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Abstract. This paper presents a novel two-frame motion estimation al-
gorithm. The first step is to approximate each neighborhood of both
frames by quadratic polynomials, which can be done efficiently using the
polynomial expansion transform. From observing how an exact polyno-
mial transforms under translation a method to estimate displacement
fields from the polynomial expansion coefficients is derived and after
a series of refinements leads to a robust algorithm. Evaluation on the
Yosemite sequence shows good results.

1 Introduction

In previous work we have developed orientation tensor based algorithms to es-
timate motion, with excellent results both with respect to accuracy and speed
[1, 2]. A limitation of those, however, is that the estimation of the spatiotem-
poral orientation tensors requires the motion field to be temporally consistent.
This is often the case but turned out to be a problem in the WITAS project
[3], where image sequences are obtained by a helicopter-mounted camera. Due
to high frequency vibrations from the helicopter affecting the camera system,
there are large, quickly varying, and difficult to predict displacements between
successive frames.

A natural solution is to estimate the motion, or displacement, field from
only two frames and try to compensate for the background motion. This paper
presents a novel method to estimate displacement. It is related to our orienta-
tion tensor methods in that the first processing step, a signal transform called
polynomial expansion, is common. Naturally this is only done spatially now, in-
stead of spatiotemporally. Another common theme is the inclusion of parametric
motion models in the algorithms.

2 Polynomial Expansion

The idea of polynomial expansion is to approximate some neighborhood of each
pixel with a polynomial. Here we are only interested in quadratic polynomials,
giving us the local signal model, expressed in a local coordinate system,

f(x) ∼ xTAx + bTx + c, (1)



where A is a symmetric matrix, b a vector and c a scalar. The coefficients are
estimated from a weighted least squares fit to the signal values in the neigh-
borhood. The weighting has two components called certainty and applicability.
These terms are the same as in normalized convolution [4–6], which polyno-
mial expansion is based on. The certainty is coupled to the signal values in the
neighborhood. For example it is generally a good idea to set the certainty to
zero outside the image. Then neighborhood points outside the image have no
impact on the coefficient estimation. The applicability determines the relative
weight of points in the neighborhood based on their position in the neighbor-
hood. Typically one wants to give most weight to the center point and let the
weights decrease radially. The width of the applicability determines the scale of
the structures which will be captured by the expansion coefficients.

While this may sound computationally very demanding it turns out that it
can be implemented efficiently by a hierarchical scheme of separable convolu-
tions. Further details on this can be found in [6].

3 Displacement Estimation

Since the result of polynomial expansion is that each neighborhood is approx-
imated by a polynomial, we start by analyzing what happens if a polynomial
undergoes an ideal translation. Consider the exact quadratic polynomial

f1(x) = xTA1x + bT1 x + c1 (2)

and construct a new signal f2 by a global displacement by d,

f2(x) = f1(x− d) = (x− d)TA1(x− d) + bT1 (x− d) + c1

= xTA1x + (b1 − 2A1d)Tx + dTA1d− bT1 d + c1

= xTA2x + bT2 x + c2.

(3)

Equating the coefficients in the quadratic polynomials yields

A2 = A1, (4)
b2 = b1 − 2A1d, (5)

c2 = dTA1d− bT1 d + c1. (6)

The key observation is that by equation (5) we can solve for the translation d,
at least if A1 is non-singular,

2A1d = −(b2 − b1), (7)

d = −1
2
A−1

1 (b2 − b1). (8)

We note that this observation holds for any signal dimensionality.



3.1 Practical Considerations

Obviously the assumptions about an entire signal being a single polynomial and
a global translation relating the two signals are quite unrealistic. Still the basic
relation (7) can be used for real signals, although errors are introduced when the
assumptions are relaxed. The question is whether these errors can be kept small
enough to give a useful algorithm.

To begin with we replace the global polynomial in equation (2) with local
polynomial approximations. Thus we start by doing a polynomial expansion
of both images, giving us expansion coefficients A1(x), b1(x), and c1(x) for the
first image and A2(x), b2(x), and c2(x) for the second image. Ideally this should
give A1 = A2 according to equation (4) but in practice we have to settle for the
approximation

A(x) =
A1(x) + A2(x)

2
. (9)

We also introduce
∆b(x) = −1

2
(b2(x)− b1(x)) (10)

to obtain the primary constraint

A(x)d(x) = ∆b(x), (11)

where d(x) indicates that we have also replaced the global displacement in equa-
tion (3) with a spatially varying displacement field.

3.2 Estimation Over a Neighborhood

In principle equation (11) can be solved pointwise, but the results turn out to
be too noisy. Instead we make the assumption that the displacement field is
only slowly varying, so that we can integrate information over a neighborhood
of each pixel. Thus we try to find d(x) satisfying (11) as well as possible over a
neighborhood I of x, or more formally minimizing∑

∆x∈I
w(∆x)‖A(x +∆x)d(x)−∆b(x +∆x)‖2, (12)

where we let w(∆x) be a weight function for the points in the neighborhood.
The minimum is obtained for

d(x) =
(∑

wATA
)−1∑

wAT∆b, (13)

where we have dropped some indexing to make the expression more readable.
The minimum value is given by

e(x) =
(∑

w∆bT∆b
)
− d(x)T

∑
wAT∆b. (14)

In practical terms this means that we compute ATA, AT∆b, and ∆bT∆b
pointwise and average these with w before we solve for the displacement. The



minimum value e(x) can be used as a reversed confidence value, with small
numbers indicating high confidence. The solution given by (13) exists and is
unique unless the whole neighborhood is exposed to the aperture problem.

