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Fixed-Complexity Soft MIMO Detection via
Partial Marginalization

Erik G. Larsson and Joakim Jaldén

Abstract—This paper presents a new approach to soft demodu-
lation for MIMO channels. The proposed method is an approxi-
mation to the exact a posteriori probability-per-bit computer. The
main idea is to marginalize the posterior density for the received
data exactly over the subset of the transmitted bits that are received
with the lower signal-to-noise-ratio (SNR), and marginalize this
density approximately over the remaining bits. Unlike the exact de-
modulator, whose complexity is huge due to the need for enumer-
ating all possible combinations of transmitted constellation points,
the proposed method has very low complexity. The algorithm has
a fully parallel structure, suitable for implementation in parallel
hardware. Additionally, its complexity is fixed, which makes it suit-
able for pipelined implementation. We also show how the method
can be extended to the situation when the receiver has only par-
tial channel state information, and how it can be modified to take
soft-input into account. Numerical examples illustrate its perfor-
mance on slowly fading 4 4 and 6 6 complex MIMO channels.

Index Terms—Detection, MIMO, soft information.

I. INTRODUCTION

W E consider the problem of separating coded informa-
tion symbols that have undergone transmission over a

channel that introduces crosstalk. This problem is encountered
in many applications. Of particular interest are multiple-an-
tenna (MIMO) systems [1], where the signals received by a
receiving antenna array are superpositions of waveforms sent
by a transmitter array, and where the gains and phases in the
superposition are determined by the radio propagation environ-
ment. After appropriate filtering and sampling this leads to the
well-known data model (to be made precise in
Section II-A) where is received data, is a channel matrix,
is a symbol vector with elements from a finite constellation, and

is noise. The problem is then to detect from . Essentially
the same problem occurs in multiuser detection for CDMA [2]
and for single-carrier transmission over channels that induce
intersymbol interference. In these cases, the matrix usually
has a specific structure. We are interested in the fundamental
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aspects of the model and we shall refer to it in
general terms as a MIMO model.

The problem of detecting from has stimulated a large
body of research [2]. One can easily show that if the noise
is Gaussian then obtaining the maximum-likelihood solution is
equivalent to minimizing the Euclidean distance
with respect to over the finite set spanned by all possible com-
binations of constellation points that can constitute the vector
. Unfortunately this problem is NP-hard for general and

[3] which implies that there are no known efficient (i.e. polyno-
mial-time) solutions. Naive solutions, like neglecting the integer
constraint and then projecting the so-obtained solution onto the
finite set of permissible (this is called zero-forcing [ZF]), in
general works poorly except if is well conditioned. One can
do somewhat better by using ZF decision-feedback-equalization
(ZF-DFE) detection (“nulling-and-cancelling”), whereby the el-
ements of are detected one by one, and in an order that can be
optimally chosen [1]. Many other more sophisticated methods,
that find the ML solution with high probability, exist. Unfortu-
nately these methods are in general computationally very com-
plex. This is true also in an average sense if is random (i.e., for
a fading channel). The popular “sphere decoding” method [4],
for example, is much more efficient than a brute-force search,
but it still admits an average complexity that is exponential in
the dimension of [5].

In practice, the information bits that constitute are usually
part of a codeword over GF(2). For decoding, one then not only
wants to know what the most likely vector is, but it is also
important to obtain reliability information (soft decisions, see
Section II-B) for each bit. Direct computation of such soft deci-
sions involves the summation of a number of terms that grows
exponentially with the dimension of and polynomially in the
size of the signal constellation. The problem of computing good
soft decisions is fundamentally much more important for slowly
fading channels (i.e., when a codeword spans only one realiza-
tion of ) than in fast fading (where a codeword spans many re-
alizations of ). The reason is that in fast fading, simple linear
preprocessing (for example, premultiplying by a [pseudo-]in-
verse of ) can be used to separate the symbols in at a mar-
ginal loss of average mutual information between the transmitter
and the receiver [1, Sec. 8.3]. This means that in fast fading,
“most demodulators” have fairly good performance. By con-
trast, in slow fading, decoupling linear processing imposes a sig-
nificant penalty on the outage mutual information. In particular,
one can show that such linear preprocessing severely limits the
diversity order of the system [1]. The main motivation for our
work is therefore slowly fading channels.

Contributions: We present a novel approach to the problem
of computing soft decisions for the model . The idea

1053-587X/$25.00 © 2008 IEEE
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is a new way of approximating the marginal posterior probabil-
ities for the information bits of which is composed. Our new
method has two major advantages: First, it provides impressive
performance at low computational cost. Second, the computa-
tions required by the algorithm can be performed in parallel, and
unlike competing methods its computational cost is fixed (i.e.,
independent of the particular realizations of , and ). This
means that it is suitable for pipelined implementation and on
parallel hardware architectures. We also show how the method
can be extended to take into account uncertainty of the receiver’s
knowledge of the channel .

