are employed for matching use the relations between neighbouring points,
which are not as easily computed in unordered 3D point clouds as in 2D scans.

5.10 Branch-and-bound registration

Some researchers [33, 83] have used a branch-and-bound strategy for scan reg-
istration. The translation part of the pose space is discretised at several resolu-
tions, with levels ordered from the coarsest to the finest. A number of positions
are considered at some level of the hierarchy. The best matches, according to
some score function, are considered at the next lower level of the hierarchy
(branching), and the others, along with all their subnodes in the hierarchy, are
discarded (bounding).

In a paper by Forsman and Halme [33], a branch-and-bound registration
strategy is used for a forestry application, and it can be useful for highly un-
structured environments. Even so, it is mainly attractive for 2D applications.
The branch-and-bound step is only applied for the translation part of the trans-
formation. In the applications covered by these papers, the orientation of the
robot is deduced from other sensors, and rotation can be optimised simply by
trying the registration for a number of sampled candidate rotations around the
initial rotation estimate. In unrestricted 3D-space with six degrees of freedom,
the number of candidate rotations that needs to be considered grows substan-
tially, so this approach is not likely to scale very well to the 3D case.

Edwin B. Olson [84] recently presented a 2D scan-matching method in the
same vein. Initially, a Gaussian is placed on each point in the reference scan in
order to obtain a cost function that describes the log-probability of observing
a new point at any point in space. This step is similar to the set of Gaussians
used in likelihood-field matching (Section 5.8) . In order to speed up the follow-
ing computations, two grid structures — one with a higher resolution than the
other — are generated to provide look-up tables of the cost function. The pose
space in which to search for the correct solution is discretised in both transla-
tion and rotation. Alternating between the coarse and fine discretisation level
for the cost function, it is possible to search through the complete bounded pose
space volume quickly, thereby finding the global optimum of the scan-matching
cost function. However, as with the previous methods of Clark F. Olson [83]
and Forsman and Halme [33], performing the same kind of discretisation in
the 3D case vastly increases the search space. It remains unclear whether it is
feasible to perform scan matching in this way for 3D mapping and localisation.
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5.11 Registration using local geometric features

In addition to the mainly point-based methods covered so far, it is also possi-
ble to perform registration based on more descriptive local geometric features.
Such a local feature descriptor should be invariant to rigid motion, so that cor-
responding surface parts can be found regardless of the initial poses of the scans.
If sufficiently prominent features can be found, that means that the correspon-
dence problem has been solved. In this case, global surface matching (that is,
registration without an initial pose estimate) is possible.

One surface description technique is spin-images, introduced by Johnson.
Their utility for surface matching and object recognition is covered in detail
in his PhD dissertation [53]. A spin-image is created at an oriented point —
that is, a surface point with an associated normal vector. Spin-image creation
can be thought of as placing an image raster at the oriented point with one of
the image borders aligned along the normal of the point. The image plane is
rotated around this axis. Each image pixel represents how much of the surface
is passed by that pixel during its trajectory. This mechanism is illustrated in
Figure 5.5. In Johnson’s original implementation, a small number is added for
each scan point which the pixel passes as it sweeps through space. This method
works best for data where the points are evenly distributed. For triangulated
data, where mesh faces are available, one way to overcome the dependency on
evenly sampled points is the face-based spin-images proposed by Huber [46].
A new set of points is created by supersampling in a raster-scan pattern from
each surface polygon. In Huber’s method, these points instead of the original
polygon vertices are used for creating spin-images. By subsampling the mesh
faces, even scans with widely different resolutions can be compared.

The cylindrical spin-images described above are quite sensitive to error in
the point normals. Two nearby points with slightly different normals can have
very different spin-images. Unfortunately, it is difficult to compute reliable point
normals for noisy scans. As a possible solution, Johnson has also proposed
spherical spin-images [54], which are less sensitive to this source of error. For
cylindrical spin-images, the error for pixels far from the central point is large
when the point normal is poorly estimated. This effect is decreased with a spher-
ical parametrisation. The spherical parametrisation consists of mapping points
to spin-image pixels using the radial distance r from the central point and el-
evation angle φ to the point’s tangent plane, instead of the distance rn from
the normal line and the distance rt from the tangent plane. Please refer to Fig-
ure 5.5(b). A further refinement is to compress the image memory footprint
using principal component analysis (PCA) [55]. While PCA is a lossy compres-
sion, and as such degrades the descriptive quality of the spin-image slightly,
compressed spin-images are much cheaper to compare to each other, and this
pairwise comparison is the most computationally demanding step of spin-image
scan matching. According to Johnson, the speed-up gain is likely to outweigh
the small decrease in accuracy for many applications.
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(a) A spin-image is a projection of a surface
onto a bounded cylindrical coordinate system.
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Figure 5.5: Spin-images.

An alternative surface description is the splash, presented by Stein and Medi-
oni [97]. Splashes are also based around oriented points and require that the
point cloud is triangulated. A circular path around the point is computed, so
that each point on the path has the same distance to the centre point when mea-
suring the distance along the surface of the triangle mesh. The normal of the
surface along this circle is measured at equally-spaced radial intervals, starting
at an arbitrary point (see Figure 5.6). This gives a one-dimensional record (in
a circular coordinate system) of the local surface shape around a certain point.
Several splashes with the same central point but different radii can also be com-
bined in a so-called super splash. Splashes do not handle discontinuities well,
and Stein and Medioni complete their surface description with 3D curves, based
on object edges. Edges are extracted from the range image and 3D polygonal
line segments are fitted to each edge. Several lines, each with a different num-
ber of line segments, are created for each edge in order to increase robustness
to noise. Stein and Medioni have used splashes for object recognition, but it
would be feasible to use this type of descriptor as an alternative to spin-images
for geometric feature-based scan registration.

Yamany and Farag have presented yet another alternative: surface signa-
tures [110]. These are somewhat similar to spin-images, but use surface curva-
ture instead of point density. A surface signature also constitutes a 2D repre-
sentation of the surface as seen from a single point. In this case, however, the
points of the point cloud itself are not used. Instead, surface signatures are cre-
ated from triangulated point clouds, and a simplex mesh is created from the
centre point of each triangle. As it is created from a triangle mesh, each simplex
point will have three neighbours, although the resulting simplex mesh will in
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Figure 5.6: A splash is a collection of normals around a point.

general consist of many different types of polygons. A simplex point and its
three neighbours can be circumscribed by a sphere, and this sphere is used to
determine the curvature in a point. The curvature is computed in this way for
all points of the scans. The most interesting “landmark” points are assessed to
be ones where the curvature is high. Points with low curvature are eliminated
and surface-signature images are only generated for the remaining points. Addi-
tionally, spike points with considerably higher curvature then their neighbours
are eliminated, as they are likely to be outliers from scanner noise. For each
remaining interest point �x with normal �n, a two-dimensional signature image
(akin to a spin-image) is created based on the curvature of all other points �xi

of the scan. The pixel index for each point �xi is determined by the Euclidean
distance ��x − �xi� on one axis and the angle

φi = arc cos

(
�n · (�x − �xi)

��x − �xi�

)

(5.5)

on the other. Each pixel stores the average of the local curvatures of the points
�xi that are represented by that pixel. In the work of Yamani and Farag, each
signature image uses all points in the scan. To make a local surface signature,
one could put a limit on the maximum point-to-point distance.

All of these descriptors are based on oriented points, so it is important that
the normals of all points are accurate. If not, it is not possible to generate
correct surface descriptions. Because of this, only points where the normal can
be determined reliably should be selected.

Sharp et al. [93] have used other kinds of invariant surface features for ICP
registration. In their work, each point is represented with k + 3 parameters;
three of which are the metric position coordinates, and the other k are the fea-
ture coordinates. The features are based on surface curvature, moment invari-
ants, and spherical harmonics. Corresponding points are then found in k + 3
dimensional space, using separate weights for the metric and the feature parts
of the point vector. This way, a point that is farther away in metric space but
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(a) A spin-image is a projection of a surface
onto a bounded cylindrical coordinate system.
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general consist of many different types of polygons. A simplex point and its
three neighbours can be circumscribed by a sphere, and this sphere is used to
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all points of the scans. The most interesting “landmark” points are assessed to
be ones where the curvature is high. Points with low curvature are eliminated
and surface-signature images are only generated for the remaining points. Addi-
tionally, spike points with considerably higher curvature then their neighbours
are eliminated, as they are likely to be outliers from scanner noise. For each
remaining interest point �x with normal �n, a two-dimensional signature image
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of the scan. The pixel index for each point �xi is determined by the Euclidean
distance ��x − �xi� on one axis and the angle
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on the other. Each pixel stores the average of the local curvatures of the points
�xi that are represented by that pixel. In the work of Yamani and Farag, each
signature image uses all points in the scan. To make a local surface signature,
one could put a limit on the maximum point-to-point distance.

All of these descriptors are based on oriented points, so it is important that
the normals of all points are accurate. If not, it is not possible to generate
correct surface descriptions. Because of this, only points where the normal can
be determined reliably should be selected.

Sharp et al. [93] have used other kinds of invariant surface features for ICP
registration. In their work, each point is represented with k + 3 parameters;
three of which are the metric position coordinates, and the other k are the fea-
ture coordinates. The features are based on surface curvature, moment invari-
ants, and spherical harmonics. Corresponding points are then found in k + 3
dimensional space, using separate weights for the metric and the feature parts
of the point vector. This way, a point that is farther away in metric space but

53



54

has a more similar local surrounding may be considered as a better pairing then
the closest point in 3D-space. In their article, Sharp et al. use k = 8 feature pa-
rameters; two for curvature, and three each for moments and harmonics. (For
more details, see their paper [93].) However, searching in 11-dimensional space
is more problematic than searching in two or three dimensions. Use of kD trees
does not scale very well to higher dimensions, and in spaces with more than
eight or so dimensions, using kD trees does not generally improve performance
over brute-force search [75].
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Chapter 6

The normal-distributions
transform

This chapter details the normal-distributions transform and how it can be ap-
plied for scan registration.

6.1 NDT for representing surfaces

The range sensors that are discussed in Chapter 3 all output point clouds: a
set of spatial sample points from a surface. Furthermore, many of the related
algorithms covered in Chapter 5 work with point clouds. However, using point
clouds to represent surfaces has a number of limitations. For example, point
clouds contain no explicit information about surface characteristics such as ori-
entation, smoothness, or holes. Depending on the sensor configuration, point
clouds may also be inefficient, requiring an unnecessarily large amount of stor-
age. In order to get sufficient sample resolution far from the sensor location,
it is typically necessary to configure the sensor in a way that produces a large
amount of redundant data from surfaces near to the sensor.

The normal-distributions transform can be described as a method for com-
pactly representing a surface. It was first proposed by Biber and Straßer in
2003 [7] as a method for 2D scan registration. Biber and Straßer later elabo-
rated on the method in a joint paper with Sven Fleck [8], also in the context of
scan registration and mapping. The transform maps a point cloud to a smooth
surface representation, described as a set of local probability density functions
(PDFs), each of which describes the shape of a section of the surface.

The first step of the algorithm is to subdivide the space occupied by the scan
into a grid of cells (squares in the 2D case, or cubes in 3D). A PDF is computed
for each cell, based on the point distribution within the cell. The PDF in each
cell can be interpreted as a generative process for surface points �x within the
cell. In other words, it is assumed that the location of �x has been generated
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Chapter 6

The normal-distributions
transform

This chapter details the normal-distributions transform and how it can be ap-
plied for scan registration.

6.1 NDT for representing surfaces

The range sensors that are discussed in Chapter 3 all output point clouds: a
set of spatial sample points from a surface. Furthermore, many of the related
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(PDFs), each of which describes the shape of a section of the surface.
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Figure 6.1: A 2D laser scan from a mine tunnel (shown as points) and the PDFs describ-
ing the surface shape. Each cell is a square with 2 m side length in this case. Brighter
areas represent a higher probability. PDFs have been computed only for cells with more
than five points.

by drawing from this distribution. Assuming that the locations of the reference
scan surface points were generated by a D-dimensional normal random process,
the likelihood of having measured �x is

p(�x) =
1

(2π)D/2
√

|Σ|
exp

(

− (�x − �µ)T
Σ

−1(�x − �µ)

2

)

, (6.1)

where �µ and Σ denote the mean vector and covariance matrix of the reference
scan surface points within the cell where �x lies. The factor ((2π)D/2

√

|Σ|)−1

scales the function so that it integrates to one. For practical purposes, it may be
replaced by a constant c0. The mean and covariance are computed as

�µ =
1

m

m∑

k=1

�yk, (6.2)

Σ =
1

m − 1

m∑

k=1

(�yk − �µ)(�yk − �µ)T, (6.3)

where �yk=1,..., m are the positions of the reference scan points contained in the
cell.

The normal distributions give a piecewise smooth representation of the
point cloud, with continuous derivatives. Each PDF can be seen as an approx-
imation of the local surface, describing the position of the surface as well as
its orientation and smoothness. A 2D laser scan and its corresponding normal
distributions are shown in Figure 6.1. Figure 6.2 illustrates the 3D normal dis-
tributions for a mine tunnel scan.

Since the present work is so heavily focused on normal distributions, let’s
look more closely at the characteristics of univariate and multivariate normal

56

(a) Original point cloud. (b) NDT representation.

Figure 6.2: 3D-NDT surface representation for a tunnel section, seen from above.
Brighter, denser parts represent higher probabilities. The cells have a side length of 1 m.

distributions. In the one-dimensional case, a normally distributed random vari-
able x has a certain expected value µ and the uncertainty regarding the value is
expressed with a variance σ.

p(x) =
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

(6.4)

The multivariate probability function p(�x) of Equation 6.1 reduces to the p(x)
above in the one-dimensional case (D = 1). In the multi-dimensional case, the
mean and variance are instead described by the mean vector �µ and covariance
matrix Σ. The diagonal elements of the covariance matrix denote the variance
of each variable, and the off-diagonal elements denote the covariance of the
variables. Figure 6.3 illustrates normal distributions in one, two, and three di-
mensions.

In the 2D and 3D cases, the surface orientation and smoothness can be
assessed from the eigenvectors and eigenvalues of the covariance matrix. The
eigenvectors describe the principal components of the distribution; that is, a
set of orthogonal vectors corresponding to the dominant directions of the co-
variance of the variables. Depending on the proportions of the variances, a 2D
normal distribution can be either point-shaped (if the variances are similar) or
line-shaped (if one is much larger than the other), or anything in between. In
the 3D case — illustrated in Figure 6.4 — a normal distribution can describe a
point or sphere (if the magnitudes of the variances are similar in all directions),
a line (if the variance in one direction is much larger than the other two), or a
plane (if the variance in one direction is much smaller than the other two).
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ing the surface shape. Each cell is a square with 2 m side length in this case. Brighter
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than five points.
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where �yk=1,..., m are the positions of the reference scan points contained in the
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The normal distributions give a piecewise smooth representation of the
point cloud, with continuous derivatives. Each PDF can be seen as an approx-
imation of the local surface, describing the position of the surface as well as
its orientation and smoothness. A 2D laser scan and its corresponding normal
distributions are shown in Figure 6.1. Figure 6.2 illustrates the 3D normal dis-
tributions for a mine tunnel scan.
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able x has a certain expected value µ and the uncertainty regarding the value is
expressed with a variance σ.

p(x) =
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The multivariate probability function p(�x) of Equation 6.1 reduces to the p(x)
above in the one-dimensional case (D = 1). In the multi-dimensional case, the
mean and variance are instead described by the mean vector �µ and covariance
matrix Σ. The diagonal elements of the covariance matrix denote the variance
of each variable, and the off-diagonal elements denote the covariance of the
variables. Figure 6.3 illustrates normal distributions in one, two, and three di-
mensions.

In the 2D and 3D cases, the surface orientation and smoothness can be
assessed from the eigenvectors and eigenvalues of the covariance matrix. The
eigenvectors describe the principal components of the distribution; that is, a
set of orthogonal vectors corresponding to the dominant directions of the co-
variance of the variables. Depending on the proportions of the variances, a 2D
normal distribution can be either point-shaped (if the variances are similar) or
line-shaped (if one is much larger than the other), or anything in between. In
the 3D case — illustrated in Figure 6.4 — a normal distribution can describe a
point or sphere (if the magnitudes of the variances are similar in all directions),
a line (if the variance in one direction is much larger than the other two), or a
plane (if the variance in one direction is much smaller than the other two).
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(a) 1D (b) 2D (c) 3D

Figure 6.3: Normally-distributed PDFs in one, two, and three dimensions.

(a) Spherical: All eigenvalues
approximately equal.

(b) Linear: One eigenvalue
much larger than the other two.

(c) Planar: One eigenvalue
much smaller than the others.

Figure 6.4: Different shapes of 3D normal distributions, depending on the relationships
between the eigenvalues of Σ. The arrows show the eigenvectors of the distributions,
scaled by the corresponding eigenvalues.

6.2 NDT scan registration

When using NDT for scan registration, the goal is to find the pose of the current
scan that maximises the likelihood that the points of the current scan lie on the
reference scan surface. The parameters to be optimised; that is, the rotation and
translation of the pose estimate of the current scan; can be encoded in a vector �p.
The current scan is represented as a point cloud X = {�x1, . . . , �xn}. Assume that
there is a spatial transformation function T(�p, �x) that moves a point �x in space
by the pose �p. Given some PDF p(�x) for scan points (for example, Equation 6.1),
the best pose �p should be the one that maximises the likelihood function

Ψ =
n∏

k=1

p(T(�p, �xk)) (6.5)
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Figure 6.5: Comparing a normal distribution p(x) and the mixture model p̄(x). The
negative log-likelihood is the objective function when performing NDT scan registration.
Its derivative characterises the bias that a particular measurement has on the solution.
For p(x), the influence grows without bounds for large x, while it is bounded for p̄(x).

or, equivalently, minimises the negative log-likelihood of Ψ:

− log Ψ = −
n∑

k=1

log
(
p(T(�p, �xk))

)
(6.6)

The PDF is not necessarily restricted to be a normal distribution. Any PDF
that locally captures the structure of the surface points and is robust to outliers
is suitable. The negative log-likelihood of a normal distribution grows without
bound for points far from the mean. Consequently, outliers in the scan data may
have a large influence on the result. In this work (as in the paper by Biber, Fleck,
and Straßer [8]) a mixture of a normal distribution and a uniform distribution
is used:

p̄(�x) = c1 exp

(

− (�x − �µ)T
Σ

−1(�x − �µ)

2

)

+ c2po, (6.7)

where po is the expected ratio of outliers. Using this function, the influence of
outliers is bounded. This is illustrated in Figure 6.5. The constants c1 and c2

can be determined by requiring that the probability mass of p̄(�x) equals one
within the space spanned by a cell.

The summands of the log-likelihood energy function to be optimised consist
of terms that have the form − log(c1 exp(−((�x−�µ)T

Σ
−1(�x−�µ))/2)+c2). These

have no simple first- and second-order derivatives. However, Figure 6.5(b) sug-
gests that the log-likelihood function can, in turn, be approximated by a Gaus-
sian. A function on the form p̄(x) = − log(c1 exp(−x2/(2σ2)) + c2) may be
approximated by a Gaussian p̃(x) = d1 exp(−d2x2/(2σ2)) + d3, fitting the pa-
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Figure 6.3: Normally-distributed PDFs in one, two, and three dimensions.

(a) Spherical: All eigenvalues
approximately equal.

(b) Linear: One eigenvalue
much larger than the other two.

(c) Planar: One eigenvalue
much smaller than the others.

Figure 6.4: Different shapes of 3D normal distributions, depending on the relationships
between the eigenvalues of Σ. The arrows show the eigenvectors of the distributions,
scaled by the corresponding eigenvalues.

6.2 NDT scan registration

When using NDT for scan registration, the goal is to find the pose of the current
scan that maximises the likelihood that the points of the current scan lie on the
reference scan surface. The parameters to be optimised; that is, the rotation and
translation of the pose estimate of the current scan; can be encoded in a vector �p.
The current scan is represented as a point cloud X = {�x1, . . . , �xn}. Assume that
there is a spatial transformation function T(�p, �x) that moves a point �x in space
by the pose �p. Given some PDF p(�x) for scan points (for example, Equation 6.1),
the best pose �p should be the one that maximises the likelihood function

Ψ =
n∏

k=1

p(T(�p, �xk)) (6.5)
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or, equivalently, minimises the negative log-likelihood of Ψ:

− log Ψ = −
n∑

k=1

log
(
p(T(�p, �xk))

)
(6.6)

The PDF is not necessarily restricted to be a normal distribution. Any PDF
that locally captures the structure of the surface points and is robust to outliers
is suitable. The negative log-likelihood of a normal distribution grows without
bound for points far from the mean. Consequently, outliers in the scan data may
have a large influence on the result. In this work (as in the paper by Biber, Fleck,
and Straßer [8]) a mixture of a normal distribution and a uniform distribution
is used:

p̄(�x) = c1 exp

(

− (�x − �µ)T
Σ

−1(�x − �µ)

2

)

+ c2po, (6.7)

where po is the expected ratio of outliers. Using this function, the influence of
outliers is bounded. This is illustrated in Figure 6.5. The constants c1 and c2

can be determined by requiring that the probability mass of p̄(�x) equals one
within the space spanned by a cell.

The summands of the log-likelihood energy function to be optimised consist
of terms that have the form − log(c1 exp(−((�x−�µ)T

Σ
−1(�x−�µ))/2)+c2). These

have no simple first- and second-order derivatives. However, Figure 6.5(b) sug-
gests that the log-likelihood function can, in turn, be approximated by a Gaus-
sian. A function on the form p̄(x) = − log(c1 exp(−x2/(2σ2)) + c2) may be
approximated by a Gaussian p̃(x) = d1 exp(−d2x2/(2σ2)) + d3, fitting the pa-
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rameters di by requiring that p̃(x) should behave like p(x) for x = 0, x = σ, and
x = ∞:

d3 = − log(c2),

d1 = − log (c1 + c2) − d3,

d2 = −2 log ( (− log (c1 exp(−1/2) + c2) − d3) /d1).

(6.8)

Using such a Gaussian approximation, the influence of one point from the cur-
rent scan on the NDT score function is

p̃(�xk) = −d1 exp

�

−d2

2
(�xk − �µk)T

Σ
−1
k (�xk − �µk)

�

, (6.9)

where �µk and Σk are the mean and covariance of the NDT cell in which �xk lies.
This NDT score function has simpler derivatives than the logarithm of Equa-
tion 6.7 but still exhibits the same general properties when used in optimisation.
Note that the d3 term has been omitted from Equation 6.9. It is not required
when using NDT for scan registration, since it only adds a constant offset to
the score function, and does not change its shape or the parameters for which
it is optimised.

Given a set of points X = {�x1, . . . , �xn}, a pose �p, and a transformation
function T(�p, �x) to transform point �x in space by �p, the NDT score function
s(�p) for the current parameter vector is

s(�p) = −
n�

k=1

p̃
�
T(�p, �xk)

�
, (6.10)

which corresponds to the likelihood that the points �xk lie on the surface of the
reference scan, when transformed by �p.

The likelihood function requires the inverse of the covariance matrix, Σ
−1.

In case the points in a cell are perfectly coplanar or collinear, the covariance ma-
trix is singular and cannot be inverted. In the 3D case, a covariance matrix com-
puted from three points or less will always be singular. For this reason, PDFs
are only computed for cells containing more than five points. Furthermore, as
a precaution against numerical problems, Σ is slightly inflated whenever it is
found to be nearly singular. If the largest eigenvalue λ3 of Σ is more than
100 times larger than λ1 or λ2, then the smaller eigenvalue λj is replaced with
λ′

j = λ3/100. The matrix Σ
′ = VΛ

′V is used instead of Σ, with V containing
the eigenvectors of Σ and

Λ
′ =





λ′
1 0 0

0 λ′
2 0

0 0 λ3



 . (6.11)

Newton’s algorithm can be used to find the parameters �p that optimise s(�p).
Newton’s method iteratively solves the equation H∆�p = −�g, where H and �g
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are the Hessian matrix and gradient vector of s(�p). The increment ∆�p is added
to the current pose estimate in each iteration, so that �p ← �p + ∆�p.

For brevity, let �x′
k ≡ T(�p, �xk)−�µk. In other words, �x′

k is point �xk transformed
by the current pose parameters, relative to the centre of the PDF of the cell to
which it belongs. The entries gi of the gradient vector �g can be written

gi =
δs

δpi
=

n∑

k=1

d1d2�x
′
k

T
Σ

−1
k

δ�x′
k

δpi
exp

(−d2

2
�x′

k
T
Σ

−1
k �x′

k

)

. (6.12)

The entries Hij of the Hessian matrix H are

Hij =
δ2s

δpiδpj
=

n∑

k=1

d1d2 exp
(−d2

2
�x′

k
T
Σ

−1
k �x′

k

)(

−d2

(

�x′
k

T
Σ

−1
k

δ�x′
k

δpi

)(

�x′
k

T
Σ

−1
k

δ�x′
k

δpj

)

+

�x′
k

T
Σ

−1
k

δ2�x′
k

δpiδpj
+

δ�x′
k

δpj

T
Σ

−1
k

δ�x′
k

δpi

)

. (6.13)

The gradient (6.12) and Hessian (6.13) of the NDT score function are expressed
in the same way regardless of whether the registration is performed in 2D or 3D
(or any other dimensionality, for that matter). They are similarly independent
of the transformation representation being used. The first- and second-order
partial derivatives of �x′ in Equations 6.12 and 6.13, on the other hand, do
depend on the transformation function T. The differences between 2D and
3D registration for different choices of T will be described in Sections 6.2.1
and 6.2.2.

In several previous publications on NDT scan registration [7, 48, 57, 64, 67,
89] the score function has been defined using the sum of Gaussians from the
normally-distributed PDFs directly. Though such a formulation is less pleasing
from a probabilistic point of view, the end result is very similar to the result
using the Gaussian approximation (6.9) of the log-likelihood of the mixture
model (6.7).

Algorithm 2 describes how to register two point clouds X and Y using NDT.

6.2.1 2D-NDT

For 2D registration, there are three transformation parameters to optimise. Let
�p = [tx, ty, φ]T, where tx and ty are the translation parameters and φ is the ro-
tation angle. Using counter-clockwise rotation, the 2D transformation function
is

T2(�p, �x) =

[
cos φ − sin φ
sin φ cos φ

]

�x +

[
tx

ty

]

. (6.14)
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rameters di by requiring that p̃(x) should behave like p(x) for x = 0, x = σ, and
x = ∞:

d3 = − log(c2),

d1 = − log (c1 + c2) − d3,

d2 = −2 log ( (− log (c1 exp(−1/2) + c2) − d3) /d1).

(6.8)
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where �µk and Σk are the mean and covariance of the NDT cell in which �xk lies.
This NDT score function has simpler derivatives than the logarithm of Equa-
tion 6.7 but still exhibits the same general properties when used in optimisation.
Note that the d3 term has been omitted from Equation 6.9. It is not required
when using NDT for scan registration, since it only adds a constant offset to
the score function, and does not change its shape or the parameters for which
it is optimised.

Given a set of points X = {�x1, . . . , �xn}, a pose �p, and a transformation
function T(�p, �x) to transform point �x in space by �p, the NDT score function
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which corresponds to the likelihood that the points �xk lie on the surface of the
reference scan, when transformed by �p.

The likelihood function requires the inverse of the covariance matrix, Σ
−1.

In case the points in a cell are perfectly coplanar or collinear, the covariance ma-
trix is singular and cannot be inverted. In the 3D case, a covariance matrix com-
puted from three points or less will always be singular. For this reason, PDFs
are only computed for cells containing more than five points. Furthermore, as
a precaution against numerical problems, Σ is slightly inflated whenever it is
found to be nearly singular. If the largest eigenvalue λ3 of Σ is more than
100 times larger than λ1 or λ2, then the smaller eigenvalue λj is replaced with
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j = λ3/100. The matrix Σ
′ = VΛ

′V is used instead of Σ, with V containing
the eigenvectors of Σ and
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Newton’s algorithm can be used to find the parameters �p that optimise s(�p).
Newton’s method iteratively solves the equation H∆�p = −�g, where H and �g
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are the Hessian matrix and gradient vector of s(�p). The increment ∆�p is added
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The gradient (6.12) and Hessian (6.13) of the NDT score function are expressed
in the same way regardless of whether the registration is performed in 2D or 3D
(or any other dimensionality, for that matter). They are similarly independent
of the transformation representation being used. The first- and second-order
partial derivatives of �x′ in Equations 6.12 and 6.13, on the other hand, do
depend on the transformation function T. The differences between 2D and
3D registration for different choices of T will be described in Sections 6.2.1
and 6.2.2.

In several previous publications on NDT scan registration [7, 48, 57, 64, 67,
89] the score function has been defined using the sum of Gaussians from the
normally-distributed PDFs directly. Though such a formulation is less pleasing
from a probabilistic point of view, the end result is very similar to the result
using the Gaussian approximation (6.9) of the log-likelihood of the mixture
model (6.7).

Algorithm 2 describes how to register two point clouds X and Y using NDT.

6.2.1 2D-NDT

For 2D registration, there are three transformation parameters to optimise. Let
�p = [tx, ty, φ]T, where tx and ty are the translation parameters and φ is the ro-
tation angle. Using counter-clockwise rotation, the 2D transformation function
is

T2(�p, �x) =

[
cos φ − sin φ
sin φ cos φ

]

�x +

[
tx

ty

]

. (6.14)

61



62

Algorithm 2 Register scan X to reference scan Y using NDT.

ndt(X , Y , �p)

1: {Initialisation:}
2: allocate cell structure B
3: for all points �yk ∈ Y do
4: find the cell bi ∈ B that contains �yk
5: store �yk in bi

6: end for
7: for all cells bi ∈ B do
8: Y ′ = {�y′1, . . . ,�y′m} ← all points in bi

9: �µi ← 1
n

�m
k=1 �y′k

10: Σi ← 1
m−1

�m
k=1 (�y′k − �µ)(�y′k − �µ)T

11: end for
12: {Registration:}
13: while not converged do
14: score ← 0
15: �g ← 0
16: H ← 0
17: for all points �xk ∈ X do
18: find the cell bi that contains T(�p, �xk)
19: score ← score + p̃

�
T(�p, �xk)

�
(see Equation 6.9)

20: update �g (see Equation 6.12)
21: update H (see Equation 6.13)
22: end for
23: solve H∆�p = −�g
24: �p ← �p + ∆�p
25: end while

Using this 2D transformation function, the first-order derivative δ�x′/δpi

used to compute the gradient in Equation 6.12 is given by column i of the
Jacobian matrix

J2 =

�
1 0 −x1 sin φ − x2 cos φ
0 1 x1 cos φ − x2 sin φ

�

, (6.15)

and the second-order derivatives used in Equation 6.13 are

δ2�x′

δpiδpj
=







�
−x1 cos φ + x2 cos φ
−x1 sin φ − x2 cos φ

�

if i = j = 3
�
0
0

�

otherwise.
(6.16)
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6.2.2 3D-NDT

The main difference between 2D and 3D registration with NDT lies in the
spatial transformation function T(�p, �x) and its partial derivatives. In two di-
mensions, rotation is represented with a single value for the angle of rotation
around the origin, and the most obvious transformation function is the one
from Equation 6.14. In the three-dimensional case, there are several possible
ways to represent rotation, as discussed in Section 2.2.

