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Discussion on the paper by Barndorff-Nielsen, Gill and Jupp

Luigi Accardi (Universita di Roma “Tor Vergata™)

First I thank the Royal Statistical Society for inviting me to propose the vote of thanks to Ole Barndorft-
Nielsen, Richard Gill and Peter Jupp for their paper. This is something that I do with great pleasure because
quantum probability has originated a major change in the landscape of modern probability theory and it
is time that the implications of this radical innovation for statistics begin to be felt. The first attempts to
interest statisticians in quantum probability go back to the mid-1980s and I would like to devote a thought
to the memory of Jeff Watson who was historically the first statistician to become deeply involved in this
field. I hope that now, after 20 years, the time is riper for this potentially historic operation.

This paper is on quantum statistics and probably most of the audience are aware of the strong and, at
the same time touchy, connections between classical probability and classical statistics. Therefore some of
you might be amused to confirm that the tradition continues even if you add the adjective ‘quantum’ to
both disciplines.

I shall try to frame the present paper within the general context of quantum probability first from a
conceptual point of view and then from a more mathematical point of view. Since time is short, I have
chosen to proceed by short questions and schematic answers whose main role should be to stimulate further
questions.

What is quantum probability?
Quantum probability is a non-Kolmogorovian probabilistic model whose role in probability is analogous
to the role of non-Euclidean models in geometry. Algebraic probability theory includes both the quantum
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and the classical probabilistic model, just like differential geometry includes both the Euclidean and the
non-Euclidean model.

Do we need quantum probability?

We need quantum probability in the same sense as we need non-Euclidean models. If you have three non-
Euclidean angles, you are not obliged to describe them by means on a non-Euclidean triangle. But in some
cases this is useful both for intuition and for doing calculations. The same happens for probability.

Can we characterize the Kolmogorovianity or non-Kolmogorovianity of a given set of statistical data?
Yes, we can characterize the Kolmogorovianity by means of the statistical invariants, which are the prob-
abilistic counterpart of the geometrical invariants, like curvature.

Beyond the quantum model are there other non-Kolmogorovian models?
There are infinitely many possibilities and a full classification is out of reach. It is just the same as in
geometry.

The empirical evidence supporting the quantum model is impressive. is there any empirical evidence of emer-
gence of non-Kolmogorovian models outside quantum physics, e.g. in biology, medicine, economics,...?
I am sure that there are but I have not yet found any.

Can you explain intuitively from where the non-Kolmogorovian statistics arise?

There are two main sources of differences: one is the existence of incompatible (non-simultaneously mea-
surable) observables; the other is that some inductive arguments (typically the counterfactual argument)
can be applied to passive but not to adaptive systems. There are many examples of incompatible events in
the classical world. For a classical system the prototype of a passive property is the colour of a ball in a
box and the prototype of an adaptive property is the colour of a chameleon in a box.

What is the mathematical difference between a quantum model and a Kolmogorovian model?

A quantum model is an infinite bunch of Kolmogorovian models (abelian algebras) glued together to
produce a single new mathematical structure (non-abelian algebra). If you restrict a quantum model on
an abelian subalgebra you obtain a Kolmogorovian model. Keeping fixed the quantum state and vary-
ing the abelian subalgebra, you obtain infinitely many Kolmogorovian models. These uniquely determine
the quantum model (Gleason’s theorem). Quantum tomography studies the following question: given a
quantum state, what is a minimal set of its Kolmogorovian restrictions that is sufficient to determine it?

What, in classical probability, plays the role of the ‘parallel axiom’ in classical geometry?

Bayes’s definition of conditional probability, which, in fact, is equivalent to five independent axioms, plays
the role of the parallel axiom. For each of these axioms one can find counter-examples showing that there
are physical situations where this axiom is not physically justified.

How does the difference between the quantum and the classical model emerge in the positive operator valued
measures discussed in this paper?

The difference between the quantum and the classical model emerges through the theory of composite
systems and the theory of quantum conditioning, which is the most important point where the parallelism
between classical and quantum models breaks down.

How do positive operator valued measures arise?

Consider a composite system S x Sy (where S denotes a system and Sy the measurement apparatus)
and apply the same construction, used in the answer to the question about the mathematical difference
between a quantum and a Kolmogorovian model, not to the whole composite system, but only to the
apparatus. This means that a quantum conditional expectation (rather than a state) is restricted to an
abelian subalgebra of the apparatus but the algebra of the system is not changed. This gives an object
which is half classical and half quantum. This is a positive operator valued measure. The classical analogue
of a positive operator valued measure is a familiar Markov transition probability.

