Tytoglasses
Ett designförslag på glasögonbågar med implementerad LED-belysning

Pontus Carlsson, pc22ba@student.hik.se

Kalmar, 2009-06-05
C-nivå, 15 hp
Examensarbete i Informatik
Extern handledare: Björn Hellström, Multilens AB
Handledare: Morgan Rydbrink, Högskolan i Kalmar, IKD
Examinator: Peter Adiels, Högskolan i Kalmar, IKD

Institutionen för Kommunikation och Design
Högskolan i Kalmar
Abstrakt/Abstract

Nyckelord: Tytoglasses, Glasögon, LED-teknik, personas, synnedställning, makuladegeneration, glasögonbågar, quality function deployment, scenarios, ljus, mörkerseende, nedsatt syn, dålig syn, synproblem, Donald Norman, Cooper, interaktionsdesign, interaction design.
Förord

Detta projekt har gjorts i samarbete med Multilens AB, som ville undersöka hur ett par glasögonbågar med förstoringsoptik kan kombineras med implementerad LED-belysning avsedda för personer med kraftigt nedsatt syn.

Tack till följande personer som hjälpt mig under projektets gång:

- Min familj, inklusive min flickvän Victoria med familj.
- Morgan Rydbrink för all hjälp under examensarbetet och studietiden.
- Gun Olsson på Syncentralen i Kalmar och de människor som ställde upp på intervjuer.
- Björn Hellström på Multilens.
- Krister Inde och Jörgen Gustafsson på Högskolan i Kalmar.
- Ola och Josef från Ljusdesignprogrammet på Högskolan i Jönköping
- Examinator Peter Ariels.
Innehållsförteckning

Abstrakt/Abstract ... I

Förord.. II

1. Introduktion .. 1
 1.1 Forskningsproblem .. 1
 1.2 Avgränsningar ... 3

2. Teori .. 4
 2.1 Stakeholders och Subject Matter Experts ... 4
 2.2 Om åldersrelaterad makuladegeneration ... 5
 2.3 Optimal Illumination for Reading in Patients with Age-Related Maculopathy 6
 2.4 Quality Function Deployment ... 6
 2.5 Intervjuer med Stakeholders enligt Cooper ... 8
 2.6 Intervjuer med Stakeholders enligt Saffer ... 9
 2.7 Metod för intervjuer enligt Cooper ... 9
 2.8 Metod för intervjuer enligt Saffer .. 10
 2.9 Personas .. 11
 2.9.1 Skapandet av personas ... 12
 2.10 Scenarier .. 14
 2.10.1 Personas i Kontextscenarier ... 14
 2.10.2 Personas i Valideringscenarier ... 14
 2.11 Normans teorier kring placering, mappning, synlighet och respons 14
 2.11.1 Gruppering ... 15
 2.11.2 Mappning ... 15
 2.11.3 Synlighet och respons ... 15

3. Metod och genomförande ... 17
 3.1 Hypotetisk persona .. 17
 3.2 Stakeholder och SMEs ... 17
 3.3 Genomförande av intervjuer med stakeholder genom en syntes av Saffers och Coopers teorier ... 18
 3.3.1 Genomförande av intervjuer med användare utifrån en syntes baserad på Coopers och Saffers teorier ... 19
3.4 Personas .. 20
3.4.1 Skapande av persona ... 20
3.5 Framtagande av scenarier ... 21
3.5.1 Kontextscenarier .. 21
3.6 Genomförande av behovsanalys genom QFD-metoden .. 21
3.7 Visualisering av designförslag genom 3D-modell .. 22
3.8 Genomförande av visualisering av designförslag genom 3D-modell 24

4. Resultat ... 25
4.1 Resultat metoder för behovsanalys och användarstudier 25
4.1.1 Resultat syntes av Coopers och Saffers teorier ... 25
4.1.2 Resultat personas .. 26
4.2 QFD .. 28
4.3 Resultat kravspecifikation .. 29

5. Diskussion .. 33
5.1 Måluppfyllelse .. 33
5.2 Diskussion om resultat ... 34
5.3 Analys av metoder ... 34
5.3.1 Analys av stakeholder intervju metod ... 34
5.3.2 Analys av intervju metod ... 34
5.3.3 Analys av personametod ... 35
5.3.4 Analys QFD-metod ... 36
5.3.5 Analys av metod för skapande av 3D-modell ... 36
5.3.6 Validitet och reliabilitet ... 37
5.4 Förslag till fortsatt forskning ... 37

6. Källförteckning ... 38
6.1 Böcker ... 38
6.2 Artiklar .. 38

7. Bilagor ... 39
7.1 Bilaga 1: Hypotetisk persona ... 39
7.2 Bilaga 2: Intervjuvar användarintervjuer ... 40
7.3 Bilaga 3: Intervju med stakeholder Björn Hellström, VD på Multilens 45
7.4 Bilaga 4: Resultat mappning av beteendemönster från personas 46
7.5 Bilaga 5: Kollage primär persona: Nathaniel Ur ... 48
7.6 Bilaga 6: Sekundär persona... 49
7.7 Bilaga 7: Kollage sekundär persona: Franco Farin.......................... 50
7.8 Bilaga 8: Scenarier... 51
 7.8.1 Kontextscenarier ... 51
 7.8.2 Valideringscenarier.. 52
1. Introduktion

Multilens vill ta fram en prototyp på en glasögonbåge med förstoringsoptik och LED-lysrör för personer med nedsatt syn och stort ljusbehov, som ska kunna användas i miljöer där behovet av extra ljus finns. Syftet med detta projekt är att göra en förstudie på användargruppen och genom designmetoder ta fram en 3D-modell som kan användas för att ta fram en prototyp på Tytoglasses, och på så sätt skapa ett hjälpmedel för att få människor med kraftigt nedsatt syn att öka ljusmängden vid läsning.

1.1 Forskningsproblem

Målet med detta arbete är att utifrån personas krav och förväntningar ta fram en 3d-modell på ett par glasögonbågar med LED-belysning genom intervjuer med potentiella användare av produkten. Följande problemformulering har tagits fram:

"Vilka faktorer avgör om människor i Tytoglasses målgrupp kommer att kunna använda Tytoglasses? Hur påverkar dessa faktorer design av funktion och användarnärlighet hos denna?"

Flödesschemat syftar till att ge en visualisering av hur projektet förtöjes, och i vilken ordning arbetet utfördes. Flödesschemat visar på vilka delar som ingick i projektet, från förstudien till 3D-modell (se Figur1).
Inledningsvis kommer projektet att göra en förstudie, ringa in målgruppen och rikta in och begränsa arbetet med en problemformulering. Förberedande research och samtal med människor som påverkas av produkten och som besitter stor kunskap om produktområdet kommer att genomföras, för att skapa en förståelse för produktområden. Utifrån denna research kommer designmetoder att väljas ut och appliceras på detta projekt. Projektet kommer att välja ut teori kring intervjuer, för att sedan skapa en egen syntes av dessa teorier som ska ligga till grund för intervjuer med...
användare. Utifrån designmetoder kommer sedan ett designförslag att skapas, byggd på data utifrån data från designmetoderna.

1.2 Avgränsningar

- Intervjuobjekt har valts ut av Gun Olsson på Syncentralen i Kalmar på grund av att hon har en nära kontakt med patienter som befinner sig i målgruppen.
- Intervjuerna som utförs kommer i första hand att användas för att få en bild av, och konstruera scenarier kring, hur personen skulle kunna tänkas använda glasögonen och i vilka kontexter de skulle kunna användas.
2. Teori

I detta avsnitt presenteras teorin kring synnedsättningen som ligger till grund för projektets uppkomst, och teori och bakgrund till de metoder som kommer att användas i designprocessen av Tytoglasses. Det som kommer presenteras är teori kring stakeholders och SMEs, en kortare beskrivning av sjukdomen som är den primära orsaken till synnedsättningar, tidigare forskning inom området samt en rad olika designmetoder, intervjuer och personas innan det appliceras på projektet i Metoddelen och Resultatdelen av rapporten.