In our previous work on 3D-NDT [64, 67], an axis/angle rotation represen-
tation was used. However, doing so adds an extra variable to the optimisation
problem, and requires additional constraints in order to keep the rotation axis
at unit length. Newton’s optimisation method is an iterative one, and it is pos-
sible to enforce the unit axis constraint simply by re-normalising the rotation
representation after each Newton iteration. However, this strategy can still lead
to problems as the Newton update direction strays into infeasible regions of
the pose parameter space, which may explain some of the inconsistencies in the
earlier results. For completeness, the axis/angle transformation function and its
derivatives are supplied in Appendix B.2.

In the following, 3D Euler angles will be used, in spite of the potential
problems associated with this rotation representation. The advantages — no
constraint required for the numerical optimisation procedure, and slightly less
complicated derivatives — are assessed to outweigh the risk of gimbal lock,
which would only occur at such large angles that the local registration proce-
dure would most likely fail anyway. Using Euler angles, there are six trans-
formation parameters to optimise: three for translation, and three for rota-
tion. The pose can be encoded using the six-dimensional parameter vector
�p6 = [tx, ty, tz, φx, φy, φz]

T.
Using the Euler sequence z-y-x, the 3D transformation function is

TE(�p6, �x) = RxRyRz�x +�t

=





cycz −cysz sy

cxsz + sxsycz cxcz − sxsysz −sxcy

sxsz − cxsycz cxsysz + sxcz cxcy



�x +





tx

ty

tz



 ,
(6.17)

where ci = cos φi and si = sin φi. The first-order derivative (δ/δpi)TE(�p6, �x) of
Equation 6.17 corresponds to column i of the Jacobian matrix

JE =





1 0 0 0 c f
0 1 0 a d g
0 0 1 b e h



 , (6.18)
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where

a = x1(−sxsz + cxsycz) + x2(−sxcz − cxsysz) + x3(−cxcy),

b = x1(cxsz + sxsycz) + x2(−sxsysz + cxcz) + x3(−sxcy),

c = x1(−sycz) + x2(sysz) + x3(cy),

d = x1(sxcycz) + x2(−sxcysz) + x3(sxsy),

e = x1(−cxcycz) + x2(cxcysz) + x3(−cxsy),

f = x1(−cysz) + x2(−cycz),

g = x1(cxcz − sxsysz) + x2(−cxsz − sxsycz),

h = x1(sxcz + cxsysz) + x2(cxsycz − sxsz).

(6.19)

The second-order derivative
�
δ2/(δpiδpj)

�
TE(�p6, �x) corresponds to element �Hij

of the symmetric block matrix

HE =






�H11 · · · �H16
...

. . .
...

�H61 · · · �H66




 =












�0 �0 �0 �0 �0 �0
�0 �0 �0 �0 �0 �0
�0 �0 �0 �0 �0 �0
�0 �0 �0 �a �b �c
�0 �0 �0 �b �d �e
�0 �0 �0 �c �e �f












, (6.20)

where

�a =





0
x1(−cxsz − sxsycz) + x2(−cxcz + sxsysz) + x3(sxcy)

x1(−sxsz + cxsycz) + x2(−cxsysz − sxcz) + x3(−cxcy)



 ,

�b =





0
x1(cxcycz) + x2(−cxcysz) + x3(cxsy)
x1(sxcycz) + x2(−sxcysz) + x3(sxsy)



 ,

�c =





0
x1(−sxcz − cxsysz) + x2(−sxsz − cxsycz)
x1(cxcz − sxsysz) + x2(−sxsycz − cxsz)



 ,

�d =





x1(−cycz) + x2(cysz) + x3(−sy)
x1(−sxsycz) + x2(sxsysz) + x3(sxcy)

x1(cxsycz) + x2(−cxsysz) + x3(−cxcy)



 ,

�e =





x1(sysz) + x2(sycz)
x1(−sxcysz) + x2(−sxcycz)

x1(cxcysz) + x2(cxcycz)



 ,

�f =





x1(−cycz) + x2(cysz)
x1(−cxsz − sxsycz) + x2(−cxcz + sxsysz)
x1(−sxsz + cxsycz) + x2(−cxsysz − sxcz)



 .

(6.21)
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The computations can be significantly simplified by using the following
trigonometric approximations for small angles:

sin φ ≈ φ,

cos φ ≈ 1,

φ2 ≈ 0.

(6.22)

These approximations can be considered exact for angles less than 10◦. For
the sine function, the approximation error reaches 1% at an angle of 14◦. For
the cosine, the same error occurs at an 8.2◦ angle. Computing the transforma-
tion function and its derivatives is faster when using the small-angle approxi-
mations, but registration with the approximations is less robust than if using
Equation 6.17 in some cases. The corresponding transformation function with
small-angle approximations is provided in Appendix B.1. The approximated
formulation may be recommended in time-critical applications, although the
differences are rather minor.

For many applications of nonlinear optimisation, it is common to use a
numeric approximation of the Hessian instead of the analytic Hessian, either
because the Hessian matrix is impossible to compute analytically, or just compu-
tationally too expensive. However, since the Hessian matrix of the NDT score
function can be analytically computed and most of its elements are zero, it is
advantageous not to use an approximation. For completeness, a quasi-Newton
method using the BFGS approximation [92] of the Hessian has been compared
to Newton’s method with the Hessian from Equation 6.13. The robustness has
been found to be lower using the quasi-Newton method. Some of the quasi-
Newton results can be found in Appendix C.

6.3 3D-NDT extensions

This section describes some extensions to 3D-NDT aimed at better represent-
ing the underlying surface. The most important parameter of 3D-NDT is the
cell size. Any feature that is much smaller than the size of a cell will be blurred
by the function that describes the local surface shape around it, because nor-
mal distributions are unimodal. Choosing a cell size that is too large therefore
generally leads to less precise registration. On the other hand, the region of in-
fluence of a cell only extends as far as its boundaries. That is, the cell will only
contribute to the score function for scan points within its bounds. One conse-
quence of this is that if the cells are too small, registration will only succeed
if the two scans are initially close together. Another issue is that with smaller
cells, parts of the scan with low point density may not be used at all, since at
least five points per cell are needed to compute a reliable covariance matrix.
Using smaller cells also requires more memory. The optimal size and distribu-
tion of cells therefore depend on the shape and density of the input data. They
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also depend on the requirements by the application on the fidelity of the scan
representation.

Using a fixed lattice of square or cubic cells burdens the user with the task
of choosing a good cell size. A more flexible cell structure would be prefer-
able: using large cells where possible and finer subdivision in places where a
single normal distribution cannot describe the surface satisfyingly. This section
presents a number of alternative methods for creating the NDT cell structure
and the associated likelihood functions.

6.3.1 Fixed discretisation

Disregarding the drawbacks just mentioned, the benefit of using a fixed lattice
of cells is that the overhead for initialising and using the cell structure is very
small. Only one set of parameters needs to be computed for each cell, and
the positioning of each cell is straightforward. Even more important for the
performance of the algorithm is that point-to-cell look-up can be done very
quickly in constant time, because the cells can be stored in a simple array.

6.3.2 Octree discretisation

An octree is a commonly used tree structure that can be used to store a hierar-
chical discretisation of 3D space. In an octree, each node represents a bounded
partition of the space. Each internal node has eight children that represent con-
gruent and nonoverlapping subdivisions of the space partition of their parent
node. When creating an octree, the root node is sized to encompass the whole
reference scan. The tree is then built recursively, splitting all nodes containing
more than a certain number of points. All data points are contained in the leaf
nodes of the octree. Octrees are rather similar to kD trees, but each internal
node has eight instead of two child nodes.

The octree version of 3D-NDT starts with fixed regular cells, as described
before, with the difference that each cell is the root node of an octree. All cells
in which the variance of the distribution is larger than a certain threshold are
recursively split, making a forest of octrees.

It is important for the efficiency of NDT that the point-to-cell look-up is
fast, and this is the main reason for using a forest of octrees, rather than a
single octree with a root node spanning all of the scan. For many types of scan
data, a reasonable basic cell size can be specified, so that only a few cells in
parts where the scan surface is particularly uneven need to be split. Thus, for
most points, finding the correct cell only needs a single array access, whereas
traversing an octree once for each point would take more time. A forest requires
more memory than a single tree, especially if the cell size of the root nodes
of each tree is small, but the effect of this was negligible for the experiments
presented in this dissertation.
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6.3.3 Iterative discretisation

Another option is to perform a number of NDT runs with successively finer cell
resolution, using the final pose of each run as the initial pose for the next run.
The first runs are good for bringing badly aligned scans closer together, and
later runs improve the rough initial match.

6.3.4 Adaptive clustering

A more adaptive discretisation method is to use a clustering algorithm that
divides the points of the scan into a number of clusters, based on their positions,
and to use one NDT cell for each cluster.

A common clustering algorithm that is easy to implement is k-means cluster-
ing [30], which works as follows. A set of k clusters is initialised, and the points
of the scan are assigned at random to the clusters. The clustering algorithm pro-
ceeds iteratively. In each step, the centre point of each cluster is computed from
the centroid of the points it currently contains. Each point is moved to the clus-
ter that has the closest centre. These two steps are iterated until no more points
have changed clusters between two iterations, or until the number of changes
falls below some threshold value. In order to get a good distribution of clus-
ters, without pathologically large or small ones, the initial distribution should
be even across the volume occupied by the scan. The clustering pass then tries
to move the clusters to where they are needed. With this discretisation method,
the number k of cells must be determined in advance while the size of each cell
is determined automatically, contrary to the other discretisation methods where
the cell size is determined manually. An example cell distribution using k-means
clustering is shown in Figure 6.6.

6.3.5 Linked cells

Using the NDT formulation described in Section 6.2, scan points lying in cells
that are not occupied by the reference scan surface are discarded. Instead of
doing so, the closest occupied cell can be used for those points. This increases
the region of influence of cells. Typically the function value of the cell is almost
zero outside its bounds, and in those cases it makes no substantial contribu-
tion to the score anyway. But it is also often the case (for example, for cells
where the point distribution has large variance) that the distribution function
is substantially non-zero outside the cell.

One way to implement this closest-occupied-cell strategy is “linked cells”:
to have each cell in the NDT grid store a pointer to the nearest occupied cell
and use these pointers when querying the grid for the cell that corresponds to
a certain point. This implementation has been used in earlier work on NDT
registration [64, 65, 67]. An alternative implementation with the same effect is
to store only the occupied cells of the NDT grid in a kD tree search structure,
querying the kD tree for the closest cell. The latter is preferable if there are many
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also depend on the requirements by the application on the fidelity of the scan
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ceeds iteratively. In each step, the centre point of each cluster is computed from
the centroid of the points it currently contains. Each point is moved to the clus-
ter that has the closest centre. These two steps are iterated until no more points
have changed clusters between two iterations, or until the number of changes
falls below some threshold value. In order to get a good distribution of clus-
ters, without pathologically large or small ones, the initial distribution should
be even across the volume occupied by the scan. The clustering pass then tries
to move the clusters to where they are needed. With this discretisation method,
the number k of cells must be determined in advance while the size of each cell
is determined automatically, contrary to the other discretisation methods where
the cell size is determined manually. An example cell distribution using k-means
clustering is shown in Figure 6.6.

6.3.5 Linked cells

Using the NDT formulation described in Section 6.2, scan points lying in cells
that are not occupied by the reference scan surface are discarded. Instead of
doing so, the closest occupied cell can be used for those points. This increases
the region of influence of cells. Typically the function value of the cell is almost
zero outside its bounds, and in those cases it makes no substantial contribu-
tion to the score anyway. But it is also often the case (for example, for cells
where the point distribution has large variance) that the distribution function
is substantially non-zero outside the cell.

One way to implement this closest-occupied-cell strategy is “linked cells”:
to have each cell in the NDT grid store a pointer to the nearest occupied cell
and use these pointers when querying the grid for the cell that corresponds to
a certain point. This implementation has been used in earlier work on NDT
registration [64, 65, 67]. An alternative implementation with the same effect is
to store only the occupied cells of the NDT grid in a kD tree search structure,
querying the kD tree for the closest cell. The latter is preferable if there are many
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Figure 6.6: 3D-NDT discretisation with k-means clustering, using 100 clusters. The
distribution of cells follows the scanned surface.

unoccupied cells, and is the implementation used in this work. This method will
still be referred to as “linked cells” below.

6.3.6 Trilinear interpolation

Subdividing the space into discrete cells leads to discontinuities in the surface
representation at cell edges, which can sometimes be problematic. In the orig-
inal 2D NDT implementation [7], the discretisation effects were minimised by
using four overlapping 2D cell grids. A similar approach is to use the normal
distributions from the four (in 2D) or eight (in 3D) neighbouring cells, with the
weight of the contribution from each cell determined by trilinear interpolation
(bilinear in 2D). In other words, the per-point score function (6.9) is replaced
with

p̂(�x) =
8∑

b=1

−d1(b)w(�x, �µb) exp

(

−d2(b)

2
(�x − �µb)T

Σ
−1
b (�x − �µb)

)

, (6.23)

where �qb, Σb, and di(b) are the means, covariances, and scale parameters of the
eight cells that are closest to �x; and w(�x, �µ) is a trilinear interpolation weight
function. Equation 6.23 has a smoothing effect similar to the approach of Biber
and Straßer without the need to compute more probability functions. The effect
is illustrated in Figure 6.7.

Because up to eight functions have to be evaluated for each point, the algo-
rithm takes up to eight times as long as NDT without trilinear interpolation in
the worst case. However, in the case that the reference scan only contains a pla-
nar surface, 3D-NDT with interpolation requires four function evaluations per
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Figure 6.7: Illustration of applying NDT to a mine tunnel scan, with (right) and with-
out (left) trilinear interpolation. Denser regions represent larger score values. (The dark
grid patterns do not represent smaller score values, but only show the borders of the
underlying cells.)

point, because the surface does not occupy all of the surrounding cells. In most
cases with real-world scan data, the time taken by interpolated 3D-NDT is in-
deed around four times longer than without interpolation, because scan points
are typically taken from more or less flat surfaces rather than being densely
distributed in 3D space.

6.4 Experimental evaluation

The performance of NDT will now be evaluated in a variety of settings. In
Section 6.4.1, the effects of parameter settings and the discretisation methods
described above will be examined. NDT will also be compared to ICP (covered
in Section 5.1) for different kinds of scan data in Sections 6.4.2 and 6.4.3. The
main conclusions of the experiments are summarised in Section 6.4.4.

In order to avoid a combinatorial explosion in the number of parameter
combinations, the following baseline combination of parameters will be used
in the NDT evaluations. These parameters have been found to be good for a
variety of scan data, as will be shown later in this section.

• Euler-rotation transformation function TE without small-angle approxi-
mations (Equation 6.17),

• iterative discretisation,

• linked cells,
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• no interpolation,

• Newton’s method for optimisation, using Moré-Thuente line search [77]
to control the step length,

• convergence criterion: step size
∥
∥∆�p

∥
∥

2
< 10−6, or 100 iterations per-

formed (though the iteration limit was never reached).

The baseline subsampling strategy for the point clouds is to employ spatially
distributed sampling (as described in Section 2.4), selecting 20% of the points
in the current scan, and all of the points in the reference scan.

6.4.1 Influence of NDT parameters

The baseline parameter selection above is generally a good compromise be-
tween registration robustness and speed when using NDT scan registration for
different kinds of scan data. This section motivates the parameter selection by
presenting a number of experiments performed to evaluate the performance of
the NDT variants from Section 6.3 and the effects of using different parameter
values.

In order to make a quantitative evaluation of the effects of different NDT
parameter settings, a number of test sequences — each with different parameter
settings — were run on data sets with different characteristics. For each set
of parameter values, a batch of 100 runs was performed from a fixed set of
initial pose estimates, each offset by some amount from a reference pose at
which the scans are well aligned. The magnitudes of the translation and rotation
components of the initial pose error were the same for all runs of the batch, but
the directions were different. The problem of evenly distributing a number of
translation and rotation vectors is analogous to distributing points evenly on
the surface of a sphere. This is an ill-posed problem because it is in general not
possible to find a solution where the distances between all neighbouring points
are equal. However, a number of solutions giving approximately even point
distributions exist. In this work, the distribution of start poses was determined
by a golden-section-spiral algorithm [105]. Figure 6.8 shows the distributions
of the 100 translation and rotation vectors.

Data sets

Five scan pairs were used for these evaluations. Some of them were acquired
by the mobile robot Tjorven (Section 4.1) in the Kvarntorp mine (Section 4.5),
and some were simulated. One scan pair acquired by a time-of-flight camera
was also used. The scan pairs are displayed in Figure 6.9.

The scans pairs were selected to represent a variety of situations that can be
anticipated by a mobile robot that performs scan registration. Two of the scan
pairs are rather easy to register, with prominent features, while the other are
more difficult. Some of them have relatively large overlapping portions, while
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Figure 6.8: The 100 vectors used for offsets to the initial pose estimates.

one pair has much less, and one pair overlaps completely. The simulated scans
are noise-free, the scans collected with lidars have relatively little noise, and the
scan pair collected with a time-of-flight camera has a large amount of noise.

Straight These two scans were acquired by Tjorven in a straight mine-tunnel
section without many prominent features. Such scans are generally quite
difficult to register as there are few constraints to “hold on to” and the
error landscape is quite flat along the direction of the tunnel. The distance
between the two scans is 5 m at the reference pose, and the angle is 4.7◦.
The scans contain about 95 000 points.

Crossing Compared to the featureless Straight data set, an easier pair of mine
scans was also selected. The scans of the Crossing data set were acquired
by Tjorven at a tunnel junction. The robot did not move between the two
scans. The only difference between the scans of this pair is that a small
part of one wall that is visible in the reference scan is slightly occluded in
the other, so the amount of overlap between the two scans is practically
100%. Since the robot didn’t move between these two scans, the ground
truth is known with high accuracy. It should be very close to zero rotation
and translation, which is the reference pose used for this data set. The
point cloud size is the roughly the same as for the Straight data.

Sci-Fi In addition to the real-world scans collected with a lidar, simulated data
were also used. The Sci-Fi data set was generated from a science-fiction
cityscape model.1 Two point clouds were generated by ray-tracing from
two positions close to a wall of a large building. The simulated laser
scanner has a maximum range of 25 m, a 180◦ horizontal field of view
and a 145◦ vertical field of view. The translation offset between the scans

1The model was created by Gilles Tran and released under a Creative Commons license. See
http://www.oyonale.com/modeles.php?lang=en&page=37.
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• no interpolation,

• Newton’s method for optimisation, using Moré-Thuente line search [77]
to control the step length,

• convergence criterion: step size
∥
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∥
∥

2
< 10−6, or 100 iterations per-
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more difficult. Some of them have relatively large overlapping portions, while
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section without many prominent features. Such scans are generally quite
difficult to register as there are few constraints to “hold on to” and the
error landscape is quite flat along the direction of the tunnel. The distance
between the two scans is 5 m at the reference pose, and the angle is 4.7◦.
The scans contain about 95 000 points.

Crossing Compared to the featureless Straight data set, an easier pair of mine
scans was also selected. The scans of the Crossing data set were acquired
by Tjorven at a tunnel junction. The robot did not move between the two
scans. The only difference between the scans of this pair is that a small
part of one wall that is visible in the reference scan is slightly occluded in
the other, so the amount of overlap between the two scans is practically
100%. Since the robot didn’t move between these two scans, the ground
truth is known with high accuracy. It should be very close to zero rotation
and translation, which is the reference pose used for this data set. The
point cloud size is the roughly the same as for the Straight data.

Sci-Fi In addition to the real-world scans collected with a lidar, simulated data
were also used. The Sci-Fi data set was generated from a science-fiction
cityscape model.1 Two point clouds were generated by ray-tracing from
two positions close to a wall of a large building. The simulated laser
scanner has a maximum range of 25 m, a 180◦ horizontal field of view
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(a) Straight (top-down view) (b) Crossing (top-down view)

(c) Sim-Mine (view along the tunnel’s
direction)

(d) 3D-Cam (perspective view)

(e) Sci-Fi

Figure 6.9: The scan pairs used for evaluation, seen at the reference poses. The reference
scan in each pair is the dark one. The grid lines in 6.9(a), 6.9(b), and 6.9(e) are 10 m
apart.
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is 5 m and there is no rotation offset. In other words, the amount of
overlap between the two scans is approximately 80%. The scans contain
approximately 46 000 points each.

This data set is rather easy to register. The scans are characterised by
large and mainly flat surfaces with some large-scale (around 2 m tall) ex-
trusions.

Sim-Mine A more challenging simulated scan pair was also created. A mine
tunnel was simulated by an isosurface generated from the sum of a cylin-
drical function (the major shape of the tunnel), a sine wave (adding slight
turns to the tunnel), and two noise functions at different scales (to sim-
ulate rough walls). A flat floor plane was also added. Similarly to the
Straight data set, this scan pair poses quite a challenge. The simulated
laser scanner in this case has a 20 m maximum range and the translation
difference between the two locations is 5 m, so the overlap between the
two scans is 75%. The field of view, again, is 180◦ horizontally and 145◦

vertically. Each scan contains approximately 75 000 points.

3D-Cam The above data sets were made with lidars — real or simulated. Time-
of-flight cameras (Section 3.1.6) are interesting as an alternative sensor
type that is likely to be used more in the future. Because time-of-flight
cameras have quite different properties than lidars — primarily, a smaller
field-of-view and range, and more noise — it is also interesting to see how
NDT performs on such data. The 3D-Cam data set was collected with a
SwissRanger camera by the robotics group at Jacobs University Bremen.2

The amount of overlap between the scans is approximately 65%, and
they contain around 25 000 points each.

Both of the simulated lidar scan pairs use yawing scanners, where a 2D scan
plane that coincides with the vertical axis is swept around the vertical axis to
produce a 3D scan. The real 3D scans used lidars configured for pitching scans,
where a horizontal scan plane is tilted upwards and downwards to produce a
3D scan.

The baseline offsets added to the initial pose estimates in the following ex-
periments are 1 m translation and 0.2 rad rotation for the four lidar scan pairs.
The cell sizes used in the iterative discretisation scheme are 2 m, 1 m, and 0.5 m.

The 3D-Cam scans have a smaller scale than the others, and less overlap.
Therefore the magnitude of the initial translation error is smaller for this scan
pair, 0.5 m instead of 1 m, and the initial rotation error is 0.1 rad. Also, smaller
NDT cell sizes are used: 0.5 m, 0.25 m, and 0.125 m.

Ground truth

For the real-world scan data (Straight, Crossing, and 3D-Cam), the ground-
truth reference pose is not known. The reference pose instead had to be deter-

2See http://robotics.jacobs-university.de/.
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NDT cell sizes are used: 0.5 m, 0.25 m, and 0.125 m.

Ground truth

For the real-world scan data (Straight, Crossing, and 3D-Cam), the ground-
truth reference pose is not known. The reference pose instead had to be deter-

2See http://robotics.jacobs-university.de/.
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mined manually, by performing a number of registration attempts and picking
the result with the visually most pleasing result, or an average of several results
that were judged to be close to the best pose. Because of the lack of accuracy
of this method, and in order to avoid bias towards the result of any particular
registration method, all registration results with a final pose estimate within
a threshold distance from the reference pose will be regarded as successful in
the following evaluations. The thresholds were chosen such that it is difficult
for a human observer to tell the difference between poses within the threshold.
The rotation limit was set to 0.05 rad (3◦). The limit for the translation error
is larger for the large-scale scans (20 cm) than for the scans acquired with a
time-of-flight camera (10 cm). A 20 cm translation offset would be clearly vis-
ible in the 3D-Cam data set. Figure 6.10 shows a side-by-side comparison of
the Straight scans, both at a pose that is close to the reference pose and a pose
that is just below the translation-error limit. By examining the figures closely, it
can be seen that the reference pose indeed is preferable, but the pose with larger
translation error can still subjectively be considered to be a “rather good” align-
ment.

The simulated scans (Sci-Fi and 3D-Cam) are, of course, less realistic. The
benefit of using simulated data is that the ground-truth poses of the scans are
known exactly. For the simulated scan pairs, the reference poses are indeed
ground truth. Nevertheless, the limits for establishing successful registration
are the same (0.20 m and 0.05 rad) as for the real-world lidar scans of the same
scale.

Results

The results of the experiments are presented with box plots and a line connect-
ing the median values of each set of runs. The box in each box plot extends
to the 25%- and 75%-quartile of the results, and the “whiskers” extend to
the minimum and maximum values. The minimum and maximum values are
marked with short horizontal bars at the end of the whiskers, although in some
cases they are outside the range of the plots. The limits for what is considered
a good match are shown with dashed horizontal lines. The success rates are
shown with crosses (connected by dashed lines) together with the box plots
of execution time. The success rate is the ratio of registration attempts with
a final pose estimate below the error thresholds. The reported execution times
include all necessary preprocessing (including scan subsampling and creation of
the NDT cell structure) and all three NDT iterations in the runs with iterative
discretisation.

Only plots of the most illustrative results are shown here. Please refer to
Appendix C for the complete results.

Cell size Choosing a good cell size is important when using NDT. If the cells
are too large, the structure within each cell will not be described well by a single
Gaussian. If the cells are too small, the Gaussians may be dominated by scanner
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(a) 1 cm error, closeup from
above showing longitudinal

translation offset.

(b) 1 cm error, longitudinal view showing
interpenetration.

(c) 19 cm error, closeup from
above showing longitudinal

translation offset.

(d) 19 cm error, longitudinal view showing
interpenetration.

Figure 6.10: Comparison of 1 cm vs. 19 cm translation error in the Straight data set.
Compare the circled areas. The amount of surface interpenetration has been proposed as
a quantitative quality measure by Silva et al. [95]. When the surfaces match closely, they
should interpenetrate each other frequently. Figure 6.10(b) shows more interpenetration
than 6.10(d).
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noise. For sparsely sampled point clouds, there may be too few points within
each cell to compute a reliable density function if the cells are small.

The best cell size depends most strongly on the scale of the input data. For
scans of the scale that is captured with a SICK lidar, cell sizes between 1 m
and 3 m are most often good, as shown in Figures 6.11(b)–6.11(d). For the
3D-Cam scans, captured with a sensor that has a much more narrow field of
view and shorter range, such large cells are not reasonable. With 2 m cells, the
reference scan is represented by only four cells, which is not enough to capture
the structure of this scan. Smaller cells are required for this type of data. Judging
from the results shown in Figure 6.11(a), cells between 0.5 m 0.75 m work best
for this type of scans.

For scan pairs with large-scale features, larger cells may be used without
sacrificing accuracy. This can be seen from the results of the Sci-Fi and Crossing
data sets, shown in Figures 6.11(b) and Figures 6.11(c). The Sci-Fi data set
works best when using cells between 1 m and 3 m. There is, however, a marked
decrease in the translation accuracy when using 2.5 m cells for this data set.
The reason for the poor performance with this particular cell size is that there
are bulges at an interval that coincides with the cells at this discretisation level.
The cell boundaries happen to straddle these structures at the particular pose
of the reference scan in this experiment. Using trilinear interpolation solves this
problem (see Appendix C.2).

In the case where the scans completely overlap each other, as in Crossing,
the tolerance to smoothing due to coarse discretisation is greater still. For the
Crossing data set, all registration attempts using cells between 1.5 m and 4 m
resulted in pose errors comfortably below the acceptable limits. However, the
lack of accuracy resulting from oversized cells can be seen from the fact that
the translation error slowly increases with larger cell sizes. In general, the trans-
lation error of the final pose estimate was found to be affected more than the
rotation error by the imprecise surface description that is the effect of using
oversized cells.

Scans without prominent geometric features, such as the Straight and Sim-
Mine data sets, are more sensitive to the cell size than the easier scans discussed
above. The Straight data set works best when using 1 m cells, as shown in Fig-
ure 6.11(d). The Sim-Mine data set follows the same pattern, and is therefore
not included in the figure. Larger cells cannot capture the wall structure of these
data sets with sufficient detail.

To summarise this discussion on cell size, the best size depends on the scale
of the scans, and also on the amount of structure in the scans. For scans of the
scale acquired by lidars in mobile robot applications, cells between 1 m and 2 m
are most often the best choice. For difficult scans, without prominent structure,
it is advisable to use smaller cells rather than larger. The translation estimate
is often more affected than the rotation by the effect of oversized cells; see, for
example Figure 6.11(d). The running times are generally slightly shorter when
the cells are larger (and therefore fewer), but the difference is rather minor.
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Figure 6.11: Comparing the effect of different NDT cell sizes, using fixed cells.
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noise. For sparsely sampled point clouds, there may be too few points within
each cell to compute a reliable density function if the cells are small.

The best cell size depends most strongly on the scale of the input data. For
scans of the scale that is captured with a SICK lidar, cell sizes between 1 m
and 3 m are most often good, as shown in Figures 6.11(b)–6.11(d). For the
3D-Cam scans, captured with a sensor that has a much more narrow field of
view and shorter range, such large cells are not reasonable. With 2 m cells, the
reference scan is represented by only four cells, which is not enough to capture
the structure of this scan. Smaller cells are required for this type of data. Judging
from the results shown in Figure 6.11(a), cells between 0.5 m 0.75 m work best
for this type of scans.

For scan pairs with large-scale features, larger cells may be used without
sacrificing accuracy. This can be seen from the results of the Sci-Fi and Crossing
data sets, shown in Figures 6.11(b) and Figures 6.11(c). The Sci-Fi data set
works best when using cells between 1 m and 3 m. There is, however, a marked
decrease in the translation accuracy when using 2.5 m cells for this data set.
The reason for the poor performance with this particular cell size is that there
are bulges at an interval that coincides with the cells at this discretisation level.
The cell boundaries happen to straddle these structures at the particular pose
of the reference scan in this experiment. Using trilinear interpolation solves this
problem (see Appendix C.2).

In the case where the scans completely overlap each other, as in Crossing,
the tolerance to smoothing due to coarse discretisation is greater still. For the
Crossing data set, all registration attempts using cells between 1.5 m and 4 m
resulted in pose errors comfortably below the acceptable limits. However, the
lack of accuracy resulting from oversized cells can be seen from the fact that
the translation error slowly increases with larger cell sizes. In general, the trans-
lation error of the final pose estimate was found to be affected more than the
rotation error by the imprecise surface description that is the effect of using
oversized cells.

Scans without prominent geometric features, such as the Straight and Sim-
Mine data sets, are more sensitive to the cell size than the easier scans discussed
above. The Straight data set works best when using 1 m cells, as shown in Fig-
ure 6.11(d). The Sim-Mine data set follows the same pattern, and is therefore
not included in the figure. Larger cells cannot capture the wall structure of these
data sets with sufficient detail.

To summarise this discussion on cell size, the best size depends on the scale
of the scans, and also on the amount of structure in the scans. For scans of the
scale acquired by lidars in mobile robot applications, cells between 1 m and 2 m
are most often the best choice. For difficult scans, without prominent structure,
it is advisable to use smaller cells rather than larger. The translation estimate
is often more affected than the rotation by the effect of oversized cells; see, for
example Figure 6.11(d). The running times are generally slightly shorter when
the cells are larger (and therefore fewer), but the difference is rather minor.
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Figure 6.11: Comparing the effect of different NDT cell sizes, using fixed cells.
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Some additional time is spent on initialising the cell grid when the cells are
smaller, but the time per iteration while performing the actual optimisation
does not depend on the cell size.

Discretisation methods A fixed cell grid may not be optimal, and, as noted
above, it is not always easy to find one cell size that satisfyingly captures the
underlying surface structure. It is therefore advisable to use one of the more
flexible discretisation methods described in Section 6.3. A side-by-side compar-
ison of these methods is shown in Figure 6.12. Using the baseline setup for the
other NDT parameters and the error offsets, all of the registration attempts
with the Sci-Fi data set succeeded. Therefore this data set is not included in
Figure 6.12.

