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ABSTRACT

The MACH2 controlling and protection system are used to operate a number
of thyristors to transform AC current to DC current, or reverse. The MACH2
measures a number of currents to calculate when to ignite the thyristors and
to protect the overall system from power components. These current
measurements are currently done with a current transformer or a shunt
resistor with an isolation amplifier. Both these methods has major
drawbacks, it is not possible to measure DC currents with the transformer
technique and with the shunt there is a problem with high current density
through the conductors on the Printed Circuit Board (PSB), in addition to

that the isolation amplifier are unlinear at low currents.

Two alternative measuring techniques are investigated in this thesis, devises
based on the well-known Hall-Effect (HED) and devises based on Anisotropic
Magnetoreistanse (AMR), both techniques uses the magnetic field produced
by currents in a conductor to indirectly measure the current. The HED
technique is well established for current measurements but with low
sensitivity some kind of flux concentrator is needed to concentrate the
magnetic field through the sensor. This adds volume, costs and some
complexity to the device. The AMR technique is much more sensitive than
the HED and do not need flux concentrators. Unfortunately these
components are also much more sensitive for mistreatment and high over
currents may damage the devise permanently. Also, current measurement

devises based on AMR are not as common as those based on HED.

By testing the linearity, step response and frequency dependency for some
different components on the market, my conclusion is that HED components
with toroidal flux concentrators utilizing magnetic feedback (so called closed
loop devises, CL) may be used in this particular application. A possible major
drawback with CL are that they, when measuring sharp edged step signals,
suffer from overshoots at the output that might activate the over current

protection if no special care is taken.



PREFACE

Winter 2005. My first professional contact with ABB in Ludvika as a “thesis-
project-searching”- student was with Johan Mood at the “Labour Market
Day” at Umeda University, Uniaden 05. After a while talking about working at
ABB I gave him an informal thesis application and moved on, knowing that I
most likely would not get a project this time either. A couple of weeks later I
get a call from Roland Siljestrém who suggested a project about investigating
alternative current measurement techniques. I promised to think about it
and call him in a couple of weeks. Unfortunately, a pleasant summer can
play tricks with your time perception, and the weeks turned to about tree
months. Nevertheless, I called him and we decided to go forward with the

project.

I started my work in autumn of 2005. Despite that I did take some longer
breaks for Christmas, two unrelated courses and to work as a janitor for tree
weeks, a total of 11 weeks, I have manage to complete my work and thesis
report at spring of 2006. It has been an instructive time with many new

experiences about practical investigation.

/The Author
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Chapter 1-Introduction

BACKGROUND AND PURPOSE

The department (TC) at ABB Power Technologies AB (PTPS) where the thesis
is carried out at is responsible for the computer platform MACH2, a control
and protection system for HVDC Stations. This system is built up with
modules for flexibility and easy maintenance. For the MACH2 system to be
able to work, measurements of the system to be controlled and protected are
necessary. Special measurement boards are used to achieve these

measurements.

In many applications the measured quantity is a high current with nominal

values (1,) that varies depending on method used. Today there are mainly

two methods, through current transformers or shunt resistor with an
isolation amplifier. The measurement signal is transformed from analogue to
digital in order to be communicated between modules in the MACH2 system.
One aspect that restricts the accuracy is the fix number of bits that is

available, i.e. digital resolution.

For the transformer method an |, of 1A or 5A, and maximum values of
approximately 25* | , are measured. The measured current is led directly to

the transformer with no contact to the PCB. The analogue measurement
signal for this method is modulated so that high accuracy is established up

to 3*1,, see Figure 1. The over currents are allowed to be 100*1, for 1s

without any damage. Due to the nature of transformers isolation between
input and output is achieved. Upper bandwidth limit is approximately in the
order of 2 - 20kHz 3dB 1:st order, depending of specifications. With this

method DC currents cannot be measured.



In the applications where shunts are used, only lower currents are measured
with a typical maximum current of 360mA, some special boards goes as high
as maximum continuous current 7A and 20A for 5s. The measured current
is led through routs on the PCB to the shunt and if the over current is
exceeded the PCB may suffer permanent damage due to high current
density. To achieve isolation between input and output an isolation amplifier
is used. For this method the bandwidth is DC to 4 - 24kHz 3dB 2:nd order
and the transconductans is linear for the entire input interval. Mainly DC

currents are measured with this method.

45V

2,536V

D711A 2003 A 2073 A 7 11A

-2,536 V

-4 5V

-0.08153 V/A >e -0.83905 V/A > e -0.08153 V/A >

Figure 1: Example transconductans in transformer-method. All values are peak values.

There is a request to find a method that can be used for both AC and DC and
both low and reasonably high currents so that only one or a few different
measuring boards is needed to cope with the demands of MACH2 in various
implementations. This would make the system cheaper and ease
maintenance. The general object of this thesis is to investigate the possibility
to realise this request and to investigate various methods that might be

engaged in the MACH2 system.



METHOD AND DELIMITATIONS

There exist a number of different current measurement methods available on
the market today, but when it comes to accuracy, linearity, measurement
range, speed and durability VS costs, there are mainly four basic methods of
interest: through current transformers, shunt resistors, Hall-effect sensors

and anisotropic magnetoresistive current sensors.

For the thesis not to be unwieldy, I limited the investigations to primarily two
methods: Hall-effect sensors and anisotropic magnetoresistive current
sensors. The methods used today in the MACH2 system are quite well known

for the applications, so only comparisons to these will be performed.

The different measurements [ perform for this thesis are linearity
measurements, step response, frequency dependency and some temperature
stability and magnetic field sensitivity. The two later is only arbitrary tested

due to difficulties to produce adequate tests.

The linearity measurements are carried out to find if the components of
interest is enough linear also for sufficiently low currents. Some components

are so unlinear that I therefore discarded them from further tests.

I used step response analysis to investigate speed (rise-time, time-delay),
stability and overshoots. High overshoots may cause the over-current
protection system to be activated even if the current are not high enough for

that to occur.

Frequency dependency is important for the signal not to be distorted. As
mentioned a bandwidth from DC to 20-25kHz 3dB 1:st order is desirable,
and all tested components has a bandwidth >100kHz.



Chapter 2-Theory of methods

HALL-EFFECT DEVICES

The Hall-effect was discovered by Edwin Herbert Hall in 1879 and has
consequently been known for over one hundred years, but has only been put
to noticeable use in the last three decades. With the mass production of
semiconductors, it became feasible to use the Hall-effect in high volume
products. Today, Hall-effect devices are included in many products, ranging
from computers to sewing machines, automobiles to aircraft, and machine

tools to medical equipment.[1]

Theory

The ideas of Hall-Effect Devices (HED) are built upon the principals on
interaction between moving charges and magnetic fields. When a charged
object is mowing with a component of movement perpendicular to a
magnetic field, it will perceive a force perpendicular to both that direction of
movement and magnetic field acting on it. This force is called the Lorentz

force and is expressed as

E :Q(\?xé) Eq. 1: Lorentz force.

— - —_—

were F, v and B are vectors of magnetic force, velocity of object and

magnetic flux density respectively, Q is the electric charge of the object. If v

—

and B is perpendicular to each other their contribution to F will be

perpendicular to both v and B.

In a HED the charged objects is a current of either electrons or holes (here
holes are considered as objects) led through a thin plate of conducting
material. With no magnetic field present the current of electrons or holes is

distributed evenly in the plate, as shown in Figure 2. If a magnetic field is

10



present the electrons or holes drift in the direction of F , and there results a

voltage difference V, between the sides of the sensor, as shown in Figure 3.

This voltage V, is found to be proportional to the current through the plate.

Figure 3: Illustration of Hall-effect. B # 0 .[1]

In general the plate can be of any conducting material, but the drift velocity
v of the electrons and holes depends on the mobility (ux)! of the plate
material and V, gets proportionally bigger for higher drift velocities.

Therefore semiconductors, which often have higher mobility, are utilized in

Hall probes rather then conductors, which have somewhat lower mobility.

For example, intrinsic silicon has a mobility of 1600cm?/Vs (electrons) and

silver (a very god conductor; high conductivity) has a mobility of 56cm?/Vs [2].

One great characteristic of the HED is that it cannot get harmed by high
magnetic fields. Since the sensors for practise use requires signal

conditioning, the over all output will most likely saturate according to the

1 Not to be confused with conductivity (O )

11



conditioning circuit, not according to the HED itself. Another positive
characteristic is that magnetic polarity is detected straightforward, i.e.

changed polarity means opposite electron drift and reversed V, .

Unfortunately the sensor suffers from some less desirable characteristic, as
the piezoresistance effect and the temperature drift. The piezoresistance
effect is a change in resistance proportional to strain. It is possible to
minimise this effect by using two (or more) adjacent sensors with different
orientation. By summing the outputs eliminates the signal due to stress.[1]
The temperature is affecting sensitivity due to resistance change, and with a
unchanged supply voltage the current (i.e. number of charged objects) will
change. A simple way to deal with the temperature dependence is to use for
example a thermistor, with a resistance/temperature coefficient opposite
that of the sensor, in series with the output. This will keep the current
trough the sensor unchanged. An offset voltage is also present if the voltage
is measured at each terminal of the HED according to ground. This voltage is
the same at each terminal and is terminated since the output is taken as a
differential voltage between the terminals. The sensitivity of the sensor is
ratiometric, witch means that the sensitivity is dependent of the supply

voltage (V) and, for HED:s, increases proportionally with V.. This is simply

due to Ohm’s law and higher voltage means more electrons to drift.

