Technical Report, IDEQ706, January 2007

AUTOMATIC TESTING OF
STREAMBITS

01910111 Ol]_o 0110 11000101 1011010

Electrical Engineering

Erik Agrell, Tim Rosenkrantz

0 . .) .)
:bm“f» School of Information Science, Computer and Electrical Engineering, IDE
L\ Halmstad University

Automatic testing of StreamBits

School of Information Science, Computer and Electrical Engineering, IDE
Halmstad University
Box 823, S-301 18 Halmstad, Sweden

December 2007

AUTOMATIC TESTING OF STREAMBITS

11

Preface

This project is the result of our master thesis at Halmstad University. The project has
proved to be extremely challenging from time to time but it has certainly been the most
rewarding part of this education.

We would like to thank Jerker Bengtsson for every “five” minutes sessions that has lasted
for an hour. We would like to thank Jonathan Andersson for taking the time to answer
all the stupid questions, for being a good friend throughout the project and for making
this project more challenging with every update of the framework.

Last but not least we would like to thank our supervisor Veronica Gaspes for all the
support, good input and motivation throughout this project.

Thank you!

Erik Agrell Tim Rosenkrantz

ertk.agrellQtelia.com tim_rosenkrantzQipbolaget.com

111

AUTOMATIC TESTING OF STREAMBITS

v

Abstract

This thesis aims to develop an automatic testing tool for StreamBits, a programming
language for parallel stream processing, currently being developed by Jerker Bengtsson at
Halmstad University as part of his PhD project. StreamBits is an extension of StreamlIT,
developed at Massachusetts Institute of Technology(MIT), to include features that make
it more suitable for 3G baseband applications.

The cost of verifying the functionality of software has lead to the development of several
tools for automatizing the testing process. These tools are all language specific, therefore
a tool for StreamBits needs to be developed. This is done by evaluating the techniques
used in other test tools designed for other programming languages and use this infor-
mation to create a test tool suitable for StreamBits. The goal is to make a user friendly
tool with capability of performing both specification tests and verification of stream rates.

The results of our project are a well functioning specification based testing tool imple-
mented as a package in the Java StreamBits framework. The tool can test properties
of programs using specifications written as Java predicates and can verify stream rates
for single threaded parts of StreamBit programs. The tool can also handle, and perform
tests on StreamBit programs that cause the framework to stall. For each test performed
a detailed log is generated including results from the specification test and stream rate
test.

AUTOMATIC TESTING OF STREAMBITS

vi

LIST OF FIGURES

List of Figures

(L1 Framework abstractionl o oo 2
[3.1 Pipeline] 14
4.1 Test program overview| 20
[4.2 Hidden part of test tooll 20
4.3 Flowgraph for Autotest| 21
4.4 Visible part of test tooll o 26
4.5 ['he test classl 28
4.6 Iixecution of the test toollo 30
(5.1 Adder pipeline| 31
(5.2 Matrix Multiplication pipelinel. 36
(.3 Matrix Multiplication| oo oo 36
(F.1 Testing tool package|o 83

vil

AUTOMATIC TESTING OF STREAMBITS

viil

LIST OF TABLES

List of Tables

(3.1 StreamBits compared with C| 15
[3.2 Operator comparison vecoT| 15
[4.1 Availible data generators|.o 23
[4.2 Arguments for each generator| 23

1X

AUTOMATIC TESTING OF STREAMBITS

LISTINGS

Listings
[2.1 Formal specification language example] 6
[3.1 A single Junmit test| 10
[3.2 Multiple Junit tests| oo 10
[3.3 1Contract example 1| 11
[3.4 1Contract example 2| 12
[3.5 QuickCheck property| oo 13
[3.6 Reconfiguration during runtime{ 16
[3.7 StreamProgram| 17
[3.8 Streamrate example|.o 18
4.1 DSourceclass 23
4.2 Property Interfacel. o 27
4.3 Example: programmers test method|. 00000 27
[>.1 Main program for adder| 32
[5.2 Adder property| 32
[5.3 Adder testrun 1, logpart 1f. 33
[>.4 Adder testrun 1, logpart 2[. L 34
[>.5 Adder testrun 1, logpart 3|. 34
[5.6 Adder testrun 2, log 1| 34
[>.7 Updated property adder test| 35
.8 Adder testrun 2, log 2[.o 35
(0.9 Frrorin filter adderlo 35
[5.10 Matrix multiplication test - Main| 37
[5.11 Property 1 for matrix multiplicationl. 38
[b.12 Property 2 for matrix multiplication|. 39
[5.13 Matrix testrun 1, log part 1| 40
[>.14 Matrix testrun 1, log part 2| 40
[5.15 Matrix testrun 1, log part 3| 41
[b.16 Matrix testrun 2, logpart 1|o 41
[5.17 Matrix testrun 3, log part 1| 42
[5.18 Matrix testrun 3, log part 2| 42

x1

AUTOMATIC TESTING OF STREAMBITS

H.19 Matrix testrun 41o oL oo 43
(.20 Matrix testrun 5o oo 44
[A.1 Adder test log 1). 49
[A.2 Adder test log 2. 50
[B.1 Property 1 tor matrix multiplication, A x0=0] 53
[B.2 Property 2 for matrix multiplication, Ax I =Af 54
[C.1 Data generator for Matrix multiplication test|. 57
[D.1 Matrix test log 1| 59
[D.2° Matrix test log 2| 60
[D.3 Matrix test log 3| 60
[D.4 Matrix test log 4] 62
[D.5 Matrix test log bo 64
[E.1 Matrix test log 1| 67
[£.2 Matrix test log 2| 70
[£.3 Matrix test log 3| 73
[£.4 Matrix test log 4] 7

pall

CONTENTS

Contents

[Preface]

[Abstract]

(1 _Introduction|

CER o

[2.1 ~Specification based testing|o

P11

Formal Specification languages|.

P12

Design by contract| L.

[2.2 Value checking based testing|

[3 Background|

B.2.3

QuickChecklo o

[3.3

Programming in Streambits|

B3.1

Components|

B.3.2

Data types|.

[3.3.3

iii

10
11
12
13
14
14
14
15
17
18

xiil

AUTOMATIC TESTING OF STREAMBITS

[4 Implementation|

(B Property - matrix multiplication test|
[B.1 Property AxO0=0[.
[B.2 Property A T =A]

19
19
20
21
24
24
25
25
26
26
27
28
29

31
31
31
31
33
36
36
37
40

45
45

47

49
49
50

X1iv

CONTENTS

[C DataGenerator - matrix multiplication test|

[D Log matrix multiplication test|

[F' Software appendixl|

57

XV

AUTOMATIC TESTING OF STREAMBITS

XVvi

CHAPTER 1. INTRODUCTION

1 Introduction

This master thesis is one of three projects that will develop the tools to make StreamBits
a useful programming language. The two other projects are concerned with the parser
and evaluation of streambits. This thesis is concerned with the developoment of test tool
for automatic testing of StreamBits.

1.1 Awutomatic testing

Since software development has become more and more advanced the labor of testing
software has increased tremendously. At this point the cost of testing software often
exceeds cost of the rest of the development. This fact has lead to the development of a
number of techniques and tools for automating the testing process. Automatic testing has
several advantages compared to manual testing and there exists several tools on the market
today. These tools are all language specific and therefore a tool for StreamBits is needed.
Automatic testing tools can perform tests, generate data and produce logs, helping the
programmer to spot errors. This saves a lot of time during software development and as a
result, it saves a lot of money. It also helps to detect errors so that they can be corrected
at an early stage. These facts strongly motivate the need for an automated testing tool
when a programming language is being developed.

AUTOMATIC TESTING OF STREAMBITS

1.2 StreamBits

StreamBits is a programming language for 3g baseband applications that is currently
being developed by Jerker Bengtsson at Halmstad University[l]. StreamBits is built on
the same technique of stream processing as StreamIT[2], which is a language created at
Massachusetts institute of technology(MIT). Both StreamBits and StreamlIT use filters
and pipelines to form a network of filters(fig. [L.1). The goal for Streambits is to cre-
ate a parallel programming language that can be mapped efficiently onto reconfigurable
architectures. StreamBits is not a standalone language yet, it is today prototyped as a
framework in Java. StreamBits is aimed to improve the areas that StreamlIT lacks by
giving the programmer a better way of expressing data-parallelism and bit-level compu-
tations, as well as providing for a configuration stream. These improvements are done
by introducing new data types for bits and by adding functions that help the program-
mer to handle bits and parts of data at bit level. According to Jerker Bengtsson, bit
level computatations on coarse-grained architectures can be improved so the performance
can be compared to bit-level computations on fine-grained field programmable gate array

(FPGA) architectures[I].

Stream
Program

Stream Rate

Data Tape
P 10

Pipeline Filter

Figure 1.1: Framework abstraction

CHAPTER 1. INTRODUCTION

1.3 Project goals

The project aims to contribute to the implementation of tools that will support StreamBits
programmers. The tool created in this project shall be used for automatic testing of
programs written in StreamBits. The testing is divided into two main parts:

e Stream rate test

e Unit testing based on specifications

One problem that exists today is the problem of maintaining the specified stream rate.
Each component in a StreamBits program has a defined streamrate for configuration
stream and data stream. Today it is up to the programmer to maintain these stream
rates. Our tool should be able to spot stream rate errors by checking the actual stream
rate in runtime according to the component specification. The second major part is the
unit test which should allow the programmer to express properties of different components
in StreamBits and perform testing according to these specifications.

AUTOMATIC TESTING OF STREAMBITS

CHAPTER 2. LITERATURE REVIEW

2 Literature review

A common method of testing used in object oriented programming is unit testing which
is to test program parts before testing the complete program. This facilitates testing by
enable the programmer to perform small tests and locate errors at an early stage in the
software development phase. The classic approach to software development is the waterfall
model where the complete program is implemented before any testing is performed. This
guarantees that the program is properly integrated as the complete program is tested.
However it can result in errors which affect every part of the program and therefore is
hard to locate and correct. A more modern approach to software development is the
iterative development model. This is to perform testing throughout the development
phase. Unit testing facilitates and encourages modifications during development and
therefore supports iterative development techniques such as extreme programming.

A limitation with unit testing is that the integration of the different parts are not tested.
Therefore the complete program must also be tested after finishing unit testing to verify
the integration.

There are two major methods upon which unit testing is done. The first is specification
based testing and the second is value checking based testing [2.2]. Value checking
based testing is essentially comparing the output of a unit with the known correct output.
Specification based testing is based upon the programmer making a thorough specification
expressing the properties of the program targeted for testing. The tool then performs tests
according to this specification [3]. Given a specification this technique can automate every
part of the testing process. The disadvantage with value checking based testing compared
to specification based testing is that it requires manually written test data.

2.1 Specification based testing

Specification based testing is the commonly used method for automated testing in ob-
ject oriented programming. The technique is that the programmer writes a specification
for each unit in the program. The testing tool then tests the unit by generating data
automatically and on the output control different properties given in the specification.
The specification is traditionally written in an informal (natural) language as a comment
for each unit, that describes the expected functionality. To ensure that the program is
exhaustive tested the specification must be thorough and complete. [4] [5]

2.1.1 Formal Specification languages

To enable automatic testing the specification must be written in a formal language. The
formal language is especially designed for describing the behavior of a program and it can
be interpreted by a testing tool. The syntax of a formal language that can be implemented
by a computer program is given by a context free grammar consisting of terminals and
rules how the terminals can be put together.

AUTOMATIC TESTING OF STREAMBITS

The example in Fig[2.T shows the structure of a formal language with the terminals a and
b and rules how these can be put together to strings consisting of a number of a’s and
an equally large number of b”s such as ab or aaabbb.

Listing 2.1: Formal specification language example

1 | tokens <int> ’a’ ’b’ //terminals

2

31|S : ’a’ ’b’ /% a should be followed by b */

4 | ’a” S b’ /+ arbitrary number of instances of ab x/
5 | /x empty x/

6

bl

Formal languages for specifications are often used as parts of annotations. Annotations
are embedded in comments, starting with for example @ followed by a keyword, but
instead of being of no other use than documentation, these annotations can be read by
an outside program such as a testing tool. The compiler still treats the annotations as
comments which means that adding annotations have no impact on the semantics of the
programming language. The benefits of annotations are that a programmer can write
specifications within functions. An outside program can read the annotations and do
something useful with the information, in this case generate test code suitable for each
function. [6]

One such tool is apt(annotations processing tool) which is embedded in Java 1.5. Apt
is a command line based program that takes a Java file as input together with a set of
commands. There are 4 libraries included in Java 1.5 which apt uses to define annotations

[6].
e com.sun.mirror.apt: interfaces to interact with the tool

e com.sun.mirror.declaration: interfaces to model the source code declarations of
fields, methods, classes, etc.

e com.sun.mirror.type: interfaces to model types found in the source code

e com.sun.mirror.util: various utilities for processing types and declarations, including
visitors

The program reads the annotations present in the source file and sends them to the
associated annotations factory which is set to produce the testcode for each annotation.

CHAPTER 2. LITERATURE REVIEW

2.1.2 Design by contract

Design by contract is a software development technique for object oriented programming.
This technique was originally developed by Bertrand Meyer [7] for the programming lan-
guage Fiffel. The programmer writes the specifications as a contract in the interface of
the program. The contract is described in a formal language to enable a testing tool such
as iContract to verify the performance of the method according to the contract.
The contract is made up by three parts, preconditions , postconditions and invariants. [§]

Preconditions in the contract specify the conditions on states that must be
fulfilled before methods can be called.

Postconditions define the conditions that should hold after methods com-
plete execution. This is the main part of the contract specifying that the
method performs as expected.

Invariants defines conditions that are not supposed to change when public
methods are executed.

2.2 Value checking based testing

This method differs from specification based testing in the way that properties are not
expressed, instead the programmer writes tables of input values and the expected output
value. The tool tests the unit for each given input. The test passes if the input matches
the given output. Two tools that uses this way of testing is JUnit [9] and Roast[L0]. This
method was mostly used in the beginning of automatic testing since there was no other
effective way of doing verification and validation. The downside of this method is that
it is impossible to automate the data generation, the tables have to be written manually
which makes the use of value checking based testing very limited. The development of
specification based testing and automatic data generation made this method obsolete and
it is rarely used today.

AUTOMATIC TESTING OF STREAMBITS

CHAPTER 3. BACKGROUND

3 Background

There exist several language specific tools for automatic testing on the market today. In
this chapter some of these tools are presented. This chapter will also provide a brief
introduction to programming in StreamBits.

3.1 Value checking based Testing tools

Value checking based testing tools perform tests by checking a known correct output
for a specific input. These tools can perform automatic tests but lack the capability
of generating test data. The programmer defines the test data in tables of inputs and
corresponding outputs. To be able to determine the correct output the programmer
performing the test must have full knowledge of the program that is tested. In some cases
this includes access to the source code to determine every possible path [11].

The automatic process in this type of tool is the verification part, once the tables have been
written the program will verify all output values and typically terminates the program
once an incorrect value has been detected. For a test to pass all inputs must match the
correct output.

This type of tool can be time demanding and lack flexibility as it requires manually written
test data before any automatic testing can be done. Also, the number of tests that can
be performed is limited.

3.1.1 JUnit

JUnit[9] is a tool for writing and running tests that was developed by Erich Gamma and
Kent Beck. To perform a test the programmer must first define a test class that imports
the following Java libraries.

e org.junit.* - The Junit framework
e static org.junit.Assert.® -A set of assert methods

e java.util.*

The test class should express the properties of the object under test, this is done by using
assertions. An assertion is method which takes as an argument an expression that must
be true for the program to work properly [12].

Junit uses assert functions with the purpose to verify that the object under test is in a valid
state. For example if x should be greater than y then the assertion would be assert(x > y).
If y is greater than x the program throws an exception. The programmer should provide
an assert function for each method that should be tested. The Assert library mentioned

9

AUTOMATIC TESTING OF STREAMBITS

above contains a number of common assertions such as assert - equals and not equal. As
JUnit is a value checking based testing tool the data generation is not automated, but
JUnit provides a framework for writing test cases and put these cases together into test
suits. By testing a suit of test cases, JUnit can make a test more efficient and less time
demanding. Listing shows how to write a test that verifies that an arraylist is empty.

Listing 8.1: A single Junit test

1 |@Test

2 public void testEmptyCollection () {

3 Collection collection = new ArrayList();
4 assertTrue (collection .isEmpty ());

5 }

Listing [3.2] is an extension of test class above that can perform two tests, first verify
that the arraylist is empty and secondly that an object was successfully added to the
arraylist by validating that the size of the arraylist equals 1.[13] When using this method
for defining two or more tests a setUp method must be used to initiate the variables used
in the tests.