2.1 Stakeholders och Subject Matter Experts

Stakeholders är alla de som påverkas av en produkt eller service, inte bara slutanvändaren. En produkt som skapas kan innebära stora förändringar för personer som på något sätt blir påverkade av den. (Saffer, 2008)

Stakeholder i detta projekt är företaget Multilens, slutanvändaren av produkten och Subject Matter Experts. Subject Matter Experts (SMEs) är experter inom samma område som produkten som designas. SMEs kan tillföra värdefull information om en produkt och dess användare, dock:

- Är de ofta expertanvändare. De har ofta en lång erfarenhet av sitt ämne och har vant sig vid rådande utseende och funktion.
- Är de kunniga, men inte designers. De har ofta många bra och riktiga förslag till hur man kan förbättra en produkt, men den viktigaste informationen de kan ge är problemen de framhäver som lett dem till deras föreslagna lösning.
- SMEs är nödvändiga inom komplexa områden. Om man designar i t. ex medicinsk, vetenskaplig, eller finansiella miljöer är SMEs nödvändiga, om man inte har kunskapen själv. Använd SMEs för att få information om industrins standardlösningar och komplexa begränsningar. (Cooper, 2007)

SMEs kommer att användas i detta projekt för att få ut kunskap inom produktområden, och information om användarna för att förbättra förutsättningarna för lyckade intervjuer och få ut relevant data ur dessa. SMEs, företag och användare är i detta projekt relaterade till varandra genom att SME’s har stora kunskaper om både användare och produkt medan både användare och stakeholder har krav och behov på produkten, se figur 2.
2.2 Om åldersrelaterad makuladegeneration

Detta avsnitt om åldersrelaterad makuladegeneration tar upp sjukdomen som är orsaken till att många människor använder förstoringsoptik vid läsning, sjukdomens olika stadier och hur sjukdomen utvecklas. Detta presenteras för att beskriva den primära målgruppen för Tytoglasses och den sjukdom de lever med.

AMD, Åldersrelaterad makuladegeneration (förändringar i gula fläcken) är den vanligaste orsaken till synnedsättning hos människor som är över 60 år gamla i hela världen. Sjukdomen orsakas av ultraviolett och blå strålning startar en destruktiv process i ögat genom att producera fria radikaler som skadar delar av fotoreceptorerna i ögat. Det finns två typer av förändringar i gula fläcken: en torr form som drabbar cirka 85 % av de patienter som får sjukdomen och en våt form som drabbar cirka 15 %. Vid den våta formen av sjukdomen uppträder nya kärl i ögat under den gula fläcken med symptom som att raka linjer blir krokiga, bilder förvrängs och lässvårigheter. Tidiga symptom för åldersrelaterad makuladegeneration är en långsam
2.3 Optimal Illumination for Reading in Patients with Age-Related Maculopathy

I studien Optimal Illumination for Reading in Patients with Age-Related Maculopathy undersöker Eldred den optimala ljusnivån för läsning för människor med åldersrelaterad makuladegeneration. Studien pekar på att högre ljusnivåer förbättrar läshastigheten hos de flesta patienter med åldersrelaterad makuladegeneration.

Trots vikten av kvaliteten på ljuset och mängden ljus finns det enligt studien ingen formula för att förutspa placeringen av eller ljusmängden av en ljuskälla för en specifik patient. Det finns heller inga specifika regler för att bestämma optimal ljussättning för människor med synnedsättning. (Eldred, 1992)

2.4 Quality Function Deployment

Med metoden Quality Function Deployment (QFD), på svenska kundcentrerad planering, kopplas hela produktframtagningsprocessen ihop från uttryckta kundbehov till krav på det tillverkningssystemet som en produkt ska produceras i. QFD-metoden består av fyra olika processsteg och utgångspunkten är att en produkts kvalitet definieras av kundens upplevelse av produkten. Enligt metoden startar därför produktutveckling med en kartläggning av kundens behov och sedan översätta dessa till konstruktionskriterier. (Johannesson, Persson & Pettersson, 2004)
QFD-metoden ger enligt Johannesson, Persson och Pettersson:

- Systematisk översättning av kundkrav och kundönskemål till en teknisk kravspecifikation
- Konkurrentanalys – benchmarking
- Målstyrning för att uppfylla kravspecifikationen
- Dokumentation och spårbarhet

QFD-metoden omfattar fyra steg:

1. Marknadsundersökning, att fastställa mål baserat på kundbehov, kundkrav och förväntningar
2. Konkurrentanalys, hur konkurrenterna möter kundens krav och önskemål
3. Identifiering av egna prioriterade utvecklingsinsatser för förbättring av marknadsacceptansen
4. Översättning av kundkrav/önskemål till kvantifierade tekniska specifikationer för konstruktion och tillverkning (Johannesson, Persson & Pettersson, 2004)

QFD strukturerar informationen i en matris som kallas the house of quality och ser ut enligt figur 3.

![Diagram](image)

Figur 3. Uppbyggnaden av QFD-matrisen (Johannesson, Persson, Pettersson, 2004).
I raderna i matrisen skrivs kundbehov in, VAD kunden vill, och en viktfaktor för varje kundönskemål. I kolumnerna i matrisen skrivs mätbara konstruktionsparametrar in, alltså HUR man med $påverkbara produktparametrar$ kan uppfylla de krav och behov som kunden har. (Johannesson, Persson & Pettersson, 2004)

I detta projekt kommer endast det första steget i QFD-metoden användas, med hänsyn till produktens tidiga stadie i denna fas. Övriga steg skulle kunna tillämpas vid vidare arbete med detta projekt efter arbetet som uppsatsen innefattar. QFD-metoden användes i detta projekt för att förstärka kundbehov, krav och önskemål som togs ut genom metoden personas, och för att sammankoppla tillverkningsprocessens möjligheter och eventuella svårigheter.

2.5 Intervjuer med Stakeholders enligt Cooper

Enligt Cooper finns det några viktiga punkter som man ska samla in vid intervjuer med stakeholders. Dessa har valts ut som känns relevanta för projektet och för denna stakeholder:

Preliminär produktvision
Försöka flätta samman de olika visionerna det finns om produkten från olika stakeholders till en gemensam vision.

Budget och schema
Diskussioner kring detta ger ofta en check kring designprocessen och hur ett beslutstagande ska ske från stakeholders om mer eller mindre resurser eller tid kommer att behövas.

Tekniska begränsningar och möjligheter
Vad är möjligt att göra med rådande budget, tid och tekniska begränsningar? En produkt utvecklas ofta för att exploatera ny teknik. Att förstå möjligheterna med denna teknik kan hjälpa forma projektets riktning.

Affärsdrivare (översättning?)
Det är viktigt att skapa förståelse för de som designar för vad affärsidén är. Om researchen indikerar en konflikt mellan användarbehov och affärsbehov måste beslut tas. Designen måste skapa en fördelaktig situation för både användare, konsumenter och skapare av produkten.
Stakeholders uppfattning av användaren
Stakeholders med relation med användare kan ha viktig information av använderna som kan hjälpa researchen. Om det skiljer sig mycket mellan olika stakeholders i deras uppgifter kan detta vara viktigt att ta upp med de som tar besluten. (Cooper, 2007)

2.6 Intervjuer med Stakeholders enligt Saffer

Enligt Dan Saffer ska intervjuer med Stakeholders täcka:

Verksamhetsmål

Begränsningar
Alla projekt har begränsningar som inte kan undgås, om det så rör sig om budget, tid eller teknik. Designers måste under hela projektet fånga upp begränsningarna då de i slutändan kommer att forma designen genom beslut som fattas.

Samla in information
Designern ska ta reda på så mycket information på egen hand från utomstående källor som Internet. Detta för att sedan ha en så bra grund att stå på som möjligt vid frågeställningar kring, inte bara hur eller vad, utan varför stakeholders vill en specifik sak. Varför-frågor hjälper designern att undgå frågor som inte tillför mycket information, t. ex ja-och-nej-frågor (Saffer, 2006).

Saffer och Coopers teorier ligger till grund för frågorna som skrevs till stakeholders för att få fram företagets syn och vision om projektet och fånga upp vad deras krav, begränsningar och möjligheter är.