The performance of the fixed-cell setups is rather poor for the baseline con-
figuration, as can be seen from the leftmost box-plot for each data set in Fig-
ure 6.12 (labelled F). These fixed-cell setups use 2 m cells (0.5 m for 3D-Cam)
without interpolation or linked cells. The median error in the final pose esti-
mate is rather large in all cases except for the easiest scan pairs. Even for the
Crossing scan pair, there are some outliers with gross pose errors.

With octree discretisation, splitting cells with large variance, the cell struc-
ture follows the surface shape better than when using fixed cells. Whether or
not that leads to a better registration result depends on the scan data. For most
of the scan pairs investigated here, octree discretisation did not lead to a notice-
able improvement over fixed cells (compare the plots labelled F and O). The
exception is the Straight data set, where the success rate increased from 54%
to 87% when using octrees, compared to fixed cells. A probable reason for the
lack of improvement with the other data sets is that the more detailed surface
representation was not needed, as they have sufficiently prominent features and
can be registered even without considering the finer details. Even the difficult
Sim-Mine data did not benefit significantly from octree subdivision. Though
some small-scale structure is present in the form of uneven walls, the walls are
smoother than the real mine data, and the more detailed octree discretisation
did not help for the cell sizes evaluated here.

In contrast to the rather limited value of octree discretisation, Figure 6.12
shows that iterative discretisation improves the robustness of 3D-NDT a great
deal. Compare the plots labelled I to F and O. For the Straight data set, the
number of successful registrations is almost twice as large using iterative dis-
cretisation (without linked cells or interpolation) than with fixed 2 m cells and
12% larger than when using octree discretisation with the same sizes. For the
Sim-Mine data set, the success rate is almost three times higher, compared to
fixed cells. The same trend can be seen on the results with the 3D-Cam and
Crossing data, although the difference is not as large for those scan pairs. The
median error of 3D-NDT when using iterative discretisation is very small in
all cases, and the amount of outliers (registration attempts with a very poor
final pose estimate) is also smaller. One important thing to note about the itera-
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Figure 6.12: Comparing discretisation methods for 3D-NDT. The first three plots (F·)
show results using fixed cells. The next three (O·) use octree discretisation. The third
group (I·) uses iterative discretisation. The second plot in each group (·L) uses linked
cells. The third plot in each group (·I) uses trilinear interpolation. The success rates are
marked with crosses in the lowest plot for each data set.
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Some additional time is spent on initialising the cell grid when the cells are
smaller, but the time per iteration while performing the actual optimisation
does not depend on the cell size.

Discretisation methods A fixed cell grid may not be optimal, and, as noted
above, it is not always easy to find one cell size that satisfyingly captures the
underlying surface structure. It is therefore advisable to use one of the more
flexible discretisation methods described in Section 6.3. A side-by-side compar-
ison of these methods is shown in Figure 6.12. Using the baseline setup for the
other NDT parameters and the error offsets, all of the registration attempts
with the Sci-Fi data set succeeded. Therefore this data set is not included in
Figure 6.12.

The performance of the fixed-cell setups is rather poor for the baseline con-
figuration, as can be seen from the leftmost box-plot for each data set in Fig-
ure 6.12 (labelled F). These fixed-cell setups use 2 m cells (0.5 m for 3D-Cam)
without interpolation or linked cells. The median error in the final pose esti-
mate is rather large in all cases except for the easiest scan pairs. Even for the
Crossing scan pair, there are some outliers with gross pose errors.

With octree discretisation, splitting cells with large variance, the cell struc-
ture follows the surface shape better than when using fixed cells. Whether or
not that leads to a better registration result depends on the scan data. For most
of the scan pairs investigated here, octree discretisation did not lead to a notice-
able improvement over fixed cells (compare the plots labelled F and O). The
exception is the Straight data set, where the success rate increased from 54%
to 87% when using octrees, compared to fixed cells. A probable reason for the
lack of improvement with the other data sets is that the more detailed surface
representation was not needed, as they have sufficiently prominent features and
can be registered even without considering the finer details. Even the difficult
Sim-Mine data did not benefit significantly from octree subdivision. Though
some small-scale structure is present in the form of uneven walls, the walls are
smoother than the real mine data, and the more detailed octree discretisation
did not help for the cell sizes evaluated here.

In contrast to the rather limited value of octree discretisation, Figure 6.12
shows that iterative discretisation improves the robustness of 3D-NDT a great
deal. Compare the plots labelled I to F and O. For the Straight data set, the
number of successful registrations is almost twice as large using iterative dis-
cretisation (without linked cells or interpolation) than with fixed 2 m cells and
12% larger than when using octree discretisation with the same sizes. For the
Sim-Mine data set, the success rate is almost three times higher, compared to
fixed cells. The same trend can be seen on the results with the 3D-Cam and
Crossing data, although the difference is not as large for those scan pairs. The
median error of 3D-NDT when using iterative discretisation is very small in
all cases, and the amount of outliers (registration attempts with a very poor
final pose estimate) is also smaller. One important thing to note about the itera-
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Figure 6.12: Comparing discretisation methods for 3D-NDT. The first three plots (F·)
show results using fixed cells. The next three (O·) use octree discretisation. The third
group (I·) uses iterative discretisation. The second plot in each group (·L) uses linked
cells. The third plot in each group (·I) uses trilinear interpolation. The success rates are
marked with crosses in the lowest plot for each data set.
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tive discretisation scheme is that even though 3D-NDT is being run three times
for each registration attempt when using iterative discretisation, the running
time is not three times as long as when using fixed cells. The average execu-
tion time is around twice as long as when using a single run with a fixed cell
grid. The reason for this effect is that the algorithm often performs just a few
Newton iterations with the finer cell grids, because the pose estimate after reg-
istering at the coarsest level is already rather close to the final solution. The
difference in running time could be lower still. The current implementation is
not optimal, in the sense that an entirely new NDT grid is created in each NDT
iteration. A more efficient implementation would compute the high-resolution
cells first, and use them to quickly compute the distribution functions of the
lower-resolution cells.

A k-means clustering approach has also been evaluated, although the results
are not included in Figure 6.12. Because there is no regularity in the cell struc-
ture, as there is for the other discretisation methods, storing the cells in a static
array is not appropriate for this kind of discretisation. Instead, the cells — or,
rather, clusters — were stored in a kD tree.3 Using a tree search structure has
the same effect as enabling linked cells, since the closest cluster is always found
when searching the kD tree. This method takes much more time than standard
3D-NDT, mainly because of the time needed for the the clustering step. As when
using a fixed cell grid, there is an optimal range for the cluster size. Using too
few clusters (which means that they are too large) or too many clusters (and
therefore too small) makes the result worse. For the 3D-Cam data set, around
50 clusters is best, resulting in a mean cluster size of 0.7 m. For the other data
sets between 300 and 500 clusters is best, resulting in mean sizes around 1–2 m.
Though this kind of adaptive clustering is better than the fixed or octree setups,
using iterative discretisation generally produces at least as good results in much
shorter time. Please refer to Appendix C.6 for plots of the results with different
numbers of clusters.

Linked cells In many cases, using linked cells improves the registration robust-
ness over “isolated” cells, whether using fixed or flexible discretisation. Results
with this extension in combination with the different discretisation methods are
also included in Figure 6.12; shown with the second box-plot in each group of
plots. The effect is greatest for the Sim-Mine data set. The median pose error
is drastically lower with linked cells in all cases (compare the plots labelled FL,
OL, and IL to F, O, and I). For the other four data sets, linked cells give less
improvement, but the extra time required is so small that linked cells still can
be generally recommended for most scan data.

Linked cells were implemented by storing the occupied NDT cells in a kD
tree. Without linked cells, the corresponding cell for each point in the current
scan is found in constant time with a simple array lookup, with the imple-

3The k in k-means clustering and kD tree have no connection. The methods are named as they
are only because of convention.
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mentation used here. With linked cells, a kD tree query is required. However,
because the number of cells is so small compared to the number of points, the
increased computational cost is quite small: between 2% and 15% on average.
The longer time is both due to the time needed to initially construct the kD tree
and the nearest-cell queries performed during registration.

Trilinear interpolation Several of the failed registration attempts in the previ-
ous experiments can be attributed to discretisation artifacts resulting from the
discontinuities of the NDT cell structure. Trilinear interpolation of the eight
closest cells makes the surface description much smoother, as illustrated in Fig-
ure 6.7. Results using the previously examined discretisation methods in com-
bination with trilinear interpolation are shown in Figure 6.12 (the rightmost
box-plot in each group of plots). Trilinear interpolation typically removes most
of the gross registration errors. However, the interpolation may introduce some
blurring, which can lead to lower accuracy for some challenging scans, such as
Straight [see the result for fixed interpolated cells, labelled FI, in Figure 6.12(c)].
With fixed interpolated cells, the median translation error is slightly larger than
without interpolation in this case. The error distribution of the final transla-
tion estimate is tightly distributed around 33 cm for the Straight data set. This
amount of error is slightly above the acceptable threshold. Therefore the suc-
cess rate is zero in this evaluation, but note that there are no outliers with gross
errors when using interpolation, as there are in the other cases.

Using trilinear interpolation in combination with iterative discretisation pro-
duces the largest amount of successful registrations for all data sets. However,
with the baseline error offsets (1 m and 0.2 rad), iterative discretisation with
linked cells instead of interpolation often gives the same amount of robustness
in much shorter time. The performance of interpolated NDT when faced with
larger error offsets will be demonstrated in Section 6.4.2.

Sample ratio As noted in Section 2.4, subsampling the point clouds before
registration can significantly improve execution speed, at the risk of less accu-
rate registration. Figure 6.13 shows the performance of baseline 3D-NDT with
sample ratios from 0.5% up to 100% from the “current scans”, using spatially
distributed sampling (described in Section 2.4). The final error in the transla-
tion and rotation estimates follow the same pattern. Therefore only the time
and success rates are included in Figure 6.13. Refer to Appendix C.1 for the
complete results.

In all cases, all points of the reference scan were used. The execution time
of NDT (as well as ICP and related algorithms) depends primarily on the size
of the current scan, and only to a small extent on the size of the reference scan.

Using 20% spatially distributed samples is a good compromise between
accuracy and registration speed for these types of scan data. Examining the
success-rate curves in Figure 6.13, it can be seen that they typically flatten out
at around 10% samples. Although the registration time is much larger when
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tive discretisation scheme is that even though 3D-NDT is being run three times
for each registration attempt when using iterative discretisation, the running
time is not three times as long as when using fixed cells. The average execu-
tion time is around twice as long as when using a single run with a fixed cell
grid. The reason for this effect is that the algorithm often performs just a few
Newton iterations with the finer cell grids, because the pose estimate after reg-
istering at the coarsest level is already rather close to the final solution. The
difference in running time could be lower still. The current implementation is
not optimal, in the sense that an entirely new NDT grid is created in each NDT
iteration. A more efficient implementation would compute the high-resolution
cells first, and use them to quickly compute the distribution functions of the
lower-resolution cells.

A k-means clustering approach has also been evaluated, although the results
are not included in Figure 6.12. Because there is no regularity in the cell struc-
ture, as there is for the other discretisation methods, storing the cells in a static
array is not appropriate for this kind of discretisation. Instead, the cells — or,
rather, clusters — were stored in a kD tree.3 Using a tree search structure has
the same effect as enabling linked cells, since the closest cluster is always found
when searching the kD tree. This method takes much more time than standard
3D-NDT, mainly because of the time needed for the the clustering step. As when
using a fixed cell grid, there is an optimal range for the cluster size. Using too
few clusters (which means that they are too large) or too many clusters (and
therefore too small) makes the result worse. For the 3D-Cam data set, around
50 clusters is best, resulting in a mean cluster size of 0.7 m. For the other data
sets between 300 and 500 clusters is best, resulting in mean sizes around 1–2 m.
Though this kind of adaptive clustering is better than the fixed or octree setups,
using iterative discretisation generally produces at least as good results in much
shorter time. Please refer to Appendix C.6 for plots of the results with different
numbers of clusters.

Linked cells In many cases, using linked cells improves the registration robust-
ness over “isolated” cells, whether using fixed or flexible discretisation. Results
with this extension in combination with the different discretisation methods are
also included in Figure 6.12; shown with the second box-plot in each group of
plots. The effect is greatest for the Sim-Mine data set. The median pose error
is drastically lower with linked cells in all cases (compare the plots labelled FL,
OL, and IL to F, O, and I). For the other four data sets, linked cells give less
improvement, but the extra time required is so small that linked cells still can
be generally recommended for most scan data.

Linked cells were implemented by storing the occupied NDT cells in a kD
tree. Without linked cells, the corresponding cell for each point in the current
scan is found in constant time with a simple array lookup, with the imple-

3The k in k-means clustering and kD tree have no connection. The methods are named as they
are only because of convention.
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mentation used here. With linked cells, a kD tree query is required. However,
because the number of cells is so small compared to the number of points, the
increased computational cost is quite small: between 2% and 15% on average.
The longer time is both due to the time needed to initially construct the kD tree
and the nearest-cell queries performed during registration.

Trilinear interpolation Several of the failed registration attempts in the previ-
ous experiments can be attributed to discretisation artifacts resulting from the
discontinuities of the NDT cell structure. Trilinear interpolation of the eight
closest cells makes the surface description much smoother, as illustrated in Fig-
ure 6.7. Results using the previously examined discretisation methods in com-
bination with trilinear interpolation are shown in Figure 6.12 (the rightmost
box-plot in each group of plots). Trilinear interpolation typically removes most
of the gross registration errors. However, the interpolation may introduce some
blurring, which can lead to lower accuracy for some challenging scans, such as
Straight [see the result for fixed interpolated cells, labelled FI, in Figure 6.12(c)].
With fixed interpolated cells, the median translation error is slightly larger than
without interpolation in this case. The error distribution of the final transla-
tion estimate is tightly distributed around 33 cm for the Straight data set. This
amount of error is slightly above the acceptable threshold. Therefore the suc-
cess rate is zero in this evaluation, but note that there are no outliers with gross
errors when using interpolation, as there are in the other cases.

Using trilinear interpolation in combination with iterative discretisation pro-
duces the largest amount of successful registrations for all data sets. However,
with the baseline error offsets (1 m and 0.2 rad), iterative discretisation with
linked cells instead of interpolation often gives the same amount of robustness
in much shorter time. The performance of interpolated NDT when faced with
larger error offsets will be demonstrated in Section 6.4.2.

Sample ratio As noted in Section 2.4, subsampling the point clouds before
registration can significantly improve execution speed, at the risk of less accu-
rate registration. Figure 6.13 shows the performance of baseline 3D-NDT with
sample ratios from 0.5% up to 100% from the “current scans”, using spatially
distributed sampling (described in Section 2.4). The final error in the transla-
tion and rotation estimates follow the same pattern. Therefore only the time
and success rates are included in Figure 6.13. Refer to Appendix C.1 for the
complete results.

In all cases, all points of the reference scan were used. The execution time
of NDT (as well as ICP and related algorithms) depends primarily on the size
of the current scan, and only to a small extent on the size of the reference scan.

Using 20% spatially distributed samples is a good compromise between
accuracy and registration speed for these types of scan data. Examining the
success-rate curves in Figure 6.13, it can be seen that they typically flatten out
at around 10% samples. Although the registration time is much larger when
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Figure 6.13: Comparing the effect of different sample ratios. Note logarithmic scale on
x axes.

using all scan points than when using 10%, the success rate is only marginally
higher. It can also be seen that even a very low sample rate gives reasonable
results. Using only 0.5% of the scan points, more than 80% of the registration
attempts succeed for the Crossing data set, and the success rates for the other
data sets are between 40% and 60%.

Sampling method The results discussed so far all use spatially distributed sam-
pling. For many scans, uniformly random sampling actually produces good re-
sults at even lower sample rates than the ones shown for spatially distributed
sampling in Figure 6.13. With uniformly random sampling, more points from
the areas close to the sensor are used. Those areas are scanned with high reso-
lution and, consequently, are more detailed. Selecting more points from those
areas can give more accurate registration at low sample rates for some scans.
On the other hand, in some cases in difficult environments, such as featureless
mine-tunnel scans, the only usable geometric structure is within a local region
of the scans. With spatially distributed sampling, points from the whole scans
are used, consequently using any available geometric structure, even when it is
at the farther ends of the scans. This effect is not shown here, but it can be seen
in Appendix C.7, in the result for ICP registration of the Kvarntorp-Loop data
set (which will be introduced in Section 6.4.3).

The conclusion is that spatially distributed sampling with a sufficiently high
sample ratio, usually between 10% and 20%, is the preferable sampling strat-
egy for scan data acquired by a mobile robot.
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Conclusions regarding NDT parameters

Based on the results illustrated in Figure 6.12, it seems clear that the best way
to use 3D-NDT is to employ iterative discretisation with linked cells. There
is rarely any reason to use the octree discretisation method. Iterative discreti-
sation, on the other hand, gives a large improvement compared to the basic
scheme at a reasonable execution-time cost. If fast execution speed is not impor-
tant, 3D-NDT with trilinear interpolation provides the most robust registration
results, although the execution time is typically around four times longer than
for noninterpolated NDT.

Even with a flexible discretisation technique, the overall scale of the cells
must be chosen according to the sensor, although the tolerance to poorly se-
lected sizes is greater than when using fixed cells. For three-dimensional SICK-
lidar scans with a large field of view and 20–40 m range, cell sizes between 2 m
and 0.5 m are generally quite good. For data from a time-of-flight camera with
a much smaller field of view and around 7 m range, cell sizes between 0.5 m
and 0.1 m are more appropriate.

6.4.2 Registration robustness

Perhaps the most important characteristic of a scan registration algorithm is its
robustness to the amount of error in the initial pose estimate. A good registra-
tion algorithm should converge to a close alignment even when faced with an
initial pose estimate far from the solution. This section presents experiments
performed to evaluate registration robustness to error both in the translation
and the rotation components of the initial pose.

Robustness of 3D-NDT to initial error in comparison with ICP

Robustness with regard to the initial translation and rotation estimate has been
evaluated in separation. For the translation-error tests, the initial rotation error
was set to zero. Vice versa, the translation error was zero when testing the
sensitivity to the initial rotation error.

The results of the rotation-error tests for 3D-NDT with the baseline pa-
rameter settings are displayed in Figure 6.14 and the translation-error tests are
shown in Figure 6.16. (The final rotation error is not shown in Figure 6.16
because it follows the same trend as the final translation error. Please refer to
Appendix C.3 for the complete picture.)

General NDT performance With the baseline parameter settings, and using
error offsets distributed in all directions as in these tests, NDT handles errors
in the initial pose estimate of up to 0.5 m translation or 0.2 rad rotation with no
failures for the lidar scans, even for the difficult Straight and Sim-Mine data sets.
A pose error of up to 2 m translation or 0.5 rad rotation can be handled with
only few failed registration attempts, and the median pose error remains very
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Figure 6.13: Comparing the effect of different sample ratios. Note logarithmic scale on
x axes.

using all scan points than when using 10%, the success rate is only marginally
higher. It can also be seen that even a very low sample rate gives reasonable
results. Using only 0.5% of the scan points, more than 80% of the registration
attempts succeed for the Crossing data set, and the success rates for the other
data sets are between 40% and 60%.

Sampling method The results discussed so far all use spatially distributed sam-
pling. For many scans, uniformly random sampling actually produces good re-
sults at even lower sample rates than the ones shown for spatially distributed
sampling in Figure 6.13. With uniformly random sampling, more points from
the areas close to the sensor are used. Those areas are scanned with high reso-
lution and, consequently, are more detailed. Selecting more points from those
areas can give more accurate registration at low sample rates for some scans.
On the other hand, in some cases in difficult environments, such as featureless
mine-tunnel scans, the only usable geometric structure is within a local region
of the scans. With spatially distributed sampling, points from the whole scans
are used, consequently using any available geometric structure, even when it is
at the farther ends of the scans. This effect is not shown here, but it can be seen
in Appendix C.7, in the result for ICP registration of the Kvarntorp-Loop data
set (which will be introduced in Section 6.4.3).

The conclusion is that spatially distributed sampling with a sufficiently high
sample ratio, usually between 10% and 20%, is the preferable sampling strat-
egy for scan data acquired by a mobile robot.
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Conclusions regarding NDT parameters

Based on the results illustrated in Figure 6.12, it seems clear that the best way
to use 3D-NDT is to employ iterative discretisation with linked cells. There
is rarely any reason to use the octree discretisation method. Iterative discreti-
sation, on the other hand, gives a large improvement compared to the basic
scheme at a reasonable execution-time cost. If fast execution speed is not impor-
tant, 3D-NDT with trilinear interpolation provides the most robust registration
results, although the execution time is typically around four times longer than
for noninterpolated NDT.

Even with a flexible discretisation technique, the overall scale of the cells
must be chosen according to the sensor, although the tolerance to poorly se-
lected sizes is greater than when using fixed cells. For three-dimensional SICK-
lidar scans with a large field of view and 20–40 m range, cell sizes between 2 m
and 0.5 m are generally quite good. For data from a time-of-flight camera with
a much smaller field of view and around 7 m range, cell sizes between 0.5 m
and 0.1 m are more appropriate.

6.4.2 Registration robustness

Perhaps the most important characteristic of a scan registration algorithm is its
robustness to the amount of error in the initial pose estimate. A good registra-
tion algorithm should converge to a close alignment even when faced with an
initial pose estimate far from the solution. This section presents experiments
performed to evaluate registration robustness to error both in the translation
and the rotation components of the initial pose.

Robustness of 3D-NDT to initial error in comparison with ICP

Robustness with regard to the initial translation and rotation estimate has been
evaluated in separation. For the translation-error tests, the initial rotation error
was set to zero. Vice versa, the translation error was zero when testing the
sensitivity to the initial rotation error.

The results of the rotation-error tests for 3D-NDT with the baseline pa-
rameter settings are displayed in Figure 6.14 and the translation-error tests are
shown in Figure 6.16. (The final rotation error is not shown in Figure 6.16
because it follows the same trend as the final translation error. Please refer to
Appendix C.3 for the complete picture.)

General NDT performance With the baseline parameter settings, and using
error offsets distributed in all directions as in these tests, NDT handles errors
in the initial pose estimate of up to 0.5 m translation or 0.2 rad rotation with no
failures for the lidar scans, even for the difficult Straight and Sim-Mine data sets.
A pose error of up to 2 m translation or 0.5 rad rotation can be handled with
only few failed registration attempts, and the median pose error remains very
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Figure 6.14: Sensitivity to initial rotation error using NDT.
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Figure 6.15: Sensitivity to initial rotation error using ICP.

85



85

0.00

0.10

0.20

0.30

0.40

0.50

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(a) 3D-Cam

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(b) Crossing

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(c) Straight

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(d) Sim-Mine

Figure 6.14: Sensitivity to initial rotation error using NDT.
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Figure 6.15: Sensitivity to initial rotation error using ICP.
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Figure 6.16: Sensitivity to initial translation error using NDT.

small for the successful attempts. With trilinear interpolation, the robustness is
greater still (shown in Appendix C.3 and C.4). All attempts with up to 0.5 rad
initial error succeed for the lidar scans.

The situation is different for the 3D-Cam scan pair, because a 2 m transla-
tion error typically means that there is no overlap between the two scans. For
this pair, a few failures occur already with a 0.25 m error offset, and the two
scans are practically impossible to register at initial offsets larger than 1 m.

ICP comparison For comparison, the performance of ICP (described in Sec-
tion 5.1) has also been evaluated, using the same initial poses as for NDT. The
baseline parameter settings for ICP are

• point-to-point distance metric,

• constant weighting of point pairs,
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Figure 6.17: Sensitivity to initial translation error using ICP.

• fixed outlier rejection threshold of 0.5 m,

• convergence criterion: change in translation is below 10−6 m, or change
in rotation angle is below 10−6 radians, or 2000 iterations performed (to
make sure the iteration limit is never reached).

As noted above, the 3D-Cam scan pair is of a different scale than the other
scans used in these experiments. The outlier threshold for ICP was therefore
set to 0.1 m instead of 0.5 m for this data set. The ICP results are shown in
Figures 6.15 and 6.17.

Comparing NDT to ICP, it can be seen that the median error is typically
slightly smaller after using NDT than after using ICP. NDT is also much more
robust to large rotations offsets than ICP, which can be seen when comparing
Figures 6.14 and 6.15. The performance of ICP decreases even with rather
modest initial rotation error for all of the scan pairs except Crossing, while
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Figure 6.16: Sensitivity to initial translation error using NDT.

small for the successful attempts. With trilinear interpolation, the robustness is
greater still (shown in Appendix C.3 and C.4). All attempts with up to 0.5 rad
initial error succeed for the lidar scans.

The situation is different for the 3D-Cam scan pair, because a 2 m transla-
tion error typically means that there is no overlap between the two scans. For
this pair, a few failures occur already with a 0.25 m error offset, and the two
scans are practically impossible to register at initial offsets larger than 1 m.

ICP comparison For comparison, the performance of ICP (described in Sec-
tion 5.1) has also been evaluated, using the same initial poses as for NDT. The
baseline parameter settings for ICP are

• point-to-point distance metric,

• constant weighting of point pairs,
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Figure 6.17: Sensitivity to initial translation error using ICP.

• fixed outlier rejection threshold of 0.5 m,

• convergence criterion: change in translation is below 10−6 m, or change
in rotation angle is below 10−6 radians, or 2000 iterations performed (to
make sure the iteration limit is never reached).

As noted above, the 3D-Cam scan pair is of a different scale than the other
scans used in these experiments. The outlier threshold for ICP was therefore
set to 0.1 m instead of 0.5 m for this data set. The ICP results are shown in
Figures 6.15 and 6.17.

Comparing NDT to ICP, it can be seen that the median error is typically
slightly smaller after using NDT than after using ICP. NDT is also much more
robust to large rotations offsets than ICP, which can be seen when comparing
Figures 6.14 and 6.15. The performance of ICP decreases even with rather
modest initial rotation error for all of the scan pairs except Crossing, while
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NDT handles rotation errors of up to 0.5 rad fairly well (except for the 3D-
Cam scan pair).

The difference between NDT and ICP is not as large when considering only
translation offsets, but NDT still outperforms ICP in these tests (compare Fig-
ures 6.16 and 6.17).

The only exception to the relative performance of ICP and NDT is the Cross-
ing data set, where ICP shows slightly better robustness. For all the other scan
pairs, NDT is more robust to the initial error, both in translation and rota-
tion. The difference for Crossing, however, is very small. The success rate in the
batch with 0.7 rad initial error offset is 100% for ICP and 92% for NDT. For
the trials with 2.5 m and 3.0 m translation offset, the success rate is 99% for
NDT and 100% for ICP.

It is also interesting to note that the execution time of ICP grows fast with
the initial offset, both in the translation and rotation evaluations. The execution
time of NDT remains almost the same, regardless of the initial rotation error,
and grows only slowly with larger translation errors.

Moderate effort was made to optimise the efficiency of the programs. The
algorithms are implemented in C++. The ICP implementation uses the approxi-
mate nearest neighbour library ANN. The numerical optimisation code used in
3D-NDT makes use of the C++ optimisation library OPT++ and the C linear
algebra library “newmat”, which claims to be most efficient for large matri-
ces. The matrices involved in the computations for 3D-NDT are no larger than
6 × 6. It is therefore likely that the numerical optimisation can be performed
faster. The experiments were run on a computer with an Intel Core2 Duo CPU
running at 2.80 GHz (using one core only) and with 2 GiB of RAM.

The presented ICP results use a fixed 0.5 m (or 0.1 m) outlier threshold.
This setting gave the overall best results for ICP in these experiments. With a
larger (fixed) outlier threshold, the accuracy decreases. With a decreasing out-
lier threshold (as described in Section 5.1), the sensitivity to the initial pose
estimate increases, and ICP fails for smaller initial error offsets. Some plots
of the experiments performed for other parameter settings are included in Ap-
pendix C (C.3, C.4, and C.7).

Collaborative performance comparison

When evaluating a new method, one may be susceptible to “my baby” syn-
drome. It is important to be watchful of any bias towards a new method when
performing a comparative study. For the results presented so far, as well as in
previous publications on scan registration from our group [65–67], my own
ICP implementation was used for comparing the performance of ICP and NDT.
Even though we (of course) have tried to be fair and objective, some readers
may doubt the validity of the previously presented results. For example, it could
be that the poor performance of ICP was only a result of a poor parameter se-
lection. With ICP, as with NDT, there are several parameters to be chosen, and
numerous variants of and additions to ICP have been published over the years.
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Figure 6.18: The scan data used in the collaborative comparison of ICP and NDT, at the
reference pose. The reference scan is the darker one. The x axis points to the right, the y
axis points to the top of the page, and the z axis points towards the viewer in this figure.

There are other groups who have worked more extensively with ICP and
have more hands-on experience of how it performs with different parameter val-
ues and different kinds of data. As a check of the previous results, a collabora-
tive comparison was made together with Andreas Nüchter, Christopher Lörken,
and Joachim Hertzberg from the University of Osnabrück. We compared NDT
to their implementation of ICP in a mine mapping scenario. The Osnabrück
group has used ICP extensively for indoor and outdoor mobile robot mapping,
and has also published some improvements to the basic algorithm [10, 78–82].

This work has previously been presented at the IEEE International Confer-
ence on Robotics and Automation [70].

Experimental setup The data set used for this experiment consists of two
scans from a slightly curved tunnel section. They are rather similar in char-
acter to the Straight and Sim-Mine data sets. Both scans were subsampled. The
sampled scans used for registration contained 8 000 points each (around 10%
of the total number of points). They are displayed in Figure 6.18.

A reference pose was agreed upon and the registration algorithms were run
at a number of poses with different translation and rotation offsets added to
the reference pose, similarly to the previous experiments. One difference in the
setup for this experiment is that the offsets of the initial pose estimates were
limited to rotations and translations in the horizontal plane. This constraint
can be motivated for three reasons: Firstly, in a typical mine mapping scenario,
the largest part of the error will lie in the horizontal plane; secondly, it reduces
the number of trials that must be run (we evaluated 441 start poses, using
the same offsets on all transformation parameters would make 250 047 poses);
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NDT handles rotation errors of up to 0.5 rad fairly well (except for the 3D-
Cam scan pair).

The difference between NDT and ICP is not as large when considering only
translation offsets, but NDT still outperforms ICP in these tests (compare Fig-
ures 6.16 and 6.17).
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NDT and 100% for ICP.

It is also interesting to note that the execution time of ICP grows fast with
the initial offset, both in the translation and rotation evaluations. The execution
time of NDT remains almost the same, regardless of the initial rotation error,
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This setting gave the overall best results for ICP in these experiments. With a
larger (fixed) outlier threshold, the accuracy decreases. With a decreasing out-
lier threshold (as described in Section 5.1), the sensitivity to the initial pose
estimate increases, and ICP fails for smaller initial error offsets. Some plots
of the experiments performed for other parameter settings are included in Ap-
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Collaborative performance comparison

When evaluating a new method, one may be susceptible to “my baby” syn-
drome. It is important to be watchful of any bias towards a new method when
performing a comparative study. For the results presented so far, as well as in
previous publications on scan registration from our group [65–67], my own
ICP implementation was used for comparing the performance of ICP and NDT.
Even though we (of course) have tried to be fair and objective, some readers
may doubt the validity of the previously presented results. For example, it could
be that the poor performance of ICP was only a result of a poor parameter se-
lection. With ICP, as with NDT, there are several parameters to be chosen, and
numerous variants of and additions to ICP have been published over the years.
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There are other groups who have worked more extensively with ICP and
have more hands-on experience of how it performs with different parameter val-
ues and different kinds of data. As a check of the previous results, a collabora-
tive comparison was made together with Andreas Nüchter, Christopher Lörken,
and Joachim Hertzberg from the University of Osnabrück. We compared NDT
to their implementation of ICP in a mine mapping scenario. The Osnabrück
group has used ICP extensively for indoor and outdoor mobile robot mapping,
and has also published some improvements to the basic algorithm [10, 78–82].