Listing 3.2: Multiple Junit tests

1 |package junitfaq;

2 import org.junit .x;

3 import static org.junit.Assert.x;

4 import java.util.x;

)

6 public class SimpleTest {

7 private Collection<Object> collection;
8

9 @Before

10 public void setUp() {

11 collection = new ArrayList<Object>();
12 }

13

14 @Test

15 public void testEmptyCollection() {
16 assertTrue (collection .isEmpty ());
17 }

18

19 Q@Test

20 public void testOneltemCollection () {
21 collection .add(”itemA”) ;

22 assertEquals (1, collection.size());
23 }

24 }

3.2 Specification based testing tools

Today testing of software for commercial use is often performed by a third part [14],
because the developer is considered to know too much about the program to perform
objective testing. This requires the use of specification based testing as the programmer
performing the test does not have access to the source code. Many agile software devel-
opment techniques such as extreme programming, which has become a commonly used

10

CHAPTER 3. BACKGROUND

technique in object oriented programming, is also based on specification based testing

[15].

Because of this specification based testing has become a popular testing technique and has
lead to the development of many different specification based testing tools. This chapter
will explain some of these tools.

3.2.1 iContract

iContract is a widely used tool for automated testing of Java programs. The tool was
developed by Reto Kramer[I6] and is built upon the design by contract technique. The
tool consists of two major parts, a formal language to write the contracts and a tool that
generates code for enforcing the contract.

1Contract - The formal language

The formal language iContract is made up by standard design by contract techniques with
preconditions, postconditions and invariants. The contracts are written as comments in
the Java file using annotations. The conditions is declares as @pre , @post and @invariant.
By writing the contracts as comments the file is not affected and can be compiled with
any regular Java compiler which gives good compatibility.

1Contract - The tool

The tool iContract is implemented as a preprocessor in Java that reads the contract and
produces a decorated| version of the Java program. The decorated version includes code
for checking and enforcing the conditions at runtime and code for throwing appropriate
exceptions. Since these tests are done during runtime, there is no need to generate test
data.

Example 1 (listing shows a small program with a contract written in the iContract
formal language. The program calls the Calc method which the contract is implemented
on. The contract includes one precondition and one postcondition. The precondition (line
5) declares that the input (Varl) must be greater than zero. The postcondition (line 6)
declares that the calculated return value should be greater than Varl.

Listing 3.3: iContract example 1

1 |FILE: Pow. Java

2 | // Program for calculating the power of 2 of a positive integer
3 interface Pow{

4 Vil

5 x @pre Varl > 0

6 x @post return > Varl

7 */

8 int calc(int Varl};

9

10 |FILE: Calc.Java

11 public int Calc(int Varl)({
12

13 return (Varl *x Varl);

14 }

Hile with added code

11

AUTOMATIC TESTING OF STREAMBITS

From the example seen in listing. the preprocessor produces the decorated version of
the file Calc.Java seen in listing. This code ensures that the program will throw an
exception and generate an error report if the contract is broken.

Listing 3.4: iContract example 2

1 |FILE: Calc.Java

2 | public int Calc(int Varl){

3| //##

4 |boolean __pre_passed_1 = false; // true if pre—cond_1 passed.

5 |//checking Calc(int Varl)

6 |if (! __pre_passed_1) {

7 if(Varl > 0) __pre_passed_1 = true; //Calc(int Varl)

81}

9 |if (! __pre_passed_1) {

10 throw new RuntimeException(”Calc.Java:1:_ jerror: _precondition.”

11 +”violated _(Calc(int_Varl)): " +

12 7(/«Calc(int_Varl)s*/_(Varl_>_0))”

131)3}

14 |int __return_value_holder_;

15 | /xreturn (Varl x Varl); */

16 | __return_value_holder = (Varl * Varl);

17 | if (!(——return_value_holder_. < (Varl))) throw new RuntimeException (”
Calc.Java:1:error:postcondition” +”violated_(Calc(int_Varl)): 7

+ 7(/*return=*/(VarlxVarl)_ < Varl))”);} //

e

18 |return __return_value_holder_;

19 |}

The decorated file is only used in the testing phase and it is not visible for the programmer
nor a part of the final product.

3.2.2 Korat

Korat is a tool for generating test cases for automated testing in Java. The tool uses
specification based testing and generates test cases from the preconditions in the spec-
ification. The specification can be written in any formal language as long as it can be
translated into Java predicatesﬂ However the developers of Korat have only implemented
the tool using the formal language JML which uses Java syntax and semantics. This en-
ables the programmer to work with Korat without having to learn another programming
language. Another advantage with JML is that the specifications can be written with the
full expressiveness and power of Java.

Given a specification in a formal language Korat uses this to generate a predicate method
(usually known as a repOk or checkRep method) based upon preconditions in the spec-
ification. This predicate is then used to generate a number of test cases within certain
boundaries. Korat runs the method that is targeted for testing on each generated test case
and verifies the correctness of the case compared to the postcondition in the specification.
[17]

2%i.e. a Java method that returns a boolean value

12

CHAPTER 3. BACKGROUND

3.2.3 QuickCheck

QuickCheck [I8] is an automatic specification based testing tool developed by Koen
Claessen and John Hughes. The goal when developing this tool was to make it light-
weight i.e. the tool is meant to support agile development technique [19]. Quickcheck is
limited for Haskell programs and the final tool is only 300 lines of code.

A specification in QuickCheck is implemented as a predicate called property. The pro-
grammer defines one or more properties for each program part that is to be be tested.
The program is then tested for a large number of randomly generated data inputs and
the property is used to verify the program. If every condition in the property holds the
test has passed.

QuickCheck uses random data generation but to ensure complete and thorough testing
the programmer can limit the amount and type of data generated, making the test more
limited and accurate. QuickCheck encourages unit testing by defining a property for each
part of the program but it can also test complete program as a separate unit. The results
of the test is normally reported simply as passed or failed but it also has the possibility
to collect data to produce a histogram. Listing shows a property and also how the
call to QuickCheck is done. The property describes a rule defining that if two vectors are
concatenated and then reversed the result should be the same as if the second vector was
reversed and then concatenated with the reverse of vector 1.

Listing 3.5: QuickCheck property

prop_RevApp xs ys =
reverse (xs ++ ys) = reverse ys +} reverse xs
where types = (xs ::[Int], ys ::[Int])

Test> QuickCheck prop_RevApp
OK, passed 100 tests.

N OO W N

Example

Given two vetors: xs =[10,4,7,1,9] and ys =[5,2,3,6,8]

Each vector reversed separately
reverse(xs)=(9,1,7,4,10]
reverse(ys)=[8,6,3,2,5]

concatenating the vector reverse(ys) with reverse(zs)
reverse(ys) ++ reverse(xs) = [8,6,3,2,5] ++ [9,1,7,4,10] = [8,6,3,2,5,9,1,7,4,10]

concatenating the vector xs with ys, then reverse the result
reverse([10,4,7,1,9]++[5,2,3,6,8]) = [8,6,3,2,5,9,1,7,4,10]

13

AUTOMATIC TESTING OF STREAMBITS

3.3 Programming in Streambits

This section describes the different parts and the structure of StreamBits from the pro-
grammers point of view. StreamBits is designed for executing multiple tasks on multiple
data streams concurrently, this is done by using the standard components pipelines and
filters.

3.3.1 Components

There are three kinds of components from which a StreamBit program is built of: pipelines,
filters and tapes(fig{3.1))

Filters is the component designed to perform the work on a given stream of input data.
All filters are added to a pipeline which is the main part of a program. By adding filters
in a different order the pipeline can be designed to perform many different tasks. Filters
can be executed concurrently within a pipeline forming a multi threaded program.

Every connection inside the pipeline is done by tapes which are implemented as FIFO
array blocking queues that stores the streams that comes out of each filter and passes on
the resulting stream to the next filter. Each filter has two tapes, one config tape for the
configuration and one data tape for the data stream. The tapes have two functions called
pop to retrieve values from the input tape and push to add values to the output tape.

Stream Rate

Pipeline Filter

Figure 3.1: Pipeline

3.3.2 Data types

There are six data types implemented in StreamBits. Four of them are basic types that
can be found in most existing programming languages.

1. intST - Integer in stream form
2. floatST - Float in stream form
3. byteST - Byte in stream form

4. voidST - Null type

The two remaining types are vecST and bitvecST. VecSt is an array type which can hold
any one of the five other types. This type allows fine-grained data parallell operations to

14

CHAPTER 3. BACKGROUND

be expressed within a filter [I]. BitvecST is implemented to improve the capabilities of
bit level computations in StreamBits.

Unlike the standard data types found in other languages each of the data types in Stream-
Bits implements an interface. These interfaces consists of a number of help functions
related to the different data types, example there is an interface called Logical Type that
contains the standard operations for logical operations, such as And, Or, Left shift and
Right shift.

Table 3.1 and table [3.21] show how StreamBits has improved the bit level computations
compared to C with functions using bitvecST and vecST. In each case it shows that
StreamBits can perform complex tasks with a single function call. These functions is also
machine independent and can be mapped onto any architecture, unlike the corresponding
expressions in C.

Table 3.1: StreamBits compared with C

bitvecST oper. Corresponding C expr.
bitslice(m : n) (t & wp0)

bitsliceL(m : n) (t & W) << (W -m)
bitsliceR(m : n) (t & wp0) >>n

bitslicePack(m : n) | N/A

Imerge(k : lm : n) | ifl <= (m - n):

((t & wiy) << C1) | ((s & wypn) >>)
if I>(m - n):

((t & wgy) >> Co)|((s&wp.) >>n)

Table 3.2: Operator comparison vecST

StreamBits oper. Corresponding C expr.
vecslice(m : n) for i = 0 to 4{tle;] & Wy}
vecsliceL(m : n) for i = 0 to 4{tle;] & Wy << (W —m)}

vecsliceR(m : n) for i = 0 to 4{tle;] & wp >>n}
Imerge(k : 1m : n) | for i = 0 to 4{

if] <= (m - n)

(tleile & wiy) << Cy | (sle;] & wpmo) >>n
if1 > (m - n)

t[ei] & wk;l) >> (Y | (S{ei] & ’Ujm;o) >>n }

3.3.3 Init- Configure- Work

Each filter can work in three different modes: init, config and work. The init mode is
used for initiation of the filter. The config is used for reconfiguration of the filter during
runtime. The work mode is the part of the filter that process the data stream. This is
done by reading the data stream from the in tape and perform different operations on the
data before passing it on to the next filter.

Fire is a command used to execute the pipeline. Once the fire command has been given it
will keep all filters working by calling each filters Configure and Work mode continuously
in that order. During one configure session the filter reads the config stream and sets

15

AUTOMATIC TESTING OF STREAMBITS

different variables inside the filter which describes how the filter should behave in the
next work session.

The fact that configure is called continuously means that the entire pipeline can be recon-
figured during runtime. Listing|3.6|shows a filter which purpose is dependent on the config
stream. The variable mode determines if the filter should add or subtract the incoming
values, since Configure is called continuously and before Work, mode can toggle from one
work session to another. This means that the current configuration will be applied to
each value that is popped from the data stream during the following work mode.

Listing 3.6: Reconfiguration during runtime

1 | public class FilterExample extends Filter <intST, intST, intST, intST
>{

2

3 |int mode;

4

5 | public FilterExample () {

6 super . setDataRate (new intST (2) ,new intST(1));

7 super.setConfRate (new intST (1) ,new intST(0));

8 }

9

10 | public void init (){

11 mode=1;

12 |}

13

14 | public void work(){

15

16 if (mode==1)

17 {

18 pushD (popD () . get Val+popD. getVal) ;

19 }

20 else

21 {

22 pushD (popD () . getVal—popD. getVal) ;

23 }

24 | }

25

26 | public void configure (){

27

28 /x set mode according to config tape during runtimex/

29 mode=popC|() . getVal;

30 | }

31

32 |1

16

CHAPTER 3. BACKGROUND

3.3.4 Main function

Main creates a new StreamProgram (listing [3.7)) which makes a function call to stream-
Program (Note the difference, no capital s) where the programmer builds up the pipeline.
Once the function streamProgram terminates and returns to StreamProgram the pipe
initiates each of the added components and fires the pipeline automatically.

Listing 3.7: StreamProgram

1 | public StreamProgram ()

2

3 /+* Build pipeline structure x/

4 streamProgram () ;

5

6 /+ Initiate and start all components x/
7 for(int i = 0; i < nFirings; i++){

8 ErrorHandler.setRunning (true);
9 initComponent () ;

10

11 ErrorHandler.setRunning (true);
12 fire ();

13 }

14 }

17

AUTOMATIC TESTING OF STREAMBITS

3.3.5 Threaded Framework and streamrate

The entire framework is built for operating on streams of data. This structure is especially
used when performing tasks in parallel. Every filter in StreamBits can be view as a thread
that is executed the first time the fire command is given. Several threads can be running
at the same time even though some of the threads are dependent on other threads. This
dependency can sometimes cause the pipeline to freeze i.e. every filter is waiting for data
from the previous filter.

The stream rate describes the number of pops and pushes made on each tape during one
work session. Example [3.8] shows a work session with defined stream rate. The specified
stream rate can be seen om line 2, in this case it is 2:1 meaning that each time the work
mode is executed two values will be popped from the incoming data tape and one value
will be pushed on the outgoing data tape. It is up to the programmer to maintain the
stream rate. This is done by making sure that the filter in work mode always performs
the defined number of push and pops regardless of the configure mode and conditional
push and pops. Too many push can result in faulty processing of the data streams. Too
few push/pops or too many pops results in a severe stream rate error E]

Listing 3.8: Streamrate example

é super.setDataRate (new intST (2) ,new intST(1));
i { intST valuel = popD() ;

(53 intST value2 = popD() ;

; } pushD (valuel — value2);

9

3i.e stream rate errors causing the component to stall

18

CHAPTER 4. IMPLEMENTATION

4 Implementation

This chapter describes the details of the test program created in for this master thesis. The
program is a specification based testing tool with specifications written as Java predicates,
similar to QuickCheck. The program is implemented as a package in the StreamBits
framework written by Jerker Bengtsson[I] and Jonathan Andersson.

The tool developed in this project is implemented as a test framework that simulates
runtime. This means that the testing of a program is done before the program is moved
to the actual application, and the specific parts used for the testing tool will not affect
the performance during runtime.

The program can be divided into two parts: the test program which is hidden from the
programmer and the Main and Property which works as an interface toward the program-
mer. Figure shows an overview of the complete test program and the programmer
interface. The left side of the figure is the interface visible to the programmer and the
right part is the package containing the test program.

The visible part of the test is built up by the test components, a property class, the main
program and the test log created by the test program. The test components are the filters
and pipelines targeted for testing. For each test the programmer also writes a property
class containing a predicate. This is the specification for which the test is performed. The
test is then initiated by the programmers main method. This is done by calling the test
program ‘s main part, Autotest.

The test program which is the hidden part consists of the class Autotest and a package
of standard data generators. Autotest is the main program which builds up and runs
the test; the result is then reported in the log file. The data generators are used for
generating suitable test data; the programmer can choose between random test data,
data in certain intervals and test data with unit step. The programmer can also define
new datagenerators.

4.1 The test tool

In this section the test tool is explained in detail. This part of the program is made up
of the tool for unit testing, an interface for generating test data and a part for validating
the stream rate of the test components. These three parts are tied together in the class
Autotest which handles the structure of the test and also the communication with respect
to the programmer. Unit testing is carried out by a part called datacollector, the stream
rate testing is implemented in the framework and handled by Autotest and the final part,
test data generation is made up of an interface which handles 14 different kinds of data
generators.

19

AUTOMATIC TESTING OF STREAMBITS

Visible for User Test Program
®
Property s
Main method N—> Autotest

Stream components

Figure 4.1: Test program overview

@ @
/

Ganerator

Data
Generators

v

= Autotest

Figure 4.2: Hidden part of test tool

4.1.1 Autotest

This is the main part of the tool where the test is initiated and performed (fig. |4.3]). The
program starts by creating a pipeline that is used only for testing. To this pipeline the
tool adds a test data generator and a config filter. There are generators for random data,
intervals, steps and ramps available. Which generator to use in each test is specified by the
programmer in the class test. The config filter provides the test pipe with a configuration
stream which is provided by the programmer in test. When a suitable configuration stream
and test data stream exists, the program adds the different components to be tested. At
the end two filters called the data collector and the LogFilt is added. The data collector
is the part of the program performing unit testing. This is done by calling the defined
property class which is the specification written for the test. The LogFilt handles the log
file that is printed after each test. Fach part of the test program is instantiated using
generics so the program can handle any data type available.

20

CHAPTER 4. IMPLEMENTATION

The complete test pipeline is then initiated and started by the commands initComponent
and fire. After the completion of the test Autotest produces a test report in a txt file
called log.

Test Pipe

Build Test Pipe
Config
Filter

Test Components

Init()

Test
Component 1 Generated
Test Data

Fire()

Test
Component n

Data .
Collector |-g=inData, outData Property

Figure 4.3: Flowgraph for Autotest

.

