Linkodping Studies in Science and Technology

Dissertation No. 1022

Automatic Parallelization of
Equation-Based Simulation Programs

Peter Aronsson

Linkdping University

INSTITUTE OF TECHNOLOGY

Department of Computer and Information Science
Linkdping University, SE-581 83 Linkdping, Sweden

Linkdping 2006

ISBN 91-85523-68-2
ISSN 0345-7524

Printed by LiU-Tryck, Linkdping 2006

Acknowledgement

I am grateful for all the help, guidance, and the many lessons learned during
the making of this thesis. First of all, I would like to thank my supervisor,
Peter Fritzson, who made this work possible and has supported me in many
ways. [would also like to thank my co-supervisor Christoph Kessler for his
support.

I've enjoyed the stay at PELAB during this years and especially all the
interesting discussions during our coffee breaks, so many thanks also goes to
all colleagues at PELAB. I also want to specially thank Bodil for her support
in administrative tasks and for making life easier for the rest of us at PELAB.

Many thanks goes to all the employees at MathCore who have provided a
nice working atmosphere. I have also received much help and assistance from
them, especially for problems in modeling and simulation.

I am also grateful that I have had the opportunity to use the parallel
computers at NSC. Without these, the research would not have been possible.

Finally, I would like to thank my big love in life, Marie, for always being
there for me and supporting me in all ways possible.

Peter Aronsson
Link6ping, March 2006

Automatic Parallelization of
Equation-Based Simulation Programs

by
Peter Aronsson

March 2006
ISBN 91-85523-68-2
Linkoping Studies in Science and Technology
Thesis No. 1022
ISSN 0345-7524

ABSTRACT

Modern equation-based object-oriented modeling languages which have emerged
during the past decades make it easier to build models of large and complex
systems. The increasing size and complexity of modeled systems requires high
performance execution of the simulation code derived from such models. More
efficient compilation and code optimization techniques can help to some ex-
tent. However, a number of heavy-duty simulation applications require the use
of high performance parallel computers in order to obtain acceptable execution
times. Unfortunately, the possible additional performance offered by parallel
computer architectures requires the simulation program to be expressed in a
way that makes the potential parallelism accessible to the parallel computer.
Manual parallelization of computer programs is generally a tedious and error
prone process. Therefore, it would be very attractive to achieve automatic
parallelization of simulation programs.

This thesis presents solutions to the research problem of finding practi-
cally usable methods for automatic parallelization of simulation codes pro-
duced from models in typical equation-based object-oriented languages. The
methods have been implemented in a tool to automatically translate models
in the Modelica modeling language to parallel codes which can be efficiently
executed on parallel computers. The tool has been evaluated on several appli-
cation models. The research problem includes the problem of how to extract
a sufficient amount of parallelism from equations represented in the form of a
data dependency graph (task graph), requiring analysis of the code at a level
as detailed as individual expressions. Moreover, efficient clustering algorithms
for building clusters of tasks from the task graph are also required. One of
the major contributions of this thesis work is a new approach for merging
fine-grained tasks by using a graph rewrite system. Results from using this
method show that it is efficient in merging task graphs, thereby decreasing

Department of Computer and Information Science
Linkopings universitet
SE-581 83 Linko6ping, Sweden

w

their size, while still retaining a reasonable amount of parallelism. Moreover,
the new task-merging approach is generally applicable to programs which can
be represented as static (or almost static) task graphs, not only to code from
equation-based models.

An early prototype called DSBPart was developed to perform paralleliza-
tion of codes produced by the Dymola tool. The final research prototype is
the ModPar tool which is part of the OpenModelica framework. Results from
using the DSBPart and ModPar tools show that the amount of parallelism of
complex models varies substantially between different application models, and
in some cases can produce reasonable speedups. Also, different optimization
techniques used on the system of equations from a model affect the amount of
parallelism of the model and thus influence how much is gained by paralleliza-
tion.

Contents

1 Introduction
1.1 Outline
1.2 The Need for Modeling and Simulation
1.2.1 Building Models of Systems
1.2.2 Simulation of Models
1.3 Introduction to Parallel Computing
1.3.1 Parallel Architectures
1.3.2 Parallel Programming Languages and Tools
1.3.3 Measuring Parallel Performance.
1.3.4 Parallel Simulation
1.4 Automatic Parallelization
1.5 Research Problem
1.5.1 Relevance
1.5.2 Scientific Method
1.6 Assumptions
1.7 TImplementation Work
1.8 Contributions
1.9 Publications

2 Automatic Parallelization
2.1 Task Graphs
2.1.1 Malleable Tasks.,
2.1.2 Graph Attributes For Scheduling Algorithms
2.2 Parallel Programming Models
2.2.1 The PRAM Model
2.2.2 The Logp Model
2.2.3 The BSP Model
2.24 The Delay Model
2.3 Related Work on Task Scheduling and Clustering
2.4 Task Scheduling oo

vl

CONTENTS

2.4.1 Classification 32
2.4.2 List Scheduling Algorithms 32
2.4.3 Graph Theory Oriented Algorithms with Critical Path
Scheduling L o 36
2.4.4 Orthogonal Considerations 36
2.5 Task Clustering 38
2.5.1 TDS Algorithm 38
2.5.2 The Internalization Algorithm 39
2.5.3 The Dominant Sequence Clustering Algorithm 40
2.6 Task Merging 42
2.6.1 The Grain Packing Algorithm 43
2.6.2 A Task Merging Algorithm 45
2.7 Conclusion 46
2.8 Summary e 46
Modeling and Simulation 49
3.1 The Modelica Modeling Language 49
3.1.1 A First Example oo 49
3.1.2 Basic Features 50
3.1.3 Advanced Features for Model Re-Use. 58
3.2 Modelica Compilation 60
3.2.1 Compiling to Flat Form 60
3.2.2 Compilation of Equations 62
3.2.3 Code Generation 70
3.3 Simulation.o o 70
3.4 Simulation Result 000 72
3.5 Summary .o.o.o.o. . e 73
DAGS - a Task Graph Scheduling Tool in Mathematica 75
4.1 Introductiono 75
4.2 Graph Representation 0. 76
4.3 TImplementationo 79
4.3.1 Graph Primitives 79
4.3.2 Scheduling Algorithms 79
4.3.3 Clustering Algorithms 80
4.3.4 The Task Merging Algorithm 80
4.3.5 Loading and Saving graphs 81
4.3.6 Miscellaneous Functions 82
44 Results. 83

4.5 Summary ... e 84

CONTENTS

5 DSBPart - An early parallelization Tool Prototype

5.1 Imtroduction.o
5.2 Overview
5.3 Input Format
5.4 Building Task Graphs

5.4.1 Second Level Task Graph

5.4.2 Implicit Dependencies
5.5 The Full Task Duplication Method
5.6 Conclusions L
5.7 Results.
5.8 Summary . . o. ...

ModPar - an Automatic
Parallelization Tool

6.1 Research Background
6.2 Implementation Background
6.3 The OpenModelica Framework
6.3.1 Overview
6.3.2 Modelica Semantics 0L
6.3.3 Modelica Equations
6.3.4 Interactive Environment
6.4 The ModPar Parallelization Tool
6.4.1 Building Task graphs
6.4.2 ModPar Task Graph Implementation Using Boost
6.4.3 Communication Cost
6.4.4 Execution Cost
6.4.5 Task Merging
6.4.6 Task Scheduling
6.4.7 Code Generation
6.5 SUmmary e
Task Merging
7.1 Increasing granularity oL
7.2 Cost Model for Task Merging
7.3 Graph Rewrite Systems L.
7.3.1 The X-notation oL
7.4 Task Merging using GRS
7.4.1 A First Attempt o
7.4.2 Improving the Rules
7.5 Extending for Malleable Tasks
7.6 Termination

7.7 Confluence

vt

87
87
88
89
90
92
93
94
97
98
98

V1%h

CONTENTS

7.7.1 Non Confluence of the Enhanced Task Merging System

7.8 Results . .

7.8.1 Increasing Granularity
7.8.2 Decrease of Parallel Time
7.8.3 Complexity
7.9 Discussion and Future Directions

7.10 Summary

8 Applications

8.1 Thermal Conduction

8.1.1 Parallelization
8.2 Thermofluid Pipe o
8.3 Simple Flexible Shaft

8.4 Summary

Application Results

9.1 Task Merging o
9.2 Parallelization of Modelica Simulations
9.3 DSBPart Experiments L.
9.3.1 Results From the TDS Algorithm
9.3.2 Results From using the FTD Method
9.4 ModPar Experiments L oL

9.5 Summary

10 Related Work

10.1 Parallel Simulation oo
10.1.1 Parallel Solvers
10.1.2 Discrete Event Simulations
10.1.3 Parallelism Over Equations in the System
10.1.4 Parallel Simulation Applications

10.2 Scheduling

10.3 Clustering and Merging
10.3.1 Task Clustering
10.3.2 Task Merging L

10.4 Summary

11 Future Work

11.1 The Parallelization Tool
11.2 Task Merging e
11.3 The Modelica Language

11.4 Summary

132
132
134
136
136
137
138

139
139
141
142
143
146

149
149
149
150
150
151
155
156

159
159
159
160
160
161
161
162
162
163
163

CONTENTS

12 Contributions and Conclusions
12.1 Contributions
12.2 Conclusions
12.2.1 Automatic parallelization
12.3 Implementation L oL
12.4 Summaryo

A Task Merging Experiments

i

169
169
170
170
171
172

181

CONTENTS

List of Figures

1.1 A control theory point of view of a system as a function H(t)

reacting on an input u(t) and producing an output y(t). 4
1.2 A body mass connected to a fixed frame with a spring and a

damper.o b)
1.3 The plot of the position of the body resulted from the simulation. 6
1.4 A shared memory architecture. 7
1.5 A distributed memory architecture. 8
1.6 The three different implementations made in this thesis work

and how they relate. L L. 20
2.1 Task graph with communication and execution costs. 24
2.2 Graph definitions 25
2.3 An hierarchical classification scheme of task scheduling algo-

rithms. oL 33
2.4 The work of a list scheduling algorithm 34
2.5 Using task replication to reduce total execution time. 37
2.6 The simplified DSC algorithm, DSCI. UEG is the set of remain-

ing nodes and EG is the set of already completed nodes. 40
2.7 The addition of pseudo edges when performing a DSC-merge.

By adding an edge from task node 2 to task node 3 the schedule

becomes evident: Task 2 is executed before task 3. 42
2.8 A task graph clustered by the DSC algorithm 43
2.9 An example of task merging. 44
2.10 Merging of two tasks (here task a and task b) that introduce a

cycleisnot allowed.o oo 45
3.1 A small ODE example in Modelica. 50
3.2 The plot of the solution variable x and y after simulating for 10

seconds. ... Lo 51

3.3 The TinyCircuit2 model in a graphical representation. 52

T

34
3.5
3.6
3.7

3.8

3.9
3.10

3.11

3.12
3.13

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8

5.1

5.2
9.3

5.4
5.5

5.6
5.7

6.1
6.2
6.3

6.4

LIST OF FIGURES

An electrical circuit resulting in a DAE problem. 55
An electrical circuit resulting in a DAE problem. 56
Compilation stages from Modelica code to simulation. 61
The complete set of equations generated from the DAECircuit
model. 63
The bipartite graph representation of the equations in the BLTgraphfig
example.o L 65
A pendulum with mass m and length L. 66
Two capacitors in series form an algebraic constraint between
states. 68
The tearing technique applied to a system of equations to break

it apart in two subsystems.o oo 68
Solution of differential equation using explicit Euler. 71
A few common numerical solvers for differential equations. . . . 72
The Mathematica notebook for the DAGs package. 7
Graph primitives in the DAGs package. 79
DAGs notebook showing a Gannt schedule from the ERT algo-
rithm. 80
The notebook cells for testing the DSC algorithm. 81
Graph primitives in the DAGs package. 82
Graph primitives in the DAGs package. 82
Butterfly task graphs generated using the DAGs package. . . . 84
Execution times for building graphs using the BuildDag func-

tion on a 2GHz Pentium Mobile PC. 84

An overview of the automatic parallelization tool and its envi-

ronment.o Lo L e e e e e e e 88
The internal architecture of the DSBPart tool. 89
The task graph produced from the simulation code for the Small0DE
example, on page 90. L Lo 91
The two task graphs used in the tool. 94
Simulation code fragment with implicit dependencies, e.g. be-
tween SetInitVector and Residues.. 95
Applying full duplication (FTD) to a task graph. 96
An algorithmic description of the FTD Method. 97
The OpenModelica framework. 101
The ModPar internal modules. 105
Bandwidth and latency figures for a few multiprocessor archi-
tectures and interconnects. 109

Pentium assembler code for high resolution timing. 110

LIST OF FIGURES T

6.5

7.1

7.2
7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11
7.12

7.13

7.14

7.15

8.1
8.2
8.3
9.1
9.2

9.3

Code generation on a merged task graph. 112
Task b and ¢ could be merged into task e to the right where
Ng,e = Na,b + Na,c, resulting in one message sent. 117
The X-notation for a transformation rule in a GRS. 118
The singlechildmerge rule. The invariants states that all prede-
cessors of p have the same top level after the merge. 120

The mergeallparents rule. The condition becomes true if tlevel(¢’) <
tlevel(c), invariants of the rule are the top level value of all pre-

decessors of p;.o 120
The duplicateparentmerge rule. 121
A series of task merging transformations applied to a small task

graph.o oL 123

A small example where duplicateparentmerge and mergeallpar-
ents will fail. Duplication of task 1 is prevented by task 2 and

merging of tasks 1,2 and 4 will fail because of task 3 and 5. . . 124
The mergeallparents2 rule. 124
Example of merging parents applying the improved rule called
mergeallparents2.o oL oL 125
The resulting task graph after mergallparents2 has been applied
totaske. . ..o 126
The duplicateparentmerge2 rule. 127
Example for replicating parent and merging with the improved
duplicateparentmerge2 rule.o oL 128
The resulting task graph after duplicateparentmerge2 has been
applied totask a.o o 128

First priority order for enhanced task merging on STG (Stan-
dard Task Graph Set) subset. PT is the parallel time of the

task graph.o L 133
Second priority order for enhanced task merging on STG sub-

set.PT is the parallel time of the task graph. 134
Simulation of a heated plate in two dimensions 142
The ShaftTest model in the MathModelica model editor. 146
Plots of torques on the shaft 147

The task graph built from the code produced from the PreLoad
example in the mechanics part of Modelica Standard Library. . 151
Results for the TDS algorithm on the PreLoad example with
varying communication cost.o 151
Results of the TDS algorithm on the robot example, using mixed
mode and inline integration with varying communication cost. . 152

T

9.4

9.5

9.6

9.7

9.8

LIST OF FIGURES

Computed speedup figures for different communication costs ¢
using the FTD method on the Thermofluid pipe model. 153
Measured speedup figures when executing on a PC-cluster with
SCI network interface using the FTD method on the Ther-

mofluid pipe model. o 154
Computed speedup figures for different communication costs, ¢,
using the FTD method on the robot example. 155

Measured speedup when executing the simulation of the Flex-
ibleshaft model on the monolith PC-cluster with SCI network
interface. 157
Measured speedup when executing the simulation of the Flexi-
bleshaft model on the mozart 64 processors shared memory SGI
machine. 158

List of Tables

7.1
7.2
7.3

Al
A2
A3

Granularity measures on task graphs from STG. 135
Granularity measures on task graphs from Modelica models. . . 136
Granularity measures on task graphs from two applications. PT

is the parallel time of the task graph. 136
Task Merging on STG using B=1and L=10 182
Task Merging on STG using B=1and L=100 184

Task Merging on STG using B=1and L =1000 186

Ul LIST OF TABLES

Chapter 1

Introduction

In this chapter we introduce the thesis problem and its research areas. We
present thesis work contributions and give an introductory background.

With modern equation-based object-oriented modeling languages it is be-
coming easier to build large and complex models. With this increasing com-
plexity it is crucial to use all possible ways of speeding up simulation execution
time. In this thesis, we solve the problem of automatic parallelization of these
simulation codes. This research problem contains several issues such as clus-
tering, scheduling and identification of parallelism in the code produced from
the object-oriented equation-based modeling language Modelica.

Most contributions in this thesis work are in the area of clustering and
scheduling for multiprocessors and one of the major contributions is a new
method of clustering or merging tasks to create a task (data dependence)
graph, based on simple rules that define a graph rewrite system.

Throughout this work, several contributions in the form of prototype im-
plementations have been made. The earliest prototype parallelized simulation
code from a commercial tool, Dymola, later replaced by a prototype for the
OpenModelica compiler. Additionally, a prototype for clustering and schedul-
ing algorithms was developed in Mathematica.

1.1 Outline

This thesis is outlined as follows.

Chapter two presents automatic parallelization starting with task graphs,
i.e. a fine-grained graph representation of computer programs used for the anal-
ysis. It also presents parallel programming models, scheduling and clustering,
and task merging algorithms to parallelize programs.

2 CHAPTER 1. INTRODUCTION

Chapter three presents modeling and simulation using mathematical equa-
tions. This chapter presents the Modelica modeling language, for which the
prototype tools are developed.

Chapter four presents a prototyping framework called DAGS, which is a
software package for writing algorithms related to task graphs, such as schedul-
ing and clustering algorithms.

Chapter five presents the first prototype parallelization tool built which
translated C-code from the commercial Modelica tool Dymola to parallel C-
code. It also presents some discussion and conclusions on why the second
prototype was built.

Chapter six presents the prototype parallelization tool called ModPar,
which is an integrated part of the OpenModelica compiler.

Chapter seven presents a recently developed task merging technique, one
of the major contributions of the thesis work.

Chapter eight presents several application examples using the Modelica
modeling language on which the automatic parallelization tool has been tested.

Chapter nine presents the thesis work results.

Chapter ten presents related work in different areas, e.g. parallel simulation,
automatic parallelization, task clustering and merging, etc.

Chapter eleven presents the future directions of research in different areas.

Finally, chapter twelve presents the conclusions drawn from the hypothesis
and the results.

1.2 The Need for Modeling and Simulation

Modeling and simulation tools are becoming a powerful aid in the industrial
product development process. By building a computer-based model of the
product using advanced tools and languages, and simulating its behavior prior
to producing a physical prototype, errors in the design or in production can
be detected at an early stage in the development process, leading to shorter
development time, since the earlier an error is detected, the cheaper it is to
correct.

Modeling and simulation is also a powerful way of increasing the knowledge
and understanding of complex physical systems, often involving hundreds of
components, ranging from mechanical parts, electrical circuits, hydraulic flu-
ids, chemical reactions, etc. By building and simulating mathematical models
of such a large and complex system, the system can be better understood, its
design flaws detected and corrected and the system can be optimized according
to different criterias.

Until quite recently in the history of modeling and simulation technol-
ogy, mathematical models were built completely by hand. The equations and

1.2. THE NEED FOR MODELING AND SIMULATION 3

formulas describing the physical behavior of a system described by a model
were written by hand and manually transformed and simplified so that an
executable implementation of the model could be written in an ordinary pro-
gramming language such as Fortran or C. Since most of this work was done
manually, it was expensive to maintain and change mathematical models in
order to adapt them to new requirements. In fact, this process of manual
model development is still in use today, but is gradually being replaced by the
use of more automatic tools.

In this manual approach in use today, the knowledge of the models is typ-
ically divided between different persons possibly at different places. Some
people are responsible for the physical behavior of the model with knowledge
about the equations and variables of the model, others have the technology and
knowledge on how the model equations are implemented in the programming
language used for the simulation of the model. This scattering of knowledge
and technology renders maintenance expensive and reuse of models very diffi-
cult.

In addition to manual implementation in a programming language there
are also graphical composition tools based on manually implemented model
components, such as Simulink [44]. These tools have the underlying causality
of the model components fixed, for instance always calculating the torque
and angular velocity of an electrical motor given its source voltage as input.
These limitations make the model components less reusable since changing the
causality, i.e., what is input and what is output, forces users to totally rewrite
(or redraw) their models.

To remedy these problems, object oriented equation-based modeling lan-
guages such as Modelica [48] have been developed. By using an object oriented
modeling language it is possible to describe the physical behavior of individual
objects e.g. by using Modelica classes, corresponding to models of real physical
objects. Modelica classes can then be instantiated as objects inside so called
composite objects and connected together to form larger models. By modeling
each physical object as an entity (or object) combined with the possibility of
reusing objects through inheritance, a true object oriented modeling approach
is obtained.

Moreover, if the modeling language is equation-based, the reuse opportu-
nities increase even further. By describing the physical behavior of an object
with equations, the causality (i.e., the direction of the "data flow”) through
the object is left unspecified. This makes it possible to use the component
both in input and in output contexts. For instance, an electrical motor can
both be used as a traditional motor giving rotational energy from an electrical
current or as a generator transforming rotational energy into electrical energy.
The causality can be left to the tool to find out, based on the computation

4 CHAPTER 1. INTRODUCTION

needs of the user.

1.2.1 Building Models of Systems

A system can be many things. Websters dictionary defines a system as ”a reg-
ularly interacting or interdependent group of items forming a unified whole”.
In computer science, a system can also be defined in several different ways.
However, in the context of this thesis, a system can be seen as an entity taking
some input, having an internal state, and producing some output. Tradition-
ally, in for instance control theory, a system is depicted as in Figure 1.1.

u(t) y(t)

—= H(t) ——

Figure 1.1. A control theory point of view of a system as a function H (t)
reacting on an input u(t) and producing an output y(¢).

The modeling process starts by choosing a formalism and granularity or
level-of-detail for the model. This means that the level of detail in the model
must be chosen by the modeler. For instance should a model of a tank sys-
tem be made using discrete-time variables, using for instance queuing theory
for describing handling of discrete packets of material of fluid, or by using
continuous-time variables, using differential equations. The modeler also needs
to choose the correct approximation of the model. For instance, should an elec-
trical resistor be modeled using a temperature dependent resistance or should
it be made temperature independent, etc. These choices are different for each
usage of the model, and should preferably be changed for each individual case
in an easy manner.

All these design choices determine the complexity and accuracy of the
model compared to the real world. These choices also indirectly influence the
execution time of the simulations, a more detailed model will usually take
longer time to simulate.

As an example, let us consider a resistor which for many applications can
be modeled using Ohms law:

u=Ri (1.1)

where u is the voltage drop over the resistor and ¢ is the current through the
resistor, proportional to the voltage by the resistance, R.

1.2. THE NEED FOR MODELING AND SIMULATION 5

However, in some cases a more advanced and accurate model might be
needed, for instance taking a possible temperature dependence of the resistance
into consideration [33]:

u = Ro(1+ o(T — 20))i (1.2)

where T is the temperature and « is the temperature coefficient.

Equation 1.2 involves both more variables and a more expensive computa-
tion compared to Equation 1.1. For this simple case the two models are not
dramatically different, but in other more complicated cases a more accurate
model could mean replacing a linear equation with a non-linear, resulting in a
substantial increase in computational cost for simulating the model.

1.2.2 Simulation of Models

Once the system has been modeled, it can be simulated to produce time varying
variable values in the model and typically produce a visualization of the values
as plots. These plots are then used to draw conclusions about the system, e.g.
extrapolations of the model or to verify it against measured data.

For instance, if we consider the equation for a mass connected to a spring
and a damper, as depicted in Figure 1.2, it has the following form:

mi+ki+cr=0 (1.3)

where x is the position of the body, m is its mass and ¢ and k are the spring
and damping constants, respectively.

Cc

—

x>~

Figure 1.2. A body mass connected to a fixed frame with a spring and a
damper.

A simulation of this small system together with a starting condition of
2(0) = 1 will result in a time varying dataset plotted in Figure 1.3. The

6 CHAPTER 1. INTRODUCTION

system has been simulated for 20 seconds, and shows a damped oscillation of
the position of the body.

From this plot we can e.g. draw the conclusion that the chosen damping
coefficient is sufficiently large to reduce the oscillation to 10 percent within
approximately 20 seconds.

0.25

o vﬂwqw !

-0.5
-0.75

Figure 1.3. The plot of the position of the body resulted from the simulation.

1.3 Introduction to Parallel Computing

Parallel computing is concerned with execution of computer programs in par-
allel on computers with multiple processing units. The goal is to execute the
program faster compared to executing the same program on a single computer
or processing unit. For this to be achieved, several issues must be considered.

e Efficient parallel architectures are essential to build efficient parallel com-
puters with high speed communication between different processors or
functional units. These are often realized by a combination of hardware
and software.

e Parallel programming languages and application packages are needed to
be able to construct computer programs for these parallel machines.

e Automated tools that construct parallel programs from different kinds
of applications help users in the parallel programming task, rendering

1.3. INTRODUCTION TO PARALLEL COMPUTING 7

it easier to focus on their main problem instead of performing manual
parallelization.

The following sections give short introductions to these three areas.

1.3.1 Parallel Architectures

Parallel computing involves execution of computer programs on computers
with a parallel architecture. Parallel architectures range from a processor
with several functional units that can be executed independently in parallel
up to a multiprocessor computer with thousands of processors communicating
through an interconnection network.

Typically a parallel computer is a multiprocessor computer with some way
of communication between different processors. There are basically two kinds
of parallel computer architectures. A parallel computer can consist of N pro-
cessors communicating through a shared memory, a so called shared memory
architecture as depicted in Figure 1.4. In the figure each processor has a cache
to speed up memory accesses to the shared memory bank. An example of
such architecture is the SGI Origin 3800 computer at NSC (National Super
Computer Center) [53] which has 128 processors that communicate through a
128 GB shared memory, connected to a shared bus.

cache| | cache| | cache cache

Shared Memory

Figure 1.4. A shared memory architecture.

The second major kind of parallel architecture is a distributed memory ar-
chitecture. They have a distributed memory, typically divided into one local
memory for each processor, and communicates through a communication net-
work. Linux cluster computers fall into this category, like for instance the

8 CHAPTER 1. INTRODUCTION

Monolith cluster at NSC [50], having 200 PC computers connected through a
high speed SCT interconnection network [73]. The Monolith cluster computer is
actually a combination of distributed and a shared memory architecture since
each computer node contains two processors, sharing the common memory of
the computer node. Figure 1.5 shows a distributed memory architecture.

Fy P P, Py

mem mem mem mem

Communication Network

Figure 1.5. A distributed memory architecture.

Writing computer programs for these two architectures can be done using
two different programming models, as we shall see in the next section.

1.3.2 Parallel Programming Languages and Tools

Writing computer programs for parallel machines is very complex. The pro-
grammer needs to consider issues like dividing the computational work into
parallel tasks and their dependencies, distribution of the data to the proces-
sors, communication between tasks on different processors, etc. For a shared
memory architecture the explicit sending of data need not be programmed but
there are other problems instead. For instance, what happens if several pro-
cessors are writing to the same memory location? Some of these programming
tasks are greatly simplified by appropriate support in programming languages
and tools.

1.3. INTRODUCTION TO PARALLEL COMPUTING 9

There are several programming languages and extensions to programming
languages for supporting parallel programming. For instance, when writing a
parallel program for a distributed memory machine one has to explicitly insert
send and receive instructions to communicate the data from one processor to
another. MPI (Message Passing Interface) [45] is a wide-spread standardized
API for such tasks with both commercial high quality implementations [71]
and open source implementations [85]. Another similar message passing library
is PVM [64], which basically provides the same functionality as MPI but has
some additional support for dynamically adding processors.

Below is a small MPI program for execution on two processors. The pro-
gram reads data from a file that is processed element-wise in some manner, thus
it can be parallelized easily by dividing the data between several processors
and executing the data processing in parallel. The first two calls (MPI_Init
and MPI_Comm Rank) initialize the MPI system and sets the rank variable to
the processor number. Each processor will execute the same program with a
different rank integer value. Thus, the next part of the code makes a condi-
tional selection based on this processor number. Processor 0 reads some data
from a file and then sends half of this data to processor 1. The MPI_Send
function takes

e a pointer to the data

the size of the data

the type of data, which must be a type declared in MPI, e.g. MPT_REAL
or MPI_INTEGER

the destination process
e a message tag, to be able to distinguish between messages.

e a processor group, in this case the default group of all processors,
MPI_COMM_WORLD

Similarly, the MPTI_Send call must be received on the other processor using the
MPI Recv function. It has similar arguments and an additional argument for
setting status information on the received data.

int main(int argc, char**argv)

{

int tagl=1,tag2=2; // Two separate tags:
// tagl - message from P1 -> PO
// tag2 - message from PO -> P1

int rank;

10 CHAPTER 1. INTRODUCTION

int *data, size;
MPI_Status status;
MPI_Init(&argc,&argv) ;
MPI_Comm_rank (MPI_COMM_WORLD,&rank) ;
if (rank == 0) { //Proc O
size = read_data(data); // Read data from file
MPI_Send(data,size/2,MPI_REAL,1, // Send to 1
tagl,MPI_COMM_WORLD) ;
process_data(datatsize/2);
MPI_Recv(data,size/2,MPI_REAL,1, // Recv from 1
tag2,MPI_COMM_WORLD, &status) ;
save_data(data,size); // Save the data to file
} else if (rank == 1) { // Proc 1
MPI_Recv(data,size/2,MPI_REAL,0, // Recv from 0
tagl,MPI_COMM_WORLD,&status) ;
process_data(data) ;
MPI_Send(data,size/2,MPI_REAL,0, // Send to O
tag2,MPI_COMM_WORLD) ;
}
MPI_Finalize();
return O;

}

When programming using MPI (or PVM or similar) the programmer must
explicitly insert all the send and receive commands for all processes. This is an
error prone and cumbersome task, which can often lead to deadlocks, missing
receive or send calls, etc. Hence, writing parallel programs using a distributed
memory programming model with message passing is an advanced program-
ming task which requires an experienced programmer. However, parallel pro-
gramming mistakes are common even among experienced programimers.

When considering shared memory architectures one can use programming
language extensions such as OpenMP [54], where Fortran or C++ code can
be annotated with instructions how to execute loop iterations as well as other
constructs in parallel. An alternative is to use a thread library and program
your parallel application using threads and semaphores, for instance using
Posix threads [76].

Thread programming also requires advanced and experienced programmers
to avoid deadlocks and other thread programming specific pitfalls. The same
goes for programming using OpenMP e.g. when declaring shared memory vari-
ables. The programmer must himself guarantee that different processes do not
conflict when accessing these variables (depending on what the architecture

1.3. INTRODUCTION TO PARALLEL COMPUTING 11

allows). For example, below is a C program with an OpenMP directive stat-
ing that the for-loop can be executed in parallel. By issuing this compiler
pragma the programmer guarantees that there are no dependencies across the
iterations of the loop.

int main()
{
int i;
double Res[1000];
#pragma omp parallel for
for (i=0 ; i<1000; i++) {
huge_comp(Res[i]);

There are also tools for automatic parallelization of program code. For
instance, most Fortran compilers have special flags for automatically paral-
lelizing the program. The compiler will then analyze loops to detect when
they can be executed in parallel, and generate parallel code for such loops.

For instance, lets consider a program written in Fortran that performs an
element-wise multiplication of two vectors.

do i=1,N
v[i]=a[i]l*b[i];
end do

This piece of program code is quite trivial to parallelize. The automatic paral-
lelization will split the loop and schedule execution of part of the loop iterations
on each processor. This can be performed since there are no data dependen-
cies between different iterations of the loop, making it possible for the different
iterations of the loop to be executed independently of each other. For more
complex loops a data dependency analysis must be performed to investigate
which iterations of the loop can be executed in parallel. Many techniques have
been developed to transform loops and data layouts to increase the amount of
parallelism in such loops [46, 14].

1.3.3 Measuring Parallel Performance

Once a parallel program has been constructed, either using automatic paral-
lelization tools or by manual programming, it is executed on a parallel ma-
chine. However, we are also usually interested obtaining information about
the efficiency of the parallel execution.

12 CHAPTER 1. INTRODUCTION

The execution time of the parallel program is not a suitable metric to
measure the efficiency of parallel programs in an independent way. Instead
the term relative speedup is used, defined as [25]:

T
Srelative = ﬁ (14)

where:

e T is the execution time for running the parallel program on one processor
and

e Ty is the execution time for running the parallel program on N proces-
Sors.

This speedup is called relative because the same program is used for measur-
ing both the sequential and parallel time. However, there might also exist
a more efficient sequential implementation of the program. Therefore, there
is also a definition of absolute speedup where the sequential execution time
is measured on the most efficient sequential implementation instead of using
the same parallel program also for the one processor case. The definition of

absolute speedup is thus:
Tiseq

pr— 1.
Tn (1.5)

Sabsolute
where:

o T,., is the execution time of the most effective sequential implementa-
tion.

e T is the execution time of the parallel program for N processors as
above.

Since a sequential version of the simulation code exist for all models targeted
by the tool presented in this work, e.g. the code produced by the OpenModelica
compiler, the speedup definition used throughout the rest of this thesis can
be viewed as the absolute speedup, even though the OpenModelica compiler
might not produce the most effective sequential code.

Another commonly used term in parallel computing for measuring parallel
performance is the efficiency of a parallel program. The relative efficiency is
defined as:

Erclative = relative/P (16)

and the corresponding absolute efficiency is similarly defined as:

Eabsolute = absolute/P (17)

1.3. INTRODUCTION TO PARALLEL COMPUTING 18

The efficiency of a parallel program indicates how much useful work is
performed by the processors. Ideally, for linear speedup the efficiency is one,
normally however, it is below one. For instance, if each processor in the
execution of a parallel program spends 10 percent of its time communicating
data instead of performing computational work, the efficiency of the parallel
program becomes 0.9.

Another observation regarding the performance of parallel programs is Am-
dahl’s law. Tt states that a parallel program that has a constant fraction 1/s of
its work executed by a sequential piece of program code will have a maximum
possible speedup of s. For instance, if a parallel program has a sequential
part taking 10 percent of the one-processor execution time, the maximum
speedup is 10. This law is especially important in the context of this thesis
work since the parallelization of simulation code as performed here will leave
an un-parallelized sequential part of the parallel program.

1.3.4 Parallel Simulation

Efficient simulation is becoming more important as the modeled systems in-
crease in size and complexity. By using an object-oriented component based
modeling language such as Modelica, it is possible to model large and complex
systems with reasonably little effort. Even an inexperienced user with no de-
tailed modeling knowledge can build large and complex models by connecting
components from already developed Modelica packages, such as the Modelica
Standard Library or commercial packages from various vendors. Therefore,
the number of equations and variables of such models tend to grow since it is
easier to build large simulation models when using object-oriented component
based languages such as Modelica. Thus, to increase the size of problems that
can be efficiently simulated within a reasonable time it is necessary to exploit
all possible ways of reducing simulation execution time.
Parallelism in simulation can be categorized in three groups:

e Parallelism over the method

One approach is to adapt the numerical solver for parallel computation,
i.e., to exploit parallelism over the numerical method. For instance,
by using a Runge-Kutta method in the numerical solver some degree
of parallelism can be exploited within the numerical solver [67]. Since
the Runge-Kutta methods can involve calculations of several time steps
simultaneously, parallelism is easy to extract by letting each time step
calculation be performed in parallel. This approach will typically give a
limited speedup in the range 3-4, depending on the choice of solver.

e Parallelism over time
A second alternative is to parallelize a simulation over time. This ap-

14 CHAPTER 1. INTRODUCTION

proach is however best suited for discrete event simulations and less
suitable for simulation of continuous systems, since the solutions to con-
tinuous time dependent equation systems develop sequentially over time,
where each new solution step is dependent on the immediately preceding
steps.

e Parallelism over the system

The approach taken in this work is to parallelize over the system, which
means that the calculation of the modeled system (the model equations)
are parallelized. For an ODE (or a DAE) this means parallelizing the
calculation of the states, i.e., the functions f and g (see Equation 3.5
and 3.6). It can also mean for an DAE to calculate the Jacobian (i.e.,
the partial derivatives) of the model equations, since this is required by
several DAE solvers.

The simulation code consists of two separate parts, a numerical solver and
the code that computes new values of the state variables, i.e., calculating f in
the ODE case or solving g in the DAE case. The numerical solver is usually
a standard numerical solver for solving ODE or DAE equation systems. For
each integration step, the solver needs the values of the derivatives of each
state variable (and the state variable values as well as some of the algebraic
variables in the DAE case) for calculation of the next step. The solver is nat-
urally sequential and therefore in general not possible to parallelize. However,
the largest part of the simulation execution time is typically used for the cal-
culation of f and g. Therefore, we focus on parallelizing the computation of
these parts. This approach has for example successfully been used in [2, 26].

