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Abstract
A lane departure warning system relying exclusively on a camera has several short-
comings and tends to be sensitive to, e.g., bad weather and abrupt manœuvres. To
handle these situations, the system proposed in this thesis uses a dynamic model
of the vehicle and integration of relative motion sensors to estimate the vehicle’s
position on the road. The relative motion is measured using vision, inertial, and
vehicle sensors. All these sensors types are affected by errors such as offset, drift
and quantization. However the different sensors are sensitive to different types
of errors, e.g., the camera system is rather poor at detecting rapid lateral move-
ments, a type of situation which an inertial sensor practically never fails to detect.
These kinds of complementary properties make sensor fusion interesting. The
approach of this Master’s thesis is to use an already existing lane departure warn-
ing system as vision sensor in combination with an inertial measurement unit to
produce a system that is robust and can achieve good warnings if an unintentional
lane departure is about to occur. For the combination of sensor data, different
sensor fusion models have been proposed and evaluated on experimental data. The
models are based on a nonlinear model that is linearized so that a Kalman filter
can be applied. Experiments show that the proposed solutions succeed at handling
situations where a system relying solely on a camera would have problems. The
results from the testing show that the original lane departure warning system,
which is a single camera system, is outperformed by the suggested system.
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Notation

Symbols and Operators

ay Lateral acceleration
β Slip angle
Cf Resulting lateral front tire stiffness
Cr Resulting lateral rear tire stiffness
c0 Road curvature
c1 Change of curvature
δs Steering wheel angle
δ Wheel turn angle
∆vx

Velocity measurement resolution
∆δs Steering wheel angle resolution
E Expected mean
et Measurement noise
Ft Linearized state update matrix
ft(·) Equations for the system model
Gt Noise gain matrix
Ht Linearized measurement relation matrix
ht Equations for the measurement model
I Identity matrix
Jz Moment of inertia around z-axis
Kt Kalman gain
lf Distance from masscenter to front wheel
lr Distance from masscenter to rear wheel
θ Heading angle
vy Vehicle lateral velocity
vx Vehicle longitudinal velocity
W Lane width
Wveh Vehicle width
yoff Measured lateral offset at vehicle
yoff,lc Estimated lateral offset at center of gravity
yoff,re Estimated lateral offset to right road edge
P Covariance matrix
Π0 Initial uncertainty
p(·) Probability density function

xi
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p(xt|Yt) Posterior density
pet

Measurement noise probability function
pwt

Process noise probability function
Q Process noise covariance matrix
R Measurement noise covariance matrix
Rn Euclidean n-dimensional space
σ Standard deviation
T Sample period
u Input signal
wt Process noise
xt State vector at time t
x̂t|t Estimate (filtering) at time t
x̂t|t−1 Estimate (one step prediction) at time t

Ψ̇ Yaw rate
Yt The set of ordered measurements: Yt = {y1, . . . , yt}
yt Measurement at time t
∇ Jacobian operator
∝ Proportional to
b·c Round downwards to nearest integer

Abbreviations

CUSUM Cumulative Sum
DCC Distance to Center of Curvatrue
EKF Extended Kalman Filter
ESP Electronic Stability Program
IMU Inertial Measurement Unit
KF Kalman Filter
LDWS Lane Departure Warning System
RMSE Root Mean Square Error
SF Sensor Fusion
TtLC Time to Lane Crossing
VC Vehicle Coordinates
VD Vehicle Dynamics



Chapter 1

Introduction

Today passive safety systems such as airbags and seat belts are more or less stan-
dard in new cars. A passive safety system does nothing to prevent an accident
but merely reduces the consequences of it. An active safety system on the other
hand seeks to prevent the actual accident by aiding the driver in case of a danger-
ous situation. An example of an active safety system is ESP (Electronic Stability
Program). One of the most common accident types is when the vehicle simply
runs of the road. These kind of accidents could have been prevented if the driver
had received a warning just as the vehicle was about to depart from the road or
into the opposite lane. The last few years several systems that provide this kind
of functionality have reached the market and are called lane departure warning
system (LDWS). This first generation of LDWS are often based on some sort of
monocular camera placed in the windshield. Such a system has both advantages
and drawbacks. One big advantage is that the system is based on just one sensor
and can be rather cheap; the main drawback is that the system will be sensitive to
bad weather and poor road markings. This means that if the driver has problems
to see the road, so does the camera. This Master’s thesis proposes a system that
reduces the drawbacks of a single camera LDWS by using inertial sensors and
sensor fusion. The main outlines of the propsed system is described in Figure 1.1.

1.1 Background
1.1.1 Accident Types
A LDWS is supposed to alert the driver if it detects that one of the following
accidents [5] are about to happen:

Fast or Slow Unintentional Lane Departure: One of the most common
accidents is the unintentional lane departure. This situation is illustrated in
Figure 1.2(a). The cause of this accident is that the driver has applied a too
large steering angle making the vehicle run off the road. Since the vehicle has
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2 Introduction

Figure 1.1. A sketch describing the system proposed in this Master’s thesis. In following
list the different components are described: IMU - measures accelerations and rotational
speed, LDWS - measures the lateral position of the vehicle on the road and the road
curvature, Road model - the road is modeled online using the measurements from the
LDWS, Vehicle speed - lateral speed of the vehicle, Steering wheel angle - the steering
wheel angle is measured, Sensor fusion - all measurements are used to estimate interesting
vehicle states such as the heading angle.

rather different behavior depending on how rapidly it departs from the road, two
subcategories are introduced: Fast Unintentional Lane Departure and Slow Un-
intentional Lane Departure.

Fast Curve Entering: A fast curve entering is the situation when a vehicle
enters a curve with such a high velocity that it risks running off the road. The
difference between this category and the former is that in this case the driver has
applied a too small steering angle. To detect this kind of situation reliabel readings
from the camera as well as a good model of the road are needed. The situation is
illustrated in Figure 1.2(b).

1.1.2 Sensor Fusion
For a safety system to detect any of the possible dangerous situations described
in Figure 1.2, several different sensors are used in this Master’s thesis. The sepa-
rate sensors often provide useful but limited information about what is happening,
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(a) Unintentional Lane Departure. (b) Fast Curve Entering.

Figure 1.2. Two common accident types. The situation in 1.2(a) is caused by a too
large steering angle and the situation in 1.2(b) by a too small steering angle.

hence there is a need to fuse this information to get a more complete and correct
estimation of the vehicle states. This can be done using sensor fusion, a method,
or rather a collection of many different methods, for combining interesting infor-
mation from several different data sources, sensors. The sensor fusion method used
in this Master’s thesis is often known as Bayesian estimation.

1.1.3 Autoliv Electronics
The project that this Master’s thesis has been a part of has been conducted
at Autoliv Electronics AB. Autoliv Electronics develops safety enhancing prod-
ucts for the automotive industry. For more information about the company, visit
www.autoliv.com.

1.2 Problem Definition
Can the performance of a camera based lane departure warning system be en-
hanced if inertial sensors are added and sensor fusion is used?

1.3 Objectives
The general objective of this Master’s thesis is to develop a system which fuses the
information gained from a camera based LDWS with inertial measurements from
an inertial measurement unit (IMU), or in other words, finding a robust solution to
the positioning problem using multiple senors. An evaluation on how the system
performs when the confidence in the camera measurements are low, i.e., when a
camera based system operates poorly is of course of great interest. Examples of
such situations are:
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• Fast unintentional lane departure.

• High speed slow unintentional lane departure.

• High speed fast curve entering.

All these situations have in common that there is either a fast lateral or longitu-
dinal motion under which the camera fails to provide reliable readings.

1.4 Limitations
The LDWS that has been used in this Master’s thesis is a commercial system
producing measurements for a ruled based decision logic. This means that the
measurements obtained are heavily manipulated, from what originally must have
been rather noisy and unstable measurements. For the derived models this means
that it has to deal with measurements having a rather unknown character.

1.5 Outline
In this section a short guidance to the different chapters is given. In Chapter 2
first a description of the sensor fusion technique that have been studied is pre-
sented. Chapter 3 describes the models that have been used, starting with a short
section on the coordinate systems in which the different models are operating. In
the following sections the derivations of the different models are presented. In
Chapter 4 a strategy for how to evaluate what the model estimates is presented.
Chapter 5 is about how the models have been evaluated. Finally some conclusions
and suggestions of future work is given in Chapter 6.



