
School of Humanities and Informatics
Masters Dissertation in Computer Science, 25 Credit Points
D-level
Spring 2006

How to Implement Multi-Master
Replication in Polyhedra

Using Full Replication and Eventual Consistency

Sebastian Holmgren

How to Implement Multi-Master Replication in Polyhedra
Using Full Replication and Eventual Consistency

Submitted by Sebastian Holmgren to the University of Skövde, as a dissertation for the
degree of Master of Science (M.Sc.) by examination and dissertation at the School of
Humanities and Informatics.

November 18, 2006

I certify that all material in this dissertation which is not my own work has been clearly
identified and that no material is included for which a degree has previously been conferred
on me.

Signed:

Supervisor: Marcus Brohede
Examiner: Sten F. Andler

How to Implement Multi-Master Replication in Polyhedra
Using Full Replication and Eventual Consistency

Sebastian Holmgren

Abstract
A distributed, real-time database could be used to implement a shared whiteboard archi-
tecture used for communication between mobile nodes, in an ad-hoc network. This kind
of application implies specific requirements on how the database handles replication and
consistency between replicas (global consistency). Since mobile nodes are likely to discon-
nect from the network and connect again at unpredictable times, and since a node may be
disconnected an arbitrary amount of time, this needs to be treated as normal operation, and
not as failures.

The replication scheme used in the DeeDS architecture, and the PRiDe replication pro-
tocol are both suitable for a shared whiteboard architecture as described above. Since the
mobile nodes are likely to be some kind of hand-held device (e.g., used by rescue personnel
to exchange information), the database system should be suitable for use in embedded sys-
tems. The Polyhedra Real-Time Relational Database (RTRDB) and the TimesTen database
are two such systems. A problem is that neither of these two database systems have a
replication scheme suitable for use in the previously described type of architecture.

This dissertation presents two design proposals for how to extend the Polyhedra RTRDB
with support for multi-master replication of data using full replication and eventual consis-
tency. One design proposal is based on the DeeDS architecture and the other is based on
the PRiDe replication protocol. The proposal based on DeeDS puts a number of require-
ments on the underlying database and is not easy to port to another DBMS since it makes
use of Polyhedra specific API’s. The proposal based on PRiDe on the other hand requires
no instrumentation of the underlying database and is thus easier to port to other database
systems.

Keywords: Real-Time Databases, Multi-Master Replication, Full Replication, Eventual
Consistency, DeeDS, PRiDe, Polyhedra, TimesTen

Acknowledgements
I wish to express my gratitude to the drts-research group at the University of Skövde. In
particular to my supervisor Marcus Brohede for all his help and guidance with my disser-
tation. Further, Sanny Gustavsson and Gunnar Mathiason have shared their view of my
dissertation. Sanny has also given me valuable insight in the inner workings of eventual
consistency, the DeeDS architecture and the PRiDe replication protocol.

I would also like to thank my examiner, professor Sten F. Andler for his help during
the dissertation, professor Sang H. Son for sharing his thoughts about the ideas behind the
dissertation, Dr. Bengt Eftring for reviewing the dissertation, and Dr. Ronnie Johansson for
opposing against the dissertation. Further, I want to express my gratitude towards Polyhedra
Ltd and especially Nigel Day for all the information about Polyhedra and for sharing their
thoughts about how multi-master data replication could be implemented in the Polyhedra
RTRDB. Last, but not least I would like to thank my wife Karin, for all her support when I
wrote this dissertation.

Contents
1 Introduction 1

2 Background 2
2.1 Real-Time Database Systems . 2

2.1.1 Consistency vs. Predictability . 2
2.2 Replication & Consistency . 2

2.2.1 Replication Schemes . 3
2.2.2 Consistency Guarantees . 4

2.3 The DeeDS Architecture . 5
2.4 The PRiDe Replication Protocol . 5
2.5 The TimesTen In-Memory Database . 6
2.6 The Polyhedra RTRDB . 7
2.7 Example Scenario . 8

2.7.1 Problems with Leader-follower Replication 8

3 Problem Statement 10
3.1 Aim . 10
3.2 Limitations . 10
3.3 Objectives . 11

4 Research Approach 13

5 Investigations 14
5.1 Replication in DeeDS . 14

5.1.1 The Replication Module . 14
5.1.2 Local Conflict Detection & Resolution 15
5.1.3 Key Design Choices in the DeeDS Architecture 16

5.2 The PRiDe Replication Protocol . 16
5.2.1 Stable and Optimistic Versions . 17
5.2.2 Generations & Conflict Sets . 17
5.2.3 Semantic Conflict Detection & Resolution 18
5.2.4 Steps in PRiDe Replication . 18

5.3 Replication in the TimesTen In-Memory Database 18
5.3.1 Replication Schemes . 19
5.3.2 Consistency Guarantees . 19
5.3.3 Conflict Detection & Resolution 20

5.4 Replication in the Polyhedra RTRDB . 20

6 Comparisons 22
6.1 Comparison between DeeDS and PRiDe 22
6.2 Comparison of DeeDS, DeeDS NG, TimesTen and Polyhedra 23

6.2.1 Conflict Types . 24

7 Extension Designs 25
7.1 Based on DeeDS . 25

7.1.1 Prerequisites for Multi-Master Replication 25
7.1.2 High Level Design . 26
7.1.3 Requirements on Polyhedra . 27

i

7.1.4 Architectural Design . 27
7.1.5 Replicating an Update Operation 27

7.2 Based on PRiDe . 29
7.2.1 Object Level Interface . 29
7.2.2 Mapping from Object Level to Relational Level 30
7.2.3 Moving Requirements . 30

8 Discussion 31
8.1 Portability . 31
8.2 Advantages & Disadvantages of the Design Proposals 31
8.3 Application - MMR/EC Interface . 31
8.4 Propagation Strategies . 32

9 Conclusions 33
9.1 Summary . 33
9.2 Contributions . 34
9.3 Related Work . 34
9.4 Future Work . 34

References 36

ii

List of Figures
1 The DeeDS architecture (adapted from Andler, Hansson, Mellin, Eriksson

& Eftring (1998)) . 5
2 TimesTen components (adapted from Oracle (2006a)) 6
3 The structure of the Polyhedra RTRDB (adapted from ENEA Polyhedra

(2005b)) . 7
4 Search and rescue scenario . 8
5 Replication in DeeDS (adapted from Matheis & Müssig (2003)) 14
6 Conflict detection in DeeDS . 16
7 TimesTen replication (adapted from Oracle (2006b)) 19
8 Fault-tolerant configuration (adapted from ENEA Polyhedra (2005b)) . . . 21
9 Proposed design for MMR/EC support in the Polyhedra RTRDB, based on

DeeDS . 28
10 Replication of an update operation . 28
11 Proposed design for MMR/EC support in the Polyhedra RTRDB, based on

PRiDe . 29

List of Tables
1 Comparison of replication in DeeDS and the PRiDe replication protocol . . 22
2 Comparison of replication schemes . 23
3 Conflict types in TimesTen and the DeeDS. 24
4 Advantages & disadvantages for the two design proposals. 31

iii

1 INTRODUCTION

1 Introduction
Real-time databases are used by real-time applications since ad-hoc management of data
is not desirable and conventional databases have unpredictable response times. To im-
prove fault-tolerance and availability decentralised configurations and replication are often
used. When data are replicated onto different nodes, the consistency between the repli-
cas becomes an issue. The concept of eventual consistency allows temporary inconsisten-
cies between replicas; eventually, given transaction quiescence, the replicas will converge
into a consistent state. In this way, a local application may still access the local database
replica without waiting for other nodes, thereby increasing predictability, speed and node
autonomy while still guaranteeing global eventual consistency. The price for this is that
applications must tolerate temporary global inconsistencies in the database.

A distributed, real-time database could be used to implement a shared whiteboard ar-
chitecture (Brohede & Andler 2002) used for communication between mobile nodes in an
ad-hoc network (Tatomir & Rothkrantz 2005). This kind of application implies specific
requirements on how the database handles replication and consistency between replicas
(global consistency). Since mobile nodes are likely to disconnect from the network and
connect again at unpredictable times, and since a node may be disconnected an arbitrary
amount of time, this needs to be treated as normal operation of the system, and not as
failures (Serrano-Alvarado, Roncancio & Adiba 2004).

The DeeDS architecture and the PRiDe replication protocol are both targeted towards
hard real-time systems where predictability is critical. For this reason, they both support
local commits while guaranteeing eventual global consistency, and local conflict detection
and resolution. An observation is that the approach taken in these systems for improving
predictability (e.g., multi-master replication, full replication, and eventual consistency) is
also suitable for a shared whiteboard architecture used for communication as described
above.

Since the mobile nodes are likely to be some kind of hand-held device (e.g., used by
rescue personnel to exchange information), the database system should be suitable for use
in embedded systems. The Polyhedra Real-Time Relational Database (RTRDB) is one
such system. The TimesTen database system is also suitable for use in embedded system.
Further, the replication scheme in TimesTen shares a number of features with the replication
scheme used in the DeeDS architecture and the PRiDe replication protocol. However, some
important features, such as detecting read-write conflicts, are lacking from the TimesTen
replication scheme (discussed in Section 6.2) and therefore the TimesTen database is not
sufficient for use instead of the DeeDS architecture. Thus the aim of this dissertation is to
investigate how multi-master replication using full replication and eventual consistency can
be integrated in the Polyhedra RTRDB.

Section 2 presents the central concept of this dissertation along with important termi-
nology used throughout the dissertation. Section 3 presents and motivates the aim for the
dissertation along with a number of objectives which need to be met in order to reach the
aim. Section 4 presents the research methods chosen for each objective. Section 5 presents
a more in-depth investigation of the DeeDS, PRiDe, TimesTen and Polyhedra systems.
These systems are then compared in section 6. Section 7 presents two design proposals
(MMR/EC based on the DeeDS architecture and MMR/EC based on the PRiDe replication
protocol) for how to extend the Polyhedra RTRDB with support for multi-master replica-
tion. Section 8 discusses the work presented in the dissertation along with some of the
results presented earlier. Finally section 9 concludes the report and presents the contribu-
tions made in this dissertation along with related and future work.

1

2 BACKGROUND

2 Background
This section provides an overview of real-time database systems and why they are used.
Further, replication, and consistency guarantees are described. Three real-time database
systems, the DeeDS distributed real-time database architecture, the TimesTen database and
the Polyhedra real-time relational database (RTRDB), along with the PRiDe replication
protocol are also described.

2.1 Real-Time Database Systems
Real-time database systems are used because ad-hoc management of data are not desir-
able; moreover, conventional (non real-time) database systems do not meet the require-
ments of timeliness and predictability needed by real-time systems (Gustavsson & Andler
2005, Ramamritham 1993, Ramamritham, Son & Dipippo 2004, Stankovic, Son & Hansson
1999). Note that timeliness and predictability has nothing to do with speed. Instead timeli-
ness means that all deadlines are met, that is a timely system does not miss any deadlines.
Further, predictability means that response time for the worst case can be predicted.

In a real-time database system, transactions are associated with deadlines, and data
may be valid for specific time intervals (Bestavros, Son & Lin 1997, Ramamritham 1993,
Stankovic et al. 1999). We associate transactions with deadlines because since real-time
systems may be depending on timely access to data in a database. Transaction execution
within the database must also be timely. As in a real-time system, deadlines might be soft,
firm or hard (Bernat, Burns & Llamosi 2001).