This paper is the journal version of [6]. The main contribu-
tions with respect to [6] include extensions to imperfect channel
state information at the receiver, extensions to soft-input, and
more extensive discussion.

Notation: complex conjugate; transpose;
largest singular value; smallest singular

value; Kronecker product; condition number of a
matrix; identity matrix; orthogonal projection onto
the range of ; orthogonal projection onto the orthog-
onal complement of the range of .

II. PRELIMINARIES

A. Channel Model

We consider a real-valued discrete-time matrix-vector
channel model of the form

(1)

where is a received -vector, is a transmitted
-vector, is a channel matrix of dimension
and is an -vector of noise. The channel is

perfectly known to the receiver, unless otherwise stated (this will
be relaxed in Section V-A). The noise vector has independent
Gaussian elements with zero mean and variance . Hence

(2)

In most applications, , but this is not strictly required
unless explicitly stated.

Equation (1) can model any linear communication channel.
In particular, it can model a standard complex-baseband MIMO
channel model of the form , with the real parts repre-
senting the inphase component of the signal and the imaginary
part representing the quadrature component ( , for
example). For such a complex MIMO channel, set to twice
the number of receive antennas, set to twice the number of
transmit antennas, and then take

and

(3)

(This requires that the symbols in come from a separable con-
stellation, such as quadrature phase-shift keying [QPSK], rect-
angular -ary quadrature amplitude modulation [ -QAM],

but not -ary phase shift keying [ -PSK] for or 4.)
More generally, the model (1) can describe a MIMO system
that uses linear space-time block coding (STBC) to implement
a complex-field code over a small number of channel symbols.
To use the model (1) in this way, one must replace with
an “equivalent channel matrix” whose structure depends on the
particular STBC being used. See [7, ch. 7], for example, for the
precise mathematics involved. (In the special case of orthogonal
STBCs, would be proportional to an orthogonal matrix; de-
modulation is then trivial.) For generality, in the rest of the paper
we will make no assumptions on what structure in (1) may
have, except for in the extension to imperfect channel state in-
formation (Section V-A) and the numerical results (Section VI).

Throughout we assume that the vector in (1) has ele-
ments that belong to a finite alphabet , for example binary
phase-shift keying (BPSK) or pulse amplitude modulation
(PAM). Each element of , say , is composed of informa-
tion bits. Hence the vector is composed of bits, which
we denote . For example, for BPSK modulation
per real dimension we have . (This corresponds to QPSK
modulation for a complex-valued MIMO channel.) For ,
we have 4-PAM (for a complex-valued MIMO channel, this
corresponds to 16-QAM). We assume that the bits
are mutually independent. This can usually be guaranteed in
practice by an interleaver. To each bit we associate an a
priori log-likelihood ratio (LLR)

which expresses what the detector knows about the bit before
the data were observed. Typically, if the demodulator is used
as a building block in an iterative (turbo) receiver, this a priori
LLR is the extrinsic output from the channel decoder.

B. Exact, Optimal Demodulation for the Model (1)

The task of the demodulator is to compute posterior LLRs for
all information bits that constitute . The following calculation
gives an explicit expression for this LLR [8]: [see (4) at the
bottom of the next page]. Here is the th information
bit in the transmitted vector . The notation
means the set of all vectors for which equals , and
denotes the a priori probability that the vector was transmitted.
In (a), we marginalized over all possible . In (b), we used Bayes
theorem. In (c), we used that all bits are a priori independent.
In (d), we used (2).

For simplicity of exposition we shall now assume that all bits
are equally likely to be 0 or 1 before observing . (This assump-
tion is made throughout Sections III, IV, and V-A, but will be
relaxed in Section V-B.) Then we have

so (4) can be written

(5)

The fundamental problem with computing (5) is that the sums
contain altogether terms. This makes direct evaluation of
(5) infeasible in many cases of practical interest and one will
have to resort to approximations (see Section III). That said, for
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small , (e.g., complex MIMO with two transmit antennas
and QPSK modulation; that is, and ) one can
compute brute-force at a modest effort. When doing
so, it is useful to compute the numerator and denominator of
(5) recursively, exploiting the so-called “Jacobian logarithm”
identity [9]:

(6)

Equation (6) can be implemented efficiently and with good nu-
merical stability even in fixed-point arithmetic. In particular, the
last term can be implemented via a table-lookup as a function
of .