4.1.2 Data generators

The purpose of the data generators it is to generate suitable test data for the unit test.
There are three types of generators, random and interval and step. The different genera-
tors take different arguments needed to generate the data according to the programmers
specification. These arguments are the interval which is defined from LowBound to Upper-
Bound. The step argument describes the step of an increasing or decreasing data sequence.
Some generators also need an argument that defines a length. The random generators
produce random test data within an interval given by the arguments passed along to the
data generator. The interval generators generate test data as a ramp which begins with
LowBound and make steps according to the Step variable. The step generators produce a
unit step from LowBound to UpperBound. The step can be delayed a number of elements
using the delay argument.

StreamBits has 5 different data types and each of this data types has every type of the
generator that could be useful. There is also implemented an voidST generator for testing

21

AUTOMATIC TESTING OF STREAMBITS

programs which requires no data input.

Each generator produces a stream of test data according to the generator’s out rate.
In the building and initiation of the test pipeline in Autotest the generators out rate
is matched with respect to the first test components inrate. In this way the generators
always generates test streams of proper length. The available data generators are shown

in table

Table 4.1: Availible data generators
’ ‘ intST ‘ floatST ‘ vecST ‘ byteST ‘ bitvecST ‘ voidST ‘

Random . ° ° ° °
Ramp ° ° ° °
Step . ° ° ° °

The different possible arguments required for each generator can be seen in table [4.2] To
define which type of elements used in vecST the generator requires a string representation
of that type and vecST is also initiated with one generic.

Table 4.2: Arguments for each generator

’ \ intST \ floatST \ vecST \ byteST \ bitvecST ‘
Random | L,H L,H L,H,Len,T H,L Len
Ramp L,S L,S L,S,Len, T L,S n/a
Step LHD | LHD | L,HLen, T.D | L,H,D Len,D

L = Lower boundary limit, H = Upper boundary limit, S = Step, Len = Length T = Type
D = Delay

The interface that the data generator is built upon also allows the programmer to define
specific data generators in a simple way. Each data generator is implemented as a filter
which should provide the test filters with data during work mode. All generators share the
variables and functions shown in listing [4.1} The only difference between the generators is
the constructor and the init sequence. This enables the user to write a specific generator
implementing this interface. The programmer only writes the init which generates the test
data and a constructor for defining input variables. An example of a specific generator
used in a matrix multiplication test can be seen in appendix .

Listing 4.1: Source class

1

2 | public abstract class Source <Expl,Exp2,Exp3,Exp4> extends Filter <Expl,
Exp2,Exp3,Exp4>{

3

4 public Source () {

5 }

6

7 /x Define the tapes in the correct way */

8 /* Must be called by the programmer in the beginning of init */

9 public void DefTapes(){

10

11 }

12

13 /x Set wvariables to generate correct amount and type of data x/

14 public void set_test(Test t){

CHAPTER 4. IMPLEMENTATION

15

16 }

17

18 /x Funtion to handle timing */

19 public void setWait (boolean temp){
20

21 }

22

23 /x No configure needed, the generator is the first filter x/
24 public void configure () {

25

26 }

27

28 /% Function that returns the generated data x/
29 public Tape[] RetTape(){

30

31 }

32

33 /x Pushes the generated data */
34 public void work(){

35

36

37 }

38 |}

4.1.3 Config

The purpose of this filter is to set the input configuration that the programmer has defined.
The configuration stream is loaded into a buffer in initiation mode and then pushed on
the out config tape in work mode. Since this filter is added after the data generator the
data stream from the input has to pass through this filter without any modifications this
is done by pop from the in tape and push to data out tape in work mode.

The configuration used is specified by the programmer in the class test sent to Autotest.
In this class there is an array with generic tapes, the programmer defines one tape for
each test performed.

4.1.4 Data collector

Data collector is a filter added at the end of the test pipeline. This is the part performing
the unit test. Before calling the property a complete set of resulting data must be obtained.
In some applications (ex matrix multiplication the test components are executed
several times before a complete test result is obtained, therefore the iteration variable in
test class exists. The iteration variable is set by the programmer and it defines how many
times the last test component will be executed to obtain a complete result. The data
collector waits until it has enough elements before it proceeds with unit testing.

The data collector also handles severe stream rate errors. In the data collector a array of
timers is implemented, one for each test to be performed. Java 1.5 can not handle multiple
timers, therefore two classes developed by David Flanagan [20] are used. These classes

23

AUTOMATIC TESTING OF STREAMBITS

which are developed to solve this specific problem are Timer and TimerTask (Appendix
F)) which implements the corresponding classes in Java 1.5.

In the beginning of each test the corresponding timer is executed, the test components
then have a limited time pushing enough values to the data collector. The deadline for
timeout is set by the programmer, depending on what she knows about expected execution
times of her pipeline.

If the data collector does not receive enough data a timeout occurs. When this happens
the test is aborted and the currently obtained data and configuration are sent to a method
in the log filter which handles timeout errors and produces a log.

If a timeout error does not occur unit testing is performed. This is done by calling the
property method with the generated test stream and the, from the test pipeline,
resulting data stream. The property method returns a boolean value to represent the
outcome of the test.

4.1.5 'The log filter

The log filter is the last part of the test pipeline. The purpose of this filter is to produce
a test log which is done by collecting data from the data collector, generator and con-
figuration filter. Results from the property test are obtained from the datacollector and
the resulting data and config stream are given on the in tapes to logFilt. The genera-
tors provide the current input data stream for the test and the config filter provides the
configuration input stream.

The log filter produces a report as a txt file called log followed by the date and time it
was created. This report contains results of the unit test and also detailed results for the
stream rate test for each component.

To simplify debugging a class called LogPrint is available to the programmer, which can
be used to print error messages directly to the log file. To make the program user friendly
the class LogPrint is implemented to mimic the System.out.print™ class in Java and uses
the same syntax with print() and println().

4.1.6 Stream rate test

The stream rate test is one of the major parts of this thesis. Every filter and pipeline has
a defined stream rate for the data and the config tape. It is up to the programmer to
maintain these rates by making the right number of push and pop from the tapes. This
can be a problem when the filter contains several conditional pushes and pops. Since the
tapes are implemented as array blocking queues they make the StreamBit program stall
if a filter is trying to push to a queue that is full, or pop from an empty queue. To solve
this problem there are counters implemented in every tape in the framework, counting
the number of pushes and pops done during runtime.

The stream rates are defined but as StreamBits is multi threaded a component can be
executed several times during one tests. The iteration variable in test class is used to
calculate the stream rates for each component during one complete test. After completion
of the test the log filter reads the counters and report the results to the log file.

24

CHAPTER 4. IMPLEMENTATION

4.2 Test program from programmers point of view

This section will cover the functionality of the test program from the programmers point
of view (fig. [.2). The goal has always been to produce a user friendly tool needing a
minimum background information to use it.

There are three main parts visible for the programmer. It is the specification which is
implemented as a Java predicate, a test class whose only purpose is to hold the different
variables needed for the test and a main method. The benefit from implementing the
specification as a predicate is that it can be written in the same language as the part
of the program that is tested. This makes the program much more user-friendly by
eliminating the need for another formal language.

Property Class
Extends Property .
Main()
Boolean test —
(Tape inData, Tape outData) Add test
components to
test class
v
Test Class
Add Property to
Component Array test class
=
Data Generator Add Data
Generator to
test class
Property *
Test variables Call Autotest Test Class

Figure 4.4: Visible part of test tool

4.2.1 Main

The initiation of the test from the programmer point of view is done in the main file. This
is done by initiating a new Autotest object and a new test object. The constructor for
Autotest requires a test class as parameter which holds the different variables defining the
test . The programmer initiates this test class and configures the test by setting
the different variables before initiating Autotest.

25

AUTOMATIC TESTING OF STREAMBITS

4.2.2 Property

Property is an interface (listing containing a boolean function called test, which
requires two tapes as arguments. These tapes consist of the output from the data generator
(i.e. the input for the test pipeline), and the output from the entire test pipeline. In
the interface the types of the tapes are implemented as generics[21] which allows the
programmer to define the type in the property class declaration.

Listing 4.2: Property Interface

1 | public interface Property <Expl, Exp2>

2 {

3 public boolean test (Tape<Expl> indata , Tape<Exp2> outdata);
41}

The test method (listing[4.2)) is the specification used in the test. Test is written as a Java
predicate where the programmer writes code using the in- and out-data to verify that the
test components behave as expected. In the property the programmer can also write a
error code using LogPrint.

Listing 4.3: Example: programmers test method

public class userProperty implements Property<intST,intST>{
public boolean test (Tape <intST> indata ,Tape <intST> outdata) {
intST temp = indata.pop();

return (temp = 5);

© 0 O UL i W N+

26

CHAPTER 4. IMPLEMENTATION

4.2.3 Class Test

The test class is intended to provide a clear view of the test parameters required in a
test. By defining each parameter in a viewable test class the programmer can easily get
an overview and set the required variables. The different parameters in the test class can

be seen in fig.

ComponentArray
Contains the components that should be
tested. Valid components could be filters or
entire pipelines of filters

Config
Tape array that holds a number of different
config tapes that are to be tested.

Property
The user defined class implementing
roperty which hold the specification

DataGenerator
The data generator for this test.

NrOfTests Iterations
Variable defining the ariable defining numbe
number of times the test f iterations before a tes

should be performed can be made

Figure 4.5: The test class

The ComponentArray holds the filters and pipelines targeted for testing. If a multi
threaded network is used then the multi threaded part has to be put into a pipeline for the
test tool to be able to handle the component and perform stream rate test. Configuration
is an array of generic tapes, one tape for each test. The programmer puts the requested
configuration stream here and the configuration filter will provide the config stream to the
test components. DataGenerator is the generator defined by the programmer to use for
the test. Property is the specification to be tested. NrOfTests is the number of times the
specification should be tested. This is used to simulate a StreamBits program in runtime
executed over and over again. Iteration is the iterations required for the test components
to produce a complete set of resulting data. The final variable is timeout which sets the
timeout limit before the test should abort due to pipeline stall. This variable is set to
10 seconds by default but it is supposed to be set by the preogrammer depending on her
knowledge of the proogram being tested.

27

AUTOMATIC TESTING OF STREAMBITS

4.3 Execution of test tool

This section is intended to give a overview of the complete test, it will describe the work
flow and communication of different parts of the test tool during a testrun.

Autotest handles the initiation of the test, this is done by building a test pipeline and by
sending the required variables to each part.

The test pipeline (fig. always begins with a data generator. Each iteration the data
generator sends out a set of generated data enough for one test. After its completion
a wait variable in the data generator is set true causing the generator to hold until the
current test’s completeness. The data is sent to the config filter which push the current
tests configuration tape onto the tape into the test components.

The data collector collects the output data and configuration streams from the test objects.
A timer is used to handle severe stream rate errors. In case of a complete set of data
received, the data collector calls the generator to obtain a copy of the indata used for the
current test. Data collector then performs the specification test by calling the property
with a copy of the indata and the received outdata. This must be done before pushing
the data forward to the log filter as the log would be produced before the property has
finished otherwise.

The log filter receives the resulting data and configuration stream from the data collector.
It calls the generator to obtain a copy of the indata and the config filter to get the current
config stream. The stream rate counters are read for each test component in the pipeline
and the result is reported to the log. The stream rate counters are reset and the generator
is called setting the flag wait to false which triggers the next test.

This "stop and wait” technique in the generator prevents the test objects from continuing
to work on the next test thus continuing counting the push and pop resulting in faulty
stream rate error reports.

28

CHAPTER 4. IMPLEMENTATION

GENERATOR
-
RetData| [™
Tape() -
SendData || TTrroorT 3
Set Wait=True |
Config Data
A 4 A 4
CONFIG FILTER
Lt M
Ret Conf] '™
Tape() -
-t
Config Data
A\ v
TEST OBJECTS
Config Data
v v
DATA COLLECTOR
Property Test !
] Ret | |
Prop() | [
Send Data |-
Config Data
A 4 A
LOG FILTER
b 4 y
Create Lo Create Timeout
NO—p g Log
YES
Y
Close File |
and Exit o

Figure 4.6: Execution of the test tool

29

AUTOMATIC TESTING OF STREAMBITS

30

CHAPTER 5. RESULTS

5 Results

This chapter demonstrates the complete test tool created in this thesis. Two different
tests on different components are shown. The first test is a filter network which adds
incoming elements together. The second test is a multi threaded matrix multiplication
pipeline. For each test the programmer defines the test in a main class and writes a
specification as a property.

5.1 Adder

This is a test of a simple streamprogram which adds incoming values together. This
program is made up by three connected adder filters (fig. . The test intends to show
how the test tool handles multiple components. Streamrate is tested for every component
and a unit test is performed for the entire network.

5.1.1 Functionality

Each filter is designed to pop two values from the input tape and add the values together
and then push the result. The filter does not use any configuration.

5.1.2 Test

The test is defined in main and a specification for the unit test is written as a property.

In the main class (listing the test is defined and initiated. The programmer defines a
new class of type test called TestClass which holds all the variables required for the test.

In TestClass the filters to be tested are added to a streamcomponent array and streamrates
for each component is set. The first adder will take eight intST elements and the last
adder will produce one resulting intST element. A data generator is specified, in this
case the generator is an intSTrand which produces random intST. As an argument to the
generator the value of the produced elements is set between 0 and 1000. Finally the test
program is called with the given test parameters.

Data \
Tape |
8 4 4 2. 2 1 1

° | ™ Adder | ™[Adder | > | Adder | >

0 —» —> —» —>-
—— 0 0 0 0 0 0 0
Config | »
Tape) e e e —

Figure 5.1: Adder pipeline

31

AUTOMATIC TESTING OF STREAMBITS

Listing 5.1: Main program for adder

1 | /«New Class test is createdx*/

2 | Test TestClass = new Test () ;

3

4 | /x Component Array containing components targeted for testing x/
5 | TestClass .ComponentArray = new StreamComponent [3];

6 | TestClass.ComponentArray[0]= new Adder();

7 | TestClass.ComponentArray[1]= new Adder () ;

8 | TestClass.ComponentArray[2]= new Adder () ;

9

10 | /+ Set stream rates for each component x/

11 | TestClass.ComponentArray [0].setDataRate (new intST (8) ,new intST (4));
12 | TestClass.ComponentArray [1].setDataRate (new intST (4) ,new intST(2));
13 | TestClass . ComponentArray [2].setDataRate (new intST (2) ,new intST(1));

15 | /+ Set desired data generator x/
16 | TestClass.DataGenerator = new intSTrand (0,1000);

18 | /+ Initiate test %/
19 | AutoTest a = new AutoTest(TestClass);

5.1.2.1 Property

To test the filter a simple property (listing|5.2)) is used. The property reads every element
on the provided tape indata and sum these together. The sum is then controlled to be
the same as the single value on out data. If this is the case the property will return true
indicating that unit test has passed.

Listing 5.2: Adder property

1 | public class AdderProperty implements Property<intST,intST>{
2

3 public boolean test (Tape<intST> indata ,Tape<intST> outdata){
4

5 boolean passed=true;

6

7 outlength=outdata.length () ;

8 inlength=indata.length () ;

9 int sum=0;

10

11 for(int i = 0; i < outlength; i+4)

12 {

13 sum=0;

14 /xAdd two wvalues from the intapex/

15 sum = indata.pop().getVal();

16 sum += indata.pop().getVal();

17

18 /+x Check that the sum matches the output */
19 if (sum!=outdata.pop())

20 {

21 passed=false ;

22 }

23 }

24 return passed;

25 }

26 |}

32

CHAPTER 5. RESULTS

5.1.3 Results

In this section two tests are demonstrated. The first test intends to demonstrate the log
file. The second test demonstrates a programming error causing property to fail and the
way of locating the error. To perform a thorough test a program should also be runned

several times simulating the runtime work of a streamprogram. The result of such test
can be found in appendix [A.2]

5.1.3.1 Testrun 1

Upon completion of the test a log file is created (listing. . The log always begin with
a line stating the date and time it was created. The next part is the streamrate report
for each component. The inRate and outRate describes the configured input/output
streamrate, Pop and Push describe the actual streamrate. For the streamrate test to
pass, the actual push/pop must match the requested push/pop.

Listing 5.3: Adder testrun 1, log part 1

1 |Log created : Sat Dec 09 16:07:15 CET 2006

2

3| Test Nr: 1 /1

G| stk ok skok sk ok ok ok ok oKk oK R K K KR KK K K K K K K KK KK KK KK KK Kk kK R K K KK K K K K K K K K KR K K K K K Kk K R K K R Kk %

5 | Testing data streamrate , component: streambits.userprogram.
Adder@122cdb6

6 | Data inRate = 8 ,Data outRate= 4, nr pop done =8 ,nr push done =4

7 | Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0

8 | Streamrate test Passed

9

10 | Testing data streamrate , component: streambits.userprogram.
Adder@1ef9157

11 | Data inRate = 4 ,Data outRate= 2, nr pop done =4 ,nr push done =2

12 | Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
13 | Streamrate test Passed

14

15 | Testing data streamrate , component: streambits.userprogram.
Adder@12f0999

16 |Data inRate = 2 ,Data outRate= 1, nr pop done =2 ,nr push done =1

17 | Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
18 | Streamrate test Passed

33

AUTOMATIC TESTING OF STREAMBITS

After all streamrate tests has completed the property described in [5.1.2.1] is tested. The
entire test result is also displayed. If any streamrate or the property test fails, the entire
test fails.