Figure 4: Magnetic field lines around a conductor.
Current going in to the paper.

Current Sensors

If a current is led through a conductor, it will induce a magnetic field around

the conductor. This field is proportional to the current and inversely

12



proportional to the distance from the conductor, see Figure 4. The magnetic
field follows the relationship (in vacuum or air)
- ;uol o =

BIp :y(p Eq. 2: Magnetic flux density around

a straight circular conductor.[3]

; = —x— Eq. 3: Azimuthal unit vector.

is the unit vector pointing in the azimuthal direction at a point P, at a
distance r from the centre of the conductor. g, =47*10"Vs/Am is the
permeability of free space. A HED placed in the magnetic field of a
conductor, perpendicular to §|p , will induce a measurable voltage V, #0 and

the current in the conductor can be determined. But even though silicon is

used the sensitivity is not that very high, only in the order of 0,1 uV, )V, /uT
(V, is the supply voltage). For that reason a number of measures are taken to

increase the sensitivity depending on how the Hall sensor will be used. One

general thing to do for practical usage is to simply amplify V,. Additionally

there are a number of aggravating issues making the accuracy of the
determination low. For example, different kinds of noise will have great

impact on the measurement due to the low sensitivity of the sensor, V,

depends highly on the distance from the conductor and it is unprotected

from external magnetic fields.

In the case of current measurements a very common technique to deal with
the downsides of the HED is to use steal cores as flux concentrators, as
described later in a separate section. Another technique is to use Integrated
Magnetic Concentrator (IMC) sensors. This technique also utilises flux
concentrators but in a less expensive and less bulky manner. This will also

be discussed later.
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ANISOTROPIC MAGNETORESISTIVE SENSORS

The magnetoresistive effect was first described by William Thompson, Lord
Kelvin, in 1856. But as in the case of HED it took over a hundred years to
make the magnetoresistive effect commercially useful and cost-effective due
to the development of thin film technology. Today these devices are used in a
variety of applications as disk drive read heads, electric compasses, vehicle
detection, current measurements and movement detection. In this thesis

focus are laid on anisotropic magnetoresistive devises.

Theory

There are a number of different kinds of devises that utilizes materials
and/or material configurations that possess magnetoresistive properties, but
with different underlying theories for it. What they all have in common is
that a change in resistance is present when object to a magnetic field. A
common variant for industrial use are anisotropic magnetoresistive (AMR)
sensors. The basic theory of AMR is fairly complicated and not fully
understood by scientists, and to describe it in detail are far beyond the scope
of this thesis. Nevertheless I will mention some features that are

fundamental to the phenomena.

The main part of the actual AMR sensors is small stripes of thin film

ferromagnetic materials, usually permalloy (NigFe, ). Ferromagnets exhibit

four properties of great importance; two of them are directly related to their

band structure.

The first property is an odd number of electrons in the outer shells of the
atom. This is a necessary condition for the material to be magnetic. For
atoms with an even number of electrons the magnetic moments of the
individual electrons cancels out due to the fact that electrons come in pairs
with the same energy but with different orbital direction and spin. These
materials do not posses magnetic properties. For atoms with odd number of

electrons there is an electron “left over” and that gives the atom a magnetic
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moment. Here we have the magnetic materials. Magnetic materials can be
divided into subgroups with different magnetic properties depending on
relative orientation of the magnetic moments. The group of interest here are
ferromagnets. In these materials the magnetic moments tend to align to each
other in such a way that the total energy of the system get as low as
possible. If all, or at least the majority, of the magnetic moments in a
ferromagnetic sample were aligned in the same direction, we would have a
magnetic flux outside the sample as in Figure SA. This configuration does
not offer the lowest energy of the system for most of the ferromagnetic
materials. Instead, lowest system energy is most often obtained by
configurations with separate, internally aligned domains. The magnetic
orientation (magnetization) of each domain is such that closed loops of
magnetization are obtained, hence no magnetic flux outside is present as in

Figure 5B.

VAVAY.
HH
AAA

T =

A B

Figure 5: A - Magnetic moments are all aligned. B — Aligned as magnetic domains.
Highly simplified drawings.[7]

The magnetization is also affected by the crystal lattice of the material; it is
coupled to the axis of the lattice. Less energy is required for directions of
magnetization in certain directions, called easy axis, and more energy are
required for other directions, hard axis. Most domains are aligned to the easy
axis if no external field is present, as the bigger domains in Figure 5B. In
thin film samples the easy axis become parallel to the surface of the film due
to boundary conditions. If the width of the thin film sample is narrow enough
it will act as a single domain with unidirectional magnetisation, and act once

again as Figure 5A.
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It is possible to alter the magnetization by applying an external magnetic

field Bes through the material. What happens is that Be affects the magnetic

moment of the individual electrons. Most of them align to the easy axis in the
direction closest to the direction of Be, and the corresponding domains grow
while antiparallel domains shrinks. If Bex gets stronger all domains first align
to the easy axis, then starts to rotate towards the direction of Be. When Be
gets strong enough and the magnetization is parallel to Eex, no more change

of magnetic moment will occur; it is saturated. If B is removed the
magnetization will return to a multi domain configuration but with some
magnetic flux remaining. The strength of that flux depends strongly on the
specific material used. If a strong flux remains, the material is said to be a
hard magnet, soft magnet if the flux is weak. In ARM devices ultra soft

magnets are used.

The second important property of ferromagnetic materials is their so-called
transition metal properties, which means their valence electrons are present
in more than one energy band. Ferromagnetic materials have two
overlapping energy bands for their electrons close to the Fermi energy E.,
the s and d band. The conductivity of the material is a combination of the

conductivity of s band and d band, as oc=0,+0,. The o, and o, are

inversely proportional to the effective electron mass (m’) of their

corresponding bands and m; >>m, due to the narrow d band, as seen in the

schematic Figure 6. Hence o~ o, .[17]

The third special ferromagnetic feature is that the energy levels of the s and
d bands are different for electrons with up-spin (T) then for those with

down-spin ({), so called spin-split bands, Figure 6. The two spin states is
relatively independent of each other and a current through the material can
approximately be seen as two separate, parallel currents with different

polarisation.[17]
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Figure 6: Spin-split bands of ferromagnets.

The spin with the larger density of states N(E) at E; will be the majority
carrier. When conduction electrons in ferromagnets are moving through the
material it is mainly by s —>s or s—d transitions (i.e. electrons jumping
between energy states; within s band, or from s to d band). As a result of the
higher amount of free energy states of the d band for the majority carriers
(¥), more s —»d transitions are present, decreasing the conductivity for |,

still o, >0, due to N(E;), > N(E; ). and for currents | . > 1,. Consequently

the current passing through a ferromagnetic material is polarised to some

extent. If it is possible to reduce the number of s —»d transitions o, will

increase and hence resistance will decrease[17]. The spin-split properties
also contribute to the magnetization properties, according to the different

amount of | -electrons and T - electrons at a certain energy level.

The fourth property, and in this context the most important, is the by
scientists not yet fully understood relationship between magnetisation and
conductivity. If a current is driven through the material parallel to the
magnetization, the probability for s— d transitions is higher than if the
current was driven perpendicular to the magnetization. Hence, the
conductance is lower for the parallel case then for the perpendicular. Using,
for this thesis a more convenient property, resistance, it is found that the

relationship follows a mathematical model expressed as
— =" *cos’@ Eq. 4: Anisotropic relationship.[18]
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. . . : AR
is the change of resistance relative to zero-field-resistance, —

max

were

AR(9)
R

is the maximum change of resistance and 6@ is the angel between
magnetisation and current, Figure 7. This direction-dependency is giving it

its name, ANISOTROPIC magnetoresistance.

As mentioned above, if the resistor has small dimensions with a thickness in
the order of 150-400 A, a width of 10-50 um and length of 0,2-1mm the zero-

field-resistance will be high and it will have a unidirectional magnetisation.
Both high resistance and unidirectional magnetisation is favourable for the
anisotropic characteristic of the AMR. To improve it further the stripes is
produced while subject to a high magnetic field to assure that the easy axis
is along the mechanical length of the stripe. By this, a magnetization of the
stripe will create a high resistance along the easy axis and hence along the

mechanical length.

MAGNETO- 4R
RESISTANCE | R
LINEAR
) OPERATING
i\ __ REGION
-90° 0° 45 80°  anGLE[)OF
BARBER POLE MAGNETIZATION FIELD
BIAS TO CURRENT FLOW

Figure 7: Magnetoresistance of a simple sensor.[9]

Current Sensors

If a primary current |, is flowing in a external conductor above or below the

stripe and a secondary current |, is driven through the stripe, both parallel

(or antiparallell) to the mechanical length of the stripe, a magnetic field

H,are induced by | that affects the magnetization direction of the material

that in turn decreases the resistance and hence the voltage over the stripe,
see Figure 7. In its simpliest form an AMR cannot sense direction of currents

(magnetic fields), they have poor temperature characteristics, limited
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linearity, magnetic memory and wide range of sensitivity between devises.