2.1.1 Consistency vs. Predictability

Conventional databases follow the ACID (atomicity, consistency, isolation, durability) prop-
erties (Elmasri & Navathe 2000). In a real-time database system, the ACID properties may
be traded off. Especially consistency is often traded off for better predictability and time-
liness. If a distributed and replicated real-time database were to enforce immediate con-
sistency, this would lead to unpredictability, unless a real-time network is used, since it
would have to access data over the network and a global commit protocol would have to be
used. Instead, some real-time databases guarantee eventual consistency. Even if a real-time
network is available, consistency may be sacrificed in order to speed up the time it takes to
commit (i.e., global commit over the network may still be slow, even if it is predictable).

2.2 Replication & Consistency
Real-time systems are often used in safety critical applications (e.g., fighter planes, air
traffic control, nuclear power plants). This means that the system needs to be safe (nothing
bad happens), reliable (the system does what it is supposed to do), available (the system can
be accessed and used by an application) and fault-tolerant. To achieve availability and fault-
tolerance, distributed configurations together with replication is often employed (Birrell,
Levin, Schroeder & Needham 1982, Gray, Helland, O’Neil & Shasha 1996, Gustavsson &
Andler 2002, Joseph & Birman 1986, Mathiason 2002, Mathiason & Andler 2003).

Saito & Shapiro (2005, pp. 1-2) state:

Data replication consists of maintaining multiple copies of data, called replicas,
on separate computers. It is an important enabling technology for distributed

2

2.2 Replication & Consistency 2 BACKGROUND

services. Replication improves availability by allowing access to the data even
when some of the replicas are unavailable.

In this dissertation, the term replica refers to a replica of an entire database, assuming full
replication. An object in such a database will be referred to as a replicated object.

The reason for replicating data is that it improves performance by avoiding remote
network access, and the availability by allowing access to data even though some of the
replicas are unavailable (Saito & Shapiro 2005, Gray et al. 1996). Further, according to Ra-
mamritham et al. (2004), “Many real-time database applications are inherently distributed
in nature”. The availability, performance and reliability of such applications can be signifi-
cantly enhanced by replicating data.

When data are replicated in order to achieve availability and fault-tolerance, full repli-
cation is often used. In a fully replicated database system, all data items are stored on all
nodes in the system and thus, full availability and better fault-tolerance is achieved. How-
ever, this leads to poor scalability since all updates must be sent to all nodes even if the
affected data are never used at some nodes. Moreover, full replication is costly in storage
requirements. Virtual full replication (Andler, Hansson, Eriksson, Mellin, Berndtsson &
Eftring 1996, Andler et al. 1998) can be used to reduce this problem in order to improve
scalability without changing the application’s view of a fully replicated database system
(Mathiason & Andler 2003, Mathiason, Andler & Jagszent 2005).

With virtual full replication, data are replicated only to nodes where they are used
(Mathiason & Andler 2003). This reduces the amount of data stored on each node and
the need to replicate updates to all nodes, thus improving scalability while still offering
better availability and fault-tolerance. If a database is virtually fully replicated, the term
replica will refer to the parts of the replicated database that are replicated on one of the
nodes.

2.2.1 Replication Schemes

There are many different approaches or schemes for how to update data in a replicated
system. Two such schemes are (i) the leader-follower replication scheme, and (ii) the multi-
master replication scheme.

If the leader-follower replication scheme (Barret, Hilborne, Bond, Seaton, Verissimo,
Rodrigues & Speirs 1990) is used, one replica is elected to be the leader. This is also re-
ferred to as single-master replication (Saito & Shapiro 2005). In this dissertation, the term
leader-follower replication will be used. All clients then issue their update operations (e.g.,
insert, update, delete) to the leader replica. The leader will then propagate the update op-
erations to the follower replicas. Read operations can be issued to any replica. If a global
commit protocol is used, all replicas will be “fresh” when read by an application. Other-
wise, there is a risk that an application reads “stale” data (i.e., an operation has updated
data on the leader but it has not yet been propagated to the follower replica(s)) from the
follower. If the leader fails, the follower replicas elect a new leader.

In this dissertation, the term update operation (e.g., insert, update or delete) will be
referred to as an update. Thus, an update is an operation that affect the state of the database.
Read operations will be referred to as reads, this type of operation does not affect the state
of the database. Finally the term operations will be used to denote both updates and reads.

The multi-master replication scheme (Saito & Shapiro 2005) differs from the leader-
follower scheme in that clients can issue their operations to more than one replica, thereby
avoiding the single-point-of-failure of the leader replica. When accepting operations on any
replica in the system, it is possible to let the replica that receives the operation commit the

3

2.2 Replication & Consistency 2 BACKGROUND

change locally. This allows the client continue working based on that operation, and then
propagate the change to the other replicas in the background.

2.2.2 Consistency Guarantees

When data are replicated on separate nodes in a distributed network, the consistency of the
replicated data becomes an issue (Fekete, Gupta, Luchangco, Lynch & Shvartsman 1996).
Keeping a distributed database consistent requires keeping replicas sufficiently similar to
each other despite operations being submitted independently at different sites (Saito &
Shapiro 2005). In this dissertation, two different kinds of consistency are described: lo-
cal consistency and global consistency. Local consistency refers to the internal consistency
(Thomas 1979) of one replica. According to Thomas (1979, p. 181), internal consis-
tency concerns “the preservation of invariant relations that exist among items in a items
within a database”. Global consistency on the other hand refers to mutual consistency
(Thomas 1979) between replicas in a replicated database system. Mutual consistency is
described by Thomas (1979, p. 181) “all replicas converge to the same state and would be
identical should update activity cease”. In this dissertation, the terms local consistency and
global consistency will be used.

The global consistency guarantee defines how much replica divergence a client applica-
tion may observe at a given moment. Different systems offer different consistency guaran-
tees. Three different levels of consistency guarantees are common (Saito & Shapiro 2005):

• Single-copy consistency, also referred to as immediate (global) consistency. In this
dissertation, the term immediate (global) consistency will be used. In TimesTen, the
return twosafe variant of synchronous replication is equivalent to immediate consis-
tency.

• Bounded divergence, also referred to as bounded replication.

• Eventual consistency. In TimesTen, the asynchronous replication resembles eventual
consistency in that an operation is directly committed and later propagated to other
replicas.

Immediate global consistency guarantees that an application that uses the replicated
data never sees any inconsistencies between the different replicas. Instead, it appears to
the application that it is using one single, highly available source of data (Saito & Shapiro
2005).

Bounded divergence is a weaker guarantee in the sense that it lets applications see in-
consistencies in the replicated data. The replicas are allowed to temporarily diverge, but
replicas are guaranteed to converge to a consistent state within a specified amount of time
(Yu & Vahdat 2001).

Eventual consistency is an even weaker guarantee than bounded divergence. Also in this
case, replicas are allowed to diverge. Eventual consistency guarantees that, given transac-
tion quiescence, the replicas will eventually converge. Since replicas might be temporarily
inconsistent, the application must tolerate this (Andler et al. 1996, Saito & Shapiro 2005).

In a fully replicated system that uses eventual consistency, a node can commit a transac-
tion locally, without informing the other replicas, thereby avoiding global deadlocks. This
implies the replicas will become temporarily inconsistent. That is, there is a trade-off be-
tween predictability (or speed cf. Section 2.1.1) and consistency. According to (Fox &
Brewer 1999, Pedone 2001, Yu & Vahdat 2002) any distributed system must make such a
trade-off.

4

2.3 The DeeDS Architecture 2 BACKGROUND

2.3 The DeeDS Architecture
The DeeDS (Distributed, active, real-time Database System) research prototype (Andler,
Hansson, Eriksson & Mellin 1994, Andler, Berndtsson, Eftring, Eriksson, Hansson &
Mellin 1995, Andler et al. 1996, Andler et al. 1998) is an active main memory resident real-
time database system that supports hard real-time requirements. It supports multi-master
replication, currently using full replication, and support for virtual full replication (Sec-
tion 2.2) is currently being researched (Mathiason & Andler 2003, Mathiason et al. 2005).
Figure 1 depicts the DeeDS architecture.

Figure 1: The DeeDS architecture (adapted from Andler et al. (1998))

Besides support for eventual consistency, the DeeDS architecture also supports bounded
replication. When eventual consistency is used, updates are propagated and integrated
as soon as possible by using ASAP versions of the propagator and integrator modules.
Bounded replication on the other uses bounded versions of the propagator and integrator
which are predictable. Bounded propagation also requires a real-time network. In this
dissertation only eventual consistency (ASAP replication) is considered.

DeeDS uses a combination of full replication and eventual consistency, which is re-
ferred to in the DeeDS project as lazy replication. Updates are accepted at any replica
(multi-master replication), and thus the number of masters is equal to the number of nodes.
Lazy replication, together with the fact that DeeDS resides in main memory removes
some of the dominating sources of unpredictability, such as: disk I/O, network I/O (if no
real-time network is available) and distributed commit protocols (e.g., two-phase commit
(Gray, Flynn, Jones, Lagally, Opderbeck, Popek, Randell, Saltzer & Wiehle 1978, Gray &
Lamport 2006)). This allows DeeDS to support hard real-time requirements locally, while
gaining fault-tolerance and availability due to distribution and replication.

2.4 The PRiDe Replication Protocol
PRiDe (Protocol for Replication in DeeDS) is an optimistic replication protocol, intended
for use in the DeeDS architecture. An initial version of the protocol, called the continuous
convergence protocol is presented in (Gustavsson & Andler 2005). PRiDe is a further
development of this protocol and will be presented in a future thesis (Gustavsson n.d.).

5

2.5 The TimesTen In-Memory Database 2 BACKGROUND

PRiDe uses a notion of continuous convergence (Gustavsson & Andler 2005) to main-
tain three important database properties: (i) local consistency, (ii) local predictability and
(iii) eventual global consistency. This resembles the ideas behind replication in the DeeDS
architecture. However, in the DeeDS architecture, operations are directly performed against
the local replica of the database, transactions are monitored within the database and changes
are logged and propagated to other nodes holding a replica of the database. Operations
made to the local replica may be in conflict with remote operations on other nodes. These
conflicts are then detected and resolved in the integration process. In PRiDe, on the other
hand, there is a notion of stable and optimistic versions of replicas. Operations issued
by applications are considered tentative and are kept within the data structures of PRiDe.
When all conflicts have been detected and resolved for a specific operation it is considered
stable and is integrated in the local database replica. It is now guaranteed that this update
will not need to be corrected due to a conflict. The data which has been integrated on the
database replica makes up the stable state of the replica. The stable state together with the
tentative operations makes up the optimistic state of the replica.

PRiDe allows for more elaborate conflict detection and resolution than the DeeDS ar-
chitecture by using semantic information as well as syntactic.

DeeDS NG (DeeDS Next Generation) (Andler, Brohede, Gustavsson & Mathiason
2007) refers to the DeeDS architecture complemented with the PRiDe protocol and vir-
tual full replication.

