En undersökning om hur Robotsystem 70 skytten presterar i kyla

I denna uppsats har det studerats hur kyla påverkar Robot 70 skyttens prestanda. För att göra detta har en hypotesprövande metod använts. Hypotesen lyder: ”En robotskytts finmotorik påverkas av kyla så till den grad att träff inte är sannolik.”

Hypotesen används till hjälp att svara på följande frågeställningar:

Frågeställning 1:
I vilken utsträckning påverkas robot 70-skyttens finriktningsförmåga av kyla?

Frågeställning 2:
Hur kan luftvärnsregementet förbättra nyttjandet av Robot 70 gruppens utrustning för att minska kylans påverkan på robotskyttens prestanda?

Ett experiment har använts för att verifiera eller falsifiera hypotesen. Sju personer från Luftvärnsregementet har skjutit simulera avfyringar inom- och utomhus, vid olika temperaturer. Resultatet från robotarna avfyrade inomhus vid 20°C hade en ungefär träffsannolikhet för direktträff på 94 %. Avfyringarna i segmentet med lägst uppmätta tumtemperaturer hade enligt mina mätningar en betydligt lägre träffsannolikhet för direktträff.

Vad som verkar sänka temperaturen robotskyttens tumme mest, är värmeledning från robotsystemets styrspak. Slutsatsen är att detta verkar beror på att styrspaken är tillverkad av aluminium. Genom att isolera styrspaken kan det undvikas att skyttens tumme kyls ned och därmed minskar dennes träffsannolikhet.

Key Words: RBS 70, kyla, träffsannolikhet, temperatur

Kd. Andreas Karlsson
LvSS
830308-4670

Luftvärnets Stridsskola

Självständigt arbete, 15 Hp
Abstract

In this essay it has been studied how cold environment can affect the gunner of the RBS 70. In this study, the method of testing a hypothesis has been used. Hypothesis: “The Gunner is affected by cold to such an extent that a hit is not probable”

The hypothesis is used in helping to answer the following two questions:

1. To what level is the RBS 70 Gunner affected by cold?

2. How can the Swedish AD Regiment improve its use of equipment in order to reduce the effects of cold weather, on the RBS 70 gunners’ ability to aim?

A test was performed to verify or falsify the hypothesis. Seven people from the Swedish AD Regiment fired simulated missiles both indoors and outdoors, in different temperatures. The results show that the missiles fired indoors at 20°C had an approximated direct hit-ratio of 94 percent. The firings where the thumb temperatures were the lowest had a lot lower direct hit ratio.

The greatest issue lowering the gunners thumb temperature was the temperature of the joystick of the sight. The conclusions are that the joystick, which is made of aluminium, must be isolated to avoid cooling the gunners’ thumb. Otherwise it will be harder to hit the target at a low temperature.

Keywords: RBS 70, cold weather, hit ratio, temperature
Innehållsförteckning

Abstract................................................................................................................................ 4
Innehållsförteckning ................................................................................................................ 5
1. Inledning ............................................................................................................................... 8
  1.1. Bakgrund ....................................................................................................................... 8
  1.2. Syfte ............................................................................................................................. 8
  1.3. Problemformulering ....................................................................................................... 9
  1.4. Frågeställningar .......................................................................................................... 9
  1.5. Analys av uppgift ......................................................................................................... 9
  1.6. Avgränsningar ............................................................................................................. 10
  1.7. Källkritik ...................................................................................................................... 10
    1.7.1. Kritik av egen studie .............................................................................................. 10
  1.8. Egen förförståelse ........................................................................................................ 11
  1.9. Centrala begrepp ......................................................................................................... 11
  1.10. Metod ......................................................................................................................... 12
  1.11. Tidigare forskning .................................................................................................... 12
  1.12. Disposition ................................................................................................................ 12
2. Avhandling .......................................................................................................................... 12
  2.1. Människokroppen ........................................................................................................ 12
    2.1.1. Människokroppen i kyla ......................................................................................... 12
    2.1.2. Händer och hud ...................................................................................................... 12
    2.1.3. Handens färdigheter ............................................................................................. 12
    2.1.4. Köldfaktor och värmeförlust ............................................................................... 12
    2.1.5. Kylans påverkan på händer ................................................................................ 12
    2.1.6. Känslor .................................................................................................................. 12
  2.2. Robotsystem 70 ............................................................................................................ 12
    2.2.1. Allmänt ................................................................................................................. 12
    2.2.2. Styrsystem ............................................................................................................ 12
  2.3. Robot 70 sim .................................................................................................................. 12
  2.4. Experiment .................................................................................................................... 12
3. Resultat ................................................................................................................................. 12
  3.1. Statistik .......................................................................................................................... 12
  3.2. Träffsannolikhetsberäkningar ..................................................................................... 12
    3.2.1. Beräkningsprinciper ............................................................................................. 12
  3.3. Medelträffpunkt i målet respektive bredvid målet ........................................................ 12
    3.3.1. Medelträffpunkten mitt i målet - Sannolikheten att träffa ett cirkulärt mål med ett skott................................................................................................................................. 12
    3.3.2. Presentation resultat - medelträffpunkt mitt i målet............................................. 12
  3.4. Medelträffpunkten ej mitt i målet ................................................................................. 12
    3.4.1. Medelträffpunkten ligger i målet men förskjutet i sida och höjd......................... 12
    3.4.2. Medelträffpunkten ligger utanför målet ............................................................... 12
    3.4.3. Presentation resultat- medelträffpunkt förskjuten från målets centrum .......... 12
  3.5. Analys ............................................................................................................................. 12
    3.5.1. Utomhustemperatur – Best Case ......................................................................... 12
    3.5.2. Tumtemperatur – Best Case ................................................................................. 12
    3.5.3. Utomhustemperatur – Worst Case ....................................................................... 12
    3.5.4. Tumtemperatur – Worst Case .............................................................................. 12
    3.5.5. Sammanfattning av analys .................................................................................... 12

Sid 3 (33)
3.6. Svar på frågeställning ........................................................................................................ 12
3.6.1. Frågeställning 1 ............................................................................................................... 12
3.6.2. Frågeställning 2 ............................................................................................................... 12

4. Diskussion ........................................................................................................................ 12
4.1. Resultat .............................................................................................................................. 12
4.1.1. Hypotes .......................................................................................................................... 12
4.1.2. Kylans påverkan ........................................................................................................... 12
4.1.3. Stridsvärde ................................................................................................................... 12
4.1.4. Val av målbana ............................................................................................................. 12
4.1.5. Testpersoner ............................................................................................................... 12
4.1.6. Övriga observationer .................................................................................................... 12
4.2. Förslag på framtida forskning .......................................................................................... 12
4.3. Slutsatser .......................................................................................................................... 12
4.4. Sammanfattning ............................................................................................................... 12

5. Litteratur- och källförteckning ......................................................................................... 12
5.1. Källförteckning .................................................................................................................. 12
5.2. Litteraturförteckning ......................................................................................................... 12
5.3. Bildförteckning .................................................................................................................. 12

Bilaga 1 - Rådata .................................................................................................................... 12
Data sorterad efter tumtemperatur: 14-27,2°C ................................................................. 12
Data sorterad efter tumtemperatur: 9,0-13,9°C ............................................................... 12
Data sorterad efter tumtemperatur 1,6-8,9°C ................................................................. 12
Data sorterad efter utomhustemperatur: -3°C ................................................................. 12
Data sorterad efter utomhustemperatur: -14°C ............................................................. 12
Data sorterad efter inomhustemperatur: +20°C ............................................................ 12

Bilaga 2 – Utrustningslista .................................................................................................... 12
1. Inledning

1.1. Bakgrund
Robotsystem 70, tillverkat av Bofors Dynamics har funnits i svenska Försvarsmakten sedan sjuttiotalet. Systemet är specifiserat för att kunna nyttjas i hela Sverige, året om. Tekniskt så uppfyller systemet dessa krav, dock så ställs det stora krav på robotskyttens prestationer, särskilt i extrema klimat, om roboten ska träffa målet.

Robot 70-skyttarna på Luftvärnsregementet mängdtränas idag med simulatorutrustning i en rumstempererad inomhuslokal. På grund av relativt få vinterövningar får soldaterna inte uppleva hur kroppen beter sig i kallt klimat och blir medvetna hur deras träffresultat påverkas av kyla. Personalen på stabsnivå känner inte heller till eventuell skillnad i skyttarnas kapacitet vid olika temperaturer och klimat vilket gör att uppgifter som kanske inte är rimliga ställs och uthålligheten på robotenheterna inte beaktas.