2.7 Metod för intervjuer enligt Cooper

Enligt Cooper är dessa punkter att tänka på vid intervjuer med användare:

- **Ställ ej ledande frågor**
 Intervjufrågorna bör ej vara konstruerade så att de leder in intervjupersonen i ett väntat svar.
• **Ställ ej ja-och-nej-frågor, ha ej förutbestämt antal frågor**
 Denna typ av frågor begränsar mängden av information man kan få ut av ett svar, likaså mängden frågor.

• **Uppmuntra ”visa-och-berätta”**
 Efter att man fått en bättre förståelse för situationen eller kontexten man intervjuar för, kan det vara en god idé att låta den som blir intervjuas visa och berätta hur den menar med föremålet eller programvaran framför sig.

• **Intervjua där användandet sker**
 Det är mycket viktigt att användarna intervjuas där de faktiskt använder produkten. Detta ger inte bara frågeställaren möjligheten att bevitta produkten användas, men det ger även tillgång till miljön som produkten används i.

• **Undvik tekniska frågor**
 Diskussioner kring teknologin bakom produkten fyller ingen funktion, utan att först förstå det bakomliggande syftet kring beslut som ta som tekniska implementeringar. Om intervjuobjektet insisterar på att prata tekniska lösningar, försök att styra tillbaks till dennes mål och motivationer genom att fråga ”Hur skulle det hjälpa dig?” (Cooper, 2007)

2.8 Metod för intervjuer enligt Saffer

Saffer presenterar bland annat följande metoder för att få information från användare:

• **Riktat berättande.**
 Få användare att berätta historier om specifika tillfällen då de använder en produkt eller tjänst. Den första gången de använder en produkt, ett tillfälle då en produkt inte fungerade eller en gång de gjorde något nytt med en produkt.

• **Rollspel**
 Att rollspela olika scenarier kan få fram känslor och attityder kring en produkt på ett nytt sätt.

• **Extrem-användarintervjuer**
 Med denna intervjumetod är det användaren på yttersta gränsen av användargruppen som intervjuas, till exempel om en designer som utvecklar ett nytt TV-koncept intervjuar en person som inte har en TV.
• **Skrivbord/väska/portfölj**
 Denna metod syftar till att ge en visuell bild av intervjuobjektet och kan berätta mycket om deras vanor och rutiner.

• **Öppet sinne**

2.9 Personas

Metoden personas valdes ut för att rikta designprocessen mot en användare som representerar målgruppen, och för att försöka designa för EN person istället för att försöka tillsfredställa alla. Fokusen för persona riktades mot kontexter som Tytoglasses kommer att användas i och att konstruera scenarier kring dessa. Metoden är relevant för projektet då fokus ligger på användarens upplevelse av produkten.

(Cooper, 2007)
2.9.1 Skapandet av personas

Personas skapas utifrån intervjuer med och observationer av användare och potentiella användare, och ibland ytterligare information från stakeholders, SMEs och egen research. Enligt Cooper är dessa steg basen:

- **Identifiera beteendevariabler**
 I detta steg identifieras vad det är användaren gör, vad som styr denne. Hur mycket, hur den ställer sig till en viss produkt och område, vilken utbildning och villighet att lära sig användaren har. Varför är användaren involverad inom området och på vilket sätt? Vilka färdigheter har användaren som kan användas inom området?

- **Para ihop intervjuobjekt med beteendevariabler**

![Figur 4. Exempel på placering av beteendevariabler på skala (Cooper, 2007).](image)

- **Identifiera viktiga beteendemönster**
 Leta efter grupperingar som intervjuobjekt befinner sig i på skalorna. Några objekt som grupperar sig i sex till åtta olika variabler representerar troligen viktiga beteendemönster som utgör grunden för en persona.

- **Slå ihop utmärkande och relevanta mål hos användare**
 Nu skapas ett fiktivt, evokativt för- och efternamn för personan, demografisk information såsom ålder, boplats, inkomst och jobbtitel. Punkttörmer för speciella beteenden som får personan att stå ut. Detta för att lättare visualisera
personan. Från detta steg framåt används personans namn när man refererar till denne.

- **Se över redundans och helhet**
 I detta steg ses personan över efter hål i data som kräver ytterligare research, eller om två personas är för lika varandra kan en av dem elimineras och föra över karaktärsdrag från denna för att förstärka den andra. Varje persona är distinkt av en orsak, de ska representera vidden av beteenden och behov i den riktiga världen.

- **Utöka specifika attribut och beteenden**

- **Tilldela personatyp**
 Cooper tar upp följande olika personatyper:

 Primär persona – Den persona som designen är riktad emot. En primär persona är inte nöjd om designen är riktad mot en annan persona.

 Sekundär persona – Är i stort sett nöjd med primära personans val, men har även specifika ytterligare behov som kan bli uppfyllda utan att störa den primära personan.

 Supplemental persona – Användarpersonas som inte är primära eller sekundära. Dessa personas är helt representerade genom en kombination av primära och sekundära personas.

 Kundpersona – Dessa personas representerar behoven hos kunderna, inte slutanvändarna av produkten. Dessa personan behandlas ofta som sekundära.
2.10 Scenarier

Personabaserade scenarier är berättande beskrivningar av en eller flera personas som använder en produkt för att uppfylla specifika mål. Scenarier tillåter en designer att starta ifrån en berättelse som beskriver en ideal upplevelse från en personas perspektiv, hur de tänker och uppför sig, snarare än teknologi och affärsintressen. Scenarier kan fånga upp den icke-verbala kommunikationen mellan användaren och produkten. (Cooper, 2007)

2.10.1 Personas i Kontextscenarier

Kontextscenarier används enligt Cooper för att utforska hur en produkt på bästa sätt kan tillfredsställa en personas behov. Kontextscenarier skapas innan något designats och skrivs ur personans perspektiv, och det är i denna scenariotyp som designern har störst möjlighet att föreställa sig en ideal användarupplevelse. (Cooper, 2007)

2.10.2 Personas i Valideringsscenarier

Valideringsscenarier används för att testa designlösningen i varierade situationer. Dessa scenarier är inte lika ingående som kontextscenarier utan är typiskt i "Tänk om.."-form. Personascenarier är relevant för detta projekt för att sätta in den persona som skapas i en kontext som är sammankopplad med produkten, och där de skulle använda produkten. (Cooper, 2007)

2.11 Normans teorier kring placering, mappning, synlighet och respons

2.11.1 Gruppering

2.11.2 Mappning
Med mappningsproblemet syftar Norman på problemet med i vilken ordning eller följd ett mentalt mönster överensstämmer med det verkliga mönstret i vilka knappar eller strömbrytare hör ihop med den funktion de kontrollerar. (Norman, 2002)

2.11.3 Synlighet och respons
Norman menar att för att veta vad en användare ska göra med ett objekt finns två viktiga punkter:

Synlighet
Gör relevanta delar synliga. De funktioner som används mest ska också synas mest.

Respons
Ge varje händelse en omedelbar och uppenbar effekt.

Många frågor dyker upp vid användning av en produkt, till exempel:

- Vilka delar är rörliga? Vilka sitter fast?
- Vart ska objektet greppas?
- Hur mycket kraft krävs för att styra objektet, hur långt kan en viss del dras?

Norman förespråkar displayar för att visa data och information om en produkt både som visuell representation för vad som kan göras och respons på vad som pågår. Med vissa objekt som inte kan göras synliga kan ljud fungera för att förmedla samma eller ytterligare information till användaren. Ljud kan berätta för användaren att en sak
fungerar som det ska eller om det behöver repareras. Det kan även rädda oss och skydda oss från olyckor. (Norman, 2002)

Användningen av ljud är värdefull och fyller en viktig funktion och ljud skulle kunna användas inom design i en mycket större skala. När ljud används inom design ska de genereras så att det framgår vart de kommer ifrån, och berätta vad det är som pågår och som inte skulle kunna kommuniceras till användaren visuellt. En stor fördel med att använda ljud enligt Norman är att de kan upptäckas av användaren även när dennes uppmärksamhet är riktad på något annat. Han menar dock att försiktighet ska utövas vid användande av ljud vid design. Ljud kan verka störande och distraherande som hjälpfullt, och avsaknad av ljud kan leda till motsatt effekt, då det kan få användaren att sakna respons på utförda handlingar. (Norman, 2002)

Normans teorier användes som teoretisk bakgrund i projektet för att motivera designvalen för funktioner och utseende på Tytoglasses samt för att fånga upp designmöjligheter och problem som inte intervjuerna med stakeholders och potentiella användare täckte och ringa in behov och krav för produkttegnskaperna i QFD-matrisen.
3. Metod och genomförande

I detta avsnitt behandlas vilka metoder som använts i projektet, hur dessa är förankrade till teorin, på vilket sätt metoderna tillämpats och hur tillämpandet skiljer sig ifrån teorin kring dem. Metoddelen kommer att visa på arbetsflödet och hur de olika metoderna ligger till grund för varandra, från hur en hypotetisk persona konstuerades som en tidig skiss på användaren, till hur skapandet av en 3D-modell av Tytoglasses konstruerades för att visualisera produkten genom de krav och behov som uppkommit genom hela processen.

