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Abstract
We present a system covering the complete process for automatic ground target
recognition, from sensor data to the user interface, i.e., from low level image
processing to high level situation analysis. The system is based on a query lan-
guage and a query processor, and includes target detection, target recognition,
data fusion, presentation and situation analysis. This paper focuses on target
recognition and its interaction with the query processor. The target recognition
is executed in sensor nodes, each containing a sensor and the corresponding sig-
nal/image processing algorithms. New sensors and algorithms are easily added
to the system. The processing of sensor data is performed in two steps; attribute
estimation and matching. First, several attributes, like orientation and dimen-
sions, are estimated from the (unknown but detected) targets. These estimates
are used to select the models of interest in a matching step, where the target
is matched with a number of target models. Several methods and sensor data
types are used in both steps, and data is fused after each step. Experiments
have been performed using sensor data from laser radar, thermal and visual
cameras. Promising results are reported, demonstrating the capabilities of the
target recognition algorithms, the advantages of the two-level data fusion and
the query-based system.

Keywords: Multi-sensor fusion, query languages, infrared sensors, laser
radar, range data, target recognition, target detection.
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1 Introduction

We present an information system with capability for detection and recognition
of ground targets, mainly military vehicles, using various types of electro-optical
sensors. The long term goal is to cover the complete process of target recog-
nition, from the sensors to the decision support in a network centric defence.
Thus, we need to develop algorithms for target detection, target recognition and
data fusion. We also need a system architecture that controls the choice of sen-
sors and algorithms, as decision support tools [17] in the near future will access
data from a large number of sensors located on different platforms. These tools
will be integrated in a command and control system, and might be so complex
that they require users with special training. To reduce the requirements on the
users, efforts must be made to design a usable system [29]. The users will have
a higher trust in such a system and also be able to focus on their primary tasks.

The system must be able to autonomously perform tasks that would other-
wise require the users’ full attention and/or specialist knowledge. In the case of
target recognition, the system itself must select sensors and algorithms for sensor
data analysis, i.e., from a user’s perspective, the computational model must be
sensor data independent [22]. To establish sensor data independence, the system
must be capable to 1) select sensors considering availability, coverage, weather,
and light conditions; 2) select sensor data analysis algorithms considering func-
tionality, complexity, available sensor data, and requested target types; and 3)
control the sensor data fusion and determine the interconnections between the
controlling part and the fusion process. A system with these capabilities is able
to select the most appropriate sensor(s) and recognition algorithm(s) and to
access, analyze, and eventually fuse the information gathered from the sensor
data analysis.

It is also of importance that the users are allowed to define relevant and
application-oriented goals [27], and that the system can acquire the information
needed to reach the given goal, i.e., the system must be goal-driven. To accom-
plish this we have developed a query language and implemented a query-driven
system. To allow the system to select any available sensor, all sensors must have
a standard interface to the system, so that new or reoccurring sensors (and sen-
sor types) can be plugged in without any interaction from the user. From the
system’s point of view, a sensor and a sensor data analysis algorithm (perform-
ing target detection or recognition) forms a sensor node that can receive a query
and return information on the targets registered by the sensor.

Many attempts have been made to develop visual user interfaces for query
languages, e.g. for SQL, but only a few have touched the issues of spatial and/or
temporal queries and few cases are concerned with sensor data. An approach
fairly related to this work is presented in [26], where a method based on case-
based reasoning uses input from a scenario and the user interaction is carried
out by a query language.

In this paper, we present the query-driven system with several sensor nodes
for recognition of targets using various sensors. Our current system include
visual and thermal cameras as well as different types of laser sensors. The
outline of this paper is as follows. In Section 2 the query-based information
system is described, followed, in Section 3, by the sensor data analysis, i.e.,
target recognition on signal/image processing level. Section 4 describes the
sensors, data acquisition, and experimental results. Section 5 explains in detail
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Figure 1: The query-based system’s architecture.

the target recognition and data fusion process using numerical values from the
experiments. In Section 6, the discussion is found and Section 7 contains our
conclusions.

2 The Query-Based Information System

A schematic view of the system’s architecture is found in Figure 1. The system
is, from left to right, divided into the sensor nodes, the query processor and, the
visual user interface. The sensor nodes can be distributed across the network.
The query processor includes a knowledge system connected to an ontology. The
data fusion module is integrated in the query processor. A query interpreter
forms the link to the visual user interface. The sensor nodes include sensors
and sensor data analysis algorithms for target detection and recognition. This
is an open system where it is easy to add/change computational modules. It is
a simple, generic computational model, where the data structure can deal with
heterogeneous data. Situation analysis, terrain analysis, and user interface fall
outside the scope of this paper and are described elsewhere [14, 19, 25, 30].

2.1 The Query Execution Process

The core of the computational model is the query. A user query can be “Report
all terrain vehicles in the specified area for the last two hours”. The query is
entered using the visual user interface (the area of interest is typically specified
by marking an area on a map with a pointing device). The execution of a
query, that is, everything performed from the reception of a query (entered
by the user) to the presentation of the query result, is performed in a process
controlled by the ontology. The query execution process is illustrated in Figure
2. In practice, the query is a data structure with fields for different target
attributes, and values are entered in these fields during the execution. The two
basic levels in the process are described below, details are in [20].
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Figure 2: Overview of the query execution process.

The first level is the cueing level where the area of interest (AOI) can be
large and the time interval of interest (IOI) can be long. Cueing in this sense
means finding potential targets and indicating their positions. It is performed
by a sensor node including a) a target detection algorithm and b) a sensor with
wide-area coverage like an synthetic aperture radar [32]. The output from the
cueing level is one query structure for each detected target. Each query contains
the position of the detection with an uncertainty interval, thus specifying a new
AOI (see Figure 3) combined with the restrictions from the user (such as target
type and IOI).