Det genomförs mer eller mindre årligen övningar med Robotsystem 70 i kallt klimat. Under dessa övningar saknas dock möjligheter till utvärdering av robotskyttarnas träffresultat.

Jag vill därför undersöka huvudvikt kyla påverkar robotskyttens träffresultat.

1.2. Syfte
Jag vill med detta arbete undersöka eventuella problem med att i kallt väder, nyttja ett vapensystem som ställer stora krav på skyttens finmotorik.

1.3. Problemformulering
Roboten i Robotsystem 70 styrs från avfyring till träff av robotskyttens högertumme. Träffresultatet beror på hur bra skytten lyckas hålla robotsiktets hårkors på målet. För träff krävs att skytten följt målet i 5-22 sekunder (beroende på bl.a. avstånd och hastighet). Systemets styrsystem kräver hög känslighet i skyttens tumme och av den anledningen bör ingenting vara emellan styrspaken och skyttens tumme. Av denna anledning används inte handlar av robot 70 skyttarna på luftvärnsregementet.

Kyla påverkar människokroppens finmotorik och känslan negativt. Kan kyla påverka robotskyttens förmåga så till den grad att robotsystemet blir verkanslös?

1.4. Frågeställningar
Frågeställning 1:
I vilken utsträckning påverkas robot 70-skyttens finriktningsförmåga av kyla?

Frågeställning 2:
Hur kan robot 70 gruppens robotutrustning anpassas för att förbättra robotskyttens prestanda i kyla?
1.5. Analys av uppgift
Jag kommer behöva genomföra simulerade robotskott och mäta temperaturen på skyttens tumme och jämföra dessa med träffresultaten. Jag kommer behöva beräkna verkan både för direktträff och zonrörsträff, och sedan föra ett resonemang om hur mycket prestandan hos skytten ändras vid olika temperaturer, både yttertemperatur och tumtemperatur.

Den andra frågeställningen kan besvaras med hjälp av att undersöka den analyserade datan från experimentet och se om det finns några tydliga åtgärdspunkter.

1.6. Avgränsningar
Jag väljer i detta arbete att helt fokusera på den mänskliga faktorn, detta då robotsystemet i sig redan är testat i kallt väder. Dock så kommer vissa delar av systemet in i analysen, t.ex. hur människokroppen påverkas av materialet på robotenheten.

1.7. Källkritik

1.7.1. Kritik av egen studie
Vad min studie mäter är egentligen träffsannolikheten för Robotsystem 70 simulator (M7795-170011). Hur träffsannolikheten ser ut vid en ”riktig” skarpskjutning har jag ingen möjlighet att mäta. Jag anser dock att simulatorn ger tillfredsställande resultat i detta syfte då jag till stor del jämför utomhusresultat med referensskott inomhus samt att simulatorn är framtagen för att just mäta robotskyttens prestanda.

Skyttarna jag har använt mig av i min studie är utbildade på robotsystem 70 men de var vid tillfället för experimentet inte placerade som robot 70-skyttar i insatsorganisationen. Skyttarna var samtliga kadetter eller officerare vid luftvärsregementet.

För att få ett bättre underlag borde nyligen grundutbildade skyttar nytjats, det fanns dock inte några sådana att tillgå när studien skulle genomföras.


1.8. Egen förförståelse

Jag har således en viss kännedom om systemet sedan tidigare och jag har haft god användning av min tidigare kunskap då jag genomförde experimentet för att få detta att efterlikna verkligheten.
1.9. Centrala begrepp
Kyla – Definieras i denna uppsats av en köldfaktor från +5 till -30°C. Detta är inom Robotsystem 70’s definierade prestanda.¹

1.10. Metod
Till den första frågeställningen har jag valt att använda mig av en hypotesprövande² metod. Jag anser detta vara den bästa metoden att nytta då jag baserar min undersökning på kända fakta – att fingerfärdighet och finmotorik försämras av kyla (mer om detta i kapitel 2). Utifrån dessa fakta kan jag ställa en rimlig hypotes som jag med hjälp av ett experiment kommer verifiera eller falsifiera.

Hypotes är som följer: En robotskytts finmotorik påverkas av kyla så till den grad att träff inte är sannolik.


För att svara på den andra frågeställningen så avser jag att använda data samt observationer från mitt experiment och utifrån detta svara på min andra frågeställning.

En svaghet i min undersökning är antalet testpersoner. Det hade enligt mig varit önskvärt med fler, jag anser dock att jag bör få ett tillräckligt bra underlag för att dra slutsatser. Möjlighet finns dock att i ett senare skede göra om experimentet i större skala.

1.11. Tidigare forskning
Det har bedrivits forskning angående hur finmotorik och fingerfärdighet påverkas av kyla, bl.a. av Geng³ vid Luleå universitet. Dock så har det inte forskats i huruvida detta påverkar robot 70 skyttens prestanda.

1.12. Disposition
Inledningsvis redogör jag för hur kyla påverkar människan rent fysiologiskt. Därefter avser jag i min avhandling att kortfattat beskriva Robotsystem 70 samt Simulatorenhet 70.

Sedan presenterar jag hur jag gått till väga med mitt experiment. För att därefter grafiskt och i text presentera de data jag insamlat under experimentet. I anslutning till detta så presenterar jag resultatet av mina insamlade data och för en diskussion om detta.

Slutligen dras slutsatser och efter detta följer en sammanfattning.

¹ Instruktionsbok Robotsystem 70, M7786-010691, (Förlag saknas, Förlagsort saknas: 2005), Kap. 4. s. 4.
² Ejvegård, R. Vetenskaplig metod, (Studentlitteratur, Lund: 2003), s. 37.
Geng et. al. Temperature Limit Value For Touching Cold Surfaces with the Fingertip. (Oxford University Press, Förlagsort saknas: 2006)
2. Avhandling

2.1. Människokroppen

2.1.1. Människokroppen i kyla


Blodflödet i kroppen regleras av det centrala nerverystemet. Detta påverkas i sin tur av olika sensorer i kroppen och reglerar utifrån insamlade data hur stort flödet skall vara till de olika kroppsdelarna. Flödet kan regleras på olika sätt, t.ex. vasokonstriktion.

Kyla har effekten att nervsignaler från hjärnan, till exempel fingrarna fördröjs, vilket får till följd att får finmotorik blir betydligt sämre och vi blir fumliga. Redan vid en lufttemperatur på 12°C påverkas våra finmotoriska muskelrörelser, vid 8°C påverkas vår känsel. Både finmotorik och känsel är viktiga element inom robot 70 skjutning, då roboten styrs av skyttens tumme.

2.1.2. Händer och hud

Våra händer består av ben, leder, muskler, senor och skinn. Vi har procentuellt sett väldigt lite skelettmuskulatur i händerna, vilket gör att handens förmåga att alstra värme är starkt begränsad. Detta gäller både vid vanligt arbete samt vid huttrning.

Händerna förses med syrerikt blod av två djupt liggande artärer och återtransporteras av ytligt liggande vener.


Känselcellerna i huden finns både på ytan och på djupet, dessa påverkar både vad vi känner samt hjälper oss att orientera händer och fingrar.

---

4 Hypotermi, kylskador, drunkningstillbud i kallt vatten, (Socialstyrelsen, förlagsort saknas: 2003), s. 120.
5 Ibid, s. 8.
9 Ibid, s. 3.
10 Ibid, s. 2.
2.1.3. Handens färdigheter
Handens färdigheter kan delas in i följande fem faktorer:11

- Fingerfärdighet – små fina rörelser
- Manuell färdighet – hand och armlörelse, utan nyttjande av fingertopparna
- Handled-finger hastighet – hastiga finger- och handledsrörelser
- Sikte – att koordinera snabba och exakta handrörelser med ögat
- Positionering – att koordinera öga och handrörelser och samtidigt flytta handen

Alla dessa faktorer påverkar mer eller mindre robotskyttens förmåga att hålla hårkorset på målet.

2.1.4. Köldfaktor och värmeförlust
Kyla påverkas inte enbart i temperatur. Det är flera faktorer som påverkar vilken köldfaktor vi upplever. Dessa är temperatur, luftfuktighet och vind.