3.1 Hypotetisk persona

Före de intervjuer som kommer ligga till grund för persona togs en hypotetisk persona fram. En hypotetisk persona verkar enligt Cooper för att definiera olika typer av användare av en produkt och används som en bas för första intervjuplaneringen. Hypotetisk persona försöker besvara:

- Vilka olika sorters människor kommer att använda denna produkt?
- På vilka sätt kan deras behov och beteenden skilja sig?
- Vilka beteendeområden och olika miljöer behöver undersökas? (Cooper, 2007)

I detta arbete användes hypotetisk persona för att ta fram en hypotetisk bild av potentiella användare som stöd till intervjuplaneringen, och verka för att göra intervjufrågorna mer personligt ställda genom att skriva dem att ställas till en person.

3.2 Stakeholder och SMEs

Målgruppen för Tytoglasses är personer med nedsatt syn, synsvaghet eller grav synnedsättning som använder starkt förstorade optiska lösningar med kort läsavstånd. 17 % av Sveriges befolkning är över 65 år gamla. Av dessa är ca 5 % drabbade av någon grad av synnedsättning, och av dessa har minst 75 000 – 80 000 behov av förstoring vid läsning. Många av dessa lider av makuladegeneration (åldersförändringar i gula fläcken), men även Glaukom, Grå starr och diabetes kan orsaka synnedsättning. SMEs i detta projekt har varit:
• Gun Olsson på Syncentralen i Kalmar, som i hennes roll som samordnare på Syncentralen organiserade intervjuerna och valde ut personer som skulle intervjuas, och gav råd kring tidpunkt, längd och plats för användarintervjuerna.

• Jörgen Gustafsson på Högskolan i Kalmar har agerat SME på grund av hans kunskap som Leg. optiker/Tekn Dr på Högskolan i Kalmar, och gav råd kring litteratur angående produktområden och kunskap om människor som i målgruppen.

• Björn Hellström som med sin stora kunskap om målgruppen agerat både som företagsintressent och SME.

3.3 Genomförande av intervjuer med stakeholder genom en syntes av Saffers och Coopers teorier

Utifrån Saffers och Coopers teori kring intervjuer med stakeholders togs ett antal frågor fram för att ställas till Björn Hellström, VD på Multilens AB (Bilaga 3). Dessa frågor var:

1. Vad är din vision kring LED-glasögonen i eftersortimentet? (verksamhetsmål, affärsdrivare, preliminär produktvision)

2. Hur tror du ett framtidsscenario för produkter av denna sort ser ut? (preliminär produktvision, verksamhetsmål)

3. Hur skulle du beskriva den tänkta typanvändaren/användarna av produkten? (stakeholders uppfattning av användaren)

4. Varför finns det önskemål från er sida att undersöka om en produkt av denna typ lanseras? (verksamhetsmål, preliminär produktvision, stakeholders uppfattning av användaren)

5. Vad är Multilens mål med detta projekt? (verksamhetsmål, affärsdrivare)

Frågor gällande budget, deadlines och teknik uteslöts från intervjun då det ansågs för tidigt i utvecklingsfasen för att det skulle ha någon påverkan för resultatet i detta projekt.
3.3.1 Genomförande av intervjuer med användare utifrån en syntes baserad på Coopers och Saffers teorier

Utifrån Coopers och Saffers teorier om hur intervjuer skapades en syntes (figur 5) av deras teorier kring intervjuer och applicerades på detta projekt. Den teori kring intervjuer som var mest relevant för projektet valdes ut och låg till grund för frågorna som konstruerades. Svaren användes i syfte att skapa personas och bygga scenarier kring hur personan skulle kunna använda produkten.

![Diagram](image)

Figur 5. Skapande av syntes mellan Coopers och Saffers teorier kring intervjuer

Intervjuerna syftade, utifrån syntesen att ha ett så öppet spektra som möjligt och att låta intervjuobjektet själv berätta och föra diskussionen. Frågorna ställdes i något olika ordning beroende på hur intervjuerna fortgick, då intervjuobjekten ibland ingående svarade på planerade frågor omedvetet under deras berättelser.
3.4 Personas

3.4.1 Skapande av persona

3.5 Framtagande av scenarier

3.5.1 Kontextscenarier

3.6 Genomförande av behovsanalys genom QFD-metoden

Genom de behov och krav som personas hade, de förväntningar och krav som stakeholders hade, de designprinciper Norman förespråkar, samt den teori kring ljusmängd som artikeln Optimal Illumination for Reading in Patients with Age-Related Maculopathy pekar mot togs en rad behov och krav på den slutgiltiga produkten fram och placerades in och graderades i en QFD-matris.

Med hänsyn till produktens utvecklingsstadium och projektets längd användes en begränsad del av QFD för att få en översikt av vilka delar av behoven som hörde tillsammans med vilka produktspecifikationer.

Utifrån de metoder som använts skapades en modifierad version av QFD-metoden. Utifrån personas, stakeholderintervju, Normans designprinciper och tidigare forskning identifierades ett antal krav på produkten, som sedan konkretiserades i tydliga produktspecifikationer. Dessa var:

- **Användarvänlighet** (Personas, Stakeholder)
- **Batterilivslängd** (Personas, Stakeholder)
- **Lamplivslängd** (Personas, Stakeholder)
- **Upplysningsförmåga** (Personas, Stakeholder)
- **Utseende** (Personas)
- **Komfort** (Personas)
• **Varierad ljusmängd** (Optimal Illumination for Reading in Patients with Age-Related Maculopathy)

• **Taktil feedback** (Normans designprinciper om feedback)

• **Kvitteringsljud** (Normans designprinciper om feedback)

Dessa placerades sedan in i en matris, kopplade mot produktegenskaper, och graderades efter om de hade svagare eller starkare samband.

3.7 Visualisering av designförslag genom 3D-modell

Figur 6. Start av boxmodellering
I detta steg har en färdigkonstruerad box med 6 ytor skapats. En av ytorerna har sedan markerats (den ljusare ytan längst upp) extruderats.

Figur 7. Extruderings av ytor ifrån boxen.
I detta steg har den översta ytan från boxen extruderats och byggts på, så att nya former kan skapas.

Figur 8. Modifieraren ”TurboSmooth” som skapar en mjukare form på modellen.
Med hjälp av TurboSmooth går det att skapa kantiga modeller som programmet gör om till avrundade former automatiskt. Med hjälp utav olika modifierare använda tillsammans med grundfunktionerna i 3D Studio Max har användaren stor frihet att skapa i stort sett vilka former som helst.

3.8 Genomförande av visualisering av designförslag genom 3D-modell

Figur 9. Arbetsgång vid boxmodellering av Tytoglasses i programvaran 3D Studio Max 2009

64-bit.
4. Resultat

4.1 Resultat metoder för behovsanalys och användarstudier

Intervju med stakeholder resulterade i en intervju med Björn Hellström, VD på Multilens (Bilaga 3). Intervjusvaren pekade på krav gällande batterityp, lamptyp och användarvänlighet.

Metoden hypotetisk persona resulterade i den hypotetiska personan Haans Jaeger (Bilaga 1). Ur denna framkom ett personligt perspektiv på intervjuobjekten, och ett tydligare fokus som låg till grund för konstrueringen av intervjufrågorna.