This work has previously been presented at the IEEE International Confer-
ence on Robotics and Automation [70].

Experimental setup The data set used for this experiment consists of two
scans from a slightly curved tunnel section. They are rather similar in char-
acter to the Straight and Sim-Mine data sets. Both scans were subsampled. The
sampled scans used for registration contained 8 000 points each (around 10%
of the total number of points). They are displayed in Figure 6.18.

A reference pose was agreed upon and the registration algorithms were run
at a number of poses with different translation and rotation offsets added to
the reference pose, similarly to the previous experiments. One difference in the
setup for this experiment is that the offsets of the initial pose estimates were
limited to rotations and translations in the horizontal plane. This constraint
can be motivated for three reasons: Firstly, in a typical mine mapping scenario,
the largest part of the error will lie in the horizontal plane; secondly, it reduces
the number of trials that must be run (we evaluated 441 start poses, using
the same offsets on all transformation parameters would make 250 047 poses);
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thirdly, it makes the results easier to visualise. No constraints were added to
the registration algorithms; they still operate with six degrees of freedom.

Two translation thresholds were selected for determining whether the reg-
istrations were successful: a stricter one of 0.20 m, and a weaker one of 1.0 m.
The rotation threshold used was 5◦ (0.087 rad). Poses within the stricter transla-
tion threshold are difficult to tell apart for a human observer. Poses with larger
translation errors are clearly less exact matches, but the ones within the weaker
translation threshold still indicate when the registration algorithms converge
towards a “reasonable” solution and when they fail with a gross error.

In our previous publication on this comparison [70], we also counted the
number of failed registrations in a larger data set, with initial poses from odom-
etry. However, in those results only “gross” failures were counted, which is a
rather subjective measure. The comparison between NDT and ICP presented
in Section 6.4.3 uses a more well-defined error threshold for determining the
registration accuracy and reliability.

The baseline NDT parameters were used. The ICP parameters used in this
experiment were selected by the Osnabrück group. The ICP parameters also
correspond to the baseline setup used in the previous section.

Results The results of this comparison generally agree with the ones described
in the previous section. The results are graphically presented in Figures 6.20
and 6.21. In these plots, the initial translation offsets are layed out along the x
and y axes and the rotation offsets are shown as points around a circle. Each
group of points shows the results from nine start poses with the same trans-
lation but different rotations. (See Figure 6.19 for clarification.) This type of
visualisation makes it possible to see which poses are most problematic for the
registration algorithms.

As can be seen in Figure 6.20, ICP failed for most of the attempts where the
initial translation had a “backwards” offset (that is, an offset in the −x direc-
tion). Although the rotation of the pose estimate after registration was generally
correct (see Figure 6.21), the algorithm in these cases stopped prematurely at
a pose with maximum overlap between the two scans. ICP came within 20 cm
of the reference pose in only 13% of the registration attempts, but the final
rotation estimate was correct in 95% of the cases. NDT overcame this local op-
timum in more cases, although the poses with −x translation offsets are more
difficult for NDT, too. Using NDT with trilinear interpolation dramatically in-
creased the success rate of NDT, at the expense of longer execution times. NDT
with interpolation found the correct rotation in all cases, and converged to a
translation estimate within the strict threshold in all but one of the trials. As
with most of the failures of the other algorithms, the failed registration attempt
of trilinear NDT also ends up being translated too far back, thus exaggerating
the overlap between the two scans.

The execution times are shown in Figure 6.22. As for the other timing results
in this chapter, the reported times include all necessary preprocessing (including
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Figure 6.19: Legend to the plots in Figures 6.20–6.21. Each subplot represents a set of
initial poses with the same translation offset and varying rotation offsets. Circles repre-
sent successful registrations using the strict translation threshold, solid dots represent
successes using the loose threshold, and crosses represent failures. For each translation
offset, poses with initial rotation error ranging from −80◦ to +80◦ in 20◦ increments
were evaluated. The central grey dot marks the translation offset.

creation of the normal distributions for NDT and a kD tree for ICP) and all
three iterations for NDT, but exclude the time needed for loading the scan data.
The median execution time of NDT is about one-half of ICP’s execution time.
NDT with trilinear interpolation takes around four times longer than NDT
without interpolation, as before, or twice as long as ICP. These tests were run
on a laptop computer with a 1.6 GHz Intel Celeron CPU and 2 GiB of RAM.

Although the results of this comparison cannot be claimed to be statistically
significant, they give no reason to believe that the other comparisons between
ICP and NDT that are presented in this chapter are misleading.

6.4.3 Registration with mobile robots

The previous experiments all use a small selection of separate scan pairs in a
controlled environment. This section presents the results of using two larger
data sets to evaluate NDT in a more large-scale mapping scenario. These data
sets were acquired by running mobile robots in the Kvarntorp mine, stopping to
make a 3D scan every few metres. For the experiments presented in this section,
the initial pose estimates were taken from the robots’ odometry. This setup is
more like the situation that can be expected in a mobile-robot application than
the experimental setup used for the pairwise experiments in the previous sec-
tions, where a set of 100 predefined error offsets were used instead of odometry.
However, the experiments in Sections 6.4.1 and 6.4.2 can be considered more
complete, because for those experiments, the algorithms were tested from a
larger set of possible starting poses, and the properties of the algorithms were
investigated more thoroughly. The data sets used in the following evaluations
are described below.
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Figure 6.19: Legend to the plots in Figures 6.20–6.21. Each subplot represents a set of
initial poses with the same translation offset and varying rotation offsets. Circles repre-
sent successful registrations using the strict translation threshold, solid dots represent
successes using the loose threshold, and crosses represent failures. For each translation
offset, poses with initial rotation error ranging from −80◦ to +80◦ in 20◦ increments
were evaluated. The central grey dot marks the translation offset.

creation of the normal distributions for NDT and a kD tree for ICP) and all
three iterations for NDT, but exclude the time needed for loading the scan data.
The median execution time of NDT is about one-half of ICP’s execution time.
NDT with trilinear interpolation takes around four times longer than NDT
without interpolation, as before, or twice as long as ICP. These tests were run
on a laptop computer with a 1.6 GHz Intel Celeron CPU and 2 GiB of RAM.

Although the results of this comparison cannot be claimed to be statistically
significant, they give no reason to believe that the other comparisons between
ICP and NDT that are presented in this chapter are misleading.

6.4.3 Registration with mobile robots

The previous experiments all use a small selection of separate scan pairs in a
controlled environment. This section presents the results of using two larger
data sets to evaluate NDT in a more large-scale mapping scenario. These data
sets were acquired by running mobile robots in the Kvarntorp mine, stopping to
make a 3D scan every few metres. For the experiments presented in this section,
the initial pose estimates were taken from the robots’ odometry. This setup is
more like the situation that can be expected in a mobile-robot application than
the experimental setup used for the pairwise experiments in the previous sec-
tions, where a set of 100 predefined error offsets were used instead of odometry.
However, the experiments in Sections 6.4.1 and 6.4.2 can be considered more
complete, because for those experiments, the algorithms were tested from a
larger set of possible starting poses, and the properties of the algorithms were
investigated more thoroughly. The data sets used in the following evaluations
are described below.
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ICP. Success rate 29.9%/13.4%.











NDT. Success rate 72.1%/24.9%.











Trilinear NDT. Success rate 99.8%/99.8%.

Figure 6.20: Comparing ICP and NDT,
strict/loose translation threshold.











ICP. Success rate 95.2%.











NDT. Success rate 97.7%.











Trilinear NDT. Success rate 100%.

Figure 6.21: Comparing ICP and NDT,
judging rotation error only.
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Figure 6.22: Execution times from the collaborative comparison experiment.

Kvarntorp-Loop This data set was collected using Tjorven. The robot was
driven along two tunnels, with 3D scans being taken four to five me-
tres apart. The 48 scans of this data set are shown, with each scan at its
reference pose, in Figure 6.23. The scans contain in the order of 90 000
points each.

In the Kvarntorp-Loop data set, the initial pose error is up to around
1.5 m and 0.2 rad (11◦) from one scan to the next. Given that the size of
each scan is around 10 m by 30 m, a rotation error of 0.2 rad is significant,
leading to a 6 m displacement of points at the farther parts of the scan.
An example of the poor odometry is shown in Figure 6.24, which shows
Scans 48 and 49 from Kvarntorp-Loop, with the pose estimate of Scan 49
derived from odometry.

Mission-4 The Kurt3D robot (Section 4.3) was used at a later date to collect
a number of other data sets, also in the Kvarntorp mine. Four separate
scan sequences (or “missions”) were collected in collaboration with An-
dreas Nüchter and Christopher Lörken from the University of Osnabrück.
The longest sequence, mission 4, was used here. This data set consists of
55 scans from a closed loop, with the last few scans overlapping the first.
The scans contain some 75 000 points each.

Measuring the turn angle from odometry is always problematic, and es-
pecially so when driving a small skid-steered vehicle over a surface with
loose rocks, as in this case. In the Mission-4 data set, the worst pose esti-
mate from odometry is that of Scan 33, which has an initial rotation error
of no less than 1.4 rad (85◦). The other scans of the Mission-4 data set
have odometry error magnitudes similar to the ones of Kvarntorp-Loop.

The Mission-4 data set is displayed in Figure 6.25. The most problematic
scans are shown in Figure 6.26.
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Figure 6.21: Comparing ICP and NDT,
judging rotation error only.
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Figure 6.22: Execution times from the collaborative comparison experiment.

Kvarntorp-Loop This data set was collected using Tjorven. The robot was
driven along two tunnels, with 3D scans being taken four to five me-
tres apart. The 48 scans of this data set are shown, with each scan at its
reference pose, in Figure 6.23. The scans contain in the order of 90 000
points each.

In the Kvarntorp-Loop data set, the initial pose error is up to around
1.5 m and 0.2 rad (11◦) from one scan to the next. Given that the size of
each scan is around 10 m by 30 m, a rotation error of 0.2 rad is significant,
leading to a 6 m displacement of points at the farther parts of the scan.
An example of the poor odometry is shown in Figure 6.24, which shows
Scans 48 and 49 from Kvarntorp-Loop, with the pose estimate of Scan 49
derived from odometry.

Mission-4 The Kurt3D robot (Section 4.3) was used at a later date to collect
a number of other data sets, also in the Kvarntorp mine. Four separate
scan sequences (or “missions”) were collected in collaboration with An-
dreas Nüchter and Christopher Lörken from the University of Osnabrück.
The longest sequence, mission 4, was used here. This data set consists of
55 scans from a closed loop, with the last few scans overlapping the first.
The scans contain some 75 000 points each.

Measuring the turn angle from odometry is always problematic, and es-
pecially so when driving a small skid-steered vehicle over a surface with
loose rocks, as in this case. In the Mission-4 data set, the worst pose esti-
mate from odometry is that of Scan 33, which has an initial rotation error
of no less than 1.4 rad (85◦). The other scans of the Mission-4 data set
have odometry error magnitudes similar to the ones of Kvarntorp-Loop.

The Mission-4 data set is displayed in Figure 6.25. The most problematic
scans are shown in Figure 6.26.
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Figure 6.23: The scans of the Kvarntorp-Loop data set shown at their reference poses,
seen from above. The complete model measures approximately 55 by 155 m, and is
around 6 m high. In this visualisation the ceiling has been removed and the points are
coloured based on the distance from the viewpoint. The black stripe along the top tunnel
is a ditch running along the wall. The grid lines are 10 m apart. (In the lower right corner
is a clear offset in the tunnel. This is not a registration error, but shows the tunnel’s actual
shape. That shape is probably due to a mistake on part of the excavation crew when
they were trying to physically “close the loop”.)

Figure 6.24: Scans 48 (dark) and 49 (light) of the Kvarntorp-Loop data set, seen from
above at the initial pose estimate from odometry.
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Figure 6.25: Data set Mission-4, seen from above (with the ceiling removed) after loop
closure. Loop closure was performed using the relaxation method of Borrman et al. [10].

(a) Scans 32 and 33. (b) Scans 41 and 42.

Figure 6.26: The most difficult scan pairs of the Mission-4 data set. The initial rotation
error for Scan 33 is very large. Scan 42 is difficult to register to its previous scan because
it is particularly featureless. (The reference scan is the dark one.)
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Figure 6.23: The scans of the Kvarntorp-Loop data set shown at their reference poses,
seen from above. The complete model measures approximately 55 by 155 m, and is
around 6 m high. In this visualisation the ceiling has been removed and the points are
coloured based on the distance from the viewpoint. The black stripe along the top tunnel
is a ditch running along the wall. The grid lines are 10 m apart. (In the lower right corner
is a clear offset in the tunnel. This is not a registration error, but shows the tunnel’s actual
shape. That shape is probably due to a mistake on part of the excavation crew when
they were trying to physically “close the loop”.)

Figure 6.24: Scans 48 (dark) and 49 (light) of the Kvarntorp-Loop data set, seen from
above at the initial pose estimate from odometry.
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Figure 6.25: Data set Mission-4, seen from above (with the ceiling removed) after loop
closure. Loop closure was performed using the relaxation method of Borrman et al. [10].

(a) Scans 32 and 33. (b) Scans 41 and 42.

Figure 6.26: The most difficult scan pairs of the Mission-4 data set. The initial rotation
error for Scan 33 is very large. Scan 42 is difficult to register to its previous scan because
it is particularly featureless. (The reference scan is the dark one.)
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The reference poses were, again, determined by running and inspecting a
number of registration attempts, and an average of the visually best matches
were used as the reference pose for each scan pair. The limit for successful
registrations was set to 0.20 m and 0.05 radians, as in Section 6.4.1. (As a side
note, the Crossing scan pair used in Section 6.4.1 is Scans 36 and 38 from
Kvarntorp-Loop, and Straight is Scans 51 and 52.)

The registration results are presented as histograms of the running time and
final pose error in Figures 6.27 and 6.28. The most important feature of these
figures when judging the registration robustness is the height of the leftmost
histogram box in the “Translation error” and “Rotation error” plots, showing
the number of successful registrations. The boxes to the right of the leftmost
ones show failed registrations (and results with larger errors are further to the
right in the plots). Histogram boxes that only have one entry are labelled with
the corresponding scan number, to make it clearer which scans failed to be
registered. Also included in the figures are box plots showing the execution-
time distributions of the results.

Figure 6.27 shows the results using NDT and ICP on the Kvarntorp-Loop
data set. The performance of both algorithms is very similar, but NDT performs
much faster than ICP. Using trilinear interpolation with NDT, all the scans
of this data set are correctly registered. The relatively short outlier-rejection
threshold distance for ICP (0.5 m) and the low convergence threshold (10−6 m)
forced the algorithm to take a large number of small steps, which influences
the running time. However, using larger thresholds makes the accuracy worse
in many cases, and the decreasing-threshold strategy mentioned in Section 5.1
makes the algorithm less robust to large errors in the initial pose estimate. Re-
sults for other ICP parameter settings and interpolated NDT are included in
Appendix C.7.

The results for the Mission-4 data set are shown in Figure 6.28. In this
case, the performance difference is larger between NDT and ICP. Out of the 55
scans, 53 were registered correctly with iterative NDT. All registration attempts
came within the rotation error threshold, but Scans 33 and 42 converged to
poses with exaggerated overlap. When registering the data set with ICP, seven
scans had a final translation error above the threshold, and one scan had an
erroneous final rotation. The execution time, again, is much longer for ICP than
for NDT, using the baseline parameter settings. With trilinear interpolation for
NDT, there is only one failure: Scan 42.

It can be concluded that for the magnitudes and directions of the initial
pose error that is encountered in the mobile robot registration experiments,
the difference in robustness between ICP and NDT is not as large as in the
synthetic tests in Section 6.4.2. Still, the evaluation demonstrates that NDT is
more robust for almost all data sets and also performs faster.
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(a) NDT. Success rate 98%.
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(b) ICP. Success rate 98%.

Figure 6.27: Registration results for the Kvarntorp-Loop data set.

6.4.4 Summary of experiments

The performance of both ICP and NDT depends heavily on the input data and
the chosen parameters. However, judging from the experiments presented in
Sections 6.4.2 and 6.4.3, comparing NDT with two different ICP implemen-
tations, it seems quite clear that NDT is generally more robust to large error
offsets in the initial pose estimate and gives more accurate registration results
— most notably so when presented with featureless tunnel scans and noisy scan
data with little overlap. NDT without interpolation is also faster than ICP. Both
algorithms require certain threshold values to be chosen according to the scale
and shape of the input data. In the case of ICP, the most important parame-
ter is the outlier-rejection distance threshold. When using ICP, it is not always
obvious how to handle outliers from non-overlapping parts of the scans. On
the other hand, the likelihood functions of NDT provide a sound criterion for
outlier rejection that is based on the local surface shape. For NDT, the param-
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The reference poses were, again, determined by running and inspecting a
number of registration attempts, and an average of the visually best matches
were used as the reference pose for each scan pair. The limit for successful
registrations was set to 0.20 m and 0.05 radians, as in Section 6.4.1. (As a side
note, the Crossing scan pair used in Section 6.4.1 is Scans 36 and 38 from
Kvarntorp-Loop, and Straight is Scans 51 and 52.)

The registration results are presented as histograms of the running time and
final pose error in Figures 6.27 and 6.28. The most important feature of these
figures when judging the registration robustness is the height of the leftmost
histogram box in the “Translation error” and “Rotation error” plots, showing
the number of successful registrations. The boxes to the right of the leftmost
ones show failed registrations (and results with larger errors are further to the
right in the plots). Histogram boxes that only have one entry are labelled with
the corresponding scan number, to make it clearer which scans failed to be
registered. Also included in the figures are box plots showing the execution-
time distributions of the results.

Figure 6.27 shows the results using NDT and ICP on the Kvarntorp-Loop
data set. The performance of both algorithms is very similar, but NDT performs
much faster than ICP. Using trilinear interpolation with NDT, all the scans
of this data set are correctly registered. The relatively short outlier-rejection
threshold distance for ICP (0.5 m) and the low convergence threshold (10−6 m)
forced the algorithm to take a large number of small steps, which influences
the running time. However, using larger thresholds makes the accuracy worse
in many cases, and the decreasing-threshold strategy mentioned in Section 5.1
makes the algorithm less robust to large errors in the initial pose estimate. Re-
sults for other ICP parameter settings and interpolated NDT are included in
Appendix C.7.

The results for the Mission-4 data set are shown in Figure 6.28. In this
case, the performance difference is larger between NDT and ICP. Out of the 55
scans, 53 were registered correctly with iterative NDT. All registration attempts
came within the rotation error threshold, but Scans 33 and 42 converged to
poses with exaggerated overlap. When registering the data set with ICP, seven
scans had a final translation error above the threshold, and one scan had an
erroneous final rotation. The execution time, again, is much longer for ICP than
for NDT, using the baseline parameter settings. With trilinear interpolation for
NDT, there is only one failure: Scan 42.

It can be concluded that for the magnitudes and directions of the initial
pose error that is encountered in the mobile robot registration experiments,
the difference in robustness between ICP and NDT is not as large as in the
synthetic tests in Section 6.4.2. Still, the evaluation demonstrates that NDT is
more robust for almost all data sets and also performs faster.
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(b) ICP. Success rate 98%.

Figure 6.27: Registration results for the Kvarntorp-Loop data set.

6.4.4 Summary of experiments

The performance of both ICP and NDT depends heavily on the input data and
the chosen parameters. However, judging from the experiments presented in
Sections 6.4.2 and 6.4.3, comparing NDT with two different ICP implemen-
tations, it seems quite clear that NDT is generally more robust to large error
offsets in the initial pose estimate and gives more accurate registration results
— most notably so when presented with featureless tunnel scans and noisy scan
data with little overlap. NDT without interpolation is also faster than ICP. Both
algorithms require certain threshold values to be chosen according to the scale
and shape of the input data. In the case of ICP, the most important parame-
ter is the outlier-rejection distance threshold. When using ICP, it is not always
obvious how to handle outliers from non-overlapping parts of the scans. On
the other hand, the likelihood functions of NDT provide a sound criterion for
outlier rejection that is based on the local surface shape. For NDT, the param-
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(a) NDT. Success rate 96%.
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(b) ICP. Success rate 87%.

Figure 6.28: Registration results for the Mission-4 data set.

eter that most closely corresponds to the outlier threshold is the cell size. The
cell size must also be set according to the scan data at hand, although the iter-
ative discretisation strategy makes the algorithm much less sensitive to a poor
parameter selection.

6.5 Other authors’ NDT variants

The first 3D-NDT publications were presented by Duckett and me in 2005 [65,
66]. Later, other authors have also published registration methods indepen-
dently derived from the work of Biber and Straßer [7].

Ripperda and Brenner [89] proposed a semi-3D version of NDT and demon-
strated it by registering large high-resolution outdoor scans. In their work, each
3D scan is divided into several horizontal slices and 2D-NDT is used on each
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pair of slices. Using k slices, and denoting the score of pose �p for slice i by si(�p),
the score function used by Ripperda and Brenner is the sum over all slice pairs:

s(�p) =
k∑

i=1

si(�p). (6.24)

The approach of Ripperda and Brenner can only perform registration in one
plane, and therefore only works under the assumption that the local coordinate
systems of all scans are aligned in the plane, meaning that the scanner must be
level at each scan pose. This assumption does not hold for the majority of
mobile robot applications.

NDT was independently extended to 3D in a 2006 paper by Takeuchi and
Tsubouchi [100]. Their implementation is rather similar to the 3D-NDT version
described in Section 6.3 in that they also use an iterative subdivision scheme. An
important difference is that Takeuchi and Tsubouchi use smaller cells near to
the sensor location and larger cells farther away in the early iterations, and use
only the smaller size in the later iterations, when the scans are almost aligned.
The rationale is that error in the rotation estimate causes larger displacements
further from the sensor location, so larger cells are needed there to make sure
that more points from the current scan are used. The linked-cells strategy de-
scribed in Section 6.3.5 is another solution to the same problem. Takeuchi and
Tsubouchi have reported good results using their algorithm on data from a com-
puter lab, although, to my knowledge, a comparison with other approaches is
not yet available.

Another NDT extension was presented by Kaminade et al. in 2008 [57],
proposing a variant of 2D-NDT scan registration. The main contribution of
their work is an iterative registration scheme where the covariance matrices of
the NDT cells are blurred by different amounts in each iteration, without chang-
ing the cell size. Kaminade et al. use a similarity transformation of the original
covariance matrix of a cell, Σ = VΛVT, where V contains the eigenvectors of
Σ and

Λ =

[
λ1 0
0 λ2

]

(6.25)

contains the eigenvalues λ1 and λ2. The covariance matrix used in the algorithm
of Kaminade et al. is Σ

′ = VΛ
′VT, where

Λ
′ =

[
Kλ1 0

0 Kλ2

]

(6.26)

and K is a “blurring factor”. Replacing Σ with Σ
′ is akin to the inflation per-

formed to avoid nearly singular covariance matrices (Equation 6.11), although
the values of the blurring factor K typically has a stronger effect than the slight
blurring introduced in Equation 6.11. In the experiments described by Kami-
nade et al., K values from 1 to 100 were used. Instead of a array-based point-
to-cell method, as in standard NDT, Kaminade et al. used kD tree search to
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Figure 6.28: Registration results for the Mission-4 data set.

eter that most closely corresponds to the outlier threshold is the cell size. The
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parameter selection.
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find the closest occupied NDT cell for points located in unoccupied cells. These
additions are also rather similar to the iterative discretisation and linked-cells
methods shown in Section 6.3. With experiments using 2D range data collected
from a six-legged mobile robot, Kaminade et al. showed improved registration
accuracy using their iterative 2D-NDT compared to standard 2D-NDT.

6.6 Confidence measure

After registering two scans, is it possible to determine the quality of the reg-
istration withouth knowing ground truth? The output of the registration is a
new pose estimate, but is it possible to measure how good that estimate is?
One way to qualitatively determine whether the registration was successful or
not is to view the scans at the output pose and visually determine if the match
looks good or not. However, it is highly desirable to have a quantifiable mea-
sure of the registration quality of two scans X and Y at pose �p, which may
be expressed Q(X ,Y , �p). In general, this is, of course, a very difficult problem
because we want to distinguish local from global optima. If this would be pos-
sible in general, the world would look different. What we can only hope for
is that the distinction between successful and failed registrations can be made
reasonably well using domain-specific knowledge about the problem.

Perhaps the most obvious choice for a quality measure would be the NDT
score function. After all, that is the function that is optimised when using NDT
for scan registration. Let’s define this measure as

Qs(X ,Y , �p) =
1

n
s(�p), (6.27)

using s(�p) from Equation 6.10. A good match should give a large negative Qs

value. The scaling factor 1/n is used in order to get a score value that is inde-
pendent of the number of points in the scans.

Another possibility is to investigate the Hessian of the NDT score function
at the final pose estimate. The inverse Hessian matrix can be used as an esti-
mate of the covariance matrix of the pose parameters [40], and as such gives
an indication of the certainty by which each pose parameter can be determined.
Considering the eigenvalues of the inverse of the Hessian, the registration is
probably good if all eigenvalues are small, which means that the variance is
small for all parameter estimates. The standard deviation of a parameter esti-
mate is a more convenient measure than the variance because it has the same
unit as the parameter itself, so

QH(X ,Y , �p) =

√
6

max
i=1

λi, (6.28)

where λi are the eigenvalues of the inverse Hessian matrix (6.13), is another
possible measure of success. A good match should give a small positive QH

value.
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A common way of measuring the registration error is to compute the mean
squared error of closest-point pairs in the two scans. If {(�x1,�y1), . . . , (�xn,�yn)} is
the set of closest-point pairs (where �yi ∈ Y is the closest neighbour of �xi ∈ X ),

Qe(X ,Y , �p) =
1

n

n∑

i=1

��xi −�yi�2 (6.29)

is the mean squared point-to-point distance between the two scan surfaces. This
is the function that is minimised by ICP. A good match should give a small
positive value for Qe.

Both the score and the Hessian measure depend on the NDT cell size. Smaller
cell sizes tend to give smaller (closer to zero) score values and less variance in
the parameter estimates. The distributions in large cells are often more spread
out, with larger variances. The mean-squared-error measure, on the other hand,
is independent of the NDT cell size.

Figure 6.29 shows how these three quality measures correspond to the trans-
lation error with respect to the reference pose for some of the data sets used in
the pairwise experiments in Section 6.4. The results shown are for the lidar scan
pairs. In each case, the registration quality is evaluated at 0.5 m cell size. The
included plots only show the confidence measures compared to the translation
error. Inspecting the corresponding plots for the rotation error is not very en-
lightening. In many cases, a failed registration still has only a small error in the
rotation component. On the other hand, it is very unusual that a registration
result with the correct translation estimate errs only in rotation. For this reason,
the translation error is a good indicator of registration success on its own. It
can be seen that both the NDT score function and the maximum eigenvalue
of the inverse Hessian correspond quite well to the error of the final pose es-
timate. The difficulty of registering the Straight data set is visible in the plots
for all of the quality measures. See, for example, Figure 6.29(b), which shows
the QH values. The values of QH are only weakly correlated to the final trans-
lation error for Straight, which is related to the fact that the error landscape
is rather shallow along the direction of the tunnel for this scan pair. However,
the poses that are close to the reference pose do have markedly lower values
of QH, and the same QH threshold (QH ≤ 0.5) as for the other data sets can
be used to differentiate between failed and successful registrations. The mean
squared point-to-point error, on the other hand, is not a good measure of suc-
cess. Firstly, the output values of the function are different for the different scan
pairs. For example, the values for the Straight data set are all between 0.002
and 0.004, but the values for Sci-Fi are all above 0.008 — both failures and
successes. The Qe measure is especially a poor indicator of registration quality
for the Straight and Sim-Mine data sets, as can be seen by the lack of corre-
lation in Figure 6.29(c). In several cases for these two scan pairs, poses with
a translation error over 1 m give a smaller value for Qe than poses close to
the reference. This result also explains ICP’s poor performance on these two
scan pairs. The plots in Figure 6.29(c) were made without an outlier threshold,
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counting all closest-point pairs. Using a 0.5 m outlier threshold, as was done
for the tests with ICP presented in Sections 6.4.2 and 6.4.3, produces similar
results. Figures showing the values of the confidence measures for the scans of
the Kvarntorp-Loop data set are included in Appendix C.8.

The values of the quality measures do not change significantly when not us-
ing linked cells, but if the cell size is different another threshold must be chosen
for the Qs and QH measures. Figure 6.30 shows how Qs and QH vary with
different cell sizes for the Sci-Fi data set. This figure shows that the uncertainty
in the final pose estimates grows with larger cell sizes, and the reason is the
previously described loss of detail. For cell sizes over 2 m the value of Qs is
virtually constant up to 0.5 m translation error. The same result is visible in the
plots of QH in Figure 6.30(b) as well.

Comparing Qs and QH in Figure 6.30, it can also be seen that QH is a
better confidence measure than Qs. A lower value of QH clearly corresponds
to a higher confidence in the registration result. Even though it is not always
possible to choose a threshold value that differentiates good registrations from
bad ones when the cell size is large, that is just a consequence of the fact that
the registration result is more uncertain in those cases. In contrast, a Qs score
value farther from zero does not necessarily correspond to a better result.

6.7 Conclusions

As shown in the experimental results in Section 6.4, NDT can be used for both
fast and accurate 3D scan registration. Using NDT, no explicit correspondences
have to be established between points or features. This is the most error-prone
part of many other approaches. Compared to an ICP implementation made by
experienced researchers, NDT is both faster and more reliable. The advantage
of NDT compared to ICP shows most clearly for “difficult” scans; that is, scans
with few prominent geometric features, little overlap, and high noise level.

In addition to speed and accuracy, NDT scan registration has some other
advantages over purely point-cloud-based methods such as ICP. One is that an
estimate of the variance and covariance of the output pose parameters is imme-
diately available from the Hessian matrix used during registration, as shown
in Section 6.6. The variance of the pose parameters after registration can be
used to detect whether the algorithm succeeded or not — or, at least, to judge if
the final pose estimate is a confident one or not. Also, when using graph-based
loop-closure algorithms in a SLAM setting, it is important to have pose vari-
ance values associated with each node. Another advantage is that, compared to
high-resolution point clouds, NDT requires little storage space, while maintain-
ing a descriptive representation of the scanned 3D surfaces.