Värmeförlust delas in i olika områden: 13

- Konvektion – Värmeförlust genom att förbipasserande luft eller vätska transporterar bort värme
- Strålning – Kroppen avger värmestrålning
- Värmeledning – Genom föremål
- Avdunstning – Genom svett
- Andning – Uppfuktad och uppvärmd luft går ur kroppen, torr och kall luft går in i kroppen

Geng visar att vid kontakt med föremål av aluminium med temperaturen -15°C så tar det endast ett fåtal sekunder för huden att nå 0°C.14

---

13 Hypotermi, kylskador, drunkningstillbud i kallt vatten, (Socialstyrelsen, förlagsort saknas: 2003), s. 120.
Värmeledning kyler ned kroppen olika snabbt och mycket beroende på vilket material som vidrörs. Metalliska föremål kyler generellt snabbare än icke-metalliska föremål.\textsuperscript{15}

Även om en person bara snuddar vid ett kallt material så blir kyleffekten densamma som om det hade lagts tryck på materialet.\textsuperscript{16}

2.1.5. Kylans påverkan på händer

Händerna och i synnerhet fingrarna är den del av kroppen som lättast påverkas av kyla. Detta beror på att fingrarna har en väldigt stor yta i proportion mot deras volym. Denna faktor ökar avkylningseffekten avsevärt. Dessutom är fingrarna den delen på kroppen som mest kommer i kontakt med kalla ytor vilket ger upphov till värmeledning.\textsuperscript{17}

Minskat blodflöde i skinnet påverkar känseln och begränsar fingerfärdigheten och greppstyrkan, vilket ger en nedsatt prestationsförmåga till följd.\textsuperscript{18}

2.1.6. Känsel

Känsel är nära sammankopplat med kyla. Det har visat sig att även om omgivningens temperatur spelar stor roll för känselförlust så är det trots allt temperaturen på själva kroppsdelen som är avgörande för hur pass mycket känsel vi har.

Vid en temperatur på 6-8°C så avbryts nervaktiviteten i det nedkylda området, vilket får till följd att området känns bedövat.\textsuperscript{19}

2.2. Robotsystem 70

2.2.1. Allmänt

Robotsystem 70 är ett laserledstrålestyrkt luftvärnsrobotsystem tillverkat av Bofors Dynamics.

Systemet är ett så kallat MANPADS, Man Portable Air Defence System (bärbart luftvärnssystem). En robotgrupp består av skytt, laddare, operatör, samt stridsledare.


Skytt, laddare och operatör har alla samma utbildning och roterar mellan befattningarna för att kunna bibehålla högt stridsvärde.

\textsuperscript{14}Geng, Q, Hand Cooling, Protection and Performance in Cold Environment, (National institute for Working Life, Stockholm: 2001), s. 33.

\textsuperscript{15} Geng et. al. Temperature Limit Value For Touching Cold Surfaces with the Fingertip, (Oxford University Press, Förlagsort saknas: 2006), s. 855.

\textsuperscript{16} Ibid, s. 858.

\textsuperscript{17} Geng, Q, Hand Cooling, Protection and Performance in Cold Environment, (National institute for Working Life, Stockholm: 2001), s. 5.

\textsuperscript{18} Ibid, s. 5.

\textsuperscript{19} Ibid, s. 4.
2.2.2. Styrsystem


Skytten måste alltså se målet hela vägen från avfyring till träff, vilket innebär att skyttens förmåga att hålla sikets hårkors på målet under bekämpningsförloppet är helt avgörande för om det blir träff eller inte.

![Omkopplare för banhöjning](image)

Med styrspaken på bilden styr robotskytten laserledstrålen mot den punkt som skytten riktar hårkorset.


---

20 *Instruktionsbok Robotsystem 70*, M7786-010691, (Förlag saknas, Förlagsort saknas: 2005), kap. 2. s. 17-18, kap 5. s. 46.
21 Ibid, kap. 5. s. 35.
22 Ibid, kap. 4. s. 9.
2.3. Robot 70 sim
För att kunna genomföra mina försök krävdes det en simulator som klarar kallt väder. Simulatorn som idag nyttjas vid Luftvärnsregementet klarar inte av att utsättas för kyla utan är endast till för inomhusbruk. Jag fick därför använda mig av föregångaren, Simulatorsikte RBS 70 (M7795-170011). Med hjälp av denna simulator kan övningsledaren projicera en ellips vilken utgör målet som skytten skall följa. Skytten följer målet som om det vore en verklig flygfarkost och simulatorn räknar ut hur skytten har siktat i förhållande till målet och presenterar eventuell träffavvikelse i meter.\(^{23}\)

2.4. Experiment
Experimentet lades upp på följande sätt.


Utomhusskjutningarna i kallt väder skedde vid två olika tillfällen med hälften av testpersonerna vid respektive tillfälle. Vid det ena tillfället var utomhustemperaturen -14°C och vindstyrkan 0 m/s. Vid det andra tillfället var temperaturen -3°C och vindstyrkan 2 m/s, vilket motsvarar en kyleffekt på ca -4°C. 

Yttertemperaturen mättes med hjälp av en kvicksilvertermometer.

Urvalskriteriet för skyttarna som användes i experimentet var att de är utbildade på robotsystem 70. Kompetensen på gruppen var allt från mångårdig erfarenhet som riktinstruktör på Robotsystem 70 till att nyligen ha genomfört Grundkurs i robotsystem 70. Samtliga skyttar har spenderat flertalet timmar med simulatorskjutningar tidigare.


Förföll:

<table>
<thead>
<tr>
<th>Handske</th>
<th>Målbanor</th>
<th>Handske</th>
<th>Målbanor</th>
<th>Handske</th>
<th>Målbanor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10min</td>
<td>1</td>
<td>10min</td>
<td>4</td>
<td>10min</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>6</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

\(^{23}\) Instruktionsbok Robotsystem 70, M7786-010691, (Förlag saknas, Förlagsort saknas: 2005), kap. 8. s. 19-23.
Målbanan som valdes är nummer 4 enligt simulatorns målbaneenhet (MBE). I denna målbana befinner sig målet initialt på 8 km avstånd och håller en hastighet på 50 m/s i riktning mot robotenheten. Anledningen till att denna målbana valdes berodde på att kraven som ställs på skytten främst rör sig om finriktning. Det vill säga, huvudsyftet med denna målbana är att kontrollera skyttens förmåga att följa målet med tumrörelser. Målets raka målbana gör att grovriktning (att rikta med hela siktet) ej är nödvändig.

Målet befinner sig på 8 km vilket gör att roboten får en relativt lång flygtid (ca: 15-20 sekunder). För skytten innebär detta en långvarig kontakt mellan styrspe och tumme.

3. Resultat

3.1. Statistik

Resultaten från simulatorn har använts för att beräkna hur träffsannolikheten har påverkats när dels temperaturen hos skyttens tumme varierar och dels när omgivningens temperatur varierat.

Det statiska materialet har delats upp i klasser för att få ett material inom varje klass som överstiger 10 stycken mätningar. Klasserna speglar även brytpunkter i temperaturområden då människokroppen generellt påverkas mer och mer av kyla.

<table>
<thead>
<tr>
<th>Tumtemperatur</th>
<th>Antal mätningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>27,2-+14°C</td>
<td>27 st</td>
</tr>
<tr>
<td>13,9-+9°C</td>
<td>22 st</td>
</tr>
<tr>
<td>8,9-+1,6°C</td>
<td>14 st</td>
</tr>
</tbody>
</table>

Vad gäller omgivningstemperatur så har mätningar skett endast vid tre tillfällen. Detta material är därför direkt indelat i dessa tre grupper:

<table>
<thead>
<tr>
<th>Omgivningstemperatur</th>
<th>Antal mätningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C</td>
<td>21 st</td>
</tr>
<tr>
<td>-3°C</td>
<td>36 st</td>
</tr>
<tr>
<td>-14°C</td>
<td>27 st</td>
</tr>
</tbody>
</table>

Min bedömning är att skyttarnas riktfel vid varje tillfälle kan betraktas som kontinuerliga stokastiska variabler med ändlig varians.

I detta arbete antas skotten gå mot normalfördelning och uträkningarna är således gjorda efter detta antagande.
3.2. Träffsannolikhetsberäkningar

För att beräkna vad som händer med träffsannolikheten vid kyla så har metoder hämtade ur Skjutlära för Armén²⁴ utnyttjats. Skjutlära för Armén avhandlar egentligen endast projektiler och raketers ytterballistik. Dock så gör jag bedömningen att kapitlet som avhandlar sannolikhetslära även är överförbart på Robotsystem 70 som trots allt är ett system där träff beror på skyttens förmåga (precis som vid skjutning med till exempel automatkarbin), då träffmågan inte stötras av datorkraft eller liknande.

Två olika grundfall har beräknats:
- Träffsannolikhet beroende på skyttens tumtemperatur
- Träffsannolikhet beroende på omgivningens temperatur

3.2.1. Beräkningsprinciper

Inom de olika grundfallen så har medelträffpunkten i sida och höjd beräknats samt spridningsmåtten (standardavvikelsen). Storleken på spridningsmåttet, σ, anser jag vara ett av måtten på skyttarnas riktnoggrannhet. Spridningsmåttet innebär hur skyttnas skott förhåller sig till varandra, vilken spridning skotten har binsemellan.