Dorje C. Brody (Imperial College, London)
I agree with the authors concerning the importance of extending statistical data analysis to the results
of quantum measurements. The fact that statisticians are now addressing this issue is quite encouraging,
although I have some reservations regarding the presentation of the subject.

The authors note that the paper is intended to introduce quantum inference problems to the statistical
community. However, I am slightly concerned by their starting from the relatively difficult concept of
mixed state density matrices, without a clear exposition of the significance of pure states (wave functions).
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Fig. 1. Square-root density functions correspond to points in the positive orthant of the unit sphere S in
Hilbert space H: for a parametric density function, the state lies on a submanifold M of S with metric given
by the Fisher information matrix

This might convey the impression, to readers who are unfamiliar with quantum mechanics, that the essence
of quantum inference is simply the replacement of the probability density function by a density matrix.
Hence, I shall, instead, focus on the nature of pure states.

Probability theory typically involves a density function p(x|f) which may depend on a set of parameters
{6}. In statistics, we often consider the log-likelihood function /y(x) = In{p(x|0)}. However, in physics
we naturally work with the square-root density function & (x) = /p(x|f), which permits a formulation
of the problem in a real Hilbert space context. This was recognized by Mahalanobis (1930, 1936) and
Bhattacharyya (1943, 1946). In particular, if the state & (x) depends on a set of parameters, then the sta-
tistical model is represented by a finite dimensional submanifold M of the unit sphere S C H, where the
Fisher information determines the Riemannian metric on M (Rao, 1945, 1947). See Fig. 1. This leads to
the notion of information geometry (see Burbea (1986)).

Note, however, that to recover the probability we must square the state &, indicating that we could
have defined £ = —,/p as the negative root of p. Thus, the relevant state space consists of equivalence
classes, i.e. rays through the origin of H. Hence, all aspects of classical probability can be characterized
by geometric features of real projective spaces (Brody and Hughston, 1999). This idea can be extended by
allowing the state ¢ to be a complex-valued function, the probability being defined by p = |£|*. Such a
complex-valued function is what physicists call a wave function or a pure state.

However, complex-valued states are considered in quantum mechanics not merely because this remains
consistent with probability laws but rather because they are indispensable for the study of quantum sys-
tems. The role of complex numbers in quantum mechanics is twofold: first, a complex number rotates a
state by the angle %71'. Second, it determines the ‘direction of time’ via Schrodinger’s equation. The latter
point implies that quantum mechanics is not a static but a dynamic theory. These two features are relevant
to the estimation problem that is discussed below.

Now, if the quantum state depends on a set of unknown parameters, then the various problems of
statistical inference can be cast in a Hilbert space setting a /a Efron. The inference problem for pure states
has been extensively studied in the literature (see, for example, Burbea and Rao (1984), Caianiello (1983),
Caianiello and Guz (1988) and Brody and Hughston (1996, 1997, 1998); see also Yuen et al. (1975),
Helstrom (1982) and Brody and Meister (1996) for further work on quantum hypothesis testing that
extends earlier results by Helstrom and Holevo). Citation of these results would make the paper more
informative to statisticians who are familiar with information geometry and asymptotic inference or stand-
ard hypothesis testing.

To illustrate the subtlety of pure state estimation, consider the inference problem in Section 6 (example 7).
Given a pair of spin halfeigenstates | 1) and || ), a generic pure state is expressible as [£ (0, ¢)) = cos(%&) 1)+
sin(%@) exp(ip)|{ ). The value of # is assumed fixed, and we seek to estimate the unknown parameter ¢.
However, unlike the problems in classical estimation theory, where the state remains static, the complex
square-root density function |£) evolves in time (the second role of the complex number). More precisely,
only an energy eigenstate can be static in quantum physics.

In this example, unitary evolution consists in rigid rotation of the state space around the axis defined
by the spin eigenstates (Fig. 2). Therefore, the value of 8 will remain fixed, whereas the value of ¢, to be
estimated, varies according to ¢ = wt (mod(27)), where w is the difference in energy of the two eigenstates.
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Fig.2. Spin half state space: a generic state is expressible as a superposition of the spin-up and spin-down
eigenstates; Schrédinger evolution corresponds to the rigid rotation of the sphere around the poles determined
by the eigenstates; the ‘speed’ of the Schrddinger trajectory is determined by the Anandan—Aharanov relation;
owing to the energy—time relation, the lower bound on time precision precludes the ‘preparation’ of a state
with a definite relative phase ¢
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Fig. 3. One-parameter family of exponential curves and one-parameter families of unitary trajectories: the

unitary trajectories are everywhere orthogonal to the corresponding exponential family; consequently, the
Cramér—Rao lower bound is never attained for the estimation of the unitary trajectory

In this situation, the proper formulation of an estimation problem appears obscure. This can be reme-
died by prescribing that the time parameter ¢ is the object of estimation, but then the results concerning
quantum exponential families and the attainability of the Cramér—Rao bound no longer apply.

