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Abstract: 

 

Block failure is one of the most common failure modes in tunnels. Design tools have some 
simplifications and, therefore, they also have some model uncertainties. The purpose of this 
licentiate thesis is to assess the model uncertainty for different design tools in order to estimate 
block stability.  

Different approaches of kinematic limit equilibrium (KLE) including conventional KLE, 
limited joint length, limited joint length and stress field consideration and probabilistic KLE were 
compared to that of DFN-DEM. In this approach, the results of the calibrated DFN-DEM with 
field mapping were considered to be of true value. The results show that the conventional KLE is 
overdesign due to it’s over simplification. By considering fracture length and stress field, the 
volume of predicted unstable blocks is reduced. The probabilistic approach of KLE by 
considering finite joint length and stress field predicts the volume of unstable blocks to be lower 
than DFN-DEM approach. Therefore there is a great model uncertainty of our standard design 
tools for block stability analysis.   

The assumption made in this study is that the results from DEM were considered to have a true 
value; the results from analytical solution based on joint relaxation process were compared to 
those of DEM in a different condition of depth, K0, apical and friction angle, Kn and Ks value, 
and ratio of Kn/Ks.  The comparison shows that for shallow depth with K0 less than 1, analytical 
solution leads to an overestimation of block stability. The analytical solution predicts that the 
block is stable, while the analyses from numerical solution show the block is unstable. The 
analyses show that by increasing K0, accuracy of analytical solution also increases. Moreover, for 
the cases with close value of friction angle to semi-apical angle, the use of analytical solution is 
not recommended. As the ratio of Kn/Ks increases, the accuracy of analytical solution decreases. 
Increasing the angle ratio (ratio between semi-apical angle to friction angle) is one source of 
increasing uncertainty in the model. The analytical solution is very uncertain in cases with a low 
value of K0, and a high value of stiffness ratio and angle ratio. On the other hand, the analytical 
solution is more certain in conditions with a high value of K0 and a low value of stiffness ratio 
and angle ratio. According to current information (K0, angle ratio, stiffness ratio), one can 
determine the value of model uncertainty by using the diagrams presented in Chapter 6 of the 
thesis. The analyses show that by having more information about the key parameters, the model 
uncertainty could be identified more precisely. However, having more information means 
spending more money, and this increase in cost must be compared to the cost of failure or delay 
in the project or overdesign.  
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Sammanfattning: 

 

Blockutfall är en av de vanligaste brottformerna i tunnlar. Dimensioneringsverktyg har 
förenklingar och därför har de viss modelosäkerhet. Syftet med licentiat avhandlingen är att 
bedöma modelosäkerhet för olika dimensioneringsverktyg för att uppskatta blockstabilitet.  

I Olika metoder av KLE inkluderad konventional KLE, begränsad spricklängd och insitu 
spänning och sannolikhetsbasserad KLE är jämförda med DFN-DEM. I den här metoden 
kalibreras DFN-DEM med fältkartläggning som är betraktad som sanna värden. Resultat visar att 
konventionell KLE ger starkt konservative resultat. Genom att betrakta spricklängden och 
spänningsfältet, så minskar volymen på uppskattade instabila block. Den sannolikhetsbaserade 
metoden för KLE genom att betrakta finit spricklängd, och spänningsfältet förutser att volymen 
av de instabila blocken är mindre än de som bedöms med DFN-DEM metoden. Det finns mycket 
osäkerhet i vår standard dimensioneringsverktyg att uppskatta block stabilitet.  

Antagande som gjorts i den studien är att resultatet från DEM är betraktade som sanna värden och 
resultaten från analytiska lösningar baserad på sprickavlastning är jämförda med resultatet från 
DEM. Jämförelse visar att för grunda djup och med K0 mindre än 1, den analytiska lösningen 
leder till en överestimering av blockstabiliteten. Den analytiska lösningen förutsäger att blocket är 
stabilt medan analys av den numeriska lösningen visar att blocket är instabilt. Analysen visar att 
genom en ökning av K0 så ökar tillförlitligheten av den analytiska lösningen. Det visar sig att 
även att för fall med friktionsvinkel nära semitoppvinkeln så kan den analytiska lösningen inte 
rekommenderas. Vidare leder en ökning av förhållandet Kn/Ks till att tillförlitligheten av den 
analytiska lösningen minskar. En ökning av vinkelförhållandet mellan semitoppvinkeln och 
friktionsvinkeln är källa till en ökning av osäkerhet i modellen. En analytisk lösning är mer 
osäker i fall av lågt värde på K0 och högt värde på styvhetsförhållandet och vinkelnförhållandet. 
Å andra sidan, så är den analytiska lösningen mer säker i fall av högt värde på K0, och lågt värde 
på vinkel förhållandet och styvhetsförhållandet.  