But by taking a number of measures greate improvements can be made.[12]

The easiest way to greatly improve some of the features is by use of so-called
barber poles. These are small, highly conductive stripes placed over the
permalloy at an angel of +45° to the magnetization as in Figure 8. The
current then takes the easiest path through the devise by minimize the

transition length in the highly resistive permalloy. In this way the angel

TS AR
between current and magnetization is biased to £45°, were the ﬂ has

its linearity range and it is now possible to determine direction of |

AR(6)

Depending on the sign of biasing, the R is a positive or negative function

p*

over the linear range. One drawback when using barber poles, is that the

effective length of the permalloy is reduced, i.e. AR(H), and hence sensitivity

decreases.

|— Barber pole

IS

l
L Permalloy

Figure 8: Barber pole configuration.[10]

Magnetization

Temperature dependents and device sensitivity differences are still
discouraging. By connecting four resistors in a Wheatstone bridge these
properties can be substantially reduced. They are connected close to each
other and manufactured in the same process so that the sensitivities are as
matched as possible. Further trimming of the bridge can be done by
trimming-resistors during the production to reduce offset voltage. Thanks to
the close connection the resistors are affected by the same temperature and
magnetic fields. A principal drawing of a Wheatstone bridge is shown in

Figure 9.
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Vy >—@

Figure 9: Wheatstone bridge. | p Passing vertically above (or below) the resistors.

Observe barber pole direction.[11]

The output is taken as a differential voltage V, between the two voltage
dividers 1-2 and 3-4 that divide the bridge voltage V, according to resistance

proportions. The resistances in Figure 9 are oriented in such a way that if 1
and 4 is increased by a magnetic field 2 and 3 decreases. If the temperature

changes, the resistance of all four will change with the same rate but V,

stays the same. In this way the temperature dependency becomes highly

reduced.

If configured as in Figure 9 the device can be highly integrated and used to
measure currents in a straight, remote conductor, but it requires external
shielding. If the orientation of the resistors is altered so that 1 changes

accordingly to 3 and 2 accordingly to 4, and letting |, pass first over 1-2 and

then back over 2-4, as in Figure 10, the devise becomes almost immune to
moderate external magnetic fields. For example if an external field is present
that increases the resistance in 1 and 3 and decreases the resistance in 2-4,

both potential levels connected to the OP will decrease, but V, stays the

same. With this configuration the behaviour of the AMR current sensing
devise has god characteristics but the primary conductor must be fixed as a
U-turn and relatively close to the AMR so that the magnetic field from one
conductor passage not interferes with the field from the other through

corresponding resistor pairs.
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Unfortunately, if affected by high magnetic fields, the magnetization of the
permalloy stripes may be disoriented and the overall performance of the
devise are deteriorated or it may even start to malfunction. This holds for
external fields to, even if the configuration in Figure 10 is used. In that

configuration the net affect of an external field does not affect V, initially,

but the magnetization of the resistors are still twisted and the linearity range
is decreasing. For sufficiently high external fields the permalloy becomes
saturated and the devise stops working properly. The temperature
dependency are not completely reduced either, there is still a drift in offset

and sensitivity due to temperature. But there is hope.

primary

conductor
/ 4 /

7o Sr
7 P>

T ITTITITITII TS I TTIITITTIIIIIT IS

L a [ 2
isolator
L I, (ceramic)

Figure 10: Wheatstone bridge. External fields have almost no impact.[11]

magnetoresistors

Magnetization Set/Reset

To avoid deterioration due to external fields, one may restore the
magnetization of the permalloy stripes by pulsing a strong magnetic field
through them in the direction of the easy axis, and taking the measurement

between pulses. A current pulse |, through a properly oriented coil or strap

may achieve this magnetic field. Depending on the sign of this current the
magnetization becomes parallell (set) or anti parallell (reset) to the original
direction from manufacture, see Figure 11. If the magnetization is set-pulsed
only, problems with deteriorating properties are diminished. But by taking
advantage of the ability to reset the magnetization even features like offset

and temperature offset drift can be coped with.
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Figure 11: Set/Reset magnetization.[14]

If one compares the measurement from a bridge after a set-pulse with the
value after a reset-pulse, the only difference should be the sign. This is since
when altering direction of magnetization the angle between magnetization

and barber poles, and hence the one between magnetization and current, are

AR(9) —AR(6)
R R

changed and as a result becomes

. In Figure 12 an example of

set and reset measurements are illustrated.

20
—0— Reset
15 —8— Set

Vp =5.00 v

10

Qutput (mV)
o

20 15 -<1.0 05 00 0.5 1.0 1.5 2.0
Applied Field (gauss)

Figure 12: Set/reset output for the same applied field.[13]

As seen above the difference between output values for set and reset at the
same applied fields are not just the sign but also a level shift, the offset, is
present. The offset of an AMR device are not influenced by the magnetization
and for that reason the offset portion of the output value stays the same,
both in magnitude and sign. This indicates a grate opportunity to

manipulate the offset in a desirable manner.
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If the AMR device is put to set and reset mode in a cyclic manner as in

Figure 13, one could use V, and V, to erase the offset almost completely, if

desirable. This can be realised in several different ways. For example if a

microprocessor is used V, and the subsequent V, can be stored and used to

calculate

Vo=V, =2%S*H iea = Vo Eq. 5: Offset cancellation by microprocessor.
or
V, +V, =2*V Eq. 6: Offset detection by microprocessor.

S [mV /V /0e] is the sensitivity of the devise.

Another technique is electronic feedback were V, are passed through a low
pass filter, only letting V  through, and connected to one of the inputs of the

first differential amplifier, were V, and V, sums up like

Vi =Vos =S*H ied Vs —Vos =S *H pied =V, Eq. 7: Offset cancellation by
electronic feedback.
Vo
Vs+ —
" l Happlied
> T time
v, — lHappIied
Set Set
] || Set/Reset
Pulse
I-I Rst

Figure 13: Set/reset pulse sequence.[14]

The offset and its temperature dependents of the AMR device is not only due
to the AMR bridge but also to subsequent electronics and by using the
set/reset technique the AMR device acquires great offset and temperature
characteristics. It is possible to improve device characteristics even more by
magnetic feedback using an offset strap formed as a coil near the resistors,

more about this in the next section.
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Unfortunately when using set/reset techniques the bandwidth of the devise
may be reduced sufficiently due to the sampling characteristics and the
Nyqvist criterion. But if the offset is known through measurements in zero
magnetic field environment the offset may be reduced by using a trim
resistor parallel to one leg of the bridge. A less labour intensive technique is
to use the coil shaped offset strap mentioned above to produce a static
magnetic field to compensate for the known offset. It is also possible to use
the offset strap to compensate for known static external fields. Using the
trim resistor or the offset strap do reduce the offset, but compensating for
temperature variations becomes more difficult then using set/reset

techniques.

Feedback

By adding a high gain, negative feedback circuit like the one in Figure 14 the
output of the amplifier is connected magnetically to the input by driving a

current |, through conductors placed parallel and in near vicinity of the

resistors, creating a compensating magnetic field H, =-H  through the

resistors. Hence the magnetization of the resistors are left unchanged and

V,=0. Now |  is a scaled version of |, and by driving it through a high
accuracy shunt resistor V, is obtained. In a set/reset configuration the offset

strap mentioned earlier may be used instead of the compensation

conductors, in combination with offset cancellation.

primary

conduclor
compensation
conductor LSS L v,
@, 1. AT

magnetoresistors
isolator
I, (ceramic)

Figure 14: Wheatstone bridge. Feedback circuit (Set/Reset circuit is excluded).[11]
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Like this the device becomes much more robust according to strong H,

fields. Not only that, the linearity range and accuracy increases sufficiently
and by altering the shunt resistors different resolution and current ranges

may be obtained without altering amplifier or bridge location.

FLUX CONCENTRATORS

When it comes to magnetic current measurements, flux concentrators of
highly permeable material with low remanence (e.g. ferrite or silicon steal)
are often used to concentrate the magnetic field surrounding the conductor
upon which the measurement is performed.[4] In this section a brief
description of the theory, benefits and drawbacks of this technique are

described.

Toroidal Cores

When utilizing flux concentrators in magnetic current measurements a
toroidaly shaped ring with an air gap for the sensor is the presently most

common application, see Figure 15

Air Gap

s

Figure 15: Toroidal flux concentrator.[1]
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where |, is the width of the air gap (m), |, is the mean length of the core (m)

c

and | is the primary current to be measured going through a coil with N,

turns (counted at the inner diameter of the core). If the air gap is narrow
compared to the cross sectional area of the core, the flux density in the gap

will be the same as in the core, and expressed as

B, = % NI, Eq. 8: Magnetic flux density in toroidal
c + ll'lC a
core with a narrow gap.[2]
- Bsat < Ba < Bsat

where p, is the relative permeability, a unitless material quantity of the core.