Chapter 2

Sensor Fusion Techniques

The area of sensor fusion (SF) is vast and there exists many different terminolo-
gies. The topic of different terminologies will not be covered here, but to avoid
confusion, in this Master’s thesis, the concepts sensor fusion and estimation the-
ory are regarded as synonyms. This chapter covers a short introduction to the
benefits of sensor fusion followed by an introduction to Bayesian estimation, the
sensor fusion method used in this Master’s thesis.

2.1 Advantages of Sensor Fusion
Sensor fusion is motivated if the benefits that can be gained exceeds the cost of
the extra sensors. Since all sensors normally are afflicted with inaccuracy, it is not
difficult to motivate a good extra sensor and sometimes even an additional sensor
that might perform worse than the original one. In the paragraphs below some of
the most common problems that can be reduced by SF is presented [6].

Robustness and Redundancy: A multi sensor system has the advantage of
being redundant, meaning that if one sensor brakes down or begins to function
poorly the system can still work. With robustness it is meant that the system is
non-sensitive to noise. For example a camera based LDWS is rather dependent on
the weather conditions, whereas a fused system having access to more information
can still function properly. These characteristics are of course very attractive for
a safety system such as an LDWS.

Measurement Range: Every sensor has limitations in terms of range so there
is often a good idea to combine several sensors in order to obtain a fused system
with greater working area.

Accuracy: All measurements are affected with some uncertainty which in two
dimensions can be represented by a confidence area i.e., the space in which it
is believed that the true value is to be found. One common combination when

5



6 Sensor Fusion Techniques

tracking objects is vision and radar. A vision sensor is typically good at sensing
the bearing but poor for distance measures, whereas the radar has the opposite
character. The idea is illustrated in Figure 2.1.The two ellipsoids represent two
different measurements having different uncertainties. The fused confidence area
is then much smaller, namely the area that is cut out by the two ellipsoids.

Figure 2.1. Sensor fusion using two different sensors to localize an object.

2.2 Bayesian Estimation
Bayesian estimation [1, 7, 8, 10, 11] offers a way to estimate states from noisy
measurements. The following discrete state space description

xt+1 = f(xt, wt), (2.1a)
yt = h(xt, et), (2.1b)

where the vector xt ∈ Rn represents the sought states and yt ∈ Rm the measure-
ments, is a general model of a dynamic system. Inaccuracies in the process and
measurement model are described by the stochastic processes wt and et.

Using the model above and all measurements up until and including time t,
Yt ∈ {y1 . . . yt}, an estimate, x̂t|t ∈ Rn, can be calculated from following equations:

time update:
p(xt+1|Yt) =

∫
Rn

p(xt+1|xt)p(xt|Yt)dxt, (2.2)

measurement update:

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (2.3)
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where p is the probability density function (pdf) of two stochastic variables.
In this Master’s thesis it will for ease be assumed that the inaccuracies are

additive

xt+1 = f(xt) + wt, (2.4a)
yt = h(xt) + et. (2.4b)

Using the model with additive noise following relations can be calculated

p(xt+1|xt) = pwt

(
xt+1 − f(xt)

)
, (2.5a)

p(yt|xt) = pet

(
yt − h(xt)

)
. (2.5b)

where pwt
is the process noise probabilty function and pet

the measurement noise
probability function. Using (2.5), the time update (2.2) and the measurement
update (2.3) is rewritten as

p(xt+1|Yt) =
∫

Rn

pwt

(
xt+1 − f(xt)

)
p(xt|Yt)dxt, (2.6)

p(xt|Yt) =
pet

(
yt − h(xt)

)
p(xt|Yt−1)

p(yt|Yt−1)
, (2.7)

and since p(yt|Yt−1) can be interpreted a normalization factor, (2.7) is written as

p(xt|Yt) ∝ pet

(
yt − (xt)

)
p(xt|Yt−1), (2.8)

where ∝ should be read propotional to. To solve the Bayesian problem i.e., (2.6)
and (2.7) the process model, f and the measurement relation, h, as well as the
inaccuracies wt and et must be modeled. If the system is linear and the noise
Gaussian the Kalman filter (KF) offers a recursive solution to the problem. When
the system cannot be assumed linear, a solution is to first linearize the system and
then apply a Kalman filter. It is then called an extended Kalman filter (EKF).

2.2.1 The Kalman Filter
If a system can be modeled using a linear state space model a Kalman filter
[1, 7, 8, 10, 11] can be used. The KF solves the problem of choosing how much of
the new information in a measurement that should be included when updating a
state-variable. Consider following standard state space model:

xt+1 = Ftxt + Gu,tut + Gw,twt, (2.9a)
yt = Htxt + Dtut + et, (2.9b)

where Ft, Gu,t, Gv,t,Ht and Dt in the general case are time-varying matrices of
suitable dimensions, xt is the state vector, yt the measurement vector and ut rep-
resents the input signals. The covariances of the state noise, wt, and the measure-
ment noise, et are represented by the Q and R matrices as

Cov(wt) = Qt, (2.10a)
Cov(et) = Rt, (2.10b)
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if E(wt) = E(et) = 0 and it is assumed that x̂0|−1 = x0, P0|−1 = Π0 and that
the cross covariance is zero the KF equations are given by (2.11a),(2.11b) are

Algorithm 1 Kalman filter (KF)
Time update:

x̂t+1|t = Ftx̂t|t + Gu,tut, (2.11a)
Pt+1|t = FtPt|tF

T
t + Gw,tQtG

T
w,t, (2.11b)

Measurement update:

x̂t|t = x̂t|t−1 + Kt(yt −Htx̂t|t−1 −Dtut), (2.12a)
Pt|t = Pt|t−1 −KtHtPt|t−1, (2.12b)

where
Kt = Pt|t−1H

T
t (HtPt|t−1H

T
t + Rt)−1. (2.13)

commonly referred to as the time update and (2.12a),(2.12b) as the measurement
update equations.

2.2.2 The Extended Kalman Filter
When a linear system is not sufficient, the KF has to be modified. One common
choice is the extended Kalman filter [1, 7, 8, 10, 11]. The main idea of the EKF is to
linearize around the current state estimate and then use the KF theory. Consider
nonlinear time-varying system

xt+1 = ft(xt) + gt(xt)wt, (2.14a)
yt = ht(xt) + et, (2.14b)

where wt and et are assumed Gaussian with zero mean and covariances Qt and
Rt, and initial uncertainty Π0. Use the following approximations

ft(xt) ≈ ft(x̂t|t) + Ft(xt − x̂t|t), (2.15a)
ht(xt) ≈ ht(x̂t|t−1) + Ht(xt − x̂t|t−1), (2.15b)
gt(xt) ≈ g(x̂t|t) = Gt, (2.15c)

where
FT

t = ∇xfT
t (x)|x=x̂t|t , HT

t = ∇xhT
t (x)|x=x̂t|t−1 , (2.16)

and ∇xfT
t (x) is the Jacobian matrix defined as:

∇xfT
t (x) =


∂f1
∂x1

. . . ∂fm

∂x1
...

...
∂f1
∂xn

. . . ∂fm

∂xn

 , f : Rn 7→ Rm. (2.17)



2.2 Bayesian Estimation 9

If now (2.14a) and (2.14b) are approximated as

xt+1 = Ftxt + (ft(x̂t|t)− Ftx̂t|t)︸ ︷︷ ︸
known at time t

+Gtut, (2.18a)

yt − (ht(x̂t|t−1)−Htx̂t|t−1)︸ ︷︷ ︸
known at time t− 1

= Htxt + et, (2.18b)

a linear state-space model for xt is obtained. The KF equations can now be applied
resulting in

x̂t+1|t = Ftx̂t|t + (ft(x̂t|t)− Ftx̂t|t) = f(x̂t|t), (2.19a)
x̂t|t = x̂t|t−1 + Kt(yt − (htx̂t|t−1 −Htx̂t|t−1)−Htx̂t|t−1)

= x̂t|t−1 + Kt(yt − htx̂t|t−1),
(2.19b)

where the Kalman gain and the covariance recursion is given by the Kalman filter.

