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in the table, as well as the root-mean-square error 0.5353 of integer
approximation.

For the inverse integer DFT, the additional control bits
���� ���� ���� ���� are calculated on the next stage.

Stage 4 (Additional Four Control Bits): The second and fourth com-
ponents of the eight-point paired transform are equal to ��� � �� �
���� ��� � �� � �� and �� � ��	� ��� � 	 � ��, respectively.
The complex number �� � �� is transformed by �� as follows:

������� 
 ��� � �� � ��
����� � �

�� � �

������� 
 ��� ����� � 	�
���	� � �

��� � �

and therefore ����� � ��� � ����� � ����	� � � � ��. However,
we need only two control bits �� � � and ��� � �. The remaining
two control bits are calculated similarly from the integer approximation
���	 � ���:

������� 
 �	� �� � ��
����� � �

��� � �

������� 
 �	 � �� � ��
����� � 	

��� � ��

Thus the additional four control bits are 1, 1, 0, and 0.
We now consider for comparison the application of the three-step

lifting schemes [5], [6] for integer approximation of two rotations
which represent multiplications by factors � � and � �, instead of
the multiplications �� and �� with control bits. Each integer lifting
scheme requires three multiplications instead of two multiplications
when using two integer transforms �������.

Stage 4 (Lifting Scheme): The first output of the eight-point paired
transform is calculated as ���� ��� � � � � and the third output
��� � ���� ���� ��� � ��. The integer approximations of multi-
plication of complex numbers �� � �� and 	 � �� by the factors � �

and � �, are calculated, respectively, as

��������� �
�

� ����� �

������ � ������
�
��

�
�

�

�

and

�	 � ��� �� �
�

� ����� �

������ � ������

�
	

�
�

��

�	
�

Here, the quantizing operation is the rounding, i.e.,���� � ���. Using
the obtained numbers � � �� and �� � 	� together with other inputs
� � � and 4, we obtain the following components of the 16-point
integer DFT at frequency-points 3, 7, 11, and 15: 	�� � ��� � ��,
	� � ��� 	�, 	�� � �� � �, and 	� � ��� ��. These values are
shown in the last column of Table I for the 16-point integer DFT with
two lifting schemes. The root-mean-square error of integer approxima-
tion by lifting schemes equals 0.5812. The property of complex con-
jugate of the transform components 	� and 		��, 
 � 3, 7, does not
hold for the integer approximation of the 16-point DFT by the lifting
schemes.

IV. CONCLUSION

The integer approximation of the 16-point discrete Fourier transform
with twelve control bits has been described for the case of real inputs.
The block-diagrams of the forward and inverse transforms have been

discussed in detail. This approximation uses 16 operations of real mul-
tiplication and 62 additions. The implementation of the three-lifting
schemes in the paired algorithm, which requires two more multiplica-
tions, has also been presented.
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Accuracy Comparison of LS and Squared-Range LS for
Source Localization

Erik G. Larsson and Danyo Danev

Abstract—In this correspondence, we compute a closed-form expression
for the asymptotic (large-sample) accuracy of the recently proposed
squared-range least-squares (SR-LS) method for source localization [A.
Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source
localization problems,” IEEE Trans. Signal Process., vol. 56, no. 5, pp.
1770–1778, May 2008]. We compare its accuracy to that of the classical
least-squares (LS) method and show that LS and SR-LS perform dif-
ferently in general. We identify geometries where the performances of
the methods are identical but also geometries when the difference in
performance is unbounded.

Index Terms—Least squares methods, position measurement, signal
analysis.