To summarise, the results presented in this chapter suggest that NDT is a
good surface representation for use with general-purpose 3D scan registration.
The NDT surface representation is also useful for other applications, as will be
described in detail in Part III.
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Figure 6.29: Measures of registration confidence. The translation-error threshold, max
0.2 m, is marked by vertical lines. Threshold values for Qs and QH that separate success-
ful registrations from failed ones are marked with horizontal lines where possible. Using
these thresholds to classify successful registrations, points in the lower left quadrant cor-
respond to true positives, the upper right quadrant corresponds to true negatives, the
upper left to false negatives (registration attempts regarded as failed even though they
were successful), and the lower right to false positives (which are more severe misclassi-
fications than false negatives).
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Figure 6.30: NDT measures of success for the Sci-Fi data set using cell sizes ranging
from 0.5 m to 3.5 m.
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Chapter 7

Registration of coloured scans

The registration algorithms described so far do not work when geometric fea-
tures are lacking, like in the scans of a flat wall with a flat door shown in
Figure 7.1. Since the geometric structure only constrains the scans to lie in the
same plane, many translations in this plane and rotations around the axis per-
pendicular to the plane will give similar scores — not only for NDT and ICP,
but for any geometric 3D registration algorithm. In cases such as the one de-
picted in Figure 7.1, where the geometric structure is mainly flat but there are
usable colour features, it would be beneficial to use both the positions of the
scan points and their colours for registration.

This chapter discusses different ways to perform colour-aware scan regis-
tration and shows how NDT can be augmented to use colour data. The work
presented here was done in collaboration with Benjamin Huhle of the Univer-
sity of Tübingen, and has previously been published at the IEEE International
Conference on Robotics and Autonomation [49].

Figure 7.1: Door data set (2 scans). Left: initial pose of both scans. Right: registered
with Colour-NDT.
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Figure 6.30: NDT measures of success for the Sci-Fi data set using cell sizes ranging
from 0.5 m to 3.5 m.
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Chapter 7

Registration of coloured scans

The registration algorithms described so far do not work when geometric fea-
tures are lacking, like in the scans of a flat wall with a flat door shown in
Figure 7.1. Since the geometric structure only constrains the scans to lie in the
same plane, many translations in this plane and rotations around the axis per-
pendicular to the plane will give similar scores — not only for NDT and ICP,
but for any geometric 3D registration algorithm. In cases such as the one de-
picted in Figure 7.1, where the geometric structure is mainly flat but there are
usable colour features, it would be beneficial to use both the positions of the
scan points and their colours for registration.

This chapter discusses different ways to perform colour-aware scan regis-
tration and shows how NDT can be augmented to use colour data. The work
presented here was done in collaboration with Benjamin Huhle of the Univer-
sity of Tübingen, and has previously been published at the IEEE International
Conference on Robotics and Autonomation [49].

Figure 7.1: Door data set (2 scans). Left: initial pose of both scans. Right: registered
with Colour-NDT.
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7.1 Related work

7.1.1 Colour-ICP

A “natural” extension of the ICP algorithm to handle coloured data is by mea-
suring the distance between corresponding points in the six-dimensional colour/
geometry space, instead of the 3D geometry space only. This approach was im-
plemented by Johnson and Kang [56],

When using Johnson and Kang’s algorithm, it is important to pay attention
to the scaling of the feature elements, depending on the sampling distribution
of scan points. For example, assuming that the RGB components of the features
are in the range [0, 1] and that the spatial features are measured in centimetres,
the colours will have little influence on the result in large-scale environments.
With different scaling, or different sample distributions, points with similar
colours will be preferred over spatially proximate points. This problem is espe-
cially pronounced for data where the scan points are unevenly distributed.

Another colour extension of ICP was presented by Douadi et al. [29]. They
recognise the difficulty of weighting the colour and the geometry values and
therefore use the colours of scan points only to reject false correspondences:
Instead of the usual spatial Euclidean distance threshold to remove outliers in
each iteration, they use a threshold in RGB or YIQ colour space. Except for
that, the algorithm of Douadi et al. is a common ICP implementation. In their
paper, they showed that spatial ICP with an outlier threshold in YIQ colour
space can improve registration accuracy compared to ICP in combined colour/
geometry space.

7.1.2 Visual-feature-based registration

When camera images are available, it is possible to use more salient features
of the scene for registration instead of ICP’s point-to-point correspondences or
NDT’s point-to-cell correspondences. The current state of the art for visual fea-
tures is to use the Scale-Invariant Feature Transform (SIFT [62]) or Speeded Up
Robust Features (SURF [5]). Using such local visual features to correlate points
that are visually similar, point correspondences between the two scans can be
found with much higher certainty, as compared to creating point pairs based
on geometric proximity. If sufficiently discriminative features can be found, the
need for a good initial pose estimate vanishes.

On the other hand, the number of corresponding point pairs is much smaller
when using methods based on local features, because the number of correspond-
ing features that can reliably be detected in an image pair is normally much
lower than the number of laser scan points. Since feature-based methods rely
on a small number of 3D points instead of using all available geometric data,
noisy range readings can cause significant errors. Similarly, a single false fea-
ture correspondence can lead to severe misalignment even in the presence of
many correct correspondences. Even though SIFT generally generates very ro-
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bust features, false correspondences can occur, especially if part of the scan has
a repetitive texture. In a dynamic environment, a small modification can cause
these methods to fail as well, even if the scene remains the same on a larger
scale. An example of false feature correspondences in a dynamic environment
is shown in Figure 7.2.

To reduce the effect that noisy range data have on feature-based registration,
another method has been proposed by Huhle et al. [48]. Their algorithm uses an
energy function that combines the NDT score function s(�p) from Equation 6.10
and a function

sF(�p) = − 1

M

M∑

i

exp

(

−
(
T(�p, �ηi) − �κi

)2

σF

)

(7.1)

that penalises distances of corresponding features �ηi and �κi. The combined en-
ergy function that determines the score of pose estimate �p is

sH(�p) = α · s(�p) + (1 − α) · sF(�p). (7.2)

The weight α is determined by the result of a preceding rough alignment using
only the feature correspondences. It is chosen relative to the value of sF.

α = exp(cF sF) (7.3)

If sF exceeds a threshold, α is set to zero, since the initial feature-based reg-
istration result is regarded as precise enough. The value of α may be tuned
depending on the scene and the sensor characteristics by adjusting the value of
cF, which should be between 0 and 1. Scans captured by sensors with a narrow
field of view often have limited geometric structure, in which case geometry-
based registration techniques such as NDT can fail. Therefore, α should favour
the feature solution for such scenes.

A related registration method, also combining point clouds and visual fea-
tures, has been published by Andreasson and Lilienthal [2]. In their method, a
position covariance is added to each visual feature based on the surrounding
laser-scan points. Registration is performed by matching corresponding SIFT
features of the current scan and the reference scan, and minimising the Maha-
lanobis distance between corresponding features using the estimated position
covariance.

7.2 Colour-NDT

Since NDT has been shown to perform very well in comparison to standard
registration methods, it seems reasonable to extend NDT into a colour-aware
registration method in order to use coloured point clouds without the potential
drawbacks of using visual features. (Another approach for using NDT in the
colour domain has also been published by our lab [3]. That method is also
called Colour-NDT. However, it is meant for change detection and cannot be
used for registration applications.)
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cF, which should be between 0 and 1. Scans captured by sensors with a narrow
field of view often have limited geometric structure, in which case geometry-
based registration techniques such as NDT can fail. Therefore, α should favour
the feature solution for such scenes.
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tures, has been published by Andreasson and Lilienthal [2]. In their method, a
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Since NDT has been shown to perform very well in comparison to standard
registration methods, it seems reasonable to extend NDT into a colour-aware
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drawbacks of using visual features. (Another approach for using NDT in the
colour domain has also been published by our lab [3]. That method is also
called Colour-NDT. However, it is meant for change detection and cannot be
used for registration applications.)
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7.2.1 Colour-NDT using adaptive kernels

Instead of having one Gaussian function that describes the overall point dis-
tribution of surface points within the cell, Colour-NDT uses a combination of
several Gaussians, each built from points of a certain colour. If, for example,
red points are mostly located within a specific region of the cell, there should
be a “red” Gaussian that represents the positions of those points only.

The point distribution in each cell of the NDT grid can be represented as
a Gaussian mixture model in colour space. In the following text, the colour
coordinates of a scan point �xi are denoted �̇xi. A Gaussian with mean �µ and
covariance Σ is denoted N (�µ,Σ). A mixture model

p(�̇x) =

c∑

j=1

γjN (�̇µj, Σ̇j) (7.4)

is built for each cell, employing c colour components, with means �̇µj, covari-
ances Σ̇j, and weights γj.

The components N (�̇µj, Σ̇j) of the mixture model can be considered to be
kernel functions placed on certain points in colour space, and are used to
weight the influence of the respective colour component of the geometric dis-
tribution model. The mixture density (7.4) is estimated with the expectation-
maximisation algorithm [27], using the colour coordinates �̇yi of the points be-
longing to the reference scan. Expectation maximisation (EM) for maximum-
likelihood estimation of mixture densities is applied as described by Redner and
Walker [88]. The initial guesses of the component distributions are determined
using the k-means algorithm.

The next step is to build a Gaussian mixture model of the geometric point
distributions in each cell. The components of the colour-space model (7.4) are
used as kernel functions centred on their means �̇µj in colour space. The kernels
weight the influence of the points when building the geometric model. For each
colour kernel j, there is a corresponding component j of the geometric Gaussian
mixture model. Thus, the according colour weights for point �yi

ξij = exp

(

−1

2
(�̇yi − �̇µj)

T
Σ̇

−1
j (�̇yi − �̇µj)

)

(7.5)

are determined by evaluating the colour kernels N (�̇µj, Σ̇j).
Building a Colour-NDT cell of the reference scan is done by computing the

weighted spatial means

�µj =
1

Ξj

m∑

i=1

ξij �yi (7.6)

and weighted spatial covariances

Σj =
Ξj

Ξj −
∑

i ξ
2
ij

m∑

i=1

ξij(�yi − �µj)(�yi − �µj)
T (7.7)
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of all points �y1,..., m in the cell. In Equations 7.6–7.7, the sum of all colour
weights for a mixture component j,

Ξj =
m∑

i=1

ξij, (7.8)

is used for normalisation. A visualization of the spatial distributions computed
by Colour-NDT can be seen in Figure 7.3. Note that there are three distribu-
tions in each NDT cell, although they commonly overlap one another.

The proposed Colour-NDT scan-registration algorithm employing the nec-
essary adaptations for performing colour-aware registration is described in the
following.

To register a scan to the Colour-NDT representation of the reference scan,
a score function that depends on the current pose estimate is to be optimised,
just as with 3D-NDT. The pose estimate is parametrised by the vector �p and
the 3D transformation function is T(�p, �x). Given a sample of n points from the
current scan, compute the score

sC(�p) =

n∑

i=1

c∑

j=1

ξij exp

(

−1

2

(
T(�p, �xi) − �µj

)T
Σ

−1
j

(
T(�p, �xi) − �µj

)
)

, (7.9)

with �µj and Σj being the means and covariances of the cell b in which the trans-
formed point T(�p, �xi) lies. The score sC(�p) measures the fitness of the points
of the current scan compared to the surface functions computed from the ref-
erence scan. Equation 7.9 is very similar to the score function of interpolated
3D-NDT (6.23). In interpolated 3D-NDT, the Gaussians of the eight nearest
NDT cells are evaluated for each point �xi, weighted by the geometric distance
between �xi and each Gaussian. In Colour-NDT, the c Gaussians of the cell in
which �xi lies are evaluated and weighted by the parameters ξij, which are based

on the difference in colour between �̇xi and each Gaussian’s colour mean �̇µj.
Optimising the score function with regard to the transformation parameters

can be done with an arbitrary numerical optimisation method. As for 3D-NDT,
Newton’s method with line search has been found to give fast convergence.
In the implementation of Colour-NDT and 3D-NDT used here, the small-angle
approximations (Equation 6.22) for the first-order partial derivatives of T were
used.The derivations are included in Appendix B.1.

Usually, a critical issue in mixture-density estimation is the choice of the
number c of components that are used to represent the density. However, the
main concern when using Colour-NDT is not to build a highly accurate model
in colour space. What is required here is a colour/geometry model that distin-
guishes different colours and merely enables us, intuitively speaking, to drag
the points in the right direction depending on their colour. For 3D data it suf-
fices to compute a mixture model with three components for each cell even if
the actual density in colour space is more complex.
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7.2.1 Colour-NDT using adaptive kernels
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of all points �y1,..., m in the cell. In Equations 7.6–7.7, the sum of all colour
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the actual density in colour space is more complex.
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Based on these considerations, different approximations for representing
the colour space density that demand less computational effort have been ex-
amined. For example, one could use kernels with fixed means and fixed vari-
ances. However, as can be expected, such a method is less accurate then the
proposed mixture model (Equation 7.4), since the resulting distributions are
not as expressive. Another approach is to estimate discrete kernels by apply-
ing k-means clustering in colour space only. However, this approach suffers
from discretisation effects. Computing an (isotropic) variance in colour space
from the clustering result and applying this solution as weighting kernels in the
spatial domain is another option, but this approach has also shown decreased
performance compared to the version with EM-estimated kernels.

7.2.2 6D-NDT using combined colour/geometry distributions

An alternative method for fusing colour and range data for NDT is to dis-
cretise only along the spatial dimensions, as for standard 3D-NDT, and store
six-dimensional normal distributions over the combined 6D colour/geometry
feature vectors in each cell. This is the most straightforward analogue to the
Colour-ICP of Johnson and Kang [56]. Building such 6D structures is faster
than finding the colour kernels described in the previous section. Optimising
the score is also faster, because only one function needs to be evaluated instead
of three for each point in the data scan. However, there are problems with this
approach.

To get a better understanding of this representation, and in order to com-
pare the 6D NDT with the kernel-based Colour-NDT described above, let’s
investigate the conditional spatial distributions of 6D-NDT; that is, the spatial
distribution given a certain colour. The 6D colour/geometry mean is

�µ6 =

[
�µ

�̇µ

]

(7.10)

and the 6D combined covariance matrix is

Σ6 =

[

Σ Σ
�x,�̇x

Σ
�̇x,�x

Σ̇

]

. (7.11)

Σ is the covariance in the geometric subspace, and Σ̇ is the covariance in

the colour subspace of cell b. Analogously, Σ
�x,�̇x and Σ

�̇x,�x denote the cross-
covariances in the colour and geometric subspaces. The conditional means are

�̂µ(�x | �̇x) = �µ + Σ
�x,�̇x

Σ̇
−1

(�̇x − �̇µ) (7.12)

and the conditional covariances are

Σ̂(�x | �̇x) = Σ − Σ
�x,�̇x

Σ̇
−1

Σ
�̇x,�x. (7.13)
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A visualisation of the resulting distributions is given in Figure 7.4. Whereas
points �xi that meet the colour coordinates of the reference scan points exactly
are attracted to the correct spatial position, a blue point in the lower subplot of
Figure 7.4 is expected by 6D-NDT to lie even further to the left, compared to
the “almost blue” reference scan points. That kind of extrapolation generally
does not correlate to the colour/geometry distribution of the underlying data.
In other words, a single normal distribution is not a good model for the colour/
geometry distribution of points. In contrast, the kernel-based Colour-NDT han-
dles this case well, expecting a point with colour different from the reference
scan’s colours to lie closer to the overall (standard 3D-NDT) mean.

7.3 Experiments

The kernel-based Colour-NDT algorithm has been experimentally evaluated
and compared with the methods based on local visual features that were de-
scribed above. The experiments will be covered in this section.

7.3.1 Sensor setup

Data were collected using Tjorven (Section 4.1). Range and colour images were
acquired with a combination of a PMD[vision] 19k time-of-flight camera and
a Matrix-Vision Blue Fox colour camera, mounted on top of the robot’s lidar,
as shown in Figure 4.1(b). The lidar was not used for these experiments. The
data from the two cameras were combined as described in previous work by
the GRIS group of the University of Tübingen [47]. Their methods were also
used for pruning outliers in the coloured point clouds due to sensor error and
smoothing the depth data [48]. Still, even after noise filtering and smoothing,
the noise level of the sensor was significant. The amount of noise can be esti-
mated by inspecting Figure 7.6.

7.3.2 Results

Results are presented for two data sets, Sofa-1 and Sofa-2, both collected in the
same room. No reliable quantitative results are available for these experiments.
The registration quality of the different methods can instead be assessed visually
from Figures 7.5 and 7.6.

Both data sets were recorded while driving the robot platform past the scene,
looking sideways. The initial pose estimates of the scans were acquired from the
robot’s odometry.

The Sofa-1 data set is used here to demonstrate the performance of Colour-
NDT compared to purely geometric 3D-NDT. Even though the data set as a
whole contains some geometric features, registration using standard 3D-NDT
misaligned several of the partial scans, mainly for two reasons. Firstly, single
scans of the data set suffer from the aperture problem (not capturing enough
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Based on these considerations, different approximations for representing
the colour space density that demand less computational effort have been ex-
amined. For example, one could use kernels with fixed means and fixed vari-
ances. However, as can be expected, such a method is less accurate then the
proposed mixture model (Equation 7.4), since the resulting distributions are
not as expressive. Another approach is to estimate discrete kernels by apply-
ing k-means clustering in colour space only. However, this approach suffers
from discretisation effects. Computing an (isotropic) variance in colour space
from the clustering result and applying this solution as weighting kernels in the
spatial domain is another option, but this approach has also shown decreased
performance compared to the version with EM-estimated kernels.
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the score is also faster, because only one function needs to be evaluated instead
of three for each point in the data scan. However, there are problems with this
approach.
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A visualisation of the resulting distributions is given in Figure 7.4. Whereas
points �xi that meet the colour coordinates of the reference scan points exactly
are attracted to the correct spatial position, a blue point in the lower subplot of
Figure 7.4 is expected by 6D-NDT to lie even further to the left, compared to
the “almost blue” reference scan points. That kind of extrapolation generally
does not correlate to the colour/geometry distribution of the underlying data.
In other words, a single normal distribution is not a good model for the colour/
geometry distribution of points. In contrast, the kernel-based Colour-NDT han-
dles this case well, expecting a point with colour different from the reference
scan’s colours to lie closer to the overall (standard 3D-NDT) mean.

7.3 Experiments

The kernel-based Colour-NDT algorithm has been experimentally evaluated
and compared with the methods based on local visual features that were de-
scribed above. The experiments will be covered in this section.

7.3.1 Sensor setup

Data were collected using Tjorven (Section 4.1). Range and colour images were
acquired with a combination of a PMD[vision] 19k time-of-flight camera and
a Matrix-Vision Blue Fox colour camera, mounted on top of the robot’s lidar,
as shown in Figure 4.1(b). The lidar was not used for these experiments. The
data from the two cameras were combined as described in previous work by
the GRIS group of the University of Tübingen [47]. Their methods were also
used for pruning outliers in the coloured point clouds due to sensor error and
smoothing the depth data [48]. Still, even after noise filtering and smoothing,
the noise level of the sensor was significant. The amount of noise can be esti-
mated by inspecting Figure 7.6.

7.3.2 Results

Results are presented for two data sets, Sofa-1 and Sofa-2, both collected in the
same room. No reliable quantitative results are available for these experiments.
The registration quality of the different methods can instead be assessed visually
from Figures 7.5 and 7.6.

Both data sets were recorded while driving the robot platform past the scene,
looking sideways. The initial pose estimates of the scans were acquired from the
robot’s odometry.

The Sofa-1 data set is used here to demonstrate the performance of Colour-
NDT compared to purely geometric 3D-NDT. Even though the data set as a
whole contains some geometric features, registration using standard 3D-NDT
misaligned several of the partial scans, mainly for two reasons. Firstly, single
scans of the data set suffer from the aperture problem (not capturing enough
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structure in one view) because of the time-of-flight camera’s limited field of view.
Secondly, the NDT surface model also captures the high noise level of the depth
sensor. The same problems also affect Colour-NDT to some extent. However,
because of its more descriptive surface representation, Colour-NDT performed
much better on the same test set. The difference was most obvious around the
microwave oven in the upper-right corner of the images, where strong colour
contrasts occur on mostly planar surfaces. Please refer to Figure 7.5.

The approach using an energy function that combines SIFT features and
3D-NDT registration (Equation 7.2) was applied to another data set: Sofa-2.
Figure 7.6 shows the additional gain of replacing 3D-NDT with Colour-NDT
in this method. The initial alignments, based only on matching SIFT features,
expose some of the problems of relying on a small set of corresponding points
with noisy range data. Additionally, some false feature correspondences were
encountered, which were due to the repetitive patterns of the highly textured
couch and wallpaper in the scene, examples of which are displayed in Fig-
ure 7.7. For this comparison, the weight α from Equation 7.2 was increased
to better show the influence of NDT. Compared to using visual-feature-based
registration only, the registration quality along the normal vectors of the planar
structures was improved when combining the feature registration with standard
3D-NDT using Equation 7.2. There were, however, large offsets along the other
directions. Replacing 3D-NDT with Colour-NDT in the mixed score function
enhanced the registration result, as can be seen in the bottom image in Fig-
ure 7.6. This result, again, shows the improved robustness of Colour-NDT.

7.3.3 Summary and conclusions

In this chapter, a kernel-based extension to the NDT scan registration algorithm
has been presented. Colour-NDT is more robust than purely geometric NDT
for 3D scans with little geometric features. When used as a component of the
algorithm of Huhle et al. [48], which combines local visual feature registration
and 3D-NDT, the robustness is further increased.

Even though 3D registration using local visual features is often both accu-
rate and robust, there are cases where it is prone to failure: when the 3D data
are noisy, and when there are repetitive textures. Colour-NDT can successfully
be applied in such cases. As a general recommendation for colour-aware 3D
registration, the combined registration algorithm of Huhle et al. — but using
Colour-NDT instead of 3D-NDT — should be used.
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Figure 7.2: Feature-based registration in a dynamic environment. The smaller box has
been turned between the two scans, which are otherwise identical. Left: Corresponding
SIFT features. Right: Resulting model.

Figure 7.3: Visualisation of the Colour-NDT surface representation. Each 3D grid cell
stores a number of local surface-distribution functions, each associated with a mean
colour. This figure shows the 1σ isosurface of the covariance matrices. (Please note that
differences in colour that have no relation to the Colour-NDT model appear due to the
artificial illumination of the rendering of the ellipsoids.)
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Figure 7.4: This figure shows an NDT cell that contains a number of blue and red points.
For visualisation, dimensionality has been reduced to 2D-space and colour consists of
only the hue channel. Conditional distributions of 6D-NDT (thick blue/red), distribu-
tion of 3D-NDT (black), and of Colour-NDT with adaptive kernels (thin blue/red). Top:
conditional distribution for exactly matching colours. Bottom: colours are slightly dif-
ferent.
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Figure 7.5: The Sofa-1 data set (21 point clouds, sequentially registered). Top: Registered
with Colour-NDT. Bottom: registered with standard 3D-NDT.
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Figure 7.6: The Sofa-2 data set (11 point clouds, sequentially registered). The left column
shows overviews of the data set after registration. Detail views, seen from above, are
shown in the right column. Top: Feature-based registration only. Middle: Combining
visual features and 3D-NDT. Bottom: Combining visual features and Colour-NDT. Note
the registrations inaccuracies resulting in doubled surfaces in the top two figures.

Figure 7.7: False SIFT correspondences in two images of the Sofa-2 data set, showing
several mismatches from parts of the wall and couch.
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Figure 7.6: The Sofa-2 data set (11 point clouds, sequentially registered). The left column
shows overviews of the data set after registration. Detail views, seen from above, are
shown in the right column. Top: Feature-based registration only. Middle: Combining
visual features and 3D-NDT. Bottom: Combining visual features and Colour-NDT. Note
the registrations inaccuracies resulting in doubled surfaces in the top two figures.

Figure 7.7: False SIFT correspondences in two images of the Sofa-2 data set, showing
several mismatches from parts of the wall and couch.
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Chapter 8

Loop detection

For autonomously navigating mobile robots, it is essential to be able to detect
when a loop has been closed by recognising a previously visited place. One ex-
ample application is when performing simultaneous localisation and mapping
(SLAM). A common way to perform SLAM is to let a robot move around in
the environment, sensing its surroundings as it goes. Typically, discrete 2D or
3D laser scans are registered using a local scan registration algorithm in order
to correct the robot’s odometry and improve the estimate of the robot’s pose at
each point in time. The scans can be stitched together at their estimated poses
in order to build a map. However, even with good scan registration, pose er-
rors will inevitably accumulate over longer distances, and after covering a long
trajectory the robot’s pose estimate may be far from the true pose.

When a loop has been closed and the robot is aware that it has returned
to a previously visited place, existing algorithms can be used to distribute the
accumulated pose error of the pairwise registered scans in order to render a
consistent map. Some examples are the tree-based relaxation methods of Frese
et al. [34, 35] and the 3D relaxation methods of Grisetti et al. [43] and Borrman
et al. [10].

However, detecting loop closure when faced with large pose errors remains
a difficult problem. Indeed, as noted by Thrun in his survey on robotic map-
ping [103], establishing the correspondence between past and present positions
when closing a loop is one of the most challenging problems in robotic map-
ping. As the uncertainty of the estimated pose of the robot grows, an indepen-
dent means of detecting loop closure becomes increasingly important. Given
two 3D scans, the question to be asked is: “Have I seen this before?” A good
loop-detection algorithm aims at maximising the recall rate — that is, the per-
centage of true positives (scans acquired at the same place that are recognised
as such) — while minimising false positives (scans that are erroneously consid-
ered to be acquired at the same place). False positives are much more costly
than false negatives in the context of SLAM. A single false positive can render
the map unusable unless further measures are taken to recover from false scan
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correspondences. On the other hand, a relatively low number of true positives
is often acceptable, given that several scans are acquired from each revisited
section. As long as a few of these scans are detected, the loop can be closed.

This chapter proposes a loop-detection approach that is based on the ap-
pearance of scans. Appearance-based approaches often use camera images [9,
23, 104]. The approach presented here, however, only considers data from a 3D
laser range scanner. Using the proposed approach, loop detection is achieved
by comparing histograms computed from surface shape. The surface shape his-
tograms can be used to recognise scans from the same location without pose
information, thereby helping to solve the problem of global localisation. Scans
at loop closure are separated from other scans using a difference threshold in
appearance space to determine which scans are so similar that they can be as-
sumed to have been acquired at the same place. Pose estimates from odometry
or scan registration are not required. (However, if such information is avail-
able, it could be used to further increase the performance of the loop detection
by restricting the search space.) Though the chosen term for the problem is
“loop detection” in this text, the proposed method solves the same problem
that Cummins and Newman [26] refer to as “appearance-only SLAM”.

Existing 2D loop-detection algorithms could potentially be used for the
same purpose, after extracting a single scan plane from the available 3D scans.
However, in many areas it may be advantageous to use all of the available infor-
mation. One example is for vehicles driving over rough surfaces. Depending on
the local slope of the surface, 2D scans from nearby positions may look quite
different. Therefore the appearance of 2D scans cannot be used to detect loop
closure in such cases. In fact, this is a common problem for current 2D-scanning
semi-autonomous mining vehicles.1 Places where there are nearly horizontal
surfaces close to the height of the 2D laser scanner are especially problematic.
Another example are places where there are deep wheel tracks, meaning that
a small lateral offset can result in a large difference in the vehicle’s roll angle.
Using 3D data instead of 2D is, of course, also important for airborne robots
whose orientation is not restricted to a mainly planar alignment.

Appearance-based loop detection can be thought of as place recognition.
However, as the goal is to recognise scans acquired at the same place, it is
necessary to define what constitutes a place. It is not trivial to precisely define
what a place is. In this chapter, the terms “place” and “location” will be used
to mean “a bounded region (both in metric and appearance space) in which
observations share a substantial amount of common features”.

The proposed loop-detection approach has previously been presented at the
IEEE International Conference on Robotics and Automation [69] and is cur-
rently in press for publication in the Journal of Field Robotics [68].

1This information is from personal communication with Johan Larsson, Atlas Copco Rock
Drills.
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8.1 Surface-shape histograms

The normal-distributions transform gives a compact representation of surface
shape, and it therefore lends itself to describing the general appearance of a
scan. The method presented in this chapter exploits the NDT representation
for creating appearance descriptors that are compact but still discriminative.
In order to minimise the issues with spatial discretisation, overlapping NDT
cells are used. In other words, if the side length of each cell is B, the distance
between the cells’ centre points is B/2. (The parameter choices will be covered
in Section 8.1.4.)

8.1.1 Appearance descriptor

It is possible to use the shapes of the surface functions of NDT cells to describe
the appearance of a 3D scan, classifying the Gaussians functions based on their
orientation and shape. The functions are defined by the means and covariances
of the point distributions within the cells. The covariance matrices describe
the shapes of the distributions. For each cell, the eigenvalues λ1 ≤ λ2 ≤ λ3 and
corresponding eigenvectors�e1,�e2,�e3 of the covariance matrix are computed. By
looking at the relative magnitudes of the eigenvalues three main cell classes can
be discerned: spherical, planar, and linear. Distributions are assigned to a class
based on the relations between their eigenvalues with respect to a threshold
te ∈ [0, 1] that quantises a “much smaller” relation:

• Distributions are linear if λ2/λ3 ≤ te.

• Distributions are planar if they are nonlinear and λ1/λ2 ≤ te.

• Distributions are spherical if they are nonlinear and nonplanar (in other
words, if no eigenvalue is 1/te times larger than another one).

These three classes and the discrimination based on eigenvalue ratios were visu-
alised in Figure 6.4.

It would be straightforward to use more classes such as different levels of
“almost planar” distributions by using more than one eigenvalue-ratio thresh-
old. However, for the data presented here, using more than one threshold te did
not improve the result.

Each of the main cell classes can be divided into subclasses, based on orien-
tation for the planar and linear classes, and surface roughness for the spherical
class. Using ns spherical subclasses, np planar subclasses, and nl linear sub-
classes, the basic element of the proposed appearance descriptor is the feature
vector
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where fi is the number of occupied NDT cells that belong to class i. (The “oc-
cupied” cells are the ones with at least five surface points.)

Spherical subclasses may be defined by the “roundness” ratio λ2/λ3. For
spherical distributions, the class index is

i =

⌈

ns
λ2/λ3 − te

1 − te

⌉

. (8.2)

In this case, larger values of i correspond to distributions with more variance,
and distributions that belong to f1 are almost planar. For spherical distributions,
we have te > λ2/λ3 ≥ 1, so 1 ≤ i ≤ ns.

For planar distributions, the eigenvector�e1 (which corresponds to the small-
est eigenvalue) coincides with the normal vector of the plane that is approxi-
mated by the distribution. Let’s define planar subclasses as follows. Assuming
that there is a set P of np lines passing through the origin: P = {π1, . . . ,πnp},
the index for planar subclasses is

i = ns + arg min
j

d(�e1, πj), (8.3)

where d(�e, π) is the distance between a point�e and a line π. In other words, the
planar index i is the same as the index of the line πj that is closest to �e1.

The problem of evenly distributing a number of lines intersecting the origin
is analogous to distributing points evenly on the surface of a sphere. As noted in
Section 6.4.1, it is necessary to use some heuristic to generate an approximately
even point distribution. Using one such algorithm to distribute np points on a
half-sphere, P is the set of lines connecting the origin and one of the points.
The distribution of lines that was used here is visualised in Figure 8.1.

The same method that is used for planar distributions might also be used for
linear distributions, but with �e3 (which corresponds to the linear axis) instead
of �e1, and a second set of lines L = {λ1, . . . ,λnl

}.

i = ns + nl + arg min
j

d(�e3, λj). (8.4)

If the number of planar and linear subclasses np and nl are the same, then L = P
and λj = πj for all j. However, for many kinds of data, planar distributions are
more descriptive than linear ones, so it may be better to use more planar than
linear subclasses. For the experiments used here, it was sufficient to use only
one linear class.