4.1.1 Resultat syntes av Coopers och Saffers teorier

Frågorna som konstruerats genom intervjumetoden utifrån en syntes mellan Saffers och Cooper teorier kring användarintervjuer resulterade i fem intervjuer med personer i målgruppen (se bilaga 2).

Målriktade frågor
Försök nå så långt till kärnan av användning av produkten utifrån intervjuobjektets perspektiv. Försök locka fram den mest grundläggande anledningen till att han eller hon skulle använda produkten, och fokusera på det.

Ställ frågor som ummuntrar berättande svar
Undvik ja-och-nej-frågor eller frågor som är ledande. Försök att ställa frågor där intervjuobjektet kan svara utifrån sina egna kunskaper och erfarenheter.

En dag i livet
Hur en person lever en dag i sitt liv kan ge en mer täckande bild av människan som intervjuas. Saker som kan vara relevanta för intervjun men som ej intervjuobjektet tänker på som intervjuvär kan upptäckas.

Riktade kontextberättelser
Försök få personen att berätta om en gång de använde produkten, ett tillfälle då de skulle kunna tänka sig att använda produkten, eller en situation då de hade behövt produkten. Detta kan fånga upp starka känslor, både positiva och
negativa, som intervjuobjektet har om produkten som kan vara relevanta för projektet.

Undvik tekniska eller begränsande frågor

Försök styra bort ifrån teknisk problematik och komplicerade lösningar. Om intervjuobjektet resonerar att ”Det går inte för att…” försök då styra intervjun mot ”Tänk om…”. Diskussioner om teknologin bakom en produkt är inte relevanta på detta stadie.

Frågorna som sedan skrevs till intervjuobjekten utifrån syntesen:

1. **Skulle du kunna berätta lite om dig själv?**
2. **Skulle du kunna beskriva situationer där du upplever problem med din syn?**
3. **Saknar du något hjälpmedel som skulle kunna underlätta för dig?**
4. **Berätta om hur du går tillväga när du läser en tidning eller ser på tv?**
5. **Vid vilka tillfällen upplever du att det gör som bäst/är svårast att läsa?**
6. **Hur länge har du använt glasögon med förstoringsoptik?**
7. **Berätta hur du skulle vilja att glasögon med inbyggd belysning såg ut och fungerade?**

4.1.2 Resultat personas

Metoden personas resulterade i två personas med tillhörande personakollage. En primär persona vid namn Nathaniel Ur (figur 10), och en sekundär persona vid namn Franco Farin (Bilaga 6), samt tillhörande kollage för primär persona (Bilaga 5) och sekundär persona (Bilaga 6.1). Personas skapades utifrån Coopers teori kring personas, byggd på data ifrån användarintervjuer. Scenarier skapades sedan enligt Coopers teori kring dessa och resulterade i tre kontextscenarier och två valideringsscenarier (Bilaga 8).
Namn: Nathaniel Ur
Ålder: 77
Familj: Frun Eulalia, vuxna barnen Anders och Ninni, samt terriern Frasse
Bor: Villa på söderområdet i Kalmar
Favoritmat: En god köttbit
Favoritmusik: Vismusik, Fred Åkerström
Fritidsintressen: Matlagning, sudoku, promenader
Synnedsättning: Åldersrelaterad makuladegeneration

Nathaniel fick 2003 problem med synen och uppsökte en ögonläkare, där det antal tester konstaterades att han hade åldersrelaterad makuladegeneration och det var därför han hade problem att läsa. Han hade innan dess levtt ett mycket aktivt liv där han spelade mycket golf och var styrelsemledem och drivkraft bakom Kalmar Boulesällskap och spelade mycket Boule.

I början av hans sjukdom kunde han fortfarande utmana de flesta i klubben, och även ta bilen till matcher och träffar, men hans syn förändrades snabbt och efter bara något år kunde han inte längre åka bil eller kasta klotet rätt.

Nu använder Nathaniel glasögon med 10x förstoringsoptik på ena ögat vilket gör att han måste hålla det han läser väldigt nära ögat. Han tycker det är väldigt ansträngande och han kan inte lägga läsa deckare som han läste ofta. Det han tycker är jobbigast är att han inte kan åka bil eller cykla men även att han inte kan se ansiktet på den han pratar med utan får förlita sig helt på sina övriga sinnen. En begränsning för honom är även att han inte kan orientera sig med hjälp av gatuskyltar och till exempel vilka bussar han kan ta.

I början var Nathaniel väldigt envis med att visa att synnedsättningen inte hindrade honom, och han hade svårt att be om hjälp. Nu på senare år använder han dagligen flera hjälpmedel för läsning. Han använder bl. a en läs-tv, en sorts anordning som förstörar det han läser på en skärm. Han har även blivit mycket intresserad av nyheter inom hans sjukdomsområde och läser ofta artiklar och texter om sjukdomen som bl. a hans barn skickar till honom. Han har god kontakt med personalen på Syncentralen i Kalmar där han går för undersökningar, och för att hålla sig uppdaterad om olika nya hjälpmedel. Där träffar han även andra människor som har samma synnedsättning och brukar diskutera olika tips och tricks med dem om synhjälpmedel. Nathaniel använder förutom läs-tv ofta förstoringsglas som lyser upp texten när han ska kolla upp adresser och räkningar.

Nathaniel bryr sig egentligen inte om hur Tytoglasses ser ut, han vill bara att de ska fungera bra, lysa upp bra och inte väga för mycket. Han skulle mest använda dem hemma när han läser, därför värdesätter han funktion framför utseende.

Figur 10. Primär persona - Nathaniel Ur.
4.2 QFD

QFD-metoden resulterade i en matris där de olika behoven och kraven ställdes emot relevanta egenskaper på produkten och graderades efter svagare eller starkare samband (se figur 11). Ur dessa samband som identifierades konstruerades ett antal kravspecifikationer för produkten.

![QFD-matris](image)

Figur 11. QFD-matris med samband mellan behov/krav och produktens egenskaper.
4.3 Resultat kravspecifikation

Användarvänlighet:
Formen på glasögonen ska vara enkla att greppa vid och sätta på sig som ett par klassiska glasögon, batterierna ska vara enkla för personen som använder glasögonen att själv byta.

Batterilivslängd:
Batterier i Tytoglasses ska hålla så pass länge att användaren inte upplever det som mödosamt att byta dem hela tiden. Det ska vara enkelt för användaren själv att byta ut dem.

Lamplivslängd:
Livstiden för LED-lampor är många år. Således krävs det inte att användaren själv byter ut lampan i Tytoglasses.

Upplysningsförmåga:
Lampan ska lyss upp tillräckligt mycket för att tillfredsställa användaren, och på ett sätt som det drar minst batterier.

Utseende:
Material, färg och form på bågarna ska inte sticka ut utan se ut som ett par traditionella glasögonbågar. Batteri och lampa ska placeras på ett sådant sätt att de ej synd mer än nödvändigt.

Komfort:
Materialet och form på båge ska vara av en sådan typ att det ger bra komfort åt användaren.

Varierad ljusmängd:
En slags dimmer ska finnas på Tytoglasses som tillåter användaren att enkelt justera upplysningsnivån i olika miljöer.

Taktill feedback:
Alla kontroller på Tytoglasses ska avge taktill feedback till användaren om att något hänt, exempelvis genom att varje steg på dimmern för lampan har ett litet hack som gör att användaren känner att en handling utförts.

Kvitteringsljud:
Alla kontroller ska avge kvitteringsljud när något har hänt, som komplement till den taktila feedbacken. När användaren exempelvis stänger bågarna så ska lampan
automatiskt slås av, då avges både ett ljud, och ett litter motstånd som kommunicerar till användaren att lampan stängts av.

Modelleringen av Tytoglasses i 3D resulterade i en modell av glasögonen (figur 12). Denna modell konstruerades efter kravspecifikationerna som tagits fram genom QFD-metoden. Modellen ger förslag på funktioner i kravspecifikationen genom:

- Komfortabel båge med traditionellt glasögonutseende (figur 12).
- Lampa med lång livslängd, god upplysningsförmåga och placerad på ett ställe som ej drar uppmärksamhet till sig (figur 13 & figur 17).
- Vridhjul för varierad ljusmängd med takttil feedback och kvitteringsljud (figur 14).
- Batterilucka på ett användarvänligt sätt är placerade på ett ställe där användaren själv ska kunna byta batterier (figur 15).
- Batterier med lång livslängd placerade inuti skalmen för att Tytoglasses ska ha ett traditionellt utseende (figur 16).