I. INTRODUCTION, MODEL, AND PROBLEM FORMULATION

Source localization is important in many applications, for example,
GPS [2], positioning of mobile phones [3], [4] and localization of nodes
in a sensor network [5]. We consider the problem of source-localization
in two dimensions, using absolute range measurements. Specifically,
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the task is to determine the position of a source node � located at the
coordinates ���� ��� � �, from a set of noisy distance measurements
to � anchors��� � � � ��� . Anchor�� is located at ���� ��� � �,
� � �� � � � �� . For future use, let us call the set of anchors �
���� � � � ����. The true distance between � and �� is

�� ��� � ���� � ��� � �����

We assume that � independent measurements 	��� of each distance
�� are available

	��� � �� � 
���

� ��� � ���� � ��� � ���� � 
����

� � �� � � � � � , where 
��� are measurement errors.
We are interested in the asymptotic (large � ) behavior of

two specific source localization methods, namely the clas-
sical least-squares (LS) [6], [7] and the more recently proposed
squared-range least-squares (SR-LS) method [1]. LS is well known
and estimates the position by a straightforward least-squares fit:

������ ����� � �	
��
���

�

���

�

���

� 	��� � ��� ���� � �� � ����
�

�

It is not hard to show that finding the point ������ ����� is equivalent to
minimizing

������ ��

�

���

	� � ��� ���� � �� � ����
�

(1)

with respect to � and �, where we have defined the averaged measure-
ments

	�
�

�

�

���

	��� � ��� � ���� � ��� � ���� � 
�� (2)

In (2), 
� �� �

��� 
��� is averaged noise. LS is equivalent
to maximum-likelihood (ML) if 
��� are independent identically dis-
tributed (i.i.d.) zero-mean Gaussian. This implies that LS achieves the
Cramér–Rao bound (CRB) on the achievable accuracy, when� is large
[6]. LS comes with an important drawback, however. The function
������ �� is nonconvex, and it is therefore difficult to minimize.

Recently, Beck et al. [1] proposed an alternative localization method,
SR-LS, that is based on squaring all measurements before the least-
squares fit takes place. More precisely, the SR-LS method forms a po-
sition estimate ��������� �������� by minimizing the following function
with respect to � and �:

��������� ��

�

���

	�� � ��� ���� � �� � ����
�
� (3)

For � � �, LS and SR-LS are equivalent in all cases of practical
interest because then, an ��� �� can be found for which ������ �� �
��������� �� � �. This corresponds to finding the intersection point(s)
between two circles, provided that the circles do intersect.1 For� � �,
LS and SR-LS are not equivalent. In particular, SR-LS is suboptimal in
the ML sense if 
��� are Gaussian. SR-LS however, has another excep-
tionally attractive advantage over LS: the global minimum of ���������
can be found exactly, using standard (yet sophisticated) optimization
tools [1]. The question that remains, however, is how much accuracy

1Throughout the paper, we shall assume than any ambiguities (non-unique
global minimum of ���� ��) can be resolved.

is lost when using SR-LS instead of LS. To some extent this question
was addressed in [1]. However, the performance investigations therein
were limited to simulations of specific scenarios from which it is hard
to draw general conclusions. In this correspondence, we compute the
asymptotic (large � ) accuracies of LS and SR-LS in closed form and
compare them.

To facilitate the analysis, we will assume that the errors 
��� are in-
dependent with zero mean, variances ��
����� � ��, zero third-order
moment, and bounded fourth-order moment��
����� � ���, for some
constant �.2 This is satisfied for most symmetric distributions of in-
terest, those from the exponential family in particular. For example,
for Gaussian measurements errors we have � � �. We do not make
any further assumptions on 
���. Under these assumptions we have
for 
� in (2):

��
�� � �� ��
��� �
��

�
�

��
��� �
��

��
� �

�� �

�
�

Finally, for notational convenience, but without loss of generality, from
now on we will assume that the true location of � is ���� ��� � ��� ��.