In addition to surface shape and orientation, the distance from the scanner
location to a particular surface is also important information. For this reason,
each scan is described by a matrix

F =
[

�f1 · · · �fnr

]

(8.5)
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Figure 8.1: Visualisation of the planar part �P of a histogram vector (Equation 8.1),
created from the scan on the right. In this case, np = 9 planar directions are used. The
thin black lines correspond to the directions π1, . . . , π9. The cones are scaled according
to the values of the corresponding histogram bins. There are two cones for each direction
in this illustration: one on each side of the origin. The dominant directions used to
normalise the scan’s orientation are shaded. (The following text will be explained further
in Section 8.1.2.) Directions that are not in D1 or D2 are white. D1 (dark grey) contains
one direction in this case: the vertical direction, corresponding to the ground plane. D2
(light grey) includes two potential secondary peaks (whose magnitudes are more similar
to the rest of the binned directions). In this example ta was set to 0.6. If ta were close to
1, D2 would only include one direction.

and a corresponding set of range intervals R = {r1, . . . , rnr}. The matrix is a
collection of such surface-shape histograms, where each column �fk is the his-
togram of all NDT cells within range interval rk (measured from the laser scan-
ner position).

8.1.2 Rotation invariance

Because the appearance descriptor (8.5) explicitly uses the orientation of sur-
faces, it is not rotation invariant. In order for the appearance descriptor to be
invariant to rotation, the orientation of the scan must first be normalised. This
section presents the method for acquiring rotation invariance that has been
used in our implementation.

Starting from an initial histogram vector �f ′, with a single range interval,
R = {[0,∞)}, the idea is to find two peaks in plane orientations and orient the
scan so that the most common plane normal (the primary peak) is aligned along
the positive z axis, and the second most common (the secondary peak) is in the
yz plane. The reason for using plane orientations instead of line orientations is
that planar cells are much more common than linear ones. For an environment
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where fi is the number of occupied NDT cells that belong to class i. (The “oc-
cupied” cells are the ones with at least five surface points.)

Spherical subclasses may be defined by the “roundness” ratio λ2/λ3. For
spherical distributions, the class index is

i =

⌈

ns
λ2/λ3 − te

1 − te

⌉

. (8.2)

In this case, larger values of i correspond to distributions with more variance,
and distributions that belong to f1 are almost planar. For spherical distributions,
we have te > λ2/λ3 ≥ 1, so 1 ≤ i ≤ ns.

For planar distributions, the eigenvector�e1 (which corresponds to the small-
est eigenvalue) coincides with the normal vector of the plane that is approxi-
mated by the distribution. Let’s define planar subclasses as follows. Assuming
that there is a set P of np lines passing through the origin: P = {π1, . . . ,πnp},
the index for planar subclasses is

i = ns + arg min
j

d(�e1, πj), (8.3)

where d(�e, π) is the distance between a point�e and a line π. In other words, the
planar index i is the same as the index of the line πj that is closest to �e1.

The problem of evenly distributing a number of lines intersecting the origin
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The same method that is used for planar distributions might also be used for
linear distributions, but with �e3 (which corresponds to the linear axis) instead
of �e1, and a second set of lines L = {λ1, . . . ,λnl

}.

i = ns + nl + arg min
j

d(�e3, λj). (8.4)

If the number of planar and linear subclasses np and nl are the same, then L = P
and λj = πj for all j. However, for many kinds of data, planar distributions are
more descriptive than linear ones, so it may be better to use more planar than
linear subclasses. For the experiments used here, it was sufficient to use only
one linear class.

In addition to surface shape and orientation, the distance from the scanner
location to a particular surface is also important information. For this reason,
each scan is described by a matrix

F =
[

�f1 · · · �fnr

]

(8.5)
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Figure 8.1: Visualisation of the planar part �P of a histogram vector (Equation 8.1),
created from the scan on the right. In this case, np = 9 planar directions are used. The
thin black lines correspond to the directions π1, . . . , π9. The cones are scaled according
to the values of the corresponding histogram bins. There are two cones for each direction
in this illustration: one on each side of the origin. The dominant directions used to
normalise the scan’s orientation are shaded. (The following text will be explained further
in Section 8.1.2.) Directions that are not in D1 or D2 are white. D1 (dark grey) contains
one direction in this case: the vertical direction, corresponding to the ground plane. D2
(light grey) includes two potential secondary peaks (whose magnitudes are more similar
to the rest of the binned directions). In this example ta was set to 0.6. If ta were close to
1, D2 would only include one direction.

and a corresponding set of range intervals R = {r1, . . . , rnr}. The matrix is a
collection of such surface-shape histograms, where each column �fk is the his-
togram of all NDT cells within range interval rk (measured from the laser scan-
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with more linear structures than planar ones, line orientations could be used
instead, although such environments are unlikely to be encountered.

There is not always a single unambiguous maximum, but it is possible to
use two sets of directions, D1 and D2. Given the planar part �P′ = [P′

1, . . . , P′
np

]T

of �f ′ and an ambiguity threshold ta ∈ [0, 1] that determines which histogram
peaks are “similar enough”, the dominant directions can be selected as follows.
(This selection is also illustrated in Figure 8.1.) First, pick the histogram bin
with the maximum value

i′ = arg max
i

P′
i. (8.6)

The potential primary peaks are i′ and any directions that are “almost” as
common as i′ with respect to ta:

D1 = {i ∈ {1, . . . , np} | P′
i ≥ taP′

i′}. (8.7)

The same procedure is repeated to find the second most common direction,
choosing as a secondary peak the largest histogram bin that is not already in-
cluded in the primary peak set:

i′′ = arg max
i

P′
i | i /∈ D1. (8.8)

The potential secondary peaks are i′′ and any directions that are almost as
common as i′′ (but not already included in the primary peak set):

D2 = {i ∈ {1, . . . , np} | i /∈ D1, P′
i ≥ taP′

i′′}. (8.9)

This procedure gives two disjoint subsets D1 ⊂ P and D2 ⊂ P.
Now, the plan is to align the scan so that the primary (most common) peak

lies along the positive z axis. In order to do so, the rotation

Rz =



�πi ×





0
0
1



 ,−arc cos



�πi ·





0
0
1











 , (8.10)

where �πi is a unit vector along the line πi, rotates the scan so that �πi is aligned
along the positive z axis. The rotation axis �πi× [0, 0, 1]T is perpendicular to the
z axis. A separate rotation is created for each potential primary peak i ∈ D1.

Similarly, for each secondary peak i ∈ D2, it is possible to create a rotation
Ry that rotates the scan around the z axis so that �πi lies in the yz plane. To
determine the angle of Ry, use the normalised projection of Rz�πi onto the xy
plane: �π′

i. The angle of Ry is the angle between the projected vector �π′
i and the

yz plane:

Ry =









0
0
1



 ,−arc cos



�π′
i ·





0
1
0











 . (8.11)
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Given a scan X , the appearance descriptor F is created from the rotated scan
RyRzX . This alignment is always possible to make, unless all planes have the
same orientation. If it is not possible to find two main directions it is sufficient
to use only Rz, because in that case no subsequent rotation around the z axis
changes which histogram bins are affected by any planar distribution. If linear
subclasses of different orientations are used, it is possible to derive Ry from
linear directions if only one planar direction can be found.

In the case of ambiguous peaks (that is, when D1 or D2 has more than one
member), multiple histograms are generated. For each combination {i, j | i ∈
D1, j ∈ D1 ∪ D2, i �= j} apply the rotation RyRz to the original scan and

generate a histogram. The outcome is a set of histograms

F = {F1, . . . , F|D1|(|D1∪D2|−1)}. (8.12)

The set F is the appearance descriptor of the scan.
For highly symmetrical scans, the approach to rotation invariance presented

in this section could lead to a very large number of histograms. For example, in
the case of a scan generated at the centre of a sphere, where the histogram bins
for all directions have the same value, np

2 − np histograms would be created
(although a postprocessing step to prune all equivalent histograms could reduce
this to just one). In practise, this kind of symmetry effect was not found to be
a problem. The average number of histograms per scan is around three for the
data sets used in this work.

8.1.3 Difference measure

To quantify the difference between two surface shape histograms F and G, the
following measure has been used:

The matrices F and G are normalised using their entrywise 1-norms (that is,
the total number of occupied NDT cells in each scan). The sum of Euclidean
distances between each of their columns (each column corresponds to one range
interval) is computed, and the ratio max ( �F�1 , �G�1 )/ min ( �F�1 , �G�1 ) is
used to weight the the sum of columnwise distances.

δ(F, G) =

nr∑

i=1

(∥
∥
∥
∥
∥

�fi

�F�1
− �gi

�G�1

∥
∥
∥
∥
∥

2

)

max ( �F�1 , �G�1 )

min ( �F�1 , �G�1 )
(8.13)

The normalisation makes it possible to use a single threshold for data sets
that both contain scans that cover a large area (with many occupied NDT cells)
and scans of more confined spaces (with fewer cells). If the Euclidean distance
without normalisation were used instead,

δ̂(F, G) =

nr∑

i=1

∥
∥
∥
�fi −�gi

∥
∥
∥

2
, (8.14)
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with more linear structures than planar ones, line orientations could be used
instead, although such environments are unlikely to be encountered.
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use two sets of directions, D1 and D2. Given the planar part �P′ = [P′
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Given a scan X , the appearance descriptor F is created from the rotated scan
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to use only Rz, because in that case no subsequent rotation around the z axis
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subclasses of different orientations are used, it is possible to derive Ry from
linear directions if only one planar direction can be found.
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The set F is the appearance descriptor of the scan.
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in this section could lead to a very large number of histograms. For example, in
the case of a scan generated at the centre of a sphere, where the histogram bins
for all directions have the same value, np

2 − np histograms would be created
(although a postprocessing step to prune all equivalent histograms could reduce
this to just one). In practise, this kind of symmetry effect was not found to be
a problem. The average number of histograms per scan is around three for the
data sets used in this work.

8.1.3 Difference measure

To quantify the difference between two surface shape histograms F and G, the
following measure has been used:

The matrices F and G are normalised using their entrywise 1-norms (that is,
the total number of occupied NDT cells in each scan). The sum of Euclidean
distances between each of their columns (each column corresponds to one range
interval) is computed, and the ratio max ( �F�1 , �G�1 )/ min ( �F�1 , �G�1 ) is
used to weight the the sum of columnwise distances.
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The normalisation makes it possible to use a single threshold for data sets
that both contain scans that cover a large area (with many occupied NDT cells)
and scans of more confined spaces (with fewer cells). If the Euclidean distance
without normalisation were used instead,
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scans with many cells would tend to have larger difference values than scans
with few cells. One consequence is that in environments with some narrow
passages and some open areas, the open spaces would be harder to recognise.
In this case, the best threshold for the wide areas would tend to cause false
positives in the narrow areas.

The scaling factor max ( �F�1 , �G�1 )/ min ( �F�1 , �G�1 ) is used to differen-
tiate large scans (with many cells) from small ones (with few cells).

Given two scans X1 and X2 with histogram sets F and G, all members of the
scans’ sets of histograms are compared to each other using the δ difference mea-
sure from Equation 8.13, and the minimum δ is used as the difference measure
for the scan pair:

∆(X1,X2) = min
i, j

δ(Fi, Gj) Fi ∈ F , Gj ∈ G (8.15)

If ∆(X1,X2) is less than a certain difference-threshold value td the scans X1 and
X2 are assumed to be from the same location. For evaluation purposes X1 and
X2 are classified as positive.

8.1.4 Parameters

Summarising the previous text, these are the parameters of the proposed appear-
ance descriptor along with the parameter values selected for the experiments:

• NDT cell size B = 0.5 m,

• range limits R = {[0, 3), [3, 6), [6, 9), [9, 15), [15,∞)} m,

• spherical class count ns = 1,

• planar class count np = 9,

• linear class count nl = 1,

• eigenvalue-ratio threshold te = 0.10,

• ambiguity-ratio threshold ta = 0.60.

The values of these parameters were chosen empirically. Some parameters de-
pend on the sensor range (how much of the environment is seen at each point),
but a single parameter set worked well for all investigated data sets.

The best cell size B and the range limits R depend mainly on the scan-
ner configuration. If the cell size is too small, the PDFs are dominated by
scanner noise. Additionally, planes at the farther parts of scans (where scan
points are sparse) may show up in the histogram as lines with varying ori-
entations. If the cell size is too large, details are lost because the PDFs don’t
accurately represent the surfaces. As shown in Chapter 6, cell sizes between
0.5 m and 2 m work well for registering scans of the scale encountered by a
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mobile robot equipped with a rotating SICK LMS 200 laser scanner when us-
ing NDT for scan registration. Similar experimental platforms were used for
the data examined in this work. For the present experiments, B = 0.5 m and
R = {[0, 3), [3, 6), [6, 9), [9, 15), [15,∞)} were used. Using fewer range inter-
vals decreased the loop-detection accuracy. If using a scanner with different
max range, R and B should probably be adjusted. The same parameter set-
tings worked well for all the data set used here even though the point cloud
resolution varies with almost an order of magnitude among them.

Using nine planar classes, in addition to one spherical class and one linear
class, worked well for all of the data sets. The reason for using only one spher-
ical and linear class is that these classes tend to be less stable than planar ones.
Linear distributions with unpredictable directions tend to occur at the far ends
of a scan, where the point density is too small. Spherical distributions often oc-
cur at corners and edges, depending on where the boundaries of the NDT cells
end up, and may shift from scan to scan. However, using only the planar fea-
tures (ns = nl = 0) decreased the obtainable recall rate without false positives
with around one third for the data sets evaluated here. Using more subclasses
may introduce discretisation issues. The small number of classes means that the
surface shape histograms provide a very compact representation of the input
data. Only 55 values are required (11 shape classes and 5 range intervals) for
each histogram. In order to achieve rotation invariance multiple histograms are
created for each scan (as described in Section 8.1.2) but with an average of
three histograms per scan, the appearance of a point cloud with several tens of
thousands of points can still be represented using only 165 values.

The eigenvalue-ratio threshold te and ambiguity-ratio threshold ta were also
chosen empirically. Both of these thresholds must be on the interval [0, 1]. In the
experiments, using te = 0.10 and ta = 0.60 produced good results independent
of the data.

In addition to the parameters of the appearance descriptor, it is necessary to
select a difference threshold td that determines which scans are similar enough
to be assumed to be taken at the same location. The difference threshold td was
chosen separately for each data set, as described in Section 8.2.3. A method for
automatically selecting a difference threshold is presented in Section 8.2.4.

8.2 Experiments

In order to evaluate the performance of the proposed loop-detection algorithm,
three data sets were used: one outdoor set from a campus area, one from an
underground mine, and one from an indoor office environment. All of the data
sets are available online from the Osnabrück Robotic 3D Scan Repository.2

2http://kos.informatik.uni-osnabrueck.de/3Dscans/
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Figure 8.2: The Hannover-2 data set, seen from above with parallel projection.

8.2.1 Data sets

The Hannover-2 data set, shown in Figure 8.7, was recorded by Oliver Wulf
at the campus of Leibniz Universität Hannover. It contains 922 3D omnidirec-
tional scans (with 360◦ field of view) and covers a trajectory of about 1.24 km.
Each 3D scan is a point cloud containing approximately 15 000 scan points.3

Ground truth pose measurements were acquired by registering every 3D scan
against a point cloud made from a given 2D map and an aerial lidar scan made
while flying over the campus area, as described in the SLAM-benchmarking
paper by Wulf et al. [109]. The ground-truth poses were kindly provided by
Andreas Nüchter.

The AASS-Loop data set was recorded around the robot lab and coffee
room of the AASS research institute at Örebro University. An overhead view
of this data set is shown in Figure 8.3. This set is much smaller than the
Hannover-2 one. The total trajectory travelled is 111 m. The set contains 60 om-
niscans with around 112 000 points per scan. For this data set, pairwise scan
registration using 3D-NDT (given the initial pose estimates from the robot’s
odometry) was exact enough to be used for the ground-truth poses. (The ac-
cumulated pose error between scan 1 and scan 60 was 0.67 m and 1.3◦ after
registration.) However, using only the laser scans without odometry informa-
tion, it is not possible to detect loop closure with scan registration.

3The original data set contains 923 scans, but scan number 601 was corrupt and therefore not
used here.
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Figure 8.3: The AASS-Loop data set, shown from above with the ceiling removed. The
inlay in the right-hand corner shows the accumulated pose error from pairwise scan
registration using 3D-NDT when returning to location B.

A third data set, Mission-4-1, was recorded in the Kvarntorp mine. (A part
of this data set was also used for the registration experiments in Section 6.4.3.)
The original data set is divided into four “missions”. The experiments presented
here are made on “mission 4” followed by “mission 1”. The reason for choos-
ing these two missions is that they overlap each other and that the starting
point of mission 1 is close to the end point of mission 4, so that they can be
thought of as forming a single sequential trajectory. This combined sequence
has 131 scans, each covering a 180◦ horizontal field of view and containing
around 70 000 data points. The total trajectory is approximately 370 m. See
Figure 8.4 for an overview of this data set. The Mission-4-1 data set is rather
challenging, for a number of reasons. Firstly, the mine environment is highly
self-similar. Without knowledge of the robot’s trajectory, it is very difficult to
tell different tunnels apart, both from 3D scans and from camera images, as il-
lustrated in Figure 8.5. This kind of perceptual aliasing is an inherent problem
of purely appearance-based methods. Perceptual aliasing is the problem that
occurs when two similar inputs should lead to different outputs. The fact that
the scans of this data set are not omnidirectional also makes loop detection
more difficult, because the same location can look very different depending on
which direction the scanner is pointing towards. Yet another challenge is that
the distance travelled between the scans is longer for this data set. For this rea-
son, scans taken when revisiting a location tend to be recorded further apart,
making the scans look more different.

Scan registration alone was not enough to build a consistent 3D map of the
Mission-4-1 data set, and an aerial reference scan was not available for obvi-
ous reasons. Instead, ground-truth poses were provided by Andreas Nüchter,
using a network-based global relaxation method for 3D laser scans developed
in collaboration with Borrmann et al. [10]. A network with loop closures was
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Figure 8.2: The Hannover-2 data set, seen from above with parallel projection.

8.2.1 Data sets

The Hannover-2 data set, shown in Figure 8.7, was recorded by Oliver Wulf
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tional scans (with 360◦ field of view) and covers a trajectory of about 1.24 km.
Each 3D scan is a point cloud containing approximately 15 000 scan points.3

Ground truth pose measurements were acquired by registering every 3D scan
against a point cloud made from a given 2D map and an aerial lidar scan made
while flying over the campus area, as described in the SLAM-benchmarking
paper by Wulf et al. [109]. The ground-truth poses were kindly provided by
Andreas Nüchter.

The AASS-Loop data set was recorded around the robot lab and coffee
room of the AASS research institute at Örebro University. An overhead view
of this data set is shown in Figure 8.3. This set is much smaller than the
Hannover-2 one. The total trajectory travelled is 111 m. The set contains 60 om-
niscans with around 112 000 points per scan. For this data set, pairwise scan
registration using 3D-NDT (given the initial pose estimates from the robot’s
odometry) was exact enough to be used for the ground-truth poses. (The ac-
cumulated pose error between scan 1 and scan 60 was 0.67 m and 1.3◦ after
registration.) However, using only the laser scans without odometry informa-
tion, it is not possible to detect loop closure with scan registration.

3The original data set contains 923 scans, but scan number 601 was corrupt and therefore not
used here.
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Figure 8.3: The AASS-Loop data set, shown from above with the ceiling removed. The
inlay in the right-hand corner shows the accumulated pose error from pairwise scan
registration using 3D-NDT when returning to location B.

A third data set, Mission-4-1, was recorded in the Kvarntorp mine. (A part
of this data set was also used for the registration experiments in Section 6.4.3.)
The original data set is divided into four “missions”. The experiments presented
here are made on “mission 4” followed by “mission 1”. The reason for choos-
ing these two missions is that they overlap each other and that the starting
point of mission 1 is close to the end point of mission 4, so that they can be
thought of as forming a single sequential trajectory. This combined sequence
has 131 scans, each covering a 180◦ horizontal field of view and containing
around 70 000 data points. The total trajectory is approximately 370 m. See
Figure 8.4 for an overview of this data set. The Mission-4-1 data set is rather
challenging, for a number of reasons. Firstly, the mine environment is highly
self-similar. Without knowledge of the robot’s trajectory, it is very difficult to
tell different tunnels apart, both from 3D scans and from camera images, as il-
lustrated in Figure 8.5. This kind of perceptual aliasing is an inherent problem
of purely appearance-based methods. Perceptual aliasing is the problem that
occurs when two similar inputs should lead to different outputs. The fact that
the scans of this data set are not omnidirectional also makes loop detection
more difficult, because the same location can look very different depending on
which direction the scanner is pointing towards. Yet another challenge is that
the distance travelled between the scans is longer for this data set. For this rea-
son, scans taken when revisiting a location tend to be recorded further apart,
making the scans look more different.

Scan registration alone was not enough to build a consistent 3D map of the
Mission-4-1 data set, and an aerial reference scan was not available for obvi-
ous reasons. Instead, ground-truth poses were provided by Andreas Nüchter,
using a network-based global relaxation method for 3D laser scans developed
in collaboration with Borrmann et al. [10]. A network with loop closures was
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Figure 8.4: The Mission-4-1 data set, seen from above with the ceiling removed.

manually created and given as input to the algorithm in order to generate a
reference map. The result was visually inspected for correctness.

8.2.2 Experimental method

Two methods were used in order to judge the discrimination ability of the
surface-shape histograms.

Full evaluation

For the first type of evaluation, all combinations (Xi,Xj | i �= j) of scan pairs
from each data set are considered, counting the number of true positives and
false positives with regard to the ground truth. In related work on loop detec-
tion [13, 39] the performance is reported as the recall rate with a manually
chosen threshold that gives a 1% false-positive rate. For these tests, the same
approach to evaluate the result was taken.

However, it is not trivial to determine the ground truth: what should be
considered a true or a false positive. The classification of true and false positives
relates to the definition of a place, mentioned in the introduction of this chapter.
In this performance evaluation the choice was made to use the matrix of the
distances between all scan pairs as the ground truth, after applying a distance
threshold tr (in metric space), so that all pairs of scans that are within, for
example, 3 m are considered to be sufficiently overlapping to be regarded as
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(a) Location F (b) Location H

Figure 8.5: An example of perceptual aliasing in the Mission-4-1 data set. The images
show two different places (locations F and H in Figure 8.4). It is difficult to tell the two
places apart, both from the camera images and the scanned point clouds. (The point
clouds are viewed from above.)

positives. It is not always easy to select a distance threshold value that captures
the relationships between scans in a satisfactory manner. If the threshold tr is
large, some scans with very different appearances (for example, scans taken at
different sides of the corner of a building, or before and after passing through
a door) might still be considered to overlap and would therefore be regarded
as false negatives when their appearances don’t match. Another problem is that
sequential scans are often acquired in close proximity to one another. Therefore,
when revisiting a location, there may be several overlapping scans within the
distance threshold, according to the “ground truth”. But with a discriminative
difference threshold td (in appearance space), only one or a few of them may be
detected as positives. Even if the closest scan pair is correctly matched, the rest
would then be regarded as false negatives, which may not be the desired result.
If, on the other hand, the distance threshold tr is too small, the ground-truth
matrix will miss some loop closures where the robot is not revisiting the exact
same position.

Another possibility would be to manually label all scan pairs. However,
when evaluating multiple data sets containing several hundreds of scans, it is
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Figure 8.4: The Mission-4-1 data set, seen from above with the ceiling removed.
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from each data set are considered, counting the number of true positives and
false positives with regard to the ground truth. In related work on loop detec-
tion [13, 39] the performance is reported as the recall rate with a manually
chosen threshold that gives a 1% false-positive rate. For these tests, the same
approach to evaluate the result was taken.

However, it is not trivial to determine the ground truth: what should be
considered a true or a false positive. The classification of true and false positives
relates to the definition of a place, mentioned in the introduction of this chapter.
In this performance evaluation the choice was made to use the matrix of the
distances between all scan pairs as the ground truth, after applying a distance
threshold tr (in metric space), so that all pairs of scans that are within, for
example, 3 m are considered to be sufficiently overlapping to be regarded as
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places apart, both from the camera images and the scanned point clouds. (The point
clouds are viewed from above.)

positives. It is not always easy to select a distance threshold value that captures
the relationships between scans in a satisfactory manner. If the threshold tr is
large, some scans with very different appearances (for example, scans taken at
different sides of the corner of a building, or before and after passing through
a door) might still be considered to overlap and would therefore be regarded
as false negatives when their appearances don’t match. Another problem is that
sequential scans are often acquired in close proximity to one another. Therefore,
when revisiting a location, there may be several overlapping scans within the
distance threshold, according to the “ground truth”. But with a discriminative
difference threshold td (in appearance space), only one or a few of them may be
detected as positives. Even if the closest scan pair is correctly matched, the rest
would then be regarded as false negatives, which may not be the desired result.
If, on the other hand, the distance threshold tr is too small, the ground-truth
matrix will miss some loop closures where the robot is not revisiting the exact
same position.

Another possibility would be to manually label all scan pairs. However,
when evaluating multiple data sets containing several hundreds of scans, it is
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not practical to do so; and even then, some arbitrary decision would have to be
made as to whether some scan pairs overlap or not.

Section 8.3.2 will discuss how this experimental method compares to the
evaluations of other authors. The validity of the design decisions used here
and the results may be judged by inspecting the trajectories and ground truth
matrices in Figures 8.6–8.11.

SLAM scenario

As a second type of evaluation, let’s also consider how the method would fare
in a SLAM application. In this case, for each scan X only the most similar
corresponding scan X̂ is considered, instead of all other scans. The ground
truth in this case is a manual labelling of scans as either “revisited” (meaning
that the scans were acquired at a place that was visited more than once, and
therefore should be similar to at least one other scan) or “nonrevisited” (which
is to say that they were seen only once). Because the ground truth labelling is
done to the set of individual scans instead of all combinations of scan pairs, it
is feasible to perform manually.

This second type of evaluation is more similar to how the FAB-MAP method
of Cummins and Newman [23–26] has been evaluated.

If X has been labelled as revisited, its most similar scan X̂ is within 10 m of
X and the difference measure of the two scans is below the threshold (that is,
∆(X , X̂ ) < td), then X is considered a true positive. The 10 m distance thresh-
old is the same that was used by Valgren and Lilienthal [104] for establishing
successful localisation in the visual domain. Cummins and Newman [26] have
used a 40 m threshold, but that was deemed too large for the data sets used here.
Most of the detected scan pairs are comfortably below the 10 m threshold. For
the AASS-Loop and Mission-4-1 data sets, the maximum inter-scan distance at
detected loop closure is 2.6 m. For Hannover-2, 98% of the detected scans are
within 5 m of each other, and 83% are within 3 m.

For these experiments, the results are reported as precision-recall rates. Pre-
cision is the ratio of true-positive loop detections to the sum of all loop detec-
tions. Recall is the ratio of true positives to the number of ground-truth loop
closures. A nonrevisited scan cannot contribute to the true positive rate, but
it can generate a false positive, thus affecting precision. Likewise true loop clo-
sures that are incorrectly regarded as negative decrease the recall rate but do not
impact the precision rate. It is important to realize that a 1% false-positive rate
is not the same as 99% precision. If the number of nonrevisited scans is much
larger than the number of revisited ones, as is the case for our data sets, falsely
detecting 1% of the nonrevisited ones as positive will decrease the precision
rate with much more than 1%.

In a SLAM application, even a single false positive or mismatch can make
the map unusable if no further measures are taken to recover from false scan
correspondences. Therefore the best difference threshold in this case is the
largest possible value with 100% precision.
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For the SLAM-scenario tests, a minimum loop size was employed. Even
though pose estimates from odometry were not used, it can be assumed that
the scans are presented as an ordered sequence, successively acquired by the
robot as it moves along its trajectory. When finding the most similar correspon-
dence of X , it is compared only to scans that are more than 30 steps away in
the sequence. The motivation for this limit is that in the context of a SLAM ap-
plication it is not interesting to find small “loops” with only consecutive scans.
It is only interesting to detect loop closure when the robot has left a place and
returned to it later. A side effect of the minimum loop size is that some simi-
lar scans that are from the same area but more than 10 m apart and therefore
otherwise would decrease the precision are removed. However, in a SLAM sce-
nario it makes sense to add such a limit if it is known that the robot cannot
possibly close a “real” loop in only a few steps.

In our previous work on loop detection [69] we used this SLAM-type eval-
uation but obtained the ground-truth labelling of revisited and nonrevisited
scans using a distance threshold. The manual labelling employed here is a bet-
ter criterion for judging which scans are revisited and not. Again, please refer
to the figures visualising the results (Figures 8.7, 8.9, and 8.11) to judge the
validity of these evaluations.

8.2.3 Results

This section details the results of applying the proposed loop-detection method
to the data sets described above. The results are summarised in Tables 8.1
and 8.2.

Hannover-2

The Hannover-2 data set is the one that is most similar to the kind of outdoor
semi-structured data investigated in many other papers on robotic loop detec-
tion [13, 25, 39, 104].

When evaluating the full similarity matrix, the maximum attainable re-
call rate with at most 1% false positives is 80.6%, using td = 0.1494. Fig-
ure 8.6(a) shows the ground truth distance matrix of the Hannover-2 scans and
Figure 8.6(b) shows the similarity matrix obtained with the proposed appear-
ance descriptor and difference measure. Please note that the two matrices are
strikingly similar. Most of the overlapping (dark) parts in the ground truth ma-
trix are captured correctly in the similarity matrix. The distance threshold tr

was set to 3 m.
For the SLAM-style experiment, the maximum recall rate at 100% precision

is 47.0% out of 428 revisited scans, using td = 0.0737. The result is visualised
in Figure 8.7, showing all detected true positives and the scans that they are
matched to, as well as true and false negatives.

If no minimum loop size is used in the SLAM evaluation (thus requiring
that the robot should be able to relocalize itself from the previous scan at all
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not practical to do so; and even then, some arbitrary decision would have to be
made as to whether some scan pairs overlap or not.
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times), the maximum recall rate at 100% precision is 24.6% at td = 0.0579. If
the same difference threshold as above is used (td = 0.0737) the recall rate for
this case is 45.7% out of the 922 scans and the precision rate is 98.6%, with
six false correspondences (0.65% of the 922 scans). Out of the six errors, four
scans (two pairs) are from the parking lot between locations H and J, which is
a place with repetitive geometric structure. The other two are from two corners
of the same building: locations A and B.

At this point it should be noted that even a recall rate of around 30% often
is sufficient to close all loops in a SLAM scenario, as long as the detected loop
closures are uniformly distributed over the trajectory, because several scans are
usually taken from each location. Even if one revisited scan is not detected
(because of noisy scans, discretisation artifacts in the surface shape histograms,
or dynamic changes) one of the next few scans is likely to be detected instead.
(This fact has also been noted by Cummins and Newman [25] and Bosse and
Zlot [13].)

As a side note, it can also be mentioned that using scan registration alone
to detect loop closure is not sufficient for this data set, as has been described by
Wulf et al. [109]. Because Wulf et al. depend on an accurate initial pose estimate
(which is necessary even for reliable and fast scan registration algorithms) it is
necessary to use the robot’s current pose estimate and consider only the closest
few scans to detect loop closure. Therefore the method of Wulf et al. [109],
and indeed all methods using local pairwise registration methods such as ICP
or 3D-NDT, cannot detect loops when the accumulated pose error is too large.
In contrast, the method proposed in this text requires no pose information.