Vid given information (K0, styvhetsvärde och vinkel förhållande) kan man bestämma värdet på 
modellosäkerheten genom att använda diagrammen i avhandlingen. Analysen visar att vid ökad 
information om nyckelparametrarna, så kan modelosäkerheten identifieras mer exakt. Hur som 
helst så betyder mer tillgång till information att mer pengar måste satsas och denna kostnad måste 
gemföras med kostnader för blockinstabilitet eller överdesign. 
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1Introduction 

 

1-1 Background 

 

Several failure modes may occur around underground openings. One of the most 

common observed failure modes in underground openings is block failure. Fractures cross each 

other in the perimeter of excavation and they make blocks with different sizes, which may have 

the potential to fail. The excavation alters the magnitude and direction of stress, and this creates 

changes in the forces that act on the located blocks in the perimeter of excavation. The potential 

unstable blocks could slide, fall out from the roof or rotate (Mauldon and Goodman, 1990).  

Stability of blocks depends on block shape, size, and stresses around the opening. Block shape 

and size depends on the fracture pattern. The stresses around the opening depend on the shape of 

the opening and in-situ stresses. In order to assess the stability of the opening, potential unstable 

blocks must be recognized and stresses around the opening analyzed. In the case of instability, 

required rock support must be estimated. The block stability includes the interactions between 

blocks, block geometry, forces, and support.  Analyzing this type of failure mode is a complex 

problem.  

The purpose of design of an underground opening is to predict the stability with a certain 

amount of confidence. The reliability of the predictions is influenced by the uncertainties 

involved. Three different kinds of uncertainties are normally geometric uncertainty, parameters 

uncertainties, and uncertainties in the design tools. Model uncertainty plays an important role in 

the reliability analysis and the design of rock support. One example of the influence of model 

uncertainty on the design could be seen in the design based on ultimate limit state. The design 

based on the ultimate limit state requires a definition of a performance function. Performance 

function is usually based on a standard deterministic design tool. Model uncertainty is associated 

with imperfect representation of reality and simplifications in the design tool. The designer needs 

to know how to properly represent model uncertainty in a limit state design. According to the 

Eurocode, there is no recommendation for the design of openings against block failure based on 

reliability analysis or observational method. Based on the author’s knowledge, no publication 

exists on model uncertainty for block failure in underground openings. For this reason, the model 

uncertainty for the different block failure design tools is evaluated in this thesis.  
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1-2 Thesis Objectives:  

 

The objective of this thesis is to identify the advantages and disadvantages of the 

different design tools used to analyze block stability, as well as to assess the model uncertainty of 

the different design tools. Available design tools used to analyze block failure could be divided 

into design tools to estimate block volume (kinematic analysis and Discrete Fracture Network) 

and design tools to analyze the equilibrium of the block (analytical solutions and numerical 

solutions).  

  

Limitations 

 

Model uncertainty can only be quantified either by comparison with other more involved 

models that exhibit a closer representation of the nature or by comparison with collected data 

from the field or the laboratory (Ditievsen, 1982). The author has not found any recorded case in 

which failed block geometry, volume, resistance parameters, stresses were measured. Therefore, 

the results of different design tools have been compared to those, which are more closely 

representative of nature.  

The model uncertainty is estimated for static design tools. Effects of dynamic loading on 

the block stability are not considered. However, this is out of the scope of this thesis.  
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1-3 Key Block Theory  

 

Key block theory is a method used to find blocks that have the potential for failure, and to secure 

them in order to reach to a desirable level of safety.  There are two different methods used to find 

the key blocks. Goodman and Shi (1985) presented the first theory, which is called Key block; 

Warburton (1987) presented the second theory called key stone.  