II. PRELIMINARIES: ASYMPTOTIC ANALYSIS TOOLS

We briefly recapture some basic facts about large-sample analysis in
nonlinear estimation. See, e.g., [8]–[10] for a detailed treatment. The
task at hand is to determine the asymptotic (large� , fixed ��, and fixed
� ) statistics of the location estimates ���� ��� obtained by minimizing
(1) and (3), respectively. The standard way to carry out this type of
analysis is to compute the curvature of the cost function locally around
its minimum, typically by approximating it with a quadratic function.
More precisely, let

��� �
�	

��
��� ��

�	

��
��� ��

�

��� ��
� 	

��
��� �� � 	

����
��� ��

� 	

����
��� �� � 	

��
��� ��

be the gradient and the Hessian of ���� evaluated at the true location
��� �� � ��� �� and define

����
��
� ���

���
��� ���

Then, provided that ��� �� is continuous and that the estimate ���� ��� is
consistent, i.e., ���� ���	 ��� �� as � 	
, we have that for � large,
���� ��� � ��������, where

��� �����
��
�������� ���� �
 �� ����

��
���� (4)

Both LS and SR-LS are consistent, because when � 	 
, both
������ �� and ��������� �� converge uniformly to functions that have
a unique global minimum at ��� ��. (Recall footnote 1 about ambigui-
ties.) More precisely,

���
	���
��

������� ��� ������� ��� 	 �

2At some expense in notation, the accuracy analysis presented in what follows
can be extended to the case when � have different variances. In this case,
weights need to be introduced into the cost functions (1) and (3).
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and

���
�������

���������� ��� �
�

�������� ��� � �

when � � � for any compact set �, where

�
�

����� ��

�

���

�	� 	 �	� � ��� ���	 	 �� � ���	
	

�

�
�

�������� ��

�

���

��	�	�	������� ���		�� � ���	�
	
� (5)

To show this convergence, we use the fact that ���� are i.i.d. with finite
variances, and the law of large numbers [11, p. 213] to establish that


��
���

��  �	� 	 �	�� (6)

Since the convergence is uniform and ������� �� and ���������� ��
have unique minima at ��� ��, it follows that ������ ����� � ��� ��
and ��������� �������� � ��� �� as � � � (see, e.g., [10, Exercise
7.15]). Furthermore, both ������ �� and ��������� �� are continu-
ously differentiable an arbitrary number of times. In particular, 			 �� is
continuous.

Hence, to carry out the analysis, we need to determine the 2� 2
matrices 
���� ���� �� � and �			

��. Let us introduce the following notation for
their elements:


���� ���� �� �
��� ��	

�	� �		
���

�			
�� ��� ��	

�	� �		
� (7)

For future use, we also define the following quantities, which depend
only on the anchor coordinates:

	���

�

���

�	�

�	� 	 �	�
� 
���

�

���

�
	
��

�	���

�

���

�	�

�	� 	 �	�
� �
���

�

���

�
	
��

�	���

�

���

����

�	� 	 �	�
� �
���

�

���

�����

����

�

���

�
	
���	� 	 �

	
���

�����

�

���

�
	
���	� 	 �

	
���

�����

�

���

������	� 	 �
	
��� (8)

III. ASYMPTOTIC ACCURACY OF LS

LS works by minimizing (1) with respect to ��� ��. With zero-mean
white Gaussian noise, the performance of LS coincides with the CRB.

See, e.g., [7, App. A] for the case of �  �. Hence, in principle, we
could use well known formulas for its accuracy. However, a direct cal-
culation from first principles is short, so we include it for completeness,
and as a preparation for the analysis of SR-LS. Note that this calcula-
tion does not assume Gaussianity of the measurement noise.