Algorithm 2 Extended Kalman filter (EKF)
Time update:

x̂t+1|t = ft(x̂t|t), (2.20a)
Pt+1|t = FtPt|tF

T
t + GtQtG

T
t , (2.20b)

Measurement update:

x̂t|t = x̂t|t−1 + Kt

(
yt − h(x̂t|t−1)

)
, (2.21a)

Pt|t = Pt|t−1 −KtHtPt|t−1, (2.21b)

where

Kt =Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)−1, (2.22a)

FT
t =∇xfT

t (x)|x=x̂t|t , HT
t = ∇xhT (x)|x=x̂t|t−1 . (2.22b)

2.2.3 Sampling of a Continues Time System
Since reality is considered to be continuous, the modeling in this Master’s thesis
is done in continuous time. Consider the time continuous process model

ẋ(t) = Ax(t) + Buu(t) + Bww(t), (2.23)

where A, Bu and Bw are variable matrices of suitable dimensions. The filtering
however is done in discrete time, thus a sampling formula for (2.9) is needed. A
very simple approach is to perform a backwards difference [9]

ẋ(t) ≈ 1
T

(x(t + T )− x(t)), (2.24)
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where T is the period of the sampling rate. A more accurate method to obtain a
discrete model is to integrate the model over a period [t0, t0 + T ] under which the
signal u(t) is constant

xt+T = xt +

t+T∫
t

(Axτ + Buuτ )dτ. (2.25)

The solution to (2.25) then forms the discrete state space representation:

xt+T = Ftxt + Guut, (2.26a)
Ft = e(AT ), (2.26b)

Gu =

T∫
0

e(AT )Budτ. (2.26c)

If (2.25) cannot be solved analytically a numerical approximation is needed. One
possibility is to expand Ft = e(AT ) in a Taylor series. If the Taylor expansion is
truncated so that only the linear part remains, same result as if using (2.24) is
obtained.



Chapter 3

Vehicle and Sensor Models

In Chapter 2 it became clear that in order to solve the Bayesian problem it must be
modeled how the system propagates in time and how the measurements are related
to the sought states as well as how accurate these models are. With the notation
in this Master’s thesis the task is to find the deterministic nonlinear functions f
and h and the stochastic processes wt and et.

3.1 Coordinate Systems

3.1.1 Vehicle Coordinates

In this section the vehicle coordinate (VC) system is defined, which will be the
reference system in which the remaning derivation is performed. The vehicle coor-
dinate presented in Figure 3.1, is a Cartesian coordinate system rigidly attached
to the vehicle center of gravity, i.e., if the vehicle moves so will the coordinate
system. The systems’ axes will here be denoted (xv, yv).

3.1.2 Sensor Coordinates

Inertial Measurement Unit: The inertial measurement unit measures in a
Cartesian coordinate system rigidly attached to the center of the unit, as is illus-
trated in Figure 3.2. The measurements used in this Master’s thesis are the yaw
rate, Ψ̇ and the lateral acceleration ay. The defenition of the yaw rate as can be
seen in Figure 3.2 is the counterclockwise rotational speed around the z-axis.

Lane Departure Warning System Coordinates: The lane departure warn-
ing system measures properties of the road, such as curvature and width. It also
measures the vehicle lateral position relative to the road so there is no need to
define an extra coordinate system for the LDWS since this is already compensated
for internally.

11
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xv

yv

Figure 3.1. Vehicle coordinate system where the x-axis is directed in the vehicle’s
longitudinal direction and the y-axis in the lateral direction, such that the z-axis points
upwards in a right ON-basis.

Z
Yaw rate (     )Ψ̇

X
Roll 

Y
Pitch 

Figure 3.2. The IMU coordinate system is aligned with the VC system, i.e., the x-axis
points in the longitudinal direction.
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3.2 Process Model
The process model aims at describing the lateral movement of the vehicle. There
are many different models of varying complexity suggested in the literature. Here
a model with two degrees of freedom is used. The derivation is similar to the ones
found in [12] and [13].

3.2.1 Movement in Vehicle Coordinates
The measurements from the IMU are given in vehicle coordinates. In Figure 3.3
the future position (time t) is expressed in the vehicle coordinate system at the
current position (time 0) relative some system rigdly attached to the ground, here
denoted (xfix, yfix).

y v
x v

yv

xv

yfix

xfixβ
Ψ(t)

time t

time 0

Figure 3.3. The predicted path of the vehicle.

V fix
x (t) = vv

x(t) cos Ψ(t)− vv
y(t) sinΨ(t), (3.1a)

V fix
y (t) = vv

x(t) sinΨ(t) + vv
y(t) cos Ψ(t). (3.1b)

If it is assumed that Ψ and the absolute lateral velocity, vv
y , is small during the

prediction intervall, the following relations are obtained:

V fix
x = vv

x, (3.2a)
V fix

y = vv
xΨ(t) + vv

y . (3.2b)

From (3.2a) we see that the time derivative of the longitudinal velocity is zero for
a short time period. The longitudinal acceleration can therefore be modeled as

v̇x = w(t), (3.3)

where w(t) is Gaussian noise. (3.2b) will be explained in section 3.2.5.
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3.2.2 The Bicycle Model
In this section a vehicle dynamics (VD) model, commonly known as the bicycle
model [12, 13], is derived. The reason for the name bicycle comes from that the
model considers the wheels on each axis as a single unit, as in Figure 3.4, where also
all variables needed for the derivations in this section is defined. If now the forces

α
f
 

δ

α
r

βv

F
r

F
f

 

 

lf 

lr

̇

Figure 3.4. The bicycle model concideres the the wheels on each axis as single unit.
The variables for the bicycle model are: Ff - lateral front wheel force, Fr - lateral rear
wheel force, δ - wheel turn angle, αf - tire side slip angle front, αr - tire side slip angle
rear, β - vehicle body side slip angle, lf - distance from center of gravity to front axle,
lr - distance from center of gravity to rear axle.

Fr and Ff defined in Figure 3.4 are summed in yv-direction and Newton’s second
law is used under the assumption that the centripetal acceleration is directed
toward the center of curvature and the angles are small, the following equations
are obtained

Ff cos δ + Fr = man, (3.4a)
Ff cos δlf − Fr · lr = JzΨ̈, (3.4b)

where m is the vehicle mass and Ψ̈ is the angular acceleration around the z-
axis in the VC system and Jz the moment of inertia around the z-axis. The



3.2 Process Model 15

centripetal acceleration, an, can be written as a sum of the lateral acceleration
and the redirection of the longitudinal velocity

an = v̇y + vxΨ̇. (3.5)

To find expressions for the forces Ff and Fr it is assumed that they can be
written as linear functions of the tire side slip angles, here denoted αf and αr.
This is a sufficiently good approximation at least for slip angles less than 4◦ [13].

Ff = 2Cf · αf , (3.6a)
Fr = 2Cr · αr, (3.6b)

where Cf and Cr are the cornering stiffneses for the front respectivly the rear
[13]. To find the slip angles, the velocities vf and vr must first be calculated. In
Figure 3.5 the relations between the different angles are illustrated. To find a linear

αf

(lf+lr )/R

δ

αr

Figure 3.5. Relations between the wheel turn angle, δ and the tire side slip angles αf

and αr.

relation for the angles, the velocity of the front wheel vf , is written as (vx, vy+lf Ψ̇)
and the velocity of the rear wheel (vx,−vy + lrΨ̇). Then from Figure 3.5 following
expressions are derived:

tan(δ − αf ) =
vy + lf Ψ̇

vx
, (3.7a)

tan(αr) =
−vy + lrΨ̇

vx
. (3.7b)

If now (3.5),(3.6) and (3.7) are inserted into (3.4), the following system is
obtainedΨ̈

v̇y

 =


1
Jz

(
2Cf lf cos δ

(
δ−arctan(

vy+lf Ψ̇
vx

)
)
−2Cf lr

(
arctan(

−vy+lrΨ̇
vx

)
))

+δ
2lf Cf

Jz

1
m

(
2Cf cos δ

(
δ−arctan(

vy+lf Ψ̇
vx

)
)
+2Cr

(
arctan(

−vy+lrΨ̇
vx

)
))

+δ
2Cf

m

 .