To see this, apply the formulation of Efron (1975) to the square-root density function rather than to the
log-likelihood function. Then, as illustrated in Fig. 3 (see Brody and Hughston (1996) for the proof), if
the exponential family admits the form exp(¢H) where H is a random variable, the trajectories of the one-
parameter family of unitary transformations exp(i¢p H) are everywhere orthogonal to the corresponding
exponential family (first role of the complex number). Therefore, although the quantum exponential fam-
ilies that were investigated by the authors presumably are relevant in some physical contexts, the authors
have yet to demonstrate this in specific examples.

As for mixed states, these are just (classical) probability distributions p(§) over the space of complex
square-root likelihood functions. The density matrix p is defined by the first quadratic moment of the
distribution: p = f 1€) (€] p(&) A€, where the integration extends over the pure state space. For standard
linear observables, the information contained in p suffices to determine all statistical properties of the
system. Thus, an alternative approach to quantum inference would be to take the classical results that
are readily applicable to p(&), and then to project out the component of the first moment to restore the
corresponding quantum results. An apparent paradox arises in that, if p(€) is a classical exponential family,
then the corresponding density matrix p is not an exponential family as defined in the paper. I hope that
the authors will further investigate this issue in their forthcoming book on the subject.

The vote of thanks was passed by acclamation.
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V. P. Belavkin (University of Nottingham)

The development in the early 1970s of the statistical inference theory initiated in Helstrom (1967), which
is based on the non-Kolmogorov quantum probability, not only opened a new direction in statistics but
also helped to clarify some problems of quantum theory. It made it possible to introduce the concept of
an approximate measurement of incompatible observables described by non-commuting operators and
enabled the solution of various problems in the quantum theory of information and communication
(Belavkin and Grishanin, 1973; Belavkin, 1975a), e.g. to give for pure states a precise formulation of a
generalized Heisenberg uncertainty principle for quantities such as the time and energy, or phase and
number of quanta (Helstrom, 1973, 1974), and to define precisely what is a measurement of the time and
phase in quantum mechanics (Belavkin, 1975b). The present paper gives a nice elementary introduction
to the subject of quantum statistical inference which is particularly suitable for statisticians as well as
for physicists and it reviews mostly recent advances into this subject. However, it leaves many interesting
questions raised by that development untouched; see for example Gill and Massar (2000) and Petz (2003).
It would also be useful to have an overview of the achievements of the earlier development of quantum
estimation and hypotheses testing theory (Belavkin, 1972, 1975c) and to review formulations and results
obtained from the more contemporary point of view of quantum probability and mathematical quantum
theory. Some of the references on quantum statistics that have been omitted are Stratonovich (1973), Yuen
and Lax (1973) and Belavkin (1976), and these may to some extent complement this review.

John T. Kent (University of Leeds)

The paper has offered a fascinating glimpse into the world of quantum probability and associated ques-
tions of statistical inference. I shall explore some links to other branches of statistics, especially shape
analysis. For background information, see, for example, Dryden and Mardia (1998), especially chapters
4, 6 and 9. The basic building-block in quantum probability is the set of d x d Hermitian, positive defin-
ite complex matrices p with trace 1. In addition we can impose a rank restriction, rank(p) = m, for some
fixedm, 1 <m <d.

When m = 1, there is a close connection to the representation of the shape of a configuration of d + 1
points or landmarks in two-dimensional real space. Such a configuration can be represented as a (d + 1)-
dimensional complex vector. Recall that the shape of a configuration consists of the information invariant
under changes in location, scale and rotation. Location effects can be removed by taking a set of d ortho-
normal contrasts between the landmarks, yielding a d-dimensional complex vector g, say. Size effects can
be removed by scaling p to have unit size, u*p = 1. Rotation, i.e. the equivalence of p and exp(iy) u,
0 < 9 < 2w, can be removed by focusing on the rank 1 matrix p = pp*.

A similar representation holds for m > 1 if we shift attention to the slightly modified concept of ‘reflec-
tion shape’. In this case the shape information can be coded by a real d x d matrix p of rank m. This
representation forms the basis for classical multidimensional scaling.

In the setting m = 1 and p complex, we can ask whether it makes sense to consider inference from a
Bayesian point of view, i.e. to put a prior on p or equivalently on p. If so, there are several choices from
shape analysis obtained by either conditioning or projecting suitable multivariate normal distributions on
shape space, e.g. the complex Bingham distribution, the complex angular central Gaussian distribution
and the Mardia-Dryden distribution. In principle, these models can be extended to the cases m > 1 and/or
p real, and some work has already been done in the reflection shape context.