AASS-Loop

When evaluating the full similarity matrix for the AASS-Loop data set, the
threshold tr on the ground-truth distance matrix was set to 1 m instead of 3 m.
The reason for the tighter distance threshold in this case is the many passages
and tight corners of this data set. The appearance of scans often changes dras-
tically from one scan to the next when rounding a corner into another corridor
or passing through a door, and an appearance-based loop-detection method
cannot be expected to handle such scene changes. The 1 m threshold filters out
all such scan pairs while keeping the truly overlapping scan pairs that occur
after the robot has returned to location C, as can be seen in Figure 8.8(a).

For this data set, the maximum recall rate (for the complete similarity ma-
trix) with less than 1% false positives is 62.5%, setting td = 0.0990.

In the SLAM scenario, the recall rate for this data set was 69.6% at 100%
precision, using td = 0.099.

The part of this data set that contains a loop closure (between locations A
and C) is traversed in the opposite direction when the robot returns. The high
recall rate illustrates that the surface-shape histograms are robust to changes in
rotation.
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(a) Thresholded ground-truth distance matrix
of Hannover-2, showing all scan pairs taken

less than 3 m apart.
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(b) Similarity matrix of Hannover-2, showing
all scan pairs whose difference value

∆ < 0.0737.

Figure 8.6: Comparing the ground-truth matrix and the output similarity matrix for
Hannover-2. Scan numbers are on the left and bottom axes, place labels are on the top
and right axes. (Because of the large matrix and the small print size, Figure b has been
morphologically dilated by a 3 × 3 element in order to better show the matrix values.)

False negatives
True negatives
True positives

Figure 8.7: SLAM result for the Hannover-2 data set. The robot travelled along the
sequence A-B-C-D-A-B-E-F-A-D-G-H-I-J-H-K-F-E-L-I-K-A. Note that there are no false
positives.
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times), the maximum recall rate at 100% precision is 24.6% at td = 0.0579. If
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this case is 45.7% out of the 922 scans and the precision rate is 98.6%, with
six false correspondences (0.65% of the 922 scans). Out of the six errors, four
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of the same building: locations A and B.
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necessary to use the robot’s current pose estimate and consider only the closest
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and indeed all methods using local pairwise registration methods such as ICP
or 3D-NDT, cannot detect loops when the accumulated pose error is too large.
In contrast, the method proposed in this text requires no pose information.
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threshold tr on the ground-truth distance matrix was set to 1 m instead of 3 m.
The reason for the tighter distance threshold in this case is the many passages
and tight corners of this data set. The appearance of scans often changes dras-
tically from one scan to the next when rounding a corner into another corridor
or passing through a door, and an appearance-based loop-detection method
cannot be expected to handle such scene changes. The 1 m threshold filters out
all such scan pairs while keeping the truly overlapping scan pairs that occur
after the robot has returned to location C, as can be seen in Figure 8.8(a).

For this data set, the maximum recall rate (for the complete similarity ma-
trix) with less than 1% false positives is 62.5%, setting td = 0.0990.

In the SLAM scenario, the recall rate for this data set was 69.6% at 100%
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The ground truth and similarity matrices for the AASS-Loop data set are
shown in Figure 8.8. The trajectory, labelled with true positives as well as true
and false negatives, is shown in Figure 8.9.

Mission-4-1

The Mission-4-1 data set had to be evaluated slightly differently than the other
two, because an omnidirectional scanner was not used to record this data set.
An appearance-based loop-detection algorithm cannot be rotation invariant if
the input scans are not omnidirectional. When looking in opposite directions
from the same place, the view is generally very different. Therefore only scans
taken in similar directions (within 20◦) were counted as overlapping when eval-
uating the algorithm for Mission-4-1. The scans that were taken at overlapping
positions but with different orientations were all (correctly) marked as nonover-
lapping by the algorithm. With the exception of the way of labelling positive
and negative scans, the same evaluation and algorithm parameters were used
for this data set as for Hannover-2.

Evaluating the full similarity matrix, the recall rate at 1% false positives is
27.5% (td = 0.1134). For the SLAM experiment, td = 0.0870 gives the highest
recall rate at full precision: 28.6%.

The challenging properties of the underground mine environment show in
the substantially lower recall rates for this data set compared to Hannover-2.
Still, a reasonable distribution of the revisited scans in the central tunnel are
detected in the SLAM scenario (shown in Figure 8.11), and there are no false
positives. The ground-truth distance matrix is shown in Figure 8.10(a), and the
similarity matrix is shown in Figure 8.10(b). Comparing the two figures, it can
be seen that some scans are recognised from all revisited segments: For all off-
diagonal stripes in Figure 8.10(a), there is at least one corresponding scan pair
below the difference threshold in Figure 8.10(b).

8.2.4 Automatic threshold selection

It is important to find a good value for the difference threshold td. Using a
too small value results in a small number of true positives (correctly detected
overlapping scan pairs). Using a too-large value results in false positives (scan
pairs considered overlapping even though they are not). Figures 8.12 and 8.13
illustrate the discriminative ability of the surface-shape histograms for the two
different modes of evaluation, showing how the numbers of true positives and
errors change with increasing values of the difference threshold, as well as the
ROC (receiver operating characteristics) curve.

The results reported thus far used manually chosen difference thresholds,
selected with the help of the available ground truth. In order to determine td
when ground-truth data are unavailable it is desirable to estimate the distribu-
tions of difference values (Equation 8.15) for revisited scans versus the values
for nonrevisited scans. Given the set of numbers containing all scans’ smallest
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Figure 8.8: Comparing the ground truth matrix and output similarity matrix for AASS-
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Figure 8.9: SLAM result for the AASS-Loop data set. The robot moved along the path
A-B-C-D-E-F-G-C-B-A.
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The ground truth and similarity matrices for the AASS-Loop data set are
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diagonal stripes in Figure 8.10(a), there is at least one corresponding scan pair
below the difference threshold in Figure 8.10(b).

8.2.4 Automatic threshold selection

It is important to find a good value for the difference threshold td. Using a
too small value results in a small number of true positives (correctly detected
overlapping scan pairs). Using a too-large value results in false positives (scan
pairs considered overlapping even though they are not). Figures 8.12 and 8.13
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Figure 8.11: SLAM result for Mission-4-1. The robot travelled along the sequence A-B-
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than 3 m apart and with an orientation
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Figure 8.10: Comparing the distance matrix and the output similarity matrix for
Mission-4-1.
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Figure 8.11: SLAM result for Mission-4-1. The robot travelled along the sequence A-B-
C-D-E-A-B-F-G-A-B-C-H-F-H.
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(b) ROC plots for all data sets.

Figure 8.12: Plots of the appearance descriptor’s discriminative ability, evaluating all
possible scan pairs.
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(b) Precision-recall plots for all data sets.

Figure 8.13: Plots of the appearance descriptor’s discriminative ability for the SLAM
scenario.

140

difference values, it can be assumed that the values are drawn from two distri-
butions — one for the revisited scans and one for the nonrevisited ones. If it
is possible to fit a probabilistic mixture model of the two components to the
set of values, a good value for the difference threshold should be such that the
estimated probability of false positives p(fp) is small, but the estimated proba-
bility of true positives is as large as possible. Figure 8.14 shows a histogram of
the difference values for the scans in the Hannover-2 data set. The histogram
was created using the difference value of most similar scan for each scan in the
data set. (In other words, this is the outcome of the algorithm in the SLAM
scenario.) The figure also shows histograms for the revisited and nonrevisited
subsets of the data (which are not known in advance).

A common way to estimate mixture-model parameters is to fit a Gaussian
mixture model to the data with the expectation maximisation (EM) algorithm.
However, inspecting the histograms of difference values (as in Figure 8.14), it
seems that the underlying distributions are not normally distributed, but have a
significant skew with the right tail being longer than the left. As a matter of fact,
trying to fit a two-component Gaussian mixture model with EM usually results
in distribution estimates with too large means. It is sometimes feasible to use
three Gaussian components instead, where one component is used to model the
long tail of the skew data [69]. However, only a binary classification is desired,
so there is no theoretical ground for such a model.

Gamma-distributed components fit the difference-value distributions better
than Gaussians. Figure 8.15(a) shows two Gamma distributions fitted in isola-
tion to each of the two underlying distributions. Since the goal is to choose td
such that the expected number of false positives is small, a reasonable criterion
is that the cumulative distribution function of the mixture-model component
that corresponds to nonrevisited scans should be small. This is equivalent to
saying that p(fp) should be small. Figure 8.15(b) shows the cumulative distribu-
tion functions of the mixture model components in Figure 8.15(a).

For the Mission-4-1 data set, EM finds a rather well-fitting mixture model.
With p(fp) = 0.005 the threshold value is 0.0851, resulting in a 22.9% recall
rate with no false positives. This is a slightly conservative threshold, but it has
100% precision.

The AASS-Loop data set is more challenging for EM. It only contains 60
scans, which makes it difficult to fit a reliable probability distribution model
to the difference values. Instead, the following approach was used for evaluat-
ing the automatic threshold selection. Two maximum-likelihood Gamma dis-
tributions were fitted to the revisited and nonrevisited scans separately. Using
these distributions and the relative numbers of revisited and nonrevisited scans
of AASS-Loop, 600 Gamma distributed random numbers were generated, and
EM was applied to find a maximum likelihood model of the simulated com-
bined data. The simulated values represent the expected output of collecting
scans at a much denser rate in the same environment. Using the resulting mix-
ture model and p(fp) = 0.005 gave td = 0.091 and a recall rate of 60.9%.

141



141

 0

 20

 40

 60

 80

 100

 0  0.1  0.2  0.3  0.4  0.5

%
 o

f 
s
c
a
n
s

Difference threshold td

True positives
False positives

(a) Difference threshold vs. true- and false-positive rates
for Hannover-2.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 t

ru
e

 p
o

s
it
iv

e

% false postive

Kvarntorp
AASS-loop
Hannover2

(b) ROC plots for all data sets.

Figure 8.12: Plots of the appearance descriptor’s discriminative ability, evaluating all
possible scan pairs.

 0

 20

 40

 60

 80

 100

 0.074 0  0.1  0.2  0.3

%
 o

f 
s
c
a
n
s

Difference threshold td

Recall
Precision

(a) Difference threshold vs. recall and precision for
Hannover-2. The best threshold (giving the most true

positives at 100% precision) is marked with a bar.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

%
 p

re
c
is

io
n

% recall

Kvarntorp
AASS-loop
Hannover2

(b) Precision-recall plots for all data sets.

Figure 8.13: Plots of the appearance descriptor’s discriminative ability for the SLAM
scenario.

140

difference values, it can be assumed that the values are drawn from two distri-
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is possible to fit a probabilistic mixture model of the two components to the
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three Gaussian components instead, where one component is used to model the
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Gamma-distributed components fit the difference-value distributions better
than Gaussians. Figure 8.15(a) shows two Gamma distributions fitted in isola-
tion to each of the two underlying distributions. Since the goal is to choose td
such that the expected number of false positives is small, a reasonable criterion
is that the cumulative distribution function of the mixture-model component
that corresponds to nonrevisited scans should be small. This is equivalent to
saying that p(fp) should be small. Figure 8.15(b) shows the cumulative distribu-
tion functions of the mixture model components in Figure 8.15(a).

For the Mission-4-1 data set, EM finds a rather well-fitting mixture model.
With p(fp) = 0.005 the threshold value is 0.0851, resulting in a 22.9% recall
rate with no false positives. This is a slightly conservative threshold, but it has
100% precision.

The AASS-Loop data set is more challenging for EM. It only contains 60
scans, which makes it difficult to fit a reliable probability distribution model
to the difference values. Instead, the following approach was used for evaluat-
ing the automatic threshold selection. Two maximum-likelihood Gamma dis-
tributions were fitted to the revisited and nonrevisited scans separately. Using
these distributions and the relative numbers of revisited and nonrevisited scans
of AASS-Loop, 600 Gamma distributed random numbers were generated, and
EM was applied to find a maximum likelihood model of the simulated com-
bined data. The simulated values represent the expected output of collecting
scans at a much denser rate in the same environment. Using the resulting mix-
ture model and p(fp) = 0.005 gave td = 0.091 and a recall rate of 60.9%.
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Figure 8.14: Histograms of the smallest difference values for revisited and non-revisited
scans of the Hannover-2 data set. (In general, only the histogram for all scans is known.)
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Figure 8.15: Determining td for the Hannover-2 data set using a Gamma mixture model.
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Figure 8.16: Histograms of the difference values ∆ (considering each scan’s most sim-
ilar correspondence) for revisited and non-revisited scans of the Hannover-2 data set.
The components of a Gamma mixture model fitted with EM for two different initial
parameter estimates are also shown. The log-likelihood ratio of 8.16(a)/8.16(b) is 1.01.

Since EM is a local optimisation algorithm, it can be sensitive to the initial
estimates given. When applied to the output of the Hannover-2 data set, it
tends to converge to one of two solutions, shown in Figure 8.16. From visual
inspection, the solution of Figure 8.16(b) looks better than 8.16(a), but the
likelihood function of the solution in 8.16(a) is higher. Solution 8.16(a) uses a
wider than necessary model of the nonrevisited scans, resulting in a conservative
threshold value. With p(fp) = 0.005, solution 8.16(a) gives td = 0.0500 and
only a 20.8% recall rate, although at 100% precision. The numbers for 8.16(b)
are td = 0.0843, 55.6% recall, and 94.8% precision. Table 8.2 includes the
results of solution 8.16(b).

This approach for determining td involves no training, and is a completely
unsupervised learning process. However, the difference threshold can only be
estimated offline. Not because of the computational burden (which is very mod-
est) but because a sufficiently large sample of scans must have been encountered
before EM can be used to estimate a reliable threshold. As long as there are
enough samples, the method described in this section gives a useful estimate
for td. However, since it is not possible to guarantee that the output threshold
value produces no false positives, a reliable SLAM implementation should still
have some way of handling spurious false positives.

8.2.5 Execution time

The experiments were run using a C++ implementation on a laptop computer
with a 1600 MHz Intel Celeron CPU and 2 GiB of RAM.

For the AASS-Loop data set, average times (measured with the gprof pro-
filing utility) for computing the surface-shape histograms were 0.5 s per call
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Since EM is a local optimisation algorithm, it can be sensitive to the initial
estimates given. When applied to the output of the Hannover-2 data set, it
tends to converge to one of two solutions, shown in Figure 8.16. From visual
inspection, the solution of Figure 8.16(b) looks better than 8.16(a), but the
likelihood function of the solution in 8.16(a) is higher. Solution 8.16(a) uses a
wider than necessary model of the nonrevisited scans, resulting in a conservative
threshold value. With p(fp) = 0.005, solution 8.16(a) gives td = 0.0500 and
only a 20.8% recall rate, although at 100% precision. The numbers for 8.16(b)
are td = 0.0843, 55.6% recall, and 94.8% precision. Table 8.2 includes the
results of solution 8.16(b).

This approach for determining td involves no training, and is a completely
unsupervised learning process. However, the difference threshold can only be
estimated offline. Not because of the computational burden (which is very mod-
est) but because a sufficiently large sample of scans must have been encountered
before EM can be used to estimate a reliable threshold. As long as there are
enough samples, the method described in this section gives a useful estimate
for td. However, since it is not possible to guarantee that the output threshold
value produces no false positives, a reliable SLAM implementation should still
have some way of handling spurious false positives.

8.2.5 Execution time

The experiments were run using a C++ implementation on a laptop computer
with a 1600 MHz Intel Celeron CPU and 2 GiB of RAM.

For the AASS-Loop data set, average times (measured with the gprof pro-
filing utility) for computing the surface-shape histograms were 0.5 s per call
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Table 8.3: Summary of resource requirements. In addition to the number of scans in
each data set and the average point count per scan, the table shows the average time to
create a single histogram (on a 1.6 GHz CPU) and the average number of histograms
per scan.

Data set Scans Points/scan Time/histogram Histograms/scan

Hannover-2 922 15 000 0.18 s 3.2
Mission-4-1 130 70 000 0.27 s 2.8
AASS-Loop 60 112 000 0.50 s 2.4

to the histogram computation function, and in total 2.2 s per scan to gener-
ate histograms (including transforming the point cloud, generating �f ′ and the
histograms that make up F). The average number of histograms required for
rotation invariance (that is, the size of F) is 2.4. In total, 0.14 s were spent
computing similarity measures for scan pairs. There are 60 scans in the data
set, 144 histograms were created, 1442 = 20 736 similarity measures were
computed, so the average time per similarity comparison (Equation 8.13) was
around 7 µs, and it took 0.04 ms to compare two scans (Equation 8.15). (Nat-
urally, it would have been sufficient to compute only one half of the similarity
matrix, since the matrix is symmetric.) In other words, once the histograms
have been created, if each scan requires the generation of 2.4 histograms on
average a new scan can be compared to roughly 25 000 other scans in one sec-
ond when testing for loop closure, using exhaustive search. The corresponding
numbers for all of the data sets are shown in Table 8.3.

The time for creating the histograms and the number of histograms required
for rotation invariance depend on the data, but the time required for similarity
comparisons is independent of the data.

The time spent on histogram creation can be significantly reduced if transfor-
mations are applied to the first computed histogram when creating F , instead of
computing new histograms from scratch after transforming the original point
cloud. With this optimisation, the total time spent while generating the appear-
ance descriptor is 1.0 s per scan instead of 2.2 s per scan for the AASS-Loop
data set. However, the resulting histograms are not identical to the ones that are
achieved by recomputing histograms from the transformed point clouds. For all
three data sets, the recognition results were marginally worse when using this
optimisation.

8.3 Related work

8.3.1 Other loop-detection approaches

A large part of the related loop-detection literature is focused on data from
camera images and 2D range data.
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Ramos et al. [87] used a combination of visual cues and 2D laser readings to
associate features based on both position and appearance. They demonstrated
that their method works well in outdoor environments with isolated features.
The experiments used for validation were performed on data collected in Vic-
toria Park, Sydney, where the available features are sparsely planted trees. A
limitation of the method of Ramos et al. is that the laser features are found
by clustering isolated point segments, which are stored as curve segments. In
many other settings (such as indoor or urban environments), the appearance
of scans is quite different from the ones in Victoria Park, in that features are
not generally surrounded by empty space. Compared to the laser features used
by Ramos et al., the proposed surface shape histograms have the advantage
that they require no clustering of the input data and therefore it is likely that
they are more context independent. It is currently not clear how the method of
Ramos et al. would perform in a more cluttered environment.

Cummins and Newman have published several articles on visual loop detec-
tion using their FAB-MAP method [23–26]. They use a bag-of-words approach
where scenes are represented as a collection of “visual words” (local visual
features) drawn from a “dictionary” of available features. Their appearance
descriptor is a binary vector indicating the presence or absence of all words in
the dictionary. The appearance descriptor is used within a probabilistic frame-
work together with a generative model that describes how informative each
visual word is by the common co-occurrences of words. In addition to simple
matching of appearance descriptors, as has been done in the present work, they
also use pairwise feature statistics and sequences of views to address the percep-
tual aliasing problem. Cummins and Newman [25] have reported recall rates
of 37% to 48% at 100% precision, using camera images from urban outdoor
data sets. Recently [26] they have reported on the experiences of applying FAB-
MAP on a very large scale, showing that the computation time scales well to
trajectories as long as 1000 km. The precision, however, is much lower on the
large data set, as is to be expected.

Nüchter et al. have used 3D range scans for loop detection [82]. They rely
on 3D scan registration for loop closing. Because of the comparatively high
computational load and uncertain result, even of reliable and fast scan regis-
tration algorithms, they consider only the closest few scans according to the
robot’s current pose estimate for loop closure. Therefore their method cannot
solve the kidnapped-robot problem or close loops when the accumulated pose
error is too large. In contrast, the method described in this chapter requires no
pose information.

A method that is more similar to the approach presented here is the 2D
histogram matching of Bosse et al. [11–13]. While the loop-detection method
described in this chapter may also be referred to as histogram matching, there
are several differences. For example, Bosse et al. use the normals of oriented
points instead of the orientation/shape features of NDT. Another difference
lies in the amount of discretisation. Bosse et al. create 2D histograms with one
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are several differences. For example, Bosse et al. use the normals of oriented
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lies in the amount of discretisation. Bosse et al. create 2D histograms with one
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dimension for the spatial distance to the scan points and one dimension for scan
orientations. The angular histogram bins cover all possible rotations of a scan
in order to achieve rotation invariance. Using 3◦ angular resolution and 1 m
range resolution, as in the papers by Bosse et al., results in 120×200 = 240 000
histogram bins for the 2D case. For unconstrained 3D motion with angular bins
for the x, y, and z axes, a similar discretisation would lead to many millions of
bins. In contrast, the 3D histograms presented here require only a few dozen
bins. At a false-positive rate of 1%, Bosse et al. [13] have achieved a recall rate
of 51% for large urban data sets, using a manually chosen threshold.

Very recent work by Granström et al. [39] showed good performance of an-
other 2D loop-detection algorithm. Their method uses AdaBoost [36] to create
a strong classifier composed from 20 weak classifiers, each of which describes a
global feature of a 2D laser scan. The two most important weak classifiers are
reported to be the area enclosed by the complete 2D scan and the area when
the scan points with maximum range have been removed. With 800 scan pairs
manually selected from larger urban data sets (400 overlapping pairs and 400
nonoverlapping ones) Granström et al. report an 85% recall rate with 1% false
positives. It would be interesting to see how their method could be extended to
the 3D case and how it would perform in other environments.

Perhaps the most relevant related method for loop detection from 3D range
data is the work by Johnson [53] and Huber [46]. Johnson’s spin-images are
local 3D feature descriptors that give detailed descriptions of the local surface
shape around an oriented point (see also Section 5.11). Huber [46] has de-
scribed a method based on spin-images for matching multiple 3D scans without
initial pose estimates. Such global registration is closely related to the loop-
detection problem. The initial step of Huber’s multi-view surface matching
method is to compute a model graph by using pairwise global registration with
spin-images for all scan pairs. The model graph contains potential matches
between pairs of scans, some of which may be incorrect. Surface-consistency
constraints on sequences of matches are used to reliably distinguish correct
matches from incorrect ones because it is not possible to distinguish the cor-
rect and incorrect matches at the pairwise level. Huber has used this method
to automatically build models of various types of scenes. However, I am not
aware of a performance measurement that is comparable to the work covered
in this paper. The algorithm presented in this chapter can be seen as another
way of generating the initial model graph and evaluating a local quality mea-
sure. An important difference between spin-images and the surface-shape his-
tograms proposed in this chapter is that spin-images are local feature descrip-
tors, describing the surface shape around one point. In contrast, the surface
shape histograms are global appearance descriptors, describing the appearance
of a whole 3D point cloud. Comparing spin-images to the local NDT features
used in this work, spin-images are more descriptive and invariant to rotation.
Normal distributions are unimodal functions, while spin-images can capture ar-
bitrary surface shapes if the resolution is high enough. However, the processing
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requirements are quite different for the two methods. Using data sets contain-
ing 32 scans with 1000 mesh faces each, as done by Huber [46], the time to
compute the initial model graph using spin-image matching can be estimated
to 1.5 · 322 = 1536 s (the complete time is not explicitly stated, but pairwise
spin-image matching is reported to require 1.5 s on average). With a data set
of that size, a rough estimate of the execution time of the algorithm proposed
in this paper is 32 · 0.8 + (32 · 3)2 · 7 · 10−6 = 26 s on similar hardware, based
on the execution times in Table 8.3. On a data set of a more realistic size, the
difference would be even greater.

8.3.2 Comparing results

As discussed in Section 8.2.2, it is not always obvious how to determine ground
truth in the context of loop detection. Granström et al. [39] solved this prob-
lem by evaluating their algorithm on a selection of 400 scan pairs that were
manually determined to be overlapping and 400 nonoverlapping ones. How-
ever, to avoid potential bias it would be preferable to evaluate the performance
on the complete data sets. Bosse et al. [11–13] use the connectivity graph be-
tween submaps created by the Atlas SLAM framework [14] as the ground truth.
In this case, each scan has a single correspondence in each local subsequence
of scans (although there may be other correspondences at subsequent revis-
its to the same location). In the evaluations using the full similarity matrix in
Section 8.2.3, no such preprocessing to generate a connectivity graph was per-
formed. Instead, a narrow distance threshold tr was applied to the scan-to-scan
distance matrix in order to generate a ground-truth labelling of true and false
positives. The fact that the approaches used to determine the ground truth vary
so much between different authors makes it difficult to compare the results.

Furthermore, since all of the methods discussed above were evaluated on dif-
ferent data sets, it is not possible to make strong conclusive statements about
how the quality of the results compare to one another. Both because the appear-
ances of scans may vary greatly between different data sets, and also because
the relative numbers of overlapping and nonoverlapping scans differ. A false-
positive rate of 1% (of all nonoverlapping scans) for a data set that has a large
ratio of nonoverlapping scans is not directly comparable to the same result for
a set with more loop closures.

Having said that, let’s still compare the results from Section 8.2.3 to those
reported in the related literature, in order to give some indication of the relative
performance of the proposed approach. On the Hannover-2 data set, which is
the only one with comparable characteristics to those used in the related work,
the recall rate was 80.6% at 1% false positives when evaluating all scan pairs.
This result compares well to the 51% recall rate of Bosse and Zlot [13] and the
85% recall rate of Granström et al. [39].

The SLAM-style experiment on the same data set is more similar to those of
Cummins and Newman [25]. With no false positives, a 47.0% recall rate was
achieved for the 3D point clouds of the Hannover-2 data set, which compares
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dimension for the spatial distance to the scan points and one dimension for scan
orientations. The angular histogram bins cover all possible rotations of a scan
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performance of the proposed approach. On the Hannover-2 data set, which is
the only one with comparable characteristics to those used in the related work,
the recall rate was 80.6% at 1% false positives when evaluating all scan pairs.
This result compares well to the 51% recall rate of Bosse and Zlot [13] and the
85% recall rate of Granström et al. [39].

The SLAM-style experiment on the same data set is more similar to those of
Cummins and Newman [25]. With no false positives, a 47.0% recall rate was
achieved for the 3D point clouds of the Hannover-2 data set, which compares

147



148

well to the 37%–48% recall rates achieved by Cummins and Newman using
camera images.

8.4 Summary and conclusions

In this chapter, a new approach to appearance-based loop detection from 3D
range data by comparing surface-shape histograms has been described. Com-
pared to 2D laser-based approaches, using 3D data makes it possible to avoid
the dependence on a flat ground surface. However, 3D scans bring new prob-
lems in the form of a massive increase in the amount of data and more compli-
cated rotations, which means a much larger pose space in which to compare ap-
pearances. This chapter has shown that the proposed surface shape histograms
overcome these problems by allowing for drastic compression of the input 3D
point clouds while being invariant to rotation. In Section 8.2.4, it was proposed
to use EM to fit a Gamma mixture model to the output similarity measures in
order to automatically determine the threshold that separates scans at loop clo-
sures from nonrevisited ones, and it was shown that doing so gives threshold
values that are in the vicinity of the best ones, which were manually selected,
knowing ground truth. Experimental evidence has shown that the presented
approach can achieve high recall rates at low false-positive rates in different
and challenging environments. Another contribution of this work is the dis-
cussion of the problem of providing quantifiable performance evaluations in
the context of loop detection, focusing on the difficulties of determining un-
ambiguous ground truth correspondences that can be compared for different
loop-detection approaches.

It can be concluded that the proposed NDT-based surface-shape histograms
perform well in comparison with related loop-detection methods based on 2D
and 3D range data as well as current methods using visual data. The highly
compact histogram representation (which uses 50–200 values on average to
represent a 3D point cloud with several tens of thousands of points) makes
it possible to compare scans very quickly. Using surface shape histograms, it
is possible to compare a 3D scan to around 25 000 others in one second, as
compared to 1.5 s per comparison using 3D spin-image descriptors. The high
speed makes it possible to detect loop closures by exhaustive search even in
very large maps, which is an important contribution of the presented work.
Even though the input data is highly compressed, the recall rate is still 80.6%
at a 1% false-positive rate for the outdoor campus data set Hannover-2.

8.5 Future work

It would be very interesting in future work to compare the proposed approach
to different methods while using the same data. The Mission-4-1 data set in-
cludes 2D scans and camera images in addition to the 3D scans used here,
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so that data set would lend itself especially well to comparing different ap-
proaches.

It would be equally important to improve current experimental methodol-
ogy to include a unified method for selecting true and false positives in the
context of loop detection. A formal definition of what constitutes a “place” in
this context would be very welcome, for the same purpose.

To further improve the performance of the presented approach, future work
could include learning a generative model in order to learn how to disregard
common nondiscriminative features (such as floor and ceiling orientations),
based on the general appearance of the current surroundings (as done previ-
ously in the visual domain [25]).

It would also be interesting to do a more elaborate analysis of the simi-
larity matrix than applying a simple threshold, in order to better discriminate
between revisited and non-revisited scans, and to evaluate the effects of other
difference measures than the one used here. Another potential direction is to
research if it is possible to learn more of the parameters from the data. Fur-
ther future work should include investigating how the proposed loop-detection
method is affected by dynamic changes, such as moving furniture or people.
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Chapter 9

Surface-shape analysis for
boulder detection

The load/haul/dump cycle is central in many mining operations. Ore is loaded
from a muck pile (muck is the miner’s term for broken rock) at a load point,
hauled away, and dumped at another location for disposal or processing (see
also Section 4.4). Automating the load/haul/dump (LHD, for short) task is cur-
rently a high-priority goal of the mining and construction industry. The hauling
and dumping parts of the cycle can be partially automated today (using prere-
corded routes and tunnel-following behaviours, as described by Marshall et
al. [71]), but automated loading remains a difficult task.

One of the major obstacles of automated loading is that oversized boulders
need to be detected. In order to get a full load, it is important to put the bucket
of the mining vehicle where the rocks are small enough so that the bucket can
penetrate the pile. There may also be boulders in the muck pile that are too
large to be hauled away, either because they are too large to fit in the bucket,
or because their size will lead to problems at a further stage in the processing
chain. It is essential for an automated loader to be able to cope with these kinds
of situations.

The purpose of the work described in this chapter is to investigate how
3D range data can be used to help with the problem of boulder detection in
muck piles. Other applications of the proposed algorithm include extraction of
drivable paths over uneven surfaces. The basic premise is the same in both cases:
the goal is to find a continuous area within a certain orientation interval (the
expected slope angles of muck piles, or the terrain steepness that can traversed)
that is sufficiently smooth for the intended purpose (on the scale of normal-
sized rocks, or smooth enough for traversing).
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9.1 Related work

Detecting large boulders in a heap of rocks is a difficult task. Rock detection
from camera images has received attention in the field of extraterrestrial geol-
ogy missions (see, for example, publications from NASA’s OASIS project [19,
102]). Because of the very limited bandwidth available to, for example, an au-
tonomous Mars rover, it is necessary to have the robot autonomously detect
interesting rocks among the many rocks on the surface and only send images
of those back to the geologists on Earth. A recent survey by Thompson and
Castaño [102], comparing seven visual rock-detection algorithms, came to the
conclusion that no algorithm exists today that can reliably cope with the kind
of challenging data presented in these scenarios.

Another extraterrestrial application that is quite similar to the boulder-detection
application considered here is to find and avoid large rocks on a surface when
planning a landing site for a lunar lander. Jiang et al. [52] have published a
method for this purpose, also using camera images. However, their method de-
tects rocks from shadows, requiring that the surface is lit from the side. The
only illumination available to an LHD vehicle is typically from its own head-
lights, limiting the amount of visible shadows from rock edges.