The theory proposed by Goodman and Shi is based on the classification of blocks into finite and 

infinite blocks based on the stereographical projection of opening and fracture orientations. The 

finite blocks are classified into non-removable and removable blocks. According to Figure 1-1, 

removable blocks are classified into those that are stable even without friction, stable with 

sufficient friction, and unstable without support.  

 

Figure1-1.  Classification of blocks based on block theory (Goodman and Shi, 1985) 

 

The infinite blocks and finite, non-removable blocks (types V and IV) don’t cause any danger to 

the opening. The type III is stable without any friction due to the direction of the gravity force 

alone. Type II blocks are stable as long as the sliding force under gravitational loading is less than 

frictional resistance. This type of block may become unstable due to the water pressure or other 

types of forces; therefore, they are called potential key blocks. Type I (the key block) slides into 
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the opening under gravitational loading only and requires rock support in order to make it stable. 

Types I and II are the most dangerous and important to the tunnel stability. Forces must be 

analyzed in order to distinguish between types I, II, and III. 

Goodman and Shi used the full sphere graphical stereographic projection and vector analysis to 

identify and analyze key blocks. Vector analysis is used to determine block surface, volume, and 

calculations of forces.  In their theory, each discontinuity divides three-dimensional space into 

two upper and lower half spaces. The number 0 shows the upper space; number 1 shows the 

lower space. The blocks pass through a common origin to form a series of pyramids. The block 

pyramid (BP) is the assemblage of planes forming a particular set of blocks, which consists of a 

group of discontinuity planes called joint pyramid (JP) plus a group of excavation surfaces called 

excavation pyramid (EP). Theorem of finiteness is used to distinguish between type V and IV 

blocks.  

 

Theorem of Finiteness: 

A convex block is finite if its block pyramid is empty. Conversely, a convex block is infinite if its 

block is not empty. 

 

The theorem of removability will be used to distinguish between removable and non-removable 

blocks.  

 

Theorem of Removability: 

A convex block is removable if its block pyramid is empty and its joint pyramid is not empty. A 

convex block is not removable (tapered) if its block pyramid is empty and its joint pyramid is also 

empty.  

The condition of block pyramid empty satisfies the finiteness of block, and the condition of joint 

pyramid not empty satisfies the condition of removability of block. To distinguish between 

Types, I, II, and III of block, forces must be analyzed that are called mode analysis.  
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Based on an explanation given by Goodman and Shi, block theory, recognition, and analysis of 

key blocks are based on the three following steps:  

1- Finding finite block by use of finiteness theorem; 

2- Finding removable blocks by use of removability theorem; and, 

3- Carrying out mode analysis.  

The Idea behind the hemisphere analysis is to recognize the stability condition of rock blocks and 

wedges; these could be investigated by examining the direction of the active force vector with 

respect to the discontinuity direction and a generalized friction cone (Mauladon and Goodman, 

1996).  

According to the Goodman and Shi (1985) as long as critical blocks (key blocks) blocks are 

stable, the rest of the jointed domain must also remain stable. The block theory (Goodman and 

Shi, 1985) considered only the translation failure of blocks.  The works have been conducted by 

Mauladon (1990) and provide an application of block theory in the rotational failure of blocks.  

Another definition of keystone was defined by Warburton (1987): The special 

relationship between two adjacent blocks - that the neighbours remain stationary - as long as 

the keystone is held in place, but would begin to move if the keystone were removed or 

eliminated.  Warburton 1981, used vector analysis to find the keystone in rock mass. One part of 

vector analysis is related to test the geometrical configuration, and another part is related to 

determine the nature and direction of the movement.  

Both Warburton and Goodman and Shi analyze the key block with the assumption that its 

neighbors were temporarily fixed. In reality, there may be some blocks that push out the key 

block.  Therefore, these methods tend to underestimate the number of blocks that need to support 

(Warburton, 1987).  

According to the author opinion the following discussion will give a better definition of key 

blocks.  

One finite and removable block in the perimeter of tunnel could be stable or unstable. The 

consequence of one unstable block could either be failure of that single block or failure of several 

blocks. In the case of just one block failure, it could be called single block failure. In the case 

when the failure of one block causes the failure of several blocks, the key block definition makes 

more sense (see figure 1-2).  