When core materials are affected by a magnetic flux, there internal magnetic
domains line up in the direction of the field and the material is magnetized. If
the field is strong enough, all of the domains will line up and then the
magnetization of the core will not increase further; it is saturated. This

happens when the magnetic flux density retches + B, .

Unfortunately, as with all physical objects, cores of any material are not ideal
components but highly unlinear and possess a number of infuriating
properties. One of those is due to eddy currents, which is circulating
currents inside the core induced by changing magnetic fields. This current is
proportional to the square of the frequency, and a common method to
minimize it is to use laminated or sintered cores. Still, eddy currents are a

source of frequency restriction in flux concentration applications.

Core materials suffer from hysteresis characteristics in the relation between

the magnetizing field H (in this case H = yo‘leB,p) induced by the current

and magnetic flux density B inside the core. Therefore it is desirable to use a

material with a narrow loop. See Figure 16, were B, is the remanence (H =0)

and H, is the coercive force that resets B to zero.
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Figure 16: Hysteresis loop.

Most core materials used for magnetic current sensors exhibit very narrow

hysteresis loops (low H_) and errors involving hysteresis is rather minor (e.g.

ferrite ~1%), and they are also quite linear between the knees (were they
saturate). Power dissipation due to eddy currents and hysteresis phenomena
are also very small for these materials, practically they can be

neglected.[3][0]

If very high magnetic DC field influences the core, it may get permanently
magnetized in some extent and an offset field in the gap, and so at the
sensor output as well, will be present. The core material is also affected by

temperature. Higher temperatures reduce +B_, and the core goes to

saturation earlier. This may reduce the measuring range in certain current

measuring applications.

Open Loop Current Sensors

By placing a magnetic sensing device in the gap of a toroidal core, it will be
affected by a much stronger magnetic field then by placing it in free space in
the near vicinity of a conductor without flux concentrator. This configuration
is called open loop (OL), for reasons that will come evident in the next

section.
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A positive effect of OL is that the overall sensitivity and accuracy of the
devise becomes greater. By wrapping the conductor several times around the
core an even higher sensitivity is accomplished; the magnetic fields of single
turns add together in the core. A second order effect is that with higher
sensitivity noise will have reduced impact on the output signal. The cross
sectional area of the core is not critical as long as it covers the sensor placed

in the gap.

The location of the conductor in the hole of the torus is not critical as in the
case of free space, practically almost no lack of accuracy due to relative
geometrical mismatch between conductor and the sensor will occur. In the
case of multiple turns of the conductor, there will be a minor effect due to
the way it is wrapped and the best way to decrease this effect is to wrap it

uniformly over the whole length of the core.

Not only does the sensitivity and geometrical relaxation increase with the use
of a core, the effect of external magnetic fields decreases significantly due to
the fact that these fields rather go around inside the core then pas over the
gap, as shown in Figure 17. By moderately increase the gap the external
fields over the sensor will be suppressed even more, but the sensitivity will

decrease as well.

- SET o moa (-} B EmZE = .

Figure 17: External field in core.[35]

The unlinear properties and other negative aspects affecting the performance
of the core will distort the measured signal, but not in a devastating manner

as long as moderate signal strengths and frequencies are measured. The
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benefits VS drawbacks of using cores, in for the application well suited

materials, depend on the application and the sensor technology used.

Closed Loop Current Sensors

As mentioned earlier there are limitations to the accuracy, sensitivity,
operational range, and frequency limits of the OL sensors, even if they may
have much better performance characteristics then basic sensors without
flux concentrators. But these sensors offer a possibility to feedback a current
from the output to the input, so called closed loop (CL), through a
compensation coil winded around the core, as in Figure 18. The current and
coil are scaled to produce a reverse magnetic field to the field produced by
the measured current. The fields add together and the result is a zero field in

the core.

The secondary current |, producing this reverse magnetic field can be much
lower then the primary current |, simply by letting the number of turns on
the secondary side, N, be much higher then on the primary side, N . This

reduces the power consumption of the CL.

Figure 18: Closed Loop

The relation between currents and number of turns may be expressed like

= =_F Eq. 9: Transformation Ratio.
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and I, is therefore a scaled image of |,. With a configuration like in Figure
18 the output signal is not an amplified version of V,, as in OL, but a
measure of the feedback current I, passing through a high-accuracy shunt-

resistor R, and V,,, =0 because of the zero field in the core.

Thanks to the CL configuration, bad affects as eddy currents and hysteresis
can be neglected as long as the frequency not exceeds the bandwidth of the

feedback circuitry and V,, not causes it to saturate. Therefore the

bandwidth of the overall CL current sensor is often much grater then for OL
current sensors. The linear range is also broadened substantially, and is
primarily restricted by the amplifier; it gets saturated when its output
reaches the supply voltage. The wider linear range is due to that the
feedback does not allow the core to go in to saturation, and a second order

consequence is that the temperature dependency of +B_ has no affect on

sat
the performance. It is not only the linear range that benefit on the zero

magnetic field, the overall linearity itself also gets much better.

Unfortunately an offset level on |, is present because of both sensor and

amplifier offsets, and they also drift with temperature. This is the reason why

Via =0 instead of V,,, =0. If the CL current sensor is not powered up the

core may, like other flux concentrators, exhibit a permanent magnetic offset
if affected by a high magnetic DC field. The total offset is most often

restricted to a couple of hundreds or tenth of mA.

When using flux concentrators the benefits and drawbacks must be
compared with the characteristics of the sensor used. In this thesis HED and
AMR sensors are subject to investigation, and their characteristics differs to
some extent. HED sensors have much lower sensitivity but they can be
exposed to extremely high magnetic fields without damage. Using HED
together with flux concentrators is very beneficial in analogue output current
measurements. Thanks to the high sensitivity of AMR sensors they do not

need flux concentrators, and there are other techniques available for
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shielding from external fields, as mentioned. The high sensitivity and
restricted magnetic durability of AMR sensors makes flux concentrators even

unsuitable.

Compared to many other sensors OL and CL are bulky and CL are more
expensive and consumes higher supply currents then many contending
techniques, and this must be balanced with their benefits. There are though
alternatives available on the market were the flux concentrators are small

and integrated with the sensor, so called IMC.

Integrated Magnetic Concentrators

As is described in earlier sections toroidal cores are common as flux
concentrators in current measurement. But there are less bulky alternatives.
Actually, with proper design small pieces of highly permeable materials can
be integrated with the sensor and the overall components become much
smaller, so called Integrated Magnetic Concentrators (IMC). There exist
several different implementation techniques for these concentrators, and
most often the manufacturers do not reveal how it is done on specific
components. Therefore I will only present two basic techniques of interest to
give the reader some idea on benefits and downsides of IMC principals. As
mentioned before the sensors that most often make use of concentrators are
HED:s and therefore I refer to them in this section, but it is of course

possible to use AMR’s to.

In Figure 19 basic arrangements of the two techniques are shown. In A the
HED is placed in the flux passing between two concentrator stripes. It is also
possible to use only one stripe and place the HED close to it. The HED are
perpendicular to the applied field. In B the concentrators has a total length
of approximately a couple of mm’s with a thickness and gap width in the
order of couples of hundreds of mm’s, and the flux are measured by HED
pairs in the near vicinity of the narrow gap were the field lines are vertical.
Here the HED:s are parallel to the applied field. A variant of the configuration

in B uses one concentrator with the HED:s on each end. The reason why two
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HED:s are used is because the same field passes the sensors in a differential
manner and by subtracting the outputs all vertical adjacent fields passing
the sensors as common mode signals are cancelled out.[8] By these
configurations small and cheap components are possible to produce.
Imagine an electric current going out of this paper through a conductor

placed above each sensor, creating the magnetic field shown.

u

SNpd Sl
=gig= =l =
" 5 ™~

ﬁ
A B

Figure 19: Integrated Magnetic Concentrators.
Dimensions of A and B are not comparableZ2.

Both variants can be constructed as lead-through components, were the
primary conductor are a part of the component. In this way the conductor is
fixed to a certain distance and the accuracy are therefore not affected by
mismatch. They may also be shielded quite easily. On the other hand they
will be fixed to a certain measurement range due conductor dimensions and

saturation of conformation electronics.

By excluding the conductor, more flexible components are archived. Different
current ranges can be measured by placing the external conductor at a
distance corresponding to required current range and resolution. Extremely
high currents can be measured, but with pretty poor resolution though.
External conductor measurements are in general more sensitive to adjacent
fields and may need external shielding, and mismatch between component

and conductor may be a source of inaccuracy.

2'The configuration in Figure 19 B is developed by GMW Associates.
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Chapter 3-Mesurement

PREPARATIONS

To better understand the theories presented in Chapter 2 and how real
components with their un-ideal characteristics work, some measurements
are performed. These measurements are carried out in an application
specific manner according to MACH2 system requirements so that the

results may be used in future designs.