When the simulation code has been parallelized, timing measurements on
the execution time of the simulation code are performed.

1.4 Automatic Parallelization

By automatic parallelization we mean the process of automatically translating
a program into a parallel program to be executed on a parallel computer. The
first step in this process, referred to as parallelization, is to translate the source
program into a data dependence graph (or task graph). The data dependence
graph consists of nodes that represent computational tasks of the program
and edges representing the data sent between tasks. In this research a fined
grained task graph is built from individual scalar expressions of equations from
the simulation code, or from larger tasks such as solving a linear or non-linear
system of equations. This step is quite straight forward and do not require
any deeper analysis.

1.5. RESEARCH PROBLEM 15

The next step of the process is task scheduling for multi processors. This
process maps the task graph onto N processors by giving each task a starting
time and processor assignment. This step can also include building clusters or
merging of tasks to simplify the scheduling process. In this research, clustering
or merging of the task graph prior to multi processor scheduling is essential
to overcome the otherwise poor performance of scheduling of the kind of fine
grained task graphs produced. This is also where the main contribution of the
thesis is made.

The final step in the automatic parallelization process is to generate the
parallel program from the scheduled task graph. This includes creating code
for the computation of the tasks and inserting code for sending of messages
between tasks that are allocated to different processors, as given by the edges
of the task graph. In this work, C-programs with MPI-calls as communication
interface is produced by the parallelization tool.

1.5 Research Problem

The research problem of this thesis work is to parallelize simulation code in
equation-based modeling and simulation languages such as Modelica. The par-
allelization approach taken is to parallelize over the system, i.e., parallelizing
the equations given by the Modelica model.

The problem can be summarized by the following hypothesis:

Hypothesis 1

It is possible to build an automatic parallelization tool that translates auto-
matically generated simulation code from equation-based simulation languages
into a platform independent parallel version of the simulation code that can be
executed more efficiently on a parallel rather than sequential computer.

Hypothesis 1 says that from an equation-based modeling language, such
as Modelica, it is possible to automatically parallelize the code and obtain
speedups on parallel computers. The tool should be efficient enough to ensure
that producing the parallel code is possible within reasonable time limits. The
parallel code should also be efficient, i.e., the parallel program should run
substantially faster compared to the sequential simulation code. Finally, the
parallel code should be platform independent so that it can easily be executed
on a variety of different parallel architectures.

The following sections split the research problem stated in Hypothesis 1
into three subproblems.

16 CHAPTER 1. INTRODUCTION

Parallelism in Model Equations

The most important problem that needs to be solved to verify the hypothesis
is how parallelism can be extracted from the simulation code, i.e., the model
equations. Earlier work investigated the extent of parallelism in simulation
code at three different levels [2] for an equation-based modeling language called
ObjectMath [83, 47].

The highest level where parallelism can be extracted is at component level.
Each component of a large complex system usually contains many equations.
The computational work for each component can potentially be put on one
processor per component, with communication of the connector variables in
between processors. However, earlier work [2] has demonstrated that in the
general case there is typically not enough parallelism at this level.

The middle level is to extract parallelism at the equation level, i.e., each
equation is considered as a unit. This approach produces better parallelism
compared to extracting parallelism at the component level, but the degree of
parallelism is in general not sufficient [2].

The third level is to go down to the sub-equation level, where we consider
parallelism between parts of equations like for instance arithmetic operations.
At this level, the greatest degree of parallelism was found among the three
levels [2].

However, compilation techniques for optimization of the code generated
from equation systems has improved since earlier work (ObjectMath [83]), re-
sulting in a more optimized sequential code. Therefore, parallelism is harder
to extract in this case compared to previous work. Thus, the research problem
of extracting parallelism from simulation code generated from highly opti-
mized model equations still remains to be solved. Also, even if parallelism
is extracted, the problem of clustering (a part of the multiprocessor schedul-
ing problem) has become even more important for obtaining speedups, since
processor speed has increased more than communication speed during recent
years. The clustering problem is one of the key issues in the research problem
presented in this thesis.

Clustering and Scheduling Algorithms

Clustering and scheduling algorithms are two important parts of the solution
to the multiprocessor scheduling problem which is at the core of any auto-
matic parallelization tool. Clustering algorithms deal with creating clusters of
tasks designated to execute on the same processor, while scheduling algorithm
assigns tasks to processors.

The results, i.e the speedups achieved in earlier work in automatic paral-
lelization of ObjectMath models [2] were not good enough, due to bad clus-

1.5. RESEARCH PROBLEM 17

tering techniques. Therefore, the research problem of performing an efficient
clustering of such simulation code still also remains unsolved. The scheduling
(including clustering) of task graphs for parallel machines has been studied
extensively in this and other work. Efficient algorithms with a low complexity
should be used in order to fulfill Hypothesis 1. Task replication has to be
used to better exploit the sometimes low amount of parallelism that can be
extracted from the simulation code at the sub-equation level, i.e., looking at
expressions and statements in the generated C-code.

Note that it is of substantial practical importance that the scheduling al-
gorithms used have a low time complexity, so that a parallel program can be
generated within reasonable time.

Cost Estimation

Another research problem is to estimate the cost of each task in the task
graph built internally by the parallelization tool, see Section 6.4.1. The costs
of some tasks can be determined with high accuracy, for instance the cost of
an arithmetic operation, or a function call to any standard math function.
More complex tasks, e.g. the task of solving a non-linear system of equations,
can prove difficult to estimate accurately. The problem is to estimate such
tasks in a convenient and general way, so that combined with the scheduling
algorithm, it will produce an accurate estimation of the actual speedup that
can be achieved when the parallel program is executed on a parallel computer.

A related research problem that also influences the scheduling algorithm is
which parallel computer model (i.e parallel computational model of commu-
nication and computation time) should be used, see Section 2.2. If the model
is too simple and unrealistic the difference between estimated speedup and
measured speedup will be too large. However, if the parallel model is too com-
plicated the scheduling algorithm might increase in computational complexity
since it has too many parameters to consider.

1.5.1 Relevance

The relevance of the research problem stated in Hypothesis 1 can be motivated
in several ways. First, modeling and simulation is expanding into new areas
where earlier it was not possible to model and/or simulate a given problem.
However, with modern modeling techniques, such as object oriented modeling
languages combined with advanced combined graphical and textual modeling
tools, it is now possible to model larger and more complex models. This
is a strong motivation for why new methods of speeding up the execution
time of simulations are important, since larger and more complex models will
otherwise require unacceptable long simulation time.

18 CHAPTER 1. INTRODUCTION

Moreover, by using modern state-of-the-art modeling tools and languages
the modeling and simulation area is opened up to new end-users with no
advanced knowledge of modeling and simulation who will probably have even
less knowledge of parallel computing. This makes an automatic parallelization
tool highly relevant if the tool is to become widely used by the modeling and
simulation community.

Finally, as indicated above, there is still theoretical work to be done re-
garding better algorithms for the clustering of fine grained task graphs that
are typically produced in this work. For instance, new scheduling and cluster-
ing algorithms adapted for a more accurate programming model are needed
to increasing the performance of parallel programs, as is further discussed in
Chapter 11.

1.5.2 Scientific Method

The scientific method used within this work is the traditional system-oriented
computer science method. To validate the hypothesis stated in Hypothesis 1,
a prototype implementation of the automatic parallelization was built. Also,
theoretical analysis of the scheduling and clustering algorithms used can be
used for validating the hypothesis. The newly designed and adapted scheduling
and clustering algorithms described in the following chapters have also been
implemented in this tool. The parallelization tool produces a parallel version
of the simulation code that is executed on several parallel computers. Mea-
surements of the execution time are collected from these executions. When
comparing the parallel execution time with that of a simulation performed on
a sequential processor (which is preferably a single processor on the parallel
computer) an exact measure of the achieved speedup is gained.

Finally, the hypothesis can be validated from the measurements from exe-
cutions of the generated code and the automatic parallelization tool, together
with the theoretical analysis performed on the scheduling and clustering algo-
rithms,

1.6 Assumptions

This research work is based on the several assumptions collected in this section.

The automatic parallelization approach taken in this work only consid-
ers static scheduling of parallel programs, i.e., we do not consider dynamic
scheduling of tasks. This means that the parallelization tool can, during com-
pile time, determine on how many processors and in which way the parallel
program is executed.

1.7. IMPLEMENTATION WORK 19

Furthermore, the scheduling and task merging algorithms in this work as-
sumes non-preemptive tasks, i.e., that once a task has started its execution it
is not interrupted or delayed by other tasks. It executes until its work is com-
pleted. Each task starts by receiving its data from its immediate predecessors
tasks (i.e., its parents) and once it has finished its computation it sends its
data to the immediate successor tasks.

The parallelization approach, including the scheduling and the task merg-
ing algorithm, requires that the program can be described using a task graph.
It must be possible to build a data dependency graph of the program in the
form of a task graph. This restriction means that the program flow can not
depend on input data to the program. Such programs are referred to as obliv-
ious programs. However, the research work also discusses how this scope can
be partly extended by introducing malleable tasks, which are tasks that can
be executed on more than one processor (the number of processors for such
tasks can be determined at runtime), giving at least some dynamic flexibility.

1.7 Implementation Work

This research work evolved through several prototype implementations. Fig-
ure 1.6 below presents the different prototypes and their relationship. The first
automatic parallelization tool called DSBPart was parallelizing the C-code gen-
erated by the Dymola tool. This tool was later replaced by the ModPar tool in
OpenModelica, to gain more control over solvers and optimization techniques.
The DAGS task graph prototyping tool was developed in parallel with ModPar
to experiment on clustering, scheduling, and task merging algorithms.

1.8 Contributions

The main contributions of this research include a task merging method based
on a graph rewrite system where tasks are merged in a task graph given as a
set of graph rewrite rules. This method shows promising results in merging
tasks particularly in fine grained task graphs to reduce its size and increase
granularity so that it can be better scheduled using existing scheduling algo-
rithms.

Another contribution is the automatic parallelization tool itself, which is
integrated into the OpenModelica compiler. It can successfully and automat-
ically parallelize simulations from Modelica models and among the results are
speedup figures of executing simulation for up to 16 processors.

A third contribution is insights and experiences in writing compilers using
the RML language, based on Natural Semantics. The pros and cons of using

20 CHAPTER 1. INTRODUCTION

DAGS

l prototyped algorithms

Dymola OpenModelica

Figure 1.6. The three different implementations made in this thesis work
and how they relate.

such language for writing something as advanced as a compiler are discussed.

Other contributions include a prototype environment for designing task
scheduling algorithms in the Mathematica tool and contributions of the design
of the Modelica language.

1.9 Publications

Parts of this work has been published in the following papers.

Main Author

e Peter Aronsson and Peter Fritzson. A Task Merging Technique for Par-
allelization of Modelica Models. (Conference paper) In Proceedings of
the 4th International Modelica Conference, Hamburg, Germany, March
7-8, 2005.

e Peter Aronsson, Peter Fritzson. Automatic Parallelization in Open-
Modelica (Conference paper) Proceedings of 5th EUROSIM Congress
on Modeling and Simulation, Paris, France. ISBN (CD-ROM) 3-901608-
28-1, Sept 2004.

e Peter Aronsson, Levon Saldamli, Peter Bunus, Kaj Nystrém, Peter Fritz-
son. Meta Programming and Function Overloading in OpenModelica

1.9. PUBLICATIONS 21

(Conference paper) Proceedings of the 3rd International Modelica Con-
ference (November 3-4, Linkoping, Sweden) 2003

e Peter Aronsson, Peter Fritzson. Task Merging and Replication using
Graph Rewriting (Conference paper) Tenth International Workshop on
Compilers for Parallel Computers, Amsterdam, the Netherlands, Jan
8-10, 2003

e Peter Aronsson, Peter Fritzson. Multiprocessor Scheduling of Simulation
Code from Modelica Models (Conference paper) Proceedings of the 2nd
International Modelica Conference March 18-19, 2002, DLR, Oberpfaf-
fenhofen, Germany

e Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus. Incremen-
tal Declaration Handling in Open Source Modelica (Conference paper)
In Proceedings, SIMS - 43rd Conference on Simulation and Modeling on
September 26-27, 2002 at Oulu, Finland.

e Peter Aronsson, Peter Fritzson. Parallel Code Generation in MathMod-
elica / An Object Oriented Component Based Simulation Environment
(Conference paper) In Proceedings, Parallel / High Performance Object-
Oriented Scientific Computing, Workshop, POOSC01 at OOPSLAO1,
14-18 October, 2001, Tampa Bay, F1. USA

e Peter Aronsson, Peter Fritzson. Clustering and Scheduling of simulation
code from equation-based simulation languages (Conference paper) In
Proceedings, Compilers for Parallel Computers CPC2001, Workshop, 27-
29 June, 2001, Edingburgh, Scotland, UK.

Additional Co-authored Papers

e Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrém, Adrian
Pop, Levon Saldamli, and David Broman. The OpenModelica Model-
ing, Simulation, and Software Development Environment. In Simulation
News Europe, 44/45, December 2005

e Peter Fritzson, Adrian Pop, Peter Aronsson. Towards Comprehensive
Meta-Modeling and Meta-Programming Capabilities in Modelica (Con-
ference paper) 4th International Modelica Conference (Modelica2005),
7-9 March 2005, Hamburg, Germany

e Kaj Nystrom, Peter Aronsson, Peter Fritzson. Parallelization in Mod-
elica (Conference paper) 4th International Modelica Conference, March
2005, Hamburg Germany

22 CHAPTER 1. INTRODUCTION

e Kaj Nystrom, Peter Aronsson, Peter Fritzson. GridModelica - A Mod-
eling and Simulation Framework for the Grid (Conference paper) Pro-
ceedings of the 45th Conference on Simulation and Modelling, (SIMS’04)
23-24 September 2004, Copenhagen

e Peter Fritzson, Vadim Engelson, Andreas Idebrant, Peter Aronsson, Hakan
Lundvall, Peter Bunus, Kaj Nystrom. Modelica A Strongly Typed Sys-
tem Specification Language for Safe Engineering Practices (Conference
paper) Proceedings of the SIMSafe 2004 conference, Karlskoga, Sweden,
June 15-17, 2004

e Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards Comprehen-
sive Meta-Modeling and Meta-Programming Capabilities in Modelica.
In Proceedings of the 4th International Modelica Conference, Hamburg,
Germany, March 7-8, 2005.

e Peter Fritzson, Peter Aronsson, Peter Bunus, Vadim Engelson, Levon
Saldamli, Henrik Johansson, Andreas Karstrom. The Open Source Mod-
elica Project (Conference paper) Proceedings of the 2nd International
Modelica Conference. Oberpfaffenhofen, Germany, March 18-19, 2002.

Other

e Peter Aronsson. Automatic Parallelization of Simulation Code from
Equation-Based Simulation Languages (Licentiate thesis) Linkoping Stud-
ies in Science and Technology, Thesis No. 933, Linkopings Universitet,
April 2002

Chapter 2

Automatic Parallelization

This chapter describes tools and techniques for automatically parallelize pro-
grams. This includes data structures for representing programs, analysis tech-
niques and algorithms, clustering and scheduling algorithm and code genera-
tion techniques.

2.1 Task Graphs

To analyze and detect what pieces of a program can be executed in parallel
an internal representation of the program code is needed. Source-to-source
restructurers commonly use Abstract Syntax Trees (AST) as internal repre-
sentation of computer programs together with other data structures for spe-
cific program optimizations. For instance, to perform global optimization a
program dependence graph is used and for instruction scheduling a data de-
pendency graph with nodes being individual CPU instructions can be used.

In automatic parallelization a task graph can be used for the analysis of
programs. A task graph is a Directed Acyclic Graph (DAG), with costs asso-
ciated with edges and nodes. It is described by the tuple

G=(V,E,c,T) (2.1)
where
e 1 is the set of vertices (nodes), i.e., tasks in the task graph.

e [is the set of edges, which imposes a precedence constraint on the tasks.
An edge e = (v1,v2) indicates that node v; must be executed before vy
and send data (resulting from the execution of v1) to va.

24 CHAPTER 2. AUTOMATIC PARALLELIZATION

Figure 2.1. Task graph with communication and execution costs.

e c(e) gives the cost of sending the data along an edge e € F.
e 7(n) gives the execution cost for each node v € V.

Figure 2.1 illustrates how a task graph can be represented graphically. Each
node is split by a horizontal line. The value above the line represents a unique
node number and the value below the line is the execution cost (7). Each edge
has its communication cost (¢) labeled close to the edge.

A predecessor to a node n is any node in the task graph that has a path to
n. An immediate predecessor (also called parent) to a node n is any node from
which there is an edge leading to n. The set of all immediate predecessors of
a node n is denoted by pred(n), while the set of all predecessors of a node n
is denoted by pred™(n). Analogously, a successor to a node n is any node in
the task graph that has a path from n to that node. An immediate successor
(also called child) is any node that has an edge with n as source, and the set
of all immediate successors of a node n is denoted by succ(n). Similarly the
set of all successors is denoted succ™(n).

A join node is a node with more than one immediate predecessor, illus-
trated in Figure 2.2(a). A split node is a node with more than one immediate
successor node, see Figure 2.2(b).

The edges in the task graph impose a precedence constraint: a task can
only start to execute when all its immediate predecessors have sent their data
to the task. This means that all predecessors to a node has to be executed

2.1. TASK GRAPHS 25

AN

) A join node (b) A spht node

Figure 2.2. Graph definitions

before the node itself can start to execute. In the case when an adjacent node
executes on the same physical processor no sending of data is required.

Since the task graph representation is used in this research problem as an
input for the scheduling and clustering algorithms the research problem can
be generalized to partition any program that can be translated into a task
graph. Thus, the algorithms and results given in this thesis can be useful for
scheduling sequential programs of any type of scientific computations, given
that the programs can be mapped to a task graph.

2.1.1 Malleable Tasks

Sometimes it can be useful to model a task that can be executed on several
processors as a single task. For instance a task that has no internal static
representation in the form of a task graph but has a parallel implementation
that can run on several processors could be represented as a malleable task.
A malleable task n,, is a task that can be executed on one or on several
processors. It has an execution cost function taking the number of processors
into consideration, see Equation 2.1.1. This function is always decreasing, since
the execution time when increasing the number of processors is decreasing!

T(Nm) = T (P) (2.2)

Here P is the number of processors the task will execute on.

By introducing malleable tasks into task graphs one can generalize the
usage of task graph in static scheduling, where the task graph is built at
compile time and mapped onto a fixed number of processors. With malleable
tasks scheduling decisions that must be delayed until runtime, i.e., dynamic

1If the execution time does not decrease by adding more resources/processors, the lowest
execution time is gained by only using a subset of the allocated processors.

26 CHAPTER 2. AUTOMATIC PARALLELIZATION

scheduling, can still be partly handled by a static scheduling approach. The
prerequisite being that the number of processors for each malleable task can
be set during static analysis.

In this thesis work, malleable task are used for solving linear and non-linear
systems of equations, see Chapter 6.

2.1.2 Graph Attributes For Scheduling Algorithms

Scheduling algorithms map the task graph onto a set of processors by using
values, or attributes, mostly associated with the nodes of the task graph. Some
attributes are used by several algorithms. Others are specific to one particular
algorithm. This section defines a subset of such attributes commonly used in
the literature.

The most important attribute of a task graph is its critical path. The
critical path of a task graph is its longest path. The length is calculated by
accumulating the communication costs ¢ and the execution costs 7 along a path
in the task graph. For instance, the critical path in Figure 2.1 is indicated by
the thick edges of the task graph, which has a critical path length of 32. The
term parallel time is also often used for the critical path length [7, 81, 88],
and is used as a measure of the optimal parallel execution time. Another term
used for the critical path is the dominant sequence, used in for instance [88].

The level of each task, i.e., of each node in the graph, is defined as:

0 ;pred(n) =0

level(n) = { max, .. (level(k) + 7(k) + c(k,n)) ,pred(n) # 1] (2.3)
The level of a node is thus the longest path (following edges in opposite direc-
tion) from the node itself to a node without predecessors, and accumulating
execution costs and communication costs along the path. The level can also
be defined in the inverse way as in Equation 2.4 and is then referred to as the
bottom level. In these cases the first level definition is referred to as the top
level.

(0 , succ(n) = ()
blevel(n) = { max (level(k) + 7(k) + c(k,n)) , succ(n) # 0

k€suce(n)

(2.4)

The relation between the critical path and the level attribute is that for a
node on the critical path, the successor with the maximum level will also be
on the critical path.

Another pair of important attributes used in many scheduling algorithms,
with some varieties regarding the definitions, are the earliest starting time and
latest starting time of a node. Other references use different names, such as
ASAP (As Soon As Possible) time and ALAP (As Late As Possible) time [87].

2.1. TASK GRAPHS

27

We use the terms est(n) and last(n) and the definitions found in [17], which

will later be used when explaining the TDS algorithm in Section 2.5.1.

est(n) — { 0 ,pred(n) =0
minke;:red(n) maxleprsd(n),k#l (eCt(l)7 eCt(k) + Ck;’n) 7pred(n) # (Z)
(2.5)
ect(n) = est(n) + 7(n) (2.6)
fpred(n) =max,_,, ..., (ect(k) + ckn) (2.7)
ect(n) , suce(n) =
lact(n) = min min (last(k) — cp i, min(last(k
() stucc((n),k;éfpr(ed(n)() ke‘;ucc(n),k(:fpre(d()n)))) ,SUCC(TL) 7é
(2.8)
last(n) = lact(n) — 7(n) (2.9)

e cst(n) is the definition for the earliest starting time for node n, which

means the earliest possible starting time of a node, considering the prece-
dence constraint and the communication costs. It is defined in Equa-
tion 2.5.

ect(n) is the earliest completion time for node n, which is defined as the
earliest starting time plus the execution time of the node. The definition
of the earliest starting time assumes a linear clustering approach, i.e.,
if the first predecessor of a node is scheduled on the same processor as
the node itself, then the rest of the predecessors to the node will not
be scheduled on the same processor. This is why the definition, see
Equation 2.6, takes the maximum value of the ect value of one successor
and the ect value plus the communication cost for another successor.

last(n) is the latest (allowable) starting time of a node n, i.e., the latest
time a node has to start executing to fulfill an optimal schedule, as
defined in Equation 2.9.

lact(n) is the latest allowable completion time for a node n, i.e the latest
time a node is allowed to finish its execution. The definition is found in
Equation 2.8.

e fpred(n) is the favorite predecessor of a node n, see Equation 2.7, used

in the TDS algorithm. It is the predecessor of a node which finishes
execution last among all predecessors, thus should be put on the same
processor as the node itself to reduce the parallel time.

28 CHAPTER 2. AUTOMATIC PARALLELIZATION

The difference of the latest allowable starting time and the earliest starting
time of a task is sometimes referred to as the scheduling window for the tasks.
If the window is large the scheduler has many alternatives of scheduling that
particular task. However, if the scheduling window is small, as for tasks on the
critical path, the scheduler has less opportunity of moving that task around
in time when trying to schedule the task graph.

2.2 Parallel Programming Models

Creating parallel programs, whether it is performed automatically by a tool or
manually by a developer or a team of developers, is an complicated and error-
prone process. It is often difficult for a developer to estimate the structural
or computational complexity of the parallel program he/she has written. By
having a parallel programming model to follow, the programmer can be guided
both in the design and the implementation of his/her parallel program, and
obtain a model over the complexity of the program with regards to time and
memory consumption for different multiprocessor architectures as well as for
problem instances of varying size.

There are several factors to consider, when choosing a parallel programming
model. For instance, how complicated should the model be? Each model
is a simplification of the real world. Some programming models which are
particularly simple may give large errors in comparison to real world examples.
For manual parallel program development one must also consider how easy
the model is to comprehend and use for implementation of parallel programs.
Since parallel programming is complicated and error prone, it is important
that the programming model be simple enough to minimize the effort needed
for developers to implement and understand their parallel programs.

The parallel programming models are also important for automatic par-
allelization. Many of the programming models also include a cost model for
the computational complexity of the program. These cost models are com-
monly used in parallelization tools to guide the decisions of the scheduling
and clustering algorithms.

The following sections present some of the most common parallel program-
ming models.

2.2.1 The PRAM Model

The Parallel Random Access Machine (PRAM) model [24] is a simple pro-
gramming model and also the most popular one, at least if one considers pub-
lications of multiprocessor scheduling algorithms. Its popularity is due to its

2.2. PARALLEL PROGRAMMING MODELS 29

simplicity, all global data is instantly available on all processors. This is a pow-
erful simplification which can lead to large errors when comparing the model
with reality. The PRAM model divides a parallel computation into a series of
steps, where each step can be either a read or write operation between local
and shared memory or an elementary operation with operands from the local
memory. There are also model refinements within the PRAM model based
on the strategy taken when two processors access the same shared memory.
For instance, the PRAM-Concurrent Read, Concurrent Write (CRCW) model
allows both concurrent reads and concurrent writes of shared memory. Con-
current writes to the same memory address leads to conflicts. These can be
resolved in different ways, for instance by giving each processor a priority and
letting the processor with the highest priority write to the memory address.

The greatest advantage, and the reason for the popularity of the PRAM
model, is its simplicity. However, simplicity is also its major drawback. The
communication cost is neglected, which often leads to large differences between
the model and the reality.

2.2.2 The Logp Model

The Logp model [15] is more sophisticated than the PRAM model. Its name
is composed from the four parameters of the model.

e Latency, L
The latency is the fixed size independent time delay involved when send-
ing a message from one processor to another. For instance, when sending
data between two processors connected through an Ethernet based net-
work, one term of the latency is proportional to the length of the physical
cable connecting the two computers.

e Overhead, o

The overhead of sending a message between two processors is the extra
time needed for preparing the sending of the message. Such prepara-
tions can be for instance be copying of data into send buffers, calling of
send primitives in a communication API, etc. This parameter can vary
depending on the underlying architecture. For instance, if the commu-
nication is performed by a co-processor the overhead is lower compared
to the case when the communication must be handled by the main pro-
cessor itself. During the overhead period of time, the processor is busy
and can not perform other tasks.

e Gap, g
The gap is defined as the time interval between two consecutive sends (or
receives) of messages. This parameter can be motivated if for instance

30 CHAPTER 2. AUTOMATIC PARALLELIZATION

a co-processor handles the communication and it is busy some period
of time after a message sending request has been received. During that
time, additional requests have to be postponed, thus giving a gap time
between consecutive sends.

e Processors, p
The last parameter defines how many processors the problem is parti-
tioned for.

The model also includes a capacity limit on the connecting network. A maxi-
mum of [L/g] messages can be sent between processors at the same time.

2.2.3 The BSP Model

In the Bulk-Synchronous Parallel (BSP) model [82] all tasks (processors) syn-
chronize at given time steps. Between these steps each processor performs
individual work only on local data. At each synchronization step, global com-
munication between processors occur. The time between two synchronization
steps is called a super-step. The BSP model defines a computer as a set of com-
ponents, each consisting of a processor and local memory, connected together
through a network. The BSP model has the following parameters:

o P
The number of processors.

ol
The cost of performing a barrier synchronization is given by the param-
eter 1.

°g
The parameter g is associated with the bandwidth capacity. It is defined
such that g - h is the time it takes to communicate (i.e., either send or
receive) h messages.

The total execution cost of a super-step, using the parameters above, is
l+ x4+ g-h, where x is the maximum execution cost among the processors
within the super-step and h is the maximum number of messages sent or
received by one of the processors.

2.2.4 The Delay Model

The models mentioned so far have a stronger focus on data parallel programs
than task parallel programs. For task parallel programs there is a simple
model called the Delay model, which corresponds to the task graph model

2.8. RELATED WORK ON TASK SCHEDULING AND CLUSTERING 31

described earlier in Section 2.1. Some authors instead use the term macro
data flow model, for instance in [81]. The delay model has a task graph where
a communication cost, i.e., a delay cost, is associated with each edge. This
model is the most common for scheduling and partitioning of task graphs, even
if alternative models for scheduling and clustering algorithms are starting to
appear in literature, like for instance the Logp model.

2.3 Related Work on Task Scheduling and Clus-
tering

During the past three decades extensive research has been made in the area
of scheduling and clustering of parallel programs for execution on multipro-
cessor architectures. FEarly research in the area focused on simple parallel
programming models with many restrictions on the models. Over the years,
these early restricted models have become more precise and therefore also
more complicated. More efficient scheduling and clustering algorithms have
also been developed. The following two sections introduce some of the many
scheduling and clustering algorithms found in literature and explain common
techniques used in these scheduling and clustering algorithms.

2.4 Task Scheduling

A task scheduling algorithm traverses the task graph (a directed acyclic graph,
DAG), as defined in Section 2.1. The output of the algorithm is an assignment
of each node n € V to a processor, and a starting time of each node i.e., a
partial order of the nodes in the graph. The general case of the task scheduling
problem has been proved to be NP-complete [80], thus it is often required to
use heuristics in scheduling algorithms.

The scheduling problem usually has some other constraints except for the
task graph itself. Many scheduling algorithms assume that once a task has
started executing it will continue until its termination, i.e., so called non-
preemptive scheduling. The opposite, that a task can be interleaved with
execution of other tasks or even migrate to other processors, is called preemp-
tive scheduling. In this thesis we only consider the first case, non-preemptive
scheduling.

Some classes of scheduling algorithms can schedule the DAG for any given
number of processors, whereas other algorithms require an unlimited number
of processors. An unlimited number of processors as a requirement means
that the number of processors available can not be specified as an input to
the algorithm. Thus the processor requirement varies over different problem

32 CHAPTER 2. AUTOMATIC PARALLELIZATION

instances. This is often referred to as scheduling for a set of virtual processors.
There are even algorithms for a specific number of processors, e.g. there exist
a polynomial time optimal scheduling algorithm for two processors [13].

2.4.1 Classification

There are many ways to classify task scheduling algorithms. One classifica-
tion scheme that covers a broad area is given in [12]. It gives a hierarchical
categorization of the algorithms, see Figure 2.3. At the top classification level,
algorithms belong to one of two categories, local scheduling or global schedul-
ing. Local scheduling involves scheduling of tasks locally on one processor,
while global scheduling considers the scheduling problem involving multiple
processors. Furthermore, global scheduling can be subdivided into static and
dynamic scheduling. In this work we have so far only considered static schedul-
ing, i.e., the scheduling takes place at compile time. Static scheduling is further
sub-categorized into optimal and suboptimal scheduling.

The suboptimal category contains two subcategories, heuristic and approz-
imate scheduling. The difference between the two is that heuristic scheduling
algorithms tend to use heuristic parameters to control the scheduling behav-
ior whereas approximate scheduling algorithms instead can use a more ad-hoc
method of finding a good enough solution. Approximate scheduling algorithms
can be of four different kinds: enumerative, graph-theory, mathematical pro-
gramming, and queuing theory. These four classifications are also used for
subdividing the optimal static scheduling algorithms.

The contributions in this thesis mainly belong to the graph theory sub-
optimal category.

2.4.2 List Scheduling Algorithms

The list scheduling technique has been extensively studied in the literature [28,
36, 65, 66, 74]. The list scheduling algorithms belong to the heuristics category
in the classification scheme given in section 2.4.1. Thus, list scheduling is a
suboptimal static scheduling technique. This is illustrated when studying list
scheduling in closer detail.

All list scheduling algorithms keep a list of tasks that are ready to be
scheduled, often called the ready-list. The ready-list contains all task nodes
that are free, which means that all predecessors of the node already have
been scheduled. In each step of the algorithm, a heuristic assigns a priority
to each task node in the ready list and chooses one of the nodes with the
highest priority value to be scheduled for execution on one of the processors.
A common parameter that is included in the heuristic is the (bottom) level of
the node, see Equation 2.4. If the bottom level of a node has a high value,

2.4. TASK SCHEDULING 38

T

Global Local

Static Dynamic

Optimal Sub-optimal
- Enumerative
- Graph theory
- Math prog. Approximate peristic
-Queuing theory - Enumerative
- Graph theory
- Math prog.
-Queuing theory

Figure 2.3. An hierarchical classification scheme of task scheduling algo-
rithms.

there are many computations to be performed after the node has finished its
execution. Therefore, that task node should be given a higher priority when
choosing task nodes from the ready list, compared to another task node with
a much lower level value.

When a task node has been scheduled it is removed from the ready list
and potential successor nodes to the scheduled task node are added. The
algorithm terminates when the ready list is empty, i.e., all task nodes have been
scheduled. For instance, consider the example in Figure 2.1 to be scheduled
using a list scheduler. Figure 2.4 shows how it could be scheduled and how
the ready queue gets populated with new task nodes ready to be scheduled.

Note that list scheduling is a compile-time scheduling technique, i.e., all
scheduling is performed before execution starts. There are also dynamic tech-
niques very similar to the list scheduling, like for instance dynamic load balanc-
ing and dynamic list scheduling algorithms. They often have a load-balancing
heuristic that tries to balance the execution load among all processors of the
parallel computer.

The ERT Algorithm

One well-known list scheduling algorithm is the Earliest Ready Task (ERT)
algorithm [36]. As for all list scheduling algorithms the algorithm starts by

34 CHAPTER 2. AUTOMATIC PARALLELIZATION

!
—

y 1 23

U Ready queue Ready queue

A i B P Py

) Task graph (b) Schedule initial state (c) Schedule step 1
P A P A B A
11] 11]]]
13] 13] 13]
- J 6 . J 6 -
a 2 i 2 i 2
1 . . E 1 15
. - - 1 - 1
i i i 7 i 7
. - - - 8 -
45 8
Ready queue Ready queue Ready queue
(d) Schedule step 4 (e) Schedule step 7 (f) Schedule step 8

Figure 2.4. The work of a list scheduling algorithm

2.4. TASK SCHEDULING 35

putting all tasks without any predecessors in the list of tasks ready to sched-
ule. The next step in the algorithm is to calculate (for each processor) the
earliest starting time (called ready time) for all tasks in the ready list. This is
done by taking the maximum finishing time F'(k) added to the communication
time among all parents of the task. This calculation is shown in Equation 2.10
according to [36]. In the ERT algorithm, the communication cost is divided
into two parameters: the first parameter is the size of the message sent be-
tween tasks, d(k,n) in Equation 2.10. The second parameter, tcomm (P, P;j),
is the time per data size unit required to send one message from processor
P; to processor P;. Finally, the Alloc function in Equation 2.10 performs the
allocation of a task, returning a processor number.

X (n, P;) = max (F(k) + d(k,n) * teomm (Alloc(k), P;)) (2.10)

kepred(n)

However, the calculation of the ready time X (n, P;) above can not always
be fulfilled, since no check if the processor is available is performed, i.e., it is
not known whether the processor already have a task scheduled for execution
at that point in time. Therefore, once the ready time has been calculated for
all processors(X (n, P;)), the real ready time is calculated by considering if
each processor is available or not, as performed in Equation 2.11.

R(n, P;) = max(Avail(P;), X (n, P;)) (2.11)

Then, the processor giving the earliest starting time is calculated for each task,
see Equation 2.12 (m is the number of processors).

R(n) = min R(n, P;) (2.12)

je{1,..,m}

Once all these calculations have been performed, the task to choose from
the ready list can be calculated. We simply choose the task from the ready
list with the minimum value for R, and allocate it to the processor for which
that minimal value was achieved. Thus, the ERT algorithm is greedy in the
sense that is always selects the task which has the minimal ready time.

The complexity of the ERT algorithm is shown in [36] to be O(mn?), for
m processors and n tasks in the task graph.

The ERT algorithm has some heterogeneous features. The communication
costs between processors can be set individually, allowing for a somewhat more
flexible network. It is however uncertain if the algorithm performs well for real
heterogeneous multiprocessor systems, since different processor speeds is not
supported.

36 CHAPTER 2. AUTOMATIC PARALLELIZATION

2.4.3 Graph Theory Oriented Algorithms with Critical
Path Scheduling

Another category of static scheduling algorithms is the group of graph theory
oriented algorithms. In this class of algorithms we find techniques such as
critical path scheduling [60] and several clustering approaches [16, 39)].