Chapter 1 Introduction   
 

  6 
 

 

 

 

 

 

 

 

Figure 1-2. Representation of key block definition 

 

The above definition distinguishes between single block failure and key block failure.  

According to Goodman and Shi’s definition, one finite removable block that is unstable without 

support is called key block. Therefore, Goodman and Shi’s definition cannot distinguish between 

failure of one single block and failure of key block.  In another way, Goodman and Shi’s 

definition does not take into account the relationship between the stabilizing of that block (key 

block) with stabilizing its neighbours.  

  The principal of key block theory is the identification of critical key block for a given 

excavation geometry. The assumption is that maintenance of the critical blocks in a stable state 

will guarantee stability of the entire face. Although blocks that could fill the role intended for key 

blocks do undoubtedly exist, there would generally not be enough  information in practice to 

identify them (Warburton, 1987). This implies that, in practice, key block theory is not applicable 

due to lack of information.  

 

1-4 Design Tools to Analyze Block Stability 

 

In order to analyze block stability, two questions must be answered.  Do we have any 

block? And, if there is one, is it stable or not?  The first question relates to the block existence 

and block volume. Block volume and its existence are related to the fractures and opening 

orientation, and fracture length. Priest (1993) mentioned that the kinetics feasibility for a given 

One Block 

Stable = One stabile block  

Unstable  
One block failure = Single 
block failure  

Several block failure = Key 
block failure 
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block can determine the potential of movement, and this is not based upon forces analysis. The 

second question is related to forces that act on the block. Forces acting on the block are block 

weight, induced stresses, dynamic loads, resistance forces from fracture friction and forces from 

support. To answer the first question, design tools such as kinematic analysis and DFN are 

available. To answer the second question, analytical solutions based on limit equilibrium and 

joint relaxation and numerical solutions are available.  Each design tool has certain assumptions 

on the rock mass behaviour and some simplifications on the block geometries and presence of 

fractures in rock mass; it is important to understand how to use these tools efficiently and both the 

strengths and weaknesses of the tools ( Starfield and Cundall, 1988).  Table1-1 shows various 

combinations of different design tools to answer the question regarding block existence and 

analyzing forces that act upon the block. 

 

Table 1-1. Different Design Tools to Analyze the Geometry and Stability of Blocks 

              Block Volume                                        

 

                        Estimation 

Kinematic Analysis DFN 

  

  

Conventional 
Analysis 

Finite Joint Length 

Deterministic Probabilistic 

Analytical 
Solution 

Based on Limit 
Equilibrium 1 

  

No Stress  
Field 

A1 B1 C1 D1 

Considering 
Stress Field 

------------------ B'1 C'1 D'1 

Based on Joint Relaxation 2 A2 B2 C2 D2 
DEM   3 A3 B3 C3 D3 

DDA  4 A4 B4 C4 D4 

 

 In the table, alphabet (A-D) refers to the design tools used to estimate the block existence and its 

volume estimation. Numbers 1-4 refer to the design tools used to analyze forces around a block.  

In Chapter 3, a short description will be given of design tools to analyze block volume. In the 

Chapter 4, a short review will be given of analysis methods 1-4. Analytical solution based on 

joint relaxation (2 in the table) will be compared to DEM (3 in the table) in Chapter 5.  A1, B1, 

C1, B'1 and C'1 will be applied to a site in Sweden, and they will be compared to D3 in Chapter 

6.  
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1-5 Important Parameters for Block Stability Analysis: 

 

The designer faces the question: ´´What kind of geological information is needed to 

analyze the block stability?´´ or in other way ´´What  parameters have the most influence in the 

block stability?´´. The first step for stability analysis of a failure mode is the recognition of 

important parameters. This issue was also mentioned by Strafield and Cundall (1988): ´´ the art 

of modelling lies in determining what aspects of geology are essential for a model´´. The 

important parameters for wedge stability analysis have been classified in Figure 1-3.  