Selection of Components

When [ selected components to be measured [ first tried to choose
components that could measure the highest levels of currents measured
today, i.e. ~25*5A. Not all components of interest did have this ability, but
they had other characteristics of high interest. For example, components
with different input range, but equal output range (e.g. 0-5V) have different
resolution (sensitivity) and by combining components, more accurate
measurements can be obtained. Recall that for the MACH2 system a higher

accuracy and resolution are desired for 0-3*1, then for the rest of the

range. All components chosen are bidirectional, i.e. can measure both
strength and direction of the current, and are more or less linear over the
whole range. The sensitivity is often slightly dependent on temperature, and I

tried to find components with low temperature dependence.

It was also desirable that the components could withstand high over

currents in levels of ~100*1  (i.e. 100*5A) for a shorter period of time (~1s)

without getting harmed or permanently affected otherwise. Unfortunately
many components of interest do not endure that kind of over currents
according to their data sheets or it is not specified. In spite of that I carried
out measurements on their tolerance for high currents in order to se if they

still could be used in these applications.
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Many components suffer from offset levels that affects the overall behaviour
of the measuring circuit, but as long as these levels are stable they can be
dealt with quite easily. Unfortunate these levels are often temperature
dependent and then it becomes more complicated. I tried to find components

that have low offset and low offset temperature dependence.

Other important aspects I looked at in order to be able to make correct
conclusions about whether or not a certain measurement technique can be
used in our applications are linearity, accuracy, reaction time, rise time and
bandwidth. The component bandwidth are sufficient if it is >40kHz, but most
components has a bandwidth of ~100—200kHz.

I also performed some measurements on simple components that did not
qualify to be used in the MACH2 system but could give a certain

understanding on basic ideas.

Different Component Techniques

There are mainly three basic component techniques that I utilize in this
report. First there is the most common one for current measurements today,
that make use of HED-sensors and toroidal cores, both in open and closed
loop configurations. With this technique you get high isolation between input
and output, it is easy to reconfigurate the sensitivity on the measuring
circuit by simply add or remove turns to the input winding and there is no
insertion losses. But, they are bulky, expensive and they may exhibit offset
change due to permanent magnetization of the core after high current

spikes.

The second technique is a cheaper, more “back to basic” configuration. Here
you fixate the conductor at a specified distance to a small sensor and
measure the magnetic field more straightforward. It provides high
input/output isolation. The sensors, that can be of both HED and MRS type,
may have flux concentrators, but they are small and integrated in the same
IC as the actual sensor. Some of them are not harmed, but saturated by high

fields, but then you can place them at a different distance to the conductor.
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The accuracy of the overall circuit may suffer from geometrical mismatch
between sensor and conductor, and it may need external shielding from
adjacent fields. I discovered that the sensitivity and ability to measure low
currents was quite inadequate on the components I had chosen. They are
primarily produced as position detectors, and as such they should detect
higher magnetic fields then the low fields induced around a conductor with a
current lower than 1A. According to the application specific nature of this
thesis, the difficulties to measure low currents and geometrical mismatch
problems, I decided not to do any full-scale measurements and discarded

these components from further testing.

Both techniques mentioned have high electronic and thermal isolation
between input and output. The third technique though has quite high
electronic isolation to, but the thermal isolation is quite insufficient. Here the
measured current is led through the component itself, and the component is
dimensioned for a predefined maximum current. If the current exceeds this
maximum, the current density might cause such a heat so the component
will be permanently damaged or destroyed. The advantages of this technique
are that the components are simple, cheap and easy to mount and they do
not suffer from geometrical mismatch. They are also quite often well shielded

from adjacent fields internally.

TEST CONFIGURATIONS

Linearity

I made some measurements with a series of DC-currents between SOmA to
25A to investigate the linearity, especially for low currents. For low currents I
used a current generator, VARIREF VF-12 that could deliver a maximum
current of 120mA with high accuracy. For medium currents I used an
OMICRON CMC 256-6, which has a lower accuracy for low currents.
Unfortunately, the VARIREF VF-12 could not deliver currents bidirectional,

so I was forced to alter the circuit contacts to alter direction of current. This
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may have affected the measurements slightly by contact glitches. For the
components with toroidal cores (referred to as OL and CL, se Chapter 3) I led
the current through the sensor twice, which doubles the flux passing
through the HED. By this it was possible to use the VARIREF VF-12 up to
(virtually) 240mA for these components. Throughout this chapter when
talking about low currents and medium currents the intervals 5S0mA-240mA

and 0,5A-25A are intended respectively.

Unfortunately it was not possible to do accurate measurements for higher
currents (up to 125A). The OMICRON CMC 256-6 can according to the
specifications deliver up to 75A, but only under certain circumstances and
during a very short time, therefore I did no measurements for higher
currents. The most interesting interval though are from OA to 3*5A=15A, see

Chapter 1.

All measurements were carried out with the same procedure:

e Power up. No |, to observe the offset and possible offset drift.

e High I (altering direction), then again no I,. To se if the offset is
affected by measured current.

e Current measurements. Started with lowest currents, for both current
directions. Then successively rising the current: SOmA, -50mA, 60mA,
-60mA, 70maA ...

e As the current gets higher, I increase the increments.

o After the measurements are done, the offset is noted, and the average
value between before and after measurements are used when I
compare components.

I made three (two for CL, one for OL) separate measuring series for each
component: SOmA-120mA and 130mA-240mA (50mA-240mA for CL and OL)
with 10mA increment and 0,5A-25A with 0,5A increment up to 10A, then
2,5A increment up to 25A. For OL I only made one series, SOmA-240mA, due

to the relatively bad linearity at low currents, se “Results-Linearity”.

As power source I used an ELECTRONIC MEASUREMENTS INC. 40205 in
low current measurements, even if I used the OMICRON CMC 256-6 as
current generator for the 130-240mA interval on the ACS754K and AMR
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components. For medium currents I used the OMICRON CMC 256-6 as both

current generator and power source.

I used MS Excel for calculations and comparison of measured data. To be
able to compare different components to each other, I first subtracted the
noted offset from measured values. Thereafter I calculated trendlines for
each component using linear regression analysis and fine-tuned the offsets
so that all the trendlines intercepted zero output at zero input. I did this

offset-tuning separately for each of the three (two) series I specified above.
To find the linearity I calculated it relative to the trendlines as

M(I,)-S.*1, L :
e )= S *] *100 Eq. 10: Linearity calculation.
t n

were 6‘|_(|p) is the %-linearity at l,, M(Ip) is the measured value at I,

(offset subtracted) and S, is the slope of the trendline. |, is the nominal

n
current for the measurement boards used in the MACH2 system. In this
way the result can be directly compared with the maximum allowed
unlinearity of the measurement boards. On these boards the unlinearity

should be better then +0,2% of their nominal value. For instance if a card
with |, =1A would make use of one of the components tested in this thesis

as a transducer, the linearity-chart (Appendix C) for that component need

to be enclosed within £0,2% . With other |, than 1A, only divide the values

in Table 4 by I, .

I also arbitrary tested the sensitivity to external magnetic fields by moving a
strong permanent magnet in the near vicinity of the component. I found that
the magnet affected all components. Even so, the magnetic field from the

magnet is many times as strong as from realistic nearby circuitry.

By using a heating blower I tried to test the offset temperature drift, but

according to different types of housing, imprecise air temperature and
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adjacent load resistor (also affected) it was difficult to get comparable results.

The offset did change slightly for all components, though.

Step response

A waveform generator, Hewlett Packard 33120A, are used to produce a
square-formed wave with a frequency of 100Hz. Unfortunately this waveform
generator could only deliver a bidirectional peak-to-peak current of 0,358A
(0,179A to -0,179A). Even though this current is low it is sufficient to detect
step response characteristics for most of the components. Both output and
input are viewed with the Tektronix TDS 3054, the later over a Sohm
resistance. The configuration is otherwise the same as for the linearity
measurements, which means that the step is doubled for OL and CL

components.

Frequency dependency

To find out how the components of interest handles different signal
frequencies I used a two-channel network signal analyser with one output
channel and two input channels, SRS Model SR780. On it’s output it could
deliver a voltage-signal and sweep the frequency from zero to 102,4 kHz. For
the current to be sufficiently high I used an amplifier, Sentec ACM1 that
resulted in a current of approximately 2 A depending on load, i.e. a 4,7 ohm

wire-wound power resistor + the test object.

For the amplifier and power resistor not to influence the measurements I
connected channel one on the signal analyser over the power resistor (input)
and channel two to the output terminals on the test object (output). By this
the only difference in frequency contents would be that of the test object, in
comparison with connecting channel one directly to the output channel. The
result is presented as amplitude and phase in decibel, dBV(Hz), and degrees,
deg(Hz), respectively. The configuration is otherwise the same as for the

linearity measurements.
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RESULTS

All figure cross-references in this section are referring to either Appendix C,

DorE.

Linearity

In Appendix C the results of the linearity measurements are presented. First
the results are presented in table form with the actual measured values,
Table 1. The second table, Table 2, contains the results with offset
subtracted and after that the deviation from trendlines in volts are
presented, Table 3. In the last table the deviation is presented in percentage

relative the expected output if a |, =1A current where measured, see Eq. 10

and Table 4. The offset adjusted table and the linearity table are also
presented in a number of charts. In Figure 26 and Figure 27 the values from
Table 2 are drawn. At a first glance at Figure 26 all components seams to be
quite linear, even if only medium currents are shown. Also in the smaller
interval, Figure 27, it is still hard to observe any unlinearity. Only two
components, CSLA2DG-1 and 2, are unlinear enough so that it can be
visually observed by comparing the slope for positive currents with the slope
for negative currents. It is necessary to use the calculated linearity to be able

to make any conclusions.