The second level is the recognition level where the target recognition takes
place. The process includes two major steps: (a) estimation of the attributes of
potential targets, and (b), matching of the potential targets to models selected
from a target model library. A query received from the cueing level is refined by
the attribute estimation to include precise information on the target’s position,
dimensions, and orientation. The refined query is then handed to the model
matching step, where it is further refined to include target type. Multiple algo-
rithms can perform attribute estimation and model matching, respectively, and
data fusion takes place after both steps. The computational model is outlined
in Figure 4.

An algorithm for selecting sensors and sensor data analysis algorithms is de-
veloped [20]. The algorithm uses the ontological knowledge-base in conjunction
with knowledge-base rules to determine which sensors and sensor data analy-
sis algorithms are the most appropriate under the current circumstances. The
circumstances are given by the query, the meta data conditions, the external
conditions (weather, light), and the terrain background.

2.2 The Query Processor

We introduce a query language for sensor data, that can handle various, het-
erogeneous sensor data types . The query language is called ΣQL [5, 6]. The
query processor includes an ontological knowledge system that supports auto-
matic selection of sensors and sensor data algorithms for the data analysis. A
database containing a library of target models is attached to the ΣQL-processor,
that is used in the target recognition. A meta-database containing the avail-
able information that has been registered by the sensors is also attached to the
query processor. The query system includes, contrary to conventional query
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languages, a sensor data fusion module to fuse information extracted from the
sensor data. These data emanate generally from multiple sensors whose sen-
sor data altogether are of heterogeneous type. Recent developments of ΣQL
allowing more qualified queries are described in [7].

The visual user interface is designed to allow both simple and complex
queries of spatial/temporal type. For the time being, complex queries con-
cern vehicles and different types of spatial and temporal relationships that may
occur between the vehicles and between vehicles and background information
[31]. Background information typically consists of geoinformation. The most
important spatial relationships are topological relations, directions and, dis-
tances. Queries that allow the combination of spatial and temporal conditions
are possible as well. Due to the uncertainties in the sensor data, these rela-
tions include uncertainties that must be considered when the system responds
to the queries. Conditions in the queries are here expressed visually, contrary
to traditional text-oriented query languages where the conditions are included
in where-clauses in (often long) text strings.

2.3 Data Fusion

There are two fusion processes in the query system. The first is the attribute
fusion that considers the attribute set estimates (ASEs), and the second is
the model match fusion that considers the results from the model matching
algorithms.

The first step of the ASE fusion is to identify clusters of similar ASEs. This
is done by identifying sets of ASEs that have common elements in the attribute
space. Each cluster is then represented by a single ASE, which is called the
prototype of the cluster. The clusters are assumed to correspond to qualitatively
different interpretations of the data. For example, some ASEs might claim that
the target’s orientation is north, while others claim that it is south.

The model match fusion is performed by sorting by the confidence values
provided by the model matching algorithms followed by a pruning, keeping only
the best match results for each target model. The structure of matching results
given by the ASE fusion allows the sorting/pruning to take into consideration
different initial interpretations of the image data.

After the attribute estimation, the queries include information on target di-
mensions, orientations, etc. The next step is to select target models compatible
with the attribute estimates of each query. Each query is thus again refined and
possibly degenerated into several subqueries, one for each compatible target
model. Each of the resulting subqueries then continues to the matching step,
to be evaluated against the data. An example is shown in Section 5.

The intermediate fusion step allows information to be shared between the
different processes. This potentially increases the overall performance of the
system. The intermediate fusion unfortunately also introduces a risk of data
incest. Data incest is present when dependent data sources are assumed to
be independent. In this application, the risk of data incest is avoided by the
quantitative matching [13].
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2.4 The Simulation Environment

To demonstrate and test the query language and to make it possible to easily
integrate new sensor types, it has been integrated with a simulation framework
[32]. An important motivation for this is to make it possible to apply dynamic
queries over long time periods. The simulation framework includes a scenario
generator which makes it possible to create and run complicated scenarios in-
cluding a large number of events. Input data to the query language comes from
sensor models corresponding to instances of sensor types placed on both sta-
tionary and dynamic platforms. In this way, queries can be concerned with
estimation of both spatial and temporal attributes of objects. For example,
vehicles are simulated within the framework and the movements are described
in terms of events in the scenario generator. Besides the query language, other
types of services can also be attached to the framework and used for various
purposes in the same way as the query system.

3 Sensor Data Analysis

In this section we describe the sensor data, the target recognition process and the
used algorithms. Two algorithms were developed within this project (Sections
3.4 and 3.6), two are modified standard algorithms (Sections 3.3 and 3.5).

3.1 Sensor Data

We consider three fundamentally different types of sensor data:

1. 2D images. The samples contain intensity values and are ordered in a
rectangular mesh.

2. 3D point scatters. The samples are unordered and each sample contains
(x, y, z) coordinates of the recorded object’s surface.

3. Gated viewing (GV) data. A sequence of 2D images where each image
contains the reflected laser pulse response at a certain time interval.

In practice, the data sources are cameras, laser scanners, and gated viewing
lasers, respectively. Moreover, the 2D images are assumed to be acquired from
an airborne down-looking camera that operates in the visual, (reflective) near
infrared, or (thermal) long wave infrared band. The GV sensor is assumed to be
oriented horizontally. The GV sensor is omitted in this presentation. However,
the algorithm for matching on GV data is based on the range template matching
algorithm described in [40]. Our application of the algorithm is described in [1].

3.2 The Target Recognition Process

The target recognition process (i.e., the recognition level in the query execution
process) is performed in four steps; attribute estimation, attribute fusion, model
matching and model match fusion, see Figure 4.

Several constraints are applied to the target recognition process in order to
keep complexity down. First, it is assumed that detection and coarse localization
is already performed at the cueing level. Second, we constrain the dimensions
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and orientations of the target. Third, in the model matching step, the number
of target models is quite small. These constraints are communicated via the
query received from the cueing level.

