This is the accepted version of a paper published in Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry. This paper has been peer-reviewed but does not include the final publisher proof-corrects or journal pagination.

Citation for the original published paper (version of record):

Merritt, E., Malmgren, J., Klinke, F., Olofsson, B. (2009)
Synthesis of diaryliodonium triflates using environmentally benign oxidizing agents.
Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, (14): 2277-2280

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-29387
Synthesis of Diaryliodonium Triflates using Environmentally Benign Oxidizing Agents

Eleanor A. Merritt, Joel Malmgren, Felix J. Klinke, Berit Olofsson*

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
Fax: +46(8)154908
E-mail: berit@organ.su.se

Received: The date will be inserted once the manuscript is accepted

Abstract: A range of symmetric and unsymmetric diaryliodonium triflates have been prepared employing urea-hydrogen peroxide as the oxidizing agent. The use of aqueous hydrogen peroxide and catalytic systems with MTO in the oxidation of iodoarenes has also been investigated.

Key words: hypervalent iodine, diaryliodonium salts, oxidation, arenes, green chemistry.

In recent years hypervalent iodine reagents have received considerable attention befiting their use as non-toxic and mild reagents in many areas of organic synthesis. Diaryliodonium salts have found applications in many reactions which traditionally employ transition metals, such as α-arylation of carbonyl compounds and cross-coupling reactions, as iodine(III) reagents bearing two carbon ligands display similar properties to metals such as Pd, Hg and Pb. Replacement of heavy metals with diaryliodonium salts is highly beneficial from an environmental standpoint, providing a means to reduce both the cost and toxicity of these processes.

Diaryliodonium salts have the potential to render processes that currently employ heavy metals environmentally benign, provided that the synthesis of the salts themselves is sufficiently ‘green’. Whilst efficient and operationally simple methodology for the preparation of such compounds has recently been developed within our laboratory (Scheme 1, method A), use of stoichiometric m-chloroperbenzoic acid (mCPBA) as oxidizing agent and the concomitant production of m-chlorobenzoic acid as waste make these protocols less desirable on an industrial scale. Other methods for the preparation of diaryliodonium salts have been reported, but they suffer from drawbacks such as the need to preform an iodine(III) species, extended reaction times, excess reagents or toxic chromium compounds.

Encouraged by the previously reported use of urea-hydrogen peroxide (UHP) in the synthesis of iodine(III) reagents, an investigation into the use of environmentally benign oxidizing agents in the synthesis of diaryliodonium triflates was undertaken. Triflate was the counterion of choice due to its poor nucleophilicity and the ease of purification by precipitation of the salts.

The initial investigation focused on replacing mCPBA (Scheme 1, method A) with either 30%aq. H₂O₂ or UHP (Scheme 1, method B). This approach proved largely unsuccessful, furnishing diphenyliodonium triflate (1a) with a maximum yield of 11%, even after heating and prolonged reaction times.

As both Wirth and Kita have employed trifluoroacetic anhydride (TFAA) in the synthesis of iodine(III) reagents using hydrogen peroxide, the reaction was repeated with the addition of 2.5 equivalents of TFAA, improving the yield to 29% and demonstrating the need for activation of the peroxide prior to oxidation of the iodine. The procedure was then simplified to use only triflic anhydride (Tf₂O) in the place of the TfOH-TFAA mixture, in the hope that Tf₂O would react with UHP to form triflic peroxide (2) in situ and that this reagent would be capable of efficiently oxidizing iodoarenes (Scheme 2). The intermediate iodine(III) compound would subsequently react with the arene by electrophilic aromatic substitution (EAS), forming diaryliodonium triflate 1 without need for an anion exchange. An intermediate similar to 2 was proposed by Kita ad co-workers for the reaction between TFAA and hydrogen peroxide and such perfluoroacyl peroxides have been observed and characterized by NMR studies.

The reaction was first conducted using Kita’s anhydride:TFAA ratio of 8:2. The solvent of choice was 2,2,2-trifluoroethanol (TFE), which has been demonstrated to greatly enhance the yield of diaryliodonium salts prepared from preformed iodine(III) reagents. The reaction proved to be successful, furnishing the product in 24% yield after 24 h at room temperature (Table 1, entry 1). Fortunately, isolation of 1a was straightforward.