III. PREVIOUS RELATED WORK AND KNOWN

SUBOPTIMAL APPROACHES

We next review some existing approaches to the approximate
computation of (5).

A. Max-Log Approximation

The idea behind this method is to approximate each of the
sums in (5) with their largest term. This gives

(7)
(Note that this corresponds to omitting the second term in (6).)

Finding the maximum term in each sum is equivalent to
minimizing subject to the constellation constraint
on , and this is an NP-hard optimization problem. Therefore
the max-log approximation, while it is conceptually simple,
still suffers from being computationally very intensive. Min-
imizing by hard decision sphere decoding [4] is
feasible, but incurs exponential average complexity [5]. This
limits the range of problem sizes which may be addressed.
Moreover, the complexity of this approach is random (i.e., it
depends on the realizations of , and ) which may introduce

random decoding delays. Additionally, sphere decoding is
based on searching through a tree in a sequential manner, and,
therefore, difficult to execute efficiently on parallel hardware
architectures.

An alternative approach, which is more attractive from a com-
putational complexity point of view, is to only approximately
solve the maximization problems in (7) using a suboptimal
hard decision detector, e.g., ZF or ZF-DFE. Unfortunately such
approximations tend to perform poorly, especially when is
poorly conditioned. One could of course also choose another
(presumably stronger) detector for the hard decision detection
problem in the max-log approximation in (7). One such ap-
proach was proposed in [10] where a so-called semidefinite
relaxation detector was used to solve the maximization problem
in (7). However, most “near-optimal” hard decision detectors
tend to be significantly more complex than the ZF and ZF-DFE
detectors.

B. List-Sphere Decoding

The expression in (5) can be approximated by restricting the
sums to a smaller set of admissible symbol vectors. The list-
sphere-decoder [11] uses the conventional sphere decoder algo-
rithm to find the list of all candidate vectors that lie inside a
sphere

for some constant . It then approximates (5) according to

An advantage of this method is its conceptual simplicity. How-
ever, it is based on the sphere decoding algorithm, whose ex-
pected complexity grows exponentially with [5]. Addition-
ally, its complexity is random and the list-sphere decoder in-

(4)
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herits the implementation issues of the original sphere decoder.
There is also an issue relating to how various parameters of the
algorithm should be selected in order for the subsets

to always contain at least one member. Note that
selecting properly for the list-sphere decoder is more critical
for the performance than for the hard-decision sphere decoder,
where the decoder complexity, assuming Schnorr-Euchner enu-
meration with adaptive radius updates [4], is not strongly af-
fected by the initial radius.

C. Zero-Forcing With Heuristics

This method is introduced as a “simplest-possible” baseline
to see what one can do with extremely low (and non-random)
complexity. The idea is to first preprocess the received vector
with a ZF linear filter, to obtain

where is zero-mean Gaussian with covariance matrix
. Then, by neglecting the correlation between the el-

ements in , the bits that constitute can be demodulated with
a standard demodulator for the scalar channel

where is Gaussian with zero mean and variance
. (This scheme requires ,

otherwise is not invertible.)
In fast fading the loss introduced by the linear preprocessing

is small and this scheme in fact is close to optimal [1]. However,
in slow fading, which is the case of interest, the scheme performs
poorly due to its inability to handle ill-conditioned channel ma-
trix realizations. In particular, it offers a diversity order of at
most (out of “possible”). One can show that the

heuristic method presented here is equivalent to max-log using
ZF detection without clipping. Also note that somewhat better
performance can be obtained by using an MMSE filter instead
of ZF, but this does not change the fundamental problems of the
scheme.

IV. NEW APPROACH TO DEMODULATION FOR THE MODEL (1)

We next present our proposed approach to the problem of
computing (5). The idea is to perform a two-step marginaliza-
tion of the posterior density for . More precisely, we propose
to perform exact marginalization over a carefully chosen, fixed
number, say , of the bits and to approximately marginalize
over the remaining bits, using the max-log philosophy.
(The value of will be a user parameter of the algorithm, and
we will later discuss how to choose it.)