Figur 17. Bild på en användare som använder Tytoglasses goda upplysningsförmåga för att på nära håll få tillräckligt med ljus för att kunna läsa till exempel tidningen.

Namnet Tytoglasses introducerades sent i arbetet, när resultaten var färdiga för att kunna ha ett representativt arbetsnamn för framtida projekt. Namnet ”Tyto” kommer från en artfamilj ugglor med excepcionellt mörkerseende.
5. Diskussion

5.1 Måluppfyllelse

Forskningsproblemet:

"Vilka faktorer avgör om människor i Tytoglasses målgrupp kommer att kunna använda Tytoglasses? Hur påverkar dessa faktorer design av funktion och användarvänlighet hos dessa?"

"Vilka funktioner bör Tytoglasses ha för att tillfredsställa användare i målgruppen?"

Genom research har problemområde, syfte och målgrupp identifierats. Utifrån den research har designmetoder valts ut, modifierats, applicerats och genomförts på ett sätt som ansetts vara mest relevant för projektet. Med dessa designmetoder har sedan ett designförslag på Tytoglasses tagits fram som pekar på ett antal faktorer som avgör om personer i målgruppen ska kunna använda Tytoglasses, hur krav och behov identifierats och hur designprocessen har fortlöpt för att tillgodose dem.

Det slutgiltiga resultatet, i form av en 3D-modell av Tytoglasses innehåller ett antal funktioner vilka behovet för framkommit under research och designmetoder under arbetet. Utan ytterligare användartester på människor ur målgruppen, begränsas måluppfyllelsen till att detta projekt har pekat ut ett antal funktioner som Tytoglasses bör ha, men att det kan behövas ytterligare som eventuellt skulle uppduagas vid ytterligare användartester.

5.2 Diskussion om resultat

3D-modellen som skapades modellerades byggd på data som insamlats ganska långt bak i designprocessen. Den enda interaktion med användare var under intervjufasen med fem användare utförda med syfte att insamla data till personas. Kraven och behoven som uppkom genom intervjuer med användare och generaliserades och förstärktes genom personas framkom visserligen som faktiska önskningar ur användargruppen, dock är andra funktioner på glasögonen byggda på krav och teori från stakeholders, Eldred och Norman. Designen på Tytoglasses har inte testats på användargruppen, och önskningarna om att de skulle se ut som traditionella glasögonbågar kan inte ses som uppfyllda då designen helt är byggd kring mina subjektiva uppfattningar om hur ett par traditionella glasögonbågar ser ut.

5.3 Analys av metoder

5.3.1 Analys av stakeholder intervjuemetod

Metoden för att intervjua stakeholder, i detta fall Björn Hellström på Multilens fylde sitt syfte och kännes relevant för projektet. Då detta ej var ett betalt projekt på direkt uppdrag av Multilens så var det flera faktorer i bakgrundsteorin kring intervjuer med stakeholders från Cooper och Saffer som ej användes. Själva kärnan i teorin kring intervjuer med stakeholders från teorin var på vilka villkor man kunde arbeta, och vilka medel som fanns att tillgå. Då deadline, budget eller tekniska begränsningar från företagets sida inte var aktuella för projektet föll en stor del av denna metod bort, och det hade varit mycket mer intressant att tillämpa den i ett projekt där dessa delar ingick. Dock fick jag med hjälp av metoden ut en klar visionsbild från företagets sida

5.3.2 Analys av intervjuemetod

Metoden som valts för att intervjua människor ur målgruppen, syntesen mellan intervjuetorier av Saffer och Cooper kändes relevant och rätt för uppgiften. Den resulterade i kvalitativ data som skulle ligga till grund för skapande av personas. Då jag visste att antalet personer att intervjua skulle vara så pass få redan innan jag valde metod, kändes det relevant att ställa frågor som skulle ge mer kvalitativa svar. Då personometoden som Cooper föreslår den skulle appliceras i detta projekt på ett modifierat anpassat sätt beslutade jag mig för att skapa kvalitativa berättande svar
inriktade på kontexter där intervjuobjektet skulle kunna använda produkten. De frågorna som ställdes känns i efterhand som fullt relevanta, och bra riktade mot den modifierade personametod som användes. Då intervjuobjektet och tiden inte anses tillräcklig för att få ut som mycket av möjligt ur intervjuet känns de frågor och det sätt intervjuerna genomfördes på som en kompromiss. Det hade varit mycket intressant att få intervjuar en stor mängd människor i målgruppen, och applicera en del av de okonventionella intervjuetoderna som Saffer tar upp, exempelvis rollspel. Eller extremanvändarintervjuer, där exempelvis människor som har nedsatt syn och är behov av förstoringsoptik, men aldrig använt några intervjuas. Att få följa med varje intervjuobjekt under en dag i deras liv tror jag hade varit oerhört givande till projektet och hade kunnat ge en helt annan dimension till etnografiska intervjuer och genererat data som hade kunnat skapa en mycket mer komplett persona.

5.3.3 Analys av personametod

Eftersom målgruppen var så homogen fungerade metoden mest för att förstärka och verifiera bilden av målgruppen. Metoden användes enligt Coopers teori om att identifiera beteendevariabler genom att gruppera och mappa intervjuobjekten på en skala utifrån svaren de uppgav under intervjun. Då intervjuobjektet var så få kunde beteendemönster inte utläsas. Grupperingarna på skalan användes istället för att identifiera beteendemönster som personan inte var del av, då grupperingarna på skalorna var så lika varandra (Bilaga 4). Den primära och sekundära personan konstruerades enligt metoden, men den sekundära kändes överflödig för projektet och verkade enbart för att Tytoglasses skulle ha ett traditionellt glasögonutseende. Den hypotetiska personan var tänkt att fungera som visualisering av ett intervjuobjekt under tiden intervjufrågorna konstruerades men jag anser att metoden istället byggde för mycket på tidigare erfarenheter och tjänade därför inget direkt syfte. Att låta stakeholders och SME:s tillverka egna personas hade antagligen gett mer insikt och en bättre nyanserad bild av typanvändaren, som kunnat verka för att fånga upp saker som jag inte lyckades med under intervjuerna. Att de personas byggda utifrån intervjuer var ganska lika den hypotetiska personan kan eventuellt tyda på att jag redan hade en förutfattad mening om målgruppen som stämde, eller att jag inte gjorde ett tillräckligt bra jobb i intervjufasen med att extrahera relevant data utifrån intervjuerna. Det kan också peka på att frågorna skrevs till intervjuerna utgick ifrån den hypotetiska
personan på ett motverkande sätt, alltså att frågorna ställdes på grunder av antaganden gjorda tidigare.

Metoden hjälpte projektet genom att rikta in designen mot en person, och skapa en individ bakom produkten.

5.3.3.1 Analys av scenarios

Scenarios var en mycket konkret metod som direkt skapande en berättelse om produkten i personans liv. Det som var mest användbart var valideringsscenarier som belyste problem som designen inte tagit upp. Valideringsscenarierna som skapades är antagligen aldeles för få, och det är mycket möjligt att många fler skulle uppstå vid eventuella användartester av produkten.

5.3.4 Analys QFD-metod

5.3.5 Analys av metod för skapande av 3D-modell

Metoden för att visualisera modellen genom att göra en 3D-modell ansågs vara ett smidigt sätt att skapa en visuell representation av Tytoglasses, och på ett tydligt sätt visa på de funktioner som de olika behoven representerar. Då jag redan besitter omfattande kunskaper i programvaran Autodesk 3D Studio Max 2009 64-bit gick det snabbt att få fram en 3D-modell.
5.3.6 Validitet och reliabilitet

Det finns problemområden gällande validiteten i resultaten.

Beteendemönster i personametoden

Då jag kraftigt gått ifrån Coopers teori kring skapande av personas och validitet av datan gällande antal intervjuobjekt och identifikation av beteendemönster finns det risk att projektet gått vidare, på fel grunder sett till metodval, och att resultatet således inte återspeglar verkligen och målgruppen på ett så korrekt sätt som möjligt, och resultaten har således ganska svag validitet.