3.2.1 Attribute Estimation

As mentioned, the first step is to estimate the target attributes. The attributes
are position, orientation, length, width, height, speed, and temperature. Note
that none of the currently available sensor nodes can estimate all these at-
tributes. The attributes should be used as input to the model matching by (a)
pointing out which sensor data is to be matched, and (b) reduce the number of
possible models.

The input to the attribute estimation is a query specifying the approximate
position and size of the target. The position originates from the target detection
at the cueing level, and is assumed to be specified with a precision in the order
of tens of meters. Thus, an AOI of approximately 50×50 meters is considered.
It is also assumed that the query specifies an approximate size of the target,
originating from the user’s request and/or the knowledge base. The default
intervals 3–11 and 1.5–5.5 meters are used for length and width respectively,
covering all target types we are currently interested in. If the user has specified
a certain class of targets, the intervals are narrowed.

The output from the attribute estimation is a refined query, including the
estimated attributes and the refined position. Each estimated attribute is given
with an uncertainty interval. If multiple sensors nodes operated on the same
target, the results are fused before sent to the model matching.

3.2.2 Model Matching

In the model matching step the common target model library is used, where each
model is described by its 3D structure (facet/wireframe models), appearance (vi-
sual or thermal textures), and, in some cases, algorithm specific attributes (e.g.,
pre-processed imagery, see below). 3D (facet) models of reasonable resolution
are commercially available1. Detailed models, including thermal signatures, can
also be created using 3D lasers scanners, thermal cameras and/or simulations2.

Based on the user’s query and the estimated attributes, a set of target mod-
els are selected for the matching process. The input to each model matching
algorithm is thus a query and a model. The output is a match between the
model and the sensor data pointed out by the query. Additionally, the query
might be further refined by the matching algorithm.

To be able to perform comparison and fusion, the results are transformed
into a normalized framework with a confidence value between 0 and 1, where
1 means a perfect match. The normalization is based on matching results of
important target data sets. The confidence values from the model matching
constitute the output from the sensor data analysis module, and are handed
back to the sensor fusion module for a final decision.

This division in attribute estimation and model matching might be subop-
timal from a computer vision point of view (compared to combining the two

1http://www.facet3dmodels.com
2ThermoAnalytics Inc., http://www.thermoanalytics.com.
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steps). However, it has shown to be an advantage when integrating the full sys-
tem as it enables intermediate fusion and pruning of the number of hypotheses.
Additionally, if the model matching fails (e.g., because the correct model was
not present in the model library), the results from the attribute estimation are
still available and returned to the user.

3.3 Attribute Estimation from 2D Image Data

In 2D images, active shape models (ASMs) [9, 10, 35] provide a technique
for estimating contours of objects belonging to a specific class. Here, we use
an ASM to find rectangular-shaped objects – the assumption of rectangularity
holds well when searching for vehicles, provided that the images are in top view.
Since the ASM is a greedy algorithm and needs an initial position, the ASM
fitting is preceded by detecting corners and lines using standard detectors from
the literature and combining them into rectangles according to the following
procedure. The numerical constants were determined by training on synthetic
data.

1. Corner detection: On the image data within the ROI, a standard Harris
corner detector is applied [18].

2. Rectangle forming: All combinations of three corners forming three cor-
ners of a rectangle within the format given by the query are found and
stored in a rectangle candidate list.

3. Edge detection: On the image data with the ROI, a standard Canny edge
detector is applied [3].

4. Rectangle matching: Each rectangle candidate is matched to the image
by integrating, over its four sides, the projection of the gradient onto the
side normal, i.e., the match value for each side is

mi =
∮
x

|n · g (x)| dx,

where x is the 2D image coordinates varying from one rectangle corner to
another, n is the normal to the side, and g (x) is the image gradient at x
. Each rectangle gets the score m = m1 + m2 + m3 + m4, and the 10 best
rectangles are returned and used to initialize the active shape models.

5. ASM fitting: An ASM, described below, is fitted to each of the (up to) 10
rectangles. The ASMs also return a quality-of-fit measure, and the best
one is selected.

Since we already after step 4 have extracted a few rectangular objects and
also ranked them, the job could be assumed done. However, in practice neither
the ranking nor the estimate of position and size was reliable enough to use as
the refined attribute estimate, and thus the ASM is used. The ASM follows the
standard recipe from the literature [8, 35] but with some important restrictions
and simplifications due to our specific circumstances. First, since we assume
rectangular targets, the single deformation mode is the change of length/width
ratio (the other free parameters are rotation, scaling, and translation). Second,
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we do not train the landmark profiles, instead we assume that we have an edge
at the target border, thus basically following [9]. The mean square error between
the rectangle and the ASM control points is calculated. The root mean square
is considered to be an estimate of the standard deviation of the estimation
performance and used is in uncertainty interval calculations for the estimated
attributes (length, width, orientation).

3.4 Attribute Estimation from 3D Scatter Point Data

When the input data consists of 3D point scatters, we can use geometric feature
extraction [15]. In this approach we assume that man-made objects, especially
vehicles, can be approximated by one or several rectangles. The 3D point scatter
describing the target is detected using differentiation of height data [4]. We first
study the object in top view and then rotate to side and front/back views (3D
data can be rotated to any projection). The 3D size and orientation estimation
consists of five steps:

1. Transform data to top view perspective,

2. Estimate a rectangle based on top view data (x, y). The main directions
of the target are given by the orientation of the rectangle. The yaw angle
is given by the orientation of the rectangle’s main axis,

3. Project the data set into the direction (x′, y′), where x′ is parallel to the
main and y′ is parallel to the secondary axis,

4. Estimate a rectangle based on side view data (x′, z). The pitch angle is
given by the orientation of this rectangle,

5. Estimate a rectangle based on back/front view data (y′, z). The roll angle
is given by this rectangle’s orientation.

This rectangle fitting algorithm calculates the rectangle that with minimal
area contains the data samples [15]. The rectangle is computed in linear O(N)
time if input data is sorted and in O(N log N) time for unsorted data, where N
is the number of samples. Its performance is analyzed in [16]. The uncertainty
intervals of the size and orientation estimates are functions of N and signal-to-
noise ratio in data, given by the algorithm’s performance.