In what follows, we explain the approach in detail. Consider
in (5). By writing out the marginalization over all in-

formation bits explicitly, (5) can be equivalently written as (8),
shown at the bottom of the page, where

(9)
In (9), stands for the symbol vector which
corresponds to the bits . Let be a bit index per-
mutation on . Then we marginalize (8) exactly over

and approximately, using the max-log philosophy,
over . This is made explicit in the following
two equations. Let be the unique integer such that .
For such that we use (10), shown at the
bottom of the page. For all other values of we use (11), shown
at the bottom of the page. As they stand, (10) and (11) still re-
quire the solution of a number of NP-hard maximization prob-
lems. To overcome this, we propose to use computationally less

(8)

(10)

(11)
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expensive approximations to these maxima, namely those pro-
vided by the hard decision ZF or ZF-DFE detectors. We advo-
cate the ZF-DFE detector and we will use it in our numerical
examples. It provides better performance than ZF but it has only
slightly higher complexity than ZF on slowly fading channels.
The reason is that it is enough to compute all matrix inverses
and the optimal detection orders pertinent to the ZF-DFE de-
tector once for each channel realization.1

Thus, our approach is composed of two approximations:
(i) replacing the marginalization over by a
max-log operation, and (ii) solving this max-log problem ap-
proximately using a low-complexity method. In Sections IV-A
and IV-B, we will motivate these approximations and also
discuss the choice of the bit ordering . In order to facilitate
good ZF or ZF-DFE solutions to the maximization prob-
lems in (10) and (11), the bit index permutation must be
chosen so that the bits in (10) and the bits

in (11) belong to a set of
whole symbols most of the time.2 Therefore we will work with
entire symbols rather than individual bits when we create the
partitioning between bits over which to marginalize exactly and
bits over which to marginalize approximately. (Recall, that bits
and symbols coincide for .) To accomplish this, we will
in what follows assume that is an integral multiple of , say

, and that the bit index permutation is defined by a
symbol index permutation on as follows:

where and , , are the unique integers for which
, i.e., and

. For example, for we have that

By convention, for there are no explicit sums in (10) and
(11), i.e., only approximate marginalization takes place. This
means that the method reduces to the max-log approximation,
using ZF-DFE detection to perform the approximate maximiza-
tion in (7).

Let us partition and according to

Then (1) can be written . The maxima
appearing in (10) are now obtained by computing

(12)

1Note that the decision feedback involved in ZF-DFE, and the associated de-
tection orders, just refers to the nulling-cancelling mechanism used to solve
the maximization problems in (10) and (11). These implementation details of
ZF-DFE have nothing to do with the proposed two-step marginalization, nor
with the choice of the index mapping � .

2Note that ZF or ZF-DFE is fully possible with symbols that contain an arbi-
trary number of bits, even if not all these bits are considered “unknown”—just
perform ZF or ZF-DFE detection and then discard the bits that are not if interest.
Doing so degrades the quality of the result, however.

The ZF approximation of (12) is obtained according to

(13)

where

(14)

is the ZF estimate of given and . The maxima in (11), and
their ZF approximation, are obtained in a similar manner. The
ZF-DFE approximation of (12) is obtained by replacing
in (13) by its ZF-DFE counterpart.

As an aside, we note that a somewhat similar approach for
computing LLR values was suggested in [12]. The method of
[12] is based on mariginalizations similar to (10), although with
the outer sum of (10) replaced by its maximum term, while
keeping the inner maximization approximate. However, with no
marginalizations on the form of (11), this method requires sev-
eral different symbol permutations in order facilitate the compu-
tation of the all LLRs using (10), thereby limiting the freedom
to optimize the permutations with respect to error probability
performance.

We will later argue that (or equivalently ) should be
chosen so that it contains the indexes corresponding to the
“worst” (in some sense) bits. This idea is inspired by the work
on hard detection in [13]. It is also conceptually reminiscent
of the work on decoding block codes presented in [14]. It is
interesting to note that, in the MIMO detection context, the
philosophy of marginalizing over the “worst” symbols stands
in sharp contrast to the paradigm that most existing detectors
use. For example, when implementing algorithms like ZF-DFE
one usually tries to detect the “best” symbols first to minimize
the effects of error propagation.

A. Motivation of the Proposed Approach

Clearly, by varying between 0 and one can trade off
between the exact computation in (5) and the approximation
in (7), with the additional approximation that the maxima are
not computed exactly. As the total number of points appearing
in the sums in (10) and (11) grows as it stands to reason
that for the suggested approximation to have some merit, an
accurate approximation of (5) must be obtained for a relatively
small value of . This is indeed the case, and in what follows we
explain why.