Avsaknad av uppföljande intervjuer och användartester

Då inga uppföljande intervjuer med intervjuobjekten för att verifiera resultaten av personas, eller användartester på en färdig modell konstruerats och testats finns det svag validitet för att resultaten är korrekta.

5.4 Förslag till fortsatt forskning

Det vore intressant att gå vidare med projektet genom att skapa en verklig prototyp av Tytoglasses och utföra en mängd användartester på människor i målgruppen, för att utvärdera hur väl 3D-modellen och dess funktioner stämmer överens med de verkliga krav och behov som finns och om de kan användas på ett sådant sätt att de faktiskt gör nytta för människor.
6. Källförteckning

6.1 Böcker

6.2 Artiklar

7. Bilagor

7.1 Bilaga 1: Hypotetisk persona

Hypotetisk Persona

Namn: Haans Jaeger
Ålder: 77
Bor: Villa utanför Nybro
Fritidsintressen: Promenader, matlagning
Favoritmat: Wallenbergare
Favorit-TV: Engelska deckare

Franz har använt glasögon med förstoringsoptik sedan han för 6 år sedan upptäckte att orden började flyta samman när han läste och att ord försvann i texten på TV. Han kontaktade då sin ögonläkare och fick gå och prova ut ett par glasögon med förstoringsoptik. Sedan dess har han fått byta till starkare förstorning två gånger.

Innan hans syn försämrades spelade han mycket golf och bridge med vänner, något som han inte riktigt kan göra längre. Han kan om han anstränger sig se till exempel spellort men att spela ett helt parti blir för ansträngande. Han kan inte längre köra bil, något som han tycker inte spelar så stor roll då han cyklar runt istället, i alla fall på dagtid.

Han älskar matlagning och han har efter sin synnedställning börjat laga mycket mer mat, en ny hobby som fungerar trots hans syn, även om hans fru får hjälpa till ibland då han inte ser.

När Franz sitter hemma och läser använder han sig av ett förstoringsglas med belysning och då tycker han själv att det kan vara riktigt trevligt att läsa. Eftersom han inte kan köra bil längre och hans fru inte heller kan det på grund av hennes syn har de säljt bilen och åker numerat gång. En gång i månad åker de till deras son Ferdinand och hans familj utanför Mjölby. Tägresa tar ungefär 3 timmar. Under resan brukar hans hustru sitta och sticka och då skulle han tycka det vore avslappnande att läsa Sportbladet, men tycker att det är för mörkt på tåget.

Förutom under tägresorna Har Franz problem i matbutiker, på banken och i köket på kvällen, då han tycker det är otympligt att dra med sig sitt förstoringsglas.
INTERVJU 1, Frank, 8x förstoring, Ålder: 60

Skulle du kunna berätta lite om dig själv?

Skulle du kunna beskriva situationer där du upplever problem med din syn?
Man möter ju människor och då känner man inte igen dem, gatunamn, vägskyltar ser jag inte, kan ej läsa dem, men det sociala är ändå jobbigast.

Saknar du något hjälpmedel som skulle kunna underlätta för dig?
Jag har ju skaffat en mycket större TV nu, en 42 tum som tydligen ska ha något hjälpmedel för det, jag använder ju de här kikarna, de hjälper ju men det känns obekvämt att ta upp dem hela tiden. Jag använder CCTV också, har en vän som lyssnar på datorn men jag har inte riktigt tagit till mig det än jag vill läsa.

Berätta om hur du går tillväga när du läser en tidning eller ser på tv?
TV:n ska det ju finnas något program för, det är påfrestande att läsa.

Vid vilka tillfällen upplever du att det går som bäst/är svårast att läsa?
Bäst går det ju framför datorn, svårast när jag möter människor, jag går gärna med mörka glasögon annars tror folk att jag ser frånvarande ut. Teoretiskt sätt borde jag se bättre i mörker enligt min ögonläkare men det tycker jag inte att jag gör.

Hur länge har du använt glasögon med förstoringsoptik?
2002.

Berätta hur du skulle vilja att glasögon med inbyggd belysning såg ut och fungerade?
Man borde kunna bygga in kikare i glasögon, jag tänder gärna när jag är hemma och ska läsa. De ska se så normala ut som möjligt, se ut som vanliga glasögon, lätt tyngd är viktigt, man borde kunna ställa om glasögonen så att man kan ställa om dem från ljust till mörkt.
INTERVJU 2, Sten 8-9x förstorings. Ålder 84

- **Skulle du kunna berätta lite om dig själv?**
 Jag har ju bara ett öga, jag fick propp i det friska ögat för några år sen.

- **Skulle du kunna beskriva situationer där du upplever problem med din syn?**
 Ja det är ju väldiga problem, närseendet är ju bara på 2 cm, jag måste alltså hålla riktigt nära, men ändå faller bokstäver bort, ser knappt ansikten på folk, man får förlista sig på sin hörsel och sin känsel

- **Saknar du något hjälpmedel som skulle kunna underlätta för dig?**
 Jag använder ju förstoringskärm på TV:n som hjälper till att förstora texten, jag använder också CCTV men den är ju för liten, det förstör hela helhetsintrycket

- **Berätta om hur du går tillväga när du läser en tidning eller ser på tv?**
 Jag läser ju riktigt nära, det är oerhört lätt att tappa skärpedjupet så det är väldigt påfrestande.

- **Vid vilka tillfällen upplever du att det går som bäst/är svårast att läsa?**
 Vet inte, man ser ju alltid väldigt dåligt tycker jag. Men ljuset, hur ljust det är spelar mycket stor roll, i skymningen ser man ju inte mycket.

- **Hur länge har du använt glasögon med förstoringsoptik?**
 2002, fick dem efter proppen då synen försämrades.

- **Berätta hur du skulle vilja att glasögon med inbyggd belysning såg ut och fungerade?**
 De ska ju vara osynliga. Alltså det ska ju inte se ut som något konstigt, det ska se ut som det är ett par glasögon, och de ska hänga där utan att man tänker på dem och ska inte tynga ner.
INTERVJU 3, Mingus 10x och 6x förstoring, Ålder 83

- **Skulle du kunna berätta lite om dig själv?**
 Jo jag har ju inte haft det här så länge en 1½ år men jag klarar mig, det är ju så, jag är golfvärd ute på golfbanan och så, på Kalmar GK.

- **Skulle du kunna beskriva situationer där du upplever problem med din syn?**

- **Saknar du något hjälpmedel som skulle kunna underlätta för dig?**
 Jag använder en extra stor klocka, och så använder jag ju olika förstoringsglas.

- **Berätta om hur du går tillväga när du läser en tidning eller ser på tv?**
 Jag läser ju inte, men Sudoko löser jag, det går bättre då måste man ju inte ha fokus på så mycket och så rakt på en gång, jag använder kikare när jag ser på TV.

- **Vid vilka tillfällen upplever du att det går som bäst/är svårast att läsa?**
 Nej det kan jag inte svara på.

- **Hur länge har du använt glasögon med förstoringsoptik?**
 1½ år, ja jag har ju haft problem med synes innan detta, men inte relaterat till det här då.

- **Berätta hur du skulle vilja att glasögon med inbyggd belysning såg ut och fungerade?**
 De kan inte vara tunga och klumpiga, det måste vara lättare bågar om lampor och batterier ska tynga ner, trycket på näsan får inte bli för mycket, vikten är viktig. Utseende spelar ingen roll, man går ju ändå inte runt på stan med dom här glasögonen. Jag använder bara glasögonen när jag måste läsa något, inte ute på golfbanan direkt.
• Skulle du kunna berätta lite om dig själv?
Ja jag har ju en del problem med min syn.

• Skulle du kunna beskriva situationer där du upplever problem med din syn?
Ja man måste ju jämt läsa skyllar man ser ju inte vilken buss det är och vilken gata man är på, det går ej att göra någon bra orientering om vart man är. Bokstäver faller sönder och går bort.

• Saknar du något hjälpmedel som skulle kunna underlätta för dig?
Jag har förstoringsprogram på datorn, och så har jag en läs-TV en CCTV, och de är bra den använder jag mycket.