3.5 Model Matching on 2D Image Data

A library of target models with thermal infrared textures is available. To match
one of these models to image data, the model is adapted to the image in terms of
3D translation and rotation. For this purpose, generative models and methods
are popular in the computer vision community. A generative model can, given a
parameter set, generate an image to be compared to the input image (the image
that should be analyzed). Since such algorithms are typically greedy, they need
a good initial suggestion of the model parameters.

Our approach is based on multiscale Gabor filters in a sparse grid, in some
aspects similar to [39]. All models in the target model library have been ana-
lyzed by the filter probes, and the outputs are stored in the target model library.
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Traditional alignment methods, based on image signal energy, might have prob-
lems with thermal fluctuations due to variations in weather conditions and the
internal thermal states of the target. Local phase is therefore more suitable for
the estimation of a local displacement between a thermal infrared image and
a target model. Spatial linear local phase models, often called instantaneous
frequency, are estimated from the set of Gabor filters. The target is represented
using a sparse grid of such models.

The steps in the alignment method are explained in the following:

1. The ontology indicates what model in the target model library to use for
matching, and also the sensor position relative to the target given the
platform navigation data. A set of preprocessed local frequency models
are chosen, representing the current target hypothesis. Such a model is
only capable for target recognition in a limited span of model variation
parameters (translation, scaling, target model rotations, and in plane ro-
tation).

2. Assuming approximately level ground and known target size (from the
target model), we can initialize the parameters fairly well and perform an
initial warping of the AOI in the image toward the target model.

3. The target model grid is placed over the image according to the hypothesis,
and the neighborhood of each node in the grid is examined using the Gabor
filters. The local motion estimation is performed using regression of the
normal flow, exploiting the fact that the difference in spatial position
between the image and the target model equals the local phase difference
divided by the local frequency.

4. A global 8-parametric displacement model is estimated using an iterative
reweighted least mean squares method [12, 38]. The iteration is stopped
after a given number of iteration or when the mean displacement update
is under a given threshold. The output is a warped image aligned to the
target model.

5. Performance evaluation is done by combining four different scalar features
extracted from the final iteration. These features are (a) mean normal
flow after final alignment, (b) scalar product between normalized filter
responses, (c) deviation from equal scale ratio (in width and height) in
the target model image, and (d) deviation from right angles in the final
warping. Each feature is mapped to the interval [0,1] and a combined
confidence value is computed as the geometric mean.

3.6 Model Matching on 3D Scatter Point Data

The 3D scatter matching is used to match the sensor data with a 3D model of
similar resolution. We assume that a ground target viewed in different projec-
tions can be approximated by a set of rectangles and that in some views the
rectangles will describe the functional parts of the target. On the other hand,
a laser beam does not penetrate dense materials like metal surfaces. Thus, we
only collect data from the parts of the object that are visible from the laser
radar’s perspective (so-called self-occlusion). Further, in this application we

12



can neither assume that the target is placed in a certain position relative to the
sensor, nor can we assume a certain orientation (or articulation) of the target.
The algorithm is described in detail in [15], the main steps are:

1. Segment the target into parts of approximately rectangular shape, the
segments are stored in a binary tree. The main parts of the object are
stored in (some of) the terminating leaves.

2. Traverse the terminating leaves and search for possible target parts by
geometric comparisons. Dimensions of a data subset (stored in a leaf) are
compared with the models’s dimensions.

3. Match the entire object with a wire-frame model. The model’s functional
parts are rotated to the estimated orientations. The distance between the
target points and the model facets is calculated and the relative mean
square error is used to determine the matching score. The relative mean
square error is defined as the mean square error normalized with the data
variance [2].

4 Experiments and Results

A prototype of the information system, its query language, and sensor nodes,
has been implemented. The prototype includes:

• A ΣQL query processor. The query processor includes an ontology and
its knowledge-base designed to allow sensor data independence from an
end-user perspective;

• A data fusion module that fuses sensor data in two steps, i.e., to support
1) attribute estimation and 2) target model matching;

• A visual user interface that allows the application of queries in a sensor
data independent way;

• Means for visual presentation of query results;

• A number of algorithms for analysis of sensor data.

4.1 Data Acquisition

In order to collect experimental data, seven vehicles were placed in open terrain.
Three sensors, one infrared sensor, one scanning laser radar, and one visual
CCD-camera, were mounted on an airborne platform. The visual sensor is not
described further as visual data is not used in this paper. The platform was
flying at 25 meters per second at an altitude of 130 meters above ground. GPS
and inertial navigation systems were used for position determination. The seven
vehicles, including main battle tanks (MBT), an anti-tank gun (ATG), a truck
and a car, were placed in open terrain. Their dimensions and how they were
sampled by the sensors are listed in Table 1. Figure 5 illustrate an example of
collected data.
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Table 1: The targets and acquired data.
Target Target class Target type Dimensions

Length ×
Width [m]

No. of

samples

(3D)

Pixel

size

(LWIR)

[m]

A MBT T72 7.13 × 3.52 110 0.19

B ATG BTR70 7.42 × 2.78 109 0.20

C Truck Scania P113 8.40 × 2.50 89 0.20

D MBT T72 7.13 × 3.52 184 0.16

E Car Volvo 440 4.45 × 1.69 22 n/a

F MBT T72 7.13 × 3.52 124 0.21

G MTB T72 7.13 × 3.52 144 0.21

The infrared sensor is a long wave IR (LWIR) sensor operating in the band
8.0–9.2 micrometers (thermal infrared). The sensor has a field of view of 15
degrees (240 pixels) along the flight direction and 20 degrees (320 pixels) per-
pendicular to the flight direction. The image rate is 50 Hz and the precision 14
bits per pixel.