Conversely, the quantum exponential and transformation models of Section 4 may have a useful role
in providing models for systematic changes of shape in shape analysis. So far, the available models have
either been limited to simple changes (e.g. a great circle path on a sphere) or to small scale changes, in
which case standard multivariate techniques can be used on a tangent plane to shape space.

Finally, it would be interesting to know the status of the statistical models in the paper. To what extent
are they empirical (i.e. chosen for their tractability and convenience) and to what extent are they scientific
(i.e. governed by some underlying physical principles)?

Dorje C. Brody (Imperial College, London)

Professor Kent has pointed out an apparent resemblance between the statistical theory of shape and cer-
tain aspects of quantum theory. This can be made more precise by noting that the shape space of k labelled
points on a plane can be identified with the space of pure quantum states of dimension k — 2. However, this
correspondence applies only to planar configurations, and not those in higher dimensions. Nevertheless,
this suggests the possibility of applying quantum theoretical methods to the statistical theory of shapes,
or conversely. Further details on this correspondence are investigated elsewhere (Brody, 2003).
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Professor Kent has also queried the relevance of mixed states in this context. Each mixed state density
matrix in quantum mechanics represents an equivalence class of distributions of different point config-
urations. For example, for a Markovian diffusion of shapes, this leads to a Lindblad-type equation for
the deterministic evolution of the density matrix. Professor Kent’s comment thus leads to an important
question, namely to what extent would density matrices suffice in representing statistical information
concerning the distribution of different shapes?

N. H. Bingham (Brunel University, Uxbridge)

I very much welcome this paper, with its avowed intent of introducing the statistical community to quan-
tum statistical inference. To my knowledge, the first such attempt at cross-fertilization between quantum
physics (an intrinsically statistical theory) and statistics was the paper of Jose E. Moyal (1910-1998) in the
‘Symposium on stochastic processes’ on June 7th, 1949, organized by Moyal, Bartlett and D. G. Kendall
(Moyal, 1949). Incidentally, Moyal’s work of this period has undergone a recent revival (Moyal quanti-
zation), in contexts such as quantum groups and non-commutative geometry (Chari and Pressley (1994),
pages 2-3, Connes (1994) and Gani (1998)). It would be interesting to see such work related to this paper.

The theory of Section 6, on quantum and classical Fisher information, is very attractive. Ideas of infor-
mation in statistics go back to Fisher, to Cramér and Rao, to Kullback and others (Barndorff-Nielsen
(1978), which is modestly uncited); see Barndorff-Nielsen and Cox (1994) and Severini (2000). A text-
book exposition of the extension of this classical (and modern) theory to the quantum-non-commutative
context would be valuable, and I look forward to the authors’ forthcoming book on this score.

In Sections 7 and 8.2, the authors allude to some of the extensive literature on quantum and free prob-
ability. It would be a valuable service to the probability community to see more details on the relationship
between the ideas of this paper and those of, inter alia, Meyer (1995) and Voiculescu (2000).

Quantum stochastic calculus is now recognized as a field in its own right (classification 81S25 in the
Mathematical Reviews classification scheme). One wonders what it may have to offer here.

The following contributions were received in writing after the meeting.

Jeremy G. Frey (University of Southampton)

As a Physical Chemist involved in experimental and theoretical spectroscopy the phrase quantum sta-
tistics triggers ideas of Bose—Einstein and Fermi-Dirac statistics, and statistical mechanics. As practising
chemists we usually view the rules of quantum mechanics as a recipe for deriving a probability, which
I think we then frequently treat somewhat classically unless we are involved in a series of experiments on
the same object, in which case as the paper makes clear the result of the measurement in collapsing the
system state makes for classically unexpected results.

The significant developments in quantum information often pass us by other than interests in the
Einstein—Podolsky—Rosen ‘paradox’ and thus Bell’s inequalities and the Aspect experiments. The math-
ematical developments in quantum probability are beyond our normal purview but the interaction of
quantum probabilities with classical statistics is a significant issue as most of our experiments and appa-
ratus are not 100% efficient and suffer from background and other effects. As I understand it this means
that the experiments that test Bell’s inequalities, and other photonics experiments that were referred to
in the paper and the presentation, are not ‘perfect’ but are statistical demonstrations of the ‘truth’ of the
underlying quantum relationship. If this is so then it would have been very useful to have shown some
data from these ‘simple’ two-state experiments to provide more insight into the working of the theoretical
framework that is provided in the paper.