As mentioned in the section “Test Configurations” I performed three (two)
measuring series using different current generators and power supplies. At
first I tried to combine the results from these series in the same charts, but

unfortunately they do not “fit” due to slightly different V, (ratiometric, se
Chapter 2) and accuracy on |,. Therefore all linearity analyse need to be

done separately for low currents and medium currents. Furthermore, the
results on the low current measurements for the ACS754K and AMR
components are as mentioned earlier two separate series, with the VARIREF
VF-12 up to 120mA and the OMICRON CMC 256-6 up to 240mA but with

the same power sourse. Even so, I decided to treat them as one series,
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because when studying the low current linearity charts for these
components there is only a slight difference between them, se Figure 30. This

difference is most apparent for the ACS754K.

In Figure 28 the linearity for low currents are displayed. As seen there are
rather big differences between components. To make it more visibly I
separated the low current series in two charts. One for components with
unlinearity above 0,5% (Figure 31) and one for unlinearity below 0,5%
(Figure 32). In Figure 31 we find the OL components and ACS754K, which in
fact also is an open loop HED component but without toroidal core. The CL
and AMR components are displayed in Figure 32. Another aspect to consider
is the fluctuation of the linearity. A component with high fluctuation in the
linearity illustrates a more noisy output then other components with lower
fluctuation. As one can se it is a relatively big difference both in linearity and
fluctuation (noise). The noise may be possible to reduce by filtering, but that
would add more electronics to the signal path slowing it down and maybe
distort the signal. The high unlinearity and noise of the OL in addition to the
principal similarities to CL motivated to discard them from further
investigation and reduce the number of components for the step response
and frequency dependency measurements. As seen in Table 1 I also, for the
same reasons, chose not to compete the linearity measurements for the OL.
The principal differences to the CL are the reason why I kept the ACS754K. I
found it interesting to investigate them further even with their higher

unlinearity and noise.

In Figure 29 the linearity for medium currents are displayed. According to
the decision to discard OL components they are not present. As seen the
ACS754K suffers from much poorer linearity then the CL and AMR
components. In Figure 33 I have taken away the ACS754K to better see the
behaviour of the CL and AMR. Now we can se that they follow different
trends, polynomials. The NT-50 behaves as a fourth-order, the CLN-100 and
CLSM-100 follows a second-order and the CSNT651 follows a third-order

polynomial. In Figure 34 I collected all components that has linearity better
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than 1% for medium currents. Here it is seen that LA100-P follows a sixth-
order and that CMR-25 also follows a third-order polynomial. Most likely
these different trends depends on the amplifiers and other electronics
following the actual sensor. It is a quite big difference between CSNT651-1
and CSNT651-2. I cannot give a good explanation for this, but it shows that
two components of the same model are not identical and may perform

slightly different.

To be usable in the MACH2 implementation a linearity better than 0,2% up
to 3*I, are required. If |, =1A only the LA100-P and CMR-25 can be used

according to these linearity measurements. The same components can be

used for |, =360mA (0,072%/0,36=0,2%). If 1, =5A also CLSM-100 and CLN-
100 can be used (1%/5=0,2%).

Looking at linearity and noise, there are three components with prominent
test results: LA 100-P, CLSM 100 and CMR-25. Linearity-charts with these
are shown in Figure 34 and Figure 35. Note a low current linearity better
than 0,15% for LA 100-P and CLSM 100 and 0,05% for CMR-25 (except
some deviating values). At higher currents the series are more fluctuating
(possible due to the OMICRON CMC 256-6), but the trends for LA 100-P and
CMR-25 are within +/-0,2% up to 3*1A and up to 3*5A all three components
are within +/-1% (1%/5=0,2%). Unfortunately the over current durability for
transducers used in the MACH2 system should be better than 100* 1, for 1s

and the maximum DC current allowed for CMR-25 are 40A. By this the
CMR-25 may only be used when |, <0,4A. The LA 100-P and CLSM 100 may

only be used when |, >0,75A (0,15%/0,75=0,2%). But if only one component

are to be used in all implementations, it may in fact be possible to externally
trim the linearity for a certain current interval, an hence it may be possible

to use most components even with | ,=360mA. It is still preferable to have as

linear components as possible, so that wider intervals may be measured. It

may also be possible to combine components, e.g. one CL with a nominal
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current closer to the |, for the measurement board and with a great linearity
for the 3* I interval, and another CL (or a cheaper OL) with nominal current
close to 25* |, for that interval. This example is possible thanks to the greate

over current protection the CL and OL components exhibit even for rather

small nominal currents.

Step response

In Appendix D the results of the step response measurements are presented

as prints from the Tektronix TDS 3054.

For the ACS754KCB I needed to measure the response relative a reference
voltage due to that the zero-output from the ACS754KCB is 2,5V and it is
not possible to get a reasonable resolution on the Tektronix TDS 3054 at
that voltage level. If compared with the rest of the components the output of
the ACS754KCB seams to be noisy. If that has to do with the reference
source are hard to tell, but while collecting data for the linearity
measurements the values on the voltmeter did fluctuate more than average,
indicating noisy output. In Figure 36, Figure 37 and Figure 38 the results for
the ACS754KCB are shown. Either with or without the noise it is clear that if

compared with the other components it is rather slow. It takes about 8-10.s

to reach 90% of final value.

Even though discarded from further investigation, the HAS 50-S are
included for comparison. One difference from the CL is the size of the
overshoot. On the HAS 50-S it is small and does not exceed the final value,
as seen in Figure 48 to Figure 50. Another difference is that the transient
oscillation is stronger for the CL. Both these differences are due to the
succeeding electronics. For the closed loop circuitry to work satisfactory, i.e.
be able to suppress fast events in the flux concentrator, it must be very fast,
close to instable. With that comes the overshoot and oscillation. In the
MACH?2 system it is important that overshoots not exceed over current
protection levels. If they do the MACH2 may interpret it as an over current

and shut the primary current down. This is the major disadvantage for using
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CL sensors. But for the overshoots to occur the primary current need to
change rapidly, as in the case with steps, but the currents to be measured
change somewhat slower and may not cause excessive overshoot if CL
sensors are used. The CL with the lowest overshoot is the CLN 100 with a
2% overshoot while the CSLM 100 and LA 100-P has an overshoot of about
19% and 30% respectively. The oscillation is not as crucial as the overshoot
but with a fast settle it is possible to get a faster accurate reading. The LA

100 has a settling time of 30xs while the CLN 100 and CSLM 100 has a
settling time of 8045 . The results for the CL components are shown in Figure

39 to Figure 47

The rise time for the CL is much faster than for the ACS754KCB. The slowest
CL is CLN 100 with a 2-3usrise time, about half the time of the OL HAS 50-

S. The CSLM 100 and LA 100-P has the fastest rise times in the test with
160ns and 400ns respectively.

For the AMR component NT-50, Figure 51 to Figure 53, the rise time is
1,6 — 2,048 and comparable to the CLN 100. It has an overshoot of 28%, about
the same as for the LA 100-P. The CMR-25 has also a rise time of about 2.5
but it is hard to tell about the overshoots, as seen in Figure 54 to Figure 56
the initial part of the print are highly fluctuating. This kind of fluctuation is
also apparent for the ACS754KCB and HAS 50-S. If it is component specific
or caused by external influence are hard to tell at this stage but may become

clear in more thorough investigations in the future.

I find out that the prints for the CMR-25-3 differed from the CMR-25-1 and -
2 in that the CMR-25-3 did not transfer DC currents. This can be seen in
Figure 57 and Figure 61 were the square wave from the Hewlett Packard
33120A are folly visible. For the CMR-25-3 the levels drop in a logarithmic
manner indicating lack of DC component. When [ tested the sensitivity of
external magnetic fields I used the CMR-25-3 and I tested it in a rather

harsh manner. This is probably the reason for the erroneous behaviour,
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most likely due to disorientated magnetisation in the resistance stripes

mentioned in Chapter 2.

Frequency dependency

In appendix E the results of the frequency sweep are presented. The
numbers in dB and deg in the image text are the difference between start
value and stop value in each chart. As for the step response I included the

HAS 50-S for comparison.

The amplitude chart shows how the component influences the output level
for various inputs with the same amplitude but different frequency. If this
behaviour is well defined it is rather simple to compensate. The phase charts
show how signals with different frequencies are phase shifted differently
when passed through the component. As long as it is linear there will be no

need for compensation. As an example, if the phase acts like

—ot, Eq. 11: Linear phase behaviour.

were t, are a positive constant, and

I, = f.nl cos(w, t)+ finz cos(w,t) Eq. 12: Input signal.

then

t = IAoutl COS(a)lt — oty )"' foutZ COS(a)zt — W,y ):

IOU

* A Eq. 13: Time-delayed output.
=1 outl COS(a)l [t - td ])+ Iout2 Cos(a)z [t - 1:d ])

Hence, all signal components are time-delayed the same and therefore no

distortion due to phase shift are present.