For a fixed , increasing has two main effects. One is that
since the total number of terms over which is marginal-
ized grows as , the sums in the numerator and denominator
of (8) will be better and better approximated as increases. An
additional, very important but not so obvious, consequence of
increasing is that the quality of the approximation in (13) im-
proves. To see why this is so, consider the QR-decomposition of

given by and note that for any it holds that

(15)

where and where denotes
projection onto the orthogonal complement of the range of .
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Thus, the quality of the approximation in (13) can be quantified
according to

(16)

where is the minimizer of (12). The quality of the ap-
proximation in (13) improves with increasing and there are
two reasons for this. First, since the number of columns in ,
equal to , decreases with , it follows that

increases with . By (16) this implies that the approx-
imation in (13) becomes less sensitive to “errors” in the ZF (or
ZF-DFE) estimate of . In fact, if approaches the right
hand side of (16) approaches its lower limit which means that
the approximation becomes tight. Second, we have that

(17)

The accuracy of the approximation in (17) also increases with
increasing . This is a consequence of the following result.

Proposition 1: Given an invertible matrix ,
, and let

Then

(18)

where denotes the condition
number of .

Proof: See the Appendix.
Proposition 1 states that the quality of the (hard) ZF decision

is bounded in terms of . In the special case where is
a scaled unitary matrix, and , i.e., the
approximation is tight. Applying Proposition 1 with

to (17) and noting that is a decreasing
function of (since removing columns from cannot increase
its condition number)3 it follows that the approximation in (17)
improves by increasing the value of .

B. Choosing the Index Permutation

Naturally, the performance of the proposed method depends
on the chosen symbol index permutation, . However, as the

3To see this, let ��� be the original matrix with � columns, and let ���� be a
submatrix of��� that contains �� arbitrarily selected columns, where �� � �. Note
that ���� ���� is a principal submatrix of ��� ��� . By the interlacing property of
eigenvalues for principal submatrices (see, e.g., [15, Th. 4.3.15]) it follows that

� ��� ��� �� ���� ����

�� ���� ����

�� ��� ���

and, thus

� ��� ��� � � ���� ���� �

TABLE I
COMPLEXITY-PERFORMANCE COMPARISON

overall effect of on the performance depends on a complex in-
terplay between the soft-output demodulator and the outer code
it is difficult to say precisely how should be chosen to optimize
the overall performance. Still, the approximations discussed
in Section IV-A provide some insight into what properties a
“good” ordering should have. Note that for a given ordering

, the performance will always increase with increased .
In light of the discussion following Proposition 1, we would

like to choose as a function of , so that the condition number
of is minimized. A direct implementation of this strategy
requires a search over possible orderings (where ).
This is feasible only if and are small. As an approximation,
we suggest to use the following ordering strategy (proposed in
[13] as a search order for hard decisions).

1) Let (empty) and let .
2) Compute . Let be the index of the

largest element of .
3) Set .
4) Remove the th column from .
5) Remove the th element of .
6) If is empty, terminate. Otherwise, repeat from step 2.

Simulations indicate that this ordering yields an improvement
in overall frame error rate (FER) over the natural (fixed) symbol
ordering although the magnitude of the improvement is not as
large as in the hard decision setup of [13]. Simulations also show
close to optimal performance at relatively small values of .

An even simpler alternative ordering would be to just sort
in decreasing order and take to be the re-

sulting index vector. The method outlined in the previous para-
graph performs somewhat better however, since if there are two
nearly “parallel” columns of then the condition number can
improve drastically by just removing one of these columns.

Note that we use the ordering to decide what bits to com-
pletely marginalize over via the sums in (10) and (11). However,
when (approximately) computing the maxima in (10) and (11)
via ZF-DFE, we use the optimal V-BLAST ordering.

C. Complexity

Table I summarizes the computational complexity of the pro-
posed method and its competitors. Only operations per bit are
reported while disregarding the preprocessing steps performed
once per outer codeword. Also, note that the figures in Table I
are only rough order estimates of the actual complexity. For
instance, polynomial terms preceding in the brute-force
method [due to the number of operations required to evaluate the
norms appearing in (5)] are omitted. Such polynomial terms are
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also omitted in the figures reported for the sphere decoder im-
plementations. The constants and depend on the signal-to-
noise-ratio (SNR) and on the constellation, but they satisfy

for all finite SNR [5].
In order to obtain an order-of-magnitude estimate of the

complexity per bit of the proposed method, using ZF deci-
sions to solve the approximate maximization problems in
(10) and (11), we note that the bulk of the computations is
in forming in (13) for the vectors .

Forming in (14) requires on
the order of operations, assuming , and
that the matrix multiplications and inverses are precomputed
and stored. The minimization in (14) is solved by rounding the
components of to the closest constellation points.
This requires on the order of operations, again assuming

. The complexity of evaluating (13) is dominated by
the cost of evaluating which requires on the order of

operations. Thus, the overall complexity of
evaluating for all is in the order of . The
same is true for the ZF-DFE version of the proposed method.