The scanning laser radar operates in the near infrared (NIR) at 1.06 microm-
eters with 0.1 mJ/pulse and a sampling rate of 7 kHz. The footprint on ground
is approximately 0.14 meter and the distance between the samples approxi-
mately 0.3 meter along the scanning lines and 0.5 meter between the scanning
lines. The field of view is 20 degrees perpendicular to the flight direction. The
scanning constitutes a zigzag pattern on the ground and the resulting data is
in point scatter format containing 3D position and reflected intensity in each
sample, i.e., the data is an unordered set of samples (x, y, z, r).

4.2 Attribute Estimation on 2D LWIR Data

The attribute estimation using rectangle forming and ASM was evaluated on
LWIR images of six of the seven vehicles (unfortunately, the seventh vehicle
is not present in the LWIR data set). The pixel size varied between 16 and
21 centimeters due to variation in flight altitude. The attribute estimation
was considered a success in five cases and a failure in one (target D). Figure 6
illustrates one of the successful cases. For taget D, where the estimation failed,
the reason was that the vehicle had been stationary for some time with the
engine running. During this time the exhaust plume from the vehicle heated
an almost rectangular area on the ground beside the vehicle, making that area
clearly visible in the LWIR. The ASM was fitted to the area being the union of
the vehicle and heated ground. Note that the vehicle was a main battle tank
with a strong and quite characteristic exhaust plume, not comparable to, for
example, a car that hardly could heat the ground in that manner. The estimated
dimensions, orientations and the estimated errors are given in Table 2. In all
five successful cases the true dimensions are inside the estimated interval.
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Figure 5: Example of collected vehicle data. From left to right: target B,C, and
A. From top to bottom: Visual data, LWIR data, DEM data, and NIR data.
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Table 2: Estimates of length, width, and orientation using different sensor data.
Target Sensor Estimated Estimated dim. [m] Estimation error [m]

Class data orientation

Dimensions [deg.] Length Width Length Width

A 3D 316.1 ± 2.3 6.34 ± 0.82 3.49 ± 1.02 0.79 0.03

MTB DEM 317.1 ± 4.1 6.74 ± 0.58 3.70 ± 0.58 0.39 0.18

7.13 × 3.52 m NIR 317.2 ± 4.9 7.00 ± 0.70 4.00 ± 0.70 0.13 0.48

LWIR 314.9 ± 4.1 6.99 ± 0.56 3.92 ± 0.56 0.14 0.40

B 3D 335.2 ± 2.0 7.30 ± 0.69 2.64 ± 0.83 0.12 0.14

ATG DEM 335.4 ± 3.1 7.45 ± 0.44 2.72 ± 0.44 0.03 0.06

7.42 × 2.78 m NIR 336.0 ± 4.3 7.65 ± 0.61 2.88 ± 0.61 0.23 0.10

LWIR 333.4 ± 3.5 7.60 ± 0.48 2.92 ± 0.48 0.18 0.14

C 3D 306.3 ± 2.0 7.64 ± 0.80 2.38 ± 0.96 0.76 0.12

Truck DEM 305.6 ± 6.5 7.97 ± 0.92 2.58 ± 0.92 0.43 0.08

8.40×2.50 m NIR Fail Fail Fail - -

LWIR 307.0 ± 3.9 7.95 ± 0.54 2.57 ± 0.54 0.45 0.07

D 3D 324.9 ± 1.9 7.30 ± 0.86 4.09 ± 0.98 0.17 0.57

MBT DEM 316.4 ± 3.6 6.87 ± 0.51 3.77 ± 0.51 0.26 0.25

7.13 × 3.52 m NIR 316.4 ± 4.3 7.09 ± 0.61 4.09 ± 0.61 0.04 0.57

LWIR Fail Fail Fail - -

E 3D 230.9 ± 4.6 3.52 ± 0.89 1.42 ± 0.97 0.93 0.27

Car DEM 230.6 ± 1.5 4.46 ± 0.21 1.80 ± 0.21 0.01 0.11

4.45 × 1.69 m NIR Fail Fail Fail - -

LWIR No data No data No data - -

F 3D 317.8 ± 2.0 6.56 ± 0.69 3.51 ± 0.83 0.57 0.01

MBT DEM 316.5 ± 4.1 6.72 ± 0.58 3.74 ± 0.58 0.41 0.22

7.13 × 3.52 m NIR 318.6 ± 5.3 7.12 ± 0.76 3.97 ± 0.76 0.01 0.45

LWIR 316.1 ± 6.9 6.50 ± 1.02 2.96 ± 1.02 0.63 0.56

G 3D 274.6 ± 2.1 7.11 ± 0.95 4.08 ± 1.10 0.02 0.56

MBT DEM 278.0 ± 3.6 6.73 ± 0.51 3.10 ± 0.51 0.40 0.42

7.13 × 3.52 m NIR Fail Fail Fail - -

LWIR 271.1 ± 3.5 6.90 ± 0.53 3.89 ± 0.53 0.23 0.37

16



­5 0 5
­6

­4

­2

0

2

4

6
Top view

­6 ­4 ­2 0 2 4 6
­1

0

1

2

3
Side view

­2 0 2
­1

0

1

2

3
Back view

Figure 6: The attribute estimation on target A. Left: Laser radar data, back-
ground sample are grey and target samples black. The rectangle shows the
estimated 3D size and orientation. Axes in meters. Right: LWIR data, the
rectangle shows the estimated length, width and 2D orientation.

4.3 Attribute Estimation on 2D DEM Data

The 3D laser scanner data was resampled using normalized convolution [24] to
two different 2D image data sets. The first set consists of elevation images, where
the pixel at (x, y) has the intensity value I (x, y) =z . i.e., a digital elevation
map (DEM). The attribute estimation using rectangle forming and ASM was
evaluated on the DEMs of all seven vehicles and considered a success in all seven
cases. The estimated dimensions and orientations and the estimated errors are
given in Table 2. The true errors as well as the estimated errors are comparable
to the LWIR case.