We calculate the first partial derivatives as

��

��
��� �� �

�

���

����

�	� 	 �	�
���

��

��
��� �� �

�

���

����

�	� 	 �	�
� (9)

Equation (7) and (9) and the independence of �� and �� for � � �

give us the entries of 
���� ���� �� �:

��� 

��

��
��� ��

	


��	

�

�

���

�	�

�	� 	 �	�


��		���

�
�

�		 

��

��
��� ��

	


��	

�

�

���

�	�

�	� 	 �	�


��	�	���

�
�

��	 �	�  

��

��
��� ��

��

��
��� ��


��	

�

�

���

����

�	� 	 �	�


��	�	���

�
� (10)

The second partial derivatives are calculated as

�	�

��	
��� �� �

�

���

��
���

	
�

��	� 	 �	��
�	
�

�	�

����
��� �� �

�

���

������

��	� 	 �	��
�	
�

�	�

��	
��� �� �

�

���

��
���

	
�

��	� 	 �	��
�	
� (11)

Using (6), the entries of �			
�� follow as

���  
��
���

�	�

��	
��� ��

�

�

���

�	�

�	� 	 �	�
 �	����

�		  
��
���

�	�

��	
��� ��

�

�

���

�	�

�	� 	 �	�
 ��	����

��	 �	�  
��
���

�	�

����
��� ��

�

�

���

����

�	� 	 �	�
 ��	���� (12)
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From (10) and (12), we observe that ����� ���� �� � � ��� ����
��

�� . Using
(4), this gives the asymptotic (large � ) error covariance matrix

���
��

������
��

�������� ���� �� �� ����
��

��� �
���

�
�����
��

���

�
���

�������� � �������

��� ����
���� ���

�
��

��	����
����� ��
�����

�

���� ������

������ 	����
� (13)

In particular, the mean-square error of the location estimate is

�	����
��

� ���� 
���

�
���	���� 
 
�����

��	����
����� ��
�����

�
��

�
�



	����
����� ��
����

� (14)

IV. ASYMPTOTIC ACCURACY OF SR-LS

The SR-LS method estimates the position by minimizing (3). Here

��

��
��� �� ��

�

���

�� ��� ��� 
 ��� 
 ��� �

��

��
��� �� ��

�

���

�� ��� ��� 
 ��� 
 ��� �

���

���
��� �� ��

�

���

����� � ���� � ��� � ������

���

����
��� �� �

�

���

�����

���

���
��� �� ��

�

���

����� � ���� � ��� � ������ (15)

With ��� and ��� defined in (7), straightforward but tedious algebra
gives (16), shown at the bottom of the page. Furthermore, since ��� �
��� 
 ��� as � � � (cf. (6)), it follows that

��� � ���
���

���

���
��� �� � 

�

���

��� � 	�����

��� � ���
���

���

���
��� �� � 

�

���

��� � 
�����

��� ���� � ���
���

���

����
��� ��

�

�

���

���� � ������ (17)

The asymptotic (large� ) error covariance matrix��� is given by (18),
shown at the bottom of the next page, where we have used the facts that
��� � ��� and ��� � ���. For small ���� (i.e., large � ), we can
neglect the terms which are ��������. The asymptotic mean-square
error of the location estimate is given by (19), shown at the bottom of
the next page.

V. COMPARISONS AND DISCUSSION

In this section, we will discuss the relation between the asymptotic ac-
curacy of LS (14) and that of SR-LS (19). First note that the error covari-
ance of SR-LS is always at least as large as that of LS. More precisely,
���
����� � ���

��
(where the inequality��� � ��� means that��� � ��� is

positive semidefinite), and especially, �	����
������ � �	����

��
�. This

��� ��
��

��
��� ��

�

�
����

�
�

�

���

������� 
 ���� 
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�

�

���

��
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�
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�
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������ (16)
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follows since���
��

coincides with the CRB on the achievable accuracy
in Gaussian noise; hence no other estimator can have a smaller error co-
variance matrix so we must have���

����� � ���
��

. In addition, for LS,
adding an extra anchor to a given geometry always improves accuracy,
because new information is added and the CRB therefore decreases. For
SR-LS, this is not necessarily so. Special case 4 below exemplifies this
point. There,������

������ is finite if only the first two anchors are used.
However, when using all three anchors, we have that������

��������
as the third anchor moves away from the source ��� ��.