2.5 The TimesTen In-Memory Database
TimesTen is an in-memory RDBMS. It is available as either a library that can be linked by
applications and as a client server option (The TimesTen Team 2002, The TimesTen Team
1999). Although the database resides in main memory, it is persistent and recoverable.
This is achieved by check pointing and logging to disk. One issue which is targeted by
the TimesTen database is that of availability. By replicating the database, it is possible to
access data even in the event of software or hardware failures. Further, on-line maintenance
of replicas is supported.

Figure 2: TimesTen components (adapted from Oracle (2006a))

The TimesTen database supports different kinds of replication configurations (active-
passive and active-active), and consistency guarantees can be configured to be either asyn-

6

2.6 The Polyhedra RTRDB 2 BACKGROUND

chronous or synchronous (cf. Section 2.2.2) (Oracle 2006b, The TimesTen Team 2004).
Replication in the TimesTen database system follows a master-subscriber pattern, where
two replicas form a master-subscriber pattern. If two replicas are running in an active-
passive configuration, one of them is configured to run as active, and the other runs as
passive. Thus there is one master-subscriber pattern. If there are one active replica, and
two passive replicas, two such master-subscriber patterns are used. One pattern consists of
the active replica and one of the passive replicas, and the other pattern consists of the active
replica and the other passive replica. In an active-active configuration between two replicas,
two master-subscriber patterns exists. In the first, one of the replicas is running as active,
and the other as passive. In the other pattern, their roles are reversed. Thus, both replicas
are running both as active and passive. Updates made at the master replica are copied onto
one or more corresponding subscriber replicas (The TimesTen Team 2004, Ch. 1).

2.6 The Polyhedra RTRDB
The Polyhedra real-time relational database (RTRDB) is a main memory database designed
for applications with rapidly changing data (ENEA Polyhedra 2005a).

Like DeeDS, the Polyhedra RTRDB resides in main memory. In contrast to DeeDS,
the main reason for this is not predictability, but speed. Polyhedra gives no hard real-time
guarantees, instead soft real-time guarantees are provided.

Figure 3: The structure of the Polyhedra RTRDB (adapted from ENEA Polyhedra (2005b))

Polyhedra is a single-master system (Section 2.2.1) and uses a leader-follower replica-
tion scheme with immediate global consistency 1 (ENEA Polyhedra 2005b). Updates to
the database are made at the leader (master replica), and are then propagated to the passive
follower replica(s).

Figure 3 depicts the structure of the Polyhedra RTRDB. It consists of several modules.
The schema contains the definitions of the current database, the object store contains the
run-time data.

1After a transaction has completed on the master replica, it sends journal records to the standby replica(s),
and can be instructed to wait for the standby replica(s) to commit them before confirming to the calling
application that the transaction is complete (Polyhedra 2005b)

7

2.7 Example Scenario 2 BACKGROUND

2.7 Example Scenario
To understand why it is in some cases beneficial to support multi-master replication (Sec-
tion 2.2.1), full replication and eventual consistency in a distributed real-time database,
consider the following scenario.

Imagine a search and rescue scenario where a number of units (e.g., rescue personnel,
vehicles etc.) are working together to perform some task (e.g., looking for survivors after
a flood, avalanche, wildfire etc.). Figure 4 depicts a possible snapshot of the scenario.
Besides radio communication, the units are equipped with some kind of hand-held device
(e.g., a PDA) which is used to enter observations such as position of survivors or dangerous
objects. A rescue worker could then get visual information about observations made by
other rescuers. Communication between the devices is wireless. Further the network is
dynamic in the sense that nodes may continuously join and leave the network. Since nodes
may frequently be disconnected from the other nodes, this needs to be treated as normal
operation and not as a failure (Serrano-Alvarado et al. 2004). This means that since nodes
may not be able to reach each other from time to time, nodes need to be able to work
autonomously. This requires access to data, and being able to commit locally.

To enable the different participants to communicate via the hand-held devices, Tatomir
& Rothkrantz (2005) suggests that a shared whiteboard architecture can be used. In a
whiteboard architecture, participants write data to a common place, the whiteboard. All
participants can read and update the data. One of the advantages of such an architecture is
that a participant that writes data does not need to know about how many other participants
there are, or where they reside. They argue that such a whiteboard architecture is difficult
to implement, and that this is mainly because the nodes in the network might not be able to
reach each other from time to time since the network is mobile ad-hoc and wireless, i.e., a
MANET (Corson & Macker 1999).

Brohede & Andler (2002) argues that a distributed, real-time database could be used to
implement a shared whiteboard architecture useful for complex sharing applications such
as distributed real-time simulations. If the database supports multi-master replication with
(virtual) full replication and eventual consistency, this would be a suitable for use as a
whiteboard architecture for communication in this type of environment. Another advantage
of replicating the database, is that its availability and fault-tolerance is also increased.

Figure 4: Search and rescue scenario

2.7.1 Problems with Leader-follower Replication

If the leader-follower replication scheme was used, together with immediate global con-
sistency, in the distributed database, the following two situations can cause problems: (i)

8

2.7 Example Scenario 2 BACKGROUND

if the leader is unable to connect to one or more of the follower replicas, for instance the
unavailable follower replica is in a ravine (i.e., radio shadow), and (ii) if a unit that wants
to issue an update is unable to connect to the leader (e.g., they are to far away from each
other or any intermediate communication node).

In the first case, if a unit issues an update (e.g., about its position), the leader would try
to commit the update, and to replicate the change on all the followers. Suppose that one
replica is currently unavailable. This could lead to that the leader would then have to wait
for that follower to become available again (since all followers should be updated due to
the immediate global consistency constraint), and reply before new updates can be taken
care of, perhaps indefinitely.

In the second case, if a unit wants to issue an update but is unable to connect to the
leader (directly or by using relays), it would not be possible for the unit to do so, even if it
could connect to one or more of the follower replicas.

9

3 PROBLEM STATEMENT

3 Problem Statement
Section 2.7 describes a search and rescue scenario in which rescuers and various vehicles
are cooperating. To enable the different participants to communicate, Tatomir & Rothkrantz
(2005) suggests that a shared whiteboard architecture can be used. They argue that such a
whiteboard architecture is difficult to implement, and that this is mainly because the nodes
in the network might not be able to reach each other from time to time since the network is
mobile, ad-hoc and wireless (i.e., a MANET).

Brohede & Andler (2002) argues that a distributed, real-time database could be used to
implement a shared whiteboard architecture useful for complex sharing applications such
as distributed real-time simulations. In this dissertation, we argue that with some modifica-
tions, such an architecture will also be useful for communication between mobile partici-
pants over an unreliable network.

Both the replication scheme used in the DeeDS architecture, and the PRiDe replication
protocol provides a high degree of node autonomy by letting applications perform oper-
ations against their local replica of the distributed database without communicating with
replicas on other nodes. This maps well against the characteristics for the scenario de-
scribed above and in section 2.7. This leads to the conclusion that the DeeDS architecture
would be suitable for use as a whiteboard architecture in such a scenario. However, as
rescue workers are likely to be equipped with hand-held devices such as PDA’s, the white-
board architecture should be suitable for use in embedded systems. According to Nyström,
Tesanovic, Nolin, Norström & Hansson (2004) the DeeDS architecture is targeted against
large scale real-time applications and thus it is unsuitable for use in embedded systems.
Instead a database system suitable for embedded systems such as the Polyhedra RTRDB or
the TimesTen database could be used if their replication schemes are suitable.

Currently, Polyhedra utilises the leader-follower replication scheme, and fault-tolerant
pair configurations (see Section 5.4 and Figure 8) in order to tolerate node failures (ENEA
Polyhedra 2005b). In Section 2.7.1 a number of problems that could occur when leader-
follower replication is used are presented. The problems are: (i) that an unavailable replica
would block the system from making any progress, and (ii) that a unit that is not able to
connect to the leader could not issue any updates. Thus, this is not a suitable replication
scheme for use in a whiteboard architecture. However, Polyhedra could be extended with
support for the kind of replication scheme used in the DeeDS architecture or in PRiDe.

The TimesTen database system supports updates at more than one replica, and can be
configured to use asynchronous replication which resembles the eventual consistency guar-
antee offered by the DeeDS architecture and PRiDe. Thus TimesTen is a suitable candidate
and its replication scheme will be be evaluated further in Section 5.3.

3.1 Aim
The aim of this M.Sc. dissertation is to:

Investigate how multi-master replication using full replication and eventual consistency
could be implemented in a main-memory RDBMS such as Polyhedra.

3.2 Limitations
As stated in Section 2.3 the DeeDS architecture supports two classes of replication, namely
eventual consistency using best effort mechanisms and bounded delay replication; this dis-
sertation, does not consider the bounded alternative. Since the Polyhedra RTRDB does

10

3.3 Objectives 3 PROBLEM STATEMENT

not support hard real-time requirements, providing bounded delay replication is not the top
priority. However, future work may well extend the multi-master replication extension to
support bounded replication, this is discussed in Section 9.4.

The focus of this dissertation is on how the features of the DeeDS architecture could be
integrated in another database system, i.e., the Polyhedra RTRDB. Lower levels, such as
communication protocols (e.g., for propagation) are only discussed briefly.

3.3 Objectives
To design such an extension, a number of objectives need to be met. These include:

1. Transfer the Replication Scheme from DeeDS to Polyhedra

(a) Investigate how Replication is Implemented in DeeDS
The research ideas behind the DeeDS architecture are used as guidelines. Hence,
an investigation of how multi-master replication is designed and implemented
in the DeeDS system is necessary. To fulfil this objective, all design decisions
related to replication need to be identified and understood.

(b) Analyse the Polyhedra RTRDB
This objective consists of two parts: (i) Investigate how replication is im-

plemented in the Polyhedra RTRDB and identify what is missing in order to
support multi-master replication, and (ii) analyse the prerequisites and require-
ments for extending the Polyhedra RTRDB with multi-master replication and
eventual consistency. For each of the design decisions identified in objective 1a,
it should be investigated how to map it onto the Polyhedra RTRDB. For doing
this, knowledge about how the Polyhedra RTRDB works (e.g., the transaction
model, how events in the database can be caught, and how the database can be
updated) needs to be established.

(c) Design the Extension
Using the results of objectives 1a and 1b a design based on the replication

scheme used in the DeeDS architecture for the Polyhedra RTRDB should be
created.

2. Transfer the Replication Scheme from PRiDe to Polyhedra

(a) Investigate how Replication is Implemented in PRiDe
An alternative design based on the PRiDe replication protocol is proposed. The
PRiDe replication protocol is an alternative to the replication scheme used in the
DeeDS architecture and is likely to replace it in future versions of DeeDS. This
objective should investigate how replication works using PRiDe and identify
important differences compared to the replication scheme currently used in the
DeeDS architecture.

(b) Design the Extension
Using the results of objectives 2a and 1b a design based on the PRiDe replica-

tion protocol for the Polyhedra RTRDB should be created.

3. Evaluate the Replication Scheme used in TimesTen
Since the TimesTen database can be configured to support a form of replication

which accepts updates on multiple replicas, and to use an asynchronous consistency
guarantee (Section 2.2.2), it should be evaluated if the replication scheme offered by

11

3.3 Objectives 3 PROBLEM STATEMENT

the TimesTen database could be used instead of the DeeDS replication scheme. If
this is not the case, it should be identified what the TimesTen database is missing.

12

4 RESEARCH APPROACH

4 Research Approach
Section 3 stated the aim for this dissertation, and a number of objectives which should
be met in order to reach the aim were formulated. In this section, the research methods
chosen for each objective are described, and the sections where the objective is realised is
presented.