4.4 Attribute Estimation on 2D NIR Data

The second set of resampled laser scanner data consists of reflective images,
where the pixel at (x, y) has the intensity value I(x, y) = r, i.e., basically the
same images as would have been acquired by a CCD-camera operating at that
wavelength (NIR at 1.06 µm). Note that the properties of LWIR and NIR
are very different, since NIR is in the reflective domain (like visual light) while
LWIR is in the thermal. By visually inspecting the data (see Figure 5) it is clear
that the NIR data is less suited for the used technique, since the object’s border
can easily be obscured by the object’s and the background’s internal structures.

The attribute estimation using rectangle forming and ASM was evaluated
on the NIR images of all seven vehicles, and considered a success in only four
cases. One of the failures (target E) is due to the low very number of on-target
samples. When examining target C, the algorithm is confused by the strong
reflective markers on the target (the bright spots in Figure 5). The reason
for the remaining failure (target F) is yet to be understood. The estimated
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dimensions and orientations and the estimated errors are given in Table 2.

4.5 Attribute Estimation on 3D Data

The attribute estimation was performed on the 3D scatter laser radar data
using the geometric feature extraction. For all cases the estimation is considered
successful, as the true values were within the uncertainty interval. As expected,
the best performance was reached for the targets that were placed in the middle
of the scanning pattern (aspect angle approximately 0 degrees). Targets E and
F were registered in the very borders of the scan where the sampling is even
more irregular due to the zigzag pattern. This affected the length estimates. On
targets A, D, and G samples on the target’s barrel were detected. For target A
the barrel was pointing forward and for targets D and G the barrel was rotated
20 and 40 degrees respectively. The segmentation was rather rough resulting in
that barrel samples close to the body were assigned to be part of the target’s
body. This affected, although not vastly, the width and orientation estimates
for targets D and G.

4.6 Cross-Validation

The attribute estimation methods returned estimates of the length and width
that were close to the true values, and, in all cases except one, the errors were
within the estimated uncertainty interval. For the orientation, the true values
are not known, instead we evaluate the algorithms using cross-validation. For
targets A, B, C, E, and F, the different orientation estimates are consistent, see
Table 2. For target D, however, the orientation estimate from 3D data differs a
few degrees, probably due to the influence of on-barrel samples. For target G,
the LWIR estimate differ approximately 5 degrees. The reason is that the LWIR
sensor was not firmly fixed to the airborne platform, and its orientation could
deviate up to 10 degrees from the laser scanner’s orientation when the airborne
platform was changing course. This was confirmed by visually inspecting the
data and noticing that a building close to target G have a slightly different
orientation in the LWIR data compared to the laser radar data. The cross-
validation for targets A, B, C, and F are illustrated in Figure 7.

4.7 Model Matching

The model matching was performed both on 2D LWIR using generative models
and 3D laser radar using point scatter matching. In Figures 8-9 the matching of
target A (a T72 main battle tank) is shown, and the confidence values are shown
in Figure 10. We observe that for both sensor types the correct pair of target-
model had the highest confidence, and that the models are ranked in the same
order for both sensor nodes. The second most confident model, the T80, is very
similar to a T72 in terms of 3D shape, but only has a somewhat similar thermal
signature. This exemplifies how some features are easy to discriminate using
one sensor, but can hardly be noticed with another, and thus a multi-sensor
system gives an advantage.

In Table 3 the confidence values of 3D scatter matching is shown. If the
relative mean square error is larger than 0.07 the misfit of target-model is too
large and the confidence value is not calculated, this is marked with ‘-’ in the
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Figure 7: Cross-validation of estimated attributes on targets A, B, C, and F.
For length and width estimates, the dashed lines represent the true values.
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Figure 8: Matching target A with the T72 model, using the 3D scatter matching
method. The target samples and the model facets are shown. Axes in meters.

Table 3: Results from 3D scatter matching.
MBT MBT MBT MBT MBT APC ATG

Target, type T72 T80 Leclerc Leopard 2A6 M1A1 BMP1 BTR80

A, T72 0.92 0.91 0.59 0.83 0.87 0.59 0.74

B, BTR70 0.86 0.89 0.89 0.92 0.92 0.80 0.93
C, Truck 0.50 0.16 0.46 0.60 0.32 - 0.32

D, T72 0.93 0.93 0.91 0.81 0.86 - 0.18

E, Volvo 440 0.52 0.85 0.78 0.77 0.74 0.40 0.83

F, T72 0.89 0.92 0.89 0.83 0.89 0.83 0.78

G, T72 0.91 0.93 0.87 0.84 0.90 0.12 0.22

No. of faces 240 1526 462 1359 380 384 683

table. We observe that matching scores for a T72 target with T72 and T80
models are similar, due to similarities in the chassis. The matching is made with
a rather small amount of target samples and in most cases few facets on the
model, which makes confusion more likely. For targets A, D and G the model’s
turret and barrel are rotated according to results of the attribute estimation.
For target F there are no samples detected on the barrel. This results in similar
confidence values in four of five matches with tanks. For two targets, C and
E (truck and car, respectively), correct models are not present in the library.
For the truck, the confidence values are low for all models, indicating that the
correct model is not present. For the car, good matching scores are received for
both tanks and anti-tank guns vehicles! This is because there are few samples
on that target and these samples are not well distributed. In the future, the
data quality should be taken into consideration when computing the confidence
value.

Overall the results are acceptable. The T72 tanks are recognized as tanks,
most likely a T72 or a T80, and the anti-tank gun vehicle is recognized as well.
To be able to more accurately determine the target type (i.e., the type of tank),
we need higher resolution on both targets and models.
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Figure 9: Matching with Gabor probe modelling for LWIR data on target A,
confidence values are given.
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Figure 10: Resulting confidence values when matching target A to five different
tank models.
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Table 4: The queries entering input to and output from the cueing level. Empty
fields omitted (sensor, type, confidence value, height, speed, and temperature).