(3.8)
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To obtain simpler expressions it is assumed that the wheel turn angle and the side
slip angles can be considered small. Under these assumptions (3.7) simplifies to

αf = δ − vy + lf Ψ̇
vx

, (3.9a)

αr =
−vy + lrΨ̇

vx
. (3.9b)

Inserting (3.5) and (3.9) into (3.4) the following is obtained:

Cf

(
δ − vy + lf Ψ̇

vx

)
+ Cr

(
−vy + lrΨ̇

vx

)
= m(v̇y + vxΨ̇), (3.10a)

Cf

(
δ − vy + lf Ψ̇

vx

)
lf − Cr

(
−vy + lrΨ̇

vx

)
lr = JzΨ̈, (3.10b)

which after some reformulation is written as:
Ψ̈
v̇y

v̇x

δ̇

 =


f11Ψ̇/vx + f12vy/vx + f13δ

(−vx + f21/vx)Ψ̇ + f22vy/vx + f23δ
0
0

+ w(t) (3.11)

where

f11 =
2
Jz

(−l2fCf − l2rCr), (3.12a)

f12 =
2
Jz

(−lfCf + lrCr), (3.12b)

f13 =
2lfCf

Jz
, (3.12c)

f21 =
−2Cf lf + 2Crlr

m
, (3.12d)

f22 =
−2Cf − 2Cr

m
, (3.12e)

f23 =
2Cf

m
, (3.12f)

and wt is Gaussian noise. This model is nonlinear and therefore KF cannot be
used. However it is possible to obtain a structure that allows KF if the longitu-
dinal velocity, vx, and the wheel turn angle, δ, are considered input signals. The
equations are still the same but can now be written on state space form as:(

Ψ̈
v̇y

)
=
(

a11(vx) a12(vx)
a21(vx) a22(vx)

)(
Ψ̇
vy

)
+
(

b1

b2

)
δ + w(t), (3.13)
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where

a11 =
2

vxJz
(−l2fCf − l2rCr), (3.14a)

a12 =
2

vxJz
(−lfCf + lrCr), (3.14b)

a21 = −vx −
−2Cf lf + 2Crlr

mvx
, (3.14c)

a22 =
−2Cf − 2Cr

mvx
, (3.14d)

b1 =
2lfCf

Jz
, (3.14e)

b2 =
2Cf

m
, (3.14f)

w(t) is Gaussian noise and δ is the wheel turn angle.

3.2.3 Road Model
In this section a model for describing the lane-edge geometry in vehicle coordinates
is derived, similarly to the one found in [4]. A road is constructed by segments
which are either straight or curved and the transition between these segments is
done with clothids. A clothid is a curve where the curvature changes linearly with
the length of the clothid. To describe a clothid we will first define the curvature
as the inverse radius of curvature,

c(l) =
1

R(l)
. (3.15)

Next the clothid parameter Λ is defined as:

Λ2 = R(L) · L =
1
c1

, (3.16)

where c1 is the change of curvature at the end point, l = L. The curvature can
now be expressed as:

c(l) = c0 + c1 · l (3.17)
where c0 is the curvature at the starting point l = 0.

Next the curvature function (3.17) is derived with respect to time,
dc

dt
=

dc

dl
· dl

dt
= c1 · v. (3.18)

From (3.15) we also see that the time derivative of c1 can be written as:
dc1

dt
=

d

dt
· 1
Λ2

= 0. (3.19)

Finally this is written on state space form as:

ċ0 = c1 · v,

ċ1 = 0. (3.20)
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3.2.4 Heading Angle
Now that the models for the vehicle and the road have been derived, the next step
is to connect them. To do this the fact that the yaw angle, Ψ, and the heading
angle, θ, are connected through some fix reference, here denoted γ, is used. This
is illustrated in Figure 3.6 and the equation describing the situation is:

θ = Ψ− γ. (3.21)

To obtain a relation between θ and Ψ the time derivative of θ is taken

θ̇ = Ψ̇− γ̇ ≈ Ψ̇− v

R
= Ψ̇− c(l)v ≈ Ψ̇− c0v. (3.22)

Here v is the current velocity, R is the road curvature and Ψ̇ is the yaw rate. The
relations are illustrated in Figure 3.6. Here it has been used that the displacement
in center of curvature (DCC) is small and therefore the approximation γ̇ ≈ v

R can
be used. The second approximation made is c(l) ≈ c0, allowed since the distance
from the camera to where the curvature is measured is small.

γ

Ψ

θ

DCC

Figure 3.6. The connection between the heading angle (θ) and the yaw angle (Ψ). The
displacement in center of curvature is considered small.

3.2.5 Lateral Position on the Road
In this section the equations describing the lateral position on the road is de-
rived, using what has been derived in the previous sections. In Section 3.2.1 the
movement in VC is derived this describes how the vehicle is moving relative its
old position. Now to find the movement relative to the road, the yaw angle Ψ is
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substituted for the heading angle θ. Assuming that the width of the road remains
constant under the prediction interval the following relations hold:

W/2 = yoff,c − yoff,re, (3.23a)
Ẇ/2 = 0 ⇒ ẏoff,c = ẏoff,re. (3.23b)

From (3.1b) following is obtained:

ẏoff,c = vx sin(θ) + vy cos(θ). (3.24)

If small angles is assumed, (3.24) reduces to:

ẏoff,c = vxθ + vy. (3.25)

3.2.6 Process Model - Summary
In this section the complete model is presented.

Nonlinear Model: The continuous nonlinear model is written in the form:

ẋ(t) = f(x(t)) + w(t) (3.26)

where

x(t) =



x1

x2

x3

x4

x5

x6

x7

x8

x9


=



Ψ̇
vy

c0

c1

θ
yoff,c

yoff,re

vx

δ


, (3.27a)

f(x(t)) =



1
Jz

(
2Cf a cos δ

(
δ−arctan(

vy+lf Ψ̇
vx

)
)
−2Cf lr

(
arctan(

−vy+lrΨ̇
vx

)
))

+δ
2lf Cf

Jz

1
m

(
2Cf cos δ

(
δ−arctan(

vy+lf Ψ̇
vx

)
)
−2Cr

(
arctan(

−vy+lrΨ̇
vx

)
))

+δ
2Cf

m

c1vx

0

Ψ̇−(c0+c1lf )vx

vx sin(θ)+vy cos(θ)

vx sin(θ)+vy cos(θ)

0

0



.

(3.27b)
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If small angles are assumed (3.27b) reduces to

f(x(t)) =



f11Ψ̇/vx + f12vy/vx + b1δ

(−vx − f21/vx)Ψ̇ + f22vy/vx + b2δ

c1vx

0

Ψ̇− c0vx

vx sin(θ) + vy cos(θ)

vx sin(θ) + vy cos(θ)

0

0



. (3.28)

KF-Model:
ẋ = A(v(x))x(t) + Bu + w(t), (3.29)

x(t) =



x1

x2

x3

x4

x5

x6

x7


=



Ψ̇
vy

c0

c1

θ
yoff,c

yoff,re


, (3.30a)

A(v(x)) =



a11 a12 0 0 0 0 0

a21 a22 0 0 0 0 0

0 0 0 vx 0 0 0

0 0 0 0 0 0 0

1 0 −vx 0 0 0 0

0 1 0 0 vx 0 0

0 1 0 0 vx 0 0


, B =



b1

b2

0

0

0

0

0


.

(3.30b)

3.2.7 Process Noise - Piecewise Constant Acceleration
The process noise is modeled in discrete time under the assumption that the ve-
hicle undergoes a constant acceleration wt each sampling period and that these
accelerations are uncorrelated from period to period, i.e., a piecewise constant ac-
celeration [2, 3]. If the vehicle undergoes a constant acceleration for a time period
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T , the increment in velocity is vtT and in position vtT
2/2. To illustrate how this

is modeled the submatrices for the heading angle are modeled as

xΨ =
(
Ψ̇ θ

)T (3.31a)

GΨ
w,t =

(
T T 2/2

)T
. (3.31b)

This is now applied to the whole system and following two process noise models
are obtained:

Extended Kalman Filter - Process Noise Model:

Gw,t =



T 0 0 0 0
0 T 0 0 0
0 0 T 2

2 0
0 0 T 0 0

T 2

2 0 0 0 T 2

2
T 2

2
T 2

2 0 0 0
T 2

2
T 2

2 0 0 0
0 0 0 T 0
0 0 0 0 T 2

2


, (3.32a)

Q = Cov(wt) =


σ2

Ψ 0 0 0 0
0 σ2

y 0 0 0
0 0 σ2

c0
0 0

0 0 0 σ2
x 0

0 0 0 0 σ2
δ

 . (3.32b)

According to [3] σ should be of the order the maximum acceleration magnitude.
This is considered a guideline in this Master’s thesis.

Kalman Filter - Process Noise Model: The KF model has a smaller Q-
matrix since the wheel turn angle and the velocity are regarded input signals.
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Q = Cov(wt)

σ2
Ψ 0 0
0 σ2

y 0
0 0 σ2

c0

 , (3.33a)

Gw,t =



T 0 0

0 T 0

0 0 T 2

2

0 0 T

T 2

2 0 T 2

2

0 T 2

2 0

0 T 2

2 0


(3.33b)

3.3 Measurement Model
In this section the connections between the measurements and the states are mod-
eled. When a measurement and a state are represented using the same symbol,
an upper index m is used to denote measurement.