When conducting a project in the area of computer science, there are several different
approaches that we can choose from. Some of these are literature analysis, simulation,
experiments, analysis or implementation (Berndtsson, Hansson, Olsson & Lundell 2002).

For this dissertation, a combination of the literature analysis method and the analysis
method has been chosen. The literature analysis is carried out in order to gather background
information about the key concepts for this dissertation, such as replication models and
consistency guarantees.

A number of the objectives presented in Section 3.3 require detailed knowledge of how
different mechanisms, such as replication or transaction handling, work in the different
systems. Section 5 aims to provide detailed knowledge about such things; this is done
by using the literature analysis method. Section 5.1 gives a detailed presentation of how
replication is implemented in the DeeDS architecture (objective 1a), Section 5.2 provides
similar information for the PRiDe replication protocol (objective 2a). Section 5.3 presents
the replication scheme used in the TimesTen database (objective 3). The analysis method
is then used to determine if the TimesTen replication scheme can be used instead of the
DeeDS replication scheme (objective 3). Section 5.4 presents the replication scheme used
in the Polyhedra RTRDB; information about how support for multi-master replication using
eventual consistency can be included in Polyhedra is presented in Section 7.1 (objective 1b).

After the required information has been extracted the analysis method is used to create
two design proposals for extension of the Polyhedra RTRDB: Section 7.1 presents a design
for how to implement multi-master replication using eventual consistency based on the
DeeDS architecture (objective 1c) and Section 7.2 presents the second design proposal
which is based on PRiDe (objective 2b).

13

5 INVESTIGATIONS

5 Investigations
In this section, the different systems are investigated.

5.1 Replication in DeeDS
As stated in Section 2.3, the DeeDS architecture supports multi-master replication. The
replication scheme adopted in DeeDS (referred to as lazy replication) is used in order to
make real-time database access predictable (Andler et al. 1995). That is, by replicating
all data onto every node and accepting updates on every node, an application will never
have to access data over the network. Instead it can always access and change data locally.
Further, since eventual consistency is employed, updates can be made on different nodes
simultaneously without any need to lock the entire database, only the local replica. When an
update has committed locally, it is propagated to the other nodes. Thus, an application can
always apply any changes necessary locally, without waiting for the remote replicas. This
implies that the database may become temporarily globally inconsistent, and that conflicts
may occur. Any conflict that occurs must be detected and resolved. Local consistency is
enforced by pessimistic locking of the local replica of the database.

5.1.1 The Replication Module

In DeeDS, replication is handled by the replication module. The replication module in-
teracts with the storage manager TDBM, and with the DeeDS Operating system Inter-
face (DOI). TDBM is a store manager with support for nested transactions (Brachman
& Neufeld 1992). The DOI is a layer added between the DeeDS database and the under-
lying hardware which makes it possible to make the DeeDS platform independent (Andler
et al. 1998). Figure 5 depicts the replication module and how it interacts with the other
parts of the DeeDS system.

Figure 5: Replication in DeeDS (adapted from Matheis & Müssig (2003))

The replication module logs all updates on data made during a local transaction. When
the local transaction has been committed, the log is propagated to all other DeeDS nodes.
The changes are then integrated into the remote replica(s). This is currently implemented

14

5.1 Replication in DeeDS 5 INVESTIGATIONS

in DeeDS by using a number of modules: the logger, the propagator, the integrator, the
version vector handler (VV handler) and the log filter (depicted in figure 5).

The logger is responsible for logging any changes made during a local transaction.
When a transaction has been committed, the log is forwarded to the propagator module.
The propagator distributes the update message containing the log(s) to all other replicas of
the database. Currently, the log is distributed over TCP via point to point connections. A
more efficient solution would be to use broadcast or multicast. On the remote nodes, the
update message is received by the integrator module.

The integrator module consists of several submodules, these are: the receiver, the con-
flict detector, the conflict resolver and the updater. The receiver submodule is responsible
for receiving update messages sent by propagators on other DeeDS nodes. The conflict
detector then checks if the update made is in conflict with any earlier updates on this local
node. This is done by using version vectors2 and the log filter. Three different types of con-
flicts may occur: write-write conflicts, read-write conflicts, and read-write cycles (Matheis
& Müssig 2003). Matheis & Müssig (2003) describes conflict detection in DeeDS in more
detail.

5.1.2 Local Conflict Detection & Resolution

If a (global) conflict is detected, the conflict resolver has to resolve the conflict. To achieve
predictability, DeeDS detects and resolves conflicts locally, without communication be-
tween replicas over the network. If a conflict is detected, it is vital that it is resolved within
a predictable amount of time in order to achieve predictable real-time database access, and
in a deterministic way for global consistency. That is, if two or more replicas are in con-
flict, all replicas must resolve the conflict in the same way. DeeDS supports a set of simple
generic replication policies. The chosen value may be:

• based on the new value resulting from an operation, e.g., mean, min or max value of
two conflicting updates

• chosen from the highest prioritised replica

• based on timestamps (e.g., use the oldest or newest value)

If no conflict has been detected or when any detected conflict has been resolved, the
updater writes the changes to the local copy of the database, and to the log filter. This
must be done as one atomic action. During the integration process, the involved database
objects and the log filter must be locked so that no other process manipulates them when
the conflict detector is working. If the local database and the log filter are not kept mu-
tually consistent, conflicts may be undetected with potential system failure as the result.
Integration is done by using a special kind of transactions, integration transactions which
run on a lower priority than regular database transactions. This makes sure that local access
to the database does not need to wait an unpredictable amount of time for any integration
processing. Thus, local real-time guarantees are kept.

To illustrate local conflict detection and resolution, a small example is used.

Example 1: Local Conflict Detection in DeeDS
Figure 6 depicts how a write-write conflict between two replicas can be resolved. In this
case, two replicas, replica A and replica B, receives two simultaneous updates. Replica A
receives an update of variable S, to 5 (U : S = 5), and replica B receives another update

2For more details of the version vector algorithm used in DeeDS see Lundström (1997)

15

5.2 The PRiDe Replication Protocol 5 INVESTIGATIONS

Figure 6: Conflict detection in DeeDS

of S to 3 (U : S = 3). Each replica commits the updates locally so that S = 5 on node
A, and S = 3 on node B. Thus, the database is now globally inconsistent. After replica A
has committed the update, it propagates the change to all other replicas in the system, so
does replica B. Thus replica A will receive an update U : S = 3 which is in conflict with a
previously committed update. Likewise, replica B will receive the update U : S = 5 which
also is in conflict with a previously committed update. If we assume that a simple conflict
resolution policy is used (e.g., use the maximum value) replica A will keep its value of S
(since 5 > 3) while replica B will commit the new update (U : S = 5) again since 5 > 3.
Thus the conflict has been detected and resolved.
�

5.1.3 Key Design Choices in the DeeDS Architecture

One of the main aims of the DeeDS project is to enforce predictability. In order to do
this a number of design choices have been made to eliminate unpredictable delays (Andler
et al. 1998). The design choices are:

• the database resides in main-memory in order to avoid unpredictable disk access,

• the database is fully replicated in order to remove unpredictable network access, and

• updates are allowed to commit locally, on any node, and changes are propagated as
soon as possible (eventual consistency) in order to avoid unpredictable distributed
commit processing.

These design choices makes real-time database accesses in DeeDS predictable since all
accesses are made in local main memory. Further, the database is guaranteed to be globally
consistent eventually since all changes are propagated to other nodes, where conflicts are
detected and resolved in a predictable and deterministic way.

5.2 The PRiDe Replication Protocol
The PRiDe replication protocol is similar to the replication scheme used in the DeeDS
architecture. Like replication in DeeDS, PRiDe is an optimistic replication protocol where
transactions are executed and committed locally. Eventual consistency is reached through
use of the continuous-convergence protocol (Gustavsson & Andler 2005). As stated in
Section 2.4, the continuous-convergence protocol is based on three notions (Gustavsson &
Andler 2005):

16

5.2 The PRiDe Replication Protocol 5 INVESTIGATIONS

• local consistency,

• local predictability, and

• eventual global consistency through continuous convergence

Continuous convergence means that “i) updates are continuously propagated and integrated,
ii) conflicts are continuously and optimistically resolved, and iii) transactions are never
rolled back; all conflicts are resolved by forward conflict resolution” (Gustavsson & Andler
2005).

5.2.1 Stable and Optimistic Versions

A fundamental difference from the DeeDS replication scheme is that PRiDe provides ac-
cess to stable and optimistic versions of replicas. Transactions, initiated by an applica-
tion, are not committed to the database replica directly (as they would be in DeeDS). In-
stead, their operations are regarded as tentative and are stored in the data structures used
by PRiDe. Tentative operations may be in conflict with other tentative operations on other
nodes. When all such conflicts has been detected and resolved for a specific tentative oper-
ation, it is considered to be stable, and is integrated in the database replica. The database
thus represents the stable state of the replica, while the database together with the tentative
operations represent the optimistic state of the replica (Section 2.4).

5.2.2 Generations & Conflict Sets

PRiDe uses two data structures to detect and resolve conflicts, generations and conflict sets.
A generation is a vector of logically concurrent 3 operations made to a replicated object. As
updates in a generation are concurrent, a single generation can contain at most one update
from each replica. Each entry in a generation either contains a null value, a no update
value or an update performed in the node in the vector entry. A conflict set for a replicated
object ro is an ordered list of generations with operations to ro. Generations in the conflict
set are ordered by their generation number, which is analogous to a logical timestamp. A
generation with a lower number is processed before a generation with a higher number.

If a local replicated object receives an operation which is newer than the newest local
generation for that replicated object, a new generation, and all generations in between are
created on the local replica for the replicated object. When all generations have been cre-
ated, the operation is added to the corresponding generation. If the local replica has not
made any operation for the replicated object in the newly created generations, it inserts a
no update message in its entry in the generations.

When a generation is complete, i.e., when all entries in the generation vector are either
no update or update (i.e., all operations for this generation is known to the replica), the
integration process can detect and resolve all conflicts permanently and the generation will
be stabilised. When this is done, the now stable operation is included in the database.

The PRiDe protocol supports two kinds of read operations, stable reads and optimistic
reads. Stable reads are executed directly on the stable state of replica, and ignores any
tentative operations stored in the conflict sets. An optimistic read operation, optimistically
resolves all conflicts among operations in the conflict set for the queried object, and applies
the remaining operations to a copy of the stable version of the queried object. The read is
then executed on the resulting optimistic state of copied object.

3Logically concurrent means that the replication module cannot determine which operation was executed
before the other. It does not imply that both operations happened at the exact same time.

17

5.3 Replication in the TimesTen In-Memory Database 5 INVESTIGATIONS

5.2.3 Semantic Conflict Detection & Resolution

The PRiDe protocol, like DeeDS, uses an automatic, fully distributed conflict detection &
resolution mechanism. Updates are collected into generations for each replicated object,
where any updates within the same generation are regarded as syntactically conflicting. As
generations stabilise, conflicts are detected and resolved. During conflict resolution, se-
mantic information (if available) is used to determine if syntactically conflicting operations
are in fact compatible. Resolution policies can be generic, such as the cake cutter method 4

or the cheese cutter method 5, or application specific in order to make full use of semantic
information.