The rise of quantum computing (and the use of nuclear magnetic resonance in this regard) is bringing
this area into much higher view. In this area the limitations in the application of different experimental
systems to quantum computing seem to arise from the loss of coherence in the systems, due to interactions
with the ‘outside’. Can this loss of coherence and the way that it influences the carriage of quantum infor-
mation be viewed as applying or supplying an increased level of uncertainty to the quantum system, i.e.
as an externally supplied almost classical randomness and thus amenable to standard statistical treatment
(to investigate repeats of the experiment), or should or must it be included as part of the quantum level
description? Another area of practical concern to spectroscopists is how much of the statistics that is typi-
cally applied to a large ensemble of molecules can be applied to the work undertaken on single molecules?
I wonder whether this work can help in this regard.

Inge S. Helland (University of Oslo)
The authors are to be congratulated on a very interesting paper on an extremely interesting topic: the inter-
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play between quantum theory and ordinary statistical theory. This area has moved forward considerably
since Max Born first suggested his statistical interpretation of quantum mechanics, which was nothing but
the now well-known probabilistic interpretation of the modulus squared of the wave function. As I see it,
it should be possible to move even further along this route: quantum theory is a statistical theory. It is not
‘mechanics’ limited to describing the movement of particles. It is capable of doing probabilistic prediction
of essentially every phenomenon in the microworld, just as ordinary statistics is capable of modelling and
predicting essentially every phenomenon in the macroworld.

The relationship between quantum theory and statistics has been discussed by many, most recently by
Loubenets (2003) in an abstract common modelling and inference framework. To develop this link further
in a more direct setting, an obvious task would be to extend the ordinary statistical paradigm, based as it is
essentially only on models as classes of probability measures. This has already been proposed for completely
different reasons by McCullagh (2002). Some obvious candidates for such extensions are symmetry by
using group theory, diversity of evidence (Barndorff-Nielsen, 1995) by using complementary parameters
and complementary experiments and model reduction. In Helland (2003a, b) attempts are made to take
quantum theory along such directions. Although there are still unsettled questions, the results definitely
seem sufficiently promising to deserve further discussion. In my view, it should be possible ultimately to
find a quantum theory where formal elements are derived, not assumed in the axiomatic basis. This may
also give some unified theory of inference, where parts can be useful also for other applied disciplines.

Jan-Ake Larsson (Linkoping University)

Regarding Section 7, ‘Classical versus quantum’, it is true that from an abstract point of view a basic
structure in probability theory is isomorphic to a special case of a basic structure in quantum probability,
and that this entails a rather narrow (functional analytic) view of classical probability. It is also true that
the basic structure in quantum probability is isomorphic to a particular case of the basic structure of
classical statistical inference. I would like to argue (tongue in cheek) that this claim entails a rather narrow
(parameter-model-oriented) view of quantum probability. Moreover, many quantum probabilists will feel
that only using a family of classical probability models with sufficiently many parameters is ‘discarding the
key feature of ordinary probability theory’ since this broader mathematical structure has no analogue of
the Hilbert space, and hence no opportunity for a quantum probabilist’s beloved co-ordinate transfor-
mations.

The parameter-model-oriented mathematical structure contains quantum probability and much more;
it is, in its pure form, too general. Of course, Barndorff-Nielsen, Gill and Jupp are aware of this; the paper
uses the Hilbert space formalism to find appropriate model families and notions that are useful for sta-
tistical inference. Here, the parameter-model-oriented approach is the tool and therefore from this point
of view quantum probability does belong to the field of classical statistics. However, Sections 2-6 suggest
that this claim is true only after having used the quantum language to establish classical parameters in
some family of quantum models.

Recall that the ‘difference’ between quantum and classical is only visible in situations where the influence
of the parameters is restricted for some physical or philosophical reason. For instance, the Bell inequality
that is mentioned in the paper requires that the parameter influence is spatially local. This imposes certain
restrictions on any classical probability model for the system, which is violated by the quantum mechanical
predictions. These restrictions are not violated by current experiments because of practical limitations, so
the experimental data allow a classical (ad hoc) probabilistic model; see Larsson (1998, 1999). An example
of a consequence is the existence of a Trojan horse in the supposedly secure Bell-inequality-based quantum
cryptography (Larsson, 2002).

In any case, restrictions of this type are not to be found in the parameter models that are discussed
in the paper. Thus, regardless of any ‘difference’ between quantum and classical, only classical statistical
properties emerge in this context. I would argue that this is a property of the formulation of the problem
rather than of the underlying system.