Listing 5.4: Adder testrun 1, log part 2

Testing Property: streambits.userprogram.AdderProp@a3lelb
Property test passed
ok Sk KoK K KK K KK Kk K

x Test PASSED x

K 3K K Kk sk sk sk sk sk ok sk kok ok

N O U W N

For debugging purposes all the generated in data and the resulting outdata is printed
together with configuration if such is used (listing .

Listing 5.5: Adder testrun 1, log part 3

Data input: 60 62 0 36 22 37 17 23

Data output: 257

UL W N

K3k 3k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk ko sk sk sk sk sk ok 3k 3k 3k 3k sk sk 3k ok 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk ok sk ks sk ok sk sk ok ok sk sk sk ok sk sk ok ok skoskok

5.1.3.2 Testrun 2

The second test simulates a property test failure and the way of locating the error. The
test fails and the testlog indicates a property test fail(listing [5.6)).

Listing 5.6: Adder testrun 2, log 1

Testing Property: streambits.userprogram.AdderProp@l6absfa
Property test failed

Sk ok KR K kKK KR K ok K K

x Test FAILED x

3Kk ok ok ok ok ok ok ok ok ok ok ok >k

Data input: 93 14 2 67 94 83 77 90

— O © 00O Uk Wi -

—_ =

Data output: 744

The data input and output are printed in the log but the error is not obvious. The
programmer choose to test only one component at a time with more values and also adds
a LogPrint function in the property printing the correct sum for each element(listing .

34

CHAPTER 5. RESULTS

Listing 5.7: Updated property adder test

1...

2 |int result = outdata.pop().getVal();

3

4 | LogPrint.LogPrintln (”Calculated_result: 7 + result + ”_correct,
result_” + sum);

)

6 | /xCheck that the sum matches the output x/

7 |if (sum!=result)

8

In the resulting log the error is more clear. With more resulting elements it clearly shows
that the error occurs every time and with more thorough examination of the output values
they appear to be two times the first input value given.

Listing 5.8: Adder testrun 2, log 2

1]...

2 | Testing Property: streambits.userprogram.AdderProp@13e205f
3

4 | Property test failed

5

6 | User Log:

7

8 | Calculated result: 104 correct result 86
9 | Calculated result: 144 correct result 107
10

11

12 | Calculated result: 52 correct result 77
13 | Calculated result: 52 correct result 97

15 | skokosk ok koskok sk ok okok ok ok ok ok
16 | * Test FAILED x

17 | sokxskok ok ok skok ok ok ok ok

18

19 | Data input: 52 34 72 35 ... 8 28 81 87 26 51 26 71
20

21 | Data output: 104 144 ... 170 162 52 52

22

23 K3k 3k >k ok 3k 3k ok ok 3k 3k 3k sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk ok ok sk >k ok sk sk sk ok 3k 3k 3k sk sk sk sk sk sk sk sk sk ok ok ok sk k k k sk sk ok ok sk sk sk sk ok ok sk ok ok skoskok

The error in this case occured when calculating the sum in the adder filter (listing [5.9)
where a variable d was sent instead of variable e. The complete log can be seen in appendix

AT

Listing 5.9: Error in filter adder
intST d = popD() ;
intST e = popD() ;

intST sum = d.add(d);

N O O W N

35

AUTOMATIC TESTING OF STREAMBITS

5.2 Matrix multiplication

This is a test of a pipeline which performs multiplication between two matrices A and B
of dimension n x n. The pipeline receives two vectors of length n and produces n number
of resulting intST elements out.

5.2.1 Functionality
The pipeline (fig. [5.2]) designed to perform the multiplication is built up by two switches

and several threads, each thread contains one VecMul and one VecAdd filter. The number
of threads in the pipeline is determined by the dimension of the matrixes.

{ VeMul | ——m{ VecAdd |

n
/ \ X —
Split | —» e VeczAdd —> | Merge
\ / —>
‘

Data Tape
—_

—_
Config Tape

Figure 5.2: Matrix Multiplication pipeline

A matrix multiplication is defined as Cj; = >, Ai * By; (fig. [22]).

If A is a matrix with dimension m-by-n and B a matrix with dimension n-by-k , the
resulting matrix will be of dimension m-by-k.

if
a1 Airz ... 51,1 bl,2
A= |Q1 G2 ... and B = b2,1 b2,2
then
ai [bl,l bLQ .. } + 1.2 [bg’l bg}g .. } + -
AB =

az1 [51,1 bia - } + azp {52,1 bao .. } + -

Figure 5.3 Matrix Multiplication

In the matrix multiplication pipeline this operation is done with a split which distributes
the different vectors from the intape. The split filter gives each thread it s own row from
the first matrix and all the columns from the second matrix. A configuration element is
used to separate the static row from matrix A from the columns provided from matrix

36

CHAPTER 5. RESULTS

B. Configuration 0001 means a row from matrix A and config 0000 means a column from
matrix B.

Once each thread have recieved one row and one column, the VecMul filter performs
multiplication between each element in the vectors and passes the result onto VecAdd
where the products are added together. In the end of the pipeline a merge binds the
different threads together and produces a single tape out. Each iteration of the pipeline
will produce n elements in the final matrix, i.e. it will take n iterations to perform an xn
matrix multiplication.

5.2.2 lest

To test the matrix multiplication two different types of tests are performed. The tests are
based on two simple properties for matrix multiplication, A x 0 =0 and A x I = A.

The programmer defines the tests in the main class (listing. [5.10). There are three
arguments given: the dimension of the matrices, the number of iterations required to get
a complete test result and the nr of tests to be performed.

An instance of class test is created and the pipeline is loaded as the only element in the
ComponentArray in TestClass. The streamrate for the component is set to 2 — n both
for data and config.

To produce a suitable configuration tape the programmer adds for each test n times the
configuration 0001 and n times the configuration 0000, to the array with config tapes in
TestClass. The property written by the programmer is also included in TestClass.
The matrix multiplication is tested with different tests using two different properties

(5.2.2.1).

To produce a complete result the pipeline has to be iterated a number of times equal to
the dimension of the matrices, therefore the iteration variable is set to n.

The two tests performed uses different data generators. The first test, A x 0 = 0 uses a
vecSTstep generator which first produces n number of vecST for the A matrix followed
by n number of vecST containing zero for the second 0 matrix.

The second test A x [= A uses a special generator (appendix |[C|) written by the program-
mer, based on the vecSTrand generator. The special generator first produces n number of
random vecST for the A matrix followed by n number of specific vecST for the I matrix.

To initiate the test the class Autotest is called with TestClass as an argument.

Listing 5.10: Defining test matrix multiplication in main
public class Main extends StreamProgram<voidST,voidST, voidST,voidST>{

public void streamProgram (String args|[]) {

/«New Class test is createdx/
Test TestClass = new Test () ;

/+set dimension x/

int dim = args[0].toInteger();
/+* Component Array containing components targeted for testing x/

— O © 00O Ui Wi —

—_

37

AUTOMATIC TESTING OF STREAMBITS

12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40

TestClass . ComponentArray = new StreamComponent [1];
TestClass . ComponentArray[l]= matrixMulTest (dim) ;

/x Set stream rates for each component x/

TestClass . ComponentArray [0]. setDataRate (new intST (2) ,new intST (
dim)) ;

TestClass . ComponentArray [0]. setConfRate (new intST (2) ,new intST(
dim)) ;

/x Set data generator:
vecSTrand (int vecLength, int lowbound, int highbound);x/
TestClass.DataGenerator = new vecSTrand (dim,0,10) ;

/x Set Property written by programmer x/
TestClass . property = new MatrixMult () ;

/+ Set number of iterations required to obtain a complete test
result */
TestClass.iterations = args[1]. toInteger ();

/+ Define number of tests x/
TestClass . NrOfTests = args [2]. tolnteger () ;

/x Initiate test x/
AutoTest a = new AutoTest(TestClass);

}

public Pipeline matrixMulTest (int Dimension){

}

5.2.2.1 Property

To verify the result using the test tool, a property is written by the programmer. To test
the matrix multiplication two tests are performed using two different properties.

The first property (listing [5.11)) tests that A x 0 = 0. This done by testing that every
output value is zero.

0 O Ui Wi

Listing 5.11: Property 1 for matrix multiplication
public class MatrixAx0 implements Property<vecST,intST>{

public boolean test (Tape<vecST> indata ,Tape<intST> outdata){
boolean passed=true;

/xDelete Dummy data */

int outlength=outdata.length — dim;

LogPrint.LogPrintln (” Testing_property A x 0.=.0");

Y T

38

CHAPTER 5. RESULTS

14 //check property, output = 0

15 for(int i = 0; i < outlength; i++)
16 {

17 if (outdata.pop().getVal() != 0)
18 {

19 passed=false;

20 }

21 }

22

23 return passed;

24 }

25 |}

The second property (listing [5.12)) tests that A x I = A. This is done by comparing the
resulting output with the input generated by the datagenerator.

Listing 5.12: Property 2 for matrix multiplication

1 | public class Unit_MatrixProp implements Property<vecST,intST>{

2

3 public boolean test (Tape<vecST> indata ,Tape<intST> outdata){

4

) boolean passed=true;

6

7 int outlength=outdata.length;

8 int dimension=(int)Math.sqrt (outlength);

9

10 /* Transform wvecST indata to intST to be able to compare to
outdatax/

11

12

13 /+xcheck propertyx/

14 for(int i = 0; i < outlength; i++){

15 if (intST_Dataln[i] != outdata.pop())

16 {

17 passed=false

18 }

19 }

20 return passed;

21 }

22 |}

39

AUTOMATIC TESTING OF STREAMBITS

5.2.3 Results

This section describes two different tests on matrix multiplication. Both these test uses
matrices of dimension four. The complete logs can be found in appendix [D] Additional
test logs for other dimensions can be found in appendixE]

5.2.3.1 Testrun 1

The first testrun is done using the first property testing A x 0 = 0. The dimension is set
to 4 , and number of tests to 1. The test passes and the result is reported in both the
compiler output and in the log file.

The streamrate part of the log file shows the resulting streamrates for the matrix multi-
plication pipeline. The streamrates for one test is 8 elements in and 16 elements out on
both the data and config tape. This is verified by the test program and reported in the

test log (listing [5.13]).

Listing 5.13: Matrix testrun 1, log part 1

1| Test Nr: 1 /1

2 3k 3k 3k 3k 3k 3k 3k sk skoskosk sk skeosk sk skosk sk sk sk sk sk sk sk sk skeoske sk sk sk Sk Sk sk sk sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk ok kokok

3 | Testing data streamrate , component: framework.streamcomponent.
Pipeline@6calc

4 |Data inRate = 8 ,Data outRate = 16, nr pop done =8 ,nr push done =16

5 | Config inRate = 8 ,Config outRate = 16, nr Pop done =8 ,nr push done =16

6 | Streamrate test Passed

The second part of the test is the test using the property. Here the result of the property
test is reported and the user log is printed to the file (listing [5.14)).

Listing 5.14: Matrix testrun 1, log part 2

1

2 | Testing Property: streambits.userprogram.MatrixAx0Q665753
3

4 | Property test passed

5

6 | User Log:

7

8 | Testing property A x 0 =0

9

10

The final part of the log reports the results for the complete test and prints the data
generated for the test, data produced from the test and the corresponding configuration
data (listing [5.15]). Both the property test and the streamrate test for each component
passed and therefore the complete test passes. The complete test log for this test can be

seen in appendix [D.1]

40

CHAPTER 5. RESULTS

Listing 5.15: Matrix testrun 1, log part 3

1

| ok okok ko ok kK Kok K Kk ok

3 | * Test PASSED x

4| kokokokk ok ok ok kK kK K

5

6 | Data input: [3][3][3][3] [3][3][3][3] [3][3][3][3] [3][3][3][3]
[0][o][0][O]

7

8 | Data output: 0 0 0 0 O

9

10 Config input:0001 0001 0001 0001 0000

11

12 Config output: 0001 0001 0001 0001 0000

5.2.3.2 Testrun 2

A second test i performed using the second property A x I = A. This test is performed
one time also using matrices with dimension four. To generate test data a specific data
generator is used. Both the streamrate and the property test pass and the complete test

is passed (listing [5.16)).

Listing 5.16: Matrix testrun 2, log part 1

1

2

3 | Streamrate test Passed

4

5

6 | Testing Property: streambits.userprogram.Unit_MatrixProp@4a65e0
7

8 | Property test passed

9

1O | shoskosk sk sk sk ok sk ok ok ok ok o ok %
11 | * Test PASSED x

12 | skokoskskokoskok ok ok ok ko ook

13

14 |Data input: [0][3][0][1] [2][7][7][8] [9][9][2][7] [0][2][2][2]
[1]foJfojfo} fojfrjfoJro} ..

15

16

5.2.3.3 Testrun 3

In testrun three the programmer uses the same property as in test one and instead the ma-
trix multiplications ability as a stream program meant to be executed over and over again
with different matrices is tested. This is done by setting the number of tests argument,
performing several tests after each other.

The first test runs and produces a test log identical to testrun one. In the second test a
stream rate error occurs causing the pipeline to stall. The timeout function in the test
tool aborts the test and produces a test log.

41

AUTOMATIC TESTING OF STREAMBITS

In case of a timeout and aborted test a report of the generator and config filter are
written to the log. This is for debugging purposes and enables the programmer to see
if the generator and config filter is able to push elements onto the tapes or if these are
blocked by the first component. In the log for this test(listing both the generator
and config filter were able to push all the requested elements to the matrix multiplication
pipeline.

Listing 5.17 Matrix testrun 3, log part 1

1 |Log created : Fri Jan 19 13:47:19 CET 2007

2

3| Test Nr: 1 / 3

4

5

6| Test Nr: 2 / 3

7 Skosk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk skosk sk sk sk sk sk skosk sk sk skosk sk skosk sk skosko sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk skoskosk sk sk
8

9 | Timeout occured due to streamrate error

10

11 | Generator info:

12 | Number of data elements requested by data generator: 8, number of

elements possible to push: 8
13 |Number of config elements requested by config generator: 8, number of
elements possible to push: 8
14

The next part (listing shows the streamrate states at the time the test was aborted.
This shows that no values were produced on the tape out and only six values were removed
from both the config tape and the data tape. This indicates an error in the pipeline which
stalls and therefore does not complete pop of the provided elements.

Listing 5.18: Matrix testrun 3, log part 2

[\

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982

Data inRate = 8 ,Data outRate= 16, nr pop done =6 ,nr push done =0

Config inRate = 8 ,Config outRate= 16, nr Pop done =6 ,nr push done=0

ok ok kK R KoK kK K Kk R KRR K K Rk K

xStreamrate test Failedx

ok ok koK KK K K KK K oK K R K R KK Rk K

N O Uk W

When a stream rate error that causes a timeout occurs the property test is not performed.
This is because a complete set of resulting data is not produced. The test terminates with
result; test failed. Complete log can be found in appendix [D.3]

5.2.3.4 The stream rate error

The stream rate error in testrun three is caused by a conditional push in the VecMul
filter in the matrix multiplication pipeline. When reconfiguring the pipeline and setting
new static rows for matrix A there are no data elements pushed forward to the next filter
VecAdd, the configuration stream is however still pushed forward. This causes a severe
stream rate error as VecAdd waits for data elements from VecMul and VecMul instead
waits to push further configuration elements onto the tape to VecAdd which already is

42

CHAPTER 5. RESULTS

full. This is a typical conditional stream rate error which causes the entire pipeline to
stall.

The solution is to always comply with the specified streamrates. Therefore code is added
in VecMul which pushes unnecessary data forward in reconfiguration mode i.e dummy
data. In this way the filter complies to the defined streamrates also in reconfiguration
mode. The dummy data is not a part of the final result and is meant to be discarded at
a later time.

5.2.3.5 Testrun 4

The matrix multiplication is again tested as a stream program. The test is built up in the
same way as in testrun three with the stream rate error fixed. As the matrix multiplication
pipeline now produces n number of dummy data elements which is not part of the result,
the property is modified to discard these elements.

This time every part of the test passes (listing [5.19)), the complete log can be seen in
appendix [D.4] .

Listing 5.19: Matrix testrun 4

1

2 |Log created : Fri Jan 19 13:39:11 CET 2007

3

4| Test Nr: 1 / 3

5

6| ok skok sk ok ok ok ok ko Rk ok K

7 | % Test PASSED =«

8 3k 3k 3k 3k sk sk sk sk sk ok ok ok sk sk sk

9 1...