The first and important question is what is shape and size of block? Joint orientation, 

length, intensity, and tunnel geometrical configuration (orientation and shape) determine the 

block size and shape. Hoek and Brown (1980) noted the importance of joint set orientation 

regarding to the opening orientation. Priest (1980) mentioned that stability of wedges is 

influenced by orientation, geometry, and strength of the more extensive discontinuities within the 

mass.  Hencher et al. 1996 pointed out the importance of discontinuities spacing, and Stead and 

Eberhardt (1997) pointed out the importance of discontinuities orientation on predicted failure 

mechanism.   

The second question is about the quantity of the forces acting on a wedge; they must be 

defined and analyzed. Forces could be divided in two groups: driving and resisting forces. The 

driving forces are the weight of block, water pressure, and dynamic forces from blasting or an 

earthquake. Resisting forces are provided by discontinuities shear strength and confining forces 

from induced stresses and forces from rock support. The weight force is calculated from the 

volume, so the aforementioned parameters to estimate shape and size of block are important in 

weight force evaluation. Vaughan and Isenberg (1991) noted the importance of dynamic loads 

from explosion. They noted that the orientation of block relative to the tunnel and the direction of 

loading by wave propagation have significant effect on the block stability. Resistance forces are 

the result of discontinuities’ resistance parameters and stresses around block. The results of 

Crawford and Bray (1983) show that the stability of the wedge and stress redistribution around 

the wedge upon excavation of an opening markedly influenced ratio of joint shear stiffness to 

joint normal stiffness, and the ratio of intact rock stiffness to joint normal and shear stiffness. The 

tangential stress around the roof depends on the magnitude of both horizontal and vertical stress 

field and the shape of opening. The result of considering horizontal in-situ stress is  to take into 

account the normal stresses developed across the discontinuities that can  bound the rock wedge 
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and enable the shear resistance of discontinuity to be mobilized; the rock wedge become wholly 

or partly self-supporting (Crawford, Bray, 1983). Goodman and Shi (1982) showed that the dip 

angle of the joint, along with stress field, have significant effects on the stability of blocks.  

Hoek and Brown (1980) noted the influences of excavation sequences and the possibility of 

support installation before the wedge base is exposed. This gives the opportunity to support the 

wedge before its failure. Terzaghi (1946) mentioned the effects of the rock support distance from 

the face in stratified rocks.  

Hammett, and Hoek (1981) and Piteau (1972) mentioned that the intact rock strength has minor 

effects or almost no effect on the block stability.  

 

Figure 1-3. Key parameters for wedge stability analysis 

 

 Plenty of research has been conducted in this field. This type of failure mode (block failure) is a 

complex failure mode, and needs more research in order to understand it and assess better design 

tools to analyze failure. In order to evaluate design tools, having knowledge of key parameters is 

essential. Some of the key parameters of block stability analysis include block geometry, joint 

resistance, induced stress, and excavation sequence. These have been found by a literature 

review.  
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2-1 Introduction 

 

Figure 2.1 shows the design process against block failure. The design starts with some 

input data from a geological survey (fracture orientation, length, intensity, mechanical properties, 

stresses, etc.) Some of this input data have been explained as important parameters in Chapter 1. 

The first question in this process is: Can the fracture system around a tunnel form – or not form 

- block in the perimeter of tunnel?  Design tools such as kinematic analysis and DFN may be 

used to answer to this question (see Chapter 1).  If the fracture system cannot form block around 

tunnel, the other failure modes should be checked. In the case of forming block around tunnel, its 

stability must be checked. Design tools such as analytical solutions based upon limit equilibrium 

or joint relaxation and numerical discrete modelling (for example, DEM) may then are used. The 

purpose of this design is to assess certain reliability to safeguard against block failure. If this 

condition is satisfied, the drawing would be prepared and tunnel excavation could be started. 

From this stage, the observational method may be applied to adjust the design with the observed 

fracture pattern. However, the application of observational method to design against block failure 

is not within the scope of this thesis. In the design process, different types of uncertainties are 

involved. The purpose of this chapter is to explain uncertainties which are involved in the design 

process against block failure.  

The word uncertain means feeling doubt about something (Longman dictionary). Uncertainty is 

unavoidable in engineering works. The engineering design must be robust and reliable; therefore 

the uncertainties must be quantified and handled. Ang and Tang (2007) divided uncertainties into 

two types Aleatory and Epistemic uncertainty. The first related to the randomness and variability 

of observed data, and the last associated with imperfect models. Although both types of 

uncertainties may be represented in the analyses, their respective significances may be different. 