The critical path scheduling technique identifies the critical path of the task
graph, see Section 2.1.2. Then it schedules all task nodes on the critical path
on one processor. After the nodes on the critical path have been scheduled
onto the same processor, the communication costs between the nodes on the
critical path becomes zero. Hence, after the scheduling of the nodes on the
critical path, a new critical path will appear in the task graph. The algorithm
will then schedule this critical path onto the next processor, and so on.

2.4.4 Orthogonal Considerations

The classification scheme presented in section 2.4.1 does not cover all aspects
of scheduling algorithms. There are some features that are orthogonal to the
classification scheme. However, these considerations are important in this work
and are therefore explained in detail below.

Task Replication

One approach for improving the efficiency of a scheduling algorithm that has
increased in popularity over the past decade is to employ task replication as
a means of reducing the communication cost [17, 34, 41, 58]. The use of
task replication to reduce the total execution time of a parallel task graph is
illustrated in Figure 2.5.

For certain applications where the cost of communication is far from negli-
gible, replicating a task to several processors can decrease the execution time
significantly [34]. A drawback of using task replication in a scheduling algo-
rithm is that it increases the time complexity of the algorithm. The increase
can be substantial. For instance, the CPFD algorithm[34] has a time complex-
ity of O(n%).

Granularity

An important metric for task graphs with communication costs as defined
in 2.1 is the granularity of the graph. The literature also contain variants of
the definition of granularity [34, 40, 56]. For instance, another variant is to
take the average values for the communication and execution costs. Other
authors use the term Communication to Computation Ratio (CCR) instead

2.4. TASK SCHEDULING 37

P1 P1 P2

P2

(a) Three tasks assigned to two ~ (b) Three tasks assigned to
processors without replication. two processors with task a
replicated.

Figure 2.5. Using task replication to reduce total execution time.

of granularity [34]. The granularity g is defined by Equation 2.13, i.e., the
maximum execution cost of a node divided by the minimum communication
cost of an edge:

max, _, 7(v)

= 2.13
9= nin,_, o(e) (2.13)

This definition has some limitations. It does not allow communication
costs to be zero (which gives infinite granularity). Therefore, several alter-
native definitions are available, taking the average values instead of min and
max, calculating granularity for each task node of the graph, etc. 'However,
in this research problem, the definition works fine since we do not consider
communication costs to be zero for any edge. Note that scheduling algorithms
might set communication cost to zero but that does not affect the original task
graph, for which the granularity is defined.

The granularity factor is an important metric for task graph scheduling.
A fine grained task graph, i.e., when the granularity value is low due to large
communication costs and small execution costs, the scheduling algorithm must
take a large responsibility for preventing communication when possible. One
approach might be to apply task replication to prevent communication. An-
other way of handling the problem is to increase the granularity of the task
graph. One such method is called grain packing. Grain packing is a method
for increasing the granularity of the task graph by merging tasks [31], see also
Section 2.6.

38 CHAPTER 2. AUTOMATIC PARALLELIZATION

Task Graphs With Fixed Structure

Many scheduling algorithms have certain properties for specific structures of
task graphs. For instance, a common structure of a task graph is a task graph
that is an out-tree. Out-trees have one node with no predecessor, the successors
of the node are all independent, each of them with their own independent
successors, and so on. Scheduling and clustering algorithms can for instance
take advantage of such task graphs not having join nodes, and thereby perform
a better schedule compared to arbitrary task graphs.

2.5 Task Clustering

Task clustering algorithms perform part of the work of a scheduling algo-
rithm. A cluster is a set of tasks, designated to execute on the same processor.
The goal of a task clustering algorithm is to reduce the critical path of the
scheduling algorithm by explicitly assigning nodes to clusters, reducing the
communication costs to zero for edges with both nodes in the same cluster.

The execution order within the cluster does not necessarily need to be
determined, except of course that it must fulfill the precedence constraints
imposed by the edges of the task graph. The algorithm does not determine
when the nodes in the cluster starts to execute. Thus, in order to achieve
the same function as a task scheduling algorithm, a task clustering algorithm
needs to be followed by a second phase, which usually is a simple list scheduler.

However, some clustering algorithms can constrain the scheduling order
by introducing additional data dependency edges in the task graph, giving
the scheduling algorithm that follows task clustering an easier problem to
solve. One such algorithm is the DSC algorithm, explained in further detail
in Section 2.5.3.

2.5.1 TDS Algorithm

The TDS (Task Duplication based Scheduling) algorithm is a linear clustering
algorithm, with task replication [17] Linear clustering means that the algo-
rithm only assigns one predecessor of a node to the cluster containing the
node itself. Thus, the clusters form linear paths through the task graph. Due
to the linear clustering technique of the TDS algorithm, it needs to be fol-
lowed by a second scheduling or mapping phase that maps the assignments to
physical processors.

The first step in the TDS algorithm is to calculate the earliest starting time
(est) and the latest allowable starting time (last), and some other additional
parameters for each node is the task graph. Among these parameters is a

2.5. TASK CLUSTERING 39

favorite predecessor assignment for each node. The favorite predecessor is the
predecessor with the maximum ect (earliest completion time) value plus the
communication cost, defined in Equation 2.7.

The linear clustering is performed by following the favorite predecessors
(fpred) of the nodes backward up through the task graph, and assigning the
collected tasks among the traversed path to a processor.

When following predecessors up through the task graph, eventually a node
which has already been assigned to a processor will be considered. The TDS
algorithm will then check if the task is critical or not. A task is x is critical for
a predecessor task, y if Equation 2.14 is fulfilled. This constraint says that a
predecessor task y is critical to a task x if the effect of placing them onto two
different processors will invalidate the latest allowable starting time of task x
since the communication cost ¢, , will have to be considered, increasing the
latest allowable starting time (last(x)).

last(x) —lact(y) < czy (2.14)

The TDS algorithm will only replicate tasks that are critical, keeping the
number of replicated tasks low. If the favorite predecessor has already been
assigned to a processor, and it is not critical, the algorithm will follow another
predecessor when traversing the task graph upwards.

The computational complexity of the TDS algorithm is O(n?) for a task
graph with n tasks. If a cost relationship between the execution costs of tasks
and the communication costs of edges is fulfilled the TDS algorithm produces
the optimal schedule on an unlimited number of processors. However, this
cost relationship is in practice only fulfilled for coarse grained task graphs.
This makes it less suitable to be used directly on the fine grained task graphs
produced by the automatic parallelization tool in this research.

2.5.2 The Internalization Algorithm

A task clustering algorithm called internalization is presented in [81]. The
internalization algorithm is a task clustering algorithm which traverses all the
edges of the task graph and checks if internalizing the two tasks associated with
an edge will cause an increase in the total parallel execution time. Internalizing
two task means assigning them to the same processor, i.e., putting them into
a common cluster. This also means that the communication cost between the
two tasks are zero.

The edges are first sorted in descending order of communication cost.
Hence, the most costly edge is considered first. The algorithm checks if the
parallel time decreases when the edge is internalized. If so, the clustering of

40 CHAPTER 2. AUTOMATIC PARALLELIZATION

the two nodes is performed, otherwise not. This step is followed by a recal-
culation of the parallel time, along with calculation of other task attributes,
after which the algorithm continues with the next iteration.

The complexity of the internalization algorithm is O(n?), for a task graph
containing n nodes.

2.5.3 The Dominant Sequence Clustering Algorithm

Another task clustering algorithm specially designed for a low time complexity
is the Dominant Sequence Clustering (DSC) algorithm [88]. Similar to the
internalization algorithm it starts by placing each node in its own cluster. It
subsequently traverses all nodes in a priority based manner, merging clusters
and zeroing the communication label of edges as long as the parallel time of
the task graph does not increase. Zeroing an edge means that the clusters
where the two nodes resides are merged, hence making the communication
cost of the edge reduced to zero, i.e., the same as internalization of two tasks
as described in Section 2.5.2 above.

The simplified version of the algorithm (DSCI)is given in Figure 2.6. The
first step is to calculate the blevel for each node. The blevel is the longest path
from the node to an exit node, i.e., a node with no successors. Similarly, the
tlevel is the longest path from a node to a top node, which is a node without
any predecessors. This calculation is performed for all entry nodes of the task
graph.

algorithm DSCI(G = (V, E, 7,c) : graph)
Calculate blevel for all nodes
Calculate tlevel for each node n where pred(n) =
Assign each node to a cluster
UEG =V, EG =0
while UEG # () do
ny = free node with highest priority from UEG
Merge ny with the cluster of one of its predecessor such that tlevel(ny)

decreases in a maximum degree. If tlevel(ny) increases, do not perform the merge.

Update priority values for the successors of ny
UEG =UEG — {ny}
EG = EG + {’I’Lf}

end while

Figure 2.6. The simplified DSC algorithm, DSCI. UEG is the set of remaining
nodes and EG is the set of already completed nodes.

When the initial calculations have been performed, the main loop of the
algorithm can start. The first line of the loop identifies a free node with the

2.5. TASK CLUSTERING 41

highest priority.

A free node is a node for which all its predecessors already have been con-
sidered in earlier iterations, i.e n is free iff k € EG, Vk € pred(n). This
terminology is the same as is used for list scheduling algorithms, see Sec-
tion 2.4.2.

The priority which is used for selecting a task in the first step of the loop
is defined in Equation 2.15.

PRIO(ny) = tlevel(ny) + blevel(ny) (2.15)

Once a task node has been chosen, the clusters of the predecessors of the
node are considered for merging. The algorithm merges the cluster associated
with the chosen node, ny, with the cluster of the predecessor which will reduce
the parallel time to a maximum degree. The parallel time, PT is defined as:

PT =max,_, PRIO(n) (2.16)

veV

However, if the merge results in an increase of the parallel time, the merge
operation is aborted, leaving the cluster associated with ny as a unit cluster,
and the next iteration is performed.

The merging of two or more clusters means that all the nodes in each of the
clusters are put together into the same cluster. Additionally, when the merge is
performed, the edges between nodes in the same cluster are zeroed, i.e., their
communication cost become zero. The merge operation is also responsible
for adding pseudo edges such that each cluster has a determined schedule.
Figure 2.7 illustrates the addition of a pseudo edge. In order for the algorithm
to determine a schedule a pseudo dependency edge is added between task nodes
2 and 3, forcing the scheduler to schedule task 2 before task 3.

Finally, the algorithm terminates when all tasks have been examined, re-
sulting in a clustered task graph.

In [88] the initial version of the DSC algorithm is presented (also shown
in Figure 2.6) and weaknesses of that algorithm are identified, after which an
improved algorithm is designed. One weakness identified is that the initial
version of the DSC algorithm does not work well for join nodes. A join node is
a node with several incoming edges, i.e., several predecessors. The initial DSC
only clusters a join node with one of the predecessors. However, the optimal
solution could include merging several predecessors together with the node.

Also, the initial version was improved to consider partially free nodes as
being subject of selection when choosing nodes. A partially free node is a
node that has some of its predecessors considered, but not all. The reason for
considering these nodes is that if a partially free node that lies on the critical
path is not considered before other nodes, the non-critical path nodes could

42 CHAPTER 2. AUTOMATIC PARALLELIZATION

Step i Step i+1

Figure 2.7. The addition of pseudo edges when performing a DSC-merge. By
adding an edge from task node 2 to task node 3 the schedule becomes evident:
Task 2 is executed before task 3.

be merged such that the critical path is not reduced to a maximum degree,
see [88] for details.

One drawback with the DSC algorithm is that the clusters formed by the
algorithm do not imply that the nodes can be merged in a strong meaning, i.e.,
merged such that all communication of the merged task is performed before
and after the computation of the merged task. By merging nodes we normally
mean that the execution parts of the nodes to be merged are accumulated into
one task, with the all of the communication taking place strictly before and
strictly after the execution of the accumulated task. The DSC algorithm does
not support this. Instead the communication of data between a task inside
a cluster to a task outside the cluster must be performed immediately after
the execution of the task residing in the cluster. The clustered task graph in
Figure 2.8, also found in [88] shows this problem. The data produced by node
1 needs to be sent immediately to node 3, which belongs to another cluster.

The reason for the merge problem being a potential a drawback is that for
task graphs with high granularity value, a real merge including communication
is required to cluster several messages together. For fine-grained task graphs,
the communication cost is dominated by the latency. Thus, by merging several
messages together large improvements can be made. Related work of task
merging is discussed in more detail in the next section.

2.6 Task Merging

Task merging is stronger in the way tasks are joined compared to task clus-
tering. When tasks are clustered, they are only determined to be executed on

2.6. TASK MERGING 43

Figure 2.8. A task graph clustered by the DSC algorithm

the same processor, which means that the communication cost between tasks
belonging to the same cluster are zero. However, the communication of mes-
sages between tasks of the cluster and other clusters is still performed at the
task level. As soon as each individual task has executed, it individually sends
the messages to each of its successor tasks.

Task merging, on the other hand, performs a complete merge of the tasks,
by joining the work performed by each individual task into a single work item
and composing the in-going messages to the tasks in the cluster into a single
message, and the outgoing messages into another single outgoing message.
Figure 2.9 shows how a merge is performed. The cluster of tasks is merged
into a new task graph that still is a DAG.

The merging strategy can only preserve the DAG properties of the task
graph if some constraints are put on which tasks that can be merged. Since
the task graph can not contain any cycles, merging of two nodes that introduce
a cycle is not allowed. For instance, task a and ¢ in Figure 2.10 is not allowed
to be merged, since that will introduce a cycle in the resulting task graph.

2.6.1 The Grain Packing Algorithm

A combined scheduling and task merging technique called grain-packing is
presented in [31, 32]. The grain packing algorithm is designed to handle fine
grained task graphs, i.e., task graphs with high granularity. The grain-packing

44 CHAPTER 2. AUTOMATIC PARALLELIZATION

(a) The original task graph before the merge has (b) The resulting task
been performed. graph after merge.

Figure 2.9. An example of task merging.

algorithm is a complete scheduling algorithm, i.e., it schedules a fine grained
task graph onto a fixed number of processors.
The algorithm is divided into four steps, as explained in [32]:

e Building a task graph
The first stage is to build a fine grained task graph. This approach in
[32] builds the task graph at the expression level, as is done in this thesis
work.

e Scheduling
The fine grained task graph is then scheduled using a scheduler for a
fixed number of processors. In [32] a scheduling algorithm called Dupli-
cation Scheduling Heuristic (DSH) is used. The DSH algorithm has a
complexity of O(n?), where n is the number of tasks.

e Grain-packing
After the scheduling algorithm has executed, a grain packing algorithm
analyzes the schedule and tries to merge tasks together in order to reduce
the parallel time. The grain-packing also includes task replication, i.e.,
replicating grains from other processors to further reduce execution time.

2.6. TASK MERGING 45

Figure 2.10. Merging of two tasks (here task a and task b) that introduce a
cycle is not allowed.

e Code generation
Finally, code generation is performed based on the grains (merged tasks)
from the previous step.

The advantage of the grain-packing technique is that since the scheduling
algorithm works on the fine grained task graph, all possible kinds of parallelism
can be exploited. Thereafter, refinements of the schedule are performed, re-
sulting in a suitable grain size.

One disadvantage is that since the grain-packing is performed after schedul-
ing, the scheduling algorithm works on the large task graph which is only re-
duced after scheduling [32]. Therefore the quite computationally expensive
scheduling algorithm becomes the bottleneck of the scheduling problem. In
this thesis we propose to perform task merging prior to scheduling instead to
reduce the computational work of the scheduling algorithm.

2.6.2 A Task Merging Algorithm

In [7] a task merging algorithm is presented. The input to the algorithm is a
fine grained task graph, from which the algorithm produces a new task graph
which has a higher granularity value and fewer tasks. The complexity of the
task merging algorithm, or code partitioning algorithm which is the term used
in [7], is O(e - n?) for a task graph with n nodes and e edges.

The basic idea in the algorithm is to repeatedly choose a pair of tasks to
merge by using a heuristic. The parallel time, i.e., the length of the critical
path, is calculated provided the two tasks are merged. If the parallel time has
decreased since the last iteration, the merge is approved and the algorithm

46 CHAPTER 2. AUTOMATIC PARALLELIZATION

continues by choosing two new nodes using the heuristic. The heuristic is
based on a number of criterias. The most important criteria is that only
tasks connected by an edge will be subject to a merge operation. This is
obvious, since a merge of two tasks connected by an edge will not produce a
loss in parallelism in the resulting task graph, since the two tasks are already
sequential because of the edge.

Additional criterias are for instance if the edge connecting the two chosen
tasks belongs to the critical path of the task graph, or if the merge of the
edge connecting the two tasks introduces a cycle in the resulting task graph.
Introducing cycles can not be allowed. Therefore a merge of two tasks causing
a cycle can not be performed.

2.7 Conclusion

There is much related work in the literature on scheduling and clustering of
task graphs for multiprocessor architectures. When considering fine grained
task graphs with low granularity values (according to the definition of gran-
ularity given in Section 2.4.4), task clustering and task merging algorithms
are needed. Ordinary scheduling algorithms designed for coarse grained task
graphs does not work well for fine grained task graphs that are targeted in
this work. One such coarse grained approach, also targeting simulation code,
is described in [84].

Clustering and task merging algorithms often consist of several phases with
a normal scheduling algorithm as the final phase. Therefore, scheduling algo-
rithms combined with task clustering or task merging algorithms are needed
for scheduling a fine grained task graph for a multi processor architecture.

2.8 Summary

Automatic parallelization deals with the difficult task of trying to generate
parallel programs automatically from sequential computer programs. This is
performed by analyzing a sequential program and build a data dependency
graph of the program called a task graph. The task graph is given costs for
communication between tasks and execution costs of the tasks themselves.

Thereafter the multiprocessor scheduling problem deals with how to map
the task graph onto a parallel processor architecture by using several tech-
niques. First, a task clustering or task merging algorithm can be applied to
make the task graph more suitable and easier to schedule. In this phase the
number of processors is typically unlimited.

2.8. SUMMARY 47

The second phase is then to schedule the task graph onto a fixed number
of processors using any of the large number of scheduling algorithms presented
in the literature.

However, for fine grained task graphs most scheduling algorithms fail or
perform poorly. This is where this thesis work contributes by providing a
method of merging tasks and increasing the granularity in a task graph such
that after wards, any of the well-known scheduling algorithms can be used.

48

CHAPTER 2. AUTOMATIC PARALLELIZATION

Chapter 3

Modeling and Simulation

This chapter describes modeling of complex dynamic systems using equation
based languages such as Modelica and how these systems can be simulated.

3.1 The Modelica Modeling Language

This work uses powerful modeling and simulation technology for dynamic and
complex physical systems of several application domains. The best representa-
tive for this technology is the new modeling language Modelica [49], a modern
object oriented equation-based modeling language well suited for modeling of
large and complex physical systems using differential and algebraic equations
(DAEs).

3.1.1 A First Example

A trivial Modelica model with two variables and two ordinary differential equa-
tions (ODE) is given in Figure 3.1. The corresponding mathematical formu-
lation of the equations for this model is presented in Equation 3.1- 3.4.

() = dy(t) — =(t) (3.1)
g(t) = —2x(t) (32)
2(0) =5.2 (3.3)
y(0)=0 (3.4)

The variables are of the built-in type Real. The x variable has an optional
modification (start=>5.2) of the start! attribute, setting its initial value to 5.2

1Start values for variables in Modelica specify guesses for their initial values when the
simulation starts. Here this is at time=0, used to specify the initial conditions

50 CHAPTER 3. MODELING AND SIMULATION

compared to the default value of 0 for Real variables. The y variable has its
start value set to zero. After the variable declarations, an equation section
follows, specifying the two equations of the model. The der operator specifies
the derivative of a variable.

The solution from a simulation of a Modelica model contains a number of
functions of time. For each variable, and each derivative, a sequence of values
for different time steps is returned from the execution of the simulation. These
variables can then be plotted, or processed in other ways. For instance, the
value curve of the x and y variable from simulating the 0DE model for ten
seconds is plotted in Figure 3.2.

model ODE
Real x(start=5.2);
Real y(start=0);

equation
der (x)=4*y-x;
der (y)=-2xx;
end ODE;

Figure 3.1. A small ODE example in Modelica.

3.1.2 Basic Features

The basic building block in the Modelica modeling language is the class. Ev-
erything in Modelica is a class or instance of a class. For example, the model
definition above is in fact a so called restricted class using the keyword model
instead of class. Restricted classes are classes with imposed restrictions. For
instance, the restricted class connector can not contain any equations and the
restricted class package can only contain other classes and constants. Classes
can be instantiated inside other classes, enabling an hierarchical modeling
methodology. The end user can build complex models by instantiating classes
to create objects inside user defined model definitions and connecting these
objects together.

For example, consider the class definition of TinyCircuit below. It con-
tains declarations of two instances, named R1 and G. Each instance is also given
a corresponding comment, which is used as documentation. Modelica has sup-
port for documentation as part of the language (the grammar) on several places
in the syntax, e.g. at instance declarations, equations, and enumerations, etc.

model TinyCircuit

3.1. THE MODELICA MODELING LANGUAGE 51

e

G b o o B = oW

B

4 A L] 7 2 L] m

Figure 3.2. The plot of the solution variable x and y after simulating for 10
seconds.

Resistor R1 "The resistance in the Circuit";
Ground G "The ground element (V=0)";
end TinyCircuit;

The TinyCircuit model is far from a complete model, since we only cre-
ated two instances, but did not relate these to each other in any way. Each
instance is a variable which in turn can contain other variables and constants
(parameters), e.g. a resistor contains current and voltage variables and a re-
sistance R parameter. There is not yet any relation between the variables
of instance R1 and the variables of instance G. We therefore make a new at-
tempt at forming a simple circuit model, also using inheritance. A graphical
representation of this model is also shown in Figure 3.3.

model TinyCircuit2
extends TinyCircuit;
equation
connect(R1.n,G.p);
end TinyCircuit2;

This model inherits the instances (and equations) from the model TinyCircuit.
The next part of the model definition is an equation clause, where a connect

52 CHAPTER 3. MODELING AND SIMULATION

|

Figure 3.3. The TinyCircuit2 model in a graphical representation.

equation creates coupling equations from the Resistor component R1 with
the Ground component G, by referencing their internal connector components
n and p respectively.

The connectors are instances of a restricted class called connector, which
together with the connect operator constitutes the connection mechanism for
Modelica components. Instances of connector classes constitute the interfaces
of a component, i.e., how it connects to the outer world. A connector instance
contains variables used for communicating with other components. For in-
stance, when building models of electrical components a connector class for
electrical properties is needed. The Modelica standard library (MSL) [48] con-
tains two connector classes for simple electrical components (one for positive
pins and one for negative pins). The positive pin class definition is:

connector PositivePin
SIunits.Voltage v;
flow SIunits.Current i;
end PositivePin;

The electrical connector contains two variables, the voltage and the current.
When two or more connectors are connected using a connect equation, the
corresponding non-flow variables of the connectors are set equal. But if a

3.1. THE MODELICA MODELING LANGUAGE 58

connector variable is prefixed with the £1low keyword, these connector variables
are instead summed to zero. Thus, the voltages are set equal and the currents
are summed to zero in electrical connections, corresponding to Kirchhoff’s
laws.

Since many simple electrical components have two pins, this information
is collected into a class called OnePort?, which is a base class for electrical
components with two pins:

partial model OnePort
SIunits.Voltage v;
SIunits.Current i;
PositivePin p;
NegativePin n;

equation
V = p.v - n.v;
0 =p.1i+mn.i;
i=p.1i;

end OnePort;

The partial keyword indicates that the model (class) is an abstract class,
i.e., does not have a complete set of equations and variables and therefore can
not be simulated by itself since only partial information is given. This can
be determined by looking at the variables (v, i, p.i, p.v, n.i, n.v) and
the equations. There are five variables but only three equations, which makes
the system unsolvable (no unique solution can be found). The OnePort model
contains two variables for keeping the ”state” of the electrical component, the
current through the component and the voltage drop over it. It also contains
two connectors, which are instances of connector classes, one for the positive
pin (p) and one for the negative pin (n).

The OnePort base class can be inherited by many electrical components,
for instance an inductor, defined in the Modelica Standard Library as:

model Inductor

extends OnePort;

parameter SIunits.Inductance L=1;
equation

2The term OnePort is used by specialists in the electrical modeling community to denote
components with two physical connection points. This term can be confusing since the
ordinary English language meaning of port is as a kind of communication or interaction
point, and OnePort electrical components obviously have two ports or interaction points.
However, this contradiction might be partially resolved by regarding OnePort as a structured
port containing two subports corresponding to the two pins.

54 CHAPTER 3. MODELING AND SIMULATION

Lxder (i)=v;
end Inductor;

or Resistor, defined as:

model Resistor

extends OnePort;

parameter SIunits.Resistance R=1;
equation

v=Rx*1i;
end Resistor;

Once the basic electrical components have been described, which already
are provided in the Modelica Standard Library, most basic electrical circuits
can easily be modeled. For instance, the simple electrical circuit in Figure 3.4
has the following Modelica definition:

model DAECircuit
Resistor R1(R=100);
Resistor R2(R=470);
Capacitor C1(C=0.0001);
Inductor L1(L=0.001);
Ground Ground;
SineVoltage V(freqHz=50,V=240);

equation
connect(V.p, Rl.n);
connect(R1.n, Cl.n);
connect(Cl.p, R2.n);
connect (R2.n, Ground.p);
connect (L1.p, Ground.p);
connect(Ll.n, R1.p);
connect(Ll.n, R2.p);
connect (V.n, Ground.p);

end DAECircuit;

This model constitutes a complete Modelica model in the sense that it has
as many variables as equations and can therefore be simulated.
Arrays

Modelica also has support for multidimensional arrays. It is for example pos-
sible to declare an array of ten Real numbers as follows:

3.1. THE MODELICA MODELING LANGUAGE 59

.1
b !

C1

R2

T
1
ground

Figure 3.4. An electrical circuit resulting in a DAE problem.

model Arrayl
Real[10] x=£i11(0,10);
end Arrayl;

The £i11 function is a built-in function, here used to create an array of
size 10 containing zeros.

However Modelica allows dimensionality on all components, not just the
built-in types. It is therefore possible to make arrays of components and
connect these together using a for equation. First, if we consider a model with
5 connected resistors that inherits a OnePort, giving the model two electrical
connector instances, p and n, as shown graphically in Figure 3.5, it can be
written as:

model FiveSerialResistors
extends OnePort;
Resistor r1,r2,r3,r4,r5;

equation

connect(p, R1l.p)

connect(rl.p, r2.n);

connect(r2.p, r3.n);

connect(r3.p, r4d.n);

50 CHAPTER 3. MODELING AND SIMULATION

connect(rd4.p, r5.n);
connect (r5.n, n);
end FiveSerialResistors;

Figure 3.5. An electrical circuit resulting in a DAE problem.

By instead making an array of components and write a for equation that
expands into corresponding connect equations a more flexible model with
varying number of resistors is achieved:

model SerialResistors
extends OnePort;
Resistor Rx[n] (each R=1);
parameter Integer n=10;

equation
for i in 2:n-1 loop

connect (Rx[i].p, Rx[i+1].n)

end for;
connect (Rx[1].p, p);
connect (Rx[n] .n, n)

end SerialResistors;

The third line on the model above has an array of Resistor instances of
size n, which is a parameter to the model, defined one line 4. This example
shows that it is possible to use a variable before it is declared in Modelica.
The Resistor declaration on line 3 has a modifier (each R=1). A modifier
in Modelica can be a simple change of value on e.g. a parameter, or it can be
more powerful constructs, such as changing a local class definition or changing
the type of a declaration. In the modifier to the array of components (each
R=1) the each keyword is used to give each component element of the array the
modifier R=1. The equation section consist of a for loop that loops trough all
interleaving connections making a connection between each subsequent pair of

3.1. THE MODELICA MODELING LANGUAGE 57

components. The two ends of the chain of components is finally connected to
the interface of the component (n and p).

Creating arrays of components in Modelica is a powerful modeling tech-
nique for describing discretized one-dimensional PDEs (Partial Differential
Equations) using Modelica by making a discretization of the PDE into an
ODE/DAE in its length dimension. This can be used in several different mod-
eling domains, like for instance heat transfer, thermo-fluid and mechanical
domains. This modeling capability is important in the context of this thesis,
since it often leads to substantial opportunities for parallelization. The mod-
eling technique can also be used for two- and even three dimensional PDEs
that are discretized and translated into ODE/DAEs.

Functions

Functions are a fundamental part of the Modelica language. A Modelica func-
tion has a similar syntax as a class with input and output formal parameters
and a function body starting with the algorithm keyword. A Modelica func-
tion can not contain equations and is side-effect free,i.e., a function is always
produces the same outputs given the same input argument values. This prop-
erty is important when performing equation optimizations later on, to be able
to move the function call around when sorting equations, etc.
A Modelica function typically looks like this:

function scalarProd
input Real ul:];
input Real v[size(u,1)];
output Real res;
protected
Integer i;
algorithm
res:=0;
for i in 1:size(u) loop
res:=res+uli]*v[i];
end for;
end scalarProd;

This function, performing a scalar product between two vectors, takes two
vectors (u and v) of the same size as input. The size of the first vector u is
arbitrary (using ’ :’ for any size), but the second input parameter has the same
size as the first one. This function only gives one parameter as output value
of the function, even though Modelica allows several output parameters. The
function also has a local variable, defined in a protected section. The function

58 CHAPTER 3. MODELING AND SIMULATION

body is defined in an algorithm section. Here it consists of two statements,
one assignment and a loop, which itself includes (the accumulative) statement
of calculating the scalar product.

Modelica functions is a necessity for modeling in a convenient way. They
can be used for table lookup, interpolation of measured data, linear algebra
calculations, conversion functions, etc.

It is also possible to have external functions in Modelica. The current
specification allows interfacing with Fortran77 and C. To declare an exter-
nal function in Modelica the external clause is used, instead of the usual
algorithm section:

function dgesv "Solve real system of linear equations "+
"A*X=B with a B matrix"
input Real A[:, size(A, 1)];
input Real B[size(A, 1), :1;
output Real X[size(A, 1), size(B,2)]=B;
output Integer info;
protected
Real Awork[size(A, 1), size(A, 1)]=A;
Integer ipiv[size(A, 1)];

external "FORTRAN 77" dgesv(size(A,1), size(B,2), Awork,
size(A,1), ipiv, X,
size(A,1), info);
end dgesv;

This function declares the dgesv external function from the LAPACK li-
brary, which solves a system of linear equations on the form A*xX=B for a matrix
B.

Since Modelica functions are part of almost all models, they are important
in the automatic parallelization tool as well.

3.1.3 Advanced Features for Model Re-Use

To enhance the component based modeling approach and to attract end users
to re-use already developed classes, the Modelica language has several features
for allowing reuse of classes.

e Inheritance
A class can inherit equations and variables from a base class. Local
classes are also inherited, making them accessible from the scope of the
subclass.

3.1.

THE MODELICA MODELING LANGUAGE 59

Redeclarations

The type of an instance can be replaced by a new type using redeclara-
tions. A redeclaration in a class can ,by using a redeclare modifier, be
replaced by a new declaration with the same name. This is illustrated
in the circuit example below.

Redeclaration allows for later usages of a class to reuse the structure but
replacing the type of the component. This is useful to increase the re-use
by allowing to replace a component with a compatible (subtype of) one.
For instance, by declaring a resistor component in a small circuit replace-
able it can later on be redeclared to have the type TemperatureResistor
which then is a refinement of the Resistor model giving a more accurate
model. Thus, redeclarations is one way of controlling the level of detail
of the model.

Modifications

A class or an instance of a class can be modified using a list of mod-
ifications, changing e.g. parameter values, constants, variables or even
local classes in that class (see redeclarations above). However, the most
common modification is to change a parameter constant value, like for
example the inductance(L) of an electrical inductor.

Below these three language constructs are presented. The first two classes
illustrated the inheritance mechanism using the extends construct. Both in-

stances and equations are inherited in Modelica.

record ColorData
Real red;
Real blue;
Real green;
end ColorData;

class Color

extends ColorData; // Standard Inheritance
equation

red + blue + green = 1;
end Color;

class SmallCircuit
replaceable Resistor R1;

end SmallCircuit;

class circuit // Redeclaration

60 CHAPTER 3. MODELING AND SIMULATION

MiniCircuit tempcircuitl(redeclare TempResistor R1);
end circuit;

class SmallCircuit?2
Resistor R1(R=3); // Instantiation with modification
end C;

The next two classes show how redeclarations of variables are done. The
circuit model redeclares the Resistor R1 component in the tempcircuit in-
stance using a redeclare modifier. The last class in the example shows a
standard parameter modification in Modelica, replacing the default for R by
R=3, which is the most common usage of modifiers.

3.2 Modelica Compilation

The Modelica compilation process performed by a Modelica compiler basically
consists of two parts, compiling to flat equation form followed by compilation
and optimization of the equations. The first part translates the Modelica
model code from its textual form to a set of equations and variables. The
second stage performs transformations and optimizations on these equations to
finally produce efficient code for simulation of the Modelica model. Figure 3.6
presents the different stages of a Modelica compilation.

3.2.1 Compiling to Flat Form

When the model has been described as Modelica source code it can be fed
to a Modelica compiler. The Modelica compiler performs type checking, in-
heritance, instantiation, etc., breaking down the hierarchical object-oriented
structure into a flat Modelica class. The flat model contains all variables de-
fined in the model such as state variables, parameters, constants, auxiliary
variables, etc., along with all equations of the model. These equations con-
stitute the complete set of equations from all components and their subcom-
ponents, along with equations generated from all the connect equations. The
complete set of equations is either a system of Ordinary Differential Equations
(ODE) or a system of Differential Algebraic Equations (DAE), depending on
the model structure.
An ODE system on explicit form can be expressed as:

X = f(X,1) (3.5)

where X is the vector of all state variables. A DAE system on implicit form

3.2. MODELICA COMPILATION 61

. Modelica E
| Source Code:

Translation

v Flat equations

Sorting
Equations

-— Sorted equations

\
Optimizing
Equations

-<— Optimized equations

\/

Code
Generation

-— Generated and compiled cod

----Y_ ____
. Simulation
i Executable

Figure 3.6. Compilation stages from Modelica code to simulation.

is expressed as follows:
9(X, X,
h(X,Y)

||“<

3 (3.6)
where

e X is the vector of state variables

e X is the vector of derivatives of the state variables

e Y is the vector of algebraic variables

e t is the time variable

When the DAE system is on an implicit form the equation system first has to
be converted to explicit form by solving for the derivatives and the algebraic

62 CHAPTER 3. MODELING AND SIMULATION

variables, if it is going to be numerically solved by an ODE solver. Alter-
natively, the DAE system can be solved directly by a DAE solver such as
DASSL.

For example, the equations generated from flattening the DAECircuit model
are shown in Figure 3.7. Equation 1-4 originates from the Resistor instance
R1, 5-8 from R2, etc. Equation 23-25 are generated from the two connect equa-
tions connecting C1, R1 and V together. The number of equations from the
DAECircuit are 33, resulting in a differential algebraic system of equations,
corresponding to Equation 3.6.

As just mentioned, a DAE system can also be solved by a DAE solver.
In that case the model equations are often given on their residual form (i.e.,
as functions £ and g in Equation 3.6 above. The DAE solver then internally
solves all variables for one iteration. In this case, it can also have use for the
Jacobian of the model equations as mentioned in Chapter 1.

3.2.2 Compilation of Equations

After the flattening phase of Modelica compilation, several optimizations on
the resulting set of equations can be performed. By reducing the number of
equations (and variables) in the problem, the execution time of the simulation
will be reduced. Modelica compilers generating efficient code, e.g. OpenMod-
elica [6] or Dymola [19], will perform several equation oriented optimizations,
like reduction of the size of the equation system by removing algebraic equa-
tions, sorting of the equations, as well as using other techniques to reduce
sizes of equation systems. Some of these different techniques are explained in
briefly below.

Simplification of Algebraic Equations

Simplification of algebraic equations involves removing simple equations like
a = b, where the variable b can be removed from the equation system and
all references to it can be replaced by a. These variables are algebraic vari-
ables and most of these simple equations are generated from connect equa-
tions. Therefore they are quite many in the flat set of equations in a Modelica
model, due to the object oriented way of modeling. Thus the size of the equa-
tion system can normally be substantially reduced by eliminating these simple
equations.