Scheme 1 Synthesis of 1a. Method A: 2,2,2-trifluoroethanol (TFE), urea-H₂O₂ (1.1 equiv), TfOH (3 equiv), CH₂Cl₂, r.t., 10 min; Method B: urea-H₂O₂ (1.1 equiv), TfOH (3 equiv), CH₂Cl₂, 40 °C, 3 h.

Scheme 2 Possible reaction intermediates in the synthesis of salts 1 with hydrogen peroxide and triflic anhydride.

The reaction was first conducted using Kita’s anhydride:TFAA ratio of 8:2. The solvent of choice was 2,2,2-trifluoroethanol (TFE), which has been demonstrated to greatly enhance the yield of diaryliodonium salts prepared from preformed iodine(III) reagents. The reaction proved to be successful, furnishing the product in 24% yield after 24 h at room temperature (Table 1, entry 1). Fortunately, isolation of 1a was straightforward.
also in the presence of urea; trituration of the concentrat-
ed crude mixture with diethyl ether afforded Ia as a
colorless solid, with the residual urea remained in solu-
tion in the ether washings.

Subsequent optimization of the procedure is shown in
Table 1. Increasing the temperature to 80 °C improved
the yield to 62%. The reaction time could be decreased
to 3 hours without decreasing the yield (entry 4). Keen to
improve upon the ‘green chemistry’ potential of the
reaction, the TfO loading was reduced to 4 equivalents,
further improving the yield of the reaction (entry 5). Continued reduction of the reagent amounts drastically reduced the yield of 1a (entries 6 and 7). Running the reaction in a 1:1 mixture of dichloromethane (DCM) and TFE yielded 1a in 69% yield (entry 8), rising to 82% in a
2:1 mixture of DCM and TFE (entry 9). As dichloro-
methane was now the major component of the solvent,
the reaction temperature was reduced to 40 °C to cir-
cumvent the need for sealed tube reaction vessels. Grati-
fyingly, this did not have a majorly adverse effect on the
yield of the reaction (entry 10).

Table 1 Optimization of the synthesis of salt 1a

<table>
<thead>
<tr>
<th>Entry</th>
<th>UHP (equiv)</th>
<th>TfO (equiv)</th>
<th>Solvent</th>
<th>T (°C)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>TFE</td>
<td>r.t.</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>TFE</td>
<td>80</td>
<td>24</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>TFE</td>
<td>80</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>8</td>
<td>TFE</td>
<td>80</td>
<td>3</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>TFE</td>
<td>80</td>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>3</td>
<td>TFE</td>
<td>80</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>1.1</td>
<td>2</td>
<td>TFE</td>
<td>80</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
<td>DCM-TFE (1:1)</td>
<td>80</td>
<td>3</td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>4</td>
<td>DCM-TFE (2:1)</td>
<td>80</td>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>4</td>
<td>DCM-TFE (2:1)</td>
<td>40</td>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>4</td>
<td>DCM-TFE (3:1)</td>
<td>40</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>4</td>
<td>DCM-TFE (2:1)</td>
<td>40</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>4</td>
<td>DCM-TFE (2:1)</td>
<td>40</td>
<td>6</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>4</td>
<td>DCM-TFE (2:1)</td>
<td>40</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>4</td>
<td>DCM</td>
<td>40</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>4</td>
<td>DCM-EtOH</td>
<td>40</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>4</td>
<td>DCM-HFIP</td>
<td>40</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

a Isolated yield.
b Product contaminated with urea.
c 1.1 equivalents of benzene used.
d HFIP = hexafluoroisopropanol.

The use of a 3:1 ratio of DCM:TFE afforded the product,
albeit contaminated with residual urea from the UHP
(entry 11). Further alterations of reaction time or stoichi-
ometry resulted in lower yields (entries 12-14).