Baecher and Christian (2003) divided the uncertainty into three groups. Natural variability, 

knowledge uncertainty and decision model uncertainty. Natural variability is equal to the aleatory 

uncertainty in the first classification of uncertainty; the knowledge uncertainty is based on lack of 

knowledge about the events and process or lack of knowledge about the true relationship between 

the parameters to govern the behaviour. This group of uncertainty is equal to the epistemic 
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uncertainty and is called subjective, internal uncertainty or structural uncertainty by Draper 

(1995). This group is included parameter uncertainty and model uncertainty. The third group 

describes inability of decision making.  

 

As Figure 2-1 demonstrates, the design against block failure depends upon the in-data, the 

geometry estimation of block, and design tools. In this particular process, three different kinds of 

uncertainties are involved in the block failure analysis (geometric uncertainty, parameters 

uncertainties, and uncertainties in the design tools). Geometric uncertainties relate to uncertainties 

of block shape, size, and location. The description and quantification of uncertainty is important 

because it deals with risk and economy of project.   Uncertainties are addressed by a lack of 

information in complex geological media. In principal, the stability analysis of blocks depends on 

the key parameters discussed in Chapter 1, among which the uncertainties in the structural 

discontinuities in the mass (Dip/Dip Direction, joint Persistency, and length) give the 

uncertainties in the block geometries. The uncertainties in the fracture mechanical parameters and 

in-situ stress estimation result in the parameters uncertainties. The outcome of model (design 

tool) varies from reality. This type of uncertainty is called model uncertainty.  
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Figure 2.1. Design process against block failure 

 

Many of these uncertainties are coupled. Starfield and Cundall (1988) mentioned the design tool 

simplifications due to the lack of geological data. This means that many of the assumptions that 

were made in the design tools are due to the lack of knowledge from the geological site 

description.  
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2-2 Block Geometric Uncertainties 

 

Block geometric uncertainty plays an important role in the design of underground 

opening against block failure. If fractures in the mass could be described in three dimensional 

according to their locations, there was not any uncertainty about the block geometries and their 

locations. Unfortunately, this is not the case in rock engineering, and a full description of fracture 

assemblage is not possible.  Therefore, there is uncertainty in the block geometry estimation. This 

kind of uncertainty relates to the question: Is there any block around the opening and, if there is, 

what is its size and where is it located? This type of uncertainty creates another kind of 

uncertainty – that of driving force and resistance force such as cohesion; it also affects the amount 

of required support. The joint geometry parameters such as orientation and joint length are the 

most important parameters when analyzing the block geometry uncertainties. Mauldon et al. 

(1997) compared the case of uncertainty in the block geometry to designing a masonry structure 

in which the sizes and shapes of bricks are unknown.  

The fracture geometries and locations and, therefore, blocks geometries and locations 

involved the lack of knowledge. The input data comes from surface survey, boreholes or pilot 

tunnels.  The uncertainties of fracture geometry come from the point that in the best condition 

there is only access to an excavation surface; there is not any access to the 3rd dimension, which is 

hidden behind the rock surface. As was aforementioned, some uncertainties are coupled together. 

For example, in this case the assumption of infinite fractures extension in kinematic analysis is 

coupled with a lack of measuring the fracture extension.  
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2-3 Joint Mechanical Parameters Uncertainties 

 

 Key parameters for block stability analysis such as joint mechanical parameters (normal 

and shear stiffness, friction angle and cohesion) and in-situ stress have great impact on the results 

of block stability analysis. The mentioned key parameters vary from point to point.  Vanmarcke 

(1977) described the spatial variability within homogenous soil layers; the spatial variability of 

fracture mechanical parameters is much more complicated than the homogenous soil layer. 

Vanmarcke (1977) identified three different kinds of uncertainty sources in soil layers: natural 

heterogeneity, limited availability of information about subsurface condition, and measurement 

errors. Determination of exact joint mechanical properties is impossible; therefore, there are 

always uncertainties in the mechanical properties when the stability analysis is conducted. 

The first source uncertainty is the inherent uncertainties. The natural heterogeneity of 

fracture parameters is caused by variation in mineral composition and stress history. The variation 

of mechanical parameters from mean value creates uncertainty.  