Det andra måttet på riktnoggrannheten är medelträffpunktens läge. Medelträffpunkten är dock pga. den använda simulatorns funktion svår att mäta.


Träffsannolikheten har med hjälp av spridningsmåttet och medelträffpunkten beräknats enligt metoderna i Skjutlära för Armén - kapitel 8.²⁵

---
²⁴ Skjutlära för armén, M7742-186012, (Förlag saknas, Stockholm: 1986)
²⁵ Ibid, s. 112-119.
Spridningsmått
Normalfördelningsens spridningsmått, σ, har beräknats i sida respektive höjd enligt formeln:\(^{26}\)
\[
\sigma = \sqrt{\frac{1}{n-1} \cdot \sum{(x_k - \bar{x})^2}}
\]
där:
- \(n\) = antalet skott
- \(x_k\) = skottets läge
- \(\bar{x}\) = skottens medelläge

Den 50%-iga spridningen i sida och höjd kan sedan beräknas enligt:\(^{27}\)
\[
S_{50} = 1,3488 \cdot \sigma
\]

Målytans inverkan på tràffsannolikheten
Sannolikheten att få en träff beror på målytans storlek. Denna varierar beroende på målets attityd.

"Ett attackflygplan på låghöjd har en ekvivalenta målyta med en radie på ungefär 1,5 m. För flygplan med annan attityd kan målytan vara upp till tre gånger större.\(^ {28}\)

Robot 70 är utrustat med ett zonrör vilket utlöser roboten om den passerar målet inom ca 4 meters avstånd. Zonröret kan alltså sägas öka målets ekvivalenta målyta.

Att skytten träffar inom den ekvivalenta målytan innebär dock inte per automatik att flygplanet skjuts ner. Beroende på var träffen tar så råder olika nerskjutningssannolikheter. Sannolikheten att målet bekämpas kommer därför att vara en produkt av sannolikheten för träff och sannolikheten för verkan. I detta arbete så har endast sannolikheten för träff beräknats.

Bilden visar verkan av en 40 mm zonrörsgranat vid olika träfflägen. Vad bilden skall illustrera är främst att en zonrörsträff inte nödvändigtvis behöver innebära att flygföretaget är nedkämpat.

Den målbana som har utnyttjats i detta arbete kräver ingen grovriktning av siktet. Den kan därför sägas motsvara ett rakt kommande flygplan. Jag har därför valt att främst beräkna

\(^{26}\) Skjutlära för armén, M7742-186012, (Förlag saknas, Stockholm: 1986), s. 102.
\(^{27}\) Ibid, s. 103.
\(^{28}\) Ibid, s. 128.
\(^{29}\) Skjutlära för luftvärnet Eldrörs vapen, M7742-146001 (Försäl Saknas, Stockholm: 1990), s. 99.
träffsannolikheten för träff mot ett mål med radien 1,5 m (motsvarar direktträff utan zonrör) samt mot mål med radien 5 m (motsvarar zonrörslutlösning max 4 m från ett 1,5 m mål).

3.3. Medelträffpunkt i målet respektive bredvid målet

Inom respektive temperaturklass har jag beräknat skyttnas medelfel i sida respektive höjd, samt standardavvikelsen i sida och höjd. Standardavvikelsen har jag sedan använt för att beräkna träffsannolikheten dels i fallet att medelträffpunkten ligger mitt i målet, dels i fallet där medelträffpunkten är förskjuten från målets centrum.

3.3.1. Medelträffpunkten mitt i målet - Sannolikheten att träffa ett cirkulärt mål med ett skott30

Om spridningsmätten i sida σₓ, respektive höjd, σᵧ, är kända och ungefär lika stora kan det radiella spridningsmåttet (σᵣ) beräknas:

\[ \sigmaᵣ = \sqrt{\sigmaₓ^2 + \sigmaᵧ^2} \]

För att beräkna träffsannolikheten när medelträffpunkten ligger mitt i målet används därefter följande formel:

\[ Sₜ = 1 - e^{-\left(\frac{R}{\sigmaᵣ}\right)^2} \]

R= målradien
σᵣ=Radiella spridningsmåttet

3.3.2. Presentation resultat - medelträffpunkt mitt i målet

Resultaten presenterats i tabellform mot mål med 1,5 m radie (skall motsvara direktträff) och 5 m radie (skall motsvara zonrörslutlösning). För att grafiskt tydliggöra resultaten så presenteras även en simulerad ”skjutserie” om 100 skott där skotten har slumpats med samma normalfördelade spridningsmått i sida respektive höjd som beräknats för de robotskott som försökspersonerna skjutit. Seriernas väntevärde (medelvärde) är noll, vilket motsvarar att medelträffpunkten befinner sig mitt i målet. Målet har markerats i diagrammen med en cirkel med radien 1,5m respektive 5m.

30 Skjutlära för armén, M7742-186012, (Förlag saknas, Stockholm: 1986), s. 118.
**Best case – Träffsannolikhet beroende på yttertemperatur, beräknad mot mål med radie 1,5 m, medelträffpunkt mitt i målet**

<table>
<thead>
<tr>
<th>Yttertemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20°C</td>
<td>0,81</td>
<td>0,60</td>
<td>0,91</td>
<td>0,66</td>
<td>0,941 (94%)</td>
</tr>
<tr>
<td>-3°C</td>
<td>1,26</td>
<td>1,17</td>
<td>2,37</td>
<td>1,06</td>
<td>0,595 (60%)</td>
</tr>
<tr>
<td>-14°C</td>
<td>3,49</td>
<td>3,61</td>
<td>3,01</td>
<td>1,72</td>
<td>0,131 (13%)</td>
</tr>
</tbody>
</table>

**Best case – Träffsannolikhet beroende på tumtemperatur, beräknad mot mål med radie 1,5 m, medelträffpunkt mitt i målet**

<table>
<thead>
<tr>
<th>Tumtemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+27-+14°C</td>
<td>1,61</td>
<td>1,61</td>
<td>2,49</td>
<td>1,02</td>
<td>0,462 (46 %)</td>
</tr>
<tr>
<td>+13,9-+9°C</td>
<td>1,85</td>
<td>1,99</td>
<td>2,71</td>
<td>1,68</td>
<td>0,282 (28 %)</td>
</tr>
<tr>
<td>+8,9-+1,6°C</td>
<td>3,96</td>
<td>4,45</td>
<td>2,85</td>
<td>1,65</td>
<td>0,095 (10 %)</td>
</tr>
</tbody>
</table>
Best case – Träffsannolikhet beroende på yttertemperatur, beräknad mot mål med radie 5 m, medelträffpunkt mitt i målet

<table>
<thead>
<tr>
<th>Yttertemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20°C</td>
<td>0,81</td>
<td>0,60</td>
<td>0,91</td>
<td>0,66</td>
<td>1,00 (100 %)</td>
</tr>
<tr>
<td>-3°C</td>
<td>1,26</td>
<td>1,17</td>
<td>2,37</td>
<td>1,06</td>
<td>1,00 (100 %)</td>
</tr>
<tr>
<td>-14°C</td>
<td>3,49</td>
<td>3,61</td>
<td>3,01</td>
<td>1,72</td>
<td>0,791 (79 %)</td>
</tr>
</tbody>
</table>

Best case – Träffsannolikhet beroende på tumtemperatur, beräknad mot mål med radie 5 m, medelträffpunkt mitt i målet

<table>
<thead>
<tr>
<th>Tumtemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+27-+14°C</td>
<td>1,61</td>
<td>1,61</td>
<td>2,49</td>
<td>1,02</td>
<td>0,999 (100 %)</td>
</tr>
<tr>
<td>+13,9-+9°C</td>
<td>1,85</td>
<td>1,99</td>
<td>2,71</td>
<td>1,68</td>
<td>0,975 (98 %)</td>
</tr>
<tr>
<td>+8,9-+1,6°C</td>
<td>3,96</td>
<td>4,45</td>
<td>2,85</td>
<td>1,65</td>
<td>0,670 (67 %)</td>
</tr>
</tbody>
</table>

3.4. Medelträffpunkten ej mitt i målet

Skjutlära armen utgår från rektangulära mål då träffsannolikheten skall beräknas, när medelträffpunkten inte ligger mitt i målet. Dessa beräkningar kan delas upp i två fall:

- Medelträffpunkten ligger i målet men förskjuten i sida och höjd
- Medelträffpunkten ligger utanför målet

I arbetet har båda metoderna använts beroende på hur mycket medelträffpunkten är förskjuten i förhållande till målets storlek. Målet har då approximerats med en kvadrat med sidan 3 m (motsvarar ungefär ytan av en cirkel med radien 1,5 m) och en kvadrat med sidan 10 m (motsvarar ungefär arenan på zonrörets räckvidd inklusive ytan av cirkel med radien 1,5m, dvs. målet).