10 | Test Nr: 2 / 3

11

12| stk sk ok sk ok ok ok ok ok ok sk ok ok koK Sk koK SR oK K SR oK K R oK K K KK KKK KK R KK KK R KK R KK K oK K R ok K K KK KK K KK R KK R Kk Ok

13 | Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982

14 |Data inRate = 8 ,Data outRate = 20, nr pop done =8 ,nr push done =20

15 | Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done =20
16 | Streamrate test Passed

17
18 | Testing Property: streambits.userprogram.MatrixAx0@14693c7
19
20 | Property test passed

21

22 | User Log:

23

24 | Testing property A x 0 = 0
25

206 | sk oskoskok ok sk skok ok ok sk ok ok ok
27 |+ Test PASSED =x
D8 | skosk sk ok ok sk ok ok ok ok ok ok ok ok K
29
30
31 | Test Nr: 3 / 3
32

33 | ook ok ok ok okokokok sk ko ok

43

AUTOMATIC TESTING OF STREAMBITS

34 | * Test PASSED x*
35 | sokokskokokokok ok kk sk k ok k

36

5.2.3.6 Testrun 5

The final test is done using the second property, A x I = A, testing the matrix multi-
plication as a stream program executed three times. The updated matrix multiplication
pipeline is used and the property is modified to discard the dummy data produced.

The test is successful and both the stream rate and the property test pass (listing [5.20)).
The complete log can be seen in appendix [D.5]

Listing 5.20: Matrix testrun 5

1

2 |Log created : Fri Jan 19 13:42:18 CET 2007
3

4 |Test Nr: 1 / 3

5

6| ok ok Kok skokok ok R Rk ok %

7 |+ Test PASSED =«

8 | okt ko sk skok ok Kk ok ok ok %

9

10 | Test Nr: 2 / 3

11 >k 3K 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k sk sk sk sk sk sk ko sk sk sk sk sk sk sk sk 3k skokosk sk sk sk sk skosk sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk 3k sk sk sk skoskoskosk sk skoskoskosk ok

12 | Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
13 | Data inRate = 8 ,Data outRate= 20, nr pop done =8 ,nr push done =20

14 | Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done=20
15 | Streamrate test Passed

16
17
18 | Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7
19
20 | Property test passed

21

22 | User Log:

23

24 | Testing property A x I = A
25

26 | sk kok sk sk sk ok ok sk ok ok ok K
27 | Test PASSED x
28 | skoskoskok ok sk koo ok ok sk ok ok ok
29 | ...
30 Test Nr: 3 / 3
31
32 | sk kkokkokokokokkk ok ok X
33 | x Test PASSED x
34 |k kkok sk ok ok sk sk sk ok k ok

35

44

CHAPTER 6. CONCLUSION

6 Conclusion

The final results of this thesis is a useful and well functioning testing tool for StreamBits
which could find previously undetected errors on the first test run with StreamBits pro-
grams. The initial goals to develop a tool capable of both specification testing and stream
rate testing was achieved.

The tool is developed as a specification based testing tool which motivates extreme pro-
gramming. The specifications are implemented as predicates which results in a user
friendly tool as the programmer does not require the need for a new formal language.

In the beginning of this project, StreamBit was implemented as a single threaded sequen-
tial framework implemented in Java. Parallel to this project a new multi threaded version
of the framework has been developed by Jerker Bengtsson and Jonathan Andersson. It
has been a challenge in this project to keep up with the changes in the framework and to
develop a method to test stream rates in multi threaded StreamBit programs. The result
is a program which can test stream rates on isolated StreamBit components, sequential
stream programs and separate threads. To enable stream rate testing of multi threaded
program parts these have to be put together and tested as a single component. The stream
test also have the ability to handle stream rate errors that would cause the framework to
freeze.

6.1 Future work

The most important future work of the resulting test program is to enhance its capabilities
for testing parts of a multi threaded stream program. This is partially implemented with
counters in each tape, in the multi threaded parts. The main problem with stream rate
test in multi threaded StreamBit programs is to predict the correct stream rate values,
as components can be executed different number of times , during one test, even inside a
single pipeline.

In this implementation the log file is implemented as a .txt file, future work would be to
typeset this as an html or latex document thus simplifying debugging.

There is a risk of using the same formal language for the test objects and the property,
the property can be written in the same way as the test object and will therefore have
similar weak points. To eliminate this risk the property interface could be provided with
additional predefined methods and the possibility of using a second formal language.

We are very satisfied with our achievements and the result of this project. The tool works
as intended and we hope that the results of this thesis will aid the future development of
a testing tool when StreamBits has become a stand alone programming language.

45

AUTOMATIC TESTING OF STREAMBITS

46

BIBLIOGRAPHY

Bibliography

1]

Jerker Bengtsson, “Efficient implementation of stream applications on processor ar-
rays / Jerker Bengtsson,” Licentiate, Chalmers tekniska hogskola, 412 96 Goteborg,
Feb. 2006.

K. Kuo, “The streamit development tool: A programming environment for streamit,”
M.Eng. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2004.
[Online], Available: http://cag.lcs.mit.edu/commit/papers/04/kkuo-meng-thesis.
pdf

L. C. Zhenyu Huang, Ed., Automated Solutions: Improving the efficiency of
software testing. TACIS, 2003. [Online], Available: http://www.iacis.org/iis/2003_
iis/PDFfiles/HuangCarter.pdf

B. Liskov and J. Guttag, Program Development in Java. Cambridge, Mass.: The
MIT Press, 2001.

Jon Edvardsson, “Contributions to Program- and Specification-based Test Data Gen-
eration,” Licentiate, Department of Computer and Information Science, Linkopings
universitet, SE-581 83 Linkoping, Sweden, Dec. 2002.

Sun Microsystems, Annotations, Sun Microsystems, Inc., 2004 [cited 2006-
06-02]. [Online], Available: http://java.sun.com/j2se/1.5.0/docs/guide/language/
annotations.html

B. Meyer, Object-Oriented Software Construction, 2nd ed., ser. The Object-Oriented
Series. Englewood Cliffs (NJ), USA: Prentice-Hall, 1997.

Wikimedia Foundation, Design by contract, Wikimedia Foundation, Inc, May
2006 [cited 2006-05-21]. [Online], Available: http://en.wikipedia.org/wiki/Design_
by_contract_

K. Beck, JUnit Pocket Guide, 1st ed. 10 Fawcett Street Cambridge, MA 02138,
USA: O’Reilly Media, 2004.

N. Daley, D. Hoffman, and P. Strooper, “A framework for table-driven testing of Java
classes,” softpe, vol. 32, no. 5, pp. 465-493, Apr. 2002.

Wikimedia Foundation, White Box Testing, Wikimedia Foundation, Inc, Feb. 2006
[cited 2006-12-01]. [Online], Available: http://en.wikipedia.org/wiki/White_box_
testing

Wikimedia Foundation, Assertion - computing, Wikimedia Foundation, Inc, 2006
[cited 2006-12-08]. [Online|, Available: http://en.wikipedia.org/wiki/Assertion_
%28computing %29

47

http://cag.lcs.mit.edu/commit/papers/04/kkuo-meng-thesis.pdf
http://cag.lcs.mit.edu/commit/papers/04/kkuo-meng-thesis.pdf
http://www.iacis.org/iis/2003_iis/PDFfiles/HuangCarter.pdf
http://www.iacis.org/iis/2003_iis/PDFfiles/HuangCarter.pdf
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://en.wikipedia.org/wiki/Design_by_contract_
http://en.wikipedia.org/wiki/Design_by_contract_
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/Assertion_%28computing%29
http://en.wikipedia.org/wiki/Assertion_%28computing%29

AUTOMATIC TESTING OF STREAMBITS

[13]

[19]

[20]

[21]

[22]

J. Nielsen, Junit example, OSTG Open Source Technology Group, 46939 Bayside
Parkway, Fremont, CA 94538, Feb. 2006 [cited 2006-12-06]. [Online], Available:
http://junit.sourceforge.net /doc/faq/faq.htm

Nilesh Parekh, “Software Testing - Black Box Testing Strategy,” Buzzle.com, Apr.
2005. [Online], Available: http://www.buzzle.com/editorials/4-10-2005-68349.asp

K. Beck, Eztreme Programming Fxplained: Embracing Change. 75 Arlington Street,
Suite 300, Boston, MA 02116: Pearson Education, Addison-Wesley Professional.,
May 1999.

R. Kramer, “iContract — the Java design by contract tool,” in TOOLS 26: Technology
of Object-Oriented Languages and Systems. IEEE Computer Society Press, Aug.
1998, pp. 295-307.

C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing based on Java
predicates,” in ISSTA’02. Roma, Italy: ACM, 2002, pp. 123-133.

K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” in ICFP, 2000, pp. 268-279. [Online|, Available:
http://doi.acm.org/10.1145/351240.351266

Wikimedia Foundation, Agile software development, Wikimedia Foundation, Inc,
2006 [cited 2006-12-21]. [Online|, Available: http://en.wikipedia.org/wiki/Agile_
software_development

David Flanagan, Java Examples in a Nutshell, 1st ed. 10 Fawcett Street Cambridge,
MA 02138, USA: O’Reilly Media, 2000.

Qusay H. Mahmoud, Using and Programming Generics in J2SE 5.0, Sun
Microsystems, Inc., Oct. 2004 [cited 2006-10-23]. [Online|, Available: http:
//java.sun.com/developer /technical Articles/J2SE /generics /index.html

Wikimedia Foundation, Matrix multiplication, Wikimedia Foundation, Inc,
2005 [cited 2006-12-08]. [Online|, Available: http://en.wikipedia.org/wiki/Matrix_
multiplication

48

http://junit.sourceforge.net/doc/faq/faq.htm
http://www.buzzle.com/editorials/4-10-2005-68349.asp
http://doi.acm.org/10.1145/351240.351266
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://java.sun.com/developer/technicalArticles/J2SE/generics/index.html
http://java.sun.com/developer/technicalArticles/J2SE/generics/index.html
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Matrix_multiplication

APPENDIX A. LOG ADDER TEST

A Log adder test

This appendix contains complete results logs from tests performed on the adder compo-
nent.

A.1 Test 1

This test is performed on a single adder filter adding each two elements in to one element
out.

Listing A.1: Adder test log 1

1 |Log created : Sun Dec 10 12:57:49 CET 2006

2

3

4 | Test Nr: 1 /1

B | sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok R ok K ok ok K koK K koK K KK KKK KK SR kK R Kk K ok K R ok K R ok K kK K R oK K kK KK R KK R R ok

6 | Testing data streamrate , component: streambits.userprogram.
Adder@156ee8e

7 |Data inRate = 20 ,Data outRate= 10, nr pop done =20 ,nr push done
=10

8 | Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
9 | Streamrate test Passed

10
11
12 | Testing Property: streambits.userprogram.AdderProp@13e205f
13
14 | Property test failed

15

16 | User Log:

17

18 | Calculated result: 104 correct result 86
ég Calculated result: 144 correct result 107
gé Calculated result: 36 correct result 82
gi Calculated result: 92 correct result 91
3653 Calculated result: 198 correct result 196
g; Calculated result: 80 correct result 104
gg Calculated result: 170 correct result 113
g; Calculated result: 162 correct result 168
:Z:i Calculated result: 52 correct result 77
22 Calculated result: 52 correct result 97
37

49

AUTOMATIC TESTING OF STREAMBITS

38 | skoskoskok sk sk sk kok sk ok ok ok ok K
39 | x Test FAILED x
A0 | skokoskoskosk sk ok ok ok ok kK Kk K
41
42 Data input: 52 34 72 35 18 64 46 45 99 97 40 64 85 28 81
87 26 51 26 71

43
44 Data output: 104 144 36 92 198 80 170 162 52 52
45

46 ok ok ok ok ok sk ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok sk sk sk sk ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok sk sk sk ok sk sk ok ok skoskook

A.2 Test 2

Listing A.2: Adder test log 2

1 |Log created : Sun Dec 10 11:20:07 CET 2006

2

3

4| Test Nr: 1 / 4

B | skt sk sk ok ok sk ok ok ok ok ok ok ok ok koK Rk kK kK K oK K oK K K R K K KR KK K K K K KK R K Rk kK KK koK R oK R K K KK KK K R K K K K Kk

6 | Testing data streamrate , component: streambits.userprogram.
Adder@156ee8e

7 | Data inRate = 8 ,Data outRate= 4, nr pop done =8 ,nr push done =4

8 | Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0

9 | Streamrate test Passed

10

11 | Testing data streamrate , component: streambits.userprogram.
Adder@47b480

12 |Data inRate = 4 ,Data outRate= 2, nr pop done =4 ,nr push done =2

13 | Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
14 | Streamrate test Passed

15

16 | Testing data streamrate , component: streambits.userprogram.
Adder@19b49e6

17 |Data inRate = 2 ,Data outRate= 1, nr pop done =2 ,nr push done =

18 | Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
19 | Streamrate test Passed

20
21
22 | Testing Property: streambits.userprogram.AdderProp@141d683
23
24 | Property test passed
25
20 | skok ok ok ok ok sk ok ok ok ok ok ok ok k
27 |x Test PASSED x

28 | kkokok ok ok okok Kok ok Kok X

29

30 | Data input: 39 69 29 35 56 36 50 92
31

32 | Data output: 406

33

S| sk sk sk sk sk ok ok ok o o o o s K K KKK KK KKK KRR SR R R SR R R R R R o o o K KKK KK KKK KKK KSR R R R R oK oK ok o o o K K K
35
36
37 | Test Nr: 2 / 4

50

APPENDIX A. LOG ADDER TEST

38
39

40
41
42
43
44

45
46
47
48
49

50
o1
92
53
54
95
o6
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
7

78
79
80
81
82

83
84
85
86
87
88

ok ok ok ok ok oKk ok ok ok ok ok ok Kk ok ok ok ok Kk oKk ok sk ok ok ok sk oK K ok ok ok ok ok ok Kk K sk ok ok ok ok ok Kk ok ok ok Rk ok ok

Testing data streamrate , component: streambits.userprogram.
Adder@l156ee8e
Data inRate = 8 ,Data outRate= 4, nr pop done =8 ,nr push done =4

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing data streamrate , component: streambits.userprogram.
Adder@47b480
Data inRate = 4 ,Data outRate= 2, nr pop done =4 ,nr push done =2

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing data streamrate , component: streambits.userprogram.
Adder@19b49e6
Data inRate = 2 ,Data outRate= 1, nr pop done =2 ,nr push done =1

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing Property: streambits.userprogram.AdderProp@141d683

Property test passed

ok Sk koK kKR K K K Kk K

x Test PASSED x

ok ok KoK K K KK K oK K K K

Data input: 83 13 91 26 11 45 84 97

Data output: 450

sk 3k sk sk sk sk sk 3k 3k ok ok ok sk sk 3k ok ok sk sk sk sk 3k ok sk sk sk sk sk ok ok sk sk sk sk 3k ok sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk sk sk sk sk ok ok sk sk sk sk ok ok ok sk ok

Test Nr: 3 / 4
s oK o KKK R KK KK SRR KK SR KR SR KRR K SR K K SR KR SR KRR K SR KK SR KR SR KRR K SRR KK SR KR ok Kk

Testing data streamrate , component: streambits.userprogram.
Adder@l156ee8e
Data inRate = 8 ,Data outRate= 4, nr pop done =8 ,nr push done =4

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing data streamrate , component: streambits.userprogram.
Adder@47b480
Data inRate = 4 ,Data outRate= 2, nr pop done =4 ,nr push done =2

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing data streamrate , component: streambits.userprogram.
Adder@19b49e6
Data inRate = 2 ,Data outRate= 1, nr pop done =2 nr push done =1

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing Property: streambits.userprogram.AdderProp@141d683

51

AUTOMATIC TESTING OF STREAMBITS

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108
109
110

111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

Property test passed

ok Sk KK kK KKK Kk K

x Test PASSED x

3k 3k 3k 3k skosk sk sk sk ok ok ok sk sk sk

Data input: 44 46 68 46 43 89 68 50

Data output: 454

Sk ok ok K ok oK K koK kK R KK R ok K ok ok Kk ok Kk ok Kk ok K KK K kK K kK R ok K ok K ok Kk ok Kk ok Kk oK K koK R kK K kK R ok Kk ok ok

Test Nr: 4 / 4

>k ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok

Testing data streamrate , component: streambits.userprogram
Adder@156ee8e
Data inRate = 8 ,Data outRate= 4, nr pop done =8 ,nr push done =4

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing data streamrate , component: streambits.userprogram.
Adder@47b480
Data inRate = 4 ,Data outRate= 2, nr pop done =4 ,nr push done =2

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing data streamrate , component: streambits.userprogram
Adder@19b49e6
Data inRate = 2 ,Data outRate= 1, nr pop done =2 ,nr push done =1

Config inRate = 0 ,Config outRate= 0, nr Pop done =0 ,nr push done=0
Streamrate test Passed