Sometimes it is useful to add a certainty weight c(x +∆x) to (12). This is
most easily handled by scaling A and ∆b accordingly.

3.3 Parameterized Displacement Fields

We can improve robustness if the displacement field can be parameterized ac-
cording to some motion model. This is straightforward for motion models which
are linear in their parameters, like the affine motion model or the eight parameter
model. We derive this for the eight parameter model in 2D,

dx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy,

dy(x, y) = a4 + a5x+ a6y + a7xy + a8y
2.

(15)

We can rewrite this as

d = Sp, (16)

S =
(

1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
, (17)

p =
(
a1 a2 a3 a4 a5 a6 a7 a8

)T
. (18)

Inserting into (12) we obtain the weighted least squares problem∑
i

wi‖AiSip−∆bi‖2, (19)

where we use i to index the coordinates in a neighborhood. The solution is

p =

(∑
i

wiSTi AT
i AiSi

)−1∑
i

wiSTi AT
i ∆bi. (20)

We notice that like before we can compute STATAS and STAT∆b pointwise
and then average these with w. Naturally (20) reduces to (13) for the constant
motion model.

3.4 Incorporating A Priori Knowledge

A principal problem with the method so far is that we assume that the local
polynomials at the same coordinates in the two signals are identical except for a
displacement. Since the polynomial expansions are local models these will vary
spatially, introducing errors in the constraints (11). For small displacements this
is not too serious, but with larger displacements the problem increases. Fortu-
nately we are not restricted to comparing two polynomials at the same coordi-
nate. If we have a priori knowledge about the displacement field, we can compare



the polynomial at x in the first signal to the polynomial at x+d̃(x) in the second
signal, where d̃(x) is the a priori displacement field rounded to integer values.
Then we effectively only need to estimate the relative displacement between the
real value and the rounded a priori estimate, which hopefully is smaller.

This observation is included in the algorithm by replacing equations (9) and
(10) by

A(x) =
A1(x) + A2(x̃)

2
, (21)

∆b(x) = −1
2

(b2(x̃)− b1(x)) + A(x)d̃(x), (22)

where
x̃ = x + d̃(x). (23)

The first two terms in∆b are involved in computing the remaining displacement
while the last term adds back the rounded a priori displacement. We can see
that for d̃ identically zero, these equations revert to (9) and (10), as would be
expected.

3.5 Iterative and Multi-scale Displacement Estimation

A consequence of the inclusion of an a priori displacement field in the algorithm
is that we can close the loop and iterate. A better a priori estimate means a
smaller relative displacement, which in turn improves the chances for a good
displacement estimate. We consider two different approaches, iterative displace-
ment estimation and multi-scale displacement estimation.

In both the approaches we iterate with the estimated displacements from one
step used as a priori displacement in the next step. The a priori displacement
field in the first step would usually be set to zero, unless actual knowledge about
it is available.

In the first approach the same polynomial expansion coefficients are used in
all iterations and need only be computed once. The weak spot of this approach
is in the first iteration. If the displacements (relative the a priori displacements)
are too large, the output displacements cannot be expected to be improvements
and iterating will be meaningless.

The problem of too large displacements can be reduced by doing the analysis
at a coarser scale. This means that we use a larger applicability for the poly-
nomial expansion and/or lowpass filter the signal first. The effect is that the
estimation algorithm can handle larger displacements but at the same time the
accuracy decreases.

This observation points to the second approach with multiple scales. Start
at a coarse scale to get a rough but reasonable displacement estimate and prop-
agate this through finer scales to obtain increasingly more accurate estimates.
A drawback is that we need to recompute the polynomial expansion coefficients
for each scale, but this cost can be reduced by subsampling between scales.



4 Experimental Results

The algorithm has been implemented in Matlab, with certain parts in the form
of C mex files. Source code for the implementation is available from
http://www.isy.liu.se/~gf.

The algorithm has been evaluated on a commonly used test sequence with
known velocity field, Lynn Quam’s Yosemite sequence [7], figure 1. This synthetic
sequence was generated with the help of a digital terrain map and therefore has
a motion field with depth variation and discontinuities at occlusion boundaries.

The accuracy of the velocity estimates has been measured using the average
spatiotemporal angular error, arccos(v̂Testv̂true) [8]. The sky region is excluded
from the error analysis because the variations in the cloud textures induce an
image flow that is quite different from the ground truth values computed solely
from the camera motion.

We have estimated the displacement from the center frame and the frame
before. The averaging over neighborhoods is done using a 39 × 39 Gaussian
weighting function (w in equation (19)) with standard deviation 6. The poly-
nomial expansion is done with an 11× 11 Gaussian applicability with standard
deviation 1.5. In order to reduce the errors near the borders, the polynomial
expansions have been computed with certainty set to zero off the border. Addi-
tionally pixels close to the borders have been given a reduced weight (see section
3.2) because the expansion coefficients still can be assumed to be less reliable
there. The constant and affine motion models have been used with a single iter-
ation and with three iterations at the same scale.

The results and a comparison with other methods can be found in table 1.
Clearly this algorithm cannot compete with the most accurate ones, but that
is to be expected since those take advantage of the spatio-temporal consistency
over several frames. Still these results are good for a two-frame algorithm. A
more thorough evaluation of the algorithm can be found in [6].

The main weakness of the algorithm is the assumption of a slowly varying
displacement field, causing discontinuities to be smoothed out. This can be solved
by combining the algorithm with a simultaneous segmentation procedure, e.g.
the one used in [2].
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