The second source of uncertainty is lack of data. Fracture mechanical parameters are 

measured from boreholes or exposed surface in tunnel. The uncertainty that is associated with 

mechanical properties of fractures is due to the fact that measurements are available for only  few 

points., The implementation of statistical methods seems inevitable for the unobserved area 

(Priest, 1980).   

The third source of uncertainty is the measurement errors.  The measured values differ 

from actual values because of sample disturbance, test and condition imperfections, and human 

errors.  
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2-4 Model Uncertainties 

 

 In order to design underground openings, engineers rely on idealized models. Models can 

never fully describe the reality, but they can give the designer insight to the rock mass behaviour 

(Hoek et al., 1991). Hadjigeorgiou and Gernon (2005) mentioned that the reliability of block 

stability analysis depends on the quality and quantity of field data and a limitation of employed 

design tools. The quality and quantity of field data have an effect on uncertainties of the block 

geometry and joint mechanical parameters. A model usually formulizes judgment about how two 

sets of ingredients, unknown (casual effect) and known (in-data) are related with some 

assumptions. In routine feature of most statistical methods is to acknowledge parametric 

uncertainty while a particular form of structure model has been chosen, but it is less routine to 

acknowledge structural uncertainty about the model itself (Draper, 1995). Different design tools 

such as limit equilibrium analysis, analytical solutions and numerical modelling are available to 

analyze block stability. Each design tool has its own assumptions and limitations. Model 

uncertainties (uncertainties in design tools) are related to design tool assumptions and limitations. 

The sources of uncertainties in design tools are their imperfect assumptions and degree of 

simplification in the model. The uncertainty in the prediction of unknown values (model 

outcome) depends both on the structural uncertainty (model uncertainty) and in data uncertainty; 

in other words, the model uncertainty ought to quantify in light of the value of in data (Draper, 

1995).  

Eurocode (EN, 1997) suggests the use of ultimate limit state design. A design based on 

ultimate limit state requires specifying a limit state function (performance function). A limit state 

function is usually based on a deterministic design tool. The design tool (model) predicts the 

capacities or deformations. The outcome of the model such as bearing capacity, factor of safety or 

the volume of unstable blocks could be represented by stochastic variables. Therefore, it must be 

known how to properly represent model uncertainties in limit state function where an uncertain 

model is included.  

Model uncertainty is well explained in Ronold and Bjerager (1992) and it is of great 

importance in reliability analysis. The model should play two roles: First, it should have simple 

mathematical operations and secondly, it should predict reality. Due to their assumptions and 

simplification, the design tools use just few key parameters. Each of the neglected key parameters 

in the model generates noise in the model, which means that it generates uncertainty in the model. 
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Model uncertainty can only be quantified either by comparing other more involved models that 

exhibit a closer representation of the nature or by comparing it with collected data from the field 

or the laboratory (Ditievsen, 1982).  The model uncertainty factor defines the deviation between 

true value and predicted value by model as a stochastic value that has both a mean and a variance 

Ronold and Bjerager (1992). The deviation from predicted and true value is random and varying 

depending on case. Based on this, the relationship between true value Z and outcome of model X 

could be written as Eq. 2-1. 

        XIZ •=                                                                   2-1 

I is the random model uncertainty factor describing the stochastic functional dependence 

between the true value and the outcome of the model. It is assumed to follow a probability 

distribution with a mean value Iμ  and standard deviation of Iσ . Ronold and Bjerager (1992) 

assume normal and lognormal distribution for the random model uncertainty factor. The model 

uncertainty in the case of normal distribution could be expressed as the following: 
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2-5 Conclusions 

 

Uncertainty deals with safety and economics of a project. This is therefore a very 

important issue in the design process. There are different uncertainties involved in block failure 

analysis such as block geometric uncertainty, model uncertainty, and parameter uncertainty. The 

other failure modes also deal with mechanical parameter uncertainty and model uncertainty. 

Geometric uncertainty makes block failure different from other types of failure modes. All 

aspects of uncertainties affect the results of analyses. Considering model uncertainty which is an 

issue that plays an important role in the design and decision-making about rock support, ignoring 

the model uncertainty could be very dangerous. The designer should be aware of the model 

uncertainty, and should correct the outcome of model regarding to the model uncertainty factor. 