The main advantages of using 3D range data instead of image data are that
the shapes and sizes of objects are directly accessible from the input data and
that range sensors such as lidars are insensitive to changing light conditions. To
my knowledge, no previously published work uses 3D range finders for boulder
detection.

9.2 Surface-shape analysis

In order to detect boulders from a 3D point cloud of a muck pile, the points
should be labelled as either “loadable” or “nonloadable”. The classification
method used here is, again, inspired by NDT.

The input to the algorithm is a 3D point cloud X , and the output is a la-
belled point cloud X ′, where each point is classified according to the surround-
ing surface shape. The algorithm is outlined below.

1. For each point �x ∈ X , find all neighbouring points within a certain radius
ρ. (The points should be stored in an efficient data structure such as a kD
tree to speed up the nearest-neighbour search.)

2. Compute the mean vector �µ and covariance matrix Σ of the point posi-
tions found in step 1 (in other words, the parameters of a normal distri-
bution).

3. Compute the eigenvalues λ1 ≤ λ2 ≤ λ3 and corresponding eigenvec-
tors �e1, �e2, �e3 of Σ. Choose a class according to the following rules
with respect to a variance threshold t that determines the required sur-
face smoothness:
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• If λ1 ≥ t, the surface is considered uneven.

• If λ1 < t, the surface is planar. The normal vector of the plane ap-
proximating the local surface is �e1. Depending on the orientation
of �e1, assign the class floor, wall, slope, or backslope. In order to do
this, first orient �e1 so that it points towards the scan origin. In other
words, if �x ·�e1 > 0, assign�e1 ← −�e1. Now consider the polar coordi-
nates [β1, β2, β3] = [latitude, longitude, range] of�e1, where β1 ∈ [0, π]
and β2 ∈ [0, 2π]. Also select two angle thresholds Θ1 and Θ2 used
for recognising walls and the floor.

– If sin (β1) < Θ1, the surface is considered horizontal and the
class is floor if �µ is below the scanner location and ceiling oth-
erwise (assuming that the vehicle always has its wheels on the
floor).

– If sin (β1) > Θ2, the surface is considered vertical, and the cho-
sen class is wall.

– Otherwise, choose the class slope if cos (β1) > 0 or backslope if
cos (β1) < 0.

4. A weighted vote for the class selected in the previous step is assigned to
�x and each of its neighbours. The weight is determined by a Gaussian
kernel centred at �x with variance σ = ρ/3, so that it is close to zero at the
edges of the neighbourhood.

5. After all points in X have been evaluated, each point is assigned the class
for which it has the most votes.

To summarise, these are the parameters of the algorithm:

• Search radius ρ, depending on the approximate size of surface irregulari-
ties that need to be detected,

• variance threshold t for planar surfaces,

• slope angle interval [Θ1, Θ2],

• variance σ of the weighting kernel, which can be set in relation to ρ (as
above, σ = ρ/3).

For the application of boulder detection, the classes can be interpreted as
follows. A pile without boulders should have most of its points in the class slope.
Blocks whose size is close to 2ρ should be in the class uneven, and larger blocks
should be identifiable as patches of wall, floor, or backslope within the muck pile.
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9.3 Experiments

9.3.1 Data

To validate the algorithm, it was applied to several muck-pile scans from the
Kemi mine in Finland. The Kemi mine is located at the northern end of the Gulf
of Bothnia. It is Europe’s only chromium mine, and has been in production since
1966. The scans were collected at the 500 m level below the surface. The data
set consists of scans from four locations:

A a smooth pile, with no boulders,

B a pile with two boulders,

C an area where small boulders from other load points have been offloaded,
waiting for further processing,

D a larger pile, with a mix of larger rock sizes.

Photos of the locations are shown in Figure 9.1. Examples of classification
output are shown in Figure 9.2. Please refer to Table 9.1 for an explanation of
the colours used in the classification images.

According to professional mine-truck operator Ilka Ylitalo of Outokumpu
at Kemi, the only real obstacles at these sites are the two boulders at location
B and, of course, the large (almost 10 m wide) rock at the back of location
D. The boulders at location B can be loaded into the bucket with care by a
skilled operator, but for this application they should be regarded as nonload-
able, because it is not possible to simply run the bucket into the pile as with the
other locations. Location C is in fact not a load point, and the rocks there do
not form a pile but are rather spread across the floor. This breaks some of the
assumptions behind the classification algorithm.

9.3.2 Experimental setup

The data were collected using a SICK lidar mounted on a Schunk PowerCube
via a set of slip-ring contacts. This is the sensor that is usually mounted on
top on Alfred (Section 4.2) although in this case the sensor was used on its
own. On top of the lidar was a digital camera used to collect colour images
while scanning, in order to generate coloured point clouds. However, the colour
information was not used for boulder detection here. A service van was used to
drive to the different locations. The power to the sensor was provided through
the van’s 12 V outlet. The scans were made with the scanner either on the mine
floor or in the back of the van.

A high angular resolution was used when recording the 3D scans: between
72 000 and 418 000 points per scan. For boulder detection, the scans were sub-
sampled with a density of one point sample per dm3, which results in between
10 000 and 22 000 points per scan in this case. The nearest-neighbour search
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(a) Location A. (b) Location B.

(c) Location C. (d) Location D.

Figure 9.1: Photos of the piles used for evaluation of the boulder detection algorithm.

for all points (step 1 of the algorithm) can be quite time consuming for dense
point clouds. For these experiments, the time required for labelling the point
clouds was between 7.3 s and 25.9 s.

The algorithm was implemented in C++ and run on a laptop computer with
a 1600 MHz CPU and 2 GiB of RAM.

9.3.3 Evaluation

A qualitative evaluation of the algorithm can be made by examining Figures 9.1
and 9.2. The results look reasonable, though it is difficult to provide a specific
quantitative performance measure. The boulders at locations B and D are cor-
rectly labelled as nonloadable, and the floor, walls, and ceilings are also cor-
rectly labelled in all cases. The loadable piles at locations A, B, and D show up
as large purple patches like they should. The only problematic point cloud is
the one from location C. Most of the scan points from the rocks at location C
are correctly labelled as loadable, but there is also an erroneous floor segment in
the left part of the scene [Figure 9.2(c)]. The reason, as stated above, is that the
rocks there are not in a pile. Similarly sized rocks in a pile, such as the ones at
location D, can be properly classified. If the height of the sensor relative to the
floor were known, the erroneous floor segment at location C could be avoided.
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For the classifications shown here, the following parameters were chosen:

• neighbourhood radius ρ = 1.0 m,

• planar variance threshold t = 0.11 (standard deviation is
√

t = 0.35 m),

• planar angle thresholds [Θ1, Θ2] = [0.35, 0.75],

• weighting kernel variance σ = ρ/3.

9.4 Scope and limitations

The proposed algorithm hinges on the assumption that rocks of similar size
tend to form an even pile. “Even” in this context is defined as a surface whose
standard deviation along the direction perpendicular to its surface is less than√

t metres.
The algorithm will not be able to detect oversized boulders in the following

cases:

1. When a boulder is covered under more fine-scale muck.

2. In the similar case when either side of a boulder is covered with fine muck,
that side may be labelled as loadable. Still, other parts of the boulder
should be detected.

3. When a boulder has a large planar face that is oriented at an angle similar
to the general slope angle of the surrounding pile.

4. When rocks are spread out across the mine floor and don’t form a large
pile, they are likely to be classified as either floor or uneven, depending on
the scale parameter ρ.

It is probably impossible to detect buried boulders (items 1 and 2 in the
list) using only a 3D range scanner or a camera. Such boulders can most likely
only be detected using ground-penetrating radar or, after attempting to insert
the bucket into the pile, using tactile sensors.

In the case where a boulder is visible but not detectable from surface shape
alone (item 3), it is possible that analysis of camera images could help, although,
according to Thompson and Castaño [19], no reliable algorithm for that pur-
pose exists today.

Rocks that are small enough to fit in the bucket but not arranged in a pile
(item 4) are not very interesting for the LHD application. The muck at a typical
load point does form a pile.
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9.5 Further processing

The classification method described in Section 9.2 gives a semantically labelled
point cloud, where each point is labelled with a description of the local surface
orientation and roughness. In order to use this method for an automated loader,
some further steps need to be taken.

Once the points of the scan have been classified, the point cloud needs to
be segmented in order to remove the parts of the scan that don’t belong to the
muck pile and to isolate regions of loadable and nonloadable muck.

For this work, radially-bounded nearest-neighbour clustering [59] was used
for segmenting the remaining points into contiguous regions. This clustering
method is easy to implement, and works well for our purpose. The radial bound
of the clustering algorithm was set to the same distance ρ used for classification.

At this point the original point cloud has been divided into a number of
separate point-cloud segments, each representing region with similar surface
structure.

The next goal is to find a position and a direction where to put the bucket so
that it can be filled well. This “loading pose” should be returned to a navigation
system that can place the vehicle in the right position. When an LHD operator
loads from a muck pile, the bucket is lowered and aligned with the floor. The
vehicle is driven into the pile, and after the bucket has penetrated the pile the
operator simultaneously lifts the bucket and releases the throttle. As hydraulic
lift pressure is applied to the bucket, a reaction force is applied to the wheels,
which keeps the machine from losing traction. It is practically impossible to fill
the bucket if it is initially lifted above the floor.

A simple method of finding a good loading pose is shown here for demon-
stration. The floor segment that is closest to the scanner location is assumed
to be the ground that the vehicle drives on. This segment is triangulated, and
all its border points are regarded as potential loading positions. To determine
whether a point in the triangle mesh is on the boundary or not, count the
number of edges ne and triangles nt connected to the point. If nt < ne, the
point is on the boundary. In the following, the origin of the local coordinate
system is assumed to be the location of the 3D scanner. The bucket is mod-
elled as a cuboid, originally positioned at the origin. For each border point
�b = [b1, b2, b3]

T, a transformation, or loading pose, is generated with transla-

tion vector �b and rotation angle arc tan (b1/b2) around the vertical axis. This
transformation is applied to the bucket model, and the number of loadable and
nonloadable (disregarding the floor) points falling within the bucket volume
can be counted. Poses where no nonloadable points fall into the bucket volume
are feasible loading poses, and the one with the most loadable points is cho-
sen as the suggested loading pose. This method evaluates only poses that are
reachable by the vehicle if it turns on the spot from its current location and
then moves in a straight line. That is, of course, a major simplification of how
the vehicle might move. More elaborate algorithms could probably be used to
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find better loading poses, but that is outside the scope of this work. Figure 9.3
shows example output. The output from location C is not shown, because the
scans from that location do not contain enough of the floor to generate good
loading poses with this method.

9.6 Future work

The results presented here are promising, but for an industrial-strength appli-
cation it is probably not enough to use 3D range data alone. To further in-
crease reliability, the system should work in conjunction with tactile sensors
and ground-penetrating radar in order to sense buried boulders, and perhaps
also a visual boulder-detection system.

The aim of the work presented here was to investigate how to detect boul-
ders from 3D data. For a full-featured automated loading scenario, more work
should be done on the geometry processing for finding an optimal loading pose
and, not least, the control dynamics of the actual bucket-filling motion. Future
work should also include testing the algorithm on more data. Unfortunately, it
is not trivial to record relevant data from mines, because it needs to be done in
synchronisation with the daily operations in the mine.

It would be interesting to investigate how a Markov network with a node
at each point cloud segment could be used to reason about probable classes
on a higher level. Such reasoning would be useful in the case where more ex-
plicit classification is required, and not just a classification of loadable versus
nonloadable points.
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Table 9.1: Colour legend to the classified point clouds.

Colour Class

pink floor

red ceiling

green wall

purple slope (loadable)
cyan backslope

yellow uneven

(a) Location A. (b) Location B.

(c) Location C. (d) Location D.

Figure 9.2: Boulder-detection result after classification. (The green arrow at the bottom
of 9.2(c) shows one of the coordinate axes, and is not part of the classified point cloud.)
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(a) Location A. (b) Location B.

(c) Location D.

Figure 9.3: Bucket positioning based on anticipated fill volume. The meshed scans are
viewed at an angle from above. The white boxes show the bucket at potential loading
poses, avoiding boulders. Only poses with a fill volume better than the average of all
potential poses are shown.
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Chapter 10

Conclusions

Finally we arrive at the main conclusions of the work described in this disser-
tation. The novel contributions are summarised in Section 10.1 along with the
main conclusions to be drawn from the presented experiments. Current limita-
tions to the approaches presented in the dissertation are listed in Section 10.2,
and Section 10.3 outlines a number of possible improvements and directions
for future research.

10.1 Contributions

Based on the work presented in this dissertation, it can be concluded that the
normal-distributions transform provides a very efficient and versatile general
surface representation for 3D range scans. This claim will be further motivated
below.

3D-NDT surface representation The three-dimensional normal-distributions
transform provides a compact albeit expressive representation of surface shape
with several attractive properties when used for registration, loop detection,
and surface-shape analysis. The NDT surface representation has a number of at-
tractive properties. Scan surfaces are represented as piecewise-continuous func-
tions. The NDT representation is compact, compared to point clouds, and still
maintains more information about the scan surface than a point cloud sub-
sampled at the same coarseness would do. Using adaptive discretisation, it is
possible to represent locally uneven surfaces while maintaining a compact de-
scription in featureless areas.

3D-NDT registration The original 2D-NDT method for scan registration has
been extended to 3D, and a number of possible 3D transformation functions as
well as different numerical optimisation techniques have been evaluated. One of
the main contributions presented here, in addition to extending 2D-NDT scan
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registration to 3D, is the thorough evaluation of different parameter settings
as well as an exhaustive performance comparison with ICP (the current de
facto standard 3D scan registration algorithm). Other novel contributions of
the present work are the additions to the basic NDT registration algorithm for
making it less sensitive to error in the initial pose estimate: 3D-NDT with linked
cells, interpolation, and, most importantly, an iterative discretisation scheme.

Scan registration with NDT can with advantage be performed using New-
ton’s optimisation method, because the NDT surface representation has ana-
lytic first- and second-order derivatives. NDT scan registration exhibits good
robustness to error in the initial pose estimate, especially regarding the rotation
component, compared to the ICP algorithm. NDT scan registration is also fast,
and the execution speed remains almost constant regardless of the amount of
initial error. Furthermore, the Hessian of the NDT score function provides an
estimate of the covariance of the pose parameters. This estimate can be used as
a good confidence measure of the output pose estimate after registration.

Registration of coloured 3D data An extension to 3D-NDT has been pre-
sented, allowing it to be used for registration of coloured 3D scans with little
geometrical surface features.

The proposed kernel-based Colour-NDT method has been shown to work
well. Compared to methods based on local visual-image features, Colour-NDT
is more robust to dynamic scene changes and strong repetitive textures. On the
other hand, the local Gaussian mixture models used by Colour-NDT are not as
descriptive as, for example, SIFT features. In conclusion, the proposed method
for registering coloured point-cloud data is to use a combined energy function,
using both visual-feature registration and the Colour-NDT representation.

Appearance-based loop detection from 3D laser scans Chapter 8 showed how
NDT can be used to create surface-shape histograms that, in turn, can be used
for fast and efficient loop detection.

The proposed approach has been shown to perform well in comparison
with related loop-detection methods based on 2D and 3D range data, as well
as current methods using visual data. The highly compact histogram represen-
tation (which uses 50–200 values on average to represent a 3D point cloud
with several tens of thousands of points) makes it possible to compare scans
very quickly. The proposed approach using surface-shape histograms is sev-
eral orders of magnitude faster then related approaches in 3D. Using surface-
shape histograms, it is possible to compare a 3D scan to around 25 000 others
in one second. This number can be compared to spin-image matching (one
of the most relevant related approaches to 3D scene recognition), which re-
quires around 1.5 s per comparison on similar hardware. The high speed of
the histogram-matching approach makes it possible to detect loop closure by
exhaustive search even in very large maps.
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Surface-structure analysis The scan representation provided by the normal-
distributions transform can also be used to perform 3D surface-structure analy-
sis, as shown in Chapter 9. A method inspired by NDT, classifying points based
on local surface orientation and roughness, has been presented and applied to
detect boulders in 3D scans of rock piles.

Applicability to other domains The presented experiments have mainly been
designed to judge the applicability of NDT in applications of mobile robotics,
but the methods proposed in this dissertation can be used in other disciplines
as well. 3D-NDT and Colour-NDT registration has applications in practically
all disciplines where 3D imaging is used. The loop-detection approach could
also be applied to 3D object recognition. Surface-structure analysis based on
normal distributions also has applications beyond boulder detection; for exam-
ple, extraction of piles in a variety of mining and construction applications, and
extraction of drivable paths in unstructured terrain.

10.2 Limitations and open problems

The experimental evidence included in this dissertation shows promising results
for the proposed algorithms. However, there are also some limitations to the
methods.

Scan registration In the present work, Newton’s optimisation method was
used with 3D-NDT and Colour-NDT for scan registration. Newton’s method
is a local optimisation method, and as such it requires an initial estimate that
is not too far from the optimal solution. This dependency on an initial pose
estimate is common to all local registration methods. In some cases, if the initial
pose estimate from odometry is very poor, this limitation can be a problem. The
proposed confidence measure based on the Hessian of the NDT score function
(see Section 6.6) provides a possible solution, or workaround, to this problem.
Because the variance estimates from the Hessian matrix in many cases give a
good indication of whether a registration attempt succeeded or not, it should
be possible to detect the cases where NDT scan registration fails and try some
other initial pose or employ a more time-consuming global surface-matching
method in those cases.

Loop detection The proposed loop-detection algorithm, like most classifica-
tion algorithms, requires a threshold value that separates “revisited” and “non-
revisited” scans. Using expectation maximisation on the output difference val-
ues, a good threshold value can be found after a sufficient number of revisited
and nonrevisited scans have been seen. Expectation maximisation is unsuper-
vised, which means that it needs no prior training and can use the available
data directly. However, it is a limitation that it can only be used on relatively
large data sets with at least 100 scans.
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Boulder detection The method for surface structure-analysis shown in Chap-
ter 9 is useful for boulder detection in the scans evaluated in this dissertation,
but there are some limitations to the proposed method. Firstly, using 3D range
data only, it is not possible to detect boulders in all cases; for example, when
the face of a boulder coincides with the general shape of the pile, or when the
boulder is hidden underneath other stones. The method used in Chapter 9 fur-
ther assumes that the rocks are arranged in a convex pile. In case the material
in the pile is more sticky, as it can be with finer sand, the shape of the pile may
be concave, in which case the proposed algorithm is likely to be overly conser-
vative. How to detect boulders from 3D range data without these assumptions
remains an open problem.

Application to mining The main intended application of the methods pro-
posed in this dissertation is autonomous underground mining. The most im-
portant practical problem that prohibits 3D mapping from being used in a
productive mine is that it is currently not feasible to collect reliable 3D scan
data fast enough in a commercial application. Today’s available 3D sensors are
either too slow, too expensive, not robust enough to the harsh environment, or
don’t have the required precision. For the work presented in this dissertation
to be of practical applicability to the mine industry, 3D range sensors that over-
come these problems must first be made available. However, such sensors will
most likely be available in the near future.

10.3 Future work

There are still many directions for future research that could and should be
explored.

Scan registration The proposed 3D-NDT algorithm for scan registration op-
timises the Mahalanobis distance between points in one scan and normal dis-
tributions in the other. Applying NDT to both scans and optimising the Bhat-
tacharyya distance between pairs of normal distributions would be much faster,
although the result can be anticipated to be less accurate, because some detail
will be lost in the transform. Initial tests have indicated that 3D-NDT scan
registration using the Bhattacharyya distance is fast enough for use with a
simplex-based algorithm for global numerical optimisation, which can find a
pose estimate close to the reference pose regardless of the initial pose estimate,
requiring approximately the same amount of time as iterative 3D-NDT using
Newton’s method. It would be interesting to investigate this topic further.

Loop detection The presented work on loop detection by using NDT-based
surface-shape histograms also leaves several directions for future research open.
Remaining problems include automatic parameter selection for the appearance
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descriptor and more work on automatic selection of the difference threshold.
Another interesting research topic would be to investigate how the approach
fares when subjected to dynamic changes in the environment. The presented
approach utilises a grid-based cell structure. It is likely that the descriptiveness
of the NDT-based surface-shape histogram could be increased by computing a
local Gaussian feature for each surface point instead.

In order to cater for meaningful comparisons between related algorithms,
an important step would be to improve current experimental methodology to
include a unified method for selecting true and false positives in the context of
loop detection. A formal definition of what constitutes a “place” in this context
would be very welcome, for the same purpose.

Surface-structure analysis A potential improvement to the presented method
for surface-structure analysis (Chapter 9) would be to analyse point-cloud seg-
ments within a probabilistic framework, such as Markov networks, in order to
reason about the semantic labelling of point-cloud segments on a higher level.
Further potential improvements include sensor fusion; for example, combining
the 3D range data with mono or stereo camera images. For the application
of boulder detection, more muck-pile scans should be collected and examined,
and a quantifiable performance measure should also be developed.
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descriptor and more work on automatic selection of the difference threshold.
Another interesting research topic would be to investigate how the approach
fares when subjected to dynamic changes in the environment. The presented
approach utilises a grid-based cell structure. It is likely that the descriptiveness
of the NDT-based surface-shape histogram could be increased by computing a
local Gaussian feature for each surface point instead.

In order to cater for meaningful comparisons between related algorithms,
an important step would be to improve current experimental methodology to
include a unified method for selecting true and false positives in the context of
loop detection. A formal definition of what constitutes a “place” in this context
would be very welcome, for the same purpose.

Surface-structure analysis A potential improvement to the presented method
for surface-structure analysis (Chapter 9) would be to analyse point-cloud seg-
ments within a probabilistic framework, such as Markov networks, in order to
reason about the semantic labelling of point-cloud segments on a higher level.
Further potential improvements include sensor fusion; for example, combining
the 3D range data with mono or stereo camera images. For the application
of boulder detection, more muck-pile scans should be collected and examined,
and a quantifiable performance measure should also be developed.
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Appendix A

Notation and symbols

The following notational conventions are used throughout the text.

�v =







v1
...

vn






column vector

vi a scalar element of vector �v

�vT transpose of �v
�0 the vector [0, 0, 0]T

�u�v or �u ·�v scalar product
�u ×�v cross product
��v� Euclidean vector norm (2-norm)
��v�p entrywise p-norm for vectors and matrices

A =







a11 · · · a1m

...
. . .

...
an1 · · · anm






matrix

|A| determinant of A

S = {s1, . . . , sn} set
|S| cardinality of S
class class name
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Appendix B

Alternative transformation
functions

This appendix shows the details of some alternative 3D transformation func-
tions that may be used instead of the representation used in Equations 6.17,
6.18, and 6.20.

B.1 Euler rotations with small-angle approximations

Using the Euler angle sequence z-y-x with the trigonometric approximations of
Equation 6.22, the 3D transformation TE(�p6, �x) is approximated by

TE(�p6, �x) =





cycz −cysz sy

cxsz + sxsycz cxcz − sxsysz −sxcy

sxsz − cxsycz cxsysz + sxcz cxcy



�x +





tx

ty

tz



 ≈ (B.1)

T̃E(�p6, �x) =





1 −φz φy

φz 1 −φx

−φy φx 1



�x +





tx

ty

tz



 . (B.2)

Using Equation B.2 instead of B.1, many terms of the derivatives reduce to
zero. The first-order derivatives of T̃E(�p6, �x) with respect to the transformation
parameters in �p6 can be found in the Jacobian matrix

J̃E =





1 0 0 0 x3 −x2

0 1 0 −x3 0 x1

0 0 1 x2 −x1 0



 . (B.3)

The i-th column of J̃E is δ�x′/δpi. The second-order partial derivatives all reduce
to zero:

δ2�x′

δpiδpj
=





0
0
0



 . (B.4)
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B.2 Axis/angle rotations

Using the axis/angle representation leads to a seven-dimensional optimisation
problem: three parameters for the translation, three for the rotation axis, and
one for the rotation angle. Using axis/angle rotations, a right-handed coordi-
nate system and counter-clockwise rotations, a transformation function of a
3D point �x using a parameter vector �p7 can be formulated as

TA(�p7, �x) =





tr2
x + c trxry − srz trxrz + sry

trxry + srz tr2
y + c tryrz − srx

trxrz − sry tryrz + srx tr2
z + c



�x +





tx

ty

tz



 , (B.5)

where �p7 = [�t | �r | φ]T, �t = [tx, ty, tz]
T is the translation, �r = [rx, ry, rz]

T is the
axis of rotation, s = sin φ, c = cos φ, t = 1 − cos φ, and φ is the rotation angle.

The partial derivatives when using TA can be found in the Jacobian and
Hessian matrices below (B.6 and B.7).

JA =











1 0 0
0 1 0
0 0 1

t(2rxx1 + ryx2 + rzx3) tryx1 − sx3 trzx1 + sx2
trxx2 + sx3 t(rxx1 + 2ryx2 + rzx3) trzx2 − sx1
trxx3 − sx2 tryx3 + sx1 t(rxx1 + ryx2 + 2rzx3)

sA − cB sC − cD sE − cF











T

(B.6)

A = (r2
x − 1)x1 + rxryx2 + rxrzx3, B = rzx2 − ryx3,

C = rxryx1 + (r2
y − 1)x2 + ryrzx3, D = −rzx1 + rxx3,

E = rxrzx1 + ryrzx2 + (r2
z − 1)x3, F = ryx1 − rxx2.

The Hessian matrix for Equation B.5 is

HA =















�0 �0 �0 �0 �0 �0 �0
�0 �0 �0 �0 �0 �0 �0
�0 �0 �0 �0 �0 �0 �0
�0 �0 �0 �a �b �c �d
�0 �0 �0 �b �e �f �g
�0 �0 �0 �c �f �h �i
�0 �0 �0 �d �g �i �j















(B.7)
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�a =





2tx1

0
0



 , �b =





tx2

tx1

0



 , �c =





tx3

0
tx1



 , �d =





s(2rxx1 + ryx2 + rzx3)
sryx1 − cx3

srzx1 + cx2



 ,

�e =





0
2tx2

0



 , �f =





0
tx3

tx2



 , �g =





srxx2 + cx3

s(rxx1 + 2ryx2 + rzx3)
srzx2 − cx1



 ,

�h =





0
0

2tx3



 , �i =





srxx3 − cx2

sryx3 + cx1

s(rxx1 + ryx2 + 2rzx3)



 , �j =





cA + sB
cC + sD
cE + sF



 .
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Appendix C

Further experimental results

While evaluating the influence of parameter choices for 3D-NDT and how the
method compares to ICP, a large number of experiments were performed. The
results have been considered too bulky to include completely in Section 6.4.
Instead, a more complete set of graphs is shown in this appendix.

C.1 Performance vs. subsampling ratio
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Figure C.1: NDT (spatially distributed sampling).
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Figure C.1: NDT (spatially distributed sampling).
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Figure C.2: ICP (spatially distributed sampling).
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Figure C.3: NDT (uniformly random sampling).
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Figure C.4: ICP (uniformly random sampling).
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C.2 Performance vs. NDT cell size
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Figure C.5: NDT, using fixed-cell setups with linked cells.
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Figure C.6: NDT, using fixed-cell setups with trilinear interpolation.

C.3 Robustness to initial translation error

0.00

0.10

0.20

0.30

0.40

0.50

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(a) 3D-Cam

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(b) Sci-Fi

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(c) Crossing

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(d) Straight

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(e) Sim-Mine

Figure C.7: “Baseline” NDT.
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Figure C.2: ICP (spatially distributed sampling).
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Figure C.3: NDT (uniformly random sampling).
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Figure C.4: ICP (uniformly random sampling).
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C.2 Performance vs. NDT cell size
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Figure C.5: NDT, using fixed-cell setups with linked cells.
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Figure C.6: NDT, using fixed-cell setups with trilinear interpolation.

C.3 Robustness to initial translation error
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Figure C.7: “Baseline” NDT.
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Figure C.8: NDT using trilinear interpolation.

0.00

0.10

0.20

0.30

0.40

0.50

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(a) 3D-Cam

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(b) Sci-Fi

0.00

0.20

0.40

0.60

0.80

1.00
T

ra
n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(c) Crossing

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(d) Straight

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0  0.5  1  1.5  2  2.5  3

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Translation offset (m)

(e) Sim-Mine

Figure C.9: NDT, using quasi-Newton approximation instead of analytic Hessian.
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Figure C.10: “Baseline” ICP.
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Figure C.11: ICP, 1 m threshold. (0.5 m for 3D-Cam.)

C.4 Robustness to initial rotation error
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Figure C.12: NDT.
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Figure C.13: NDT with trilinear interpolation.
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Figure C.8: NDT using trilinear interpolation.
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Figure C.9: NDT, using quasi-Newton approximation instead of analytic Hessian.
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Figure C.10: “Baseline” ICP.
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Figure C.11: ICP, 1 m threshold. (0.5 m for 3D-Cam.)

C.4 Robustness to initial rotation error

0.00

0.10

0.20

0.30

0.40

0.50

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(a) 3D-Cam

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(b) Sci-Fi

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(c) Crossing

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(d) Straight

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(e) Sim-Mine

Figure C.12: NDT.
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Figure C.13: NDT with trilinear interpolation.
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Figure C.14: NDT with quasi-Newton approximation instead of analytic Hessian.

0.00

0.10

0.20

0.30

0.40

0.50

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(a) 3D-Cam

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(b) Sci-Fi

0.00

0.20

0.40

0.60

0.80

1.00
T

ra
n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(c) Crossing

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(d) Straight

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(e) Sim-Mine

Figure C.15: ICP.
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Figure C.16: ICP, 1 m threshold (0.5 m for 3D-Cam.)
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C.5 Relative performance of discretisation methods
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Figure C.17: NDT variants.

C.6 Performance of adaptive clustering
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Figure C.18: NDT, using k-means clustering.
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Figure C.14: NDT with quasi-Newton approximation instead of analytic Hessian.
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Figure C.15: ICP.

0.00

0.10

0.20

0.30

0.40

0.50

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(a) 3D-Cam

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(b) Sci-Fi

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(c) Crossing

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(d) Straight

0.00

0.20

0.40

0.60

0.80

1.00

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(m
)

0.00

0.05

0.10

0.15

0.20

0.25

R
o
ta

ti
o
n
 e

rr
o
r 

(r
a
d
)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e
 (

s
)

S
u
c
c
e
s
s
 r

a
te

Rotation offset (rad)

(e) Sim-Mine

Figure C.16: ICP, 1 m threshold (0.5 m for 3D-Cam.)
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C.5 Relative performance of discretisation methods
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Figure C.17: NDT variants.

C.6 Performance of adaptive clustering
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Figure C.18: NDT, using k-means clustering.
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C.7 Further mobile robot experiments
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Figure C.19: Comparing alternative parameters on the Kvarntorp-Loop data set.
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Figure C.20: Comparing alternative parameters on the Mission-4 data set.
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Figure C.19: Comparing alternative parameters on the Kvarntorp-Loop data set.
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Figure C.20: Comparing alternative parameters on the Mission-4 data set.
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C.8 Further evaluations of confidence measures
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Figure C.21: Confidence measures for the Kvarntorp-Loop data set. The data set was
registered with a poor parameter selection in this case, in order to show more poses with
large error. Figure C.21(c) shows that it is more difficult to separate successful and failed
registrations using the Qe measure.
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