Följande beräkningar har gjorts:
3.4.1. Medelträffpunkten ligger i målet men förskjutet i sida och höjd

\[ \frac{2b_1}{B_{50F}} = kvot \] se tabell skjutlära armén bilaga 6 \( \rightarrow S_{b1} \)

\[ \frac{2b_2}{B_{50F}} = kvot \] se tabell skjutlära armén bilaga 6 \( \rightarrow S_{b2} \)

Träffsannolikheten i sida fås sedan som

\[ S_x = \frac{S_{b1} + S_{b2}}{2} = \frac{1}{2} (S_{b1} + S_{b2}) \]

Höjd

Beräkningen sker på motsvarande vis i höjd

Den totala träffsannolikheten fås därefter som \( S_T = S_x \cdot S_y \)

3.4.2. Medelträffpunkten ligger utanför målet

\[ \frac{2b_1}{B_{50F}} = kvot \] se tabell skjutlära armén bilaga 6 \( \rightarrow S_{b1} \)

\[ \frac{2b_2}{B_{50F}} = kvot \] se tabell skjutlära armén bilaga 6 \( \rightarrow S_{b2} \)

Träffsannolikheten i sida fås sedan som

\[ S_x = \frac{S_{b1} - S_{b2}}{2} = \frac{1}{2} (S_{b1} - S_{b2}) \]

Höjd

\[ \frac{2h_1}{H_{50F}} = kvot \] se tabell skjutlära armén bilaga 6 \( \rightarrow S_{h1} \)

\[ \frac{2h_2}{H_{50F}} = kvot \] se tabell skjutlära armén bilaga 6 \( \rightarrow S_{h2} \)

Träffsannolikheten i höjd fås sedan som

\[ S_y = \frac{S_{h2} - S_{h1}}{2} = \frac{1}{2} (S_{h2} - S_{h1}) \]

Den totala träffsannolikheten fås därefter som \( S_T = S_x \cdot S_y \)

3.4.3. Presentation resultat- medelträffpunkt förskjuten från målets centrum

Resultaten presenterats i tabellform mot kvadratiska mål med sidlängden 3 m (skall ungefär motsvara direkträff) eller sidan 10 m (skall motsvara zonrörsutlösning). För att grafiskt tydliggöra resultaten så presenteras också en simulerad "skutserie" om 100 skott där skotten har slumpats med samma normalfördelade spridningsmått i sida respektive höjd som beräknats för de robotskott som försökspersonerna skjutit. Seriernas väntevärde (medelvärde) är det värde som erhållits från försökspersonernas skjuterier.

---

31 Skjutlära för armén, M7742-186012, (Förlag saknas, Stockholm: 1986), s. 117.
32 Ibid, s. 117.
Worst case – Träffsannolikhet beroende på yttertemperatur, beräknad mot kvadrat med sidan 3 m. Medelträffpunkt förskjuten.

<table>
<thead>
<tr>
<th>Yttertemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20°C</td>
<td>0,81</td>
<td>0,60</td>
<td>0,91</td>
<td>0,66</td>
<td>0,71 (71 %)</td>
</tr>
<tr>
<td>-3°C</td>
<td>1,26</td>
<td>1,17</td>
<td>2,37</td>
<td>1,06</td>
<td>0,086 (9 %)</td>
</tr>
<tr>
<td>-14°C</td>
<td>3,49</td>
<td>3,61</td>
<td>3,01</td>
<td>1,72</td>
<td>0,023 (2 %)</td>
</tr>
</tbody>
</table>

Worst case – Träffsannolikhet beroende på tumtemperatur, beräknad mot kvadrat med sidan 3 m. Medelträffpunkt förskjuten.

<table>
<thead>
<tr>
<th>Tumtemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+27-+14°C</td>
<td>1,61</td>
<td>1,61</td>
<td>2,49</td>
<td>1,02</td>
<td>0,074 (7 %)</td>
</tr>
<tr>
<td>+13,9-+9°C</td>
<td>1,85</td>
<td>1,99</td>
<td>2,71</td>
<td>1,68</td>
<td>0,089 (9 %)</td>
</tr>
<tr>
<td>+8,9-+1,6°C</td>
<td>3,96</td>
<td>4,45</td>
<td>2,85</td>
<td>1,65</td>
<td>0,038 (4 %)</td>
</tr>
</tbody>
</table>

Worst case - Träffsannolikhet beroende på yttertemperatur, beräknad mot kvadrat med sidan 10 m. Medelträffpunkt förskjuten.

<table>
<thead>
<tr>
<th>Yttertemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+20°C</td>
<td>0,81</td>
<td>0,60</td>
<td>0,91</td>
<td>0,66</td>
<td>1 (100 %)</td>
</tr>
<tr>
<td>-3°C</td>
<td>1,26</td>
<td>1,17</td>
<td>2,37</td>
<td>1,06</td>
<td>0,99 (100 %)</td>
</tr>
<tr>
<td>-14°C</td>
<td>3,49</td>
<td>3,61</td>
<td>3,01</td>
<td>1,72</td>
<td>0,569 (57 %)</td>
</tr>
</tbody>
</table>
Worst case – Träffsannolikhet beroende på tumtemperatur, beräknad mot kvadrat med sidan 10 m. Medelträffpunkt förskjuten

<table>
<thead>
<tr>
<th>Tumtemp</th>
<th>Medel sida</th>
<th>Spridning sida</th>
<th>Medel höjd</th>
<th>Spridning höjd</th>
<th>Träffsannolikhet</th>
</tr>
</thead>
<tbody>
<tr>
<td>+27-+14°C</td>
<td>1,61</td>
<td>1,61</td>
<td>2,49</td>
<td>1,02</td>
<td>0,97 (98 %)</td>
</tr>
<tr>
<td>+13,9-+9°C</td>
<td>1,85</td>
<td>1,99</td>
<td>2,71</td>
<td>1,68</td>
<td>0,865 (87 %)</td>
</tr>
<tr>
<td>+8,9-+1,6°C</td>
<td>3,96</td>
<td>4,45</td>
<td>2,85</td>
<td>1,65</td>
<td>0,516 (52 %)</td>
</tr>
</tbody>
</table>

3.5. Analys
Det korrekta resultatet finns som tidigare nämnt någonstans mellan de Best Case och Worst Case. Jag kommer dela in analysen i fyra olika grupper för att lättare kunna angripa datan.

3.5.1. Utomhustemperatur – Best Case
Resultaten av robotarna skjutna med simulators inomhus säger att 94 % av skotten hade träffat med anslagsröret (direktträff) och därmed fått största möjliga verkan i målet. Robotarna skjutna vid -14°C har en träffsannolikhet på 13 %. Detta innebär alltså att drygt var tionde robot kommer träffa med anslagsröret och få optimal verkan i målet – i bästa fall.

Värt att notera är att redan vid en utomhustemperatur på -3°C så har sannolikheten för direktträff nedgått till 60 %, dvs. nästan varannan robot kommer missa.

Genom att ta med zonrörsdetonation i beräkningen blir träffbilden bättre. Vid lägsta temperaturen (-14°C) så träffsannolikheten nu 80 %. Vid en zonrörsdetonation är verkan dock inte lika god som vid en direktträff. Verkan beror till stor del på vilket avstånd och var i förhållande till flygplanet som roboten detoneras.

Vid större flygfarkoster, t.ex transportflygplan, så är det av stor vikt var skytten träffar. En zonrörsdetonation vid en vingspets påverkar sannolikt inte flygplanet lika kraftfullt som en zonrörsträff direkt över cockpit.

3.5.2. Tumtemperatur – Best Case
Vid användandet av träffsannolikhet som funktion av tumtemperatur så följer detta i stort samma mönster som för träffsannolikhet som funktion av utomhustemperatur. – Resultatet blir sämre ju kallare tummen är.
3.5.3. Utomhustemperatur – Worst Case
När medelträffpunkten justeras blir resultatet påtagligt sämre redan vid en utomhustemperatur på -3°C. Det som i best case var 60 % träffsannolikhet har nu blivit 9 % och vid -14°C har träffsannolikheten för direktträff minskat till 2 %, dvs. en robot av 50 kommer träffa med direktträff. Som tidigare nämnts är detta endast extremvärden och sanningen befinner sig någonstans mellan dessa värden och värdena för best case.