Accurate localization is more difficult for some geometries
than for others. The “difficulty” of a specific geometry can be
quantified in terms of its geometric dilution of precision, defined
as ���	 ���� � �������. The GDOP essentially relates
position accuracy to the measurement accuracy. We have that
���������� � 	�

���� and ���������� � 	�

� ��� unless � lie
on a straight line through �

 
�.3 Hence, excluding such degenerate
geometries, the denominators of (14) and (19) are nonzero (and ����

�� is
nonsingular), and ��� is finite for both LS and SR-LS.

What geometries have a large GDOP? For LS, it is clear that the
GDOP is large if ���������� � 	�

���� so that the denominator of
(14) is small. That happens if � nearly lie on a straight line through
�

 
�. For SR-LS, matters are much more involved and there appears
to be no simple, universal answer. However, we can give the following
argument. Introduce polar coordinates ���
 �� for the locations of�,
so that �� � �� ����� and �� � �� ������ for� � �
 � � � 
� .
Denote the numerator and denominator of (19) with � and �, so that
������

������ � ���� � ���. We have

�

�

���

��� ������

�

���

��� �������

�

�

���

��� ����� ������

�
�

�

3To see this, note that by the Cauchy–Schwartz inequality,

� � �� � � � � �� � � � �� � �

with equality precisely when � lie on a line through ��� ��. Likewise,

� � � � �

with equality under the same condition.

Both � and � are ������. One situation where we can expect accuracy
to be poor is when � is small relative to �. Generally, the behavior
of � is dominated by the terms in it for which �� is large. Large ��
correspond to anchors far from �

 
�. Suppose the anchors which are
far from �

 
� (have large ��) lie nearly on a straight line through
the origin. Then � will be small, relative to its value for other anchor
constellations with the same ��. Hence, one (but probably not the only)
case when we may expect poor accuracy for SR-LS is geometries where
�� are very different and � are unluckily chosen.

To get some insight, we next study a few specially constructed
geometries (see Fig. 1 and Table I) and some random geometries.
Before we proceed we note that we can rotate the anchor coordinates
by an arbitrary angle, without changing the mean-square errors. This
is so because rotating the coordinate system amounts to multiplying
the error covariance matrix by an orthonormal matrix, and this does
not change its trace. The same invariance holds if all anchor coordi-
nates are scaled by a constant; the error variance remains unchanged
then too. This is immediate from (14) and (19). Thus, when studying
interesting special geometries, we can assume without loss of gener-
ality that �� � ��
 
�.

1) Special Case 1 [Fig. 1(a)]: ���� � � for all�. In this example
all anchors are located on a circle, with radius � say, centered at 	 .
Here, the performances of LS and SR-LS coincide:

������
��
� � ������

������ �
��

�
�

�

����������� 	�
����

�

The variance is finite unless all anchors lie on a straight line through
the origin.

2) Special Case 2 [Fig. 1(b)]: � � � and �� � ���. In
this special case we have two anchors in an “antipodal” configu-
ration, and a third anchor at an arbitrary position. More precisely,
�� � ��
 
�
 �� � ���
 
� and �� � ��
 ��. The performances are
equal here as well:

������
��
� � ������

������ �
��

�
�
���� � ���

���
�

This variance is finite unless � � 
, that is, the third anchor must not
lie on the horizontal axis.

3) Special Case 3 [Fig. 1(c)]: � � �, �� 
 �� and ���� �
����. In this example, �� � ��
 
�
 �� � �

 �� and �� � ��
 ��.

���
����� ������

��

�������� ���� �� �� ����
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���
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��
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�
����
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�� � ����
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�� � ���������� �����
�

�� � �������� ���������� � �������

�����
�

�� � �������� ���������� � ������� ����
�

�� � ����
�

�� � ����������
(18)
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������������ 	�

�
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(19)
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Fig. 1. Four special geometries of interest. (a) Special case 1: All anchors on
a circle centered at � . (b) Special case 2: Two anchors in “antipodal configu-
ration”, and a third anchor at an arbitrary position. (c) Special case 3: Example
of a geometry where LS and SR-LS perform differently. (d) Special case 4: Ex-
ample of a geometry with unbounded performance difference.