• Berätta om hur du går tillväga när du läser en tidning eller ser på tv?
Det går inte att se på TV, jag ser inte bilden. Läsning är det väl sådär med jag läser inte särskilt mycket det är påfrestande att läsa, man tappar skärpedjupet.

• Vid vilka tillfällen upplever du att det går som bäst/är svårast att läsa?
Skymningen, i mörka miljöer, nu på våren går det ju fint men när det börjar bli lite skumt ute då är det svårt att se, så ljuset gör ju mycket skillnad.

• Hur länge har du använt glasögon med förstoringsoptik?
8-9 år

• Berätta hur du skulle vilja att glasögon med inbyggd belysning såg ut och fungerade?
INTERVJU 5, Efraim 10x förstoring, Ålder 82

• Skulle du kunna berätta lite om dig själv?
Ja man kan ju inte ge sig ut på stan själv det är ju en väldig begränsning, visst här i Kalmar och närheten av mitt hem går det ju bra, men man kan ju inte vara själv på nya platser, men jag har en hund och han hittar hem, så han brukar vara ute och gå med mig. Jag älskar ju bil och har alltid äkt bil och nu kan jag inte längre, det har man ju inte repat sig ifrån än, jag jobbade ju på Volvo i 50 år och älskade att köra bil, det kommer ju och går, och det är klart det finns stunder då man är ledsen över det.

• Skulle du kunna beskriva situationer där du upplever problem med din syn?
Jag kan ju knappt läsa alls, iallafall inte större stycken. Det tar mycket energi det här.

• Saknar du något hjälpmedel som skulle kunna underlätta för dig?
Jag har ju en sån CCTV, men den har jag lämnat tillbaks nu jag orkar inte med den, jag använder förstoringsglas, och min fru läser tidningen för mig varje morgon om det räknas...

• Berätta om hur du går tillväga när du läser en tidning eller ser på tv?
Jag kan knappt läsa, det tar för mycket energi och är för påfrestande., bokstäverna går ej att se på TVn, kan bara se svenska filmer och program, nyheterna förstås.

• Vid vilka tillfällen upplever du att det går som bäst/är svårast att läsa?
Vet faktiskt inte riktigt.

• Hur länge har du använt glasögon med förstoringsoptik?
2 år, högra ögat är ju sämre.

• Berätta hur du skulle vilja att glasögon med inbyggd belysning såg ut och fungerade?
De ska se ut som glasögon, att man bara ska kunna vips, trycka på en knapp det verkar ju himla bra, och att ljusskärpan är där ögonen är bara det lyser upp så hjälper det för mig och att man inte skuggar sig själv.
7.3 Bilaga 3: Intervju med stakeholder Björn Hellström, VD på Multilens

- **Vad är din vision kring LED-glasögonen i ett framtida sortiment?**
 Visionen är ett litet och lättanvänt ljus som kan kombineras med våra olika typer av glasögonburen förstoringsoptik. Då ljus är en väldigt viktig del för att kunna se och speciellt då synen är starkt nedsatt. Med förstorande näroptik är läsavståndet mkt kort vilket gör att textblad eller liknande lätt skuggar det man vill läsa. Om då en liten och nära placerad LED lampa kan öka lujsmängden löser man många av de idag svåra situationer som uppkommer.

- **Hur tror du ett framtidsscenario för produkter av denna sort ser ut?**
 Det är viktigt att det är litet, möjligt att fästa eller integrera direkt i bågen. LED lampans strömsnålhet är också viktig för att även strömkällan/batteriet kan fästas i bågen.

- **Hur skulle du beskriva den tänkta typanvändaren/användarna av produkten?**
 En synsvag person som önskar vara mobil och kunna få ett tilläggs ljus i ljussvaga miljöer. Det kan givetvis även vara en person som sysslar med detaljarbete och där det krävs extra ljus. Detailarbete i trånga mörka utrymmen. (Byta proppar etc.)

- **Varför finns det önskemål från er sida att undersöka om en produkt av denna typ ska lanseras?**
 Synsvaga personer som är vår största målgrupp behöver bra ljus och med dagens snabba utveckling av LED lampor tror vi att det kan vara möjligt att hålla ljus- och strömkälla så små att det kan integreras i en båge och vara tillräckligt användarvänligt.

- **Vad är Multilens mål med detta projekt?**
 Att se om önskemålen/kraven ovan är möjliga att få samman i en säljbar produkt.
7.4 Bilaga 4: Resultat mappning av beteendemönster från personas

Ålder:

Fråga 1: Skulle du kunna berätta lite om dig själv?

Fråga 2: Skulle du kunna beskriva situationer där du upplever problem med din syn?

Fråga 3: Saknar du något hjälpmedel som skulle kunna underlätta för dig?
Fråga 4: Berätta om hur du går tillväga när du läser en tidning eller ser på tv?

Fråga 5: Vid vilka tillfällen upplever du att det går som bäst/är svårast att läsa?

Fråga 6: Hur länge har du använt glasögon med förstoringsoptik?

Fråga 7: Berätta hur du skulle vilja att glasögon med inbyggd belysning såg ut och fungerade?
7.5 Bilaga 5: Kollage primär persona: Nathaniel Ur
Namn: Franco Farin
Älder: 80

Familj: Ankerman

Lägenhet i Trekanten

Fritidsintressen: Fotboll, politik, botanik

Favoritmat: Kassler med ananas och ris

Favoritmusik: Lill-Babs, Kenny Rogers

Synnedsättning: Åldersrelaterad makuladegeneration

Franco Farin föddes i Italien, och emigrerade ensam till Sverige efter att hela hans familj avlidit i krigen som 10-åring. Han kom till en fosterfamilj i Brömsebo där han bott i nästan hela sitt liv. Franco är en fotbollsfantast och han spelade själv på elitnivå i sin ungdom, bland annat i GAIS A-lag en period på 60-talet. Han är numera aktiv i föreningen IFK Nybro, tidigare som assisterande tränare men nu förhållandevis hjälper han till som funktionär vid hemmamatcher med att anordna de andra funktionärerna.

Francos syn började gradvis förändras för 4 år sen då han besökte läkaren och fick reda på att han led av åldersrelaterad makuladegeneration. Han har sedan dess fått ganska rask försämrad syn och har bytt till starkare förstoringsoptik flera gånger. Han ser tillräckligt bra på långt håll för att kunna orientera sig men har stora problem att läsa och se på utländska filmer.

Han tycker att den jobbigaste biten med synnedstigningar är när han märker att han inte kan göra enklare sysslor som han tidigare klarade av. Innan stod han till exempel i ingången på IFK Nybros hemmamatcher och slöt kassan och försäljning, något han inte längre klarar av. Han tycker även att det är väldigt jobbigt att han inte kan köra bil. Franco är jätteinteresserad av nya hjälpmedel för hans syn och han ser på ett par pensionärer som funnit bra hjälpmedel. Han använder t. ex läs-tv, lupp med förstoringsglas och

Franco har tidigare testat en sorts pannlampa som Syncentralen hade inne, och som han tyckte fungerade riktigt bra för att lysa upp när han läser. Pannlampa var dock väldigt otymplig, med ett stort batteripack vid höften, och Franco tyckte att det var en bra funktion men i en dålig förpackning. Hans förhoppningar på Tytögllasses är att de ska se ut som ett par vanliga glasögon så långt det går, att de inte ska tynga ner på näsan och att de ska vara enkla att använda.
7.7 Bilaga 7: Kollage sekundär persona: Franco Farin
7.8 Bilaga 8: Scenarier

7.8.1 Kontextscenarier

Kontextscenario 1:

Kontextscenario 2:

Kontextscenario 3:
7.8.2 Valideringscenarier

Valideringsscenario 1:
Tänk om batterierna i Tytoglasses tar slut?
Knappeellsbatterisorten finns att köpa i väl sorterade livsmedelsbutiker eller butiker som Clas Ohlsson eller Kjell & Co. Batteriluckan öppnas enkelt och stäng igen med ett klick.

Valideringsscenario 2:
Tänk om glasögonen glöms med lampan på och drar batterier?
När användaren fäller ihop glasögonen stängs lampan automatiskt av.