V. EXTENSIONS

A. Imperfect Channel State Information (CSI) at the Receiver

In practice, the receiver is never going to know perfectly.
We can model the uncertainty in the receiver’s knowledge of ,
and more importantly, take this uncertainty into account when
computing soft decisions on individual information bits . In
this section we will provide one way of doing this. The philos-
ophy used here is closely inspired by [16] and [17].

Ultimately, if were known then one would like to compute
(4), with replaced by to make explicit the ran-
domness of the channel and to emphasize the receiver’s com-
plete knowledge of it. In practice is not known. However one
usually has some estimate of , say . This estimate may be
obtained from a received training sequence, say and if so
is a direct function of . What is then of interest is to compute
(4) with replaced by , or . It is clear
that using for data detection must be equivalent to, or
better than using , assuming that no information about

is injected by the mapping . We shall compute the
metric based on . There are two reasons for this: First,
this quantity is independent of the particular training method
used. Second, under certain conditions, one can show that using

and leads to equivalent decisions on [16].
To proceed we need to make a few explicit assumptions. The

calculation we make will explicitly assume that we deal with a
Rayleigh fading (complex) MIMO channel, so that in (1) has
the structure of (3). This is somewhat easier to handle by using
complex number notation, so througout this subsection we use
the model where all quantities are complex-valud
[the notation emphasizes this] and in particular, has i.i.d.
complex Gaussian elements with zero mean and variance .
We can rewrite this model as follows:

where , and

As before, is the noise power per complex dimension. Then,
suppose that a priori (before observing any data or any training),
we know that the channel is i.i.d. Rayleigh fading

where is the average squared gain of the channel per complex
dimension. We now assume that we can model the receiver’s
knowledge of the channel as follows:

where

and where represents the accuracy with which the channel is
known (i.e., the channel estimation error variance per complex
dimension). Additionally, we shall assume that are mu-
tually independent. (This set of assumptions does not limit the
generality of the method although it does exclude the case when
the channel estimate is obtained from the same observations as
those used to detect the data.) In practice, may either be inde-
pendent of , or proportional to (i.e., for some
positive ). The former case corresponds to the situation where
the uncertainty in knowledge of stems from a delay between
the instant when the channel is estimated and the point in time
when it is used. In the latter case, the quality of the channel esti-
mate is proportional to the SNR. This models estimation errors
due to pilots that are subject to noise whose magnitude stands
in proportion to the power of the noise that affects the data sym-
bols. The theory we present is applicable to both scenarios (or
any combination of them).

We can now compute . For simplicity, we shall as-
sume that are constant modulus so that . We begin
by observing that and are jointly Gaussian, conditioned on
. More precisely they have the following joint conditional dis-

tribution:

The following conditional distribution is then immediate:

or equivalently

It follows that:

where we have defined
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The counterpart to (5) is (assuming the bits are equiprobable a
priori, for simplicity)

(19)

where in the last equality we return to the real-valued problem
formulation in (1), that we use in the rest of this article.

If the channel has the fading distribution assumed here
(Rayleigh), and if the receiver does not have perfect channel
knowledge, then the detector based on (19) is going to out-
perform a detector that simply uses (5) with replaced by
an estimate . We will see this in the numerical results in
Section VI. Arguably this is so because side information
about is injected when forming the conditional distribution

. Nevertheless, in practice such side information may
be available, and it can be collected for example by long-term
averaging over multiple received blocks. Note, however, that
no matter how inaccurate knowledge the receiver has about
each individual realization of , the receiver must perfectly
know the statistics of , that is . If this knowledge is in-
accurate, for example, the fading is not Rayleigh, then optimal
performance will not be achieved. (See [18] for some general
discussion on receiver design with imperfect receiver CSI in
other, specific types of fading.)

An issue that we do not touch here is that of imperfect knowl-
edge of the noise variance . The gain that could be obtained
by modifying (5) or (19) to take into account such uncertainty
is presumably very small, however.

B. Taking Into Account Soft Input

The proposed method can be extended in a relatively straight-
forward manner to take into account soft input. What is of in-
terest is then to reformulate the a posteriori LLR in (4) into a
form which can be computed using the philosophy that we de-
veloped in Section IV. We shall briefly outline how this can be
done, for the case of binary modulation per real dimension, i.e.,

. By convention, we will let correspond to
and correspond to . Note that

(20)

where we have defined

and where

is a shorthand for the a priori log-likelihood ratio of the th
symbol (bit).

Now using (20), we can write (4) as shown in the equation at
the bottom of the page. Let us define

where

Also define . Then, (21) is arrived at (see the
bottom of the page). Equation (21) can be computed directly
using the strategy developed in Section IV.