The phase for all components starts at O deg except for the ACS754KCB-150
that starts at 180 deg, se Figure 62 and Figure 63. This is probably due to a
mistake during connection of the component by alternated polarity at the

input or output. This will not have an effect on the results other then adding
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180 deg to the phase. The ACS754KCB-150 has an amplitude characteristic
that has a 13 dB difference between highest and lowest value. This is far
more then the component with the second highest difference, the HAS 50-S
(Figure 70 and Figure 71) with 3,5 dB. 13 dB corresponds to a twenty times
lowering, while 3,5 dB only corresponds to about a halving. The phase are
quite linear but also rather high, about 230 deg compared with 72 deg for
the HAS 50-S.

The components with the most complicated behaviour are the CL. For all of
them something happens around 15-20 kHz. This can be seen in Figure 64
to Figure 69, Figure 72 and Figure 73. Except for the LA 100-P (Figure 72
and Figure 73) both the amplitude and phase are rather linear but the
amplitude makes a significant lowering at 15-20 kHz with a corresponding
step in the phase shift. The LA 100-P acts somewhat different. It has a zero
phase up to 20 kHz and there after it declines linearly about 30 deg to 100
kHz. The amplitude starts low and increases quadratic to 30 kHz and from
there it declines linearly to 100 kHz. The shape of the amplitude for LA 100-P
may be complicated to compensate for, if that would be necessary. The HAS
S50-S act similar to the CL components but without the amplitude lowering.
This implies that it is caused by the feedback circuitry, i.e. amplifier and
secondary coil. Also, the HAS 50-S has about tree times steeper phase chart
witch means that the time-delay are about tree times higher for the HAS 50-
S than for the CL components.

The amplitude characteristics for NT-50 (Figure 74 and Figure 75) differ from
the other components by having a more quadratic shape. This may, as for
the LA 100-P, be somewhat complicated to compensate for. The phase shift
are in the same order as for the HAS 50-S but starts quadratic the first 10

kHz, but it is close to zero and may be treated in that way.

The frequency characteristics for the CMR-25 (Figure 76 and Figure 77) is
also rather similar to the CL, but as in the case with the HAS 50-S, without
the amplitude lowering and phase step. The total phase-shift are tough
much better than the HAS 50-S and somewhat better than the CL, i.e. lesser
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time-delay, but at about 1 kHz both amplitude and phase fluctuates for a
300 Hz period. The reason for this is not clear. In Figure 78 and Figure 79
the characteristics for the CMR-25-3 are shown. As in the case with step
response the charts with CMR-25-1 and CMR-25-3 differs from each other.
Here we can see that for CMR-25-3 low frequency currents are not passing
through but for frequencies above 300 Hz they act rather similar. This was
expected since the step response investigations show a lack of DC transition.

Recall the explanation for the erroneous step response.

The components with the lowest amplitude and phase differences in the test

interval are CSLM 100, LA 100-P and CMR-25. The amplitude difference is

for all three below a /2 -times lowering and the phase is 27 deg for the CL
and 20 deg for CMR-25. These three components did also perform best
results in the linearity measurements.

Observations

Here I list some observations about components I did during my tests.

HAS 50-S a little noisy and the output has some floating tendency.

BB-150 the output has some floating tendency.

CSNT651 the offset voltage slightly wanders.

LA 100-P the offset voltage wanders least among CL.

CLSM-100 the output does not float much.

CLN-100 the offset voltage descend a rather long time after
powered on.

CMR-25 very little noise, sensitive for external magnetic fields

(offset “memory”) and noticeable hysteresis.
Sensitive, measure <1 mA.

NT-50 sensitive for external magnetic fields, offset takes time to
become stable.
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Chapter 4-Conclusions

The most important characteristic for the transducers in the MACH2 current
measurement application is their linearity at low currents. Based on that I
decided not to continue with further investigation of some components that
did not perform according to the demands on linearity. These components
are the Open Loop Hall-Effect Devices (OL HED) with toroidal flux
concentrators. Also the OL HED named ACS754KCB-150 did not perform
satisfactory but since they are rather different from the other components I
decided to carry out the other tests to, but also in the step response
measurements and frequency dependency tests the ACS754KCB-150 did not

perform satisfactory.

I found that the component with the best characteristics is the CMR-25
based on Anisotropic Magnetoresistance (AMR). It is the far most linear
component among those tested here and it has god frequency behaviour.
Unfortunately it can only manage up to 40 A without damage and therefore,

according to the 100* 1  over current protection, it can only be used in the

MACH2 system for |, <400 mA.

The most serious alternative for current measurements in these applications
is the Closed Loop HED. The technique is well known and it exist a great
amount of alternatives on the market when it comes to nominal current,
accuracy, linearity, speed and price. They also endure high over currents
and they are mechanically durable. Another advantage is the ability to
control the sensitivity by adjusting how many times the current passes
through the component, i.e. number of turns around the toroidal core. The
major disadvantage CL may have in this application is the overshoot
discovered in the step response measurements. As mentioned it may cause
the MACH2 system to detect false over currents and activate protection
procedures. Another disadvantage may be the amplitude lowering and phase

step seen in the frequency dependency tests. The transducers need to have a
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bandwidth of 40-50 kHz and the lowering and step appears at 15-20 kHz,

but it might be possible to compensate it externally.

The second AMR component, the NT-50, act rather similar to the less
performing CL components, the linearity is not as god as for the LA 100-P or
CLSM 100. It is less bulky then the CL, but since the current is led through
the component it is not possible to alter the sensitivity as in the case with CL

and it is more sensitive for high currents.

Among the components tested here the LA 100-P is the best candidate to be
used in this application and the CLSM 100 may also be an alternative. The

LA 100-P is linear enough to handle |, >0,75A, but components in the same

family (LEM LA xx) with lower nominal currents may be used for lower

currents.

The CL endure high over currents as mentioned, but they only deliver
accurate output values up to about 1,5 times their nominal current,
therefore it may be necessary to combine components. As mentioned earlier
an alternative is to use two HED components; one to measure low currents
with high accuracy and the other one for medium and high currents. Correct

values are detected even if the low current component saturate.

Compared with the current transformers used today the CL components are
somewhat more complicated and may have a less well-defined effect on the
signal. On the other hand they manage DC and low frequency currents, a
quality that I think greatly overcomes less desirable aspects. The shunt
resistor is in it self the best and most linear method, but there is two major
drawbacks related to it. First, there is no electric isolation between input and
output, and to establish this isolation amplifiers are used adding unlinearity
at low currents and making the overall measurements slower. The second
drawback is the problem to transfer high currents through the thin metal
conductors at the PCB to the shunt resistor, i.e. high current density. This is
the major reason why shunt resistors are only used in low current

applications so far. The CL components are electrically isolated between
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input and output by galvanic isolation and thereby no isolation amplifiers
are required. Also since the primary current are led through the hole in the
toroidal core by a sufficiently thick conductor, the problem with high current

density is solved.

By looking at the results of the measurements and tests carried out for this
thesis my conclusions about alternative current measuring techniques for
the MACH2 system are that I do think that with careful selection and
thorough testing the CL HED technique is possible to engage in this
application. Other techniques based on the Hall-Effect tested here are not
suited manly due to insufficient linearity. The AMR techniques may be
possible to engage, but the insufficient amount of components on the market

makes it hard to find suitable candidates.
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Appendix A Components

Here I list the suppliers, components and type of sensor. I also note down
the supply voltage (Vcc), load resistance (Rload), and coil turns (Np, for OL
and CL HED) that I used. ACS754xCB-150 needed a capacitor between Vcc
and GND (Ccc). For detailed information and data sheets, please refer to

each companies webpage.

Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, MA 01606

USA

Tel: +1 508 853 5000

www.allegromictro.com

Sensors:

A1301 and A1302 HED Position sensor, discarded from detailed
measurements. Vcc=5V

ACS754xCB-150 Lead-through HED current sensor.

Vce=5V, Rload =100Kohm, Ccc=0,1uF

Figure 20: Left, A1301 and A1302 look the same.
Right, ACS754xCB-150.
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Honeywell Sensing and Control
11 West Spring Street
Freeport, IL 61032

USA

Tel: +1 815 235 6847

http://content.honeywell.com/sensin:

Sensors:

CSLA2DGI OL HED current sensor with toroidal core.
Vcce=8V, Rload =10Kohm, Np=2.
Quantity: 2

CSNT651 CL HED current sensor with toroidal core.
Vee=+/-15V, Rload =1250hm, Np=2
Quantity: 2

Figure 21: From left CSLA2DGI and CSNT651.