3.3.1 Road Vehicle Geometry
To be able to build the measurement model properly, all distances and angles
connecting the measurements with states describing the vehicle movement on the
road must be found. In Figure 3.7 the geometry between the vehicle and road is
described. The LDWS measures the distance from the center of the front of the
vehicle to the center of the lane.

3.3.2 Yaw Rate and Lateral Acceleration
The yaw rate and the lateral acceleration are both measured by the IMU and
hence they have similar characteristics. Inertial measurements are indeed very
robust and reliable in the sense that they are not influenced by weather conditions
nor by other exterior conditions. However, an IMU rarely provides us with nice
data; instead they are afflicted by errors like drift, scaling, offset, etc. In this
Master’s thesis only offset is considered and the remaining errors are modeled as
white noise. This is done since the other errors are more difficult to model and
would be hard to observe. The offset is modeled as:

x̄t+1 =
(

ft(xt)
bt

)
+
(

gt(xt)
0

)
wt, (3.34a)

yt = ht(xt) + bt + et, (3.34b)
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yoff,lc

Ryoff

Road tangent

Center of  lane

θ

Heading 
angle

Figure 3.7. Road Vehicle geometry.

which on standard state space form is written

x̄t+1 =
(

Ft 0
0 I

)(
xt

bt

)
+
(

Gw,t

0

)
wt, (3.35a)

yt =
(
Ht I

)(xt

bt

)
+ Dtut + et, (3.35b)

where I denotes the identity matrix. The yaw rate measurement and the lateral
acceleration measurement are now modeled as:

Ψ̇m
t = Ψ̇t + bt,Ψ̇ + et,Ψ̇, (3.36a)

am
t,y = (−vt,x − f21/vt,x)Ψ̇ + f22vt,y/vt,x + bt,ay

+ et,ay
. (3.36b)

where bt,Ψ̇ denotes the estimated yaw rate offset and bt,ay
the estimated offset on

the lateral acceleration measurement. The reason for that equation (3.36b) cannot
be expressed as (3.36a), i.e., directly connected to a state ay is that the lateral
acceleration is already there via equation (3.5) and hence it must be modeled
using Newton’s second law. In Figure 3.8 the lateral acceleration is measured as
the vehicle was standing still, i.e., it should be zero but instead approximately
gaussian noise with an offset of 0.35 m/s2.

3.3.3 Lateral Offset
In Figure 3.9(a) the geometry needed to derive the equation that connects the
lateral offset that the camera measures, to the lateral offset of center of gravity,
is presented. The reason for this is that since the IMU measures the movement
of the center of gravity so must the states representing the lateral offset. This
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(b) Histogram of the lateral acceleration offset.

Figure 3.8. Lateral acceleration offset measurement.

derivation is similar to the one found in [14]. First the geometric connections for
the sought states are written as:

yoff,c = |d|+ (|f | − |c|) , (3.37a)
yoff,re = |e|+ (|g| − |d|) . (3.37b)

The distances d,f and e are found from:

d = lf sin(θ) ≈ lfθ, (3.38a)
f = yoff cos(θ) ≈ yoff , (3.38b)
e = lf sin(θ) ≈ lfθ. (3.38c)

To find an expression for c a little bit more geometry is needed:

R2 = (R− c)2 +
(
lf cos(θ) + yoff sin(θ)

)2 ⇒
2Rc− c2 = l2f cos2(θ) + 2ayoff cos(θ) sin(θ) + y2

off sin2(θ).
(3.39)

In (3.38a) the Pythagorean theorem has been used if now it is assumed that c and
θ is small following expression is obtained:

c =
l2f + 2ayoffθ + y2

offθ2

2R
. (3.40)

The last approximation needed to obtain a linear expression uses that the contri-
butions from the terms containing θ is small in comparison to a2, thus allowing us
to neglect them. The distance c is then finally written as:

c =
l2f
2R

. (3.41)
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Now (3.37) can be written as:

yoff,c = lfθ + yoff −
l2f
2R

, (3.42a)

yoff,re = lfθ + W/2 + yoff −
l2f
2R

, (3.42b)

and from (3.42), the desired measurement equations are obtained:

yoff =
l2f
2R

+ yoff,c − lfθ, (3.43a)

W/2 + yoff =
l2f
2R

+ yoff,re − lfθ. (3.43b)

Adaptive Lateral Offset Variance: Since the measurements from the LDWS
is highly dependent on weather conditions, if there are any road markings etc.,
there is a need to include this change of variance in the model. From LDWS
a confidence estimate Ryoff

in percent is given. 0% means that system has no
confidence in the offset measurement and 100% means that the system regards
the measurement as perfect.

σyoff
=

2.5
1 + Ryoff

, (3.44a)

σyoff
∈ [0.0248, 2.5][m], (3.44b)

where the constants in (3.44a) are chosen so that σyoff
has the almost the same

range as yoff .
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(a) Measurement equation
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Width (W)
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(b) Width measurement equation.

Figure 3.9. The geometry used in the measurement equation.
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3.3.4 Lane Width

Figure 3.9(b) illustrates how the width of the lane is measured and how this is
connected to the lateral offset measurement. For completeness, the measurement
equations that use the width is given as

W/2 + yoff =
l2f
2R

+ yoff,re − lfθ. (3.45)

3.3.5 Road Curvature

The curvature is here defined as being positive when the road turns to the right.
Since there is no possibility to observe an offset, drift etc., for this measurement
all noise will be modeled as white:

cm
0 = c0 + vc0 , (3.46a)

vc0 ∈ N(0, σc0). (3.46b)

Adaptive Curvature Variance: The curvature variance similarly to the the
lateral offset variance,

σc0 =
0.008

1 + Ryoff

, (3.47)

resulting in the adaptive standard deviation:

σc0 ∈ [7.93 · 10−5, 0.008][1/m]. (3.48)

3.3.6 Vehicle Speed and Wheel Turn Angle

Both the vehicle speed and the wheel turn angle measurements are simply taken
as true and low pass filtered. Since it is the steering wheel angle that is measured
and not the wheel turn angle this measurement is scaled a factor 20 [12].

vm
x = vx + et, (3.49)

δm = δs/20 + et, (3.50)

where δs/20 = δ.

3.3.7 Measurement Model - Summary

In this section the complete measurement models are presented.
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EKF Measurement Model:

x̄t =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11


=



Ψ̇
vy

c0

c1

θ
yoff,c

yoff,re

vx

δ
bΨ

bay


, (3.51a)

yt =



y1

y2

y3

y4

y5

y6

y7


=



Ψ̇m

cm
0

yoff

W/2 + yoff

vm
x

δm

ay


, (3.51b)

ht(xt) =



Ψ̇ + bΨ̇

c0

l2fc0/2 + yoff,cl − lfθ

l2fc0/2 + yoff,re − lfθ

vx

δ

(−vx − f21/vx)Ψ̇ + f22vy/vx + b2δ + bay


. (3.51c)
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KF Measurement Model:

x̄t =



x1

x2

x3

x4

x5

x6

x7

x8

x9


=



Ψ̇
vy

c0

c1

θ
yoff,c

yoff,re

bΨ

bay


, (3.52a)

yt =


y1

y2

y3

y4

y5

 =


Ψ̇m

cm
0

yoff

W/2 + yoff

ay

 , (3.52b)

Ht =


1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 l2f/2 0 −lf 1 0 0 0
0 0 l2f/2 0 −lf 0 1 0 0

a21(vx) a22(vx) 0 0 0 0 0 0 1

 , (3.52c)

Dt =


0
0
0
0
b2

 , ut = δt. (3.52d)



Chapter 4

Decision Strategies

To give accurate warnings not only a good model and well interpreted measure-
ments are needed, but also a good decision strategy is necessary. A decision strat-
egy is the way that the information in the states is used to make a decision to alert
the driver. In this Master’s thesis two complementary techniques are presented,
time to lane crossing and CUSUM-test.

4.1 Time to Lane Crossing
Time to lane crossing (TtLC) is the manœuvretime that the driver has before the
vehicle departs from the lane. Two models for calculating the TtLC are suggested
in [16], here the simpler one is used. The TtLC approximation is calculated as:

TtLC =
W/2−Wveh/2− yoff,c

ẏoff,c
≈ W/2−Wveh/2− yoff,c

vy + θvx
, (4.1)

where Wveh is the width of the vehicle.