In this case the performances of LS and SR-LS differ. The relation
between the asymptotic mean-square errors is

�
������������

���������
�

�

	

� �


 � ��

�

(20)

where � � �� � ��. Fig. 2 shows the standard deviation ratio
�
� as

a function of the distance �� � �� from�� to � . Clearly, the differ-
ence is bounded but it can be substantial (up to 15% in error standard
deviation). The difference vanishes precisely if � � 
; then we have
special case 2 above.

4) Special Case 4 [Fig. 1(d)]: � � 	. In this example we provide
an anchor constellation for which the difference in the performance of
the SR-LS and LS algorithms is unbounded. This constellation consists
of the anchors at locations �� � �
� ��� �� � �
� �� and �� �
��
� ��. Here

� �
������������

���������
�

��� � 	������ � 	�

���� � 
��
�

TABLE I
THE QUANTITIES IN (8) THAT ARE NEEDED TO EVALUATE (14) AND (19), FOR

THE FOUR SPECIAL CASES OF FIG. 1

For example, for � � 
�, which hardly represents an extreme measure-
ment geometry, LS is four times more accurate than SR-LS:

�
� � �.

More importantly, if we let � � �, then � � �. This shows that
we cannot upper bound the difference in performance of the two algo-
rithms. Note that

��������� �
��

	
� 	��� � 
��

����� � 	�
	 	


� �

�

	
�

for � 
 
. Therefore, this geometry is not “bad” for LS, not even if �
is very large.

Note that the somewhat similar geometry�� � �
� ��� �� � �
� ��
and�� � ��
���� is not a bad geometry for SR-LS even as ���.
Indeed, this geometry is special case 2.

5) Random Geometries: To get a feeling for the average asymp-
totic performance difference between LS and SR-LS, we evaluated �
numerically for a large number of random geometries. Specifically, we
placed � anchors uniformly at random inside a disk of unit radius
centered at � . The choice of the disk radius is unimportant since the
performances of both LS and SR-LS are invariant to a scaling of the
geometry. Fig. 3 shows empirical probability density functions for

�
�

for different numbers of anchors� . From Fig. 3, we see that for a large
number of anchors, the performance loss of SR-LS relative to LS tends
to concentrate around 15%.

We next study the percentiles of
�
� for the random geometry setup

explained above. Fig. 4 shows the 99% and 50% percentiles of
�
� for

three different situations.
i) Random geometry. Here the anchors are placed uniformly at

random within the unit disk.
ii) 90% best geometries. Here we consider only the 90% of the ge-

ometries for which ��������� is lowest. That is, we exclude the
10% most difficult geometries for LS.

iii) 90% closest anchor farthest away. Here we consider the 90% of
the geometries with the largest


��	 ���
��
��������


��

That is, we exclude the 10% of the geometries where one or more
anchors are very close to � .
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Fig. 2. Ratio of the standard error deviations for special case 3.

Fig. 3. Empirical probability density functions of the asymptotic performance ratio
�
�, for different numbers of anchors� .

Fig. 4. Percentile values of
�
� for the SR-LS and LS algorithms in different situations.

For the 50% percentiles (median) the graphs are nearly the same so the
median of

�
� is not significantly affected by the potentially difficult

geometries that we exclude in ii) and iii). The 99% percentile is nearly
the same for cases i) and ii), but much lower for case iii).
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To summarize, the performances of LS and SR-LS differ in general.
The simulations and discussion here suggest that the worst-case per-
formance ratio

�
� can be larger if the ranges ��� � � � � �� span a large

range. While we believe that the examples and discussion here give
substantial insight, we must state the complete characterization of bad
geometries for SR-LS as an open problem.