N. K. Majumdar (London)
I would like to quote Karl Popper’s statement that quantum theory is a statistical subject, which supports
the paper. I also support the idea that quantum theory does not necessarily need a new definition of
probability which is different from what the statistician is used to. All quantities of interest such as the
probability density represented by |1/|> or even by the probability current density can be fully understood
by classical probability.

My next remark is concerned with the fact that the wave function formulation of quantum mechanics
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is more familiar to many. The wave function not only gives the position probability |¢|*> but can also be
expanded into a probability distribution of eigenfunctions for each observable. So, we can find a probability
distribution for each observable. A statistical study may conceivably be made of how the wave function
combines, the probabilistic distribution of eigenvalues and the position probability densities as well as the
deterministic evolution of v in time.

Marco Minozzo ( University of Perugia)

My comments will focus on some foundational questions on the violation of Bell inequalities which
although touched on marginally in this paper are of great concern also to the authors (Barndorff-Nielsen
et al., 2001; Gill, 2003a, b). Since Bell (1964), physicists are still looking for a loophole-free correlation
experiment to settle definitively the questions surrounding the experimental violations that have been
reported in the literature. Leaving aside the experiment by Aspect et al. (1982) where the periodic transi-
tion probabilities were a major concern (Aspect, 1999; Minozzo, 2000), here I would like to stress that for
virtually all other experiments it seems to have been the (more or less explicit) assumption of ‘rotational
invariance’ of the correlation measurements that led to the violations claimed. To my knowledge, this
assumption has never been proved and the only empirical evidence that is available so far for the correla-
tion measurements is for an (approximate) cosine-like law for some (not all) absolute orientations.

Let us consider the ideal setting of the Einstein—Podolsky—Rosen-Bohm Gedankenexperiment and
assume that, for the gathering of the correlation measurements, four runs are performed in which the
source is rotated alongside with the orientation of analyser A. To model this we need a family of stochastic
processes (A, ,) for the source and two other families (A, ., ») and (B, ., ,) for the analysers, with
©s, 0as pp € [0,27), n € N. For the source in orientation ¢;, and analysers in orientation ¢, and ¢, let,
forgetting time, fi,, (@a, 95) = E(Agy o0 Bey.oin)> 1 =1,2,.... In Minozzo (2000) a classical (purely parti-
cle) toy model is considered for which (0, ¢;,) = cos(2¢y), for p, =, =0, @), € [0, 7], fip, (Pa, p5) = 1, for
Ya = p, and p, (Y4, pp) = —1, for ¢, = ¢, +m/2. This model, although agreeing with quantum mechanical
predictions for some absolute orientations, is not rotationally invariant. For instance, for ¢ =, — @, €
[0, 7], po(0, ) # po(m/4, /4 + ). (However, it holds that p,, (¢a, ©p) = fig, +0(a + 0,9 +0), for 6 €
[0, 27).) For the Bell-type quantity of Clauser et al. (1969) we have

S = i, (Pas 1) = thoy (Pas ©}) + 1, (s 05) + py, (Ds 03)
= 100, 05 — ©a) — 1100, 0}, — @) + 100, v, — @) + 10 (0, ), — £,

and, for orientations ¢, = 0, ¢/, = 7/4, ¢, = w/8 and ¢, = 37/8, the model gives 2,/2 (the maximal viola-
tion that is expected by quantum mechanics). In other words, from a probabilistic point of view, we could
say that the Bell theorem is just showing that the quantum mechanical cosine-like (rotationally invariant)
law for the correlation measurements does not specify, in the probability framework of Kolmogorov, a
coherent set of correlations.

J. W. Thompson (University of Hull)

Most, perhaps all, measurements that can be made in experiments give results which have a familiar form
whether the experiment is intended to verify predictions from classical Newtonian mechanics or from
quantum theory. We can record whether specified events occur or not and the values that quantities of
interest have attained and we can code them for electronic storage. Whenever the theory investigated pre-
dicts a random outcome, then the experiment must be repeated so that, for example, relative frequencies
can be compared with predicted probabilities. In short, the space of outcomes that are considered pos-
sible (the sample space) obeys Kolmogorov’s finite axioms, at least. One of the most interesting aspects
of quantum models is that the non-classical probability systems within them induce classical probability
measures on the observable sample space. It is from this basic classical structure that inference about the
underlying quantum probabilities must be drawn.