The equations used for simplifications can also have a more complicated
structure, like for instance a = —b or a = 1/b. Many of the variables computed
from those equations are not interesting to store in the simulation result either,
making them completely redundant to calculate.

3.2. MODELICA COMPILATION 63

No. Equation Origin
1 Rlw = Rl.pv — Rl.nw OnePort
2 0= Rl.pi+ Rl.ni OnePort
3 R1.i= Rl.p.i OnePort
4 R1.R+ Rli = Rlw Resistor
5 R2.v = R2.p.v — R2.n.w OnePort
6 0= R2.p.i+ R2.n. OnePort
7 R2.i = R2.p.i OnePort
8 R2.Rx R2.4 = R2w Resistor
9 Clw=Clpv—Clnw OnePort
10 0=Clpi+ Clni OnePort
11 Cli=Clpi OnePort
12 Cl.i=C1.C xder(Cl.w) Capacitor
13 1lv=1I11pwv—Ilnwv OnePort
14 0=1I1lpi+Il.n.i OnePort
15 114 =11.p.i OnePort
16 I1.L«der(Il4) =1I1w Inductor
17 Ground.p.v =0 Ground
18 Vow=Vpv—Vnu OnePort
19 0=Vpi+Vni OnePort
20 Vi=Vpai OnePort
21 V.src.out Port.signal_1 = V.src.p_of fset_1

+(iftime < V.src.p_startTime_lthenOelse

V.sre.p_amplitude_1 = sin(2 * V.src.pi

«V.srep_freqHz_1 x (time — V.src.p_startTime_1)
+V.src.p_phase_1)) SineVoltage

22 Vo = V.src.outPort.signal -1 SineVoltage
23 Clni+ Rlni+Vpi=0 Connect
24 Rlnwv=Clnuv Connect
25 Vpov=Clno Connect
26 Cl.p.i+ Ground.p.i + I1.p.i+ R2.n.i+ Vini =0 Connect
27 Ground.p.v = Cl.p.v Connect
28 I1.pv=Clpuw Connect
29 R2n.v=Clp.w Connect
30 Vinow =Cl.pw Connect
31 Ilni+ Rlpi+ R2.p.i=0 Connect
32 Rlpwv=11lnwv Connect
33 R2.pwv=1I1nv Connect

Figure 3.7. The complete set of equations generated from the DAECircuit
model.

BLT Transformation

The BLT transformation is a sorting technique to transform a system of equa-
tions into Block Lower Triangular form, which will identify blocks of inter-

64 CHAPTER 3. MODELING AND SIMULATION

dependent equations that form simultaneous subsystems of equations. This
technique will (together with the index reduction technique discussed later in
this chapter) transform a DAE system into an explicit ODE part that calcu-
lates the derivatives and an algebraic part that calculates algebraic variables.

This BLT sorting is done on a bipartite graph representation of all equa-
tions and variables by identifying strongly connected components in that graph.
A bipartite graph is a graph that has two kinds/sets of nodes (vertices) and
edges only going from a node in the first set to nodes of the second set. The
vertices of the bipartite graph in the BLT sorting are of two types: equation
vertices and variable vertices. The edges, which are connecting two vertices of
different types, connect variables to equations. Each variable in an equation
is connected to its equation node. As an example, we will consider a small
Modelica model, BLTExample below:

model BLTExample
Real s1,s2;
Real x,y;

equation

der(s1l) = s2*s1;
der(s2) = sl+x;
x=5+y;

y = time;

end BLTExample;

When performing the BLT sorting it is important to distinguish between
what is considered to be known and what is solved for. The sought variables
are the derivatives of the state variables and the algebraic variables, whereas
the state variables themselves are assumed to be known (their initial values
are known from initial conditions and their values at the next time step can
be computed by the solver from the current value and the derivative) and so
are parameters and constants and the built-in variable time.

Therefore, the bipartite graph representation of the equations from the
model BLTExample becomes as presented in Figure 3.8. The first equation
contains the unknown variables der(s1) since both s1 and s2 are known
(they are both states). Therefore there is only one edge connecting equation
node 1 with the variable node of der(s1). The second equation has two
connecting edges, one to der(s2) and the other to x. The later is present
since x is an algebraic variable, it has no derivative operator among the set
of equations. The third variable only contains the variable y which is also an
algebraic variable, whereas the time variable is considered known.

The result from the BLT algorithm applied to the equations in the BLTExample
model becomes in the form of assignments:

3.2. MODELICA COMPILATION 65

eqnl(O——) der(s1)

eqn2 der(s2)
eqna3 X

eqn4 y

Figure 3.8. The bipartite graph representation of the equations in the
BLTgraphfig example.

der(s1l) := s2*s1;
y := time;
x = b+y;
der(s2) := sl+x;

The BLT transformation gives a unique representation of the total system
of equations as a number of subsystems of equations [29], where some of the
subsystems can be solved analytically while others constitute systems of equa-
tions that in some cases can be solved analytically and in other cases need to
be solved using numerical solvers.

The BLT algorithm is also responsible of solving the causality problem
of Modelica models by sorting the obtained subsystems of equations in data
dependency order. Due to the a-causal modeling capability of Modelica, this
step is needed. Other languages which only have causal modeling capabilities,
i.e., all equations are already written on assignment form, do not need to
perform BLT transformation on their equations.

Index Reduction

Index reduction is a technique to reduce the index of a system of equations [57].
The index of a DAE corresponds to the maximum number of times an equa-
tion has to be differentiated such that the DAE can be written on explicit

66 CHAPTER 3. MODELING AND SIMULATION

form in the DAE system, which is referred to as the underlying ODE. Some
numerical solvers can handle equation systems of index one or two. However,
if the equation system has an index higher than what the chosen numerical
differential solver can handle, the index needs to be reduced. For instance,
models of mechanical systems typically are index 3 problems. Also if a uni-
form simulation code where solvers can be switched without recompilation is
preferred, the index of the equation system must be reduced to zero, such that
simple ODE solvers can be used. There are also other reasons for reducing the
index, explained in Section 3.2.3 below.

As an example of the index reduction technique, lets consider a model of a
pendulum of length L with a mass m in a gravitational field g parallel to the
y axis, see Figure 3.9. If we use a Cartesian coordinate system, with variables
x and y, we get the following equations.

mi = —aF/L (3.7)
my = —yF/L —mg (3.8)
2? +y? =17 (3.9)
n
I\
1\ L
1
1
: F
: m
W
1

Figure 3.9. A pendulum with mass m and length L

Equations 3.7 and 3.8 constitute the Newtons law for the body with mass
m, where F is the force along the pendulums direction. Equation 3.9 gives the
constraint on the length of the pendulum.

This system of three equations with three unknowns (z, y and F) is a higher
index problem, since in order to solve it we need to differentiate Equation 3.9.
By differentiating it once we get the equation

rt+rr+yy+yy=0 (3.10)

3.2. MODELICA COMPILATION 67

which still is not solvable together with the equations 3.7 and 3.8, using an
ODE solver. However, if we differentiate it once more (after simplification) we
get

ri+ai+yi+yy=0 (3.11)

This equation together with equations 3.7 and 3.8 is a solvable system using
an ODE or DAE solver.

The index reduction algorithm is an integrated part of the BLT sorting
algorithm. Thus differentiation of equations can be performed while producing
the BLT sorting.

Related to the index reduction algorithm is the dummy derivatives method [].
When two or more state variables are present in an equation forming an al-
gebraic constraint of the states, and this equation needs to be differentiated,
the original algebraic constraint of the states is lost since we now have the dif-
ferentiated version of the equation. This imposes a problem for the numerical
solvers and the phenomenon of drift can occur. For instance, considering a
simple electrical circuit with two capacitors in parallel will form an equation
system where the two voltage drops over the respective capacitor (u1, ug forms
an algebraic constraint over the states (u; = us), see Figure 3.10. The index
reduction algorithm will then replace this equation with the differentiated one
((u1) = (u2)). The numerical solution to this problem will then not constrain
the two states u; and us to be identical and the two states can drift apart.

The dummy derivatives method will in our circuit example choose one of
the derivatives, e.g. der(u;) as a dummy derivative and transform it into an
algebraic variable. Note that this will also change the state variable u; to an
algebraic variable. As a result, the constraint equation is no longer an algebraic
constraint between two states, since one of the states has been transformed
into an algebraic variable.

Tearing of Equation Systems

Tearing of equation systems is a technique for optimizing the performance
of solving equation systems [22]. The tearing technique breaks a system of
simultaneous equations into two or more subsystems by inserting a new dummy
variable (or several dummy variables) v_new that is assigned to the old value of
a selected variable v, which is the variable used to break the equation system as
a whole. By instead using the new variable in place of the old for the remaining
equations of the system, constituting the second part, the complete system
is torn apart. The main advantage is that solving the two parts separately
and iterate until a stable solution is found can be less computational work
compared to solving the complete equation system. Figure 3.11 illustrates
how two subsystems are torn apart using a tearing variable, v.

68 CHAPTER 3. MODELING AND SIMULATION

=
=}
£gad

—5— +

Figure 3.10. Two capacitors in series form an algebraic constraint between
states.
\Y

subsystem 1

\ subsystem 2

Figure 3.11. The tearing technique applied to a system of equations to break
it apart in two subsystems.

3.2. MODELICA COMPILATION 69

However, an alternative to the tearing technique could instead be to use
parallel solving techniques for the numerical solution of these equation sys-
tems. There exist both parallel implementations of numerical solvers for linear
systems of equations and for non-linear systems of equations. Which of this
method to use depends on the size of the equation system and on the efficiency
of the parallel implementation of the linear systems solver.

Mixed Mode Integration

Mixed mode integration is a method for breaking apart an equation system
and using several numeric solvers together instead of one [72]. For the fast
dynamics of the equation system, i.e., the equations that are stiff, an implicit
solver is used. A stiff equation system is a system containing both fast mov-
ing dynamics as well as slow dynamics, making the equation system much
harder to solve numerically, thus smaller step-size and more computationally
demanding solvers need to be used. For the slow states of the system, a more
efficient explicit solver can be used, with longer step sizes because of the slow
dynamics. When using an implicit solver, a non-linear equation system has to
be solved in each time step, which is time consuming. However, by only using
an implicit solver on the parts that really need it, i.e., on the stiff parts of the
system, the non-linear equation system is reduced in size, and a speedup is
achieved. This method also has a potential for revealing more parallelism in
the code since the parts that are broken apart will become more independent
of each other.

Inline Integration

Inline Integration is an optimization method that inserts an inline expansion
of the numerical solver into the equation system parts [21]. By doing so,
and again performing BLT transformations, etc., a substantial speedup in
simulation time can be achieved. As an example, consider a simple equation:

der(z) = —x +y; (3.12)
If we use the backward difference formula of order one, we get:
Tpp1 =@+ hx (—xp + yp) (3.13)

This equation is added to the equation system as an algebraic variable, i.e., x
is no longer a state variable in the new DAE system.

The inline integration method has successfully been combined with mixed
mode integration to further reduce simulation time [72]. There are cases when
inline integration does not work well. For instance, for stiff systems where

70 CHAPTER 3. MODELING AND SIMULATION

small step sizes and/or more robust solvers are required, the inline integration
method does not always work.

3.2.3 Code Generation

When all desired optimizations have been performed on the system of equa-
tions, code is finally generated. The generated code corresponds to the cal-
culation of the right hand side of Equation 3.5, i.e., the calculation of f. For
the DAE case, i.e., equations on the form as given in Equation 3.6, the sub-
systems of equations that are on explicit form are generated in the same way
as for the ODE case, with assignment statements of arithmetic expressions
to variables. But for the subsystems of equations which are on implicit form
this does not work. Instead, code that solves the subsystems numerically is
generated and/or linked with a numerical solver.

In order to freely choose between different solvers, ranging from ODE
solvers like explicit or implicit Euler to advanced multi-step solvers like DASSL,
code for calculating the underlying ODE is generated. This means that the
simulation code will contain a function in e.g. C or Fortran for calculating
the derivatives given the state variables and algebraic variables. As explained
above, this function is not always purely ”mathematical” and can contain sub-
systems of equations that are solved using numerical solving techniques. The
index of the model equations have also been reduced to zero such that an ODE
solver can be used. This means that the capabilities in more advanced solvers
like DASSL of solving e.g. index one problems is not used to its full extent.
However, the advantage of reducing the index to fully exploit the choice of
numerical solver is often more important. But it is even more important for
other reasons.

For hardware in the loop real time simulations it is of uttermost importance
to be able to use a simple fixed step ODE solver. In real time simulations
the solver must be able to calculate new values for the states within a fixed
deadline. Therefore, a fixed step size solver must be used, since multi-step
solver often can not guarantee a deadline of the calculations of the states. By
reducing the index in combination with other equation optimization techniques
such as tearing and inline integration, etc., the performance of the simulation
code also increases. This makes the approach more advantageous for hardware-
in-the-loop real time simulations.

3.3 Simulation

As already mentioned, the simulation process for Modelica models, based on
a DAE formalism, involves numerical solution of differential-algebraic equa-

3.3. SIMULATION 71

tions. Even though certain simple differential equations could be solved sym-
bolically, such simple equations seldom occur in real applications. Therefore,
a generic method using numerical solvers for differential equation solution is
used. There exist many different solvers for numerical solution of differential-
algebraic equations, ranging from the simple explicit Euler to advanced solvers
having features like variable step size, etc.

The explicit Euler method for the numerical solution to an initial value
problem calculates time varying variables at time ¢ + h by using the variable
values and their derivatives at time ¢. The time increment h is called the
step size, see Figure 3.12. The explicit Euler uses the Equation 3.5 directly
to calculate the values at the next time step. Equation 3.5 is presented again
below for convenience for the reader.

X = f(X,1) (3.14)

Y

t t+h

Figure 3.12. Solution of differential equation using explicit Euler.

Below follows pseudo code for the explicit Euler method. The simulation
time is incremented by the fixed step value h until the stop time of the simu-
lation is reached:

for (t = start ; t <= stop; t += h) {
X[t+h] = X[t] + h*xf(X,t);
X

The implicit Euler approach instead calculates the next step by an equa-
tion which involves solving a linear equation for X;,1, i.e., the function call f
contains time ¢ 4 1.

Numerical solvers can take the value of the state variables at several points
in time as input to the numerical solution. If there are more than one point

72 CHAPTER 3. MODELING AND SIMULATION

in the solution scheme, the numerical solver is called a multi-step solver, i.e.,
at each calculation it take values from several earlier steps into consideration.
Numerical solvers have different stability criteria and different error esti-
mates, depending on their approximation scheme. For example, the simple
explicit Euler method is not very stable and has an error estimate of O(h).
Figure 3.13 presents some of the most common solvers, including error
estimates.

Solver Approximation Error
Explicit Euler | zp41 = @y + hf (T, Tn,t) O(h)
Implicit Euler | ©,41 = @, + Af(xn41, Tnt1, t) O(h?)

Runge Kutta | x,11 = @, + %(lﬁ + 2ko + 2k3 + ka,t) O(h?)
k1 = hf(Zn, xn,t)

ko = hf(Zn+ %, 20 + 5,1)

ks = hf(zn + 2,20 + 2,1)

ks = hf(@y + ks, x, + h,t)

DASSL (Uses Backward Difference Formula, BDF) -

Figure 3.13. A few common numerical solvers for differential equations.

3.4 Simulation Result

The simulation results in a number of functions of time, each function being
represented by a data set, i.e., its value at a number of points. These functions
represent the numerical solution to the (time varying) variables of the simu-
lation model. These sets are typically used for analysis of the model, by for
instance visualization like 2D or 3D plots, or perhaps by filtering or processing
the data by e.g. Fourier analysis, low pass filtering, etc.

For large simulation models the amount of data generated by the simu-
lation can be huge. Storing all simulation data from the models might not
be possible or even needed. The Modelica compiler will limit the number of
needed variables by performing alias analysis to detect which variables are
equal. Furthermore, it can also be sufficient to only store the state variables
and their derivatives from a simulation to reduce the number of variables in the
simulation result. However,the size of the simulation results might still be a
problem. For such occasions, lossless compression techniques can be employed
to compact the simulation result to a manageable size [23]. This is especially
important in the context of automatic parallelization of large models.

3.5. SUMMARY 73

3.5 Summary

Modeling and simulation has been used for decades to gain a better under-
standing of physical systems by building mathematical models of these systems
and then performing simulations on these models. New modeling languages
such as Modelica advances the modeling capabilities by introduction of object
orientation, a-casual modeling, efficient compilation techniques and fast simu-
lation. This expands the modeling and simulation area and opens up for new
kinds of modeling needs, such as full system simulations.

The Modelica modeling language enables a modeler to graphically com-
pose highly complex models by composition of predefined components defined
in standard libraries, or to write or components as a library developer. In ei-
ther case, the language uses object oriented features such as inheritance, class
parameterization and object instantiation to enable component reuse to speed
up the modeling process. Thus, the modeling process is substantially faster in
a language such as Modelica, since a modeler does not need to write all model
code from scratch.

Once the model is finished, the process of performing simulations and val-
idating the model starts. From the Modelica code a flat set of equations
is generated. These equations are translated into efficient C code which is
connected to a numerical solver for differential equations. This code is then
executed to perform the simulation of the model. After that follows the pro-
cess of analyzing the data from the simulations, perhaps using visualizations
such as 2 dimensional plots or 3D animations.

Most of this chapter relates to this research work. The Modelica lan-
guage is itself extending modeling and simulation to areas such as full system
simulation, where a complete system is simulated, often consisting of several
modeling domains such as e.g. electrical, mechanical and thermal. Due to the
large size of such full system models it is is especially relevant to achieve faster
simulations.

Many of the presented equation optimization techniques also help in speed-
ing up the execution of simulations and some of the techniques, such as inline-
integration, tearing, and in fact also the basic BLT sorting help us to identify
and increase the amount of parallelism the resulting simulation code.

74

CHAPTER 3. MODELING AND SIMULATION

Chapter 4

DAGS - a Task Graph
Scheduling Tool in
Mathematica

This chapter present DAGS, a task graph package for the computer algebra
and programming language Mathematica [86]. This tool has been used as an
experimental framework for investigating scheduling, clustering and task merg-
ing algorithms. Through this thesis work, several prototypes have been made.
After the first prototype tool, DSBPart, presented in detail in chapter 5, the
implementation of the DAGS tool started. Later on, the prototypes imple-
mented in the DAGS tool was implemented in OpenModelica in the ModPar
tool, which is presented in chapter 6. The major reason for presenting this
prototype in this chapter is that several implementation details that also affect
the ModPar tool is presented in this chapter.

4.1 Introduction

Throughout this thesis work there has been a need for experimentation on
scheduling and clustering algorithms on task graphs. Therefore an experi-
mental framework where such algorithms could be implemented in a fast and
efficient manner was desired. For this purpose the computer algebra system
Mathematica, which also is a very excellent functional programming language
was used. Mathematica provides an interactive and incremental functional
programming environment which enables fast prototyping of algorithms like
scheduling and clustering algorithms for task graphs, much like what is pro-

CHAPTER 4. DAGS - A TASK GRAPH SCHEDULING TOOL IN
76 MATHEMATICA

vided in other programming environments for functional languages such as lisp
or Haskell [].

The user interface in Mathematica is a hierarchical structured document
called notebook consisting of cells, where program code can be mixed with
text and graphics. Cells can be evaluated which means that the program code
in the cell is sent to the computational kernel in Mathematica for evaluation,
like issuing a command in any shell based computational tool (like Matlab or
Maple). The mixture of program code, text and graphics in a notebook makes
Mathematica a very powerful literate programming environment. Figure 4.1
shows the Mathematica notebook containing the program code and examples
for the DAGS package. The figure shows a test section of the document for
the implementation of the TDS [17] algorithm in the framework. The first
program code cell in the Testing section calls the function BuildDag which
takes a list of edges. Each edge is represented as a list of two task identifiers.
The second cell evaluates and returns the variable Nodes to verify that the
BuildDag function succeeded and built the task graph with in this case ten
nodes, 1 to 10.

Then follows two cells for setting up the execution cost and communication
cost for the TDS algorithm, and after that the TDS algorithm is called.

The final cell shows which processors each task is assigned to using the
function TDSAlloc.

4.2 Graph Representation

There already exist a graph package in Mathematica called Combinatorica [62]
that allows several different graph representations such as adjacency list and
incidence matrices. For our purposes an adjacency list representation would be
preferable especially for task merging algorithms, see Chapter 7. The reason
for this is that when having to delete and add edges and nodes the adjacency
list representation of a graph is best suited.

However, the Combinatorica package uses a standard Mathematica list
for each adjacency list and such list must be copied every time an element
is added, which makes this implementation quite expensive for large graphs.
Therefore there was a need for a more efficient implementation using linked
lists in Mathematica.

Below are some Mathematica code for linked lists and standard lists (rep-
resented as arrays in Mathematica). First a standard Mathematica list:

1st={1,2,3,4};

4.2. GRAPH REPRESENTATION

3 DAGs, Implamentation using doewnvalues

77

=

4 The Earliest Ready Task alg. O{mn?)

5 TDS Algorithm

5.0.1 Delinition
5.0.2 Testing

fafiddis | D laDag (0L, 2], (3, 3], (2, 40 14, The (9, &), 03, 30, (2, 30, U7, F),
{6, 90, {6, B), (%, B}, {9, 10}, (8, 20})]

Teftsf= | Hodes

cwiprask | (1, 2,3,4,%,6,7,8,9, 10}

imfifdife | CommCosb [1, 21« 1; Comalosl [1, 3] « 1; ComaCasl [1, 4] « #; Comalosl[4, T] = 2
CommCost[4, §] = 47 CommCost[1, 5] =4 CommCost[2, 3] - 2 Coomlost[T, #] = 2:
CommCosk [6, 9] - & CommCost [§, 8] - 21 CommCout [9, 8] - 27 Commlowt [, 10] - 31
Conwaloul [B, 18] = 3;

s | ExecCost[1] - 3: ExecCost [2] - 2! ExecCost[3] - 47 ExecCeat[4] - 3
Exrcfonl [5] « #: FereCost [6] « §; ExeeCost [7] « 2 BxoecConl [8] « 2;
ExecCost[¥] = b
ExecCost[10] = 3!

Imfraar= | TOEL] |

RS e et
L

fradpe | W =x TDERLLoC [H] & /4 Hodes

cumaap | (L= (B, By, By, B, 2 (By), A (B} d= (B B,
B {Pabe B 0P), T (R) B (a3, 3 = (), W= (1)

| .) |

Figure 4.1. The Mathematica notebook for the DAGs package.

CHAPTER 4. DAGS - A TASK GRAPH SCHEDULING TOOL IN
78 MATHEMATICA

If we want to add an element to the list we use Append which copies the entire
list:

1lst2=Append[lst,5];

As an alternative we can use linked lists, first creating an empty list.

1st={};

and adding an element by:

1st={1,1st};

Lets add one more and then traverse the list to extract the elements using the
built in function Flatten:

1st={2,1st};
elts=Flatten[lst];

elts will then have the value

{1,2}

We have implemented a graph representation using linked lists as adja-
cency lists and giving each vertex of the graph a unique integer as identifier.
Attributes of the graph as set by defining functions on these identifiers. For
instance, to set the execution cost of task 1 to 4.5 we evaluate:

ExecCost[1]=4.5;

giving the function ExecCost a value for task 1. The advantage of using
functions as attributes is that it is efficient to retrieve the values later on in
Mathematica and that we can easily issue default values. For instance, if we
would like to set all execution costs of all nodes in the graph to one we can
evaluate:

ExecCost[_]=1;

The underscore here means that any argument to the function will be matched,
thus always returning cost one. However, the function definition for argument 1
is still valid, returning the cost 4.5 for task 1. This is achieved by Mathematica
having overloading of functions. A function can thus have several definitions,

4.3, IMPLEMENTATION 79

and when evaluating a function call in Mathematica the function with the
most specific matching pattern will be used. Thus, for our execution cost
example above if the execution cost for the Integer value 1 (i.e., task 1 of the
task graph) is evaluated the result will be the first function definition which
has the most specific pattern that matches.

4.3 Implementation

The implementation consist of several parts, the graph primitives, scheduling
algorithms, clustering algorithms and the task merging algorithm presented in
Chapter 7.

4.3.1 Graph Primitives

The implementation contains the graph representation itself, along with prim-
itives for retrieving information about the graph. Table 4.2 gives a list of these
primitives.

| Name | Description |

AddEdge[{a,b}] Add an edge from node a to nodeb

AllEdges[] Return a list of all edges

BuildDagl[lst] Builds a new graph given a list of edges

Children[node] Return a list of all immediate successors of
node

ClearDagl[] Clears the graph definition removing all edges
and nodes

EdgeQ[{a,b}] Returns True if edge exists, otherwise False

Nodes Contains a list of all nodes of the graph

Parents[node] Return a list of all immediate predecessors of
node

RemoveEdge[{a,b}] | Remove edge from graph

Figure 4.2. Graph primitives in the DAGs package.

4.3.2 Scheduling Algorithms

In the DAGs package we have implemented several scheduling algorithms,
such as the TDS algorithm and the ERT algorithm. For the ERT algorithm
we also made a simple Gannt chart layout of the schedule, see Figure 4.3.

CHAPTER 4. DAGS - A TASK GRAPH SCHEDULING TOOL IN
80 MATHEMATICA

. L]

T1 T2 T3 T5 19 T10

T4 T6 T8

T7

Figure 4.3. DAGs notebook showing a Gannt schedule from the ERT algo-
rithm.

Such graphical objects can easily be created in Mathematica by using a set of
predefined graphical objects, such as lines, circles and polygons.

4.3.3 Clustering Algorithms

The DAGs package also includes an implementation of the Dominant Sequence
Clustering (DSC) algorithm, see Section 2.5.3. 1 The implementation contains
both the simplified version of the DSC algorithm, which is called using the
function DSCI, and the final version as described in Yang’s thesis [88], called
using the function DSCFinal.

Figure 4.4 shows the notebook cells for testing of the DSCFinal function
using the test graph from Yang’s thesis.

4.3.4 The Task Merging Algorithm

The perhaps largest individual part of the DAGs package is the experimental
implementation of the task merging algorithm using graph rewrite systems,
see Chapter 7. The method was first implemented in this framework and
thereafter translated into C+-+ for use in the ModPar tool, see Chapter 6.

1We made some experimental attempts to introduce task replication into the DSC algo-
rithm, but these attempts were abandoned since this could not be done in an intuitive and
controlled way. I.e., without affecting the complexity of the algorithm and without having
a balanced task replication scheme.

4.8, IMPLEMENTATION 81

M paAGs.nb -~ =|0] x|
8.3.2 DSCFinal Thesis trace test [

-
BuildDag[{{1, 2}, {1, 3}, {2, 7}, {3, 6}, {4, 6},
{3, 6}, {6, 7331

o
ExecCost[1] = 1; ExecCost[2] = 6; ExecCost[3] = 1;
ExecCost[4] = 1; EXecCost[3] = 2; ExecCost[6] = L;
ExccCost[1] = 1;

k-
CommCost[1, 2] = 3; CommCost[l, 3] = 0.3;
CormCost[2, 7] - 2; CommCoat[3, 6] - 2.5;
CormCost [4, 6] - 4; Commlost[5, 6] - 1;
CormCost[6, 7] = 2.5:
DSCFinal [Verboze -~ Falge] ‘]

{112, 2h049. 3. 6) 054 J

Figure 4.4. The notebook cells for testing the DSC algorithm.

4.3.5 Loading and Saving graphs

The implementation also contains a set of interfacing functions for loading and
saving graphs in different formats. The main usage of these functions is to be
able to import existing graphs and also to export graphs to graph visualization

CHAPTER 4. DAGS - A TASK GRAPH SCHEDULING TOOL IN
82 MATHEMATICA

tools. Figure 4.5 shows the available commands for importing and exporting
of graphs in the DAGs package.

One import function that is available is importing from the Standard Task
Graph Set (STG) [77], which consist of a large set of randomized task graphs
of different sizes. It also includes a few task graphs from real application
examples. The STG comes in two variants, one with communication costs and
one without.

| Name | Description |
GenerateDOT[filename] | Output task in Graphviz format
GenerateVCG[filename] | Output task in VCG format
ReadSTG[filename] Read the graph using STG format from file
ShowGraph[filename] Shows a graphical representation of the graph
using the Graphviz toolset

Figure 4.5. Graph primitives in the DAGs package.

4.3.6 Miscellaneous Functions

There are also some additional miscellaneous functions available in the DAGs
package. Some of these are needed for the scheduling and clustering algorithms,
like the tlevel function whereas others are used for the testing of algorithms,
such as the butterfly task graph building function BuildButterF1yDAG. Fig-
ure 4.6 shows a summary of these functions.

| Name | Description |
BuildButterF1lyDAG[n] Generate a task graph for a butterfly calcula-
tion of order n

CalcualteGranularity[] | Calculates the granularity of a task graph, us-
ing CommCost, ExecCost, B and L attributes
tlevell[n] Calculate the top level of a node

Figure 4.6. Graph primitives in the DAGs package.

Lets look at the definition of the BuildButterF1yDAG function.

BuildButterFlyDAG[i_Integer] :=
If[i == 1,
Return[{{1, 3}, {1, 4}, {2, 3}, {2, 4}}]1,
Module[{b1, b2},
bl = BuildButterFlyDAG[i - 1];

4.4. RESULTS 83

b2 = BuildButterF1lyDAG[i - 1];
Return[MergeButterFly[i, b1, b2]]
]

]

The function is recursive building a butterfly task graph of order n by
combining two butterfly task graphs of order n — 1 in the MergeButterFly
function. The base case is a butterfly of order 1 which consists of the graph
shown in Figure 4.7(a). For instance, the butterfly task graph of order two
is constructed by combining two task graphs of order 1 and add some more
nodes for the next level of the butterfly graph, along with connecting edges
between the new level and the two sub-task graphs of the underlying level (of
order 1). All this is performed in the MergeButterFly function, defined as:

MergeButterFly[i_, bl_, b2_] :=
Module[{bin = bl, b2n = Max[bl] + b2, b3,
bltop, b2top, edgesl, edges2},

b3 = Range[(i)2°(i) + 1, ()2°(1) + 27i];
bltop = Take[Sort[Union[Flatten[bin]]], -2°(i - 1)];
b2top = Take[Sort[Union[Flatten[b2n]]], -2°(1i - 1)];
edgesl = Thread[List[Join[bltop, b2top], b3]1];
edges2 = Thread[List[Join[b2top, bltop], b3]1];
Return[Join[bin, b2n, edgesl, edges2]];
]

The result of the MergeButterF1yDAG is a list of edges that can be used to
construct the graph using the BuildDag function.

4.4 Results

We have implemented an efficient task graph framework that can interactively
and efficiently handle large task graphs in the Mathematica framework. Fig-
ure 4.8 shows the execution time for building graphs of different sizes (executed
on a laptop PC with 2GHz Pentium Mobile processor), clearly demonstrating
that the complexity of building a graph is linear in time. Mathematica pro-
vides an interactive environment where incremental programming can speed
up prototyping of algorithms and computer program as well as providing good
documentation support using literate programming.

Out task graph tool uses an efficient graph representation based on linked
lists, the so called adjacency list graph representation. It also allows attributes

CHAPTER 4. DAGS - A TASK GRAPH SCHEDULING TOOL IN
84 MATHEMATICA

(a) A Dbutterfly task (b) A butterfly task graph of order 2
graph of order 1

Figure 4.7. Butterfly task graphs generated using the DAGs package.

of tasks to easily be defined using the powerful function definition and pat-
tern matching concept of Mathematica, allowing the setting of attributes for
individual nodes or even groups of nodes, etc.

Number of edges | Ezecution time |

100 0.01s
1000 0.06 s
10000 0.531 s
100000 4.28 s
1000000 42.6 s

Figure 4.8. Execution times for building graphs using the BuildDag function
on a 2GHz Pentium Mobile PC.

4.5 Summary

In this chapter we have presented a graph toolkit for task graphs and schedul-
ing and clustering algorithms working on such graphs implemented in the
Mathematica tool. This toolkit enables us to fast prototyping and experi-
mentation but still being able to write highly efficient (for interpreted code)

4.5. SUMMARY 85

algorithms in a functional programming language.

We have implemented several scheduling and clustering algorithms in this
framework and also have several possibilities of importing and exporting task
graphs to formats like STG, VCG and Graphviz.

The most important experimentation and prototyping usage has been done
when developing the task merging algorithms presented in this thesis. These
algorithms were first developed in this framework.

86

CHAPTER 4. DAGS - A TASK GRAPH SCHEDULING TOOL IN
MATHEMATICA

Chapter 5

DSBPart - An early
parallelization Tool
Prototype

DSBPart is our first prototype developed for automatic parallelization of Mod-
elica simulations. It started as a master thesis project and was continued in this
PhD project. This chapter describes the tool and the parallelization approach
taken. It also presents results and lessons learned during its development.
Parts of this chapter have been published e.g. in [4].

5.1 Introduction

Earlier work on parallelization of simulation code from mathematical models
started at the Programming Environments Laboratory (PELAB) at Linkoping
University for models in a language called ObjectMath [47, 83, 52]. One of the
findings from this research was that all potential parallelism initially should be
considered, resulting on the building task graphs at the sub-equation level [2].
The ObjectMath language effort was after its fourth generation transferred
into the joint effort of the next generation modeling language Modelica. The
Modelica language is based on experience and ideas from a large number of
earlier languages, including ObjectMath, Omola, Dymola, etc.

The automatic parallelization of Modelica models started as a master thesis
work in 1999 by an effort to automatically parallelize the simulation code from
the commercial tool Dymola [19]. This prototype was named DSBPart which

CHAPTER 5. DSBPART - AN EARLY PARALLELIZATION TOOL
88 PROTOTYPE

is an abbreviation for DSBlock! partitioning. This work was never finished and
the prototype served as a starting point for this PhD work.

5.2 Overview

Figure 5.1 gives an overview of how the parallelization tool DSBPart is used. It
also shows the normal compilation of Modelica models to sequential simulation
code. The input to the parallelization tool is a sequential program consisting of
automatically generated C-code with macro calls, the so called DSBlock code.
The format of this code is presented in detail in section 5.3. Internally, the
tool builds a task graph, applies a scheduling algorithm and generates code for
parallel execution. These different phases of the parallelization tool are shown
in Figure 5.2. The code is compiled and linked with platform independent
message passing libraries and numerical solver libraries. The executable can
then be executed on a parallel computer.

Model
(. m)

Modelica
Compiler
sequenti al
C code
L2
Parallelizer
Sol ver MPI
lib lib
Paral | el
C code
, 1[4
C compiler C compiler

sequenti al parall el
execut abl e execut abl e

Figure 5.1. An overview of the automatic parallelization tool and its envi-
ronment.

1DSBlock is the intermediary C code format originally developed at DLR used by Dymola
at that time.

5.3. INPUT FORMAT 89

Par ser

I

Synbol Task Graph
Tabl e Bui | der

'

Schedul er

A

Code | | Debug &
Cener at or Statistics

Figure 5.2. The internal architecture of the DSBPart tool.

The following sections present the different parts of the tool in some detail.

5.3 Input Format

The input to the tool is the sequential simulation code generated from a Mod-
elica compiler, in our case Dymola [19] producing the DSBlock code format.
The simulation code performs calculation of the right hand sides, i.e., the func-
tion f in Equation 3.5 or solving X om the equation system in Equation 3.6
on page 61. The code is generated C-code with macros. The syntax of the
C-code is a limited subset of the C language. Therefore, writing a parser for
parsing the C-code is less complicated than writing a complete parser for the
C programming language. However, each macro must also be parsed by the
tool.
The subset of the C language that is needed is:

e Expressions
Most parts of the generated simulation code consist of expressions built
of arithmetic operations on constants and variables. The code typically
also contains function calls, e.g. the standard math functions like sin,
cos and exp are frequently used.

e Statements
The statements found in the code are mostly assignment statements,

CHAPTER 5. DSBPART - AN EARLY PARALLELIZATION TOOL
90 PROTOTYPE

where scalar variables or array elements with a constant index are as-
signed large expressions. However, some of the macro calls need also be
treated as statements. For instance the macro call for solving a linear
system of equations (SolveLinearSystem0fEquations) is treated as a
statement, even if it after macro expansion corresponds to a complete
block of statements.

e Declarations
The code can also contain declarations of temporary variables, used in
the expressions and as targets for the assignment statements.

e Blocks
In some cases, the code contains blocks of statements, i.e., a new scope
is opened with the ‘{’ character and closed with the '}’ character, with
a sequence of statements in between. The reason for having such local
blocks is for instance to be able to use local variables.

e Miscellaneous
The simulation code can also contain some miscellaneous C language
constructs, like if statements.