One can interpret the augmented channel matrix as adding
“virtual observations” (virtual antennas for MIMO) which

provide the a priori information contained in . The smaller
is, the less this a priori information will impact the decisions

made by the detector. Note that the strategy of incorporating the
a priori LLRs into the bit metrics as a linear perturbation was
used also in [10].

VI. EMPIRICAL PERFORMANCE EVALUATION

In this section, we present numerical results to illustrate the
performance of the proposed approach. Monte Carlo simula-
tion was used to estimate the frame-error-rate. At each SNR

(21)
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Fig. 1. Performance comparison for a 4 � 4 complex MIMO system (� �
� � � in (1)) with QPSK modulation �� � �� on a slowly fading Rayleigh
channel, using a rate-1/3 convolutional code with 100 bits long codewords that
span one channel realization. The figure shows the performance of (i) the pro-
posed method [Eq. (10), (11)] with different values of �. (ii) exact [Eq. (5)] eval-
uated by brute-force enumeration. (iii) Max-Log [Eq. (7)] evaluated by brute-
force enumeration. (iv) Heuristic zero-forcing as described in Section III-C.

point, we simulated enough frames to count 500 frame errors.
We compare the performance of our method to that of exact de-
modulation (5), and to that of max-log (7). We used brute-force
enumeration of all permissible vectors to evaluate the
numerators and denominators of (5) and (7). This is computa-
tionally costly, although the computational cost is nonrandom.
Note that in principle (5) and (7) can be computed using sphere
decoding, albeit at a random (and high; see Table I) computa-
tional cost.

In all simulations we consider coded transmission over a
slowly fading (quasi-static) Rayleigh channel. Each codeword
spans one realization of . To simulate the channel we gen-
erated with the structure (3), where has independent,
zero-mean complex Gaussian elements with variance . We
present the frame-error-rate as a function of the normalized
SNR, defined as where is the transmitted energy per
uncoded bit.

A. Detection Performance for Different

In the first example, we quantify the detection performance
for different choices of and different channel dimensions. In
this example, we used a convolutional code with block length
100 bits and rate 1/3 as outer code. The code is decoded with the
Viterbi algorithm, and there is no iteration between the decoder
and the demodulator.

In Figs. 1 and 2, we show results for a 4 4 and a 6 6 com-
plex MIMO system, respectively, with QPSK modulation. [That
is, and and , respectively, in
(1).] The performance of the proposed method is impressive. In
fact the results suggest that the largest improvements (relative
to ) are achieved for relatively small . Choosing
produces results close to exact demodulation (5) for both exam-
ples. Note that for the 6 6 system, the number of terms in (5)
is , whereas with our method only sums over terms.
This represents a complexity saving of a factor .

Fig. 2. Same as Fig. 1 but for a 6� 6 complex MIMO channel (� � � � ��
in (1)) with QPSK �� � ��.

B. Detection With Imperfect CSI at the Receiver

Next, we illustrate the performance of the demodulator based
on (19), which is tuned to handle imperfect channel knowl-
edge at the receiver. We consider a 4 4 complex MIMO
system, with all parameters being the same as in Fig. 1 (slow
Rayleigh fading). We consider two cases: (i) the quality of
the channel estimate being constant with respect to the SNR
( fixed), and (ii) the quality channel estimate degrading
inverse proportionally with SNR ( , fixed). Case
(i) effectively models the use of an outdated channel estimate
and case (ii) models channel estimation errors due to noisy
pilots. Fig. 3 shows the results for case (i) and Fig. 4 shows
the results for case (ii). We compare (a) the coherent metric
[using (5) with the true ], (b) the mismatched metric [using
(5) with replaced by ] and (c) the proposed metric (19). In
all cases, the metric was evaluated using our proposed strategy
(Section IV) with .

It is clear that the proposed metric provides better perfor-
mance than the mismatched metric. Note that in case (ii), the
detection loss (the difference between the receivers having im-
perfect CSI and the coherent receiver) stays constant when the
SNR increases. This means that the detectors (b) and (c), which
use only imperfect CSI, have the same diversity order as the co-
herent detector, i.e., the difference to the coherent detector does
not grow when the SNR increases. This is well known [7], [16].
In case (i), however, the detection loss grows with the SNR and
the use of the optimal metric in (19) cannot change this funda-
mental fact.