5.2.4 Steps in PRiDe Replication

An application initiates a transaction which updates or reads one or more objects in the
database. This results in that an operation arrives at the local replica. The operation is
replicated to other nodes in the following way:

1. PRiDe considers it to be tentative and includes it into its data structures. The appli-
cation can now continue its work.

2. The tentative operation is propagated to all other replicas of the database.

3. The tentative operation is added into the data structures on remote nodes, and tenta-
tive conflict resolution is performed, depending on the system configuration.

4. When a generation is complete, it is stabilised by performing permanent conflict
resolution.

5. After a tentative operation has been stabilised, the operation is validated. For an
(optimistic) read, it is checked if the originally read value corresponds with the final
value. For an update, it is checked if the update was performed with the supplied
parameters, or if it was somehow changed by a conflict resolution action. If the result
from validation requires it, compensation is performed. Compensation allows conflict
victims to perform compensating actions, such as resubmitting operations that were
discarded during conflict resolution.

5.3 Replication in the TimesTen In-Memory Database
The fundamental motivation for replication in the TimesTen database system is to achieve
high availability for data while minimising the impact on performance. Additional benefits
include possibility to recover from failures (improved fault-tolerance), and the ability to
perform on-line maintenance without downtime (The TimesTen Team 2004, Ch. 1). Fig-
ure 7 depicts a typical replication configuration in the TimesTen database.

As stated in section 2.5, replication in the TimesTen database system follows a master-
subscriber pattern, where updates made at the master replica are copied onto one or more
corresponding subscriber replicas (The TimesTen Team 2004, Ch. 1). Thus, TimesTen is a
state-transfer system (Saito & Shapiro 2005).

4The cake cutter method discards updates from the conflict set until the resource requirements of all
remaining updates can be satisfied (Gustavsson n.d.).

5The cheese cutter method modifies update parameters to reduce their resource requirements such that all
requirements in the set can be satisfied (Gustavsson n.d.).

18

5.3 Replication in the TimesTen In-Memory Database 5 INVESTIGATIONS

Figure 7: TimesTen replication (adapted from Oracle (2006b))

On each replica a replication agent controls replication. On a master replica, the repli-
cation agent reads the records from the transaction log and forwards any detected updates
on the subscriber replica(s). On the subscriber replicas, the replication agent applies the
update to the local replica (The TimesTen Team 2004, Ch. 1).

5.3.1 Replication Schemes

The master-subscriber pattern makes a number of different replication configurations pos-
sible (Oracle 2006b):

• Active–passive configurations,

• Active–active configurations, and,

• N–Way configurations.

The active–passive configurations is similar to the leader-follower replication scheme
(see Section 2.2.1). One replica is configured to run as master (active), and the other
replica(s) are running in passive mode. In an active–active and N–way configurations (sim-
ilar to the multi-master replication scheme, see Section 2.2.1), the involved replicas are
configured to run both as master and subscriber (Oracle 2006b); thus there are two repli-
cation agents running on each node, a master agent and a subscriber agent. An update
made on one of the replicas will be copied onto all the corresponding subscribers. Actu-
ally, a N–way configuration is an active–active configuration with more than two replicas
involved.

For this dissertation, an active–active configuration using asynchronous replication is
interesting since this is the type of configuration that is most similar to the DeeDS architec-
ture, and the most suitable one for use as a whiteboard architecture in a mobile environment.

5.3.2 Consistency Guarantees

Depending on the requirements of the application, the TimesTen database can be config-
ured to support different levels of consistency guarantees. Updates can be replicated to
the subscriber replica(s) in the following ways (The TimesTen Team 2004, Ch. 1) (cf. Sec-
tion 2.2.2):

19

5.4 Replication in the Polyhedra RTRDB 5 INVESTIGATIONS

• asynchronous,

• synchronous (return receipt), and

• synchronous (return twosafe).

Asynchronous replication can be compared with the eventual consistency guarantee
offered by the DeeDS architecture. When asynchronous replication is used, an application
that makes an update to its local replica continues working. It does not wait for the update
to be distributed and integrated on other replicas. However, in the DeeDS architecture,
one knows that the database replicas will eventually converge into a consistent state. In
the TimesTen database there is no such guarantee if asynchronous replication is used (The
TimesTen Team 2004, Ch. 1).

When the application cannot tolerate asynchronous replication, synchronous replication
can be used. In the TimesTen database, there are two flavours of synchronous replication:
return receipt, and return twosafe. Basically, the return receipt option synchronises the
master and subscriber replicas by blocking the application after commit on the master until
the update has been received by the subscriber(s). However, there is no guarantee that
the updates are integrated on the subscriber replica(s). The return twosafe option provides
fully synchronous (cf. immediate) replication between the master and subscriber replicas.
The application is blocked after it has issued a commit request to the master. Before the
update is committed on the master, the update is distributed to the subscriber replica(s)
and committed on them. Only then will the update be committed on the master and the
application will be allowed to continue working (The TimesTen Team 2004, Ch. 1).

5.3.3 Conflict Detection & Resolution

The TimesTen database uses a syntactic (timestamp based) approach to detect conflicts.
Each update is associated with a timestamp based on the local system clock, that is, different
updates within one transaction will receive different timestamps. Conflicts are detected by
comparing timestamps. If the timestamp of an update or insert is newer then the timestamp
of the existing tuple, the existing tuple is updated. Conflicts are simply ignored, e.g., if
the timestamps are equal, the update (or insert) is discarded, and most important, if the
timestamp is older, the update (or insert) is also discarded. Thus, lost updates may be a
problem. Another important issue with conflict detection and resolution in the TimesTen
database is that read-write conflicts are not detected or resolved.

Another issue is that of how conflicts involving a delete operation are handled: delete/insert
conflicts are not detected, delete/update conflicts are detected but they are not possible to
resolve.

5.4 Replication in the Polyhedra RTRDB
As stated in Section 2.6, the Polyhedra RTRDB currently utilises the leader-follower repli-
cation scheme (i.e., it is a single-master system) in order to achieve fault-tolerance. Poly-
hedra implements fault-tolerance by running more than one replica of the database as a
fault-tolerant pair (ENEA Polyhedra 2005b, Polyhedra 2005c). Figure 8 depicts such a
fault-tolerant pair. One database runs as the master database, the other database(s) runs in
standby mode. When the standby database(s) starts, it requests a snapshot from the mas-
ter database. Client applications issue all updates to the master database, which feeds the
standby database(s) with journal records to keep it up to date. Thus, after the transaction

20

5.4 Replication in the Polyhedra RTRDB 5 INVESTIGATIONS

has committed on the master replica, the passive replica(s) are updated immediately (see
Section 2.6) (Polyhedra 2005a).

Figure 8: Fault-tolerant configuration (adapted from ENEA Polyhedra (2005b))

If the master replica fails, a standby replica will change its mode to master; client calls
made to the database will transparently be directed to the new master replica. Polyhe-
dra calls this a fail-over (Polyhedra 2005a, Polyhedra 2005c). This makes the Polyhedra
RTRDB fault-tolerant. Two drawbacks with the leader-follower replication scheme are: (i)
Updates can be performed only on the master replica, and (ii) all data are replicated on
every passive replica. It would be advantageous if an application could perform updates on
its local replica, and the replica itself would then be responsible for propagating the updates
to all other replicas. Further, it would also be advantageous if a replica does not need to
replicate all data (full replication), but instead only the data that the application accesses on
the local replica (virtual full replication).

21

6 COMPARISONS

6 Comparisons
This section compares replication in the DeeDS architecture with the PRiDe replication
protocol. A comparison is also made between DeeDS, DeeDS NG, TimesTen and the
Polyhedra RTRDB.

6.1 Comparison between DeeDS and PRiDe
This section compares the replication scheme used in the DeeDS architecture with the
PRiDe replication protocol. Both the replication scheme used in the DeeDS architecture
and the PRiDe replication protocol are targeted towards real-time systems and thus pre-
dictability is important. For this reason, both replication schemes support local updates to
a replica and global eventual consistency.

Although the two replication schemes share a number of features, there are some dis-
tinct differences. In the DeeDS architecture a transaction initiated by an application is
performed in the local replica of the database directly. Hence, there is only an optimistic
state of the database replicas. Any inconsistencies between replicas must be tolerated by
the application that uses them. DeeDS is a state-transfer system, and conflict detection and
resolution make use of syntactic information. This limits the ability to perform more tai-
lored conflict resolution. Instead DeeDS supports some simple generic resolution policies
(see Section 5.1.2).

DeeDS PRiDe
Conflict detection Syntactic conflict Syntactic and semantic
& resolution detection and a set conflict detection. A

of simple generic set of generic resolution
conflict resolution policies and possibility
policies to define application

specific policies.
Operation State-transfer Operation transfer,
replication
Replica Optimistic state only Stable and optimistic state
versions
Operation Operations are directly Operations are kept in data
execution executed on the local structures until they are

database replica stabilised. Then they are
integrated in the local database
replica

Table 1: Comparison of replication in DeeDS and the PRiDe replication protocol

In PRiDe, an operation (resulting from a transaction) is at first regarded as tentative, and
integrated in the generation and conflict set data structures. When all conflicts for the update
has been permanently resolved it is regarded as stable and integrated in the local database
replica. In this way PRiDe supports two versions of replicas, a stable and an optimistic
version (Section 5.2.1). Applications that cannot tolerate inconsistencies can then use the
stable versions, while applications that could benefit from using the optimistic state can do
so. PRiDe is an operation-transfer system, and semantic information as well as syntactic
information are used for detecting and resolving conflicts. If no semantic information is
available, PRiDe supports the same kind of conflict detection and resolution as replication

22

6.2 Comparison of DeeDS, DeeDS NG, TimesTen and Polyhedra 6 COMPARISONS

in DeeDS. PRiDe can also implement state-transfer operations by sending the new state as
a parameter in an “overwrite” operation. Table 1 summarises the comparison.

6.2 Comparison of DeeDS, DeeDS NG, TimesTen and Polyhedra
The four systems differ in some essential aspects, such as the number of masters, repli-
cation strategy, and consistency guarantees. Table 2 summarises the comparison of the
four systems. DeeDS NG is a future version of the DeeDS architecture and is included for
completeness.

DeeDS DeeDS NG TimesTen Polyhedra
Real-Time Hard real-time Hard real-time Soft real-time Soft real-time
guarantees
Resides in Main memory Main memory Main memory Main memory
Replication Multi-master Multi-master Active-passive/ Single-master
scheme (M = N) 1 (M = N) Active-active (leader-follower)
Data Full Virtual Full Full Full
replication Replication
Operation State transfer Operation Transfer State transfer State transfer
replication
Scheduling Syntactic Syntactic Syntactic One transaction
of operations (version vectors) (conflict set which (timestamps) at a time,
(ordering) is ordered by no pre-emption

using timestamps)
Consistency Global: Eventual, Global: Eventual Asynchronous/ Immediate
guarantees Local: Immediate Local: Immediate Synchronous
Conflict Syntactic Syntactic & Syntactic No conflicts
detection (version vectors semantic (timestamps) can occur

and log filter) (conflict set
and generations)

Conflict A set of simple Both generic Syntactic No conflicts
resolution generic policies policies and (timestamps) can occur

application
specific policies

Active ECA Rules ECA Rules No Active
functionality queries (SQL)

1The number of masters is equal to the number of nodes.