VI. CONCLUSION

Compared to classical LS, SR-LS [1] is a computationally very at-
tractive approach to the source localization problem, since it can find
the global minimum of the cost function without resorting to heuristic
divide-and-conquer methods or heuristic techniques for solving non-
convex optimization problems. We have computed and compared the
asymptotic accuracies of LS and SR-LS. Our main observations are
i) there exist geometries, where LS and SR-LS have identical perfor-
mances and ii) there are geometries, for which the difference in per-
formance between LS and SR-LS is unbounded. We also exemplified
the asymptotic performance difference numerically for random geome-
tries. Taken together, SR-LS performs well relative to LS for most ge-
ometries, but not for all. If SR-LS is used in practice, then care should
be taken to avoid the geometries that the method has difficulties with.
If the position of � is approximately known a priori, then the achiev-
able accuracy can be estimated by using (14) and (19), before choosing
what localization algorithm to use.

The numerical results presented in this paper are reproducible. To ob-
tain the relevant MATLAB programs go to www.commsys.isy.liu.se/
~egl/rr . Included therein is also Monte Carlo simulation code for nu-
merically verifying the validity of the asymptotic accuracy formulas
that we derived.
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Efficient Estimation of a Narrow-Band Polynomial Phase
Signal Impinging on a Sensor Array

Alon Amar

Abstract—The parameters of interest of a polynomial phase signal ob-
served by a sensor array include the direction of arrival and the polynomial
coefficients. The direct maximum likelihood estimation of these parameters
requires a nonlinear multidimensional search. In this paper, we present a
two-step estimation approach. The estimation requires only a one-dimen-
sional search in the direction of arrival space and involves a simple least
squares solution for the polynomial coefficients. The efficiency of the esti-
mates is corroborated by Monte Carlo simulations.

Index Terms—Extended invariance property, maximum likelihood esti-
mation, polynomial phase signal.

I. INTRODUCTION

Polynomial phase signals (PPSs) attract attention in radar, sonar,
and communications systems. Previous research has considered PPSs
observed with a single sensor [1]–[5] and also with a sensor array
[6]–[10]. We focus on the latter case here. The parameters of interest
are the direction of arrival (DOA) and the polynomial coefficients of
the signal’s phase.

The maximum likelihood estimator (MLE) requires a large amount
of computation since it involves the maximization of a multivariable
cost function and is therefore not practically useful. For example, the
MLE in [6] extracts the parameters of a chirp signal (PPS of order two)
with a three-dimensional search in the DOA, frequency, and frequency-
rate spaces.

The goal of this paper is to suggest an efficient parameter estimation
of a single narrow-band PPS impinging on an array, based on the
extended invariance property (EXIP) [11]. It is shown that the DOA
is estimated by a one-dimensional search and that the polynomial
coefficients are obtained by a simple least squares (LS) solution. Sim-
ulation results corroborate that the estimates asymptotically converge
to the Cramér–Rao lower bound (CRLB) at high signal-to-noise ratio
(SNR).

II. PROBLEM FORMULATION

Consider a uniform linear array (ULA) composed of � sen-
sors. Assume that the transmitted signal can be modeled as
���������

�
� ���

�������, where � is the unknown amplitude,
������� � 	�� � ������, where 	� is the carrier frequency, and
������

�
� �

�
���� with ����

�
� �	� �� � � � � �� 


�
, 
 is the known

polynomial order, and �
�
� ���� ��� � � � � �� 


� is the vector of
polynomial coefficients. The noiseless signal observed at the �th
element of the array over the time interval � � � � � � 

is ������ � ���
�
����

������ ���, � � 	� � � � �� , where
�� � ������� � 	� �����, � is the signal’s DOA, � is the
propagation speed of the signal, and � is the interelement spacing.
According to the mean value theorem of Lagrange, we can write
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