4.2 CUSUM-test for Detecting Lane Departure
In this section it is described how a simple cumulative sum (CUSUM)-test [8, 15]
can be used to detect a lane departure when the TtLC fails. The idea is illustrated
in Figure 4.1. As long as a KF is working properly, the innovations from the filter
should be Gaussian noise. However, if a sudden change occurs this does not apply,
instead the mean might have increased, indicating that something has happened.
The innovations, denoted et and its covariance matrix, denoted St, are defined as:

et =yt −Htx̂t|t−1, (4.2a)
St =HtPt|t−1H

T
t + Rt. (4.2b)

A normalized distance measure st [8] can now be defined as:

st = S
−1/2
t et, (4.3)

29
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CUSUMKalman
e t Alarm
P t∣t−1

x t∣t−1u t
y t

Figure 4.1. The change detector monitors the whiteness of the innovations, et from the
KF.

another possible distance measure that could be used is

st = e2
t . (4.4)

Note that the innovations are squared in (4.4). This is done since it is detection
of departure that is of interest and not manœver.

Stopping Rule: The stopping rule, i.e., the algorithm that decides when the
filter should be alarmed consists of two parts: First the distance measure is low
pass filtered, here an averaging is used to calculate the test statistics lt. Secondarily
this test variable is tried against a threshold to decide weather an alarm should
go off or not. This is summarized in the CUSUM algorithm below. The stopping
rule illustrated in Figure 4.2.

ThresholdingDistance
Measure

l t
Alarm

e t Averaging
s t

Stopping rule

Figure 4.2. The change detector consists of a distance measure and a stopping rule.

Algorithm 3 CUSUM

1. lt = lt−1 + st − ν.

2. If lt > h : Alarm, lt = 0 and talarm = t.

3. If lt < 0 : lt = 0 and t̂change = t.
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The test statistics lt is a cumulative sum of the distance measure compensated
for positive drifts via a drift term ν. Step 3 prevents negative drifts.

Lateral Offset: Since the LDWS has a unstable behavior when departing to
the left on a highway caused by the road markings on left side of the road i.e.,
the LDWS measures the vehicle position relative the center of the left lane. The
assumption is illustrated in Figure 4.3. However this is not as problematic as it
might seem since the sudden drop in offset seen in Figure 4.3(b) can be detected
by using some change detection method. In this Master’s thesis, a CUSUM [8] is
used to detect the change in lateral offset.

Left road 
edge Center of 

road

(a) Vehicle departing to the left.
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(b) Lateral offset measurement.

Figure 4.3. LDWS measures the position in the left lane.
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Chapter 5

Filter Evaluation

To evaluate the derived filter, tests with both simulated and experimental data
were performed. In this chapter the results from these tests are presented.

5.1 Monte Carlo Simulations
A procedure to test the derived filter using M realizations of data yt, is to use
Monte Carlo simulations as follows: First, the following nonlinear time continuous
model is solved using a Runge-Kutta method:

ẋ(t) = f(x(t)),

f(x(t)) =



1
Jz

(
2Cf a cos δ

(
δ−arctan(

vy+lf Ψ̇
vx

)
)
−2Cf lr

(
arctan(

−vy+lrΨ̇
vx

)
))

+δ
2lf Cf

Jz

1
m

(
2Cf cos δ

(
δ−arctan(

vy+lf Ψ̇
vx

)
)
−2Cr

(
arctan(

−vy+lrΨ̇
vx

)
))

+δ
2Cf

m

c1vx

0

Ψ̇−(c0+c1lf )vx

vx sin(θ)+vy cos(θ)

vx sin(θ)+vy cos(θ)

0

0



,

(5.1)

where the input signals δ(t), c0(t) and vx(t) are specified to fit a given scenario.
The continuous time solution is denoted x(t)True and the sampled xTrue

t . Now
the M realizations of data, denoted y

(j)
t , j = 1, 2, . . . ,M , is generated from the

measurement equation (3.51c) as

yt = h(xTrue
t ) + et, (5.2)
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where et is Gaussian noise, unique for each realization. The derived Kalman
filters are now applied on all the data sets, yj

t , and the resulting estimates x̂j
t are

compared to the true states, xTrue
t , using the root mean square error (RMSE) [8]

here defined as:

RMSE(t) =

 1
M

M∑
j=1

∥∥∥xTrue
t − x̂j

t

∥∥∥2

2

 1
2

(5.3)

Note that the RMSE must be calculated for each sensor type individually otherwise
signals with small amplitude could have a large error without affecting the RMSE.

5.2 Simulation Input Signals
In this section the different input signals needed to solve (5.1) are specified.

Vehicle Speed and Steering Wheel Angle: To simulate the vehicle speed
measurement following function has been used:

vsim
x = ∆vx

· b(vTrue
x + et,vx

∆vx

)c, (5.4)

where

∆vx = 0.25 [km/h], (5.5a)
Cov (et,vx

) = σ2
vx

, (5.5b)

and the b·c operator rounds downwards to the nearest integer. In Figure 5.1 a
simulated signal and a measured signal are presented for comparison. The signal
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(a) Simulated velocity signal, vsim
x .
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(b) Measured velocity during straight high way
driving in 70 km/h.

Figure 5.1. A comparison between a simulated velocity signal and measured velocity.
Note that it is the noise that is of interest for comparision.
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in Figure 5.1(a) has been created using (5.4) with

σ2
vx

= (2 · 10−4)2, (5.6)
vTrue

x = 17 + sin(t/10)[m/s], (5.7)

and the signal in Figure 5.1(b) has been recorded during straight highway driving
in 70 km/h.

The steering wheel angle is harder to model since it is dependent on the driver,
road structure, etc. Therefore the somewhat unrealistic assumption that the steer-
ing wheel angle is an almost noise free signal is made. The simulated steering angle
is modeled as:

δsim = ∆δ · b(
δTrue + et,δ

∆δ
)c, (5.8)

where

∆δ = 0.1 [◦], (5.9a)
Cov (et,δ) ≈ 0. (5.9b)

It is important to notice that the steering wheel angle and the wheel turn angle
are not the same. In [12] it is suggested that a steering wheel angle of 100◦ should
correspond to a wheel turn angle of 0.1 rad when driving in 50 km/h. The signal
in Figure 5.2 has been recorded during straight highway driving in 70 km/h.
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Figure 5.2. Measured steering wheel angle during straight highway driving in 70 km/h.

Road Curvature and Lane Width: In the two scenarios the road is modeled
as either straight i.e., c0 = 0 or as a curve with a constant curvature. According
to [5], a Swedish 50 km/h road should normally not have any curves with a radius
less than 140 meters. Therefore the curvature has been set to σ0 = 1/140 in the
fast curve entering simulation. The lane width is in all simulations assumed to be
constantly 4 meters, i.e., W = 4.
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5.3 Simulation Scenarios
Two different scenarios have been simulated to test the performance of the estima-
tors. Both simulations use the measurement noise levels given in Table 5.1. The
noise levels are chosen so that they are of the same order as the noise levels on the
experimental data.

Table 5.1. Measurement noise variance added to the true states in the simulation

Measurement Noise Variance
Yaw rate, Ψ̇m 0.0352

Curvature, cm
0 0.0000632

Lateral offset, yoff 0.012

Lateral acceleration, ay 0.22

Unintentional Lane Departure: The simulated scenario used in this section
is described in Figure 5.3. The trajectory in Figure 5.3 represents a vehicle slowly
drifting to the right of the road until it finally departs after 11.6 seconds. In
Table 5.2 the signals used in the scenario are specified. Using these signals and
x0 = ( 0 0 0 0 0 0 14 0 )T as inital state vector, 500 data sets of measurements are
generated.

Table 5.2. Signals used in drift simulation

Measurement Signal Definition
Longitudinal Velocity vTrue

x = 14 + sin(2πt/20) [m/s]
Wheel Turn Angle δTrue

w = −0.001 · sin(2πt/80) [rad]
Road Curvature σ0 = 0 [1/m]
Lane Width W = 4 [m]

The initial state vectors xKF
0 and xEKF

0 , process noise QKF and QEKF , and
initial state error matrix P0 are

xKF
0 =

(
0 0 0 0 0 0 2 0 0

)T
,

xEKF
0 =

(
0 0 0 0 0 0 2 14 0 0 0

)T
,

QKF = diag
(
(10−3)2 (10−3)2 (10−7)2

)
,

QEKF = diag
(
(10−3)2 (10−3)2 (10−7)2 0.052 0.012

)
,

PKF
0 = diag

(
12 102 102 12 102 102 102 12 12 12

)
,

PEKF
0 = diag

(
12 102 102 12 102 102 102 12 12 12 12

)
,
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(a) The drift scenario is generated using the
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(b) The true TtLC.