The parallelization tool uses Bison [18] to generate a parser. The lexical
analyzer is generated by the Flex tool [61]. The parser calls a set of functions
for building the task graph, described in the next section.

5.4 Building Task Graphs

A fine grained task graph is built, while parsing the input file. For each
arithmetic expression, function call, macro statement, etc. a task node is
created. Data dependence edges are created between pairs of two tasks from
each definition (i.e., assignment) of a variable in one task to the corresponding
use of the variable in another task.

As an example, we use a simple model with only one variable:

model SmallODE
parameter Real a=3.5;
parameter Real b=2.3;
Real x;
equation
der (x)=-a*xx+b/(time+1);
end SmallODE;

5.4. BUILDING TASK GRAPHS 91

Parts of the generated simulation code in DSBLock format for the Small0DE
example appears as follows:

#define der_x Derivative(0)
#define x State(0)

#define a Parameter (0)
#define b Parameter (1)

der_x = a * x + divmacro(b,"b",Time+1,"Time+1");

From this code a task graph as shown in Figure 5.3 is built.

(XN a dery (b /fime)
o/ o/ o/ o/ o/

L S

Figure 5.3. The task graph produced from the simulation code for the
SmallODE example, on page 90.

First, when the definitions of the variables in the code, (derx, a and
b) are parsed, a task for each variable definition is created. These tasks are
definition nodes, hence their execution cost is zero. A symbol table keeps track
of the tasks that define the value of a given symbol. For instance, the variable
name der_x points to the define task for the variable der_x, see Figure 5.3.

When the statement (that assigns to the variable der x) is parsed, task
nodes for the division macro, the two additions and the multiplication are cre-
ated. For instance, when the multiplication task is created, the two operands
are looked up (i.e., the definition tasks for a and x are accessed) and edges be-
tween the operand tasks and the multiplication task are created. The symbol
table entry to the variable der x is updated, so that subsequent reads of the
same variable will connect data dependence edges to the new task instead of

CHAPTER 5. DSBPART - AN EARLY PARALLELIZATION TOOL
92 PROTOTYPE

the definition task of the der_x variable. For scalar values the communication
costs associated with the edges are set to the cost of sending one scalar value
between processors. In the example we use the cost of 100 units, e.g could be
100 microseconds, for a communication of one variable.

5.4.1 Second Level Task Graph

The task graph built while parsing is not suitable as input to a scheduling al-
gorithm. There are several reasons for this. First, many scheduling algorithms
assumes a single entry, single exit task graph. This means that the task graph
should only have one entry node (a node without any predecessors) and one
exit node (a node without any successors).

Second, since a lot of definition nodes are created, one for each variable
defined in the simulation code, and these nodes have no computational cost,
they could preferably be joined into one task. This task could be the single
entry task of the task graph.

Third, some constructs in the simulation code must be sequentialized and
performed atomically as one unit of execution without being divided. Mod-
elica when-statements is an example of such constructs. The following model
illustrates the problem:

model DiscreteWhen
discrete Real a(start=1.0);
discrete Integer b;
Real x(start=5);
equation
der(x) = -x;
b = integer(x);
when (b==2) then
a=2.3;
reinit(x,4);
end when;
end DiscreteWhen;

The DiscreteWhen model has two discrete-time variables a and b and
one continuous-time variable x. A discrete-time variable only changes value
at certain points in time, at events, whereas continuous-time variables may
change at any point in time. The when equation is a discrete event handling
construct in the Modelica language. It triggers at a specific event, specified
by the code b==2, i.e., when the discrete variable b equals two. At the event,
two instantaneous equations become active, resulting in the execution of two

5.4. BUILDING TASK GRAPHS 93

corresponding statements to solve these equations. The first one sets the
discrete variable a to the value 2.3, and the second one reinitializes the state
variable x with the new value 4. The generated simulation code for the when
equation has the following structure?:

beginwhenBlock
whenModelica01ld(b0_0 == 2, 0)

a0_0 = 2.3;
endwhenModelical()
endwhenBlock

To solve these three problems related to the task graph built from parsing
the simulation code a second task graph is built, where each node in the
new task graph can contain one or several tasks from the first task graph.
Figure 5.4 illustrates the relationship between the two task graphs. The first
task graph contains all arithmetic operations, function calls, etc., and the
second one is built by clustering together tasks from the first task graph. This
is an important reason for why the second task graph is built. For some
scheduling algorithms to work well, the granularity of the task graph, defined
in Equation 2.13, must have a low value. This is for instance true if the
scheduling algorithms only considers linear clustering, i.e. never scheduling
several immediate predecessors of a node on the same processor. This can be
achieved by running grain packing or clustering algorithms on the original task
graph, resulting in a new task graph which is coarser than the original one.

5.4.2 Implicit Dependencies

The simulation code also contains implicit dependencies, not visible by parsing
the simulation code with its macros unexpanded. Such code can for instance
be initialization macro calls for matrices and vectors used by code sections
for solving a system of equations. This means that information about these
special macros, and their implicit dependencies, must be known by the tool,
and that additional pseudo dependencies must be added to the task graph.

An example of implicit dependencies is given in Figure 5.5. The code
fragment solves a non-linear equation system. In this case the implicit de-
pendencies makes the whole code fragment sequential. For instance, the first
macro (NonLinearSystemOfEquations) declares several variables used in the
macros that follow and must hence be first in the code fragment. The sequen-
tialization of the code fragment is also motivated by the opening of a new scope
with the '{’ character, which forces the tasks inside the scope to be executed
atomically.

2The when equation is split internally by Dymola and the reinit equation is treated
elsewhere in the code. Therefore the reinit code is not present in the generated code.

CHAPTER 5. DSBPART - AN EARLY PARALLELIZATION TOOL
94 PROTOTYPE

First task graph

Second task graph

Figure 5.4. The two task graphs used in the tool.

5.5 The Full Task Duplication Method

The parallelization method implemented in the DSBPart tool is called the Full
Task Duplication Method, FTD [3]. It is especially suited for task graphs with
high granularity numbers, in the range 100 — 1000. This approach means that
clusters are built around each leaf node of the task graph, i.e., a task without
any successors, by collecting all predecessors of the leaf node. Hence, the
resulting clusters contain all tasks needed by the computation of the leaf task
node. Each cluster contains a tree traversal of the task graph originating from
the leaf node, following all edges upwards in the tasks, as depicted in Figure 5.6.
This simple approach also corresponds to performing a data partitioning of
the simulation code to several processors, i.e. a well known parallelization
technique. However, it still used the complete data dependency graph (the
task graph) to perform this partitioning.

When the clustering has been made, a second phase limits the number of
clusters until it matches the number of processors. This merge strategy is
performed in three steps.

e First the maximal cluster size is determined. This value is a measure
of the speedup that can be achieved by parallelizing the code using the
FTD approach, assuming that as many processors that are needed are
available.

e Secondly, clusters are merged in a load balancing manner by repeatedly

5.5. THE FULL TASK DUPLICATION METHOD 95

{ /* Non-linear system of equations to solve. */
const charxconst varnames_[]={"Pipe.Ploss[1]"};

NonLinearSystemOfEquations (Jacobian__, residue__, x__, 1, 1, 1,
154) ;

SetInitVector(x__, 1, Pipe_Ploss_1, Remember_(Pipe_Ploss_1, 0));

Residues;

SetVector(residue__, 1, Pipe_mdot_2-

ThermoFluid_BaseClasses_CommonFunctions_ThermoRoot (
divmacro (50%Pipe_Ploss_1*Pipe_mdotO*Pipe_mdotO,
"50%Pipe.Ploss[1]*Pipe.mdotO*Pipe.mdot0" ,Pipe_dp0,
"Pipe.dp0"),
Pipe_mdint*Pipe_mdint)) ;

{ /% No analytic Jacobian availablex*/
SolveNonLinearSystemOfEquations(Jacobian

Pipe_Ploss_1 = GetVector(x__, 1);

EndNonLinearSystemOfEquations(residue__, x__);
/* End of Non-Linear Equation Block */ }

residue__, x__);

——

Figure 5.5. Simulation code fragment with implicit dependencies, e.g. be-
tween SetInitVector and Residues.

merging clusters as long as the size does not exceed the maximum clus-
ter size. This phase substantially reduces the number of clusters to a
reasonable value, making the next phase less time consuming.

e Finally, clusters are merged until the processor requirement is met by
merging the two clusters with the largest number of common nodes. This
approach is greedy, since it will try to minimize the maximum cluster
size.

Figure 5.7 shows an algorithmic description of the FDT method. Step 0
in the algorithm creates the clusters by collecting the predecessors of each
exit node. Step 1 through 3 correspond to the three steps described above.
The clusters are described in the algorithm as list data structures where each
element is a set of nodes. The input to the algorithm is a task graph as defined
earlier in 2.1, and the number of processors. The algorithm returns a list of sets
mergedClLst, where each element in a set contains the nodes to be executed
Ol ONe Processor.

CHAPTER 5. DSBPART - AN EARLY PARALLELIZATION TOOL
96 PROTOTYPE

Figure 5.6. Applying full duplication (FTD) to a task graph.

Since the FTD algorithm duplicates all necessary tasks (which is done in
the first step when collecting all predecessors for a task), there will be no
communication between slave processors during the computation of the right
hand side. Therefore, the communication that occurs is only between slave
processors and the master processor. The master processor will send the state
variables to each slave processor, either by broadcast or by individual message
sending. After the slaves have finished their execution they will send individual
messages back to the master processor, which will update the variables before
the numerical solver is executed again.

With this simplified message sending strategy a simple but yet accurate cost
model can be used, see Equation 5.1. Here c¢l,,q, is the maximum execution

5.6. CONCLUSIONS 97

algorithm FTD(G: Graph (V, E, ¢, 7), N:Integer)
clLst, mergedCILst : list of S CV
mazSize : Integer

clLst:=emptyList/()

mergedClLst:=emptyList()

0. Vn e V | pred(n) =0 do
clLst:=addElt({n, predecessors(n)},cl)

1. mazxSize := maﬂcvs@l(znes 7(n))

2. mergedClLst = addElt((cI/Lst(1) U...U clLst())
7m6rgedClLst) ‘ ZnéclLst(l)U...UclLst(i) T(’I’L) < maxSize

while length(mergedClLst) > N do
3.find S1, S2 € mergedClLst | ZTLESlUSQ 7(n) = mm(zuesiusj 7(v))

Vi,j € {1...,length(mergedClLst)}

mergedClLst := del Elt(S1, mergedClLst)
mergedClLst := del Elt(S2, mergedClLst)
mergedClLst := del Elt(S1 U Sa2, mergedClLst)

end while

Figure 5.7. An algorithmic description of the FTD Method.

cost of a cluster, L is the latency of the communication network, and B is
the bandwidth of the network. The variable n is the maximum size of the
messages needed to be sent, thus giving an overestimation of the total cost.

Cp = climaz +2% (L+n* B) (5.1)

5.6 Conclusions

Despite some results, the DSBPart prototype was eventually abandoned for
several reasons. The most important reason was that the parser became more
and more complicated. In order to capture all variables and data necessary
to build the correct task graphs, eventually a complete C-parser would have
to be written. Also, new versions of Dymola meant changes in the generated
C-code, which meant that the DSBPart tool had to be updated as well.

Another reason for abandoning the prototype was that the OpenModel-
ica environment was emerging as a viable alternative, which would allow the
parallelizer to also have more control over the equation optimizations and the
solver code. This was not possible using Dymola, where the compiler was only
available as a binary executable.

A third reason for building a new prototype was that the old one was not
flexible enough and based on low level C-programming. With a new prototype

CHAPTER 5. DSBPART - AN EARLY PARALLELIZATION TOOL
98 PROTOTYPE

one could use C++ standard libraries to speed up the development by not
having to write everything from scratch. The following prototype, presented
in the next chapter, uses both the C++ standard template library and the
BOOST library for standard data structures and algorithms.

5.7 Results

Section 9.3 on page 150 presents some of the speedup figures produced by
the simulation of models produced by this tool. These are also presented
in [3]. The approach produced speedups for some examples using the FTD
method, whereas other examples did not produce any speedups due to limited
amount of parallelism in the simulation code. One conclusion made was that
better clustering algorithms that use task replication to increase the amount
of parallelism and limit the cost of communication was required.

5.8 Summary

The DSBPart parallelization prototype translates the C-code generated from
the Dymola tool into parallel C-code using MPI. It is the first prototype and
method made for parallelization of simulation code from Modelica models. It
has a simple clustering algorithm called Full Task Duplication (FTD). A few
models could be parallelized using the tool.

Finally, the DSBPart tool was abandoned and a new tool was developed
as an integral part of the OpenModelica environment. This tool is presented
in the next chapter.

Chapter 6

ModPar - an Automatic
Parallelization Tool

ModPar is the name of the main automatic parallelization tool for Modelica
models that has been developed in this thesis work. It is a part of the back-end
of the compiler in the OpenModelica framework. This chapter describes this
framework in general and the ModPar module in particular.

6.1 Research Background

When the DSBPart prototype had evolved to a stage where it could translate
some Modelica models to parallel code it became evident that a more flexible
parallelization tool was needed. The parallelization tool should for instance
also have control over the numerical solution routines and this was not possible
in the DSBPart tool. Moreover, the parallelization tool also needed control
over the equation optimization routines to fully exploit different options. The
OpenModelica compiler provided all this features and provided an open source
research compiler framework. Therefore it was quite natural to re-implement
the parallelization prototype in the OpenModelica compiler.

6.2 Implementation Background
The DSBPart prototype described in the previous chapter evolved enough to

be able to parallelize some examples, running simulations on Linux cluster
computers [3].

CHAPTER 6. MODPAR - AN AUTOMATIC
100 PARALLELIZATION TOOL

After a few years of development the Open Modelica compiler was complete
enough to make it possible to perform our parallelization research in the Open-
Modelica framework, with the advantage of having full access to the source
code including numerical solvers, as well as to all the details of the equation
optimizations performed on the flat set of equations. This has resulted in the
development of the ModPar parallelization tool.

Initially, an early version of the the ModPar tool was integrated with the
ModSimPack tool, which parse a flat Modelica file and built up a graph rep-
resentation of the equations and variables, etc. The ModSimPack tool was a
prototype developed in the equation debugging PhD thesis project [10], im-
plemented using C++ and a computer algebra package called SymbolicC++-.
However, in the spring of 2004 it became evident that both the ModSimPack
module itself as well as the SymbolicC++ library contained both severe bugs
(memory leaks) and inefficient algorithms. These defects made the translation
of larger simulation models intractable.

It was also quite obvious that the symbolic transformations and the equa-
tion sorting, etc. required a much more tighter integration with the OpenMod-
elica front-end. Therefore we decided to instead implement the missing parts
including the ModPar tool directly as a module in the OpenModelica compiler.
This also had the advantage of not having to write yet another parser for flat
Modelica.

6.3 The OpenModelica Framework

The OpenModelica framework is a set of tools for modeling, compilation and
simulation of Modelica models [55, 6]. It consists of several separate tools that
communicate through files and through a CORBA /socket interface.

This framework is entirely developed under Open Source, using the new
BSD license.

6.3.1 Overview

Figure 6.1 gives an overview of the OpenModelica framework. The OpenMod-
elica model compiler (omc) translates Modelica models into an executable file,
which when executed performs the simulation of the model. The compiler is
internally divided into the omc front-end and the omc back-end. The front-end
translates Modelica .mo files into an intermediary format called flat Modelica.

Flat Modelica is basically a simplified Modelica format containing declara-
tions of variables of built-in type, equations, algorithm sections and functions.
It corresponds to the Hybrid DAE [27] that constitutes the model equations for
the complete model. In order to produce this format the omc compiler flattens

6.3. THE OPENMODELICA FRAMEWORK 101

the inheritance structure, elaborates model components, and generates simple
equations from connect equations.

In the next step of compilation, OpenModelica sorts the equations, tries
to reduce the size of the equation system by equation optimizations such as
elimination of simple variables. It also performs index reduction to eliminate
certain problems during numerical solution. Finally it generates C-code from
the sorted and optimized equations. The C-code is linked together with a
numerical solver.

The last part of the toolset mentioned here is the interactive shell tool. It
is a simple shell-like interpreter that is directly linked to the omc, which can
also be executed in an interpretive mode. This allows us to let users interact
with Modelica models, simulations, Modelica functions, etc. in an interac-
tive manner, basically providing the same functionality as other interpreted
computation engines, such as e.g. Matlab.

4 N\
OpenModelica model compiler omc
— DAE | 5me backend
= omc frontend > > .exe
e ModPar
Modelica _ . Simulation
.mo = flat Modelica Executable
f— .mof
. J
/ \ N\
4 ﬁ ﬁ N\ (X N\
MDT Eclipsp
mosh OMNotebook P
plugin
Interactive Environment Development Environment
. J (. J

Figure 6.1. The OpenModelica framework.

6.3.2 Modelica Semantics

The omc tool translates Modelica code (files with extension .mo) into flat
Modelica (a file with extension .mof). It can itself be seen as a compiler

CHAPTER 6. MODPAR - AN AUTOMATIC
102 PARALLELIZATION TOOL

even though it is only a front-end in the OpenModelica model compiler, see
Figure 6.1. The omc compiler is written in a language called RML [63], which
uses Natural Semantics to describe the semantic rules of the compiler.

Natural Semantics is a popular formalism for formally describing compiler
semantics, such that for instance proofs of properties of languages can be made.
RML, which is inspired from standard ML [75] and Natural Semantics [30], has
successfully combined the strength of Natural Semantics with highly optimized
and efficient compilation techniques to enable compiler writers to use Natural
Semantics for real applications, such as generating efficient compilers from
formal specifications of real programming languages.

Natural Semantics in RML consists of relations, which can be thought of
approximately as functions. Each relation contains a sequence of rules. Each
rule contains a sequence of premises and a conclusion which can be viewed as
producing the return value of the relation.

The rules are matched in a sequential manner, starting with the first rule
in the relation. If the pattern of the rule matches the input to the relation
the premises of the rule are computed. If all premises of the rule successfully
evaluates, the conclusion is returned. However, if any of the premises do not
match, the rule fails and the next rule in the sequence is tried.

As an example we will now show a small interpreter in RML for a small
calculator language. First we define the data types, i.e., the abstract syntax,
that represents expressions in the language.

datatype Exp =
ADD of Exp * Exp
| MULT of Exp * Exp
| CONST of real

RML borrows the data type constructor syntax and semantics from the Stan-
dard ML language. Here we defined a data type Exp that can either be a
constant of the built in RML-type real, an addition of two Exp values (the
ADD node), or a multiplication of two Exp values (the MULT node).

We now define a small evaluator relation that evaluates values of this data
type, i.e., calculates the real values of expressions.

relation eval: Exp => real =

rule eval(el) => cl1 &
eval(e2) => c2 &
real_add (c1,c2) => sum

eval (ADD(el1,e2)) => sum

6.3. THE OPENMODELICA FRAMEWORK 108

rule eval(el) => c1 &
eval(e2) => c2 &
real_mult(cl,c2) => prod

eval (MULT (el,e2)) => prod

axiom eval (CONST(c)) => c
end

The relation eval consists of three rules. The first rule matches expressions
having the ADD node. The premises are that given an ADD node with the two
subexpressions el and e2 and the premises that they recursively evaluates
to the values c1 and c2 respectively and having the final premise that the
addition of c1 and c2 gives the variable sum, the conclusion of the rule is this
sum. Analogously, the second rule deals with the MULT type.

The last rule is an aziom which means that it has no premises and will
therefore always apply as soon as the matching criteria are fulfilled.

The whole OpenModelica compiler is written in RML, resulting in about 72
000 lines of RML code. The author has spent quite some time in implementing
the omc tool writing RML code, and has thus become an experienced RML
programmer and specification writer. We present some conclusions regarding
the properties of the RML language and its compiler in Chapter 11. Many
Modelica language constructs that were needed to express Modelica models
relevant for parallelization have been implemented by the author.

The main relation in the omc front-end is presented below:

relation main =
rule Parser.parse f => p &
SCode.elaborate(p) => p2 &
Inst.instantiate(p2) => d &
DAE.dump d

main([£f])

end

Its first task is to parse the Modelica program text given as input. This is
performed by the parse relation in the Parser module. The actual parser is
an external function to RML, which is implemented using the ANTLR parser
generation tool and has a parse tree walker that builds the RML data objects,
i.e., the Abstract Syntax Tree (AST). The AST is returned from the parse
relation call and put in the variable p.

CHAPTER 6. MODPAR - AN AUTOMATIC
104 PARALLELIZATION TOOL

The next step in the Modelica compilation is to transform the AST to a
canonical form, removing redundant information, simplifying the tree struc-
ture, etc. This is done in the OpenModelica SCode module by the elaborate
relation. The result from this relation is then sent to the symbolic instantiation
process in the Inst module.

Symbolic instantiation in Modelica is the process of flattening the inheri-
tance structure symbolically, instantiating components, and generating equa-
tions from connect equations. All this results in a flat Modelica class, defined
in the DAE module.

6.3.3 Modelica Equations

The most important back-end part of the OpenModelica compiler is the DAELow
module. It translates the equations and variables (defined in the DAE mod-
ule) into C-code which is linked together with a numerical solver giving an
executable program for running the simulation of the model.

To reduce the execution time of the simulation, a set of optimization tech-
niques are used, see Section 3.2. Currently, only removal of simple equations
and BLT sorting combined with index reduction are implemented in the Open-
Modelica back-end.

Finally code generation is performed. It is here that the ModPar tool is
plugged in, as an alternative code generator that also analyzes the systems of
equations in order to parallelize them.

6.3.4 Interactive Environment

The last tool to mention in the OpenModelica framework is the interactive shell
tool. It provides an interactive shell where users can perform calculations using
Modelica expressions and call Modelica functions, built-in or user defined.
The environment also makes it possible to create model definitions, to retrieve
model definitions, or change them through an API interface suitable for meta-
programming.

An example session in the interactive environment is given below:

>>> a:=1:10

{1,2,3,4,5,6,7,8,9,10}

>>> bi=a x 2

{2,4,6,8,10,12,14,16,18,20}

>>> a*b

770

>>> model test Real x[3]=fill(1,3); end test;
Ok

6.4. THE MODPAR PARALLELIZATION TOOL 105

Task Task

— Scheduli Code Generati
Builder Mcrging_> cheduling | p] Code Generation

Figure 6.2. The ModPar internal modules.

>>> instantiateModel (test)

" class test

Real x[1];

Real x[2];

Real x[3];

equation
x[1] =
x[2]
x[3] =

end test;
n

]
= e
O O O

>>>

6.4 The ModPar Parallelization Tool

As previously mentioned, the ModPar automatic parallelization tool is an
optional part of the back-end of the OpenModelica compiler. The internal
structure of ModPar consist of a Task Graph building module, the task merging
module, a scheduling module, and a code generation module, see Figure 6.2

6.4.1 Building Task graphs

Two task graphs are built from the sorted equations. The first is the fine
grained task graph corresponding to the expressions of those equation that
could be converted to assignment statements, or larger tasks for solving of
simultaneous sub-systems of equations.

The second task graph is the task graph used for merging of tasks. It is
initially a copy of the first fine-grained task graph, but will after task merging
become a more coarse grained graph. Both of these task graphs must be kept
throughout the parallelization process. The first fine-grained task graph is

CHAPTER 6. MODPAR - AN AUTOMATIC
106 PARALLELIZATION TOOL

used in the final code generation, whereas the second merged task graph is
used in the scheduling phase to determine on which processors and in which
order the tasks will execute.

6.4.2 ModPar Task Graph Implementation Using Boost

The task graph implementation in ModPar is based on the C++ Boost Graph
Template library (BGL) [8]. The BGL has an extensive use of C++ templates
to be able to change the graph data structures, as well as graph attributes, etc.
The task graph used in the implementation uses adjacency list representations
of a graph, enabling fast insertion and deletion of edges and nodes of the
graph. This is essential for the task merging algorithm which relies on fast
implementation of such operations.
The two task graphs are defined as a C++ template, using boost:

typedef boost::adjacency_list<boost::1listS, boost::1istS,
boost::bidirectionals,
VertexProperty, EdgeProperty> TaskGraph;

This will define a type that can be used for a graph implementation using
adjacency lists. There are two lists for adjacent nodes, one list for the im-
mediate predecessors and one list for the immediate successors of a node. It
will also use the types VertexProperty and EdgeProperty for the different
properties of vertices and edges of a task graph. These types are defined as:

using namespace boost;
typedef property<vertex_name_t,string,
property<vertex_execcost_t,float,
property<vertex_unique_id_t, int,
property<vertex_index_t,int,
property<vertex_color_t, default_color_type,
property<vertex_resultname_t, string,
property<vertex_tasktype_t, TaskType,
property<vertex_malleable_t, bool>

> VertexProperty;
typedef property<edge_weight_t, int,

6.4. THE MODPAR PARALLELIZATION TOOL 107

property<edge_result_set_t, ResultSet >
> EdgeProperty;

The VertexProperty type associates the properties
e A name - of type string.
e An execution cost - of type float.
e A unique id - of type int.

e A vertex index - of type int. This attribute is needed for certain graph
algorithms in boost.

e A vertex color - of type boost: :default_color_type. This attribute is
also needed for certain graph algorithms in boost.

e A result name - a string containing the result of the task.
e A task type - An enumeration of task types, used for code generation.
e A malleable flag - A flag indicating if a task is malleable or not.

The EdgePropery only contain two attributes. An edge weight of type int
for the communication cost and a ResultSet attribute giving the set of all re-
sults from a task. The reason for this resultset is to be able to perform merging
of several tasks without replicating data in the communication packets.

Fine Grained Task Graph

The task graph is built from the sorted equations. For each arithmetic ex-
pression, function call, subsystem of equations, etc. a task is created. A data
dependence edge is created between two tasks from a definition (i.e., assign-
ment) of a variable in one task to the corresponding use of the variable in
another task.

As an example, we use the Small0DE example introduced in Section 5.4:

model SmallODE
parameter Real a=3.5;
parameter Real b=2.3;
Real x;

equation
der (x)=-a*xx+b/(time+1);

end SmallODE;

CHAPTER 6. MODPAR - AN AUTOMATIC
108 PARALLELIZATION TOOL

From this code a task graph is built as shown in Figure 5.3. First, the
definitions of the variables in the code, (der x, a and b) are added, creating
a task for each variable definition. These tasks are definition nodes, therefore
their execution cost is zero. A symbol table keeps track of the tasks that define
the value of a given symbol. For instance, the variable name der_x points to
the define task for the variable der x, see Figure 5.3.

When the equations are traversed, tasks for the division, the two additions
and the multiplication are created in a similar manner as done by the DSPPart
tool described in Chapter 5. For instance, when the multiplication task is
created, the two operands are looked up (i.e., the definition tasks for a and x
are accessed) and edges between the operand tasks and the multiplication task
are created. The symbol table entry to the variable der_x is updated, so that
subsequent reads of the same variable will connect data dependence edges to
the new task instead of the definition task of the der_x variable. For scalar
values the communication costs associated with the edges are set to the cost of
sending one scalar value between processors. In the example we use a cost of
100 units, e.g could be 100 microseconds, for a communication of one variable.

Merged Task Graph

From the task graph corresponding to the sorted equations we build a second
task graph. This is required to be able to later merge tasks but still having
the information of the original task. However, many scheduling algorithms
assume a single entry, single exit task graph. This means that the task graph
should only have one entry node (a node without any predecessors) and one
exit node (a node without any successors). The second task graph is therefore
built having a single entry node and a single exit node. However, the entry and
exit nodes are not considered during task merging, since they should remain
in the resulting graph.

When the task graph has been built, each task has to be assigned an execu-
tion cost and each edge a communication cost. One approach of estimating the
different costs is to use profiling. Since the simulation code is executed repeat-
edly each time step of the numerical solver, with almost the same execution
time, a simple profiler can be used to measure the execution costs.

However, a simpler approach where each different task type is estimated
by hand could be sufficient. It is more important to give a good estimate
of the relation between communication cost and execution cost, since this is
the main factor that affects the possible speedup when executing on a parallel
computer. Once this relation has been measured with enough precision, the
other costs are worth considering.

6.4. THE MODPAR PARALLELIZATION TOOL 109

6.4.3 Communication Cost

The communication costs can be determined by measuring the time it takes to
send differently sized datasets between two processors on the targeted multi-
processor architecture. Typically, for small sizes of data, the affecting parame-
ter is mostly the latency of the parallel computer, see Section 2.2.2. Therefore,
for the fine grained task graphs produced in our parallelization tool, the latency
is the most important parameter.

Such measurements are commonly used to benchmark different communi-
cation APIs on different machines. Figure 6.3 gives the latency and bandwidth
measured (by each specific vendor) for different multiprocessor architectures
170, 51]. The values in Figure 6.3 are measured at the MPI software level
(except for Firewire) , thus including the overhead of calling the APT functions
when sending a message.

| | Bandwidth (Mbyte/sec) | Latency us |

Scali MPT (SCI network) 199.2 4.5
GM (Myrinet network) 245 7
SHMEM (SGI Origin 3800) | 1600 0.2-0.5
| Firewire (at hardware level) | 50 | 125 |

Figure 6.3. Bandwidth and latency figures for a few multiprocessor architec-
tures and interconnects.

6.4.4 Execution Cost

The execution cost of the tasks in the task graph can either be estimated
given the architecture specification of the targeted platform, or determined
by measuring the time by profiling the simulation code. The method used
depends on what accuracy is needed. When using estimates of the execution
cost instead of actual measurements, effects from the cache is often neglected,
giving large errors in the approximation.

On Pentium-based processors there is a special instruction that counts
the number of cycles elapsed since the last reboot of the processor. A single
assembler instruction put inside a function is therefore sufficient for measuring
high resolution time. The code in Figure 6.4 illustrates how this method can
be used. One problem is that the compiler might optimize the code, moving
parts of the computation that should be measured outside the two calls to the
measuring function (rdtsc in Figure 6.4). This can be solved by turning off

1The SGI computer is a shared memory machine, thus the figures denote writing data to
shared memory.

CHAPTER 6. MODPAR - AN AUTOMATIC
110 PARALLELIZATION TOOL

the optimizations responsible for moving the code. However, that introduces
errors in the measurements which could be large.

__inline__ unsigned long long int rdtsc()

{
unsigned long long int x;
__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));
return x;

}

int main(int argc, char **argv)
{

long int start,end;

start = rdtsc();

myfunc(argc,argv); // function to measure
end = rdtsc();

return end-start;

Figure 6.4. Pentium assembler code for high resolution timing.

There are certain tasks that are harder to measure. For instance, the
code for solving of a non-linear system of equations is based on a fixed point
iteration. Thus, the execution cost for the corresponding task graph can not
be estimated well enough, since the number of iterations depends on the input
values of the involved variables. For these tasks, a less precise estimation is
given.

For other tasks, corresponding to code solving a linear system of equa-
tions, the cost estimate can be obtained from the number of involved variables.
Hence, the cost of for instance solving a linear system of equations involving
ten variables can be estimated by a function call f(10), where f is defined
in (6.1). If the standard LaPack [1] function for solving a linear system of
equations is used (xGESV), the function described in Equation 6.1 can be used,
where C7 and Cs are constants that can be determined by for instance profiling
as above.

f(n)=Cy nd+Cy (6.1)

6.4. THE MODPAR PARALLELIZATION TOOL 111

6.4.5 Task Merging

Once the task graph has been built from the sorted and solved equations the
task merging takes place. The next chapter explains the task merging process
in detail, for now it is sufficient to now that task merging is primarily performed
to increase the task graph granularity, such that the preceding scheduling phase
can achieve a better schedule.

6.4.6 Task Scheduling

Once the task merging has been performed, resulting in a coarse grained task
graph, task scheduling is initiated. The task scheduling algorithm schedules
the task graph given a specific parallel architecture platform with P processors.
The ModPar tool uses the TDS scheduling algorithm, which can optimally
schedule coarse grained task graphs given some constraints. Unfortunately it
can not build a schedule for a fixed number of processors, therefore it is followed
by a simple load balancing scheduling algorithm to reduce the schedule to a
fixed number of processors.

The TDS algorithm also uses a restricted form of task replication to de-
crease the number of sent communication packets. However, the TDS algo-
rithm does not use the cost model with two parameters for the communication
cost (bandwidth and latency), see Chapter 7. Instead it uses the delay model,
presented in Chapter 2.

The scheduling algorithm is implemented as one C++ class, making it easy
to extend the ModPar tool with new scheduling algorithms.

6.4.7 Code Generation

After scheduling comes the task of generating code for running on a parallel
machine. Since we are using a data dependence graph (task graph) as the un-
derlying data structure for our parallelization, a message passing programming
model is suitable. Programming models (typically libraries) with message pass-
ing can be implemented on both distributed shared memory machines as well
as shared memory machines. For instance, MPI (Message Passing Interface)
implementations exists for both types of architectures.

Code generation is performed for one processor at a time by traversing
the tasks assigned to the processor. Once a task needs data, due to a data
dependence in the task graph, from a task not assigned to the same processor,
an explicit MPI receive call is inserted to receive this data from a processor
executing this task. The same goes for a task having a successor task not
executing on the same processor. Then a MPI send call is inserted to send the
data to the processor(s) responsible of the execution of that task.

CHAPTER 6. MODPAR - AN AUTOMATIC
112 PARALLELIZATION TOOL

For example, consider the merged task graph in Figure 6.5. Since the
task graph is merged, there can be several scalar values communicated along
the edges of the task graph, forming larger data packets. For example, when
generating code for task c of the merged task graph, all immediate predecessors
(task a) is executed on the same processor, so there is no need to generate
receive commands. Then follows the code generation for the task c itself,
which internally can consist of several tasks. These internal tasks are traversed
in a top level order to ensure that all data dependencies are fulfilled and
code is generated for each subtask. Then follows the code generation of send
commands to successor tasks that are executing on other processors, in this
case task e.

™

(4
N

(a) Merged task graph

PO |acd

Pl |be
(b) Schedule of
task graph for
two processors

D

Figure 6.5. Code generation on a merged task graph.

Thus, the code generated for processor 0 would have the following structure:

/* Code for task a */
/* Code for task c */

sendbuf [0]=d1;
senbbuf [1]=42;

sendbuf [n]=dn;
MPI_Send(buf,n,1); // Send data to processor 1

6.5. SUMMARY 113

/* Code for task d */

where d1, d2,...,dn are the scalars associated with the communication edge
(c,e). Similarly, the code generated for processor 1 would look like:

/* Code for task b */

MPI_Recv(recvbuf,n,0); // Recv data from processor 0
/* Code for task e */

The code generation algorithm generates one function for each processor,
called proc0O, procl, ... procn forn processors. The main function of the
parallel simulation code will then determine the processor rank by using the
MPI_Comm Rank function and call the proper function. Processor zero will also
execute the numerical solver, i.e.; the main loop of the ODE/DAE solver, so
the code looks a little bit different in this case.

Once the code generation is done, the automatic parallelization tool has
completed its task of parallelizing the simulation code. The code must then
be compiled and transferred to the parallel computer for execution.

6.5 Summary

The ModPar parallelization tool is a part of the OpenModelica framework for
automatic parallelization of Modelica simulations. The parallelization scheme
is intended to parallelize the computations of solving the system of equations
(right hand side calculations of the underlying ODE/DAE, but currently not
parallelize the central solver algorithm) and execute these in parallel. This
is performed by building a data dependency graph of these calculations, a
so called task graph and thereafter merge tasks in this graph using a pro-
posed task merging algorithm with the goal of increasing the granularity of
the task graph. The new task graph, resulting from the task merging process,
is then scheduled using conventional multiprocessor scheduling algorithms to
achieve faster execution of the simulation code on a parallel computer. After
scheduling, code generation is performed using MPI (Message Passing Inter-
face), making it possible to execute the simulation code on a variety of parallel
computer architectures.