Table 2: Comparison of replication schemes

The DeeDS architecture is targeted towards large real-time systems. Thus even though
its mechanisms are suitable for use as a whiteboard architecture in a MANET, it is not
suitable when the mobile hosts have limited resources (e.g., as a PDA). However, the repli-
cation scheme used in DeeDS and the PRiDe replication protocol are both suitable for use
for the type of scenario described in Section 2.7.

The replication model in the TimesTen database is lacking a number of features which
are desirable for a whiteboard architecture (Section 2.5). While it does support writing
to multiple masters (active-active), and a variant of eventual consistency (asynchronous
replication), it does not detect read-write conflicts. Moreover, delete/insert conflicts are not

23

6.2 Comparison of DeeDS, DeeDS NG, TimesTen and Polyhedra 6 COMPARISONS

detected and neither delete/insert or delete/update conflicts can be resolved (Section 5.3.3).
For these reasons, the TimesTen database is not suitable for use in the type of scenario
described in Section 2.7.

The Polyhedra RTRDB currently only supports updates made to a single master replica,
and immediate consistency is used. This is not sufficient to use instead of the replication
scheme in the DeeDS architecture or PRiDe for the type of scenario described in Sec-
tion 2.7. However, it seems possible to extend the Polyhedra RTRDB with support for
multiple masters and eventual consistency. Full replication is already supported. Another
advantage of using the Polyhedra RTRDB as a base, is that it is a small and fast embedded
system, and thus seems suitable for use in scenarios as described in Section 2.7.

6.2.1 Conflict Types

In the DeeDS architecture and TimesTen database, different types of conflicts are con-
sidered. The DeeDS architecture considers write-write conflicts, read-write conflicts and
read-write cycles. The TimesTen database on the other hand considers update conflicts,
uniqueness conflicts and delete conflicts. Table 3 maps the different conflict types for the
different systems together.

DeeDS TimesTen
Write - Write conflicts Update conflicts

Uniqueness conflicts
Delete conflicts

Read - Write conflicts Not considered
Read - Write cycle conflicts Not considered

Table 3: Conflict types in TimesTen and the DeeDS.

24

7 EXTENSION DESIGNS

7 Extension Designs
As argued in section 6.2 all three systems have different aspects that makes them unsuit-
able for use as a whiteboard architecture for mobile embedded systems in a MANET. The
Polyhedra RTRDB is lacking in specifically its replication scheme and consistency guaran-
tees. It seems possible to use some of the features in the DeeDS architecture to alleviate
this. The replication mechanism in the TimesTen database does not satisfy a number of
important aspects, such as the ability to detect read-write conflicts.

This section presents the two design proposals for the MMR/EC (Multi-Master Replication
with Eventual Consistency) extension. The first design proposal, presented in Section 7.1,
is based on how replication is implemented in the DeeDS architecture. This design proposal
is specific for the Polyhedra RTRDB. The second design proposal, presented in Section 7.2,
is based on the PRiDe replication protocol. Although the design is presented by using the
Polyhedra RTRDB, this proposal can be ported to another relational database system.

7.1 Based on DeeDS
In this design proposal support for multi-master replication and eventual consistency is
implemented as a module on top of the RTRDB kernel. Events from the RTRDB is caught
by using a specific Polyhedra API, namely the Journal API (England 2003).

7.1.1 Prerequisites for Multi-Master Replication

In order to implement the MMR/EC extension in the Polyhedra RTRDB, several require-
ments must be met. The following requirements have been identified:

1. Logging
To be able to log changes made to the local database replica, the MMR/EC module
must:

(a) be notified when a transaction begins, commits or aborts

(b) identify the data object changed by the local transaction

(c) have knowledge of the new value, and preferably of the operation. If the opera-
tion is not available (i.e., we only know the after value), this limits the ability to
perform “clever” conflict resolution policies.

2. Propagation
To propagate the updates to other nodes:

(a) each replica needs to be aware of all other replicas in the replicated system

(b) a reliable communication protocol, e.g., a reliable broadcast must be available

3. Integration
To integrate remote changes to the local database replica, the MMR/EC module must:

(a) receive logs sent by other nodes over the network

(b) ensure local consistency

(c) schedule local updates and integration updates

25

7.1 Based on DeeDS 7 EXTENSION DESIGNS

(d) integrate remote updates without triggering a new update. This requires that
the replication module can discriminate between local updates and integration
updates

(e) detect and resolve conflicts

7.1.2 High Level Design

Section 7.1.1 presents a number of prerequisites that must be met in order to extend the
Polyhedra RTRDB with multi-master replication.

Logging In order to detect when a transaction begin, commits or aborts (prerequisite 1a)
the Polyhedra Journal API could be used. This, however, is not currently implemented. The
Journal API uses the callback programming model, and when a transaction either begins,
commits or aborts, an appropriate callback function is invoked by the API.

With each data change, the Journal API makes information available which identifies
the table, and the primary key column values of the updated data. This could be used in
order to identify the data that was updated (prerequisite 1b). In this way, the new value
(also referred to as after value) will be accessible (prerequisite 1c).

Propagation In order to reach consistency, an update on a replica must be propagated
to all other replicas in the replicated system. If virtual full replication is used the update
should be propagated to the replicas that store the segment of the database that was updated.

In the DeeDS architecture this is achieved by using reliable broadcast. This implies that
a replica needs to be aware of the other replicas that should receive the update message and
propagate it to them (prerequisite 2a). This can be solved by using a group management
protocol. Nodes that want to be part of a replicated database joins the group, and leave
when they should no longer be members.

Integration To be able to receive update messages sent over the network (prerequisite 3a),
a process or thread (on each node which holds a replica of the database) should listen for
incoming update messages.

In order to enforce local consistency, access to the local replica must somehow be syn-
chronised. Further, to ensure that conflicts are detected and resolved correctly, the local
database replica and the local log filter must be kept consistent (prerequisite 3b). This can
be accomplished by locking the log filter (e.g., by using semaphores) while the database
replica and the log filter is being updated. However, since the transactional model used in
the Polyhedra RTRDB does not allow concurrent transactions and is non pre-emptive, no
such locking is needed.

In the DeeDS architecture, integration is done by using integration transactions, which
run on a lower priority then local transactions. In Polyhedra, it is currently not possible
to use a second set of transactions. Thus regular (i.e., local) transactions must be used
for integration purposes. This leaves two options: (i) local transactions are used for in-
tegration and a flag is set on them to represent integration transactions, or (ii) integration
updates are written directly into the database without using the transactional layer. Further,
if the transactional layer is used, the MMR/EC module must be able to discriminate be-
tween transaction events (signalled from the Journal API) from local transactions and from
integration transactions (prerequisite 3d). Otherwise, an integration transaction would be
propagated to other nodes, thereby creating integration cycles. Given that the MMR/EC

26

7.1 Based on DeeDS 7 EXTENSION DESIGNS

module can discriminate between local transactions and integration transactions, it is pos-
sible to integrate remote changes by starting an integration transaction (prerequisite 3d).
Discriminating between integration transactions and local transactions is currently not sup-
ported by Polyhedra, and is thus a requirement on the Polyhedra system (see Section 7.1.3).

The MMR/EC module must be able to run the integration transaction, and thus needs to
be able to schedule them and the local transactions using some scheduling policy (prereq-
uisite 3c). Currently, local transactions are placed in a FIFO queue. One solution would be
to simply add the integration transactions in the existing FIFO queue. Since we do not try
to support hard real-time guarantees, this would be a feasible solution. A replica would not
be blocked if another replica is temporarily unavailable since the either the information is
already sent to the replica, or the replica is oblivious to the fact that such information exists.

As in the DeeDS system, conflicts are detected (prerequisite 3e) by using version vec-
tors and the log filter. Generic conflict resolution is supported in the same way as in the
DeeDS architecture (Section 5.1.2). Application specific policies are out of scope for this
dissertation.

7.1.3 Requirements on Polyhedra

In order to implement the extension in the Polyhedra RTRDB, a number of requirements
needs to be satisfied by the database.

• The Journal API must be implemented.

• There must be a way to integrate updates into the database, e.g., by using a special
type of transactions (integration transactions) or by writing directly to the database
without using transactions.

• There must be some way of discriminating between local transactions and integration
transactions executed in the RTRDB kernel.

• If FIFO scheduling of integration transactions and local transactions is not feasible
for a specific application, this issue must be addressed in the Polyhedra RTRDB.

7.1.4 Architectural Design

The multi-master replication extension will be added as a module on top of the Polyhedra
RTRDB. The proposed design is depicted in Figure 9. Applications communicate directly
with the RTRDB and are unaware of the MMR/EC module. The Journal API functions as
a layer between the MMR/EC module and the RTRDB. It detects whenever a transaction
is started, aborted or committed and invokes the appropriate callback function so that the
MMR/EC module can take the appropriate action. Propagation is made at the MMR/EC
module level according to the chosen propagation strategy. That is, if the broadcast propa-
gation strategy is used, the propagator simply broadcasts the updated data over the network.
When the MMR/EC module needs to integrate remote updates, it does so by manipulating
the local database replica directly.

7.1.5 Replicating an Update Operation

To illustrate how the different modules are supposed to work (depicted in Figure 10), a
small example is used. In this case, an operation which updates the value of data s and sets
it to 5 is used. Since Polyhedra only allows one transaction at the time to be executed, and

27

7.1 Based on DeeDS 7 EXTENSION DESIGNS

Figure 9: Proposed design for MMR/EC support in the Polyhedra RTRDB, based on DeeDS

is non pre-emptive, the locking steps in the example are not required (see Section 7.1.2).
However, they are included in the example for completeness.

Figure 10: Replication of an update operation

Example 2: Replicating an Update Operation
The first thing that happens is that a client issues an operation which sets s = 5 (step 1).
The replication module detects that a new transaction has been started and creates a new
log (LogT) for this transaction (step 2). All updates made in LogT are added to the log (step
3). When the transaction commits, an end of transaction will be be caught and LogT will
be be marked (in some way) as done. If the transaction is aborted instead of committed,
the log should simply be removed (step 4). When the logger detects that LogT is done, it
sends it to the propagator (step 5). The propagator distributes LogT as an update message
to all other nodes that are in the replication group (step 6). When the integrator receives the
update message, it locks the local log filter, and all database objects (in the local replica of
the dabase) that were affected by the remote transaction on another replica (step 7). When

28

7.2 Based on PRiDe 7 EXTENSION DESIGNS

all necessary data have been locked, the conflict detector submodule checks for conflicts
by comparing the log filter and the update message (this process uses version vectors). If
a conflict is detected it is resolved locally (step 8). If no conflict was detected, or after
the conflict has been resolved, the new updates are written to the log filter and the local
database (step 9). When the changes are written, the locks are released (step 10).
�

7.2 Based on PRiDe
In this design proposal support for multi-master replication and eventual consistency is
implemented as a layer on top of the RTRDB kernel. Figure 11 depicts the proposed design.
This type of design is chosen because operations should not be included in the database
until they are stable. Applications issue their operations to the MMR/EC layer. Tentative
operations are then stored in the generation and conflict set data structures until they are
stable. They are then integrated in the local database replica by the replication layer as part
of the stabilisation process. An advantage of this approach is that the MMR/EC layer will
have access to (i) the old value, (ii) the operation, and (iii) the operation parameters. From
this information, the new value can also be derived. This allows for more elaborate conflict
detection and resolution since semantic information is available.