Of course, the space of quantum measures is very different. The probabilities are no longer classical and
they evolve in a predictable fashion with time. Furthermore, potentially new issues of coherence between
the outcome of an inference procedure and the ‘true’ underlying model generating the data arise strongly.
In classical inference coherence was measured by a loss function, or equivalent, and then by consideration
of the average behaviour of a proposed procedure when exposed to particular cases of the general model
(the risk function). The authors have made a good start by proposing quantum analogues of concepts
of information which have been very productive in classical inference. However, a re-examination of the
notion of ‘closeness’ between inference and the underlying model seems necessary, particularly in the case
of the testing of the adequacy of quantum predictions.
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The role of small predicted probabilities could prove particularly important. Although some strange,
even disastrous, event might be extremely unlikely in a single evaluation in a relatively simple quantum
system, it could become almost certain in a complex linking of a very large number of such simple systems.
Of course such possibly unpleasant eventualities can be reduced by introducing redundancy but the scale
of the ‘tail’ probabilities will be crucial.

Finally, I congratulate the authors on such a most interesting and stimulating paper.

The authors replied later, in writing, as follows.

We are grateful to the discussants for their interesting and stimulating contributions. We find little to
disagree with, but much worth commenting on.

Road-maps
An issue that is raised by several discussants (in particular, Professor Accardi and Dr Frey) is where our
subject should be located on the map of various disciplines.

The first step is to translate key notions. As Dr Frey remarks, there are already problems with the title.
‘Quantum statistics’ could be the Bose—Einstein and Fermi-Dirac distributions of quantum ensembles,
as opposed to classical multinomial (balls in boxes). Our focus is statistical inference when the stochas-
tic contribution from quantum mechanics is important: a finite number of measurements on individual
systems.

We are not finished after translating key terms and locating our problem area on an existing map. A sci-
entific field has not just a theoretical framework but also motivations and aims. Professor Accardi rightly
locates quantum statistical inference as the study of certain completely positive maps on certain abstract
probability-like spaces. From his point of view, we are studying a special case of systems of the kind one
studies in much more generality in quantum probability.

However, one mathematical framework being formally contained in another does not mean that one
poses, in the smaller field, the same questions as in the larger. Typically, interesting questions for the
‘smaller’ field are meaningless in the larger. Consequently, the tools and results of the larger field, though
possibly relevant, are not prerequisites for entering the smaller field, though it is useful to know that they
are there (cf. probability as part of measure theory).

We appreciate, in this light, Dr Larsson’s reaction to our suggestion that quantum probability is a special
case of classical statistics. Our subject is multifaceted and one pair of spectacles does not suffice.

Eventually, quantum statistical inference might change the maps of adjacent and enveloping disciplines,
as well as being fed by them. We hope that some of the experts from quantum probability would consider
quantum statistical inference; they can contribute. Professor Accardi’s map may help them to take their
bearings.

Missing topics

Many topics had to be omitted from our paper: it is not a complete survey, but the outline of a kernel. As
Professor Bingham and Professor Accardi emphasize, we have left out the rich connections to quantum
probability and quantum stochastic processes, free probability, hypothesis testing (Professor Belavkin),
the relationships between quantum statistics and quantum information theory, Bayesian approaches, non-
parametric models and foundations (Professor Helland). Some of these topics figure in Barndorft-Nielsen
etal (2001) and they will reappear in our forthcoming monograph. Above all, we keenly miss data examples
(Dr Frey). They will come.

Regarding nonparametric quantum statistics we would like to mention Gill and Guta (2003).

Quantum probability is important for quantum physics, and deeply connected to classical probability.
Quantum stochastic analysis has applications in the continuous time evolution of quantum systems, quan-
tum field theory, classical stochastic processes and quantum statistical inference (continuous time data).

Professor Belavkin cites early papers which explore further the connections between exponential families
and information bounds. Much more besides can be found in the work of the 1970s and 1980s and needs
to be re-evaluated in the light of modern statistics.

Professor Kent and Dr Brody elaborate on the geometric content of quantum statistical models. We
should mention that the Japanese school (Hayashi, Fujiwara, Matsumoto and Nagaoka) is making rapid
progress in exploiting quantum statistical geometry. The connection to shape analysis is exciting.

One of the fascinations of quantum statistics is the foundational turmoil. As Professor Helland points
out, it is difficult to accept a theory of the world which posits an abstract mathematical structure ‘in the
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background’, laying down axiomatically its impact on experience. His point of departure is the structure of
statistical information in potential experiments. The Hilbert space structure emerges from intuitive invari-
ance properties (geometry again). Others are working on similar lines, but physicists do not know much
statistics, whereas we do not know much physics, which means that there is a real chance that connecting
these fields could lead to significant progress.

We mention Belavkin’s (2002) recent approach to the ‘measurement problem’ which considers both
measurement and unitary evolution as a special case of a single, intrinsically stochastic, continuous time,
evolution of a physical system. Professor Belavkin, like Professor Helland, adheres to Bohr’s standpoint,
that there is nothing (but paradoxes) to be gained from trying to find a classical reality behind quantum
randomness. This is echoed in Dr Thompson’s remark that all data (all experience) are classical; quan-
tum statistical inference is concerned with the surprising and beautiful structure behind, connecting the
probabilities.