Figure 5.3. Vehicle trajectory and corresponding TtLC.

Table 5.3. RMSE analysis using 500 Monte Carlo runs.

Estimation KF EKF
Lateral pos.,yoff,c [m] 0.0866 0.0992

Heading, θ [deg] 0.6073 0.6131
Lateral Velocity, vy [m/s] 0.0114 0.0132

Yaw Rate, Ψ [deg/s] 0.1662 0.1833
Curvature c0 [1/m] 0.0009 0.0008

Clothid parameter c1 [1/m2] 0.0002 0.0002

where diag
(
x1, . . . , xn

)
is a diagonal matrix with x1, . . . , xn as the diagonal. In

Table 5.3 we see that both filters perform well for the given scenario. The TtLC
has not been evaluated using RMSE, since when the heading angle is small the
estimated heading starts to switch sign and the RMSE quickly becomes very large.
In Figure 5.4 the true and the estimated TtLC from a single run is plotted. From
Figure 5.4 it should be noticed that the TtLC estimation improves as the heading
angle grows, which indicates that the most difficult cases for the filter to handle
is when the vehicle hugs the lane. It should also be noticed that even though the
TtLC estimation seems poor a potential warning would still be correct if the alarm
threshold is set to 1 second.

Fast Curve Entering: The scenario simulated in this section uses a road with
constant curvature, c0 = 1

R = 1
140 . In Figure 5.5, a road section is plotted together

with the trajectory of a vehicle departing from the road.
The input signals presented in Table 5.4 differs only slightly from the ones used

in section 5.3.
The initial state vectors xKF

0 and xEKF
0 , process noise QKF and QEKF , and
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Figure 5.4. Estimated (dots) and true (solid line) TtLC. The picture shows that the
estimated TtLC becomes more and more inacurate as it increase.
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Figure 5.5. The dashed lines represent a road with constant curvature c0 = 1
140

and
the solid line is the trajectory of a vehicle departing due to a too small steering angle.
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Table 5.4. Signals used in fast curve entering simulation

Measurement Signal Definition
Longitudinal Velocity vTrue

x = 14 + sin(2πt/20) [m/s]
Wheel Turn Angle δTrue

w = −0.01 · sin(2πt/80) [rad]
Road Curvature σ0 = 1/140 [1/m]
Lane Width W = 4 [m]

initial state error matrix P0 are

xKF
0 =

(
0 0 0 0 0 0 2 0 0

)T
,

xEKF
0 =

(
0 0 0 0 0 0 2 14 0 0 0

)T
,

QKF = diag
(
(10−3)2 (10−3)2 (10−7)2

)
,

QEKF = diag
(
(10−3)2 (10−3)2 (10−7)2 0.052 0.012

)
,

PKF
0 = diag

(
12 102 102 12 102 102 102 12 12 12

)
,

PEKF
0 = diag

(
12 102 102 12 102 102 102 12 12 12 12

)
.

Table 5.5. RMSE analysis using 500 Monte Carlo runs

Estimation KF EKF
Lateral pos.,yoff,c [m] 0.2201 0.1245

Heading, θ [deg] 2.8877 0.6417
Lateral Velocity, vy [m/s] 0.0153 0.0273

Yaw Rate, Ψ [deg/s] 0.1031 0.2578
Curvature c0 [1/m] 0.0011 0.0008

Clothid parameter c1 [1/m2] 0.0003 0.0003

From the results in Table 5.5 we see that the lateral position and the heading
angle are clearly better estimated by the extended Kalman filter. The conclusion
must therefore be that the EKF is a better choice when tracking strong manœu-
vres. To summarize, the simulations show that the filter has potential to function
well, but deeper analysis on experimental data is needed since there are many
simplifications done in the simulations.
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5.4 Experiments
The evaluation using experimental data is done for the EKF implementation. This
decision was taken since the EKF provides the possibility to filter the steering wheel
angle and the vehicle speed and since the KF has not proved significantly better
in the simulations. The preformed test drives are categorized into:

1. No Warnings, the vehicle is driven so that the camera system generates no
warnings.

2. Unintentional Lane Departure Right/Left, the vehicle is driven on a straight
highway and forced to slowly depart from the lane to the right/left.

3. Fast Unintentional Lane Departure Right/Left, the vehicle is forced to depart
quickly from the lane.

4. Lane Hugging, the vehicle is driven closely to lane edge but without depart-
ing.

The goal of this testing is to find a level on the TtLC that can be used as lower
threshold for warning the driver. Also it will be investigated whether a CUSUM-
test can improve the detection of fast lane departures.

Following parameters are used throughout in the experiments. The initial
state vector xEKF

0 , process noise QEKF , measurement noise REKF , and initial
state error matrix P0 are

xEKF
0 =

(
0 0 0 0 0 0 2 14 0 0 0

)T
,

QEKF = diag
(
(10−2)2 (10−2)2 (10−5)2 0.052 0.0012

)
,

REKF = diag
(
(0.035)2 (10−13)2 (0.05)2 (0.05)2 (0.02)2 (0.00005)2 (0.2)2

)
,

PEKF
0 = diag

(
12 12 12 12 12 12 12 12 12 12 12

)
.

Notice that this is not the same as in the simulations. For example the steering
angle is made slower i.e., its process noise is smaller and the yaw rate is faster.

No Warnings: To find an upper threshold, the car has been driven during
normal conditions when the camera based system produced no warnings. During
this kind of driving the TtLC should always exceed some value which will be taken
as an upper threshold. In Figure 5.6, the TtLC during normal highway driving,
estimated by the EKF, is plotted. Note that the sign on the TtLC corresponds
to the sign of the heading angle, i.e., if the vehicle departs to the right the TtLC
should be estimated to a smaller and smaller negative value. In Table 5.6 the
lowest TtLC that was estimated during normal highway driving is presented.
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Figure 5.6. TtLC during normal highway driving in 100 km/h. Negative TtLC means
that the heading of the vehicle is negative, i.e., heading to the right.

Table 5.6. Upper threshold on TtLC

Velocity TtLC [s], EKF
80 2.50
90 1.96
100 1.51
110 1.21

Unintentional Lane Departure Right: To find a lower threshold on the
TtLC, the filter is tested on data when the vehicle drifts right. The filter is
compared to the camera. In Table 5.7 the value on TtLC, that the filter estimated
when the LDWS produced a correct warning is presented. Note that the sign
on the TtLC only comes from whether the heading angle is positive or negative.
When the vehicle departs to the right the heading angle should be negative, see
Figure 3.3.3 for the definition of the states. It is also presented in Table 5.7 how
much earlier the filter warns if the lower thershold is put to 0.5 seconds denoted
δt. The comment column contains a remark when the camera based LDWS failed
to produces a warning, i.e., there is no reference to compare the TtLC estimation
with.

Unintentional Lane Departure Left: In this section a lane departure to the
left is presented. Drift to the left is more problematic than to the right, since
the LDWS has to decide when to start measuring the position to the left. In this
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Table 5.7. Estimated TtLC and ∆t.

Velocity TtLC [s], EKF ∆t Comment
80 -0.666 1.31

-0.473 1.72
-0.624 1.02

- - LDWS fails.
90 -0.249 1.41

-0.758 0.27
- - LDWS fails.

-0.530 0.27
100 -0.364 1.95

-0.311 3.49
-0.250 3.10

- - LDWS fails.
110 - - LDWS fails.

- - LDWS fails.
- - LDWS fails.

-0.288 0.7
-0.016 3

Master’s thesis , the suggested solution to this problem is to use a CUSUM-test
together with the TtLC decision strategy. Why Drift to the left is problematic is
illustrated in Figure 5.7
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lateral offset.

0 1 2 3 4 5 6 7 8 9 1 0
- 0 . 2

- 0 . 1 5

- 0 . 1

- 0 . 0 5

0

0 . 0 5

t i m e  [ s ]

in
no

va
tio

n 
[m

]

(b) Innovations of the lateral offset.

Figure 5.7. Drift to the left, the camera looses track of the lane markings as the vehicle
departs from the lane.