CHAPTER 6. MODPAR - AN AUTOMATIC
114 PARALLELIZATION TOOL

Chapter 7

Task Merging

This chapter presents techniques of merging tasks in a task graph and our
contributions made in that area. Merging of tasks is performed to increase the
granularity of a task graph, obtaining fewer tasks with increased computation
cost making it more suitable for scheduling by better balancing the ratio be-
tween communication cost and computation cost of the task graph. This work
has partly been published in [5].

7.1 Increasing granularity

The goal of a task merging algorithm is to increase the granularity of a task
graph. This is performed by merging tasks to increase the computational work
of the tasks compared to the communication cost between different tasks of
the task graph. When tasks are merged their computation costs are added,
thereby increasing the execution cost while the communication costs remain
unchanged. However, by merging tasks we also reduce the degree of parallelism
in the task graph. At the extreme, if we merge all tasks into a single tasks,
there is no parallelism left in the task graph. Thus the task merging problem
must be balanced against the amount of parallelism of the task graph. Thus
the task merging problem can be viewed as a max-min problem. We want to
maximize the amount of parallelism in the task graph while minimizing the
cost of communication. Or actually we want to minimize the inverse of the
granularity, resulting in large execution costs and low communication costs.

116 CHAPTER 7. TASK MERGING

7.2 Cost Model for Task Merging

As a cost model for the execution and communication of the task graph we
use a variant of the cost model from the LogP parallel programming model,
see Section 2.2.2 on page 29. We use the latency, [, and the bandwidth, B,
from the LogP model to measure the cost of communication. Equation 7.1
gives the cost for sending n bytes of data from processor i to processor j.
n s
Cij =1+ % (7.1)

This model is more advanced compared to the delay model since it con-
siders the latency metric, which is independent of message size sent. The
latency corresponds to the initialization cost of sending a message between
two processors. The latency varies substantially between parallel processor
architectures but typically lies in the proximity of about 10 ps. The latency
can be estimated by the time the message is occupying the communication
link, i.e., the amount of time the message takes to travel from one processor
to another. This measure is directly proportional to the length of the actual
physical link on which the message is transmitted. This length can of course
vary between different pairs of processors on different types of architectures,
but in this context a uniform latency cost is provided which is the same for
communication between any pair of processors.

The second term of the communication cost is the bandwidth. It is pro-
portional to the actual message size and measure how long the message takes
to communicate over the network. The bandwidth is proportional to the com-
munication speed of the physical link between the processors. It typically
measures how many bytes can be transmitted over the network per second.
This can of course also vary between different pairs of processors but here is
given a uniform value for a given architecture.

When having these two terms as the cost of communication between pro-
cessors it can be beneficial to merge data packets sent between processors. For
instance, if task a sends different data to both b and ¢ in Figure 7.1 below,
the messages could be merged to a single message provided that task b and
c are merged. This would reduce the overall cost of outgoing communication
for task a by [, since only one message is sent. If we would have had a simpler
cost model, such as the delay model, this merge would perhaps not have been
worthwhile.

7.3 Graph Rewrite Systems

A Graph Rewrite System (GRS) is an universal way of transforming an arbi-
trary graph by adding or removing edges and vertices by a set of transformation

7.3. GRAPH REWRITE SYSTEMS 117

Figure 7.1. Task b and ¢ could be merged into task e to the right where
Ng,e = Na,b + Na,c, resulting in one message sent.

rules. Each transformation consists of three or four parts.

e A subgraph pattern which will be mapped on the targeted graph to find
matching subgraphs.

e A resulting subgraph, also called redex which is the resulting subgraph
of the matched subgraph of the transformation by adding or removing
edges or vertices from the subgraph.

e A condition that must be fulfilled in order for the transformation to be
applicable.

e An invariant statement, indicating what remains unaffected by the trans-
formation, e.g. certain attributes of edges and vertices.

A GRS typically consists of several such transformation rules which can
both add and remove edges and vertices. Such a system can be applied to
graphs until no more transformations can be performed, causing the GRS to
terminate. The termination of a GRS is a desirable property for most practical
applications of graph rewrite systems. For instance, by having one rule that
adds a vertice and a second rule that removes the same vertice we get a GRS
that will never terminate.

A second property of a GRS is its confluence. A GRS is confluent if the
ordering of the transformations is not dependent on the resulting graph. This
means that regardless of in which order the transformations are applied the
resulting transformed graph will be the same. This property is desirable to
ensure that the transformation rules can indeed be applied in any order as
long as each individual condition of the transformations is fulfilled.

If a GRS is not confluent it can in some cases be made confluent by e.g.
giving priorities to the transformation rules or by dividing the GRS into several
consecutive graph rewrite systems which are applied in a sequence.

118 CHAPTER 7. TASK MERGING

Condition

Graph Pattern Target Graph

Invariants

Figure 7.2. The X-notation for a transformation rule in a GRS.

7.3.1 The X-notation

There are several notations for graph rewrite systems available in the litera-
ture [|. One of these is the X-notation. It describes the four parts of a graph
transformation rule in a graphic form using the X character, as shown in Fig-
ure 7.2. To the left is the pattern subgraph which will be matched against
subgraphs of the targeted graph of the GRS. To the right is the resulting sub-
graph, the redex. Above is the condition expression for the transformation
and below are the invariants of the rule.

In this thesis we will use the X-notation for describing our graph rewrite
rules used for task merging.

7.4 Task Merging using GRS

One contribution of this thesis is the idea of merging tasks in task graphs
using a graph rewrite system formulation. In the following we will present a
set of task merging transformations that together constitutes a GRS. This task
merging system will then be used on fine grained task graphs from simulation
code to transform them into more coarse grained task graphs that hopefully
still reveal much parallelism. We call this method ATMM (Aronssons Task
Merging Method).

The main idea behind our task merging GRS is to merge tasks together as
described earlier in this chapter with the goal of increasing the granularity of
the task graph. A condition for performing the merge is that the (top) level,
see Equation 2.3 of the involved tasks of the transformation are not increased.
With this simple strategy we can construct a set of rules that will merge tasks
together resulting in larger execution costs of tasks in the task graph and larger
data sizes of the communication between tasks. The following section presents

7.4. TASK MERGING USING GRS 119

a first attempt at constructing a task merging algorithm using graph rewrite
systems.

7.4.1 A First Attempt

As a basic task merging algorithm using GRS we construct three simple rules,
to deal with different patterns of a task graph. Each rule is given an explana-
tory name for reference later on. The three basic rules are presented in the
three following sections.

Merging of Single Child Nodes

A first and quite simple rule to have in a task merging GRS is to allow merging
of tasks when this does not decrease the amount of parallelism of the task
graph. This will occur if the task graph contains two tasks where the first
only has the second as a single immediate successor and the second only has
the first as single immediate predecessor. In this case no parallelism is lost by
merging these two tasks. Also the transformation will increase the granularity
for the resulting task and perhaps also for the complete task graph. The
transformation will also reduce the number of tasks in the task graph, which
is beneficial from a computational complexity point of view.

The transformation rule is depicted in Figure 7.3 and is named singlechild-
merge. The dotted ingoing edges on each node, e.g. p, mean that the pattern
allows the p task to have an arbitrary number of immediate predecessors (zero
or more). This is also true for the immediate successors of task ¢ in Fig-
ure 7.3. The resulting task graph will have a task p’ as the result of merging
the tasks p and ¢. Therefore the execution cost 7(p’) of p’ can be calculated
as 7(p') = 7(p) + 7(c). The top level attribute for all predecessor tasks of p
remain unchanged by this merge, hence they are stated as invariants of the
rule, see Figure 7.3.

Merging of Join Nodes

A join node, e.g. at the left of Figure 7.4, can be merged with all its immedi-
ate predecessors (i.e., parents) given that the level of the join node does not
increase after the merge. The new merged task will then contain the compu-
tational work of the join node itself and all predecessor tasks of the join node.
This is the mergeallparents rule which is shown in Figure 7.4.

The condition can be formulated as

tlevel(c) > maxtlevel(p;) + Z (t(pi)) +7(c) (7.2)
pi€Epred(c)

120 CHAPTER 7. TASK MERGING

tlevel(j) j € pred™(p)

Figure 7.3. The singlechildmerge rule. The invariants states that all prede-
cessors of p have the same top level after the merge.

tlevel(c) > maxtlevel(p;) + > 7(pi) + 7(c)

tlevel(j), j € pred™(p;)

Figure 7.4. The mergeallparents rule. The condition becomes true if
tlevel(c') < tlevel(c), invariants of the rule are the top level value of all pre-
decessors of p;.

which means that the merged node ¢ must get a lower top level than the join
node c¢ after the merge. The resulting merged task ¢’ will have an execution
cost of 7(¢/) = > 7(pi) + 7(c), hence giving the condition in Equation 7.2.
This condition will typically be fulfilled if the latency, I >> 7(n) for all the
involved tasks n in the pattern.

Moreover, this transformation rule will decrease the number of nodes of
the graph and increase the granularity for the ¢’ task and potentially for the
complete graph as well. Similarly, as for the singlechildmerge, all immediate
predecessor tasks of each predecessor p; of ¢ will have their tlevel values un-
changed by the merge, i.e., they are invariants of the rule, see Figure 7.4.

7.4. TASK MERGING USING GRS 121

T(p) < L+c(p,ei)/B ,Vi=1l.n

tlevel(j) ,j € pred™(p)

Figure 7.5. The duplicateparentmerge rule.

Merging of Split Nodes

In order to merge tasks for a split node, e.g. p, depicted at the left of Figure 7.5,
we need to perform task replication. The split node p can be replicated into
as many copies as there are immediate successors of the split node and then
each individual replica can be merged with one of the immediate successors.
This rule is called duplicateparentmerge and is depicted in Figure 7.5.

The condition of merging a replica of the split node p into each immediate
successor ¢; is that the execution cost for the split node must be less than the
communication cost between the split node and each immediate successor of
the split node. The resulting tasks are the merged immediate successors ¢, to
the split node p, with the execution costs 7(c;) = 7(p;) + 7(p).

An Example

To illustrate how the task merging algorithm works we consider the task
graph example given in Figure 2.1 in Chapter 2, also shown in Figure 7.6(a).
Figure 7.6 shows a possible task merging transformation of this graph. Fig-
ure 7.6(a) shows the input task graph before transformations are applied. The
first rule that is applied in this case is the singlechildmerge rule, merging tasks
4 with 7 and task 3 with 6, resulting in the task graph in Figure 7.6(b). Since
this rule has no condition these transformations will be performed regardless
of the sizes of the bandwidth and latency parameters.

After this step the duplicateparentmerge rule is applied, first duplicating
task 1 into task 2 and task (4,6) respectively. Then the rule is applied again,
replicating task (1,2) into task (4,7) and task 5, resulting in the task graph
shown in Figure 7.6(c). Finally, the mergeallparents rule is applied, merging
task (1,2,5) and task (1,3,6) with task 8 into a single task, resulting in the task
graph depicted in Figure 7.6(d).

122 CHAPTER 7. TASK MERGING

This particular merge also illustrates that the task merging algorithm needs
to keep track of which subtasks are contained in a task, to be able to merge
them correctly. Otherwise, this particular merge would have counted the repli-
cas of task 1 twice resulting in an erroneous execution cost of the merged task.
Similarly, the algorithm also must keep track of the messages sent between
tasks. Due to a merge, the same message might otherwise be counted several
times, also giving an erroneous cost.

For this example with the given communication cost, all conditions for the
transformations are fulfilled. This results in an almost complete reduction
of the task graph. However, with different parameters of the communication
cost the result would have been different, since some of the conditions of the
transformations would have been false.

Limitations

Even though the example above could be reduced to two nodes when the com-
munication cost was as high as given, there are other cases where the three task
merging transformations given above are not enough. For instance, consider
the graph in Figure 7.7. The rule duplicateparentmerge will fail for task 1 since
task 4 has an other immediate predecessor (task 2). Similarly, mergeallparents
will fail for task 4 since task 1 and task 2 has another immediate successor,
task 3 and task 5 respectively. Obviously, these cases can occur quite often
and therefore we need to enhance our rules to make them more applicable.

7.4.2 Improving the Rules

The duplicateparentmerge rule and the mergeallparents rule can be improved
in several ways. The first improvement for both of these rules is to allow
other immediate predecessors as discussed above. We then need to enhance
the conditions of the rules to make sure that these immediate predecessors
will not increase their top level value by the merge. These extra conditions
will increase the execution cost of applying the transformation since the extra
conditions must be checked. However, to be able to cope with real application
examples, these improvements are necessary.
Below follows improvements of the above mentioned rules.

Improved Rule for Join Nodes (mergeallparents2)

The mergeallparents rule can be improved by allowing the immediate prede-
cessors to the join node c, see Figure 7.8, to have other immediate successors
besides ¢. The communication to these other immediate successors will as a
result of the merge be delayed to after the computation of the merged task.

7.4. TASK MERGING USING GRS 123

a»
G
B

(a) The input task graph (b) singlechildmerge applied

8
% S Gy feassey
)

5
8\ / 9
duplicateparentmerge (d) mergeallparents applied

(c
applied

Figure 7.6. A series of task merging transformations applied to a small task
graph.

Thus, the condition is expanded to check that these other immediate succes-
sors top levels are not increased by the merge. This is the second line of the
condition in Figure 7.8. Typically this can be true if these other tasks have a
higher top level due to some other unrelated tasks in the task graph.

Yet another improvement is to relax the condition that other immediate
successors to p; tasks should not increase its top level. If the immediate suc-
cessor nodes to some p; will increase their tlevel they can not be merged into
the merged task. We can then improve the rule by dividing all immediate
predecessors p; into two disjunct sets, those that fulfill the condition (¢ € C)
and can be merged and those that do not fulfill the condition (¢ ¢ C'). The
merge can then only be performed with all immediate predecessors if the im-

124 CHAPTER 7. TASK MERGING

1 2

1 2
5 5 5
3 4 5
1 2 2

Figure 7.7. A small example where duplicateparentmerge and mergeallparents
will fail. Duplication of task 1 is prevented by task 2 and merging of tasks 1,2
and 4 will fail because of task 3 and 5.

tlevel(c) > maxtlevel(p;) + > 7(pi) + 7(c)
pi; € C | tlevel(p;;) > tlevel(c’) + c(pispi;)/B+ L
Vp,-j € succ(pi) # ¢, pi € pred(c)

Pi £ C:A{pr, i}

succ{é eC)

tlevel(j), j € pred (p) ({Pary - Pan} N

Figure 7.8. The mergeallparents?2 rule.

mediate predecessors for which the condition fails is also replicated. These
enhancements to the old rule are shown in Figure 7.8. This new rule is named
mergeallparents?.

As an example, consider the task graph in Figure 7.9. We set bandwidth,
B =1 and latency, L = 9 and try to apply the rule to task ¢. The cost of
communicating from task b to task ¢ becomes ¢, = L+ B*1=9+1 = 10.
The top level value of all tasks in the task graph are presented in Figure 7.9(b).

The first condition, tlevel(c) > max {tlevel(a), tlevel (b) }+7(a)+7(b)+7(c)
becomes 22 > 11 4+ 1+ 1 4+ 1. Thus the first condition is true.

The top level of the newly created task ¢’ is given an upper bound by
tlevel(c') < max {tlevel(a),tlevel(b)} + 7(a) + 7(b) + 7(c) = 11 + 3 which is
then used to check the conditions of the other immediate successor tasks g and
h. The reason this being an upper bound of the top level for the new task ¢’

7.4. TASK MERGING USING GRS 125

1 1
Task id | top level
11

a

b 11
B

d 0

€

f

g

h

11
22
33
22
(b) Top level for all tasks

) Task graph

Figure 7.9. Example of merging parents applying the improved rule called
mergeallparents2.

is if two immediate predecessors of ¢ have a common immediate predecessor,
since task a and b has the common immediate predecessor d, the top level can
be reduced even further for the new task ¢’ since the communication messages
then are combined.

The reason for not calculating a tighter (or even exact) bound for the
new task ¢’ is that such calculations are too computationally expensive. The
same relaxation of the upper bound also occurs on the first condition of the
rule due to the same reason. However, the exact calculation could be seen
as yet another improvement of the rule, even though experiments have shown
that this improvement is not necessary in practice, since the condition will be
fulfilled in most cases anyway.

For task g we get tlevel(g) > tlevel(c') +1/B+ L which gives 33 > 14+ 10,
for bandwidth, B = 1 and latency, L = 9. Thus the task g has other immediate
successors not affected by the merge, since the condition is true, giving task
a€C.

For task h we get tlevel(h) > tlevel(c') + 1/B + L giving 22 > 14 + 10
which is not true, giving task b ¢ C.

After the transformation has been performed we get the task graph pre-

126 CHAPTER 7. TASK MERGING

sented in Figure 7.10. The three tasks a, b, ¢ are merged and since the condition
failed for task b it is replicated to prevent an increase of the top level for task

h.

—_

g O
&

P e

Figure 7.10. The resulting task graph after mergallparents2 has been applied
to task c.

Improved Rule for Split Nodes (duplicateparentmerge2)

The duplicateparentmerge rule for split nodes can be improved in a similar
manner. First we allow other immediate predecessors to the immediate suc-
cessor tasks of the split node p, which will increase the potential of successfully
matching the pattern. In this case if the merge is successful the top level could
be increased for these nodes since the execution cost of the split node 7(p)
must be taken into consideration.

But as for the mergeallparents? rule we can further improve this by again
dividing these other immediate successor nodes into two disjunct sets, those
that fulfill the condition of not increasing the top level and those that do not
fulfill this condition.

Those that fulfill the condition will be merged into the split node p and
those that do not fulfill the condition will be left as is, i.e., still having the split
node p as a immediate predecessor. This also implies that the split node itself
must be kept if the set of tasks not fulfilling the condition is nonempty. The
enhanced rule is named duplicateparentmerge2 and is shown in Figure 7.11.

The condition of the new rule consists of the condition from the dupli-
cateparentmerge rule that the top level should not be increased by merg-

7.5. EXTENDING FOR MALLEABLE TASKS 127

7(p) < L+ c(p,c;)/B ,Vi=1l.n

ci € C | tlevel(c;) > tlevel(p;) + L+
c(pj,ci)/ B+ 7(p;) + 7(p)
Vp; € pred(ci), pj #p

tlevel(j) ,j € pred™(p)

ci ¢ C:{cy, .. cr}

Figure 7.11. The duplicateparentmerge2 rule.

ing all immediate predecessors with the task p. This gives the condition
T(p) < L+c(p,ci)/B) ,Ve; € suce(p).

The second condition states that other immediate predecessors (p;) of the
successors of p (¢;) should not increase their top level, giving the condition
tlevel(c;) > tlevel(pj) + L + ¢(pj, .c;)/B + 7(p).

As an example, we illustrate the rule by applying it to the task graph in
Figure 7.12. The first condition, 7(a) < L+c¢(a,b)/B and 7(a) < L+c¢(a,c)/B
holds.

The second condition will then check the other successors of task b and c.
For task b we get tlevel(b) > tlevel(e)+ L+ c(e,b)/B+7(e) 4+ 7(a) which does
not hold for B =1 and L = 9. Thus, task a can not be replicated and merged
into task b since that would increase its top level (going through task e).

For task ¢ we get tlevel(c) > tlevel(f)+ L+ c(f,c)/B+7(f) + 7(a) which
holds for B = 1 and L = 9. Therefore task a can be replicated and merged
together with task c¢. The resulting task after the merge is depicted in Fig-
ure 7.13.

7.5 Extending for Malleable Tasks

A malleable task is as explained in Section 2.1 a task that can be executed on
a single processor one or on several processors. The execution cost for such
a task is therefore a decreasing function of the number of processors it will
execute on, assuming that the computation to communication ratio on the
multiprocessors allows speedup in that case (sometimes execution is slower
using more processors). The actual number of processors it will execute on
can be determined both at static scheduling time, as a part of the scheduling
problem, or even at runtime by a dynamic scheduler. It would however not

128 CHAPTER 7. TASK MERGING

1 Task id | top level
11
24
22

a
b
C
(a) Task graph d 0
[§]
f

11

0
(b) Top level for all tasks

Figure 7.12. Example for replicating parent and merging with the improved
duplicateparentmerge2 rule.

[d) /T
! L
1
e
\3/)
N\ 1 -
\2/
>
\1/

Figure 7.13. The resulting task graph after duplicateparentmerge2 has been
applied to task a.

make much sense to determine this at task merging time, since the approach
of task merging is independent of the scheduling problem, i.e., no scheduling

7.5. EXTENDING FOR MALLEABLE TASKS 129

decisions are made during the task merging process.

To include malleable tasks in the task merging process we first need to
recognize which tasks are malleable. This can be achieved with an attribute
indicating whether a task is malleable or not. The task merging rules will then
be enhanced with conditions concerning malleable tasks. These conditions are
based on a few simple rules.

e A malleable task should not be allowed to be replicated. This is justi-
fied by two reasons. First, a malleable task is probably never a small
task, i.e., a task with low execution cost compared to the communication
costs of the task graph, therefore making it too costly to replicate. Sec-
ondly, replicating a malleable task would lead to a substantial increase
in the number of processors required. Since the task merging approach
is performed prior to scheduling, there is no information available on
how many processors are available. Therefore the decision to replicate a
malleable task can not be fully made.

e Two malleable tasks should not be merged. This makes sense since
we do not know how many processors each of the two malleable tasks
will require. It is not certain that they both require the same number
of processors. Therefore, merging two malleable tasks together is not
feasible, mostly because the scheduling algorithm in that case still would
need to be able to determine the number of processors for each of the
two internally merged tasks anyway.

With these rules as a baseline, the inclusion of malleable tasks into the task
merging rules are quite straightforward. The singlechildmerge rule will have
the additional condition that not both tasks should be malleable, giving the
extra condition —malleable(c) A malleable(p) V malleable(c) A —malleable(p),
where malleable is a function returning true for malleable tasks and false for
non-malleable tasks.

The mergeallparents2 rule can also allow some of the tasks involved to be
malleable. The problem in this case is to calculate the top level of the mal-
leable task, since the execution time is dependent on how many processors
gets allocated to the task. There are two possibilities for solving this problem.
The first one is to make a conservative assumption and use the execution cost
for executing the task on a single processor. However, this can in some cases
prevent the rule from being applied. The alternative is to before the merge de-
termine how many processors each malleable task should execute on and then
use the estimated cost for the determined number of processors when calcu-
lating the top level value. In this case we get a more accurate execution cost
but the downside is that we need to know the number of processors allocated

130 CHAPTER 7. TASK MERGING

for each task, which can only be known at the scheduling time. Thus, giving
a dependency between the task merging phase and the scheduling phase.

The same problem arises when we look at the duplicateparentmerge2 merge
rule. We can not exactly determine the execution cost of the malleable task
without knowing how many processors it will execute on. For this case we
also have to prevent malleable tasks from being replicated, i.e., the parents of
the targeted child in this rule can not be malleable. It would make no sense
to allow a malleable task to be replicated. The only exception would be if
the malleable task had the fastest execution time for executing on a single
processor, i.e., the task is so small that it executes fastest on one processor.
Then it could be considered for replication, since the effect of the replication is
then more limited. But a task can also have the fastest execution time for one
processor but still be relatively large. Therefore it might be needed to instead
use a absolute threshold for when such a malleable task might be replicated
or not.

The extension to the task merging method to malleable tasks is feasible
by slightly extending the conditions of the rewrite rules. Malleable tasks is a
way of extending static task graphs to include more dynamic information. For
instance, a simple loop in a Fortran program that can easily be parallelized
can not be represented using task graphs in its present form. However, the
same loop can be treated as a malleable task, allowing programs containing
such loops to be parallelized by using task graphs. These programs can of
course also gain from having a task merging phase when they are parallelized.

7.6 Termination

One of the most important and desired properties of a graph rewrite system is
if it terminates for any given input graph. If the task merging graph rewrite
system would not terminate it would be of small or no practical use. Hence
this property is of uttermost importance for the task merging GRS.

Fortunately, our task merging GRS does terminate for any input graphs.
This can easily be shown since no rule of the task merging GRS will (in total)
increase the number of vertices or edges of the task graph. Thus every appli-
cation of a rule will decrease the size of the graph monotonically. Therefore,
the task merging GRS will always terminate for all input task graphs. In the
worst case the GRS will terminate when there is only one task left in the task
graph, or only tasks without any edges in the task graph.

Even if the termination is guaranteed it might be useful to interrupt the
task merging algorithm before it terminates. This can be done since each
transformation step results in a valid task graph. In other words the task
merging algorithm is incremental by nature, in each step making a small im-

7.7. CONFLUENCE 131

provement by increasing the granularity of the task graph. This property can
be of practical importance since it allows a tool to interrupt the task merging
if it takes too long time, but still being able to continue with task scheduling.

7.7 Confluence

The confluence property of a graph rewrite system is important if the rules
should be allowed to be applied in any order. As presented before, a graph
rewrite system is confluent if the order of application of transformations does
not affect the result.

To formally prove that the task merging GRS is confluent can be a tedious
and complex task, and is outside the scope of this thesis work. One problem
of proving this property is that one task merging transformation in a totally
different part of a task graph can for instance potentially change the condition
whether a task belongs to the set C' or not in the duplicateparentmerge2 rule.
Thus, affecting if that particular task should be replicated and merged into
the successor task or not. It can perhaps be feasible to show that the order
would not matter if the conditions of other immediate predecessor tasks were
neglected, i.e., considering the rules in the first attempt. However, to prove
this for the complete set of enhanced rules is not an easy task.

However, the confluence property can be established to a certain degree by
empirically studies on a large set of examples. For this purpose we use the
standard task graph set (STG), which consists of a large number of randomly
generated task graphs. We applied the task merging graph rewrite system
to the STG using different priorities on the transformation rules, to force the
graph rewrite system to apply the task merging rules in different order for
different executions of the algorithm. The output is then compared between
executions using different priorities to establish the confluence property. Since
we have two sets of rules, the rules in the first attempt and the improved rules,
the confluence property is investigated for both of these graph rewrite systems.

We ran the task merging algorithm using two different priorities on the two
systems. For the simple version we ran:

1. DuplicateParentMerge > MergeAllParents > Single ChildMerge meaning
that DuplicateParentMerge has the highest priority.

2. MergeAllParents > SingleChildMerge > DuplicateParentMerge meaning
that MergeAllParents2 has the highest priority.

And for the enhanced rules:

1. DuplicateParentMerge2 > MergeAllParents2 > SingleChildMerge mean-
ing that DuplicateParentMerge2 has the highest priority.

132 CHAPTER 7. TASK MERGING

2. MergeAllParents2 > SingleChildMerge > DuplicateParentMerge2 mean-
ing that MergeAllParents2 has the highest priority.

The resulting numbers of nodes after the merge and the parallel time, see
Section 2.1.2; before and after the merge are presented in Figure 7.14 for the
first priority order and in Figure 7.15 the second priority order!. The two
results are identical. In these measurements we used B = 1 and the latency
varied between 10 and 1000. Also, the execution costs typically varies between
1 and 100 while the execution cost (data size) is set to 1 since they are not
given in the STG files. For the STG measurements all measured data are
the same between the two different priority orders. From these results it is
tempting to draw the conclusion that the task merging graph rewrite system
is confluent.

7.7.1 Non Confluence of the Enhanced Task Merging
System

However, when looking at more fine grained task graphs with a large number
of reductions taking place, it is evident that this is not the case. If we consider
an example generated from Modelica code using the PreLoad example from the
Modelica Standard Library, where we have removed the source and the sink
nodes, the two priority orders give different results for the enhanced rules.
Thus, this model serves as a counter-proof of confluence of the enhanced task
merging system.

7.8 Results

We have proposed a new way of merging tasks in a task graph with the objec-
tive of increasing the granularity of the task graph without increasing the par-
allel time of the task graph, called ATMM (Aronssons Task Merging Method).
This approach uses a graph rewrite system consisting of a few simple rules
for when tasks can be merged together, potentially increasing the granularity
of the task graph. The results are very promising, especially for task graphs
that are very fine grained. This becomes evident when such task graphs are
scheduled or clustered using standard scheduling and clustering algorithms.
By combining ATMM with such standard schedulers a substantial speedup
of the generated schedule is achieved. Results from such measurements are
presented below.

IThese measurements mentioned here are only a subset of the measurements performed.
for a complete list, see appendix A.

7.8. RESULTS 138

B and L Name PT before | PT after | Node Reduction
B=1,L=10 rand0161.stg | 520 366 0
rand0167.stg | 252 252 0
rand0106.stg | 293 241 0
rand0122.stg | 577 432 1
rand0053.stg | 165 130 0
rand0163.stg | 809 496 1
rand0166.stg | 93 59 11
B=1,L=100 | rand0161.stg | 2860 1130 6
rand0167.stg | 1062 926 0
rand0106.stg | 1100 736 3
rand0122.stg | 3187 1365 7
rand0053.stg | 975 655 2
rand0163.stg | 4679 1928 3
rand0166.stg | 543 170 48
B =1,L =1000 | rand0161.stg | 26260 8341 11
rand0167.stg | 9162 6075 3
rand0106.stg | 9200 4112 2
rand0122.stg | 29287 11136 17
rand0053.stg | 9075 4039 14
rand0163.stg | 43379 14193 15
rand0166.stg | 5043 116 55

Figure 7.14. First priority order for enhanced task merging on STG (Stan-
dard Task Graph Set) subset. PT is the parallel time of the task graph.

The computational complexity of ATMM has also been investigated. At-
tempts to improve the complexity have been made and results from these
attempts are also presented below.

Another result of ATMM is that the method can easily be included in exist-
ing scheduling and parallelization frameworks, since the input to the merging
algorithm is a task graph and the result is another more coarse grained task
graph. Thus, the merging algorithm can be plugged in before the scheduling
phase in any tool, providing better scheduling results for fine grained task
graphs. This can also increase the efficiency of such tools, since it allows the
tools to initially build task graphs at a finer granularity level (which is substan-
tially reduced to more coarse grained), thus potentially increasing the amount
of parallelism in the task graphs resulting in shorter schedules.

184 CHAPTER 7. TASK MERGING
B and L Name PT before | PT after | Node Reduction
B=1,L=10 rand0161.stg | 520 366 0

rand0167.stg | 252 252 0
rand0106.stg | 293 241 0
rand0122.stg | 577 432 1
rand0053.stg | 165 130 0
rand0163.stg | 809 496 1
rand0166.stg | 93 59 11
B=1,L=100 | rand0161.stg | 2860 1130 6
rand0167.stg | 1062 926 0
rand0106.stg | 1100 736 3
rand0122.stg | 3187 1365 7
rand0053.stg | 975 655 2
rand0163.stg | 4679 1928 3
rand0166.stg | 543 170 48
B =1,L=1000 | rand0161.stg | 26260 8341 11
rand0167.stg | 9162 6075 3
rand0106.stg | 9200 4112 2
rand0122.stg | 29287 11136 17
rand0053.stg | 9075 4039 14
rand0163.stg | 43379 14193 15
rand0166.stg | 5043 116 95

Figure 7.15. Second priority order for enhanced task merging on STG sub-
set.PT is the parallel time of the task graph.

7.8.1 Increasing Granularity

ATMM is quite successful at increasing the granularity of task graphs. Ta-
ble 7.1 below gives the increase in granularity for a subset of task graphs from
the Standard Task Graph Set. The first ten lines presents results on task
graphs when B =1 and L = 10. For the next ten lines the latency has been
increased to 100, and the final ten lines have a latency of 1000. In all cases
the granularity of the task graph increases, due to merging of tasks.

B and L File Granularity before | Granularity after

B=1,L=10 | rand0161.stg | 0.704545 0.932727
rand0167.stg | 0.72 0.830909
rand0106.stg | 0.879091 1.09727

continued on next page

7.8. RESULTS

185

continued from previous page

B and L File Granularity before | Granularity after
rand0122.stg | 0.74 1.08081
rand0053.stg | 0.501818 0.692727
rand0163.stg | 0.714545 0.991736
rand0166.stg | 0.715015 0.993007
rand0163.stg | 0.714545 0.991736
rand0152.stg | 0.812672 1.10655
rand0157.stg | 0.805455 1.01364

B=1,L =100 | rand0161.stg | 0.0767327 0.194727
rand0167.stg | 0.0784158 0.141881
rand0106.stg | 0.0957426 0.212814
rand0122.stg | 0.0805941 0.221197
rand0053.stg | 0.0546535 0.141844
rand0163.stg | 0.0778218 0.148909
rand0166.stg | 0.077873 0.271915
rand0163.stg | 0.0778218 0.148909
rand0152.stg | 0.0885089 0.248086
rand0157.stg | 0.0877228 0.199312

B =1,L=1000 | rand0161.stg | 0.00774226 0.0507571
rand0167.stg | 0.00791209 0.0453149
rand0106.stg | 0.00966034 0.0527736
and0122.stg | 0.00813187 0.0472764
rand0053.stg | 0.00551449 0.0372748
rand0163.stg | 0.00785215 0.03327
rand0166.stg | 0.00785731 0.0338485
rand0163.stg | 0.00785215 0.03327
rand0152.stg | 0.00893046 0.0723083
rand0157.stg | 0.00885115 0.041282

Table 7.1. Granularity measures on task graphs from STG.

A more interesting test of the task merging approach is to instead use task
graphs from simulation code. Table 7.2 presents some task graphs generated
from simulation code from Modelica models. Some of the task graphs are built
in the earlier prototype of the parallelization tool, see Chapter 6.

B and L Model Granularity before | Granularity after
B =1,L =100 | PressureWave | 0.000990 0.106
PreLoad 0.00990 0.147277

continued on next page

156 CHAPTER 7. TASK MERGING
continued from previous page
B and L Model Granularity before | Granularity after
B =1,L =1000 | PressureWave | 0.0000990 0.0562
PreLoad - -

Table 7.2. Granularity measures on task graphs from Modelica models.

7.8.2 Decrease of Parallel Time

A second way to measure how successful the task merging approach is can be
to measure the parallel time of a task graph when it has been clustered using
the DSC [88] algorithm, and compare that to a task graph that has first been
merged using our task merging method. This will indicate whether the task
merging can further improve the clustering work. For these measurements we
have used two task graphs, one from the simulation code for a Modelica model
and the other from a butterfly calculation task graph. Table 7.3 presents
the results from these measurements. Both examples gain from first applying
ATMM as a complement to the DSC algorithm. For higher latency values the
gain is larger than for lower values. But even for the case when the latency is
one, task merging still improves the results.

B and L Model PT with DSC | PT with TM + DSC
B=1L=1 PreLoad 31 24

B=1,L=10 PreLoad 148 72

B=1,L =100 | PreLoad 1318 242

B =1,L =1000 | PreLoad 13018 94

B=1L=1 Butterfly FFT | 33 25

B=1,L=10 Butterfly FFT | 105 45

B=1,L =100 | Butterfly FFT | 825 148

B =1,L=1000 | Butterfly FFT | 8025 1132

Table 7.3. Granularity measures on task graphs from two applications. PT
is the parallel time of the task graph.

7.8.3 Complexity

The computational complexity of a graph rewrite system depends on the
rewrite rules and on the termination of the rewrite process. For instance,
if only one transformation is made before the GRS terminates, the amount of
computational work required would be O(n) for a graph containing n nodes.
This is because in the worst case we will have to go through all nodes before
finding the node for which the transformation is performed.

7.9. DISCUSSION AND FUTURE DIRECTIONS 137

But, for a GRS like ATMM, where there is always a reduction of tasks in
the task graph, the worst case complexity is higher. In the worst case, ATMM
will succeed in making a total reduction of the task graph from n tasks to a
single task. This will require O(n+ (n—1)+ (n—2)+...+1) computing steps,
giving a worst case computational complexity of O(n?).

In practice however, this is seldom the case. The GRS will terminate before
a complete reduction is made. This will of course depend on the granularity
of the input task graph and of the latency and bandwidth parameters. For
instance, for a coarse grained task graph, ATMM will terminate after a single
traversal, giving a linear computational complexity. But of course the com-
plexity also depends on the number of edges of the task graph. If there are
many edges, each task will have many immediate predecessors and successors,
giving a more costly condition calculation.