In the absence of TFE, no reaction was observed and
unreacted iodobenzene recovered (entry 15). Replacement
of TFE with ethanol or hexafluoroisopropanol
(HFIP) also led to the reisolation of iodobenzene and no
formation of 1a (entries 16, 17). This finding shows that
TFE plays a vital role in this reaction, likely due to its
capability of stabilizing the cationic intermediate ob-
tained in the EAS reaction, although other mechanistic
pathways cannot be excluded (vide infra).14,15

An alternative system for hydrogen peroxide activation
was subsequently investigated to see whether triflic
anhydride could be replaced. Methyltrihalomethane
trioxide (MTO) is widely used in conjunction with hydrogen
peroxide in a range of oxidation and epoxidation pro-
cesses.16 Unfortunately, all reactions employing MTO
with either UHP or 30% aq. H2O2 failed, both in the
presence and absence of triflic acid, universally returning
iodobenzene. Addition of MTO to reactions containing
triflic anhydride resulted in the formation of the charac-
teristic yellow MTO-H2O2 complex, but no improvement
in the yield was observed compared to reactions without
MTO.

With an optimized method for the synthesis of 1a (Table
1, entry 10) in hand, the scope of the reaction was inves-
tigated by testing the compatibility of a range of substi-
tuted arenes and iodoarenes.

The synthesis of (4-iodophenyl)(phenyl)iodonium triflate
(1b) proceeded smoothly under the standard reaction
conditions, furnishing the desired product in 73% yield
(Table 2, entry 2). The fluoro-analogue 1c was formed in
56% yield (entry 3), which surprisingly decreased to
46% after 6 h. Reaction of iodobenzene with either bromo-
benzene (entry 4) or chlorobenzene (entry 6) resulted
in formation of the desired product (1d and 1e respec-
tively), contaminated with 1b. This is likely due to the
lower EAS-reactivity of bromo- and chlorobenzene rela-
tive to iodobenzene, combined with the slow oxidation
of iodobenzene, thus formation of 1b competes with
formation of the desired products.

In order to overcome this difficulty, the reactions were
conducted using the relevant 4-haliodobenzene and
benzene. Contrary to the results obtained for salt 1c,
longer reaction times considerably improved the yields,
giving 1d and 1e in 86% and 83% respectively (entries
5, 7). Symmetrical halogen-substituted salts 1f and 1g
could also be prepared in high yields with prolonged
reaction times (entries 8, 9).

Electron-rich arenes could also be successfully em-
ployed, giving salts 1h-n (entries 10-16). The yields
were as good or better when the reaction was performed
at room temperature, which is in accordance with the
reactivity pattern in electrophilic aromatic substitution
reactions. The only exception was symmetric bis(p-tolyl)
salt 1n, which was obtained in moderate yield upon heat-
ing and poor yield (4%) at rt (entry 16). All attempts to
employ very electron-rich or electron-poor arenes and
iodoarenes, as well as heterocycles failed to yield identi-
fiable products (entries 17-20).

In all cases, only the para-substituted product was ob-
served. Removal of the residual urea by an aqueous
workup proved to be necessary to precipitate some of the substituted salts.

Table 2 Synthesis of substituted diaryliodonium salts

<table>
<thead>
<tr>
<th>Entry</th>
<th>R²</th>
<th>Arene (Ar-H)</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>PhH</td>
<td>1a</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>PhI</td>
<td>1b</td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>PhF</td>
<td>1c</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>PhBr</td>
<td>1d.1b 3:1</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>Br</td>
<td>PhH</td>
<td>1d</td>
<td>86 (59)</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>PhCl</td>
<td>1e.1b 4:1</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Cl</td>
<td>PhH</td>
<td>1e</td>
<td>83 (64)</td>
</tr>
<tr>
<td>8</td>
<td>Br</td>
<td>PhBr</td>
<td>1f</td>
<td>81 (45)</td>
</tr>
<tr>
<td>9</td>
<td>Cl</td>
<td>PhCl</td>
<td>1g</td>
<td>81 (60)</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>PhMe</td>
<td>1h</td>
<td>76 (76)</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>Ph/Br</td>
<td>1i</td>
<td>74 (64)</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>p-xylene</td>
<td>1j</td>
<td>72 (64)</td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>1,4-di-tert-butylbenzene</td>
<td>1k</td>
<td>61 (55)</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>mesitylene</td>
<td>1l</td>
<td>65 (56)</td>
</tr>
<tr>
<td>15</td>
<td>Bu</td>
<td>Ph/Br</td>
<td>1m</td>
<td>46 (27)</td>
</tr>
<tr>
<td>16</td>
<td>Me</td>
<td>PhMe</td>
<td>1n</td>
<td>42</td>
</tr>
<tr>
<td>17</td>
<td>H</td>
<td>PhNO₂</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>NO₂</td>
<td>PhH</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>H</td>
<td>PhOMe</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>H</td>
<td>pyridine</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