Fast Unintentional Lane Departure: A fast drift situation is much better
managed by the fused system in comparison to the camera based system since
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when the camera experience a rapid lateral movement it looses track of the lane.
However, since this situation is not detected by the camera, there is no reference
to compare with i.e., it is not possible to measure whether the estimated TtLC
is correct or not. It is therefore assumed that the yaw rate measurement detects
all large lateral manœuvre, hence it can be used to verify that there are no false
alarms. Under these assumptions the testing has been performed on a straight
highway the results are presented in Table 5.8 and Table 5.9.

Table 5.8. Fast drift right. At each velocity five lane departures were conducted except
for 90 km/h, were only three departures were conducted

Velocity No. warnings, LDWS No. of warnings, EKF
60 0 5
70 0 5
80 1 5
90 1 3
100 0 5
110 0 5

Table 5.9. Fast drift left, at each velocity five lane departures were conducted

Velocity No. warnings from LDWS No. of warnings, EKF
60 1 5
70 0 5
80 0 5
90 0 5
100 0 5
110 1 5

Lane hugging: Lane hugging is the situation when the driver approaches the
lane edge with small heading angle without departing from the lane. After several
tests were performed it must be concluded that the suggested system does not
improve the performance of the LDWS in this situation, at least not without
another more suitable decision strategy. In Table 5.10 the results from testing
lane hugging are presented. With a threshold on 0.5 seconds, the filter will manage
well in low velocities, but in normal highway velocities above 100 km/h, it starts
generating false alarms.

CUSUM-test: The CUSUM-test has after much testing using the experimental
data been found hard to use for slow lane departures since the innovations mostly
are quite small. For fast lane departures, where the innovations often are bigger,
it is more likely to get correct warnings from a CUSUM-test. From Table 5.8 and
5.9 it is clear that there are very little data available to use as reference, since
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Table 5.10. Lane hugging No. of false alarms

Velocity No. off false alarms, LDWS No. off false alarms, EKF
70 0 0
90 0 0
110 1 3

the camera based LDWS generates few correct warnings when the innovations are
large. The suggested use of the CUSUM-test is therefore to use it together with
the TtLC estimation, i.e., if the test generates a warning and the TtLC estimation
at the same time is small, less false warnings should be generated. The tuning
of the CUSUM parameters ν and h, i.e., the drift compensation and the alarm
level, is therefore the tuning parameters are chosen rather conservative to avoid
false warnings. In Figure 5.8 the yaw rate, the TtLC and the warnings from a
CUSUM-test using data recorded during a fast lane departure is plotted. The yaw
rate tells us that the vehicle was departing to the right, starting around 3 seconds
and then after another 1 second we see that the yaw rate starts to increase again
i.e., the driver tries to correct the unintentional lane departure. Ideally the warning
should therefore come just before 4 seconds.
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(b) The CUSUM-test warns at the first time
just before 4 seconds at this

Figure 5.8. TtLC estimation (dotted) with CUSUM-test warnings (solid). The data
was recorded in 110 km/h peRforming a fast lane departure to the right.



Chapter 6

Conclusions and Future
Work

6.1 Results
Positioning: This Master’s thesis has proposed and evaluated a model for en-
hanced lane departure warning. The goal has been to achieve a system that handles
the situations where a camera based LDWS fails. The increase in functionality
has been achieved using an IMU to estimate the vehicle lateral position. The most
important aspect of the positioning problem is to estimate the vehicle heading an-
gle correctly, which, if the camera measurements fails, dominates the positioning
error.

Time to Lane Crossing: The decision strategy, TtLC, that is used in this
Master’s thesis has proved to be a robust method for detecting lane departures.
However, it is a bit inaccurate as the velocity grows and the lateral offset is small.
This is, however, a generally difficult problem since the real TtLC actually does
decrease when the velocity is high.

Accident Types: Fast curve entering cannot be improved by the SF model that
has been suggested in this Master’s thesis, since this demands more knowledge of
the road which an internal measurement unit cannot provide. The fused lane
deparure warning system is made less sensitive to rapid movements and in most
cases a better warning is produced. Fast unintentional lane departure is the ac-
cident type that really is improved by the fused system, mainly since the camera
fails to produce realiable readings in this situation and the IMU has a smaller
signal-to-noise ratio, here improving the heading estimation.

45
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Figure 6.1. The vehicle is hugging the lane resulting in a small TtLC (thick line). The
pulse represents the warning that the camera system provided in this situation.

6.2 Future Work
There are many interesting aspects that deserve further investigation.

Curvature estimation: The filter is very poor at handling the curvature, which
has to do with the camera measurements which are unreliable, and tend to disturb
the filter rather than improving it. Therefore as future work an evaluation of the
usage of the curvature more as a signal for improved decision making than as a
measurement is suggested.

Discretization: The discretization method used in this Master’s thesis is the
simplest there is, and there are much more refined methods such as e.g., Tustin’s
formula [9]. Therefore an investigation of the error that originates from the dis-
cretization is suggested as future work.

Lane Hugging: When analyzing the data, several situations were found when
the estimated TtLC were small for several seconds before the warning should come.
This situation is presented in Figure 6.1 and typical arises when the velocity is
large and the lateral offset relative small. One way to approach this situation could
be to analyze the derivative of the TtLC. A small derivative could perhaps be used
interpreted as a less dangerous situation than the TtLC alone would imply.

Jerk: In [8] it is pointed out that many filters can improve their tracking capa-
bility by introducing acceleration as a state and assuming that the process noise
represents the change in acceleration, i.e., jerk. A comparison of how much this
actually improves the filter derived in this Master’s thesis would be very interest-
ing.



Bibliography

[1] B. D. O. Andersson and J. M. Moore. Optimal Filtering. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1979.

[2] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association. Aca-
demic Press, Inc., 1988.

[3] Y. Bar-Shalom and X. Li. Estimation and Tracking: Principles, Techniques
and Software. Artech House, 1993.

[4] E. D. Dickmanns and B. D. Mysliwetz. Recursive 3-D Road and Relative
Ego-State Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14:199–213, 1992.

[5] A. Eidehall. An Automotive Lane Guidance System. Technical Report Li-
centiate Thesis no. 1122, Department of Electrical Engineering, Linköping
University, SE-581 83 Linköping, Sweden, Nov 2004.

[6] W. Elmenreich. An Introduction to Sensor Fusion. Technical report, Vienna
University of Technology, Nov 2002.

[7] M. Grewal and Andrews A. Kalman Filtering Theory and Practice Using
MATLAB. John Wiley and Sons, 2 edition, 2001.

[8] F. Gustafsson. Adaptive Filtering and Change Detection. John Wiley and
Sons, 2000.

[9] F. Gustafsson, L. Ljung, and M. Millnert. Signalbehandling. Studentlitter-
atur, 2000.

[10] T Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice Hall,
2000.

[11] Rickard Karlsson. Particle Filtering for Positioning and Tracking Applica-
tions. PhD thesis, Mar 2005.

[12] U. Kiencke and L. Nielsen. Automotive Control Systems For Engine, Driveline
and Vehicle. Springer Verlag, 2 edition, 2005.

[13] L. Nielsen and L. Eriksson. Course material, Vehicular Systems. ISY
Linköping Institute of Technology, 2005.

47



48 Bibliography

[14] E. Ryding and E. Öhlund. Lane Keeping Aid - a driver support system for
cars. Master’s thesis, ISY Linköping Institute of Technology, April 2002.
LITH-ISY-EX-3207-2002.

[15] Thomas Schön. Estimation of Nonlinear Dynamic Systems - Theory and
Applications. PhD thesis, Linköping, Sweden, Feb 2006.

[16] W. van Winsum, K.A. Brookhuis, and D. de Waard. A comparison of differ-
ent ways to approximate time-to-line crossing (TLC) during car driving. In
Accident Analysis and Prevention 32, pages 47–56, April 1999.



Chapter 7

Appendix

Discretized Kalman filter
Here the discretized KF is presented, the discretization is done using backwards
difference.

xt =



x1

x2

x3

x4

x5

x6

x7


=



Ψ̇
vy

c0

c1

θ
yoff,c

yoff,re


, (7.1a)

Ft(vx) =



1 + Tsa11 Tsa12 0 0 0 0 0

Tsa21 1 + Tsa22 0 0 0 0 0

0 0 1 Tsvx 0 0 0

0 0 0 1 0 0 0

Ts 0 −Tsvx 0 1 0 0

0 Ts 0 0 Tsvx 1 0

0 Ts 0 0 Tsvx 0 1


,

(7.1b)

Gu,t =



Tsb1

Tsb2

0

0

0

0

0


(7.1c)
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