C. An Example With Iterative Decoding

The goal of the final example is to illustrate the capability
of the proposed soft demodulator to take soft input. Towards
this end, we construct a “turbo”-type receiver by iterating be-
tween the proposed soft demodulator and the channel decoder.
We iterated up to three times between the demodulator and the
decoder. The demodulator was implemented by approximating
(21) using the approach developed in Section IV.
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Fig. 3. Same as Fig. 1 but with imperfect channel knowledge at the receiver.
Here the variance of the channel estimation error is constant with respect to the
SNR. In the figure, “optimal” refers to the soft metric (19) and “mismatched”
refers to using (5) with��� replaced by its estimate ���� . Also, “brute-force” refers
to exact marginalization (as in (5)) whereas “proposed” refers to our scheme
presented in Section IV.

Fig. 4. Same as Fig. 3 but here the variance of the channel estimation error is
inversely proportional to the SNR.

For channel coding we use in this example a rate-1/2, regular
(3,6) LDPC code with block length 1000 bits.4 This code can
be efficiently decoded with belief propagation. Additionally, by
looking at whether the decoder converged to a valid codeword
one can say with relatively high certainty whether the correct
codeword was found or not. We ran the belief propagation until
a valid codeword was encountered, but not more than 25 itera-
tions. In order to save computational efforts, we also terminated
the outer iteration (between the decoder and the demodulator)
whenever the decoder converged to a valid codeword.

Fig. 5 shows the results for a 4 4 complex MIMO system
with QPSK modulation [that is, and in
(1)]. We used , which was found to offer a good tradeoff
between complexity and performance in Section VI-A. There
is a clear gain by iterating between the demodulator and the

4The parity check matrix was randomly constructed, but some small-loop re-
moval was applied. The resulting graph had girth 8.

Fig. 5. Performance comparison for a 4 � 4 complex MIMO system with
QPSK modulation (� � � � �, � � �) on a slowly fading Rayleigh
channel, using a rate-1/2 LDPC code decoded with belief propagation. Each
information block had 1000 bits and spanned one channel realization. Informa-
tion between the demodulator and the channel decoder was iterated up to three
times. (Note the different scale used in this figure.)

decoder. This was expected and it is consistent with previous
results on iterative detection/decoding for MIMO (using other
types of demodulators, including the exact MAP in (4) [8]).
More importantly, the iteration gain is about as large for the
exact MAP demodulator (4) as it is for our approximate demod-
ulator (21). (This is true for other values of too, but we omit
the corresponding curves in Fig. 5 to keep the plot readable.)
This suggests that there is nothing fundamental in the proposed
approximations or algorithm structure that limits the usefulness
of soft-input, and that the approach in Section IV is technically
sound also when the a priori bit-probabilities are biased away
from 1/2. It remains to determine whether the soft-input exten-
sion in Section V-B can be extended to higher-order constella-
tions , an open problem at this point.

VII. DISCUSSION

We have proposed a new approach to soft detection for MIMO
systems, or more generally for linear channels with crosstalk.
The scheme inherits many of its advantages from the (hard-de-
cision only) “fixed-complexity sphere decoding” algorithm [13]
which has served as an inspiration source for our work. In par-
ticular, the main merits of our proposed scheme are: (1) it has
fixed (nonrandom) complexity, (2) it provides very good per-
formance at low complexity, and (3) in contrast to competing
methods such as those based on sphere-decoding, many of its
steps can be executed in parallel and it is therefore suitable for
implementation on parallel hardware architectures. Addition-
ally, it offers a simple way of trading performance against com-
plexity by choosing the parameter .

We have shown how the optimal MIMO detector can be ex-
tended to make optimum use of imperfect channel knowledge
at the receiver, and that the resulting receiver can be imple-
mented using our proposed receiver structure as well. Addition-
ally, we have discussed how our soft detector can be modified
to make use of soft-input, for the case of binary signalling per
real dimension.



LARSSON AND JALDÉN: FIXED-COMPLEXITY SOFT MIMO DETECTION 3407

Our detector has been especially designed with “slow fading”
in mind. In particular, it relies heavily on preprocessing of the
channel matrix which must be performed once per received
frame (i.e., once per channel realization). In fast fading, this
preprocessing may become a significant part of the decoder
complexity. However, in fast fading linear detectors like ZF
generally work well (at least for systems with outer channel
coding) and the motivation for using more sophisticated struc-
tures is smaller. In conclusion, we believe that our method shall
be considered a strong competitor for use in practical MIMO
systems operating on stationary or slowly fading channels.

APPENDIX

Proof of Proposition 1: Let and be given as in the
Proposition. By definition,

for any . This proves the lower bound in (18).
To show the upper bound note that

Here the inequalities in (a) and (c) follow from Theorem 7.3.10
of [15]. The equality in (b) follows by the definition of . The
equality in (d) follows since if denotes the sin-
gular value decomposition of a square matrix , then

. The final equality (e) is the definition of the condi-
tion number (also known as spectral norm).
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