Figure 11: Proposed design for MMR/EC support in the Polyhedra RTRDB, based on
PRiDe

7.2.1 Object Level Interface

Since the PRiDe replication protocol is designed to work with objects and operations on
objects, the applications interface to the MMR/EC layer will be on an object level. If the
application were to use a relational interface, such as ODBC, the MMR/EC layer would
need to implement its own SQL parser to identify the data objects concerned by the SQL
statement. The choice and implications of an object- or relational-level interface are dis-
cussed in Section 8.3.

The interface between applications and the MMR/EC layer supplies a number of oper-
ations for the applications to access the database:

29

7.2 Based on PRiDe 7 EXTENSION DESIGNS

• Create - Used to create a new database object. The application needs to supply the
object identifier (OID) for the object to be created, along with all the attributes that
should be set for the object.

• Destroy - Destroy a database object. It is sufficient for the application to supply the
OID for the object that should be destroyed.

• Fetch - Read a database object. The application needs to supply the OID and the read
method that the application wishes to invoke, e.g., a read method can be specified to
return attribute a1, and another read method can be specified to return attribute a2.
Further, the type of the read operation also needs to be specified, i.e., is it a stable
read or an optimistic read.

• Update - Update a database object. The application needs to supply the OID, the
update method and the parameters that are to be updated.

The interface could also support configuration of properties of data, such as data resi-
dency (e.g., main-memory or disk), propagation strategies (e.g., ASAP or bounded). Fur-
ther, it should be possible to specify application specific conflict resolution policies and to
associate them with either a class or an object.

7.2.2 Mapping from Object Level to Relational Level

Since Polyhedra is a relational database, it is necessary to map the new stable value, result-
ing from the stable operation, down to the relational model when they are to be integrated
in the local database replica. This mapping is done in the following way:

• A class maps to a table

• An attribute maps to a column in a table

• An instance maps to a row in a table

• The object identifier (OID) maps to the super-key for a row (e.g., table and primary
key)

An operation invoked by a transaction are then translated into a query for the underlying
database, e.g., in the case of Polyhedra an ODBC or JDBC query can be used.

7.2.3 Moving Requirements

By placing the MMR/EC extension as a layer between the application and the underlying
database, requirements are moved from the underlying database onto the replication mod-
ule. This makes it easier to implement the MMR/EC layer on top of another database. This
will be discussed more in Section 8.1.

30

8 DISCUSSION

8 Discussion

8.1 Portability
The design proposal based on the DeeDS architecture (Section 7.1) requires instrumenta-
tion of the underlying database (e.g., detect start and commit of a transaction). This limits
the portability of the replication module since such instrumentation often is specific for
different database systems (e.g., Polyhedra uses a specific API, the Journal API, which is
not available in other database systems). The design proposal based on the PRiDe replica-
tion protocol (Section 7.2) on the other hand, requires no instrumentation of the underlying
database. All requirements that were previously placed on the database systems can now
be handled within the replication module instead. What is needed is a mapping from the
object level used in PRiDe to the relational level used in a relational database system. This
increases the portability of the replication module since it is easier to port such a mapping
which is based on standardised SQL, rather than using proprietary API’s.

8.2 Advantages & Disadvantages of the Design Proposals
The two design proposals have different advantages and disadvantages. These are sum-
marised in table 4:

Based on DeeDS Based on PRiDe
Advantages Applications can communicate No instrumentation of

with the Polyhedra database the underlying database
without knowledge of the system is required.
replication module. The regular Requirements are moved
API’s can still be used. from the database onto

the replication layer.
This increases portability.

No updates can be Semantic information can
made without being be used to reduce the
detected by the amount of conflicts in the
replication module system. More elaborate

conflict resolution is
possible.

Disadvantages Specific to the Polyhedra Updates can be made
database. Not easily without using the API
ported to other systems (not detected by the
since Polyhedra specific replication module)
API’s are used.
Only semantic conflict
detection and resolution is
supported.

Table 4: Advantages & disadvantages for the two design proposals.

8.3 Application - MMR/EC Interface
In the current design proposal based on PRiDe, the interface between applications and the
replication layer will be on an object level (Section 7.2.1). There are two reasons for this:

31

8.4 Propagation Strategies 8 DISCUSSION

(i) PRiDe is designed to work with objects, and (ii) if the application sends relational op-
erations (e.g., SQL), the replication layer would need to parse these in order to determine
which data objects that are affected by the operation. Since the main focus of this disserta-
tion is not the intricacies of SQL parsing, an object level interface was chosen. However, it
is an interesting question what type of interface, object or relational, that is most suited for
applications. Further study of this topic is proposed as future work (Section 9.4).

Other interesting questions regarding the interface between applications and the repli-
cation module is: (i) how should a database administrator configure application specific
conflict resolution policies, (ii) where should data reside, and finally (iii) how should the
database schema be modified. Should the application interface support functionality for this
so that also a schema change is replicated to other nodes? Studying this is also proposed as
future (Section 9.4).

8.4 Propagation Strategies
In the current extension design and in the DeeDS architecture reliable broadcast is used to
propagate update messages to other replicas in the system. Another class of propagation
strategies is epidemic propagation (Demers, Greene, Houser, Irish, Larson, Shenker, Stur-
gis, Swinehart & Terry 1988, Khelil, Becker, Tian & Rothermel 2002). Saito & Shapiro
(2005, p. 46) state:

Epidemic propagation lets any two sites that happen to communicate exchange
their local operations as well as operations they received from a third site—an
operation spreads like a virus does among humans.

Since the communicating participants in the MANET (as described in Section 2.7) at a
given time is unlikely to be able to communicate with all other nodes, an epidemic prop-
agation strategy would provide a good fit. Replicas that are not able to communicate with
each other directly, would still be able to exchange operations via other replicas. Since
replicas may be disconnected from the network an arbitrarily amount of time, the epidemic
approach needs to make sure that such replicas receive all operations when they return to
the network.

32

9 CONCLUSIONS

9 Conclusions
This section concludes the dissertation. The dissertation is briefly summarised, the main
contributions are identified, related work is discussed and future work is proposed.

9.1 Summary
Section 2.7 describes a scenario in which mobile participants (in this case rescue workers)
are cooperating in a distributed environment. The participants are equipped with some type
of hand-held device (e.g., a PDA), which they use to exchange information (e.g., locations
of survivors, dangerous object, exits and so on). Tatomir & Rothkrantz (2005) argue that
a shared whiteboard architecture can be used to implement a communication architecture
for this kind of scenario. However, since the hand-held devices (from now on referred to as
nodes) can join and leave the network at any time, and be disconnected from the network for
an arbitrarily amount of time, implementing such a shared whiteboard architecture is hard.
Brohede & Andler (2002) argues that a distributed, real-time database could be used to
implement a shared whiteboard architecture useful for complex sharing applications such as
distributed real-time simulations. In this dissertation it is argued that such a database system
using a multi-master replication scheme, using full replication and eventual consistency,
could also be used to implement a shared whiteboard architecture for the scenario described
above. The DeeDS architecture, as well as the PRiDe replication protocol, both provides
replication schemes that are suitable for such a whiteboard architecture. Thus, they are
used as guidelines for two design proposals for how to extend the Polyhedra RTRDB with
support for multi-master replication using full replication and eventual consistency. Also
the TimesTen database system has a replication scheme with features that are suitable for
use in the type of whiteboard architecture discussed above. However, some features are
lacking (see Section 6.2), which makes the TimesTen replication scheme insufficient for
use in a shared whiteboard architecture used for communication for the type of scenarios
described above.

As mentioned above, this dissertation presents two design proposals for how to imple-
ment support for multi-master replication using full replication and eventual consistency
in a main-memory relational DBMS. The first design proposal is based on the replication
scheme used in the DeeDS architecture (Section 7.1). This design proposal is specific for
the Polyhedra RTRDB since it is designed to be implemented as a module which makes use
of events that occur within the database kernel. In order to implement the design proposal,
a number of prerequisites and requirements need to be met by the underlying database
(Sections 7.1.1 and 7.1.3).

The second design proposal is based on the PRiDe replication protocol (Section 7.2).
Although this design proposal is designed for the Polyhedra RTRDB, it is a general design,
which can be ported to other systems. This is beacause in this design proposal, support
for the MMR/EC extension is implemented as a layer on top of the underlying database.
Rather then communicating directly with the database, applications issue their operations
to the MMR/EC layer, which after any conflicts have been detected and resolved, integrates
the operations in the database. In this way, requirements can be moved from the database
and instead be placed in the MMR/EC layer (Section 7.2.3). This makes it easier to move
the MMR/EC implementation onto another database system (Section 8.1).

33

9.2 Contributions 9 CONCLUSIONS

9.2 Contributions
The main contributions made by this dissertation are presented in the list below:

• A design for how to implement the replication scheme used in the DeeDS architecture
in the Polyhedra RTRDB has been proposed.

– A number of prerequisites and requirements on the underlying database have
been identified.

• A portable design for how to implement the PRiDe replication protocol in a relational
database has been proposed.

– An interface between applications and the MMR/EC layer has been described.

– A mapping between the object level used in the MMR/EC layer and the rela-
tional data model used in the underlying database has been described.

9.3 Related Work
Brohede & Andler (2002) argues that a distributed active real-time database system (a
DARTDBS) could be used to implement a whiteboard architecture which could be used
for communication in for instance complex real-time simulations. Further, in Brohede &
Andler (2005) they argue that such a DARTBS could be used as infrastructure for informa-
tion fusion applications. In this dissertation it is argued that such a database system could
also be used for communication between mobile nodes in a MANET.

Fahl & Risch (1997) presents an approach to object view management which could be
used for transparently working with relational data as if it was stored in an object-oriented
database. This kind of technology could be used to implement the mapping from the object-
level used in PRiDe to the relational level of for instance the Polyhedra RTRDB or the
TimesTen database. The focus of their paper is on query processing rather than update
operations which also needs to be considered.

9.4 Future Work
This section proposes future work.

• Proof of Concept Implementations
This dissertation presents two design proposals. The most obvious future work pro-
posal is to make a proof of concept implementation for each design proposal. To
be able to make a proof of concept implementation for the first design proposal, the
requirements on the Polyhedra RTRDB must be fulfilled.

• Experimental Performance Impact Analysis
Using the proof of concept implementations, experiments should be carried out in
order to measure the performance impact of the two different MMR/EC extensions.
Several measurements are interesting: throughput, response time, storage require-
ments and network load. Without knowledge of how the different MMR/EC exten-
sions affect the performance of the system, it is hard to tell whether they are useful
or not.

• Application Interface

34

9.4 Future Work 9 CONCLUSIONS

– Object or Relational Level
A more thorough investigation about the interface between applications and the
MMR/EC layer would be interesting. Particularly the following questions could
be answered: should the application interface be on object level or relational
level? If relational level is used, how does this affect the MMR/EC layer?

– Functionality
What type of functionality should be supported in the application interface. Be-
sides create, destroy, read and update operations (see Section 7.2.1) used by the
application programmer, how should the database designer configure applica-
tion specific conflict resolution policies and where data resides? Further, should
the database schema also be modified using the interface?