7.9 Discussion and Future Directions

The task merging approach presented in this chapter is a new contribution in
the area of task clustering and task scheduling, called ATMM. It is of special
importance for automatic parallelization where the task graph granularity is
not directly controlled by an experienced programmer but instead is influenced
by the tool itself. Theoretical aspects on the graph rewrite system of task
merging such as termination and confluence builds a ground for the work,
which is strengthened by practical experience in the automatic parallelization
tool for Modelica simulation models.

There are several directions for future work within this area. There are
certainly large possibilities to reduce the computational complexity of the task
merging algorithm. One could investigate if it might be enough to traverse the
task graph only once when applying the pattern matching. How to implement
such a traversal but still guarantee the same reduction as for the unoptimized
task merging approach is an unanswered question.

Other possibilities are to implement heuristics as conditions with the aim
of reducing the complex condition evaluations to a simpler form. This could
substantially reduce computational complexity in practice and would with a
careful design of the heuristics still produce task graphs with a proper balance
between granularity and parallelism.

Yet another way to decrease the execution time of ATMM can be to par-
allelize the task merging algorithm itself. It makes sense to use the same
parallel computer for compiling the code in the parallelizing compiler as when
executing the compiled code. Such a parallelization would for instance try
to perform the subgraph pattern matching and calculation of conditions in
parallel. The actual transformation would be performed sequentially. Such

138 CHAPTER 7. TASK MERGING

an implementation could for instance distribute the nodes and edges over the
processors to perform the matching and transformation. The tricky part is
how to communicate and/or migrate nodes and edges between processors.

The idea of using the computational power of the parallel computer also for
compilation can of course also be expanded into other parts of the paralleliza-
tion tool, or in our application also the Modelica compiler itself. However,
most of the compilation process is sequential by nature and not much can be
gained by such a parallelization in general. But there might be cases where a
parallel implementation might speed up compilation.

The task merging approach can be further evaluated in the context of
malleable tasks if it is implemented in an automatic parallelizing compiler
for a wide spread scientific computing programming language such as For-
tran. There are several such research compilers available, some of them can be
found at [14]. The task merging approach could then be evaluated for a much
larger set of application examples, including for instance dynamic scheduling
of malleable tasks.

7.10 Summary

In this chapter we have presented a new approach for merging nodes in a task
graph to increase the granularity of the task graph, called ATMM. The ap-
proach is based on graph rewrite systems, where a set of transformation rules
are applied to a graph until the conditions of the rules are no longer fulfilled,
and the graph rewrite system terminates. This approach gives an easy-to-
understand and flexible solution to the problem of increasing the granularity
of a task graph by merging tasks. The approach also includes task replica-
tion which has been shown to substantially improve the results of scheduling
algorithms [41, 58].

ATMM has been tested on several examples including task graphs gener-
ated from simulation code produced from Modelica models as well as random
tasks from the STG (Standard Task Graph Set).

Chapter 8

Applications

This chapter presents a few application examples written in the Modelica
modeling language that have been parallelized using OpenModelica.

8.1 Thermal Conduction

Thermal conduction deals with transportation of thermal energy through con-

duction. This assumes that the atoms or molecules are in a fixed solid form

and are not moving around (like in a fluid or gas). Thus thermal conduction

can be used when modeling the temperature in a metal rod or a metal plate.
The heat conduction equation for three dimensions is

2 2 2
0T (6T 8T 5T> 6.1)

5t \52 T2 T2

where T'(x,y, z,t) is the temperature at position (z,y, z) at time ¢.

In this example we model the temperature in a thermal plate, which gives
us the heat equation for two dimensions, the x and y directions, resulting in
the PDE equation in Equation 8.1 below.

oT T 8T
e — 4+ == 8.2
5t (5$2 * 5y2) (8.2)

Since standard Modelica cannot yet describe Partial Differential Equations
(for ongoing work to introduce PDEs in Modelica, see [69]), the model has
to be discretized by hand in the space dimensions, resulting in the following

140 CHAPTER 8. APPLICATIONS

Modelica code:

model HeatedPlate2D
parameter Integer n=8;
parameter Real L=1;
parameter Real k=0.001;
Real uln,n] (start=£fil1(20,n,n));
Real h=Lx*L/(n*n);
equation
// Boundary conditions
for y in 1:n loop
der(uln,y])=-0.167;
ul1l,y]=80;
end for;
for x in 2:n-1 loop
der(ul[x,n]) = -0.001*ul[x,n];
ulx,1]=40+20*cos (2*xModelica.Constants.PI/n*x) ;
end for;

// Heat equation. (central difference)

for x in 2:n-1 loop
for y in 2:n-1 loop
der(ulx,yl) = (kx(ulx,y-1]1-2%ulx,yl+ulx,y+11))/h
+ (kx(ulx-1,y]-2*ulx,yl+ulx+1,y]1))/h;
end for;

end for;

end HeatedPlate2D;

The model has the following boundary conditions:

e The east boundary has a constant temperature of 80 degrees, e.g. given
from a heating element, i.e. u[1,y]=80.

e The west boundary has a partially insulated boundary with a constant
decrease of temperature by 0.167 degrees per second,
ie. der(uln,y])=-0.167

e The north boundary is also partially insulated but the decrease in tem-
perature is dependent on the absolute temperature,
i.e. der(ulx,n])=-0.001*ulx,n]

e The south boundary has a constant temperature that is varying across
the boundary as a cos wave.

8.1. THERMAL CONDUCTION 141

These boundary conditions are not chosen to be physically realistic, instead
they illustrate different usage of the Modelica language.

If we simulate the model and plot the temperature of the plate at differ-
ent points using the MathModelica tool [43], we get the result depicted in
Figure 8.1. In Figure 8.1(a) the temperature is shown at the start of the simu-
lation (¢ = 0) and in Figure 8.1(b) the temperature is shown when ¢t = 5. The
plots are done using Mathematica.

8.1.1 Parallelization

When investigating the equations of the heated plate model it becomes evident
that the amount of computation per state variable is not sufficiently large to
give any speedup with the current parallelization scheme. The reason for this
is that it costs more to distribute the state variables to the slave processors
and send the results back compared to performing the actual computation.
However, since this example is so well structured it can easily be parallelized
using a distributed solver instead. A distributed solver will for each processor
have a solver that works on a subset of all state variables. In that case the
only amount of data that must be sent between processors are the values of
the state variables of the boundaries of each state variable set. For example,
the PVODE solver [11] (parallel ode solver) could be used for this.

142 CHAPTER 8. APPLICATIONS

(b) The temperature at time t=>5

Figure 8.1. Simulation of a heated plate in two dimensions

8.2 Thermofluid Pipe

There has been developed a Modelica package for thermo fluid models called
ThermoFluid [79]. It uses lumped control volumes, e.g. with behavioral equa-
tions describing a complete volume, or one dimensional discretized models,

8.3. SIMPLE FLEXIBLE SHAFT 148

where the control volume is discretized along one dimension. The later ones are
actually PDE models which are discretized using the finite volume method [79]
and these models are of particular interest to parallelize, since the amount of
computational work (i.e. the size of the problem) performed in the simulation
can easily be controlled.

The model used for benchmarking is a system of pipes connected to a steam
source, where steam is fed in to the system, and a steam sink, where the steam
leaves the system. The pipe system consists of a series of pipes of different
dimensions. The model describes how a pressure wave of steam is transported
through the system, leading to the sink. Below is the Modelica text for the
model.

model PressureWave
extends ThermoFluid.Icons.Images.Demo;
Components.Air.Reservoirs.AirSourceD_pT
Source (pdrop(steadyFlowInit=false),
dp0O=1,
mdot0=4.0,
A = 0.00785,
TO = 330.0);
Components.Air.Pipes.PipeDD Pipe(n=50,
geo(L=1.0),
char(dp0 = 1000),
generateEventForReversal=false,
init(steadyPressure=false,
pO=linspace(1.2e5,1.2e5,50))) ;
Components.Air.Reservoirs.AirResD_pT Sink;
equation
connect (Source.b, Pipe.a);
connect (Pipe.b, Sink.a);
end PressureWave;

The Pipe component is discretized into n pipe elements, which provides an
easy way of controlling the size of the model.

8.3 Simple Flexible Shaft

A shaft transporting torque from a motor to other mechanical components
in a system, like a propeller or a wheel, must in some cases be modeled in
substantial detail. If the shaft is exposed to large forces it might be needed to
model the entire shaft not as a rigid body propagating torque but instead as

144 CHAPTER 8. APPLICATIONS

a flexible body that changes shape when large loads are put on it. Models of
such flexible shafts can be made at different levels of detail. It can for example
be modeled as a one dimensional discretization of the shaft or in a full three
dimensional PDE formulation of the shaft. In this application example we
consider modeling a shaft using a one-dimensional discretization scheme.

To model a shaft with flexibility in one dimension is quite easy using Mod-
elica and the arrays-of-components modeling technique. First we create the
model component which will be instantiated as an array element in our shaft
model.

model ShaftElement "Element of a flexible 1-dimensional shaft"
import Modelica.Mechanics.Rotational.Inertia;
import Modelica.Mechanics.Rotational.Interfaces;

extends Interfaces.TwoFlanges;

Inertia inertial;
NonLinearSpringDamper springDamperl(c=5,d=0.11);
equation
connect (inertial.flange_b, springDamperl.flange_a);
connect (inertial.flange_a,flange_a);
connect (springDamperl.flange_b,flange_b);
end ShaftElement;

In this model we have used the Modelica Standard library and its pack-
age for one dimensional rotational mechanics, the Rotational package. The
ShaftElement model inherits the TwoFlanges interface, giving it two con-
nectors for transporting rotational energy, flange a and flange b. These
connectors are defined as (both Flange_a and Flange b have the same defini-
tion):

connector Flange_a
SI.Angle phi "Absolute rotation angle of flange";
SI.Torque tau "Cut torque in the flange";

end Flange_a;

The SI package is explicitly imported with the following renaming import
statement:

import SI=Modelica.SIunits;

8.3. SIMPLE FLEXIBLE SHAFT 145

Thus, the torque and the rotation angle is connected from each shaft el-
ement to the nearby shaft element using Modelica connectors. The internal
model for each shaft element consist of a load component using the Inertia
model. The elasticity of the flexible shaft is modeled using a SpringDamper
model which we have replaced with a non-linear equation, giving a model
called NonLinearSpringDamper. There are many different formulations of a
non-linear spring. In this example we simply add a (non-physical) term to get
a non-linear equation in the model.

To use this shaft element in a model of a complete shaft one needs to in-
stantiate an array of ShaftElement:s and write a for loop (repetitive equation)
to connect these elements to the nearby elements:

model FlexibleShaft "model of a flexible shaft"
extends Modelica.Mechanics.Rotational.Interfaces.TwoFlanges;
parameter Integer n(min=1) = 3 "number of shaft elements";
ShaftElement shaft[n];
equation
for i in 2:n loop
connect (shaft[i-1].flange_b,shaft[i] .flange_a);
end for;
connect (shaft[1] .flange_a,flange_a);
connect (shaft[n] .flange_b,flange_b);
end FlexibleShaft;

Finally, a small test model to test the model:

model ShaftTest
FlexibleShaft shaft(n=5);
Modelica.Mechanics.Rotational.Torque src;
Modelica.Blocks.Sources.Step c;

equation
connect (shaft.flange_a,src.flange_b);
connect (c.outPort,src.inPort);

end ShaftTest;

This model is depicted in Figure 8.2 below.

We use a step source as input to a torque generator which is then connected
to one end of the shaft. If we simulate this model using n = 30 and two different
parameter values for each spring damper of the shaft we get the plots shown
in Figure 8.3.

The figure clearly shows that the harder damping that is put on each el-
ement of the flexible shaft, the sooner the system will reach a stable state.

146 CHAPTER 8. APPLICATIONS

Figure 8.2. The ShaftTest model in the MathModelica model editor.

Typically, real application models of flexible shafts would have different spring
constants and inertias on different parts of the shaft, depending on its ge-
ometry and material composition. The shaft would also probably consist of
more internal components that just inertias and springs and dampers, like for
example models of roller bearings or friction bearings, etc.

8.4 Summary

In this chapter we have presented a few application examples which could
benefit from parallelization. All of them include a discretization of equation
using array of components in Modelica, even though the parallelization scheme
itself does not rely on that. Larger and more complex models however can as of
today not fully be translated by the OpenModelica compiler and can for that
reason not be parallelized by this research tool. Such models can for instance
be a complete plant model of a process industry, or detailed mechanical system
such as a car with engine model, electronic control system, and multi-body
suspension.

8.4. SUMMARY

WIS =
LEL
-
-
a1 —
.;u.:l
LE-]

W -
TS =
B =
L
b —
gty —-
i —

L] 1 1 L] L] 1 1 L L L] 1 L L L] L] 1 1 L] L
DD &5 0 13 2@ 25 3D 2} 4x 43 30 33 &0 63 70 75 E® EF 9D 95

W paisietmatl shaafij el w @ sotieSham ahetiiinetn w B SpanieShant snafiil] el w
W ppmipcnat] shall nenate W Spaplechat] shafRUinesaly W BpibleShat shalzH inwdat w
B emiednatl shat{I0) nental =

(a) Plot of torques on flange_b for each shaft element with ¢ = 500 and d = 1.5

T rr T T rr
Ga 0% 10 13 10 I3 30 33 40 &3 30 ¥ db 43 TO Y3 EO &3 9D ¥3

[T Ty ————"— ey .
B feciachat] shat] Bl rerel v B festieirati samaOlnened e 8 fekeeShar Shatis el
B fccvia Gt shact]30] inevind =

(b) Plot of torques on flange_b for each shaft element with ¢ = 500 and d = 150

Figure 8.3. Plots of torques on the shaft

147

148 CHAPTER 8. APPLICATIONS

Chapter 9

Application Results

This chapter gives results from using the different parallelization techniques
for parallelization of the application examples.

9.1 Task Merging

The proposed task merging algorithm in Chapter 7 has been evaluated in two
ways. It first have been tested in the DAGS framework, presented in chapter 4,
using both task graph built from Modelica models and from tasks graphs of
the Standard Task Graph Set [77]. The results from some of these examples
can be found in Appendix A. The main conclusion from these tests is that
provided that the latency parameter is large in relation to the bandwidth
i.e., a fine grained task graph, the task merging algorithm succeed quite well
in increasing the granularity (by merging tasks) for increasing values of the
parallel execution time. The results are better the larger latency is chosen, as
expected.

Moreover, the task merging algorithm has also been implemented in the
ModPar tool, presented in Chapter 6, as part of the automatic parallelization
scheme. These results are presented below as measurements of speedup of
execution times.

9.2 Parallelization of Modelica Simulations
Parallelization and performance measurements of simulation of application

models has been done using both the DSBPart and the ModPar tools. Results
are presented below in the following two sections.

150 CHAPTER 9. APPLICATION RESULTS

9.3 DSBPart Experiments

In this section we present results gained from using the DSBPart tool and
early experiments made on task graphs produced by this tool.

9.3.1 Results From the TDS Algorithm

Due to the linear clustering technique used by the TDS algorithm, combined
with the fine grained task graphs produced by our tool, the TDS algorithm
does not work well for the fine task graph generated in our tool (as for fine
grained task graphs in general). As an example, we will use the small task
graph shown in Figure 9.1. For that task graph, the TDS algorithm produces
the values found in Figure 9.2. The table shows the earliest completion time
(ect) of the final node (i.e. the exit node of the DAG) for a set of different
communication cost values of the task graph. The earliest completion time is
a measure of the parallel time, provided that the number of processors required
by the algorithm is available. However, in practice the number of processors
required by the TDS algorithm is usually too large. For instance, the robot
example requires 173 processors when applying the TDS algorithm.

The table shows that in order for the TDS algorithm to produce a schedule
that according to the delay model has a computed speedup > 1, the commu-
nication cost must be around 10 or less in comparison to the computational
size of the tasks. For the task graph produced by the PreLoad example, the
tasks are almost exclusively arithmetic expressions, thus the communication
cost of sending a scalar value should be only at most ten times more expen-
sive compared to performing an arithmetic operation on two scalar variables.
This is a far more demanding latency requirement than what most real multi
processor architectures can deliver today.

We also ran the TDS algorithm on a larger example, the simulation code
from the robot example in the Modelica Standard Library, with inline integra-
tion and mixed mode integration, see section 3.2. The result for that example
is shown in Figure 9.3, using the same set of communication costs. For this
example, the results are a bit better. Computed speedup > 1 according to
the delay model is achieved if the communication cost is around 500 or less.
One reason for this improvement could be that the simulation code from the
robot example contains larger tasks, for instance to solve systems of equations,
thereby increasing the average granularity.

In the above results we have not looked at fixing the number of processors
to a specific value. One reason for this assumption is that by allowing a un-
limited number of processors, we can compare the result with other clustering
algorithms like for instance the DSC algorithm. This assumption will produce
the best possible results from the TDS approach, i.e. a lower time bound.

9.3. DSBPART EXPERIMENTS 151

Figure 9.1. The task graph built from the code produced from the PreLoad
example in the mechanics part of Modelica Standard Library.

Total sequential execution time Number of nodes
100 221

(a) Total sequential execution cost and graph size.

¢ 1000 500 100 10 1

ect 5008 2508 508 58 16

(b) Parallel computation time (using TDS
with unlimited number of processors), i.e. the
ect value of the exit node of the DAG, for dif-
ferent values of node-to-node communication
cost c.

Figure 9.2. Results for the TDS algorithm on the PreLoad example with
varying communication cost.

9.3.2 Results From using the FTD Method

Figure 9.4 gives some computed theoretical speedup figures using the Full Task
Duplication Method for a discretized thermofluid pipe. Figure 9.6 contains the

152 CHAPTER 9. APPLICATION RESULTS

Total sequential execution time Number of nodes
8369 6301

(a) Graph size and total sequential execution cost.

¢ 1000 500 100 10 1

ect 9401 6901 4901 4451 4406

(b) Parallel computation time(using TDS with un-
limited number of processors), i.e. the ect value of
the exit node of the DAG, for different values of
node-to-node communication cost c.

Figure 9.3. Results of the TDS algorithm on the robot example, using mixed
mode and inline integration with varying communication cost.

same measurements for the robot example. Since the FTD method does not
involve any communication at all during the time between the computation of
the states, the parallel time can easily be calculated using Equation 5.1. This
equation is used to calculate the cost for the FTD method for various values of
bandwidth and latency. However, since the latency cost is the most dominant
one, we simplify the two values into a single communication overhead, ¢, with
varying values. This simplification also makes the FTD method correspond
better to the delay model.

The parallel simulation code from the discretized thermofluid pipe has
also been executed on a PC-cluster with a SCI network as the communica-
tion device. Figure 9.5 gives the measured speedup when executing on the
PC-cluster. The measurements on execution time differ from the computed
theoretical speedup figures given in Figure 9.4 in several ways.

First, the achieved speedup values are lower in all three cases, compared
with the most expensive communication cost used in the computed theoreti-
cal case (¢ = 1000). Thus, the actual cost of communicating is higher than
1000. The fact that the cost has been simplified from two parameters, i.e. the
bandwidth and latency, to one combined parameter also affects the results.

Second, all curves have a tendency of degraded speedup as the number of
processors increase. The figures shows a degradation after about 8 processors.
This effect is due to the parallel communication and computation model used
in this work, the delay model described in Section 2.2.4. The delay model does
not cover all costs of communication, e.g. the gap cost (see Section 2.2.2) is not
taken into consideration. Therefore, when the number of processors increase
the master processor must spend more time communicating messages to slave
processors, thus reducing the speedup.

The FTD method has also been tried on the robot example, both using
mixed mode and inline integration and without, see Figure 9.6. When using

9.3. DSBPART EXPERIMENTS 158

Speedup
8 o |
P —+— c=5000
° =" ¢=1000
. Sk - =
e B
4 PR
|
2 T --m- c=100
el
546 8 10 12 14 16" 11OC

(a) Thermofluid pipe with 50 discretization points.

Speedup
A
8 o
- —— ¢=5000
-~
6 - ’
o= % - €=1000
4 PR
P
2 .% m- c-100
-

Proc

2 4 6 8 10 12 14 16

(b) Thermofluid pipe with 100 discretization points.

Speedup
a

8 o

—— ¢=5000
6

- % -- c=1000
4
2 -a- c=100

Proc

2 4 6 8 10 12 14 16

(¢) Thermofluid pipe with 150 discretization points.

Figure 9.4. Computed speedup figures for different communication costs c
using the FTD method on the Thermofluid pipe model.

mixed mode and inline integration, the amount of parallelism clearly increases,
since the robot example only gives a two processor assignment when not using
mixed mode and inline integration, compared to up to nine processors when
using these optimization techniques. However, the speedups in both cases are

154 CHAPTER 9. APPLICATION RESULTS

Speedup

2
1.75
1.5
1.25

1
0.75
0.5
0.25

Proc

2 4 6 8 10 12 14 16

(a) Thermofluid pipe with 50 discretization points.

Speedup
3

2.5
2

1.5

Proc

2 4 6 8 10 12 14 16
(b) Thermofluid pipe with 100 discretization points.

Speedup
a

3.

N oW o

Proc
2 4 6 8 10 12 14 16

(¢) Thermofluid pipe with 150 discretization points.

Figure 9.5. Measured speedup figures when executing on a PC-cluster with
SCI network interface using the FTD method on the Thermofluid pipe model.

almost none.

Since the robot example is the most realistic example among the examples
studied in this thesis, it substantially influences the interpretation of the re-
sults. Therefore, a preliminary conclusion that can be drawn is that the FTD
method works well for some nice structured examples such as discretized flow

9.4. MODPAR EXPERIMENTS 155

Speedup
2

1.75
1.5
1.25 R |

W= T T T - x-- ¢=100
0. 75.\4

0.5 -—a--c=10
0.25

(a) Mechanical robot model with a standard solver

Speedup
2

1.75
1.5
1.25 e Bl |
1\/) -+ - ©=100
0.75 '

0.5 -m-c-10
0.25

(b) Mechanical robot model with mixed mode and inline integration

Figure 9.6. Computed speedup figures for different communication costs, c,
using the FTD method on the robot example.

models but is less suitable for general large and complex models. However,
some uncertainty still remains since larger models than the robot example have
not been tried yet.

9.4 ModPar Experiments

As the ModPar tool is part of the OpenModelica environment its use depends
on the compilation capabilities of the OpenModelica front-end. Currently this
limits the number of models that can be translated, since the OpenModelica
compiler can not completely translate all language features present in e.g. the
Modelica standard library.

However, the applications presented in Chapter 8 can be translated and of
these, the FlexibleShaft example has been run on a Linux cluster and on an
SGI shared memory machine. The Linux cluster, called monolith, is 200 PC’s

156 CHAPTER 9. APPLICATION RESULTS

each having two Intel Xeon processors at 2.2 GHz and 2GB primary memory.
It has about 4.5us latency and about 260 MB/s in bandwidth.

The shared memory machine is a Linux-based SGI Altix 3700 Bx2 super-
computer called mozart with a 512 GB shared memory. It has Intel Itanium
2 processors running at 1.6 GHz. Its latency of communication through the
shared memory is below 1us and its bandwidth is 6.4 GB/s.

Figure 9.7 shows the speedup for the simulation of the FlexibleShaft model
on a Linux cluster (named monolith) using a fast SCI network for communica-
tion between processors. For such examples a typical speedup of around 2 can
be achieved. The figure shows two different problem sizes, 100 shaft elements
and 150 shaft elements. For the latter a slightly more speedup is gained, and
probably for even larger problem sizes more speedup can be achieved.

Figure 9.8 shows the speedup for the simulation of the same FlexibleShaft
model on an 64 processors SGI machine (named mozart) with shared mem-
ory. This parallel machine has a bandwidth of 6.4GB/s and a latency of less
than 1us, which is substantially better compared to the monolith machine.
The increased performance of the communication network is reflected in the
increasing speedup, resulting in the highest speedup of about 4.8 for 16 pro-
cessors, see Figure 9.8(b).

9.5 Summary

The results from this thesis work are mainly in three parts. The first part
is results from the task merging method. It shows that task merging using
graph rewrite rules can successfully increase the granularity of fine grained
task graphs such that they can be more suitable for scheduling using many
existing scheduling algorithms.

The second part of the research results is on the DSBPart parallelization
tool which translates simulation code from the Dymola tool to parallel C-code.
It shows speedup figures from some models and that other models does not
produce speedup due to limited amount of parallelism.

The final part shows results on the ModPar parallelization tool, which is
part of the OpenModelica compiler framework. This tool uses the task merging
algorithm and shows that speedup is also possible using this approach. For the
examples presented here, similar results as for the DSBPart tool are achieved.

9.5. SUMMARY 157

Speedup
2
1.8
1.6
1.4
1.2
> 7 3 8 10 15 Processors

(a) Flexible shaft with 100 elements on monolith

Speedup
2.2

2
1.8
1.6
1.4
1.2

2 3 6 8 10 12 i Frocessors

(b) Flexible shaft with 150 elements on monolith

Figure 9.7. Measured speedup when executing the simulation of the Flexi-
bleshaft model on the monolith PC-cluster with SCI network interface.

158 CHAPTER 9. APPLICATION RESULTS

Speedup
3.5
3
2.5
2
1.5
5 v 5 5 1o i3 Processors

(a) Flexible shaft with 100 elements on mozart

Speedup

4.

a N o0 w o b~ a

Processors

2 4 6 8 10 12 16 20

(b) Flexible shaft with 150 elements on mozart

Figure 9.8. Measured speedup when executing the simulation of the Flexi-
bleshaft model on the mozart 64 processors shared memory SGI machine.

Chapter 10

Related Work

This chapter relates the work presented in this thesis to the work of other
people, both regarding scheduling and clustering of task graphs as well as
regarding automatic parallelization of simulation code. Related work on clus-
tering and scheduling algorithms have been discussed earlier in Chapter 2.
However, in this chapter we discuss from how these algorithms relate to the
work in this thesis.

10.1 Parallel Simulation

Related work in parallel simulation is divided into the three parallelization ap-
proaches presented in Chapter 1: parallelism over the method, parallelism over
time, and parallelism over the system. Parallelism over the method covers par-
allel solving techniques for differential equations, while parallelism over time
covers the work on parallel discrete event simulation techniques. Parallelism
over the system is the approach taken in this thesis.

10.1.1 Parallel Solvers

Parallel solving techniques tries to extract parallelism from the solver approx-
imation scheme, typically using multi-step solvers. These solvers calculates
several instances of the solved equations, the function f, see Equation 3.5 on
page 60, in parallel. One such solver is the parallel Runge-Kutta solver [68].
This technique could be combined with the work presented in this thesis to
reveal even more parallelism. The parallelization would in that case be done
on two different levels. First, a coarse grained parallelization of different com-
putations of f and also a more fine grained parallelization of each computation

160 CHAPTER 10. RELATED WORK

of f itself.

Using parallel solvers like Runge-Kutta can be beneficial for some exam-
ples. It is however not a generic solution to the automatic parallelization prob-
lem of simulation code since many simulation models require more complex
solvers with better error estimates and better stability. Most stiff problems,
i.e. problems with both fast and slow transients, requires advanced solvers
like for instance DASSL. These kind of problems are note possible to simulate
using simple techniques like the Runge-Kutta methods.

A special kind of parallel solving technique is to use data parallelism over
the equations and variables. This is typically used for PDE problems and ODE
problems on explicit form. For instance, the famous CVODE solver for solving
ODE problems also exist in a parallel version which uses data parallelism as
parallelization scheme [11].

Another parallel solver is the Concurrent DASSL [38]. It is a parallel
implementation of the DASSL solver.

10.1.2 Discrete Event Simulations

When the simulation model is limited to using only discrete events without
any continuous variables, a discrete event simulation solver can be used. Such
simulations do not require the solution technique to sequentially increase the
time variable a step at a time. Instead they adopt different parallelization
schemes to jump forward (and backward) in time to better exploit parallelism.

The parallelization approaches for discrete event system simulations are
also not generic enough for systems simulation where continuous variables are
needed. There are however application areas like traffic simulations, where a
completely discrete event formulation of the problem is sufficient. For such
cases, discrete event simulation and the parallelization schemes for these can
be successfully used.

10.1.3 Parallelism Over Equations in the System

The approach taken in this thesis to perform parallelism over the system means
that the calculation of the equations are parallelized. This approach has been
adopted earlier in for instance real time simulations using the Transputer par-
allel computer [84]. The Transputer parallel computer is quite old and has a
relatively low communication to computation time ratio compared to todays
parallel computers like Linux cluster computers. Therefore the parallelization
work performed on the Transputer had a much more coarse grained task graph
as starting point for the scheduling and clustering algorithms, thus giving good
speedup results.

10.2. SCHEDULING 161

There are also hand written simulation codes, e.g. these presented in next
section, that use parallelism over the system. For instance, the BEAST sim-
ulation tool calculates the equations, mostly regarding contact calculations
between bearings and roller elements in roller bearing simulations in parallel.

10.1.4 Parallel Simulation Applications

The perhaps most common parallel simulations are hand written simulators
for specific application areas. The reason for this being the most popular way
of exploiting parallel computing in simulations are several.

One reason is that general simulation tools are too generic for special pur-
pose simulations with large computation costs and such tools can not efficiently
parallelize such simulation code. The simulation tools might not even have the
strength to be able to specify the complex equations and dedicated solver tech-
niques for such applications.

Another reason for handwritten simulator is that the parallelization scheme
itself can involve approximations, e.g. to reveal more parallelism in comparison
to the sequential execution code of such simulation. For instance, an imple-
mentation of a parallel particle simulation can divide the particle space into
regions, with one region per processor, and neglect collisions and other inter-
ference between particles of different regions. This approximation reveals more
parallelism and substantially improves the performance of the parallel simula-
tion of particles. Such application specific knowledge can not be included in a
generic automatic parallelization tool.

Examples of simulation code that is handwritten (typically in Fortran) are:

o Weather forecast simulations at the Swedish Meteorological Institute
(SMHI). These models build on advanced partial differential equations
written in Fortran.

e Photon particle simulations in supernovas.
e Biological and chemical large scale simulations.

e High performance roller bearing simulations in the BEAST tool [52].
These are written in C++4, using object oriented techniques and C++
to model roller bearings.

10.2 Scheduling

There are scheduling algorithms that takes a task graph and schedules it for
a fixed number of processors directly, without the need of clustering (or task

162 CHAPTER 10. RELATED WORK

merging). The Modified Critical Path (MCP) scheduling algorithm is an ex-
ample of such a scheduling algorithm. It takes a task graph with execution
costs and communication costs and the number of processors for the schedule
as input. Hence, it uses the delay model for task graph scheduling. The com-
putational complexity of the MCP algorithm is O(n?(log(n) + P)) for n tasks
and P processors.

Another such algorithm is the ERT algorithm presented in detail in Chap-
ter 2. It has similar performance as the MCP algorithm [35].

One problem with scheduling algorithms solving the entire scheduling prob-
lem, including mapping to a fixed number of processors, is that the computa-
tional complexity of the problem is too high. These algorithms tend to have
a high complexity but still using e.g. a simple cost model and not using task
duplication. Therefore they also have problems with scheduling fine grained
task graph where much duplication is a necessity. On the other hand, by solv-
ing the complete problem in a single step, it is more probable to come up with
optimal schedules. But since the multiprocessor scheduling problem is proved
to be NP-complete, optimal algorithms are not practical.

10.3 Clustering and Merging

Much work has been done in the area of clustering of task graphs, and some
work has also been done in the approach of merging tasks in a task graph to
increase the granularity. The following sections present work related to this
thesis and explain the differences and similarities.

10.3.1 Task Clustering

The work of forming clusters of tasks in a task graph has been studied in
depth. Early approaches include the internalization algorithm [81] and the
DSC algorithm [88], where the later can be seen as an improvement of the
former. The DSC algorithm is presented in detail in Chapter 2. These two
algorithms both use the parallel time, see Equation 2.16, as a metric for guiding
the choice of inclusion into a cluster or starting building a new cluster. The
same approach has been taken in this work, by trying to reduce the top level
(see Equation 2.3 on page 26) of tasks in the task graph which will result in a
lower parallel time of the task graph. These two clustering techniques do not
use task replication to reduce communication, as is done in this work. Also,
since they are pure clustering algorithms they do not agglomerate (or merge)
communication messages between tasks. The reason being that the simple
delay model does not give a benefit of such agglomeration.

10.4. SUMMARY 163

There has also been efforts of clustering algorithms that use task replica-
tion to improve scheduling performance. Studies has shown that using task
replication is beneficial [41, 58], hence many recent clustering algorithms use
it.

One task duplication based clustering algorithm is the DFRN algorithm [59].
It uses task duplication at a lower complexity compared to earlier algorithms
having task duplication. But still, the DFRN algorithm has the complexity
O(n?), which is quite high for large and fine grained task graphs.

All these algorithms use the delay model, presented in Chapter 1, whereas
this work use parts of the LogP model which is a more accurate cost model
for task graphs. There are however also clustering and scheduling approaches
emerging for the LogP cost model, like for instance [42, 9].

Others use simpler cost models which still are more accurate than the delay
model [78, 37]. These cost models are very similar to the approach taken in
this work, having a latency and bandwidth parameter in the cost model.

To conclude on the related work on both scheduling algorithms and clus-
tering algorithms it should be noted that the task merging approach can be
considered as a complement to these methods. There are no obstacles to using
both task merging and task clustering followed by task scheduling to solve
the multiprocessor scheduling of task graphs. However, the task merging al-
gorithm takes over parts of the clustering work so a clustering phase is not as
crucial if task merging is performed.

10.3.2 Task Merging

To merge tasks with the intent of increasing the granularity of the task graph
has been used in several approaches. One approach is called grain packing [31],
which is essentially the same as merging tasks.

However, as far as we know there are no task merging approaches besides
our that uses task replication.

10.4 Summary

Work related to this thesis can be found in parallel simulation techniques
including automatic parallelization, parallel numerical solving techniques and
to some extent parallel simulation applications. Another area of related work
deals with task clustering and scheduling techniques in general. Clustering
algorithms are similar to our work of task merging in many ways, but many
of them are using the simpler delay model as a cost model for task graphs.
There are also other task merging techniques such as grain packing that are
closely related to our work but does not use task replication.

164 CHAPTER 10. RELATED WORK

To summarize our work distinguishes itself from the related work in that we
are using a task merging technique where tasks and communication messages
are merged together to increase granularity and also using task replication to
obtain better results. This combination has not been investigated before. Our
work is also unique in that we use the graph rewrite system formulation of
our problem, which to our knowledge has not been done previously in task
clustering or task merging.

Chapter 11

Future Work

In this chapter we present some future directions of further work on the re-
search problem in this thesis.

11.1 The Parallelization Tool

Currently, a large a subset of the Modelica language is supported in the Open-
Modelica framework. There is still future work on the implementation of Mod-
elica language constructs and of further equation optimizations in the compiler.
Moreover, the ModPar module needs support for these missing features.

One important part of the Modelica language that has not been considered
at all in this thesis work is the handling of discrete events, i.e. the hybrid
parts of the Modelica language. When a discrete event happens, e.g. when a
state variable climbs above a certain threshold, the exact point in time for this
discrete event must be calculated. This means that the numerical solution pro-
cess temporarily stops at that point. The event calculation is performed (the
body of the when statement) and the numerical solution process is restarted.
This method of handling hybrid systems complicates the parallelization work.
When an event occurs all processors must be interrupted (or just a few of
them, depending on using a distributed or centralized solver) and the solver
stopped. The event must be handled by one (or several) processors, and there-
after must the previous work scheme be taken up again. The parallelization of
hybrid systems has been put out of the scope of this thesis because it involves
too much additional work.

However, purely discrete models in Modelica could be parallelized using ex-
isting parallel discrete event simulation method. The easiest way of performing
such parallelizations is probably to try to automatically export such Modelica

166 CHAPTER 11. FUTURE WORK

models into existing discrete-event simulation tools. Thus, future work here
includes finding a mapping (translation scheme) for such export functionality.

11.2 Task Merging

The task merging approach (ATMM) using Graph Rewrite Systems can be
further improved in several directions. For instance the cost model of the
communication can be fully extended to the LogP model, taking also the
gap parameter g into consideration. It is also possible to consider the P
parameter in the task merging, i.e. the number of available processors. But
in this case, the task merging algorithm is also starting to take scheduling
decisions, i.e. making it less flexible and more complex. As the task merging
algorithm is presented in this thesis, it can be used with the same parameters
for schedules on an arbitrary number of processors. For instance, the code
generator could use the same merged task graph for scheduling the graph on
2, 4 8 and 16 processors at the same time, depending on available resources.
But by considering the P parameter the rewrite rules could for instance be
limited in the number of predecessors of tasks in the task graph, to limit the
amount of parallelism to a suitable level for a fixed number of processors.