Testing Property: streambits.userprogram.AdderProp@141d683

Property test passed

ok koK kK K K K KOk K

x Test PASSED x

ok Sk koK K kKK K KK Kk K

Data input: 87 36 75 22 13 92 49 37

Data output: 411

>k ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok

52

APPENDIX B. PROPERTY - MATRIX MULTIPLICATION TEST

B Property - matrix multiplication test

B.1

0 O Ui Wi

Property A x0=0

Listing B.1: Property 1 for matrix multiplication, A x 0 =0

MatrizAz0. java
Created on den 18 januari 2007, 10:28
To change this template, choose Tools | Template Manager

and open the template in the editor.

package streambits.userprogram;

import framework.streamcomponent . x;
import framework.types.x;

import java.util .x;

import streambits.framework. TestFiles .x;

public class MatrixAx0 implements Property<vecST,intST>{
int dim;

public void SetDim(int tmp)

{
}

dim = tmp;

public boolean test (Tape<vecST> indata ,Tape<intST> outdata){
boolean passed=true;
/xDelete Dummy data */

for(int i = 0; i < dim; i++4)

{
outdata .pop () ;
}
int outlength=outdata.length — dim;

LogPrint.LogPrintln (” Testing_property A x 0.=.0");
//check property, output = 0
for(int i = 0; i < outlength; i++)
{
if (outdata.pop().getVal() != 0)

{

93

AUTOMATIC TESTING OF STREAMBITS

47
48
49
50
51
52
93

B.2

0 O Ui Wi

passed=false ;
}
return passed;

}
Property Ax I =A

Listing B.2: Property 2 for matrix multiplication, A x I = A

Unit_MatrixProp . java
Created on den 17 januari 2007, 10:40

To change this template, choose Tools | Template Manager
and open the template in the editor.

package streambits.userprogram;

import framework.streamcomponent .
import framework.types.x;

import java.util.x;

import streambits.framework. TestFiles .x;

public class Unit_MatrixProp implements Property<vecST,intST>{

int dim;

public void SetDim(int tmp)

{
}

public boolean test (Tape<vecST> indata ,Tape<intST> outdata){

dim = tmp;

boolean passed=true;

LogPrint.LogPrintln (” Testing_property A x I, = A");

[R T R

/xDelete Dummy data %/

for(int i = 0; i < dim; i++4)
{

}

int inlength=indata.length;
int outlength=outdata.length — dim;
int dimension=dim;

outdata .pop () ;

vecST Dataln[]= new vecST[inlength];
intST intST_Dataln[]= new intST [outlength];

o4

APPENDIX B. PROPERTY - MATRIX MULTIPLICATION TEST

46
47
48
49
50
o1
92
53
54

95
o6
o7
58
59
60
61
62
63
64
65
66
67
68
69
70

int position=0;
for (int i=0; i<inlength;i+4++)

{
}

//Add elements colomn by colomn
for (int i=0; i<dimension;i++) {
for (int j=0; j<dimension;j++) {

Dataln[i]=indata.pop();

intST_Dataln [position]=(intST)Dataln[j]. getElement (i)

3

position4-+;

//check property
for(int i = 0; i < outlength; i+4)

{
if (intST_Dataln[i].getVal()!=outdata.pop().getVal())
passed=false;

}

return passed;

95

AUTOMATIC TESTING OF STREAMBITS

96

APPENDIX C. DATAGENERATOR - MATRIX MULTIPLICATION TEST

C DataGenerator - matrix multiplication test

Listing C.1: Data generator for Matrix multiplication test

public class Unit_MatrixFilt <Expl extends VecType> extends Source<
voidST ,vecST, voidST , voidST>{

public void init (){

/x Define tapes x/
DefTapes () ;

/x Initiation of variables */

for (int j=0;j<test.NrOfTests;j++){

/x Generate A x/
for (int i = 0; i < dimension;i++){

vecST<Expl> temp = new vecST<Expl>();
for (int h = 0; h < dimension ;h++){

temp.addElement ((Expl) (new intST ((int)Low+r .
nextInt (((int)High)—(int)Low))));

}
buffer [j].push(temp);
buffer2[j].push(temp);

}

/* Generate I x/
for (int 1 = 0; 1 < dimension;l4++){
vecST<Expl> temp = new vecST<Expl>();

for (int k = 0; k < dimension ;k++){

if (1=k){
temp.addElement ((Expl) (new intST(1)))
}
else(
temp . addElement ((Expl) (new intST (0)));
}
buffer[j].push(temp);
buffer2[j].push(temp);
}
¥

o7

AUTOMATIC TESTING OF STREAMBITS

o8

APPENDIX D. LOG MATRIX MULTIPLICATION TEST

D Log matrix multiplication test

This appendix contains the complete resulting logs from five different tests of a matrix
multiplication pipeline.

D.1 Test 1
Listing D.1: Matrix test log 1

1 |Log created : Fri Jan 19 13:45:50 CET 2007

2

3

4| Test Nr: 1 / 1

B | sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oKk Kk KR K R oK R oK R KR KR ok K ok K ok Kk Kk ok kK kK koK koK R KK KR oK R oK R ok K ok ok ok Ok

6 | Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982

7 | Data inRate = 8 ,Data outRate= 16, nr pop done =8 ,nr push done =16

8 | Config inRate = 8 ,Config outRate= 16, nr Pop done =8 nr push done=16

9 | Streamrate test Passed

10

11

12 | Testing Property: streambits.userprogram.MatrixAx0@Q665753

13

14 | Property test passed

15

16 | User Log:

17

18 | Testing property A x 0 =0

19

20 | skokok ok ok sk sk sk ok ok ok ok ok ok ok

21 |x Test PASSED x

22| skok sk sk ok sk sk sk skok ok koK ok

23

24 | Data input: [3][3][3][3] [3][3][3][3] [3][3][3][3] [3][3][3][3]
[ojfojfoJfo] [oJfojrojfo} [ojfoJfo]Jfo] [o][0]}[0][O]

25

26 | Data output: 0 0 0 0 O O O O O O O O O O O O

27

28 | Config input:0001 0001 0001 0001 0000 0000 0000 0000

29

30 | Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

31

B2 | srkosk ok sk ok ok ok sk ok ok ok kK kK KoK koK koK R KK KR K KR K K K K KK KK KK KK KK Kok koK koK R KR KR KK K K K K K R KK K R KK KOk %

99

AUTOMATIC TESTING OF STREAMBITS

D.2 Test 2
Listing D.2: Matrix test log 2

1 |Log created : Fri Jan 19 13:49:02 CET 2007

2

3

4| Test Nr: 1 /1

B | stk skt sk skok sk ok ok ok sk ok sk ok ok ok ok ok sk ok K ok ok K K oK K KK K KK R KK R KK Sk KK R oKk ok ok K ok ok K sk ok K R oK K koK K KKK KK R KK R Kok ok

6 | Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982

7 | Data inRate = 8 ,Data outRate= 16, nr pop done =8 ,nr push done =16

8 | Config inRate = 8 ,Config outRate= 16, nr Pop done =8 nr push done=16

9 | Streamrate test Passed

10

11

12 | Testing Property: streambits.userprogram.Unit_MatrixProp@4a65e0

13

14 | Property test passed

15

16 | skoskoskosk sk sk sk ok ok ok ok ok ok ok ok

17 |+ Test PASSED =

18 | skoskosk sk sk sk sk sk sk sk ok ok ok ok ok

19

20 | Data input: [0][3][0][1] [2][7][7][8] [9][9](2](7] [0][2][2][2]
[1j[o]fo]fo] [o]Jfr]foj[o] [o]fo][1][0] [O][0}[O][1]

21

22 | Data output: 0 2 9 0o 3 7 9 2 0 7 2 2 1 8 7 2

23

24 | Config input:0001 0001 0001 0001 0000 0000 0000 0000

25

26 | Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

27

D8 | sk sk sk sk sk ok sk ok ok ok ok ok ok koK ok ok ok ok oK K R KK K K K kK K KK R KK S Rk Sk kK SR KK Sk oKk ok ok K ok ok K R KK K KK KK K KK K KK K KK R K

D.3 Test 3

Listing D.3: Matrix test log 3

1 |Log created : Fri Jan 19 13:47:19 CET 2007

2

3

4 | Test Nr: 1 / 3

B | stk skt sk ok ok sk ook ok ok ok sk koK ok ok ok ok ok K Sk ok K K oK K KoK K KK R KK KK SR KK R KK R ok K R ok K K oK K Sk oK K K K K KK KK R KK R Rk ok

6 | Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982

7 |Data inRate = 8 ,Data outRate= 16, nr pop done =8 ,nr push done =16

8 | Config inRate = 8 ,Config outRate= 16, nr Pop done =8 nr push done=16

9 | Streamrate test Passed

10

11

12 | Testing Property: streambits.userprogram.MatrixAx0@14693c7

13

14 | Property test passed

15

16 | User Log:

60

APPENDIX D. LOG MATRIX MULTIPLICATION TEST

17
18
19
20
21
22
23
24

25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42

43

44
45
46

47
48
49
50
o1
52
53
o4

95
56
o7
o8
99
60

61
62
63
64
65
66

Testing property A x 0 =0

st ok ok sk ok sk ok sk ok ok ok ok ok ok ok
x+ Test PASSED x

K 3K 3k 3k 3k 3k kK koK Sk K Sk ok sk

Data input: [3][3][3][3] [3][3][3][3] [3][3][3][3] [3][3][3][3]
[o]fo][o}[o] [o][oj[o]{o] [oJ[o]{o][0] [o0][0][0][O]

Data output: 0 0 0 0 0 0 O O O O O O O O O O
Config input:0001 0001 0001 0001 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

K 3K 3k 3k 3k 3k 3k ok 3k 3k sko3k sk sk sk sk Sk sk sk ko sk sk sk sk sk sk sk sk >k kR sk sk 3k ok sk sk sk sk sk sk sk sk sk sk sk k sk sk sk sk sk ok sk sk sk sk sk sk sk ok skoskoskoskoskoskoskoskoskookok

Test Nr: 2 / 3

k3K 3k >k sk sk 3k sk 3k sk Sk R skosk sk Sk R sk sk 3k sk sk sk Sk R sk sk sk sk >k sk Sk R sk sk sk Sk R sk sk ok sk Rk Sk R sk sk sk Sk R skosk R sk sk sk Sk R skosk ok Sk R sk sk R sk sk ok sk ok

Timeout occured due to streamrate error

Generator info:

Number of data elements requested by data generator: 8, number of
elements possible to push: 8

Number of config elements requested by config generator: 8, number of
elements possible to push: 8

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982
Data inRate = 8 ,Data outRate= 16, nr pop done =6 ,nr push done =0

Config inRate = 8 ,Config outRate= 16, nr Pop done =6 ,nr push done=0
sk ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok Kok ok ok
xStreamrate test Failedx
>k sk sk sk sk skosk skoskoskosk sk sk sk sk sk skosk sk sk sk ko sk

Property: streambits.userprogram.MatrixAx0@14693c7 not tested due to
streamrate error
K koK koK K KR K K KOk K

* Test FAILED x
st ok ok sk ok sk ok sk ok ok ok ok ok o ok

Data output:
Config input:0001 0001 0001 0001 0000 0000 0000 0000

Config output:

61

AUTOMATIC TESTING OF STREAMBITS

67
68

K3k >k 3k 3k 3k 3k 3k ok 3k sk 3k sk sk sk sk sk sk sk ko sk sk sk sk sk koK sk sk skoskosk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk sk sk ok >k sk sk sk sk sk sk ok sk skoskoskosk sk skoskoskoskok

D.4 Test 4

S T W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46

Listing D.4: Matrix test log 4
Log created : Fri Jan 19 13:39:11 CET 2007

Test Nr: 1 / 3

Kok 3k ok ok ok ok ok ok ok 3k 3k 3k sk sk ok ok ok ok ok ok ok sk sk sk sk sk sk ok sk sk ok ok sk sk sk ok 3k 3k sk sk sk sk sk ok sk sk ok ok ok ok k k sk sk sk sk sk ok ok ok sk sk sk ok ok sk ok ok skoskok

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982
Data inRate = 8 ,Data outRate= 20, nr pop done =8 ,nr push done =20

Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done=20
Streamrate test Passed

Testing Property: streambits.userprogram.MatrixAx0@Q14693c7

Property test passed

User Log:

Testing property A x 0 =0

ok kK kKRR K K Ok K

x Test PASSED x

3K ok ok ok ok ok ok ok ok ok ok ok ok ok

Data input: [3][3][3][3] [3][3][3][3] [3][3][3][3] [3][3][3][3]
[oJfo]fo}[o] [o]{oj[o]{o] [o][o]{o][0] [o0][o][0][O]

Data output: 0 0 0 0 0 0 0 0O O O O O O O O O O O O O
Config input:0001 0001 0001 0001 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ok ok ok ok ok oKk ok ok ok ok ook ok Kk ok ok ok ok Kk oK ok ok ok ok ok ok sk ok K ok sk ok ok ok ok Kk K sk ok ok ok ok Kk ok ok ok Rk ok ok ok

Test Nr: 2 / 3
o o o o o o o K KKK KRR R R R o R ok ok ok o o o R R K K KRR R R R ok ok ok ok ok ok o o R R R K K

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 8 ,Data outRate= 20, nr pop done =8 ,nr push done =20

Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done=20
Streamrate test Passed

Testing Property: streambits.userprogram.MatrixAx0@14693c7

Property test passed

62

APPENDIX D. LOG MATRIX MULTIPLICATION TEST

47
48
49
50
51
52
93
54
55

o6
o7
o8
59
60
61

62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92

93
94

User Log:
Testing property A x 0 =0
Sk ok K ok ok oK K KRk oK ok K

x+ Test PASSED x

K 3K Kk koskosk sk sk sk ok ok ok ko

Data output: 0 0 0 0 0 0 O O O O O O O O O O O O 0 O
Config input:0001 0001 0001 0001 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Kok 3k >k ok ok 3k ok ok ok 3k 3k sk sk skosk ok ok ok ok ok ok sk sk sk sk sk sk ok sk sk ok ok sk sk sk ok 3k 3k 3k sk sk sk sk ok skosk ok ok ok ko k k sk sk sk sk sk ok ok sk sk sk ok ok ok sk ok ok skoskok

Test Nr: 3 / 3

>k 3K 3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k sk sk sk Sk sk sk ko k sk sk sk sk sk sk sk 3k skoskosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk k sk sk sk sk sk ok sk sk sk oskosk sk 3k 3k sk skoskoskoskoskoskoskoskoskok

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982

Data inRate = 8 ,Data outRate= 20, nr pop done =8 ,nr push done =20

Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done=20

Streamrate test Passed

Testing Property: streambits.userprogram.MatrixAx0@Q14693c7
Property test passed

User Log:

Testing property A x 0 =0

Sk ok KR koK K R Kk K %

x+ Test PASSED x

KKk ok ok ok ok ok ok ok ok ok ok k >k

Data output: 0 0 0 0 0 0 0 O O O O O O O O O O O O O
Config input:0001 0001 0001 0001 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ok ok ok ok ok sk sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok sk koo

63

AUTOMATIC TESTING OF STREAMBITS

D.5 Test 5
Listing D.5: Matrix test log 5

1 |Log created : Fri Jan 19 13:42:18 CET 2007

2

3

4| Test Nr: 1 / 3

B | sk skt sk sk ok sk sk ok ok ok ok sk sk ok ok ok ok ok ok K ok oK K R K K KK K KK R KK R KK Sk K K Sk ok K sk ok K K oK K R KK KK K KK R KK R KoKk ok Kk ko ok

6 | Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982

7 | Data inRate = 8 ,Data outRate= 20, nr pop done =8 ,nr push done =20

8 | Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done=20

9 | Streamrate test Passed

10

11

12 | Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7

13

14 | Property test passed

15

16 | User Log:

17

18 | Testing property A x I = A

19

20 | ook skok ok skok K ok ok ok kKoK K

21 |x Test PASSED x

22| skok sk sk ok sk sk ok sk ok ok koK ok

23

24 | Data input: [6][6][7][0] [8][6][2][6] [8][0][6][9] [0]J[9][6][0O]

’ [1][o]fo][o] [o][1][o}[o] [o][o][1][0] [O][0}[O][1]

26 | Data output: 0 0 0 0 6 8 8 0 6 6 0 9 7 2 6 6 0 6 9 0

27

28 | Config input:0001 0001 0001 0001 0000 0000 0000 0000

29

30 | Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

31

B2 | sk sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok K R KK koK K kK K KK R KK KK K KK R KK K kK R kK ok ok K R K K K K K KK KK R KK R K K R

33

34

35 | Test Nr: 2 / 3

S0 | ok ks ok ok ok ok ko ok ok ok ok ok ok Kk ok KK oK KKK K kK K KK R KK R ok Kk ok Kk ok Kk ok Kk Sk K K oK KK K KK R KK R Kk ok Rk Rk K

37 | Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982

38 |Data inRate = 8 ,Data outRate= 20, nr pop done =8 ,nr push done =20

39 | Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done=20

40 | Streamrate test Passed

41

42

43 | Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7

44

45 | Property test passed

46

47 | User Log:

48

49 | Testing property A x I = A

64

APPENDIX D. LOG MATRIX MULTIPLICATION TEST

50
o1
52
53
o4
95

56
57
58
99
60
61

62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92

93
94

st ok ok ok ok sk ok ok ok ok ok ok ok ok ok
x+ Test PASSED x

3K K ok ok ok ok ok ok ok ok ok ok ok >k

Data input: [6][1][4][6] [8][5][2][5] [4][5][4][3] [6][9][4][0]

Data output: 0 0 0 0 6 8 4 6 1 5 5 9 4 2 4 4 6 5 3 0
Config input:0001 0001 0001 0001 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

ok ok ok ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok sk sk ok ok ok ok ok

Test Nr: 3 / 3
ko K Ko Kk R KK o KK R KR kR K ok K R ok KRR KR R K ok KR R KRR KR R K R KK R KRR K

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982

Data inRate = 8 ,Data outRate= 20, nr pop done =8 ,nr push done =20

Config inRate = 8 ,Config outRate= 20, nr Pop done =8 ,nr push done=20

Streamrate test Passed

Testing Property: streambits.userprogram. Unit_MatrixProp@14693c7
Property test passed

User Log:

Testing property A x I = A

ok KoK kK K KK Kk K

x+ Test PASSED x

sk sk sk ok ok sk ok ok ok ok ok ok ok

Data output: 0 0 0 0 4 0 5 0 7 3 2 9 2 8 7 3 9 9 2 6
Config input:0001 0001 0001 0001 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

K3k 3k 3k 3k 3k 3k ok ok 3k skosk sk sk sk sk sk sk sk ko sk sk sk sk sk sk sk sk >k skoskosk sk sk sk sk skosk sk skosk sk sk sk sk sk sk sk sk sk sk sk kR sk sk sk sk sk sk sk skoskoskosk sk sk skoskoskoskok

65

AUTOMATIC TESTING OF STREAMBITS

66

APPENDIX E. ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

E Additional test logs - matrix multiplication test

E.