Zonrörsberäkningarna följer samma mönster men eftersom målytan blir betydligt större när zonrör tas med i beräkningen så kommer träffsannolikheten att vara betydligt högre.
Både vid +20°C och -3°C så är träffsannolikheten 100 % när zonröret är aktiverat. Dock så halveras nästan träffsannolikheten (57 %) när temperaturen faller till -14°C.

3.5.4. Tumtemperatur – Worst Case
I och med det kraftfulla spridningsmåttet och målytans begränsade storlek i samverkan med förskjutningen av medelträffpunkten blir resultatet för samtliga temperaturgrupper en träffsannolikhet under 10 %. Dessa siffror är dock att ses som ett ändläge, ”det blir inte sämre än såhär”.

3.5.5. Sammanfattning av analys
Mina uträkningar visar i stort på samma sak. Att skytten blir påtagligt sämre av kyla. Hur den exakta procentsatsen ser ut går inte att förutså men jag har här tydligt definierat gränsvärdena. Om vi antar att sanningen ligger exakt mitt emellan dessa gränsvärden så får vi att vid den lägsta tumtemperaturgruppen (8,9°C-1,6°C) att sannolikheten för direktträff är ca 9 %.
Om vi gör samma antagande, med samma temperaturgrupp, fast med zonrörsdetonation fås träffsannolikheten 62 %

För att sätta dessa värden i proportion till något så är motsvarande siffror 83 % samt 100 % för robotskotten skjutna inomhus.

Den enda mätningen som avviker, är avfyringarna då skyttarnas tumtemperatur var uppmätt till +27-14°C har ett sämre resultat än avfyringarna vid en utomhustemperatur på -3°C. Detta kan bero på att antalet testpersoner är relativt få och resultatet blivit något påverkat av slumpen.

3.6. Svar på frågeställning

3.6.1. Frågeställning 1
I vilken utsträckning påverkas robot 70-skyttens finriktningsförmåga av kyla?
3.6.2. Frågeställning 2
Hur kan robot 70 gruppens robotutrustning anpassas för att förbättra robotskyttens prestanda i kyla?
Vad min undersökning visat är att styrspeken kyler skyttens tumme, vilket får till följd att nervaktiviteten i tummen begränsas. Följden av detta blir sämre finmotorik vilket enligt mig bidrar till sämre träffresultat för skytten. Att isolera styrspeken eller byta material på denna skulle enligt min undersökning kunna göra skillnad.

4. Diskussion

4.1. Resultat

4.1.1. Hypotes
Hypotesen som prövades löd: En robotskyttets finmotorik påverkas av kyla så till den grad att träff inte är sannolik.

Enligt mina resultat så påverkar kyla i högsta grad träffresultatet. Hurvida träff är sannolik eller inte beror på. En zonörsträff är att räkna med i de flesta fall. En direktröj däremot verkar vara osannolik vid en köldfaktor på flertalet minusgrader. Hur detta skall värderas ser jag som direkt knutet till den uppgift som robotgruppen givits och vilket krav denna ställer på verkan i målet.

4.1.2. Kylans påverkan
Styrspeken för finriktningen höll vid en utomhustemperatur på -14°C en temperatur av -14°C. Styrspeken är tillverkad av aluminium. Aluminium är en metall med en värmeförmåga på ca: 205k(W/m*K) (varierar något beroende på typ av aluminium). Detta innebär att metallen i styrspeken överför värmén från tummen till styrspeken med hjälp av principen värmeförmåga. Detta innebär i sin tur att tummen kyls väldigt mycket snabbare än om den bara utsatts för t.ex. konvektion.
Det verkar därför vara faktorn värmeförmåga som mest påverkar temperaturen hos skyttens tumme. Som tidigare refererats till, och som har bekräftats av mina egna undersökningar, är

att det endast tar ett fåtal sekunder för ett kallt aluminiumföremål att kyla ned ett finger till nära nollgradigt. De övriga faktorerna som påverkar kroppens temperatur; konvektion, strålning, avdunstning och andning är relativt försumbara i förhållande till värmeledningen från styrsaken. Det innebär ju dock inte att dessa faktorer inte spelar in, en skytt som har låg temperatur redan då han tar av sig handsken kommer även han/hon att rikta sämre. Detta anser jag innebär att valet av material på styrsaken inte är optimalt för verkan i kallt väder.

4.1.3. Stridsvärde
Samtliga testpersoner bar klädsel enligt Bilaga 2. Kläderna de bar var hela, rena och funktionsdugliga. Om skyttarna hade haft blöt och smutsiga kläder hade de påverkats kraftigare av värmeledning, då vatten leder värme ca 23 gånger bättre än luft. Skyttarna hade då förmodligen påverkats kraftigare av vasokonstriktion vilket inneburit en lägre temperatur i extremiteter som följd. Detta hade, med stöd av mina resultat bidragit till sämre träffresultat.

Testpersonerna hade vid testtillfället ett högt stridsvärde, både i form av vila, näring och utrustning. Detta bedömer jag påverkar resultatet så till vida att kroppen lättare behåller värmen vid högt stridsvärde och att resultatet vid testerna därför är att betrakta som bästa tänkbara, om det skall betraktas ur ett stridsvärdeperspektiv.

4.1.4. Val av målbana
Syftet med vald målbana var att minimera behovet av grovrierkning för att kunna eliminera övriga felkällor eftersom syftet var att undersöka hur finriktningen påverkades av kyla. Hade istället en svår målbana, med hög målfastighet, kortare avstånd och aggressiv dykvinkel valts hade kraven på skytten ökat. Grovrierkning försvarar robotriktning så till vida att det inte är tillräckligt för skytten att vrida siktets gyrostabiliserade spigel med hjälp av styrsaken, utan hela sikteshuset måste manövreras i sid- och höjdled. Detta får bl.a. till följd att hjärnan måste kombinera fingrets små rörelser med den grövre rörelsen som sker i arm- och axelleder. Eftersom detta således lägger till extra rörelser sätts hjärnan på större prov, då det är hjärnan som sänder ut impulsar till nervsystemet som i sin tur styr muskellåserna.

Jag bedömer att om en svårare målbana valts så hade resultatet blivit sämre, då detta hade tillfört extra moment för skytten som inte hade kunnat kraftsamlas sina ansträngningar för att finriktat. Även här ser jag alltså att resultatet är att betrakta som bästa tänkbara, ur ett svårighetsgradperspektiv.

4.1.5. Testpersoner
4.1.6. Övriga observationer

Skyttarna valde deltog vid simulatorskjutning vid -14°C observerade att det blev väldigt kallt kring ögat de siktrade med. Följden detta fick var att de såg dubbelt och suddigt, vilket enligt de själva försämrade deras prestanda kraftfullt.

Skyttarna uppfattade att de blev utsatta för värmeledning av metallen vid högra styrsparakens led. Leden består av metall och efter ett fåtal sekunder kände samtliga skyttar en brännande känsla på höger pekfingar där fingret låg an mot metallen. Känslan spreds sedan i handen.

4.2. Förslag på framtida forskning

För att få mer exakta mätningar anser jag att man bör kyla ned tummen till en viss temperatur och därefter skjuta ett antal simulerade robotar vid olika temperaturer för att se exakt hur temperaturen påverkar robotskyttens prestanda. Detta medger även att den nya simulatorn används, då det endast är skytten som behöver kylas ned, inte robotsimulatorn.

Detta arbete har endast avhandlat hur robotskyttens finrirkningsprestanda påverkas av kyla. Genom att använda en svårare målbana kan även grovrikning adderas för att försvara för skyttan och se om även grovrikningsprestandan försämras av kyla.

Vidare så borde ett test där olika typer av skyddsutrustning för tummen/handen används och se hur detta påverkar prestandan. Och att även göra undersökningar om olika höljen kan fästas på styrsparaben syfte att undvika värmeledning, och se hur detta kan tänkas påverka prestandan hos skyttan.

4.3. Slutsatser

Innan jag drar mina slutsatser vill jag åter poängtera att uträkningarna i arbetet utgår ifrån att träffsannolikheten är normalfördelad. Jag vill även poängtera att på grund av att jag använt mig av relativt få testpersoner i mitt experiment så är resultaten inte att se som några exakta sanningar, jag anser dock att materialet är tillräckligt för att påvisa att robotskytten blir påtagligt sämre i kyla.


Min undersökning har visat att robotsystem 70 i nuvarande utförande med en styrspar i aluminium försvårar skyttens verkan i temperaturer vid -14°C och sannolikt även vid temperaturer några grader högre.