Another approach of improving the graph rewrite system is to further allow
malleable tasks of the task graph. We have presented one approach of how
malleable tasks can be introduced into the rewrite system, but by allowing
more scheduling decisions in the algorithm, the introduction of malleable tasks
can be made even more efficient. For instance, by deciding that a malleable
task should execute on a certain number of processors, the execution time of
the malleable task can be determined more accurately. This might potentially
allow for more reductions of the task graph on other places, resulting in an
increased granularity and therefore a better schedule in the end.

11.3 The Modelica Language

The Modelica language itself is evolving according to user feedback and user
requirements in the Modelica Design Group. However, several extensions to
Modelica in different directions are investigated at the Programming Environ-
ments Laboratory at Linkoping University. These extensions include extend-
ing Modelica with support for Partial Differential Equations. Such extension
would require new parallelization schemes including data parallelism. For in-
stance, a Modelica model of a large system might then include a PDE problem
as a component. Such models might use a specific (parallel) PDE solver for
that component and other solvers for other components of the model. Future

11.4. SUMMARY 167

work includes how to parallelize such models and also how to choose which
solvers should be used.

Another extension to the Modelica language could be the introduction
of TLM (Transmission Line Modeling) in Modelica []. This is a method of
identifying parts of a model that have slow moving transients and can thereby
be modeled as a transmission line having a certain delay. In that way, the
equation system is broken apart at this transmission line and the two parts
at each end of the line can be solved using their own numerical solver. Thus,
the partitioning of the model onto the parallel machine is partly performed by
the user by adding TLM components to the model. In this way, a large and
complex simulation model can be partitioned manually and it is thereby easier
to achieve good speedups.

11.4 Summary

The future work of the research in this thesis lies in three different areas.
The automatic parallelization tool is only on the prototype stage and there
is much implementation left to handle the complete Modelica language. The
task merging algorithm can be further improved by a more accurate cost model
and by improving the transformation rules. Finally the Modelica language
and the research activities surrounding it, like partial differential equations
and transmission line modeling, can pose new requirements on automatic par-
allelization, e.g. to investigate automatic solver selection techniques and how
to fully exploit TLM modeling in the parallelization.

168 CHAPTER 11. FUTURE WORK

Chapter 12

Contributions and
Conclusions

This chapter presents contributions and conclusions. Conclusions regarding
the hypothesis of the thesis work are presented and of the task merging tech-
nique using graph rewrite systems.

12.1 Contributions

The contributions of this thesis are:

e ATMM, a new approach of merging tasks using a graph rewrite system
formulation with a small set of transformation rules designed to merge
tasks together to increase granularity without decreasing the amount of
parallelism of the task graph. To our knowledge, the approach is the
first known work on task merging using Graph Rewrite Systems and
also adopting task replication.

e An automatic parallelization tool, ModPar, for the equation-based mod-
eling language Modelica, that is shown with examples to give speedups
when executing the simulations of these examples on parallel computers.
The ModPar tool is based on the Open Source implementation Open-
Modelica, including task merging, task scheduling and code generation
techniques adopted for automatic parallelization of simulation code. This
tool was also partly based on the earlier DSBPart prototype tool.

e A task graph implementation in Mathematica providing an interactive
environment with emphasis on experimentation and evaluation of schedul-

170 CHAPTER 12. CONTRIBUTIONS AND CONCLUSIONS

ing and clustering algorithms. The implementation includes a number of
implemented scheduling and clustering algorithms and the task merging
approaches presented in this thesis.

e Insight and conclusions of working with a research compiler for natural
semantics by using the RML language. The author has spent much of the
time implementing the Modelica compiler written in RML, an experience
discussed in the conclusions below.

e The author has also taken an active role in the Design of the Modelica
language, attending design meetings on many occasions, contributing to
the improvement of the Modelica modeling language.

12.2 Conclusions

The conclusions of this thesis, automatic parallelization and implementation,
are presented in the two following sections.

12.2.1 Automatic parallelization

We have presented an automatic parallelization framework for Modelica based
on the OpenModelica compiler. A prototype implementation has been made
that can successfully parallelize Modelica simulation models. The speedup of
these simulations vary depending on the size and complexity of the simulations.

In this thesis we have proposed a new method (ATMM) of merging tasks
using a generic method for transforming graphs called graph rewrite systems.
This approach is based on the LogP cost model of parallel computing for the
communication costs in a task graph. It also uses task replication to decrease
the communication cost and improve performance.

The task merging method is based on a small set of transformation rules
which are quite simple and easy to understand, but still have been demon-
strated to be very efficient at increasing the granularity of fine grained task
graphs. This has been one of the obstacles in the automatic parallelization of
simulation code, since in this case the task graphs have been built on the finest
granularity level possible. The reason being to detect all possible parallelism
of the simulation code. Hence, the combination of building the task graph at
this fine grained level, combined with the task merging method has resulted
in a successful parallelization technique suitable for parallelization of many
simulation models.

The termination of the graph rewrite system is guaranteed since the task
merging system will never add tasks to the task graph. It will only merge
tasks, reducing the total number of tasks in the graph. Thus, the task merging

12.3. IMPLEMENTATION 171

system will always terminate and the computational complexity of the system
can therefore be (theoretically) determined.

The computational complexity of the task merging algorithm is O(n?) for a
fine grained task graph in the case of a total reduction/merging of the tasks of
the task graph. Since this is seldom the case, the computational complexity is
in practice lower than this boundary. In practice it very much depends on the
granularity of the task graph and on the bandwidth and latency parameters.
Many reductions will be made for high values of latency and fine grained task
graphs, resulting in higher computation time, whereas for coarse grained task
graphs, no or very few reductions will be performed. For such cases, the
computational complexity is O(n), i.e., linear in the number of tasks of the
task graph.

The task merging system has been developed in two different versions,
where the first attempt did not sufficiently succeed in reducing the task graphs.
Therefore, a second more elaborated set of transformation rules was developed.
Unfortunately, the enhancements also led to confluence problems regarding the
rewrite system. Thus, the enhanced system needed a priority mechanism for
the transformation rules such that the system was made confluent.

The task merging approach has been experimentally tested both on appli-
cation examples from simulation code and by using the standard task graph
set. The task merging approach succeeded in increasing granularity in most
of the cases.

12.3 Implementation

Most of the implementation work in this research problem has been done
using the RML language, presented in Chapter 6.3.2. Since RML is a research
language developed at PELAB, Linkdping university, it does not have a full-
fledged development environment as can be found for e.g. Java, C+-+ or other
wide-spread programming languages. It does not have good enough support
for debugging, profiling, etc, and it does not have a large standard library as
have most languages today (e.g. Java or C++). It does not for instance have
support for the most common used data types such as associative arrays (maps
or hash tables), reusable vectors, and many other data types commonly used
in compilers. Some of these missing features, e.g. library support for hash
tables, dictionaries, binary trees, etc., has during this work been implemented
by this author and a colleague. However, some work still remains to convert
this into a general reusable library.

However, among the advantages of RML are, quick to learn, powerful pat-
tern matching, good support for abstract syntax trees, automatic memory
management, and compilation to efficient C-code. Since RML uses Natural

172 CHAPTER 12. CONTRIBUTIONS AND CONCLUSIONS

Semantics it is also efficient at describing typical semantic rules in a compiler.
However, for other parts of the compiler it is sometimes less suitable.

Today, the compiler is about 72000 lines of RML code, which can take
quite some time to fully grasp. However, PELAB has initiated an effort to
automatically translate this RML code into a MetaModelica language, which is
an extension of the Modelica language. By performing this transformation, we
will get a Modelica compiler written in MetaModelica, a superset of Modelica,
i.e., the compiler is in principle written in itself. Through this effort, the
OpenModelica compiler will have removed most of the drawbacks of RML but
still retain the advantages. Also, the increasing number of Modelica users
around the world will probably increase the standard library of both Modelica
functions, Modelica data types such as associative arrays, etc., and Modelica
models.

A final observation is that implementing compilers is a hard task which re-
quires both experienced programmers and good tool support. The RML com-
piler did not fulfill these requirements fully, and if the OpenModelica compiler
were to be written today it would probably not be done using RML, given the
lack of tool support in compiler and development environment. However, with
the automatic translation to MetaModelica along with better tool support in
an integrated environment (eclipse [20]) with both debugging, browsing, etc.,
the OpenModelica compiler will be a success.

12.4 Summary

The main contribution of this thesis is the ATMM task merging method, and
an automatic parallelization tool that enables engineers with little or no knowl-
edge of parallel programming to speed up their simulations using parallel com-
puting. The contribution consists of algorithms and techniques for automatic
parallelization prototype tools and experimental frameworks for conducting
further research in this area.

Bibliography

1]

Anderson, E. and Bai, Z. and Bischof, C. and Demmel, J. and Dongarra, J.
and Du Croz, J. and Greenbaum, A. and Hammarling, S. and McKenney,
A. and Ostrouchov, S. and Sorensen, D. LAPACK Users’ Guide, Release
1.0. SIAM, Philadelphia, 1992.

N. Andersson. Licentiate thesis: Compilation of Mathematical Models
to Parallel Code. Department of Computer and Information Science,
Link6pings Universitet, Sweden, 1996.

P. Aronsson. Licentiate thesis: Automatic Parallelization of Simulation
Code from Equation Based Simulation Languages. Department of Com-
puter and Information Science, Linkopings universitet, Sweden, 2002.

P. Aronsson and P. Fritzson. Multiprocessor Scheduling of Simulation
Code from Modelica Models. In Proceedings of the 2nd International
Modelica Conference. DLR, Oberpfaffenhofen, Germany, March 2002.

Peter Aronsson and Peter Fritzson. Task merging and replication us-
ing graph rewriting. In Tenth International Workshop on Compilers for
Parallel Computers. Amsterdam,the Netherlands, Jan 8-10 2003.

Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus, and Kaj
Nystrom. Meta programming and Function Overloading in OpenMod-
elica. In Proceedings of the 3rd International Modelica Conference.
Link6ping, Sweden, November 3-4, 2003.

M. Ayed, J-L Gaudiot. An efficient heuristic for code partitioning. Parallel
Computing, 26:399-426, 2000.

BOOST graph library, http://www.boost.org accessed 2006-01-05.

C. Boeres and E.F. Rebello. Cluster-based static scheduling: Theory and
practice. In Proceedings of the 14th Symposium on Computer Architecture
and High Performance Computing, 2002.

174

[10]

BIBLIOGRAPHY

P. Bunus. Debugging Techniques for Equation-Based Languages. PhD
thesis, Linkoping Studies in Science and Technology. Dissertation
Dept. of Computer and Information Science, 2004.

George D. Byrne and Alan C. Hindmarsh. Pvode, an ode solver for par-
allel computers. International Journal of High Performance Computing
Applications, 13(4):354-365, 1999.

Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. Software Engineering,
14(2):141-154, 1988.

E. Coffman Jr. and R. Graham. Optimal scheduling for two processor
systems. Acta Informatica, vol. 1(no. 3):200-213, 1972.

A Catalogue of research compilers, http://compiler-tools.org, accessed
2006-01-05.

David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay,
Klaus E. Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten
von Eicken. Logp: Towards a realistic model of parallel computation. In
Principles Practice of Parallel Programming, pages 1-12, 1993.

S. Pande S. Darbha. A Robust Compile Time Method for Scheduling
Task Parallelism on Distributed Memory Machines. In Proceedings of
PACT’96, pages 156-162, 1996.

S. Darbha, D. P. Agrawal. Optimal Scheduling Algorithm for Distributed-
Memory Machines. IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 9(no. 1):87-94, January 1998.

C. Donnelly and R. Stallman. Bison: the YACC-compatible Parser Gen-
erator, Bison Version 1.28. Free Software Foundation, 675 Mass Ave,
Cambridge, MA 02139, USA, Tel: (617) 876-3296, USA, 1999.

Dymola, hitp://www.dynasim.se.
The eclipse project, http://www.eclipse.org.

H. Elmqvist, M. Otter, and F. Cellier. Inline integration: A new mixed
symbolic /numeric approach for solving differential- algebraic equation
systems, 1995.

H. Elmqvist, M. Otter. Methods for Tearing Systems of Equations in
Object-Oriented Modeling. In Proceedings ESM’94 European Simulation
Multi-conference, Barcelona, Spain, June 1994.

BIBLIOGRAPHY 175

23]

29]

[30]

33]

34]

[35]

Vadim Engelson. Tools for Design, Interactive Simulation, and Visual-
1zation of Object-Oriented Models in Scientific Computing. PhD thesis,
Dept. of Computer and Information Science, Link6ping University, 2000.

S. Fortune and J. Wyllie. Parallelism in random access machines. In
Proceedings of the 10th ACM Symposium on Theory of Computing, pages
114-118, 1978.

1. Foster. Designing and Building Parallel Programs. Addison-Wesley,
1995.

D. Fritzson and P. Nordling. Adaptive scheduling strategy optimizer for
parallel roller bearing simulation. Future Generation Computer Systems,
16:563-570, 2000.

Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. ITEEE Press, 2004.

C. Hanen, A. Munier. An approximation algorithm for scheduling depen-
dent tasks on m processors with small communication delays. Technical
report, Laboratoire Informatique Theorique Et Programmation, Institut
Blaise Pascal, Universite P.et M. Curie, 1999.

1.S Duff, A.M Erisman and J.K Reid”. Direct Methods for Sparse Matri-
ces. Oxford Science Publications, 1989.

Gilles Kahn. Natural semantics. In Springer-Verlag, editor, In Proc. of
the Symposium on Theoretical Aspects on Computer Science (STACS’87),
pages 22-39, 1987.

B. Kruatrachue and T. Lewis. Grain Size Determination for Parallel
Processing. IEEE Software, vol. 5(no. 1):23-32, 1988.

B. Kruatrachue. Static Task Scheduling and Grain Packing in Parallel
Processor Systems. PhD thesis, Dept. of Electrical and Computer Engi-
neering, Oregon State University, 1987.

Kurt Gieck and Reiner Gieck. Engineering Formulas. McGraw-Hill, 7th
edition edition, 1997.

Y-K. Kwok, I. Ahmad. Exploiting Duplication to Minimize the Execution
Times of Parallel Programs on Message-Passing Systems. Transactions
on Parallel and Distributed Systems, vol. 9(no. 9), 1998.

Y.-K. Kwok and I. Ahmad. Benchmarking the task graph scheduling
algorithms. In Proceedings IPPS/SPDP, pages p. 531-537, 1998.

176 BIBLIOGRAPHY

[36] C.Y. Lee, J.J. Hwang, Y.C. Chow, F.D Anger. Multiprocessor Scheduling
with Interprocessor Communication Delays. Operations Research Letters,
vol.7(no. 3), 1988.

[37] "H. Lee, J. Kim, S.-J. Hong, and S. Lee”. Task scheduling using a block
dependency DAG for block-oriented sparse cholesky factorization. In SAC
(2), pages 641-648, 2000.

[38] A. Leung, A. Skjellum, and G. Fox. Concurrent dassl: a second-generation
dae solver library. In Proceedings of the Scalable Parallel Libraries Con-
ference, 1993.

[39] J.C. Liou, M. Palis. CASS: An Efficient Task Management System for Dis-
tributed Memory Architectures. In Parallel Architectures, Algorithms and
Networks, Proceedings. IEEE Computer, 1997. December 18-20, Taipei,
Taiwan.

[40] Zhen Liu. Worst-case analysis of scheduling heuristics of parallel systems.
Parallel Computing, 24:863-891, 1998.

[41] E. Luque, A. Ripoll, P. Hernandez, T. Margalef. Impact of Task Dupli-
cation on Static-Scheduling Performance in Multiprocessor Systems with
Variable Execution-Time Tasks. In International Conference on Super-
Computing. ACM Press, 1990. Amsterdam, Netherlands.

[42] W. Lowe and W. Zimmermann. Scheduling balanced task-graphs to logp-
machines. Parallel Computing, 26:1083-1108, 2000.

[43] MathModelica, http://www.mathcore.com.
[44] Matlab simulink. http://www.mathworks.com.

[45] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. Technical Report UT-CS-94-230, 1994.

[46] Michael Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[47] A Migdalas, P. M. Pardalos, and S Storoy. Parallel Computing in Opti-
mazation. Kluwer Academic Press, 1997.

[48] The Modelica Language,
http://www.modelica.ory.

[49] Modelica Association. The Modelica Language Specification Version 2.0,
Mars 2002. http://www.modelica.org.

BIBLIOGRAPHY 177

[50]

[59]

[60]

The monolith computer cluster at nsc (national computer center, sweden).
http: /www.nsc.liu.se/systems/monolith.

Myrinet, http://www.myrinet.com.

P. Nordling and P. Fritzson. Parallelization of the CVODE Ordinary
Differential Equation Solver with Applications to Rolling Bearing Simu-
lation. In Bob Hertzberg and Giuseppe Serazzi, editors, High Performance
Computing and Networking LNCS 919, Springer-Verlag, 1995.

National Supercomputer Centre, Sweden. http://www.nsc.liu.se.
OpenMP Forumn Home Page. http://www.openmp.org/.

P. Aronsson and P. Fritzson and P. Bunus and L. Saldamli. Incremental
Declaration Handling in Open Source Modelica. In In Proceedings, SIMS
- 43rd Conference on Simulation and Modeling, September 2003.

M. A. Palis, J-C- Liou and D. Wei. Task Clustering and Scheduling for
Distributed Memory Parallel Architectures. Transactions on Parallel and
Distributed Systems, vol. 7(no. 1), 1996.

C. C. Pantilides. The consistent initialization of differential-algebraic sys-
tems. Siam Journal of Scientific Computing, 9(2), 1988.

G.L Park, B. Shirazi, J. Marquis. Comparative Study of Static Schedul-
ing with Task Duplication for Distributed Systems. Solving Irreqularly
Structured Problems in Parallel Computing, 1997.

G.L. Park, B. Shirazi, J. Marquis. DFRN: A New Approach for Duplica-
tion Based Scheduling for Distributed Memory Multiprocessor Systems.
In Proceedings of Parallel Processing Symposium, 1997.

C. S. Park, S. B. Choi. Multiprocessor Scheduling Algorithm Utilizing
Linear Clustering of Directed Acyclic Graphs. In Parallel and Distributed
Systems, Proceedings, 1997.

V. Paxson. GNU Flex Manual, Version 2.5.3, Free Software Foundation,
1996.

Sriram Pemmaraju and Steven Skiena. Computational Discrete Mathe-
matics : Combinatorics and Graph Theory with Mathematica. Cambridge
University Press, 2003.

Mikael Pettersson. Compiling Natural Semantics. PhD thesis, Linkdping
Studies in Science and Technology, Dissertation
Dept. of Computer and Information Science, 1995.

178 BIBLIOGRAPHY

[64] Pvm - parallel virtual machine. http://www.csm.ornl.gov/pvm/pvm_home.html.

[65] Andrei Radulescu, A. J.C. van Gemund. FLB:Fast Load Balancing for
Distributed-Memory Machines. Technical report, Faculty of Information
Technology and Systems, Delft University of Technology, 1999.

[66] A. Radulescu and A. van Gemund. On the complexity of list schedul-
ing algorithms for distributed-memory systems. In ACM International
Conference on Supercomputing, 1999.

[67] Rauber, T. and Runger, G. Iterated Runge-Kutta Methods on Distributed
Memory Multiprocessors. In Parallel and Distributed Processing, Proceed-
ings, pages 12-19. First Aizu International Symposium on, 1995.

[68] T. Rauber and G. Runger. Parallel iterated runge— kutta methods
and applications. International Journal of Supercomputer Applications,
10(1):62-90, 1996.

[69] Levon Saldamli. PDEModelica - A High-Level Language for Modeling with
Partial Differential Equations. PhD thesis, Department of Computer and
Information Science, Linkoping University,, May 2006.

[70] Scali - Scalable Linux Systems, http://www.scali.com.
[71] Sca mpi. http://www.scali.com/.

[72] A. Schiela, H. Olsson. Mixed-mode Integration for Real-time Simula-
tion. In P. Fritzson, editor, Proceedings of Modelica (2000) Workshop,
http://www.modelica.org, pages 69-75, 2000.

[73] Sci network from dolphin. http://www.dolphinics.com/.

[74] G. Sih and E. Lee. A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures.
IEEE Transactions on Parallel and Distributed Systems, vol. 4(no. 2),
1993.

[75] Standard ml, http://www.standardml.org.

[76] SO/IEC Standard 9945-1:1996. Information Technology-Portable Op-
erating System Interface (POSIX)- Part 1: System Application Program
Interface (API) [C Language]. Technical report, The Institute of Electrical
and Electronics Engineers, 1996.

[77] Standard Task Graph Set, http://www.kasara.elec.waseda.ac.jp/schedule
accessed 2006-01-04.

BIBLIOGRAPHY 179

(78]

[79]

H. Topcuoglu and M.-Y. Wu. Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Par-
allel and Distributed Systems, 13, 2002.

H. Tummescheit. Design and Implementation of Object-Oriented Model
Libraries using Modelica. PhD thesis, Dept. of Automatic Control. Dis-
sertation. Lund University, 2002.

J. D. Ullman. NP-complete scheduling problems. Journal of Computer
and System Sciences, 10(3):384-393, 1975.

V. Sarkar. Partitioning and Scheduling Parallel Programs for Multipro-
cessors. MIT Press, Cambridge, MA, 1989.

L. G- Valliant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8):103-111, 1990.

L. Viklund, J. Herber, and P. Fritzson. The Implementation of Object-
Math - a High-Level Programming Environment for Scientific Computing.
In Computational Complexity, pages 312-318, 1992.

B. E. Wells. A Hard Real-Time Static Task Allocation Methodology for
Highly-Constrained Message-Passing Environments. The International
Journal of Computers and Their Applications, 11(3), December 1995.

G. William and E. Lusk. User’s guide for mpich, a portable implementa-
tion of mpi.

Stephen Wolfram. The Mathematica Book, Fifth Edition. Wolfram Media,
2003.

Wu, M. Y. and Gajski, D. D. Hypertool: A Programming Aid for
Message-Passing Systems. Transactions on Parallel and Distributed Sys-
tems, vol. 1(no. 3), 1990.

T. Yang, A. Gerasoulis. DSC: Scheduling Parallel Tasks on an Unbounded
Number of Processors. Transactions on Parallel and Distributed Systems,
vol. 5(no. 9), 1994.

180 BIBLIOGRAPHY

Appendix A

Task Merging Experiments

Table A.1 below shows the task merging algorithm on a subset of the Standard
Graph Set (STG) with graphs of size 100. The first column is the filename for
the task graph. The second column gives the parallel time before the merge.
The third column shows the parallel time after the task mering has been run.
The fourth column is the number of tasks in the graph and the fifth column
is the number of tasks after the task merging. All these figures are the same
when having different priority order of the task merging rules.

File PT before | PT after | No. tasks before | No. tasks after
rand0161.stg | 520 351 100 100
rand0167.stg | 252 233 100 100
rand0106.stg | 293 230 100 100
rand0122.stg | 577 429 100 99
rand0053.stg | 165 126 100 100
rand0163.stg | 809 490 100 99
rand0166.stg | 93 49 89 78
rand0163.stg | 809 490 100 99
rand0152.stg | 159 110 99 93
rand0157.stg | 843 576 100 100
rand0076.stg | 353 329 100 97
rand0071.stg | 698 401 100 100
rand0114.stg | 125 86 100 95
rand0171.stg | 265 247 100 100
rand0114.stg | 125 86 100 95
continued on next page

182 APPENDIX A. TASK MERGING EXPERIMENTS

continued from previous page

File PT before | PT after | No. tasks before | No. tasks after
rand0168.stg | 242 212 100 100
rand0119.stg | 242 228 100 100
rand0102.stg | 191 147 100 99
rand0080.stg | 185 86 97 90
rand0068.stg | 818 605 100 100
rand0061.stg | 519 282 100 98
rand0100.stg | 151 97 100 97
rand0134.stg | 376 282 100 100
rand0157.stg | 843 576 100 100
rand0078.stg | 802 660 100 100
rand0111.stg | 84 36 88 76
rand0027.stg | 423 295 100 100
rand0035.stg | 154 112 100 98
rand0025.stg | 227 142 99 97
rand0126.stg | 573 367 100 96
rand0040.stg | 193 173 100 96
rand0051.stg | 159 88 100 98
rand0052.stg | 143 86 100 98
rand0148.stg | 179 136 100 99
rand0142.stg | 156 137 98 94
rand0158.stg | 459 296 100 98
rand0116.stg | 235 220 100 100
rand0155.stg | 310 231 100 93
rand0028.stg | 362 278 100 99
rand0168.stg | 242 212 100 100
rand0175.stg | 212 153 100 98
rand0053.stg | 165 126 100 100
rand0126.stg | 573 367 100 96
rand0100.stg | 151 97 100 97
rand0114.stg | 125 86 100 95
rand0131.stg | 227 152 100 98
rand0170.stg | 255 232 100 100
rand0121.stg | 257 178 100 97
rand0035.stg | 154 112 100 98
rand0020.stg | 370 175 100 99

Table A.1. Task Merging on STG using B =1 and L =10

183

Table A.2 below presents results for the same STG subset as above but
with B =1 and L = 100.

File PT before | PT after | No. tasks before | No. tasks after
rand0161.stg | 2860 1115 100 94
rand0167.stg | 1062 907 100 100
rand0106.stg | 1100 727 100 97
rand0122.stg | 3187 1362 100 93
rand0053.stg | 975 649 100 98
rand0163.stg | 4679 1922 100 97
rand0166.stg | 543 111 89 41
rand0163.stg | 4679 1922 100 97
rand0152.stg | 699 348 99 69
rand0157.stg | 4173 1482 100 98
rand0076.stg | 1603 625 100 92
rand0071.stg | 4208 1662 100 93
rand0114.stg | 755 322 100 87
rand0171.stg | 1075 835 100 98
rand0114.stg | 755 322 100 87
rand0168.stg | 1052 703 100 97
rand0119.stg | 1052 923 100 100
rand0102.stg | 1001 652 100 97
rand0080.stg | 1175 321 97 69
rand0068.stg | 4224 1625 100 97
rand0061.stg | 3219 1312 100 97
rand0100.stg | 851 347 100 91
rand0134.stg | 1906 782 100 92
rand0157.stg | 4173 1482 100 98
rand0078.stg | 3907 1763 100 92
rand0111.stg | 534 106 88 35
rand0027.stg | 2223 1007 100 89
rand0035.stg | 872 358 100 92
rand0025.stg | 1127 453 99 86
rand0126.stg | 2733 876 100 90
rand0040.stg | 993 579 100 96
rand0051.stg | 969 431 100 97
rand0052.stg | 863 428 100 87
continued on next page

184 APPENDIX A. TASK MERGING EXPERIMENTS

continued from previous page

File PT before | PT after | No. tasks before | No. tasks after
rand0148.stg | 899 447 100 94
rand0142.stg | 786 364 98 75
rand0158.stg | 2709 807 100 89
rand0116.stg | 1045 694 100 99
rand0155.stg | 1840 707 100 86
rand0028.stg | 1802 683 100 92
rand0168.stg | 1052 703 100 97
rand0175.stg | 1022 570 100 95
rand0053.stg | 975 649 100 98
rand0126.stg | 2733 876 100 90
rand0100.stg | 851 347 100 91
rand0114.stg | 755 322 100 87
rand0131.stg | 1217 439 100 87
rand0170.stg | 1065 919 100 100
rand0121.stg | 1427 565 100 82
rand0035.stg | 872 358 100 92
rand0020.stg | 2350 965 100 94

Table A.2. Task Merging on STG using B =1 and L = 100

185

Table A.3 has L = 1000, giving even more reduction of the number of tasks
of the task graphs.

File PT before | PT after | No. tasks before | No. tasks after
rand0161.stg | 26260 8095 100 89
rand0167.stg | 9162 6072 100 97
rand0106.stg | 9200 4101 100 98
rand0122.stg | 29287 11133 100 83
rand0053.stg | 9075 4034 100 86
rand0163.stg | 43379 14187 100 85
rand0166.stg | 5043 0 89 34
rand0163.stg | 43379 14187 100 85
rand0152.stg | 6099 1020 99 42
rand0157.stg | 37473 11183 100 86
rand0076.stg | 14203 4096 100 82
rand0071.stg | 39308 12148 100 87
rand0114.stg | 7055 2014 100 70
rand0171.stg | 9175 5113 100 94
rand0114.stg | 7055 2014 100 70
rand0168.stg | 9152 4070 100 91
rand0119.stg | 9152 6096 100 98
rand0102.stg | 9101 5045 100 98
rand0080.stg | 11075 0 97 17
rand0068.stg | 38424 11182 100 90
rand0061.stg | 30219 9086 100 84
rand0100.stg | 8051 2031 100 81
rand0134.stg | 17206 6081 100 76
rand0157.stg | 37473 11183 100 86
rand0078.stg | 35407 12244 100 82
rand0111.stg | 5034 0 88 33
rand0027.stg | 20223 7092 100 85
rand0035.stg | 8072 3047 100 71
rand0025.stg | 10127 2034 99 74
rand0126.stg | 24333 9121 100 91
rand0040.stg | 9093 4046 100 90
rand0051.stg | 9069 2016 100 88
rand0052.stg | 8063 2014 100 66
continued on next page

186 APPENDIX A. TASK MERGING EXPERIMENTS

continued from previous page

File PT before | PT after | No. tasks before | No. tasks after
rand0148.stg | 8099 3033 100 7
rand0142.stg | 7086 1034 98 28
rand0158.stg | 25209 6083 100 75
rand0116.stg | 9145 5078 100 99
rand0155.stg | 17140 4052 100 70
rand0028.stg | 16202 3051 100 72
rand0168.stg | 9152 4070 100 91
rand0175.stg | 9122 4054 100 93
rand0053.stg | 9075 4034 100 86
rand0126.stg | 24333 9121 100 91
rand0100.stg | 8051 2031 100 81
rand0114.stg | 7055 2014 100 70
rand0131.stg | 11117 3039 100 72
rand0170.stg | 9165 7103 100 99
rand0121.stg | 13127 4048 100 74
rand0035.stg | 8072 3047 100 71
rand0020.stg | 22150 6043 100 71

Table A.3. Task Merging on STG using B = 1 and L = 1000

No 14

No 17

No 18

No 22

No 33

No 51

No 54

No 55

No 58

No 69

No 71

No 77

No 94

No97

No 109

No 111

No 155

No 165

Department of Computer and Information Science
Linkopings universitet

Dissertations

Linkoping Studies in Science and Technology

Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt sprak, 1977, ISBN 91-
7372-168-9.

Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

Sture Higglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

Piar Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

Osten Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion, 1984, ISBN 91-7372-801-2.

Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

James W. Goodwin: A Theory and System for

No 170

No 174

No 192

No 213

No 214

No 221

No 239

No 244

No 252

No 258

No 260

No 264

No 265

No 270

No 273

No 276

No 277

No 281

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

Johan Fagerstrom: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

Jonas Lowgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies, 1991, ISBN 91-7870-784-6.

Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

Nils Dahlbéck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

UIf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

Ralph Ronnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

Bjorn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.
Staffan Bonnier: A Formal Basis for Horn Clause

Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

Christer Béckstrom: Computational Complexity

No 292

No 297

No 302

No 312

No 338

No 371

No 375

No 383

No 396

No 413

No 414

No 416

No 429

No 431

No 437

No 439

No 448

No 452

No 459

No 461

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

Arne Jonsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

Ulf Séderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

Andreas Kagedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

Cecilia Sjoberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

Lena Strombiick: User-Defined Constructions in

No 462

No 475

No 480

No 485

No 494

No 495

No 498

No 502

No 503

No 512

No 520

No 522

No 526

No 530

No 555

No 561

No 563

No 567

No 582

Unification-Based Formalisms, 1997, ISBN 91-

7871-857-0.

Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och anvénds efter foretagsforvirv, 1997, ISBN 91-
7871-914-3.

Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

Goran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

Martin Skold: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

Johan Ringstrom: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

Anna Moberg: Nirhet och distans - Studier av
kommunikationsmmonster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

Mikael Ronstrom: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

Jonas Hallberg: Timing Issues in High-Level Syn-
thesis, 1998, ISBN 91-7219-369-7.

Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

Jorgen Lindstrom: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

Vanja Josifovski: Design, Implementation and

No 589

No 592

No 593

No 594

No 595

No 596

No 597

No 598

No 607

No 611

No 613

No 618

No 627

No 637

No 639

No 660

No 688

No 689

Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

Rita Kovordanyi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

Jorgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

Jimmy Tjéder: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

Marcus Bjireland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720

No 724

No 725

No 726

No 732

No 745

No 746

No 757

No 747

No 749

No 765

No 771

No 772

No 758

No 774

No 779

No 793

No 785

No 800

No 808

Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

Pir Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

Johan Aherg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.
Henrik André-Jonsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.
Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-

318-0.

Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.
Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,

ISBN 91-7373-349-0.

Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

Mathias Broxvall: A Study in the

Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

Lars Hult: Publika Informationstjidnster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

Lars Taxén: A Framework for the Coordination of
Complex Systems” Development, 2003, ISBN 91-
7373-604-X

Klas Gére: Tre perspektiv pa forvintningar och
fordndringar i samband med inforande av informa-

No 821

No 823

No 828

No 833

No 852

No 867

No 872

No 869

No 870

No 874

No 873

No 876

No 883

No 882

No 887

No 889

No 893

No 910

No 918

No 900

tionsystem, 2003, ISBN 91-7373-618-X.

Mikael Kindborg: Concurrent Comics - program-
ming of social agents by children, 2003,

ISBN 91-7373-651-1.

Christina Olvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.
Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous
Time Systems, 2003, ISBN 91-7373-683-X.
Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.
Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

Jo Skamedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

Linda Askenis: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.
Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.
Magnus Bang: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5
Robert Eklund: Disfluency in Swedish
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

Anders Lindstrom: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.
Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
S.

Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

Real-

No 920

No 929

No 933

No 937

No 938

No 945

No 946

No 947

No 963

No 972

No 974

No 979

No 983

No 986

No 1004

No 1005

No 1008

No 1009

No 1013

No 1016

No 1017

Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.
Mikael Ciiker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

Jonas Kvarnstréom: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

Ola Angelsmark: Constructing Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005, ISBN 91-85297-
99-2.

Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

Bjorn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.
Aleksandra Tesanovic: Developing Re-

usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

Wilhelm Dahllof: Exact Algorithms for

Exact Satisfiability Problems, 2006, ISBN 91-
85523-97-6.

Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-

No 1018

No 1019

No 1021

No 1022

79-8.

Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

Peter Aronsson: Automatic Parallelization of
Equation-Based Simulation Programs, 2006, ISBN
91-85523-68-2.

Linkoping Studies in Information Science

No 1

No 2

No 3

No 4

No 5

No 6

No 7

No 8

No 9

No 10

No 11

No 12

No 13

Karin Axelsson: Metodisk systemstrukturering- att
skapa samstimmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-
296-8.

Stefan Cronholm: Metodverktyg och anvindbar-
het - en studie av datorstddd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

Anders Avdic: Anvindare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

Owen Eriksson: Kommunikationskvalitet hos in-
formationssystem och afférsprocesser, 2000. ISBN
91-7219-811-7.

Mikael Lind: Fran system till process - kriterier for
processbestimning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

Ulf Melin: Koordination och informationssystem i
foretag och nitverk, 2002, ISBN 91-7373-278-8.

Piir J. Agerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

Ulf Seigerroth: Att forsta och fordndra
systemutvecklingsverksamheter - en taxonomi

for metautveckling, 2003, ISBN91-7373-736-4.
Karin Hedstrom: Spér av datoriseringens vérden -
Effekter av IT i dldreomsorg, 2004, ISBN 91-7373-
963-4.

Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

Malin Nordstréom: Styrbar systemforvaltning - Att
organisera systemforvaltningsverksamhet med
hjdlp av effektiva forvaltningsobjekt, 2005, ISBN
91-85297-60-7.

Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra forutséttningar for
polisarbete, 2005, ISBN 91-85299-43-X.