Bell experiments
Much more could have been written about Bell inequalities. We reintroduce the topic here by describing a
little simulation experiment to generate +1-valued variables X and Y, whose distribution depends on two
parameters a and b. Specifically, Pr(X = x,Y = y) = p(x, y;a,b) = (1 — xya - b) /4, where x, y = %1, and
@ and b are unit vectors in R*. This is the distribution of measurement of spins of two spin half particles
in the Bell singlet state.

The problem is to come up with a random variable Z and transformations such that (up to an arbitrarily
good approximation)

from Z and g one constructs X and S,
from Z and b one constructs Y and T,
(X,Y), conditional on S = 0 and T = 0, is distributed according to p.

A more difficult problem is to find an exact construction with certain success, i.e. without conditioning
(rejection sampling, post-selection). Bell (1964) tells us that it is impossible. The easier problem can be
solved in many ways; see for instance Larsson (1998) and Accardi et al. (2002) (‘the chameleon effect’).
Bell (1981) knew that experimental post-selection must be prohibited; otherwise the experiment cannot
rule out a classical explanation like our simulation.

As Dr Minozzo and Dr Larsson mention, no Bell experiment has yet been done which does not have an
alternative classical explanation, e.g. our rejection sampling story. For different experiments, the ‘expla-
nation’ must be rather different (compare Minozzo’s story with ours). Often it is rather artificial.

The physicists do their best, and the Weihs ez al. (1998) version of Aspect’s experiment seems free of
both defects described by Dr Minozzo, though it still involves post-selection on coincidences. Most phys-
icists believe that a loophole-free experiment can and will be done, maybe even within a couple of years.
However, some consider it a real possibility that quantum mechanics itself will always force loopholes.

We would like to know for what distributions p can we do the simulation exactly, with probability of
success bounded away from 0, uniformly in the parameters? Does it help when, as in quantum mechanics,
we have no action at a distance, i.e. the marginal of X does not depend on b and the marginal of ¥ does
not depend on a?

Bell experiments form a rich field for classical statistics. Very recently, van Dam ez al. (2003) have used
methodology from missing data theory to compare strengths of different Bell-type experiments.

Miscellany

Our decision to concentrate on mixed states was largely pedagogical. (This is in answer to Dr Brody and
Dr Majumdar.) They are central in modern quantum information theory and the reader must become used
to them. Mixed states are mixtures of pure states, so the pure case is included. We agree with Dr Brody
that there can be physical problems when considering our toy models in their most immediate context.
However, quantum statistical models for spin half apply also to the polarization of photons, as well as to
many other physical systems. Ballester (2003) has new results on the quantum tomography of operations
which involves a pure state model that is only marginally more complex than those which we mentioned
as toys, and the experiment is being done right now in a quantum optics laboratory.

Professor Kent asks whether our models are empirical or (physics) theoretical. Well, some do appear
in theory in physics, but a main motivation is just as in classical statistics: models which allow elegant
inference are studied in their own right as paradigms of statistical-theoretical modelling.

Dr Thompson refers to coherence, and Dr Frey to decoherence. Dr Thompson is referring to loss
functions. A characteristic of quantum statistical inference is that, the more we can learn about one par-
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ameter, the less we can learn about another. This means that a consideration of loss functions is necessary
at the design stage. As Dr Thompson emphasizes, we need to think carefully what the meaning of the
parameters is.

Decoherence (Dr Frey) refers to the decay of quantum entanglement through interaction with an envi-
ronment. This process is part of quantum physics and part of actual laboratory measurement. Deciding
at which point the quantum modelling can be replaced by classical (often forced by complexity as systems
grow increasingly large) is one of the most difficult jobs of real quantum physics. It is part of the modelling
of ‘what measurement is actually being performed’ on the system of interest.

Professor Bingham’s nice comments on Moyal point both to the past and to the future. Concerning the
connections between statistics and physics, we mention Edwards (2002) on the enormous significance of
Fisher’s background in physics for his work in statistics and genetics.

Many physicists have only hazy ideas of what statistics (in our sense) can mean for them. Ernest Ruther-
ford once said ‘if you need statistics, you did the wrong experiment’. However, he was not always as right
as he was influential. His prediction concerning the possibility (‘inconceivable’) of using the structure of
the atomic nucleus as a practically useful source of energy is a case in point: what about the use of statistics
in exploring the quantum nature of the world as a source of computational power?
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