Analysen av min insamlade data säger att vid -14°C är det med en normaltränad skytt inte att räkna med direktträff annat än i väldigt få fall – under *psykiskt sterila* förhållanden. Chansen att få en zonrörsträffning är dock att räkna med i de flesta fall vid samma givna utomhustemperatur. Detta innebär dock inte per automatik att flygföretaget blir bekämpat, då verkan nedgår pga. utebliven RSV (Riktad sprängverkan) samt utebliven restverkan från robotkroppen.

Vid den lägsta tumtemperaturgruppen (8,9°C-1,6°C) är träffsannolikheten för direktträff väldigt låg, både i *worst case* och i *best case*. Enligt mina mätningar kommer skytten att få en direktträff med ungefär var 10:e robot. Tack vare zonröret i robot 70 så kommer träffsannolikheten dock att öka markant, men till bekostnad av mindre verkan i målet.

### 4.4. Sammanfattning


Genom att genomföra simulerade robotskjutningar i olika temperaturer har jag kunnat ta reda på hur resultatet vid skjutning med Robotssystem 70 påverkas av kyla.


Slutsatserna jag dragit är att skytten blir betydligt sämre i kallt väder. Vad gäller träffsannolikheten för direktträff så är denna enligt mina beräkningar relativt låg i en utomhustemperatur på -14°C, och sannolikt är den reducerad även vid en temperatur på några grader högre. Statistiken säger dock att en zonrörsträff är att räkna med i majoriteten av fallen.

Vad som verkar påverka skyttens tumtemperatur (och följaktligen även träffresultatet) mest är temperaturen på robotsiktets styrsak. Mina slutsatser angående detta är att styrsaken bör förses med någon form av isolering alternativt bör det göras försök med någon typ av handske. Byte av material i styrsaken kan även det vara aktuellt.

Uträkningarna i arbetet är gjorda utifrån antagandet att träffsannolikheten är normalfördelad.
5. Litteratur- och källförteckning

5.1. Källförteckning

Geng et. al. *Temperature Limit Value For Touching Cold Surfaces with the Fingertip*, (Oxford University Press, Förlagsort saknas: 2006)


*Hypotermi, kylskador, drunkningstillbud i kallt vatten*, (Socialstyrelsen, Förlagsort saknas: 2003)

*Instruktionsbok Robotsystem 70*, M7786-010691, (Förlag saknas, Förlagsort saknas: 2005)

*Skjutlära för armén*, M7742-186012, (Förlag saknas, Stockholm: 1986)

5.2. Litteraturförteckning


5.3. Bildförteckning

*Instruktionsbok Robotsystem 70*, M7786-010691, (Förlag saknas, Förlagsort saknas: 2005), kap. 5. s. 35.

*Skjutlära för luftvärvet Eldrörsvapen*, M7742-146001 (Förslag saknas, Stockholm: 1990), s. 99.

### Bilaga 1 - Rådata

Data sorterad efter tumtemperatur: 14-27,2°C

<table>
<thead>
<tr>
<th>TEST#</th>
<th>MÅLBANA#</th>
<th>VIND (m/s)</th>
<th>UTETEMP (C)</th>
<th>TUMTEMP (C)</th>
<th>TID UTE (min)</th>
<th>RIKTFEL SIDA (m)</th>
<th>RIKTFEL HÖJD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>14</td>
<td>12</td>
<td>0,8</td>
<td>2</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>14,2</td>
<td>32</td>
<td>0,5</td>
<td>1,4</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>14,6</td>
<td>30</td>
<td>2,7</td>
<td>0,7</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>14,8</td>
<td>10</td>
<td>6,5</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15</td>
<td>20</td>
<td>0,8</td>
<td>2,8</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15</td>
<td>22</td>
<td>0,6</td>
<td>3,4</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15,2</td>
<td>30</td>
<td>1,6</td>
<td>2,8</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15,4</td>
<td>12</td>
<td>3,2</td>
<td>3,1</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>15,4</td>
<td>30</td>
<td>1,4</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15,6</td>
<td>11</td>
<td>1,6</td>
<td>0,8</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15,6</td>
<td>31</td>
<td>0,6</td>
<td>3,5</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>16,2</td>
<td>22</td>
<td>2,3</td>
<td>4,2</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>16,2</td>
<td>10</td>
<td>0,8</td>
<td>3,1</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>16,4</td>
<td>10</td>
<td>0,9</td>
<td>0,6</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>16,4</td>
<td>11</td>
<td>0,9</td>
<td>1,9</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>16,6</td>
<td>20</td>
<td>0,2</td>
<td>3,6</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>17</td>
<td>20</td>
<td>1</td>
<td>1,8</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>17,4</td>
<td>32</td>
<td>1,3</td>
<td>1,7</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>17,8</td>
<td>21</td>
<td>0,6</td>
<td>2,7</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>18,2</td>
<td>21</td>
<td>0,8</td>
<td>3,7</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>19,6</td>
<td>10</td>
<td>6,4</td>
<td>3,7</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>19,8</td>
<td>31</td>
<td>1,6</td>
<td>2,5</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>21,6</td>
<td>30</td>
<td>1,4</td>
<td>1,2</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>21,8</td>
<td>20</td>
<td>0</td>
<td>2,6</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>24,2</td>
<td>20</td>
<td>1,4</td>
<td>2,8</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>27,2</td>
<td>10</td>
<td>0,5</td>
<td>1,9</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>27,2</td>
<td>30</td>
<td>3,1</td>
<td>2,8</td>
</tr>
</tbody>
</table>
Data sorterad efter tumtemperatur: 9,0-13,9°C

<table>
<thead>
<tr>
<th>TEST#</th>
<th>MÅLBANA#</th>
<th>VIND (m/s)</th>
<th>UTETEMP (°C)</th>
<th>TUMTEMP (°C)</th>
<th>TID UTE (min)</th>
<th>RIKTFEL SIDA (m)</th>
<th>RIKTFEL HÖJD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9</td>
<td>11</td>
<td>7,9</td>
<td>1,9</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9</td>
<td>31</td>
<td>3,1</td>
<td>4,9</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9</td>
<td>12</td>
<td>1,5</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>9,6</td>
<td>32</td>
<td>0,4</td>
<td>1,7</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9,6</td>
<td>22</td>
<td>0,3</td>
<td>0,8</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9,6</td>
<td>11</td>
<td>6,5</td>
<td>2,3</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>10,4</td>
<td>21</td>
<td>0,6</td>
<td>3,1</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>10,8</td>
<td>21</td>
<td>1,5</td>
<td>3,7</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>11</td>
<td>12</td>
<td>0,7</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>11,2</td>
<td>11</td>
<td>1,8</td>
<td>3,7</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>11,6</td>
<td>31</td>
<td>1</td>
<td>2,5</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>11,8</td>
<td>32</td>
<td>0,6</td>
<td>4,9</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>11,8</td>
<td>20</td>
<td>1,4</td>
<td>1,3</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12,2</td>
<td>11</td>
<td>1</td>
<td>0,8</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12,4</td>
<td>10</td>
<td>1,5</td>
<td>1,9</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12,6</td>
<td>22</td>
<td>2</td>
<td>1,1</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12,8</td>
<td>21</td>
<td>0,2</td>
<td>1,8</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>13,2</td>
<td>20</td>
<td>4,1</td>
<td>4,2</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>13,2</td>
<td>31</td>
<td>0,4</td>
<td>2,1</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>13,6</td>
<td>30</td>
<td>1,2</td>
<td>6,4</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>13,6</td>
<td>10</td>
<td>0,5</td>
<td>1,8</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>13,8</td>
<td>30</td>
<td>2,5</td>
<td>0,7</td>
</tr>
</tbody>
</table>

Data sorterad efter tumtemperatur 1,6-8,9°C

<table>
<thead>
<tr>
<th>TEST#</th>
<th>MÅLBANA#</th>
<th>VIND (m/s)</th>
<th>UTETEMP (°C)</th>
<th>TUMTEMP (°C)</th>
<th>TID UTE (min)</th>
<th>RIKTFEL SIDA (m)</th>
<th>RIKTFEL HÖJD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>1,6</td>
<td>22</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>2,6</td>
<td>12</td>
<td>8,9</td>
<td>5,4</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>3,4</td>
<td>22</td>
<td>1,9</td>
<td>4,1</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>4,4</td>
<td>21</td>
<td>8,7</td>
<td>1,6</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>5,4</td>
<td>32</td>
<td>3,2</td>
<td>0,7</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>6,6</td>
<td>32</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>6,8</td>
<td>12</td>
<td>2,3</td>
<td>1,6</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>7</td>
<td>21</td>
<td>1,4</td>
<td>3,3</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>7,2</td>
<td>31</td>
<td>2,2</td>
<td>2,2</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>7,6</td>
<td>12</td>
<td>1,2</td>
<td>2,2</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>7,8</td>
<td>32</td>
<td>11,2</td>
<td>6,2</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>8,4</td>
<td>31</td>
<td>0,6</td>
<td>2,8</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>8,6</td>
<td>11</td>
<td>0,2</td>
<td>1,9</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>8,6</td>
<td>22</td>
<td>0,3</td>
<td>4,2</td>
</tr>
</tbody>
</table>
Data sorterad efter utomhustemperatur: -3°C