* Only the para-isomer was observed for monosubstituted arenes.
* Isolated yield after aqueous work-up, followed by trituration with diethyl ether.
* Aqueous work-up omitted.
* Reaction time 6 h; yield for 3 h reaction time given in brackets.
* Reaction run at room temperature; yield at 40 °C given in brackets.
* No identifiable product.
* Oxidation of pyridine only.

Preliminary investigations on the reaction mechanism were initiated after the observation of the comparatively poor yield of symmetrical tert-butyl salt 1m (entry 15), since this product has been obtained in good yield with the previously developed mCPBA protocol.

We decided to examine whether a free-radical process could be involved, either in formation of the product or in competing pathways leading to byproducts. Such a mechanism would also explain the vital influence of TFE, which is known to stabilize radical cation intermediates. Thus, the synthesis of 1a was repeated with exclusion of light, which made no significant difference. When the reaction was run in the presence of TEMPO (1 equiv) as a radical scavenger the salt was formed cleanly. Analysis of the crude reaction mixture by NMR spectroscopy and mass spectrometry showed that no additional aromatic byproducts were formed. Furthermore, products of side reactions between TEMPO and any triflate species could not be detected. This finding implies that a free-radical pathway is not operative in this reaction.

In summary, we have investigated the use of environmentally benign oxidizing agents in the synthesis of diaryliodonium salts and found that a range of both symmetric and unsymmetric salts can be prepared in good yields using urea-hydrogen peroxide, a safe and green reagent. The reaction is insensitive to air and moisture, and product isolation is straightforward, which makes this methodology easily applicable in large scale reactions.

Representative synthetic procedures

Diphenyliodonium triflate (1a)

A stirred 2:1 mixture of CH₂Cl₂ and TFE (1 mL) was cooled to 0 °C and UHP (47 mg, 0.50 mmol) was added. TfO₂ (168 µL, 1.00 mmol) was added dropwise to the suspension and the mixture was stirred for 30 min at 0 °C. Iodobenzene (28 µL, 0.25 mmol) was added, followed by benzene (45 µL, 0.50 mmol) and the solution was warmed to room temperature, then heated at 40 °C for 3 h. The mixture was allowed to cool to room temperature, evaporated in vacuo and the residue purified by trituration with diethyl ether (3 x 2 mL) then dried in vacuo to afford the title compound (82 mg, 76%) as an off-white amorphous solid, spectroscopically identical with literature data.

Diphenyliodonium triflate (1b)

Prepared according to the above procedure. The crude reaction mixture was allowed to cool to room temperature, evaporated in vacuo and the residue partitioned between dichloromethane (5 mL) and water (5 mL). The aqueous layer was further extracted with dichloromethane (5 mL) and the organic extracts combined and evaporated in vacuo. The residue was purified by trituration with diethyl ether (3 x 2 mL) and dried in vacuo to afford the title compound (82 mg, 76%) as an off-white amorphous solid, spectroscopically identical with literature data.

Acknowledgment

This work was financially supported by the Swedish Research Council, Wenner-Gren Foundations, Carl Trygger Foundation, the Royal Swedish Academy of Sciences and K & A Wallenberg Foundation.

References

(9) Kryiska, A.; Skulski, L. Molecules 2001, 6, 875.

Synthesis of Diaryliodonium Triflates using Hydrogen Peroxide

\[
\begin{align*}
R^1 \text{Cl} + R^2 \text{Cl} & \xrightarrow{\text{urea-H}_2\text{O}_2, \text{ Tf}_2\text{O}} \text{CH}_2\text{Cl}_2: \text{TFE 2:1}} \text{ up to 86%} \\
& \xrightarrow{40 \ ^\circ\text{C}, \ 3 \ h} R^1 \text{I}^+ \text{OTf} \\
\end{align*}
\]