Field Input Target A Target B Target C

Class MBT MBT MBT MBT

Position (500,500) ± 500 (560,400) ± 20 (620,460) ± 20 (590,440) ± 20

Orientation 0–360 0–360 0–360 0–360

Length 6.88–7.92 6.88–7.92 6.88–7.92 6.88–7.92

Width 3.40–3.80 3.40–3.80 3.40–3.80 3.40–3.80

5 The Execution of a Query: Recognition and
Fusion

In this section, we will describe in detail how a query is processed until a final
answer is given to the user. Assume that the user enters the following query
“Report all main battle tanks (MBTs) present in the one kilometer wide area
around the position (500, 500)”, where the specified area covers targets A, B,
and C. Since all tanks in the target model library are within the dimensions
7.4±0.52 × 3.6±0.2 meters, these values are inserted into the query, see Table
4. The query is then sent to the cueing level, which returns three queries, one
for each detected target in the area. The three queries are each sent to the four
available sensor nodes (3D, DEM, NIR, and LWIR) for attribute estimation.
The 11 queries (from the first 12 rows of Table 2) that are returned are then
fused into four hypotheses (fusion of two queries are done by computing the
intersection), see Table 5.

1. All queries regarding target A are consistent and fused to one hypothesis of
a target being approximately 6.78×3.78 meters in size, which is consistent
with the MBT class. The corresponding attribute estimations on 3D and
LWIR data are shown in Figure 6 .

2. All queries regarding target B are consistent and fused to one hypothesis
of a target being approximately 7.50×2.79 meters in size, which is not
consistent with an MBT. The hypothesis is thus discarded.

3. Two queries regarding target C (LWIR and DEM) are consistent and fused
to one hypothesis not being consistent with an MBT. The hypothesis is
thus discarded.

4. The 3D query regarding target C is not being consistent with an MBT,
and is thus discarded.

Thus, only one hypothesis remains, and is entered in the query. All target
models consistent with this query are extracted from the target model library,
and for each extracted model, a query is sent to the model matching step. In this
particular case, two models (representing two different MBTs) are found. Since
both LWIR data and 3D data are available, two model matching algorithms are
invoked. Additionally, each algorithm is invoked twice, because the orientation
is known only up to a 180 degree turn, resulting in a total of 8 queries, see Table
6. Note the reduction in complexity due to the attribute estimate fusion.
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Table 5: The queries representing the four hypotheses after attribute fusion.
Field Target A Target B Target C Target C

Sensor 3D/DEM/

NIR/LWIR

3D/DEM/

NIR/LWIR

3D DEM/LWIR

Class MBT MBT MBT MBT

Position (562.6,399.3)

± 0.3

(619.8,458.8)

± 0.3

(591.1,437.1)

± 0.3

(591.4,437.3)

± 0.5

Orientation 314.8–318.4 333.2–336.9 304.3–308.3 301.1–310.9

Length 6.43–7.16 7.12–7.89 6.84–8.44 7.41–8.49

Width 3.36–4.28 2.44–3.16 1.42–3.34 2.03–3.11

Table 6: The eight queries entering the model matching step.
Field Target A, unrotated

Sensor 3D LWIR 3D LWIR

Type T72 T72 Leclerc Leclerc

Orientation 314.8-318.4 314.8-318.4 314.8-318.4 314.8-318.4

Field Target A, rotated

Sensor 3D LWIR 3D LWIR

Type T72 T72 Leclerc Leclerc

Orientation 133.8-138.4 133.8-138.4 133.8-138.4 133.8-138.4

Table 7: The queries representing the two hypotheses after model match fusion.
Field Hypothesis 1 Hypothesis 2

Sensor LWIR LWIR

Class MBT MBT

Type T72 Leclerc

CV 0.96 0.65

Position (562.6,399.3) ± 0.3 (562.6,399.3) ± 0.3

Orientation 314.8–318.4 314.8–318.4

Length 6.43–7.16 6.43–7.16

Width 3.36–4.28 3.36–4.28

23



­5 0 5
­5

0

5

Top view

­6 ­4 ­2 0 2 4 6
­1

0

1

2

3
Side view

­2 0 2
­1

0

1

2

3
Back view

Figure 11: Barrel (o) and turret (x) identification for target F. Note the different
barrel positions. Axes in meters.

From the model matching eight queries are returned with confidence values
from Figure 10 (the LWIR and 3D model matches are illustrated in Figure 9).
The queries are grouped per target type and sorted, and the query with the
highest confidence value in each group is kept. In this example, one query for
the T72 model and one for the Leclerc model is kept, see Table 7. The one
with the highest confidence value is returned to the user (alternatively, a few
of the best queries are presented depending on the user’s settings). The final
answer is that there is one tank present in the area; it is of the type T72 with
the confidence value 0.96.

6 Discussion

This paper has been concentrated on target recognition of stationary targets in
open terrain. There have also been work on target detection based on thermal
data [33] and laser radar imagery in more difficult scenes [36].

The sensor data used in this application have high resolution and details on
the targets can be seen. This means that articulated parts and deformations of
the target can be identified. Approaches for identification of articulated parts,
like barrel, hatches, doors, and appearance of fuel-tanks or back-packs have
been reported in [15, 28, 34, 37]. An example using [15] is shown in Figure
11. In LWIR data it is possible to detect the engine exhaust plume and trails
of a ground vehicle These features are important indicators of target activity.
Furthermore, the direction of the plume differs with the target type and velocity.
In Figure 12, the exhaust plume and vehicle trails from a real LWIR image of a
T72 is compared to the simulated version in the object model library.

The identification of articulations and deformations can be extended to tem-
poral sequences using the framework presented in [23]. In [23], model-based
recognition is used for simultaneous tracking and recognition of targets. By
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Figure 12: Models for exhaust plume and vehicle tracks are included in the
target model library. Left: LWIR image of a target A. Right: Synthesized
model with activated exhaust plume and vehicle trails.