<table>
<thead>
<tr>
<th>TEST#</th>
<th>MÅLBANA#</th>
<th>VIND (m/s)</th>
<th>UTETEMP (C)</th>
<th>TUMTEMP (C)</th>
<th>TID UTE (min)</th>
<th>RIKTFEL SIDA (m)</th>
<th>RIKTFEL HÖJD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>7.6</td>
<td>12</td>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>8.6</td>
<td>11</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>8.6</td>
<td>22</td>
<td>0.3</td>
<td>4.2</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>9.6</td>
<td>32</td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>10.8</td>
<td>21</td>
<td>1.5</td>
<td>3.7</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>11</td>
<td>12</td>
<td>0.7</td>
<td>2</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>11.6</td>
<td>31</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>11.8</td>
<td>32</td>
<td>0.6</td>
<td>4.9</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12.2</td>
<td>11</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12.4</td>
<td>10</td>
<td>1.5</td>
<td>1.9</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12.6</td>
<td>22</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>12.8</td>
<td>21</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>13.2</td>
<td>31</td>
<td>0.4</td>
<td>2.1</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>13.8</td>
<td>30</td>
<td>2.5</td>
<td>0.7</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>14</td>
<td>12</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>14.2</td>
<td>32</td>
<td>0.5</td>
<td>1.4</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15</td>
<td>20</td>
<td>0.8</td>
<td>2.8</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15</td>
<td>22</td>
<td>0.6</td>
<td>3.4</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15.2</td>
<td>30</td>
<td>1.6</td>
<td>2.8</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15.4</td>
<td>12</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15.6</td>
<td>11</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>15.6</td>
<td>31</td>
<td>0.6</td>
<td>3.3</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>16.2</td>
<td>22</td>
<td>2.3</td>
<td>4.2</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>16.4</td>
<td>10</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>16.4</td>
<td>11</td>
<td>0.9</td>
<td>1.9</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>17</td>
<td>20</td>
<td>1</td>
<td>1.8</td>
</tr>
<tr>
<td>3.3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>17.4</td>
<td>32</td>
<td>1.3</td>
<td>1.7</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>17.8</td>
<td>21</td>
<td>0.6</td>
<td>2.7</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>18.2</td>
<td>21</td>
<td>0.8</td>
<td>3.7</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>19.6</td>
<td>10</td>
<td>6.4</td>
<td>3.7</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>19.8</td>
<td>31</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>21.6</td>
<td>30</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>21.8</td>
<td>20</td>
<td>0</td>
<td>2.6</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>24.2</td>
<td>20</td>
<td>1.4</td>
<td>2.8</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>27.2</td>
<td>10</td>
<td>0.5</td>
<td>1.9</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>27.2</td>
<td>30</td>
<td>3.1</td>
<td>2.8</td>
</tr>
</tbody>
</table>
### Data sorterad efter utomhustemperatur: -14°C

<table>
<thead>
<tr>
<th>TEST#</th>
<th>MÅLBANA#</th>
<th>VIND (m/s)</th>
<th>UTETEMP (°C)</th>
<th>TUMTEMP (°C)</th>
<th>TID UTE (min)</th>
<th>RIKTFEL SIDA (m)</th>
<th>RIKTFEL HÖJD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>1,6</td>
<td>22</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>2,6</td>
<td>12</td>
<td>8,9</td>
<td>5,4</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>3,4</td>
<td>22</td>
<td>1,9</td>
<td>4,1</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>4,4</td>
<td>21</td>
<td>8,7</td>
<td>1,6</td>
</tr>
<tr>
<td>3,3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>5,4</td>
<td>32</td>
<td>3,2</td>
<td>0,7</td>
</tr>
<tr>
<td>3,3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>6,6</td>
<td>32</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>6,8</td>
<td>12</td>
<td>2,3</td>
<td>1,6</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>7</td>
<td>21</td>
<td>1,4</td>
<td>3,3</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>7,2</td>
<td>31</td>
<td>2,2</td>
<td>2,2</td>
</tr>
<tr>
<td>3,3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>7,8</td>
<td>32</td>
<td>11,2</td>
<td>6,2</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>8,4</td>
<td>31</td>
<td>0,6</td>
<td>2,8</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9</td>
<td>11</td>
<td>7,9</td>
<td>1,9</td>
</tr>
<tr>
<td>3.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9</td>
<td>31</td>
<td>3,1</td>
<td>4,9</td>
</tr>
<tr>
<td>1.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9</td>
<td>12</td>
<td>1,5</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9,6</td>
<td>22</td>
<td>0,3</td>
<td>0,8</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>9,6</td>
<td>11</td>
<td>6,5</td>
<td>2,3</td>
</tr>
<tr>
<td>2.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>10,4</td>
<td>21</td>
<td>0,6</td>
<td>3,1</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>11,2</td>
<td>11</td>
<td>1,8</td>
<td>3,7</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>11,8</td>
<td>20</td>
<td>1,4</td>
<td>1,3</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>13,2</td>
<td>20</td>
<td>4,1</td>
<td>4,2</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>13,6</td>
<td>30</td>
<td>1,2</td>
<td>6,4</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>13,6</td>
<td>10</td>
<td>0,5</td>
<td>1,8</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>14,6</td>
<td>30</td>
<td>2,7</td>
<td>0,7</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>14,8</td>
<td>10</td>
<td>6,5</td>
<td>2</td>
</tr>
<tr>
<td>3.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>15,4</td>
<td>30</td>
<td>1,4</td>
<td>4</td>
</tr>
<tr>
<td>1.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>16,2</td>
<td>10</td>
<td>0,8</td>
<td>3,1</td>
</tr>
<tr>
<td>2.1</td>
<td>4</td>
<td>0</td>
<td>-14</td>
<td>16,6</td>
<td>20</td>
<td>0,2</td>
<td>3,6</td>
</tr>
</tbody>
</table>
### Data sorterad efter inomhustemperatur: +20°C

<table>
<thead>
<tr>
<th>TEST#</th>
<th>MÅLBANA#</th>
<th>VIND (m/s)</th>
<th>INNETEMP (°C)</th>
<th>TUMTEMP (°C)</th>
<th>TID INNE (min)</th>
<th>RIKTFEL SIDA (m)</th>
<th>RIKTFEL HÖJD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>24,8</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>27</td>
<td>X</td>
<td>0,7</td>
<td>1,5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>28,4</td>
<td>X</td>
<td>2</td>
<td>0,4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>33</td>
<td>X</td>
<td>0</td>
<td>0,9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>28,8</td>
<td>X</td>
<td>2,2</td>
<td>1,9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>29,6</td>
<td>X</td>
<td>1,1</td>
<td>2,3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>20,6</td>
<td>X</td>
<td>0</td>
<td>1,1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>19,2</td>
<td>X</td>
<td>0</td>
<td>0,8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>19,6</td>
<td>X</td>
<td>0,1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>19,6</td>
<td>X</td>
<td>1,4</td>
<td>0,1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>19,4</td>
<td>X</td>
<td>1,2</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>22</td>
<td>X</td>
<td>2</td>
<td>2,4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>22</td>
<td>X</td>
<td>0,9</td>
<td>2,1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>22,4</td>
<td>X</td>
<td>0,3</td>
<td>1,9</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>30,4</td>
<td>X</td>
<td>2</td>
<td>1,1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>27,8</td>
<td>X</td>
<td>0</td>
<td>0,6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>28,4</td>
<td>X</td>
<td>0</td>
<td>0,1</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>24,8</td>
<td>X</td>
<td>0</td>
<td>0,5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>27</td>
<td>X</td>
<td>0,2</td>
<td>0,4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>28,4</td>
<td>X</td>
<td>0,9</td>
<td>0</td>
</tr>
</tbody>
</table>
Bilaga 2 – Utrustningslista

Följande utrustning bars av personalen under testet. Samtlig materiel är från Försvarsmakten.

Marschkänga 90
Stålgrå strumpor
Långkalsong 90
Kortkalsong 90
Fältskjorta 90
Tröja 90
Fältbyxa 90
Fältjacka 90
Fältmössa 90
Kroppsskydd 90
Tumvante vit m. ytterhandske. (togs av vid robotskott)