• Referential Integrity
In the second design proposal (see Section 7.2) objects are mapped down relations in
a relational database. Future work needs to investigate how referential integrity be-
tween objects should be enforced. As an example, consider a relationship between an
object and several subobjects. If for example two subobjects are updated on different
nodes, the object which consists of the subobjects, may be incorrect.

• Bounded Delay Replication
Section 2.3 briefly mentions that the DeeDS architecture supports two classes of
replication: (i) best effort replication (ASAP), and (ii) bounded delay replication.
The design proposals contributed by this dissertations have only considered the best
effort approach. If applications would benefit from support for bounded delay repli-
cation, it would be useful to include support for this in the MMR/EC extension.

35

REFERENCES REFERENCES

References
Andler, Berndtsson, Eftring, Eriksson, Hansson & Mellin (1995), ‘Deeds: A distributed

active real-time database system’.

Andler, Hansson, Eriksson & Mellin (1994), ‘The distributed reconfigurable real-time
database systems project’.

Andler, Hansson, Eriksson, Mellin, Berndtsson & Eftring (1996), ‘Deeds towards a dis-
tributed and active real-time database system’, SIGMOD Rec. 25(1), 38–51.

Andler, Hansson, Mellin, Eriksson & Eftring (1998), ‘An overview of the deeds real-time
database architecture’.

Andler, S. F., Brohede, M., Gustavsson, S. & Mathiason, G. (2007), DeeDS NG: Architec-
ture, design and sample application scenario, in S. H. Son, I. Lee & J. Y.-T. Leung,
eds, ‘Handbook of Real-Time and Embedded Systems’, CRC Press. To appear in June
2007, ISBN 1584886781.

Barret, P., Hilborne, A., Bond, P., Seaton, D., Verissimo, P., Rodrigues, L. & Speirs, N.
(1990), The delta-4 extra performance architecture (xpa), in ‘20th International Sym-
posium on Fault-Tolerant Computing’, pp. 481 – 488.

Bernat, G., Burns, A. & Llamosi, A. (2001), ‘Weakly hard real-time systems’, IEEE Trans.
Comput. 50(4), 308–321.

Berndtsson, M., Hansson, J., Olsson, B. & Lundell, B. (2002), Planning and Implementing
your Final Year Project with Success! A Guide for Students in Computer Science and
Information Systems, Springer-Verlag London Limited, London, Great Britain.

Bestavros, A., Son, S. H. & Lin, K.-J., eds (1997), Real-Time Database Systems: Issues
and Applications, Kluwer Academic Publishers, Norwell, MA, USA.

Birrell, A. D., Levin, R., Schroeder, M. D. & Needham, R. M. (1982), ‘Grapevine: an
exercise in distributed computing’, Commun. ACM 25(4), 260–274.

Brachman, B. & Neufeld, G. (1992), Tdbm: A dbm library with atomic transactions, in
‘Summer ’92 USENIX’, pp. 63 – 80.

Brohede, M. & Andler, S. (2005), Using distributed active real-time database functionality
in information-fusion infrastructures, in ‘Proceedings of Real-Time in Sweden (RTiS
2005)’, Skövde Sweden.

Brohede, M. & Andler, S. F. (2002), Distributed simulation communication through an
active real-time database, in ‘Software Engineering Workshop, 2002, Proceedings.
27th Annual NASA Goddard/IEEE’.

Corson, S. & Macker, J. (1999), ‘Mobile ad hoc networking (manet): Routing protocol
performance issues and evaluation considerations’. RFC 2501.

Demers, A., Greene, D., Houser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swine-
hart, D. & Terry, D. (1988), ‘Epidemic algorithms for replicated database mainte-
nance’, SIGOPS Oper. Syst. Rev. 22(1), 8–32.

36

REFERENCES REFERENCES

Elmasri, R. & Navathe, S. B. (2000), Fundamentals of Database Systems, third edn, Read-
ing, Mass. : Addison-Wesley.

ENEA Polyhedra (2005a), ‘Polyhedra Overview’. Available as a part of the Polyhedra
evaluation kit Version 6.2,
http://www.enea.com/polyhedra [Accessed 2006-07-18].

ENEA Polyhedra (2005b), ‘Real-time relational database’. Available as a part of the Poly-
hedra evaluation kit Version 6.2,
http://www.enea.com/polyhedra [Accessed 2006-07-18].

England, A. (2003), Journal API Specification, POL-JOURNAL-001 v1.0 edn, Polyhedra
plc. Status: RELEASE.

Fahl, G. & Risch, T. (1997), ‘Query processing over object views of relational data’, The
VLDB Journal 6(4), 261–281.

Fekete, A., Gupta, D., Luchangco, V., Lynch, N. & Shvartsman, A. (1996), Eventually-
serializable data services, in ‘PODC ’96: Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing’, ACM Press, New York, NY,
USA, pp. 300–309.

Fox, A. & Brewer, E. A. (1999), Harvest, yield, and scalable tolerant systems, in ‘HOTOS
’99: Proceedings of the The Seventh Workshop on Hot Topics in Operating Systems’,
IEEE Computer Society, Washington, DC, USA, p. 174.

Gray, J., Flynn, M. J., Jones, A. K., Lagally, K., Opderbeck, H., Popek, G. J., Randell, B.,
Saltzer, J. H. & Wiehle, H.-R., eds (1978), Operating Systems, An Advanced Course,
Vol. 60 of Lecture Notes in Computer Science, Springer.

Gray, J., Helland, P., O’Neil, P. & Shasha, D. (1996), The dangers of replication and a
solution, in ‘SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data’, ACM Press, New York, NY, USA, pp. 173–182.

Gray, J. & Lamport, L. (2006), ‘Consensus on transaction commit’, ACM Trans. Database
Syst. 31(1), 133–160.

Gustavsson, S. (n.d.), Optimistic replication in distributed real-time databases, PhD Thesis.

Gustavsson, S. & Andler, S. F. (2002), Self-stabilization and eventual consistency in repli-
cated real-time databases, in ‘WOSS ’02: Proceedings of the first workshop on Self-
healing systems’, ACM Press, New York, NY, USA, pp. 105–107.

Gustavsson, S. & Andler, S. F. (2005), Continuous consistency management in distributed
real-time databases with multiple writers of replicated data, in ‘IPDPS ’05: Proceed-
ings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 2’, IEEE Computer Society, Washington, DC, USA, pp. 445
– 451.

Joseph, T. A. & Birman, K. P. (1986), ‘Low cost management of replicated data in fault-
tolerant distributed systems’, ACM Trans. Comput. Syst. 4(1), 54–70.

37

REFERENCES REFERENCES

Khelil, A., Becker, C., Tian, J. & Rothermel, K. (2002), An epidemic model for information
diffusion in manets, in ‘MSWiM ’02: Proceedings of the 5th ACM international work-
shop on Modeling analysis and simulation of wireless and mobile systems’, ACM
Press, New York, NY, USA, pp. 54–60.

Lundström, J. (1997), A conflict detection and resolution mechanism for bounded-delay
replication, Master’s thesis, Högskolan i Skövde. HS-IDA-MD-97-10.

Matheis, J. & Müssig, M. (2003), Bounded delay replication in distributed databases with
eventual consistency, Master’s thesis, Högskolan i Skövde. HS-IDA-MD-03-105.

Mathiason, G. (2002), Segmentation in a distributed real-time main-memory database,
Master’s thesis, Högskolan i Skövde. HS-IDA-MD-02-008.

Mathiason, G. & Andler, S. F. (2003), Virtual full replication: Achieving scalability in
distributed real-time main-memory systems, in ‘Proc. of the Work-in-Progress Session
of the 15th Euromicro Conf. on Real-Time Systems’.

Mathiason, G., Andler, S. & Jagszent, D. (2005), Virtual full replication by static segmen-
tation for multiple properties of data objects, in ‘Proceedings of Real-time in Sweden
(RTiS 2005)’, Skövde Sweden.

Nyström, D., Tesanovic, A., Nolin, M., Norström, C. & Hansson, J. (2004), Comet: A
component-based real-time database for automotive systems, in ‘Workshop on Soft-
ware Engineering for Automotive Systems.’, The IEE, Edinburgh, Scotland,, pp. 1–8.

Oracle (2006a), ‘Oracle TimesTen in-memory database’. Data sheet, available on the or-
acle website, http://www.oracle.com/database/timesten.html [Ac-
cessed 2006-08-28].

Oracle (2006b), ‘Replication - TimesTen to TimesTen’. Data sheet, available on the or-
acle website, http://www.oracle.com/database/timesten.html [Ac-
cessed 2006-08-28].

Pedone, F. (2001), ‘Boosting system performance with optimistic distributed protocols’,
Computer 34(12), 80–86.

Polyhedra (2005a), ‘Polyhedra faq’s - database replication’. www.polyhedra.com/
faq-replication.htm [Accessed 2006-01-18].

Polyhedra (2005b), ‘Polyhedra whitepaper - “fault tolerance in a real-time sql
dbms”’. www.polyhedra.com/whitepaper-sql-dbms.htm [Accessed
2006-01-12].

Polyhedra (2005c), ‘Polyhedra whitepaper - “fault tolerance in polyhedra”’. www.
polyhedra.com/whitepaper-arbiter.htm [Accessed 2006-01-18].

Ramamritham, K. (1993), ‘Real-time databases’, Distributed and Parallel Databases
1(2), 199–226.

Ramamritham, K., Son, S. H. & Dipippo, L. C. (2004), ‘Real-time databases and data
services’, Real-Time Syst. 28(2-3), 179–215.

Saito, Y. & Shapiro, M. (2005), ‘Optimistic replication’, ACM Comput. Surv. 37(1), 42–81.

38

REFERENCES REFERENCES

Serrano-Alvarado, P., Roncancio, C. & Adiba, M. (2004), ‘A survey of mobile transactions’,
Distrib. Parallel Databases 16(2), 193–230.

Stankovic, J. A., Son, S. H. & Hansson, J. (1999), ‘Misconceptions about real-time
databases’, Computer 32(6), 29–36.

Tatomir, B. & Rothkrantz, L. (2005), Crisis management using mobile ad-hoc wireless
networks, in B. V. de Walle & B. Carlé, eds, ‘Proceedings of the 2nd International
ISCRAM Conference’, Brussels, Belgium, pp. 147 – 149.

The TimesTen Team (1999), In-memory data management for consumer transactions the
timesten approach, in ‘SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD in-
ternational conference on Management of data’, ACM Press, New York, NY, USA,
pp. 528–529.

The TimesTen Team (2002), Mid-tier caching: the timesten approach, in ‘SIGMOD ’02:
Proceedings of the 2002 ACM SIGMOD international conference on Management of
data’, ACM Press, New York, NY, USA, pp. 588–593.

The TimesTen Team (2004), ‘TimesTen replication’. Release 5.1.

Thomas, R. H. (1979), ‘A majority consensus approach to concurrency control for multiple
copy databases’, ACM Trans. Database Syst. 4(2), 180–209.

Yu, H. & Vahdat, A. (2001), The costs and limits of availability for replicated services, in
‘SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems
principles’, ACM Press, New York, NY, USA, pp. 29–42.

Yu, H. & Vahdat, A. (2002), Minimal replication cost for availability, in ‘PODC ’02: Pro-
ceedings of the twenty-first annual symposium on Principles of distributed comput-
ing’, ACM Press, New York, NY, USA, pp. 98–107.

39