Figure 13: Tracking using model-based reconstruction applied on LWIR data
on target A. The marked points on the object are tracked. In this example the
sensor platform is moving and the target is still.

tracking a few critical points of the target, e.g., corners and turret, see Figure
13, in a series of consecutive images, its movements and shape variations can
be followed through the image sequence. Theoretically, this method should be
able to handle both moving targets and moving sensor platforms.

A ground target recognition system must be able to handle (partly) occluded
and/or camouflaged targets. The analysis methods must be capable to perform
their task even if parts of the target are not registered. Here, the ability to
penetrate sparse objects, such as some categories of vegetation and camouflage
nets, is a key issue to overcome the problem. Detection of partly hidden objects
using laser radar is reported in [11, 21, 36, 37].

7 Conclusions

We have demonstrated a query-based system for ground target recognition based
on multi-sensor data. The computational model and the sensor data algorithms
have been described. By selecting a suite of algorithms for estimation of at-
tributes and model matching in different kind of data, and fusing them on two
levels, we have created a system where a user query is refined until a final an-
swer is delivered. We have also demonstrated how the two-level fusion and the
division of the target recognition in two steps improve performance and decrease
computational complexity.

A field trial has been performed, with an airborne sensor platform flying over
a set of vehicles. The sensor platform produced 3D and 2D data in different
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wavelengths (visual, near infrared, and long wave infrared). Data sets in form
of 3D point scatters, digital elevation maps (DEM), 2D near infrared (NIR)
and long wave infrared (LWIR) images were extracted, and all algorithms were
applied to all vehicles, with a few exceptions due to lack of data.

Specifically, we propose two attribute estimation algorithms and two model
matching algorithms. The attribute estimation algorithm based on 3D data was
able to deliver satisfactory results for all targets except for one case where very
few and irregular samples were available. The attribute estimation on DEM
data was successful for all targets, while the attribute estimation on NIR data
failed, as expected, in several cases. The attribute estimation based on LWIR
was successful except where heated ground disturbed the thermal signature of
the target. Even when the algorithms were not able to deliver satisfactory
results, the results were fused into hypotheses consistent with reality in all
cases. Model matching algorithms were applied to 3D and LWIR data, giving
satisfactory results except for degenerate cases with few and irregular on-target
samples.

References

[1] P. Andersson, L. Klasén, M. Elmqvist, M. Henriksson, T. Carlsson, and
O. Steinvall. Long range gated viewing and applications to automatic tar-
get recognition. In Swedish Symposium on Image Analysis, pages 89–92,
Stockholm, March 2003.

[2] L. Brieman, J.H. Friedman, R.A. Ohlsen, and C.J. Stone. Classification
and Regression Trees, chapter 8.3. Monterey Wadsworth and Brooks, 1984.

[3] J.F. Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[4] C. Carlsson, E. Jungert, C. Leuhusen, D. Letalick, and O. Steinvall. Target
detection using data from a terrain profiling laser radar. In Proceedings of
the 3rd International Airborne Remote Sensing Conference and Exhibition,
pages I–431 – I–438, Copenhagen, Denmark, July 1997.

[5] S.-K. Chang, G. Costagliola, E. Jungert, and F. Orciuoli. Querying distrib-
uted multimedia databases data sources in information fusion applications.
IEEE Transactions on Multimedia, 6(5):687–702, 2004.

[6] S.-K. Chang and E. Jungert. Principles of visual information retrieval.
chapter Query Languages for Multimedia Search, pages 199–217. Springer
Verlag, 2001.

[7] S.K. Chang, E. Jungert, and X. Li. A progressive query language and
interactive reasoner for information fusion support. Journal of Information
Fusion, accepted for publication, 2005.

[8] T.F. Cootes. Homepage, http://www.isbe.man.ac.uk/ bim/.

[9] T.F. Cootes, G.J. Edwards, D.H. Cooper, and J. Graham. Active shape
models - ‘smart snakes’. In Proceedings of the British Machine Vision
Conference, pages 266–275, Leeds, UK, 1992.

26



[10] T.F. Cootes, C.J. Taylor, A. Lanitis, D.H. Cooper, and J. Graham. Building
and using flexible models incorporating grey-level information. In Proceed-
ings of the International Conference on Computer Vision, pages 355–365,
Berlin, Germany, 1993.

[11] C. English, S. Ruel, L. Melo, P. Church, and J. Maheux. Development of a
practical 3D automatic target recognition and pose estimation algorithm.
In Proceedings SPIE, volume 5426, pages 112–123, September 2004.
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[17] D.L. Hall and J. Llinas (Eds.). Handbook of Multisensor Data Fusion. CRC
Press, New York, 2001.

[18] C.G. Harris and M.J. Stephens. A combined corner and edge detec-
tor. In Proceedings of the 4th Alvey Vision Conference, pages 147– 151,
Manchester, UK, 1988.

[19] T. Horney, J. Ahlberg, C. Grönwall, M. Folkesson, K. Silvervarg, J. Frans-
son, L. Klasén, E. Jungert, F. Lantz, and M. Ulvklo. An information system
for target recognition. In Proceedings SPIE, volume 5434, pages 163–175,
April 2004.

[20] T. Horney, E. Jungert, and M. Folkesson. An ontology controlled data
fusion process for query language. In Proceedings of the 6th International
Conference on Information Fusion, Cairns, Australia, July 2003.

[21] D. Huber, A. Kapuria, R. Donamukkala, and M. Hebert. Parts-based 3D
object classification. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages II–82 – II–89, June-July 2004.

[22] E. Jungert, K. Silvervarg, and T. Horney. Ontology driven sensor indepen-
dence in a query supported C2-system. In Proceedings NATO Workshop
on Massive Military Data Fusion and Visualization: Users Talk with De-
velopers, Halden, Norway, sep 2002.

27



[23] L. Klasén. Image Sequence Analysis of Complex Objects – Law Enforce-
ment and Defence Applications. PhD thesis, Linköping Studies in Sci-
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