Figure 22: The flux concentrator and sensor circuit separated.
Observe the gap in the toroidal core and the
HAL sensor; the small white square.
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LEM Holding SA

8, chemin des Aulx

CH-1228 Plan-les-Ouates, Genéve
Switzerland

Tel: +41 022 706 11 11

www.lem.com

Sensors:

HAS 50-S OL HED current sensor with toroidal core.
Vce=+/-15V, Rload =120Kohm, Np=2
Quantity: 1

LA 100-P CL HED current sensor with toroidal core.
Vee=+/-15V, Rload =1250hm, Np=2
Quantity: 1

Figure 23: From left HAS 50-S and LA 100-P.
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Sypris Test & Measurement

6120 Hanging Moss Road
Orlando, FL 32807

USA

Tel: +1 407 678 6900
www.fwbell.com

Sensors:

BB-150

CLN 100

CLSM 100

CMR-25
(also at Honeywell, CSNX25)

NT-50
(also at Sensitec, CMS2050)

OL HED current sensor with toroidal core.
Vce=+/-15V, Rload =10Kohm, Np=2
Quantity: 1

CL HED current sensor with toroidal core.
Vee=+/-15V, Rload =750hm, Np=2
Quantity: 1

CL HED current sensor with toroidal core.
Vce=+/-15V, Rload =750hm, Np=2
Quantity: 1

AMR current sensor combined with an ASIC.
Vce=5V, Rload =27ohm, Np=1 (of 3 possible)
Quantity: 3

AMR current sensor.
Vce=+/-15V, Rload =100Kohm
Quantity: 3

Figure 24: From left BB-150, CLN 100, CLSM 100, CMR-25 and NT-50

Figure 25: Left, CLSM 100 opend. Observe the feedback coil.
Right, back and inside of NT-50.
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Appendix B Apparatus

VARIREF VF-12
Current and voltage precision generator. Used as a current generator for low

current linearity measurements. Contact: www.semitronic.com

ELECTRONIC MEASUREMENTS INC. 40205
Current and voltage generator. Used as a power source for Vcc in the low

current linearity measurements and for step response measurements.

Contact: http://www.lambda-emi.com

OMICRON CMC 256-6
Computer operated test apparatus, with separate outputs and inputs for
both currents and voltages. Used both as a current generator and power

source for medium current linearity measurements (up to 25A). Contact:

http://www.omicron.at

Hewlett Packard 33120A (Agilent 33120A)
Waveform generator to produce square-formed waves in step response

measurements. Contact: www.agilent.com

Stanford Research Systems Model SR780
Two-channel network signal analyzer for the frequency dependency

measurements. Contact: www.thinksrs.com

Sentec ACM1
Amplifier used to amplify the output from the SRS SR780 in frequency

dependency measurements. Contact: Non

KEITHLEY 196 SYSTEM DMM
Multimeter to measure component output signals. Used for linearity

measurements. Contact: www.keithley.com
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Tektronix TDS 3054

Digital oscilloscope with ability to save screen shots to investigate step

response, AC and frequency behaviour. Contact: www.tektronix.com

For detailed information about each apparatus, please refer to contact

websites, all valid 2006-03-27.
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Appendix C Linearity data and charts
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Table 1: Measured data for linearity analysis.
Red numbers correspond to currents produced by the VARIREF VF-12 and black to the
OMICRON CMC 256-6. Vcc by the EM 40205 between —0,24A and 0,24A. From +/-0,5A to
+/-25A Vcc by the OMICRON.
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Table 2: Measured data for linearity analysis. Offset subtracted.
Red numbers, se Table 1.
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Table 3: Measured data for linearity analysis. Deviation from trendline in volts.
Red numbers, se Table 1.
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Table 4: Measured data for linearity analysis. Linearity relative to expected output with a
1A input current, in percent. To find linearity relative to other currents, please divide each
value in the table with the desired value. Red numbers, se Table 1.

59



Medium Currents
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Figure 26: Medium current linearity measurements.

All components except OL.
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Figure 27: Low current linearity measurements.

All components.
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Figure 28: Low current linearity measurements in percent of output with a 1A input
current. All components.
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Figure 29: Medium current linearity measurements in percent of output with a 1A input

current. All components except OL.
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Figure 30: As Figure 28 but without OL and CL. Compare results below and above
0,12mA. CMR-25 and NT-50 are related to the left axis and ACS754K to the right axis.
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Figure 31: As Figure 28 but only components with highly fluctuating linearity.
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Figure 32: As Figure 28 but only components with less fluctuating linearity.

Deviation from Trendline
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Figure 33: As Figure 29 but only components with less fluctuating linearity.
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Figure 34: Best alternatives, low currents.
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Figure 35: Best alternatives, medium currents.

64

0,25

CLSM-100




Appendix D

Tek Run | ; it — ] Trig'd
s :
o
(220
Wi 1.00mvVouM[40.0us] A Ch3  —340mV
ch3[ 500mv

o~ [117.400ps |
Figure 36: ACS754KCB-150-1 Up

Tek Run | [ i - ] Trig'd
u
I
o
p— _'f """"""""""""""""""""""""""
Ch2[ 1.00mve%M[2.00ps A Ch3 S —340my,
500mv

-+ [4.24000ps |
Figure 38: ACS754KCB-150-1 Zoom

TekRun g [ = ] Trig'd
ATl
B 1
(B2
1 4
[OfF] 10.0mV #M[20.0us Al Ch2 S-28.4mV|

Ch3| 300mv
W+ [15.0601ms

Figure 40: CLN 100 Down

Step

Ch3 Ampl
1.7351v

1 Mar 2006
14:14:49

»- [E=
1.00V
360mv

Al
@:

Ch2 Ampl
2.300mv

Ch3 Ampl
1.753V

1 Mar 2006
14:27:28

& [Em=
42.6mv
T —26.0mv

&b

Ch2 Ampl
532.60mv

Ch3 Ampl
1.747 v

28 Feb 2006
14:46:17

65

response p

rints

Tek Run Ig ; — ] Trig'd
a ?
b ]
4

&E 1.00mv<

Ch3[ 500mv

M40.0ps| A Ch3 £ —340mV|

v [5.11920ms

Ch2 Ampl
3.933mv

Ch3 Ampl
1.753 V

1 Mar 2006
14:13:20

Figure 37: ACS754KCB-150-1 Down

The ACS754KCB has a 2,5V offset on the output, and to get a reasonable resolution I
measured relative a reference 2,5V so that zero measured output refer to zero input.
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Appendix E Frequency dependency results
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Figure 62: ACS754KCB-150-1: 13 dB, 230 deg.

Rk gpib 5 § Bl A DCi| 32dBY | jmmm—— [pler  Frequency
T vip, ( Awt e A DC | 14dBYV | EEE— .. | Span
1.6 kHz
[l PETHE ) g Analog Run ‘ 100.00 % “I'rigy é T
Line Width
A Live 16 kHz . . -0.877 dB 4 Hz
Acquisition Time
250 ms
Full Span
mdBdi =]
NO AA Filter [N SRS SN SRR (LA
BNl FFT Lines
5 5 : : 5 5 : : i 400
OHz 800 Hz 1.6 kHz
<F2i F1> Log Mag Uniform VecAvg 10 Base Freq.
. 102.4 kHz
B Live
18 Start Freq.
de 0 Hz
" B Center Freq.
SO0 | SRR TP ST E PP T P PSR TPRE PR __ 800 Hz
No AA Filter End Freq.

OHz 800 Hz 16 kH
. <F27F1>> Phase Uniform VecAvg 10

Figure 63: ACS754KCB-150-1 Zoom
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Figure 64: CLN-100: 2,5 dB, 42 deg.
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Figure 65: CLN-100 Zoom
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Figure 66: CLSM-100: 1,5 dB, 27 deg.
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Figure 67: CLSM-100 Zoom
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Figure 68: CSNT651-1: 3,2 dB, 47 deg.
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Figure 69: CSNT651-1 Zoom
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Figure 70: HAS 50-S: 3,5 dB, 72 deg.
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Figure 71: HAS 50-S Zoom
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Figure 72: LA 100-P: 0,2 dB (ptp 1,1 dB), 27 deg.
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Figure 73: LA 100-P Zoom
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Figure 74: NT-50-3: 1,7 dB (ptp 3,6), 70 deg.
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Figure 75: NT-50-3 Zoom
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Figure 76: CMR-25-1: 1,6 dB, 20 deg.
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AMR
ASIC

CL

HED

HVDC

IC
IMC

MACH2

OL

PCB
PTPS
Ratiometric

Scattering

Thin film

GLOSSARY

Anisotropic MagnetoResistance
Application Specific Integrated Circuit

Closed Loop, the output are connected to the input. In this
thesis CL refer to Closed Loop components with toroidal core.

Hall-Effect Device

High Voltage Direct Current. A power transmission technique
using DC current instead of AC.

Integrated Circuit
Integrated Magnetic Concentrator

Modular Advanced Control HVDC. The second generation of
MACH™ a control and protection system for HVDC Stations.

Open Loop, the output are not connected to the input. In this
thesis OL refer to Open Loop components with toroidal core.

Printed Circuit Board

Power Technologies Power Systems

The sensitivity are proportional to power supply.

In this context, the term "scattering" refers to the change in
direction of a particle because of a collision with another
particle or system.

Very thin layer of a material. Thickness of microscopic

dimensions. Often somewhat different material characteristics
then with bulk dimensions.
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