1 Test 1

Test 1 test property A x 0 = 0 five times using matrices of dimension 2.

ST W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42

Listing E.1: Matrix test log 1
Log created : Tue Jan 23 17:16:20 CET 2007

Test Nr: 1 / 5

Kok ok ok ok ok sk sk ok sk sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok sk sk sk sk sk ok ok ok sk sk sk ok sk sk ok ok skoskook

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed

Testing Property: streambits.userprogram.MatrixAx0@Q14693c7

Property test passed

User Log:

Testing property A x 0 =0

ok Sk koK kKK K KK Kk K

x Test PASSED x

K 3k 3k 3k 3k sk 3k ok koK Sk ok Sk ok sk

Data input: [8][8] [8][8] [0][0] [0][0]

Data output: 0 0 0 0 0 O

Config input:0001 0001 0000 0000

Config output: 0001 0001 0000 0000 0000 0000

Stk ok ok K KKK KK K KK R KK K KK Sk KK Sk oK K ok oK K R oK K KKK kK K KK R KK Kk R Kk R ok K R ok K R oK K K oK K kK K KK R KK R KK Ok

Test Nr: 2 / 5

ok ok ok ok ok sk sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok sk sk sk sk sk ok sk sk ok ok sk sk sk ok ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk sk ok k kR ok ok sk sk sk ok sk sk ok ok skoskok

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982
Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed

67

AUTOMATIC TESTING OF STREAMBITS

43
44
45
46
47
48
49
50
51
52
93
o4
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Testing Property: streambits.userprogram.MatrixAx0@Q14693c7
Property test passed
User Log:
Testing property A x 0 =0

ok koK kKK KK Kk K
x Test PASSED x

ok ok KoK K K KK K KK K K

Data input: [8][8] [8][8] [0][0] [0][0]

Data output: 0 0 0 0 0 O

Config input:0001 0001 0000 0000

Config output: 0001 0001 0000 0000 0000 0000

K ok kK K KK KK K KK R KK K Kk Sk KK ok oK K ok oK K ok ok K kKK kK K KK R KK Kk Sk Kk R ok K K ok K R oK K K K K KKK KoK R KK R KK Ok

Test Nr: 3 / 5

ok ok ok ok ok sk sk ok ok sk sk ok sk skook ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk ok ok sk sk sk ok ok sk sk sk sk sk ok ok ok okook ok ok ok ok ok sk sk sk sk sk ok ok ok ok sk sk ok ok sk ok ok skoskok

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982
Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed
Testing Property: streambits.userprogram.MatrixAx0@Q14693c7
Property test passed
User Log:
Testing property A x 0 =0

ok Sk koK kK R KK Kk K
x Test PASSED x

ok Sk KoK K K oK K K KK K K

Data input: [8][8] [8][8] [0][0] [0][0]

Data output: 0 0 0 0 0 O

Config input:0001 0001 0000 0000

Config output: 0001 0001 0000 0000 0000 0000

K ok ok K K KK KK K KK SR KK R KOk Sk KK R oK K Sk K K R ok K KK K kK K KK R KK R KK Sk Kk R oKk K oK K R ok K K oK K KK K KK R KK R KK Ok

Test Nr: 4 / 5

ok ok ok ok ok sk sk sk ok 3k sk ok ok sk ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk ok ok sk sk sk ok sk sk sk sk sk sk sk ok ok ok ok ok ok sk ok ok sk sk sk sk sk ok ok ok sk sk sk ok ok sk ok ok skoskok

68

APPENDIX E. ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed

Testing Property: streambits.userprogram.MatrixAx0@14693c7

Property test passed

User Log:

Testing property A x 0 =0

Kok Sk KoK K K K K K KK K K K

x Test PASSED x

ok kK Ok K KOk KK Ok K

Data input: [8][8] [8][8] [0][0] [0][0]

Data output: 0 0 0 0 0 O

Config input:0001 0001 0000 0000

Config output: 0001 0001 0000 0000 0000 0000

ok ok ok K ok oK K koK K koK kK R ok K ok ok K ok Kk ok Kk ok K kK K kK K koK ok K ok ok o ok Kk ok Kk ok Kk oK K kK R kK K ok Kk ok Kk ok Kok

Test Nr: 5 / 5

>k ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok sk ok ok ok ok ok ok ok ok ok

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed

Testing Property: streambits.userprogram.MatrixAx0@14693c7
Property test passed

User Log:

Testing property A x 0 =0

ok ok ok Kk K R K Ok KOk K

x Test PASSED x

stk ok ok ok ok ok ok ok ok ok Kok K

Data input: [8][8] [8][8] [0][0] [0][0O]

Data output: 0 0 0 0 0 O

Config input:0001 0001 0000 0000

69

AUTOMATIC TESTING OF STREAMBITS

154 | Config output: 0001 0001 0000 0000 0000 0000
155

E.2 Test 2

Test 2 test property A x I = A five times using matrices of dimension 2.

Listing E.2: Matrix test log 2

1 |Log created : Tue Jan 23 16:44:51 CET 2007

2

3

4| Test Nr: 1 / 5

B | stk sk sk ok sk skoskok sk sk skl ok sk sk sk ok ok sk sk sk ok sk ok kR ok sk sk kR sk k sk R ok sk sk kR sk sk sk sk sk sk ok sk ok sk sk sk ok ok sk kR ok sk k sk R ok sk ok kR sk ok ok

6 | Testing data streamrate |, component: framework.streamcomponent .
Pipeline@12ac982

7 |Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

8 | Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
9 | Streamrate test Passed

10
11
12 | Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7
13
14 | Property test passed

15

16 | User Log:

17

18 | Testing property A x I = A
19

20 | sk skok sk sk skokok sk sk ok ok ok K
21 |« Test PASSED x
22 | skok ok ok ok ok sk ok ok ok ok ok ok ok K
23
24 | Data input: [9][3] [0][9] [1][0] [O][1]
25
26 | Data output: 0 0 9 0 3 9
27
28 Config input:0001 0001 0000 0000
29
30 Config output: 0001 0001 0000 0000 0000 0000
31
B2 | skoskook sk ok sk ok ok ok ok ok ok koK koK ok K ok ok ok K ok ok kK oK oKk KK sk ok kK K oKk kK sk ok kK ok sk ok ok sk Kk K oK ok ok ok sk ok ko ok ok ok koK kKR ok
33
34
35 | Test Nr: 2 / 5

36 Kok >k >k ok ok 3k ok ok ok 3k 3k 3k sk sk sk ok ok ok ok ok sk ok sk sk sk sk sk ok sk sk ok ok sk sk sk sk ok sk 3k sk sk sk sk sk sk sk sk ok ok ok ko k k k sk sk sk ok ok sk sk sk sk ok ok sk ok sk skokok

37 | Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982
38 |Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

39 | Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
40 | Streamrate test Passed

41
42
43 | Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7

70

APPENDIX E. ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

44
45
46
47
48
49
o0
o1
52
53
o4
95
o6
LY
58
99
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Property test passed
User Log:

Testing property A x I = A

Sk ok K K kKK KR K K K K
x Test PASSED x

Sk ok K ok kKK KRk oK oK K

Data input: [4][6] [9][9] [1][0] [0][1]

Data output: 0 0 4 9 6 9

Config input:0001 0001 0000 0000

Config output: 0001 0001 0000 0000 0000 0000
T T T P T e T
Test Nr: 3 / 5

sk sk sk ok ok sk ok kR sk sk kK ok sk ok sk R sk sk sk koK sk sk kR sk sk sk R ok sk k kR sk sk kR ok skok kR sk sk kR ok sk k kR sk sk sk R ok koK kR sk kR ok Kok ok ok
Testing data streamrate , component: framework.streamcomponent .

Pipeline@12ac982

Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6
Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed

Testing Property: streambits.userprogram. Unit_MatrixProp@14693c7
Property test passed
User Log:

Testing property A x I = A

ok koK Ok K KK K KOk K
x Test PASSED x

ok Sk koK kKK K KK Kk K

Data input: [7][9] [9][7] [1][0] [O][1]

Data output: 0 0 7 9 9 7

Config input:0001 0001 0000 0000

Config output: 0001 0001 0000 0000 0000 0000

ok ok ok K koK koK K KK K KK R KK SR KK K KK Sk K K kKK koK kK K KK R KK KK R kK R ok K K ok K R ok K R K K kK K KK R KK KKK Ok

Test Nr: 4 / 5

K>k >k 3k ok ok 3k 3k 3k 3k 3k 3k 3k sk sk sk sk ok sk sk ok sk ok sk sk sk sk sk ok ok sk ok sk sk sk ok ok 3k 3k 3k sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok ok ok sk sk sk ok ok sk ok ok skoskok

71

AUTOMATIC TESTING OF STREAMBITS

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed
Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7
Property test passed
User Log:
Testing property A x I = A

ok Sk KoK K K K K K KK K K
x Test PASSED x

ok kK Ok K KOk KK Ok K

Data input: [3][7] [0][7] [1][0] [O][1]

Data output: 0 0 3 0 7 7

Config input:0001 0001 0000 0000

Config output: 0001 0001 0000 0000 0000 0000

ok ok ok K ok oK K koK K koK kK R ok K ok ok K ok Kk ok Kk ok K kK K kK K koK ok K ok ok o ok Kk ok Kk ok Kk oK K kK R kK K ok Kk ok Kk ok Kok

Test Nr: 5 / 5

>k ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk ok ok sk ok ok ok ok ok ok ok ok ok

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 4 ,Data outRate= 6, nr pop done =4 ,nr push done =6

Config inRate = 4 ,Config outRate= 6, nr Pop done =4 ,nr push done=6
Streamrate test Passed

Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7
Property test passed

User Log:

Testing property A x I = A

ok Sk KoK K K K K K oK K kK

x Test PASSED x

ok koK kK KOk KK Ok K

Data input: [1][5] [8][8] [1][0] [O][1]

Data output: 0 0 1 8 5 8

Config input:0001 0001 0000 0000

72

APPENDIX E. ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

154 | Config output: 0001 0001 0000 0000 0000 0000
155

E.3 Test 3

Test 3 test property A x 0 = 0 five times using matrices of dimension 8.

Listing E.3: Matrix test log 3

1 |Log created : Tue Jan 23 17:14:29 CET 2007

2

3

4| Test Nr: 1 / 5

B | stk sk sk ok sk skoskok sk sk skl ok sk sk sk ok ok sk sk sk ok sk ok kR ok sk sk kR sk k sk R ok sk sk kR sk sk sk sk sk sk ok sk ok sk sk sk ok ok sk kR ok sk k sk R ok sk ok kR sk ok ok

6 | Testing data streamrate |, component: framework.streamcomponent .
Pipeline@12ac982

7 |Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done
=72

8 | Config inRate = 16 ,Config outRate= 72, nr Pop done =16 ,nr push done=72
9 | Streamrate test Passed

10
11
12 | Testing Property: streambits.userprogram.MatrixAx0@14693c7
13
14 | Property test passed
15
16 | User Log:
17
18 | Testing property A x 0 = 0
19
20 | sk ok ok ok ok ok sk ok ok ok ok ok ok ok
21 | Test PASSED x
22| sokok ok sk ok ok ok ok ok K Kok kK
23
24 | Data input: |

[3]

OO OO W wWww

DO O WwWww
w
OO OO WW W,
w
w
w

OO OO W wWww
OO OO W W wWw
OO OO WW W,
OO OO W W ww
DO OO W W wW
OO OO W W ww
OO OO W W wWw
OO OO W W ww

[3 [3]
[3 [3]
[3 [3]
[0 [0]
[0 [0]
[0 [0]
[0 [0]

OO OO WWwWww

]3]
]3]
J10]
J10]
]10]
J10]

25
26 | Data output: 0 0 0 0 0 0O 0O O O O O O O O O O O O 0 O
o o0 o0 0 0 0 o0 o0 O0O0OO0OO0OO0 0 Q0 0 0 0 o0 0 00

27
28 | Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

29
30 | Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

73

AUTOMATIC TESTING OF STREAMBITS

31
32
33
34
35
36
37

38

39
40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
55

o6
57

o8
99

60
61

62
63
64

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000

0000
0000
0000

0000
0000
0000

3k 3K 3k K sk sk 3k sk >k sk sk R skosk sk Sk R sk Sk 3k sk sk sk sk R sk sk sk sk >k skosk 3k sk sk sk sk R sk sk sk sk sk sk Sk R sk sk sk Sk R sk sk R sk sk sk Sk R skosk sk Sk R sk sk ok sk ok ok ok ok

Test Nr: 2 / 5

ok ok ok ok ok sk ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok sk sk sk sk ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok sk sk sk ok sk sk ok ok skoskook

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done

=72
Config inRate = 16 ,Config outRate= 72,
Streamrate test Passed

nr Pop done =16 ,nr push done=72

Testing Property: streambits.userprogram.MatrixAx0@14693c¢7
Property test passed

User Log:

Testing property A x 0 =0

ok ok KoK K K KK K KK K K

* Test PASSED =

K 3K Kk ok sk ok sk ok ok ok ok sk ok ok

Data input: |

J[3]

OO OO W wWww

DO OO W W wW
w
SO OO WWW ey
W
w
W

OO OO W wWwww
OO OO W W wWw
OO OO WW Wy,
DO OO W wWwww
DO OO W W wWw
DO OO W wWwww
OO OO W W wWw
OO OO W www

[3 [3]
[3 [3]
[3 [3]
[0 [0]
[0 [0]
[0 [0]
[0 [0]

OO OO WwWww

]3]
| 3]
| 10]
]10]
]10]
J10]

Data output: 0 0 o0 0 0 0 0 O O O O O O O O O O O O O
o o o0 o o0 o 0 o o0 0 0 o0 o0 0 o0 0 o0 0 o0 o0 o0o0

o o0 o0 o0 0 0 o0 0 o0 o0 o0O0O0OO0OO0OCSO0OD GO0 0 Q0 O0 0 00
0 0 0 O O 0 O

Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

K3k 3k 3k ok ok 3k 3k ok 3k 3k 3k 3k sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok ok ok >k ok sk sk ok ok 3k sk 3k sk sk sk sk sk sk sk sk sk sk ok ko k k sk sk sk sk ok ok ok sk sk ok ok ok sk ok ok skoskok

74

APPENDIX E. ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

65
66
67
68

69

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

87
88

89
90

91
92

93
94
95
96
97
98
99

100

Test Nr: 3 / 5

Kok 3k 3k ok ok 3k ok ok 3k 3k sk 3k sk sk ok ok ok ok ok ok ok ok sk sk sk ok sk ok sk ok sk ok sk sk sk ok 3k sk sk sk sk sk sk ok sk sk ok ok ok sk ok ok sk sk sk sk sk ok ok ok sk sk sk ok ok sk ok ok skoskok

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982
Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done

=72
Config inRate = 16 ,Config outRate= 72,
Streamrate test Passed

nr Pop done =16 ,nr push done=72

Testing Property: streambits.userprogram.MatrixAx0@Q14693c7
Property test passed

User Log:

Testing property A x 0 =0

ok KK kKK KKK Kk K

x* Test PASSED x

K 3k 3k 3k 3k 3k kK koK Sk R Sk ok sk

Data input: [3][3][3][3][3][3][3][3] [3][3][3][3][3][3][3][3]
(31131031 [3][3][3][3][3] [3][3][3][3][3][3][3][3]
[3][31031[3][3][3][3][3] [3][3][3][3][3][3][3][3]
[3][3][3][3][3][3][3][3] [3][3][3][3][3][3][3][3]
[0][o][O][O][O][O][O][O] [O][0][0][0][0][0][0][O]
[o][o]fojfo][o][o][o][0o] [o}[O][O][O][O][0O][O][O]
[o][o]{ojfo][o][o][o][o} [o}[o][O][O][0][0}[O0][O]
[o]J[o]{ojfo][o][o][o][o} [o}[o][0][0][0][0}[0][O]

Data output: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 O
000 0O0O0OOO0OO0OO0O0O0O0O0O0O0O0O0O0 0 0 0

Test Nr:

4/ 5

Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok Kk oKk ok sk ok ok ok sk ok sk ok ok ok ok ok ok Kk oK sk ok ok ok ok Kk ok ok ok ok k ok ok ok

ok ok ok ok ok sk sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk ok ok sk sk

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982
Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done

=72

75

AUTOMATIC TESTING OF STREAMBITS

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119

120
121

122
123

124
125
126
127
128
129
130

131

132
133
134
135
136
137
138

Config inRate = 16 ,Config outRate= 72,
Streamrate test Passed

nr Pop done =16 ,nr push done=T72

Testing Property: streambits.userprogram.MatrixAx0@Q14693c7
Property test passed

User Log:

Testing property A x 0 =0

Sk ok KR K koK K R K K K %

x+ Test PASSED =«

kK ok ok ok ok ok ok ok ok ok ok ok ok >k

Data input: [3][3][3][3][3][3][3][3] [3][3][3][3][3][3][3][3]
[31031[3][31[3][3][3][3] [3][3][3][3][3][3][3][3]
[31031[3][31[3][3][3][3] [3][3][3][3][3][3][3][3]
[31031[3][31[3][3][3][3] [3][3][3][3][3][3][3][3]
[oJ{o][o]fojfo]{o]fo][o] [o][0][0}[0][0][O][O][O]
[oJ{o][o]fo}[o][o][o][0] [o][0][O}[0][O][O][O][O]
[oJ{o][o]{o}[o][o][o][o] [o][0][0}[0][0][0][O][O]
[oJ{o][o]fojfo][o][o][o] [o][o]{o}[o][o][0][0][0]

Data output: 0

000 00O0O0O0O0O0O0O0D0O0O0O0TO0D0O0O0 00
00 0000 O0D0O0O0O0O0O0TO0O0O0D0O0O0O0 0 0 0
000 0 0 0 0 0

Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

ok ok ok ok ok sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk ok ok skoskook

Test Nr:

5/ 5

Kok 3k ok ok ok ok ok ok ok 3k sk sk sk sk ok ok ok ok ok ok ok ok sk sk ok ok sk ok sk sk ok ok sk sk sk ok 3k 3k sk sk sk sk sk ok skosk ok ok ok sk ok sk sk sk sk sk sk ok ok ok sk sk ok ok ok sk ok ok skoskok

Testing data streamrate , component: framework.streamcomponent .
Pipeline@12ac982

Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done
=72

Config inRate = 16 ,Config outRate= 72,
Streamrate test Passed

nr Pop done =16 ,nr push done=T72

Testing Property: streambits.userprogram.MatrixAx0@Q14693c7

Property test passed

76

APPENDIX E. ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

139

140 | User Log:

141

142 | Testing property A x 0 = 0

143

144 | kxkxkxxxxxk %% %%

145 |« Test PASSED x

146 | kkskkkxkx k%% %% %

147

148 | Data input: [3][3][3][3][3][3][3][3] [3][3][3][3][3][3][3][3]
[3][3][3][3][3][3][3][3] [3][3][3][3][3][3][3][3]
[31[31[3][3][3][3][3][3] [3][3][3][3][3][3][3][3]
[31[3][3][3][3][3][3][3] [3][3][3][3][3][3][3][3]
[o][o][o][o][o][o][o][o] [o][o]J[o][o][0][0][0][O]
[o][o][o][o][o][o][o][o] [o][o]J[o][0][0][0][O][O]
[o]fo][o][o][o][0][0][0] [O][O][O]}[O0]}[O][O][O][O]

» [o]Jfo][o][o][o][o][o][o} [Oo][o][Oo}[O]}[O][O][O][O]

150 | Data output: 0 0 0 o0 0 0 O O O O O O O O O O O 0 0 O
o o o o o0 o0 o o o o o o o o0 o o o0 0 0 o0 o0 o
o o o 0O 060 OO 0O OO O0OTO0OUO O O0O 0O O0 0 0 0 0 o0
0O 0 0 0o 0 0 O

151

152 Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

153

154 Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

155

156 | s sk sk ok sk ok ok ok o ok ok sk ok ok ko ook ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok o ok ok ok ok ok ko ok sk ok ok ok ok ok o K ok ok

E.4 Test 4

Test 4 test property A x I = A five times using matrices of dimension 8.

Listing E.4: Matrix test log 4

1 |Log created : Tue Jan 23 17:10:44 CET 2007

2

3

4| Test Nr: 1 / b

B | ks ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok Kk ok K K oK KoK KR R R K KK R kK R ok K R ok Kk ok Kk ok K R ok R oK KK KK R kK R R Kok

6 | Testing data streamrate |, component: framework.streamcomponent .
Pipeline@12ac982

7 | Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done
=72

8 | Config inRate = 16 ,Config outRate= 72, nr Pop done =16 ,nr push done=72

9 | Streamrate test Passed

10

11

7

AUTOMATIC TESTING OF STREAMBITS

12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

27
28

29
30

31
32
33
34
35
36
37

38

39
40
41
42
43
44
45
46
47
48
49

Testing Property: streambits.userprogram. Unit_MatrixProp@14693c7
Property test passed

User Log:

Testing property A x I = A

ok KoK kKK KK Kk K

x* Test PASSED x

>k 3k 3k ok ok ok okok ok ok ok ok ok ok sk

Data input: [9][7][1][1][0][1][3][1] [6][4][1][1][7][6][6][0]
[6][3][0)[3][4][9][6][7] [L][2][O0][2][3][1][2][1]
[L][7][o)[8][0][8][1][9) [3][4][4][2][3][5][7][8]
[4][5][9][L][7][4][9](5] [7][2][2][7][6][1][4][3]
[1][o][o][O][O][O][O][O] [O][L1][0][0][0][0][0][O]
[o][o]{rjfo][o][o][o][o] [O}[O][O][L][O][0O][O0][O]
[o][o]fojfo][1][o][o][o} [Oo}[O][O][O][O][1][0][O]
[o]Jfo]fojfoj[o]fo][1]fo} [ojfo][o][0][0][0O}[0][1]

Data output: 0 0 0 0 0 0 0 0 9 6 6 1 1 3 4 7 7 4 3 2
7 4 5 2 1 100 0 4 9 2 1 1 3 2 8 2 1 7 07
4 3 03 7 6 1 6 9 1 8 5 4 1 3 6 6 2 1 7 9 4 1

Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

sk sk ok sk ok ok sk ok ok ok ok ok sk ok sk sk sk sk ok sk sk ok ok sk ok sk sk ok sk ok ok sk sk sk sk sk sk sk ok ok sk sk ok sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk ok sk sk ok ok sk ok sk ok ok kK

Test Nr: 2 / 5

ok ok ok ok ok ok sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk sk sk ok sk sk ok ok skoskook

Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982

Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done
=72

Config inRate = 16 ,Config outRate= 72,
Streamrate test Passed

nr Pop done =16 ,nr push done=72

Testing Property: streambits.userprogram.Unit_MatrixProp@14693c7
Property test passed
User Log:

Testing property A x I = A

78

APPENDIX E.

ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

50
o1
52
53
o4
95

56
o7

58
59

60
61

62
63
64
65
66
67
68

69

70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86

st ok ok ok ok sk ok ok ok ok ok ok ok ok ok
x+ Test PASSED x

3K K ok ok ok ok ok ok ok ok ok ok ok >k

Data output: 0 0 0
7 1 7 0 0 6

— O OO Ut W

Data input: [2][3][0]]
[6][6][9][2][1][3]]
[8][7][0][3][9][2]]
[4][7][1][3][2][3]]
[1][0][0][0][0][O]]
[O][o][1][O][O][O]]
[O][O0][O][O][1][O]]
[0][o][0][0][0][O]]

DO OO W WO

0]

COoO OO > WO,
cCo oo~ oy

se2erex

e
IO
O
SN
ORI

Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000
0000 0000 0000 0000 0000

p—
Ne
W

Config output: 0001 0001
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

0000
0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000

ok ok ok ok ok sk sk ok ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok sk ok ok sk sk ok ok ok sk sk sk ok sk sk ok ok skoskook

Test Nr: 3 / 5

Testing data streamrate

Pipeline@12ac982
Data inRate = 16
=72

Config inRate 16
Streamrate test Passed
Testing Property:
Property test passed

User Log:

st ok ok sk ok sk ok sk ok ok ok ok ok ok ok
x+ Test PASSED x

>k 3k 3k ok ok ok ok ok ok ok okok ok ok sk

Data input:

)

Testing property A x I = A

component :
,Data outRate=

,Config outRate= 72,

[5102][1][5][0][8][8][3]
[4]141[9][3][8][3][8][5]

72, nr pop done =16

nr Pop done =16

[7]{L][6][9][1][3]

K 3K 3K 3k ok ok ok ok ok ok ok kK K K K 3K sk sk sk ok ok ok ok ok K K K K oK sk sk sk sk ok ok ok sk kK K K ok oK sk sk sk sk ok ok ok ok ok sk kK K K K sk sk sk sk ok ok ok ok ok
framework . streamcomponent .

,nr push done

,nr push done=72

streambits . userprogram . Unit_MatrixProp@14693c7

[6][4]

79

AUTOMATIC TESTING OF STREAMBITS

87
88

89
90

91
92

93
94
95
96
97
98
99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118

0 0 6 8 1

OO O O Utw
OO O = 0o O

OO OO N L

91(9][2][9][6]
91[9][5][0][7]
oJfojroJfoJfo]
L][0][0][0][0]
OJ[0][1][0][0]
0JfoJfojfojfu]
7 2 4 4 3

Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

Config output: 0001 0001 0001 0001
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

0001 0001 0001
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000

0001 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

Kok >k 3k ok ok 3k ok ok ok 3k 3k 3k sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk ok 3k sk 3k sk sk sk sk sk sk sk sk ok ok ok k k sk sk sk sk sk sk ok ok sk sk ok ok sk ok ok ok skoskok

Test Nr: 4 / 5

K3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sko3ksk sk kSR sk skosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk 3k R 3R sk sk sk skoskosk sk skoskoskoskoskok

Testing data streamrate

Pipeline@12ac982
Data inRate = 16
=72
Config inRate = 16

,Data outRate=

, component:

,Config outRate= 72,

Streamrate test Passed

Testing Property:
Property test passed

User Log:

Testing property A x I = A

sk sk sk ok sk sk K ok sk ok ok sk ok sk ok
x* Test PASSED x
st sk sk ok sk sk ok ok sk ok ok ok ok sk ok

Data input: |

]3]

O OO WO N

[2 [7]
[1][2][9]
[9][3]12]
[1][0][0]
[0][O][1]
[0][0][O]
[0][0][0]

SO OO WY

—_— O O O = = o=

ot

cCoo R 0w o

SO OO U= W
LLEEEeEw
cCoococ oo

72,

nr pop done =16

nr Pop done =16

OO OO O N

oo~ o wuto
O~ OO KR~
OO OO W] U™
— O OO OoON©ND

framework . streamcomponent .
,nr push done

,nr push done=T72

streambits . userprogram . Unit_MatrixProp@14693c7

—
—
Ut

80

APPENDIX E. ADDITIONAL TEST LOGS - MATRIX MULTIPLICATION TEST

119 | Data output: 0 0 0o 0 0 O 0O O 7 7 2 0 1 6 9 3 2 4 3 0
28 3 v 9 6 7 0 97 2 91 8 3 0 0 5 3 9 5 0

120
121 Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

122
123 Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

124
126
127
128 | Test Nr: 5 / 5

129 [sk sk sk ks ok o ok stk ok ok o KK Kok ok o K K oK oK K KR oK R K K K oK R K K oK R K KK oK R R K KK oK R K KK K R K OF

130 | Testing data streamrate , component: framework.streamcomponent.
Pipeline@12ac982

131 |Data inRate = 16 ,Data outRate= 72, nr pop done =16 ,nr push done
=72

132 | Config inRate = 16 ,Config outRate= 72, nr Pop done =16 ,nr push done=72
133 | Streamrate test Passed

134
135
136 | Testing Property: streambits.userprogram.Unit_MatrixProp@14693c¢7
137
138 | Property test passed
139
140 | User Log:
141
142 | Testing property A x I = A
143
144 | sk s sk ok skook ok ok ok ok ok kok ok
145 |+ Test PASSED x
146 | sk sk okook sk sk ok sk sk sk okok ok ok
147
148 | Data input: |

18]

— O o0 WwWo ~ W

coocowuto -
|
COo o w®© L,
o
—_
=

O = O O o o ut
OO OO0~ ©
OO OO W O n
OO R OO ©UlO
cCooc o~
(=R e Bl &) S S))
OO O O Ul
—_— O 00O WUt W

[8
[8
[3
[1
[0
[0
[0

OO O O 0ok

[8]
[8]
[1]
[0]
[1]
[0]
[0]

J19]
[[2]
[10]
[0]
] 0]
J10]
149
150 | Data output: 0 0 0 0 0 0 0 O 4 9 8 0 8 1 3 8 7 2 8 5
9 9 2 3 9 0 8 8 8 4 1 8 3 4 4 5 2 9 8 6 1 3

151
152 Config input:0001 0001 0001 0001 0001 0001 0001 0001 0000 0000 0000
0000 0000 0000 0000 0000

81

AUTOMATIC TESTING OF STREAMBITS

153

154 | Config output: 0001 0001 0001 0001 0001 0001 0001 0001 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000
155

156

ok ok ok ok ok sk sk ok sk sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk ok sk sk sk sk ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok sk sk ok ok sk sk ok

82

APPENDIX F. SOFTWARE APPENDIX

F Software appendix

The complete testing tool developed in this project is implemented as a package in the
StreamBits Java framework. Figure shows an overview of the different files in this

package.

TestFiles

—]

AutoTest I

l ConfigFilter

= ConfigFilterWrap |
: ConfigType I
= DataCollWrap l

: DataCollector l

Generator

LogFilt

LogFiltWrap

LogPrint
Property

Source

Test

Timer

TimerTask

Generators

Figure F.1: Testing tool package

83

AUTOMATIC TESTING OF STREAMBITS

e Autotest - Main engine of testing tool

e ConfigFilter - Filter for providing test configuration streams
e ConfigFilterWrap - Wrapper class for ConfigFilter

e ConfigType - Specific type for handling configuration tapes
e DataCollWrap - Wrapper class for DataCollector

e DataCollector - Filter for collecting test data

e Generator - Interface for data generators

e LogFilt - Filter for creating test logs

o LogFiltWrap - Wrapper class for LogFilt

e LogPrint - Class for handling user log

e Property - Interface for writing properties

e Source - Interface for handling data generators

e Test - Class defining TestClass variable

e Timer - Class for handling multiple timers

e TimerTask - Class for handling multiple timer task

e Generators - Package of predefined data generators
Ramp - Package containing ramp generators
Random - Package containing random generators

Step - Package containing step generators

84

	Preface
	Abstract
	Introduction
	Automatic testing
	StreamBits
	Project goals

	Literature review
	Specification based testing
	Formal Specification languages
	Design by contract

	Value checking based testing

	Background
	Value checking based Testing tools
	JUnit

	Specification based testing tools
	iContract
	Korat
	QuickCheck

	Programming in Streambits
	Components
	Data types
	Init- Configure- Work
	Main function
	Threaded Framework and streamrate

	Implementation
	The test tool
	Autotest
	Data generators
	Config
	Data collector
	The log filter
	Stream rate test

	Test program from programmers point of view
	Main
	Property
	Class Test

	Execution of test tool

	Results
	Adder
	Functionality
	Test
	Results

	Matrix multiplication
	Functionality
	Test
	Results

	Conclusion
	Future work

	References
	Log adder test
	Test 1
	Test 2

	Property - matrix multiplication test
	Property A 0 = 0
	Property A I = A

	DataGenerator - matrix multiplication test
	Log matrix multiplication test
	Test 1
	Test 2
	Test 3
	Test 4
	Test 5

	Additional test logs - matrix multiplication test
	Test 1
	Test 2
	Test 3
	Test 4

	Software appendix