The general aspects on the model uncertainty have been explained in this chapter. The application 

will be discussed in Chapter 5 and 6. 
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3-1 Introduction 

 

The estimation of block volume has applications other than just block stability analysis in 

mining and civil engineering projects. Block volume estimation is a key component of mining 

method selection such as sub-level caving and shrinkage stopping (Nicholas, 1981). To study the 

leaching potential, the estimation of rock block volume is also an important. The estimation of 

block volume is an important issue to determine rock mass strength and rock mass classification 

(Palmström, 1995, Beniawski, 1989 and Barton et al., 1974).  

There are different methods used to estimate block volume such as image processing 

(Kemeny et al. 1993), Discrete Fracture Network (DFN) (Dershowitz and Einstein, 1988), 

stereological methods such as Kinematic analysis (Dinis, 1977, Kleine, 1988, Villaescusa and 

Brown, 1991) and experimental equations based on RQD. Some of the methods consider the 

fracture length and some others do not. Generally, the block shape must be known prior to the 

calculation of block volume and depends on the number of joint sets and their orientation 

distribution within the rock mass. On the other hand, as mentioned in Chapter 2, the rock mass is 

not accessible in three-dimensional form, so the shape of blocks cannot be revealed. In order to 

solve this problem, Weibel (1980) suggested using the calliper diameter with 8-20% error. 

Boontun (1998) has performed sensitivity analysis on the effect of fracture parameters on key 

block size distribution. His results show that the number of key block increases linearly with 

increasing joint length; also, by increasing the joint spacing, the average of key block size 

increases exponentially, and the number of key block decreases exponentially. His results show 

that the key block size distribution shape is fixed as a reverse J-shape Weibull distribution when 

the concentration factor of pole vectors (K-factor) is 200 or less.  As mentioned earlier, the two 

main methods to estimate block volume, kinematic analysis and DFN, which are based on 

stochastic representation of fractures, will be discussed.  Each of these will be explained in the 

following sections. The assumptions, advantages, and disadvantages of each will be discussed.  
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3-2 General Aspects of Kinematic Analysis 

 

Kinematic refers to the motion of bodies without reference to the forces that cause them to move 

(Goodman, 1989). Kinematic analysis considers the poles of discontinuities along with and the 

intersection of joints to form a block. Also, in kinematic analysis, the friction of discontinuities 

could be considered.  Kinematic analysis focuses on the feasibility of existing blocks and their 

falling from a roof or sliding on a one joint face or a two joint conjunction plane. Kinematic 

analysis could be used to find the potential unstable blocks, the direction which the blocks will 

slide, and the volume.   The assessment is conducted by stereo net plots to find the feasibility of 

blocks around the opening.  As Priest (1980) mentioned, the assumption of kinematic analysis is 

that the discontinuities will occur in the locations that produce the largest and least stable blocks 

adjacent to the excavation. Cartney (1977) called this approach Ubiquitous Joint Method. 

Kinematic analysis is based on the following assumptions: 

1) The block has a tetrahedral shape formed by three fractures 

2) Blocks are separated by planar fractures  

3) Displacement is purely transitional 

4) The ubiquitous presence of joints 

In order to move a given block under gravity, the following three kinematic conditions must be 

satisfied: 

(1) All pairs of block surface lines must either be parallel or divergent towards the rock face. 

(2) At least one block surface line must be inclined downward from the horizontal towards the 

excavation. 

(3) All block surface lines must extend from the apex to daylight at the excavation face. 

 

 The qualitative kinematic analysis can identify the potential failure mode (sliding or falling). If 

the kinematic analysis suggests that the investigated fracture configuration can result in a wedge 

failure, a more detailed analysis is undertaken to determine the factor of safety based on acting 

forces. As Hencher (1985) mentioned, kinematic analysis could not analyze forces correctly such 

as water pressure and cohesion of joints, so this analysis should be combined with another type of 
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analysis which has the ability to estimate the resistance forces and analyze them (such as limit 

equilibrium or DEM). 

 

3-2-1 Kinematic Analysis Advantages: 

 

This kind of analysis enjoys the simplicity of analysis, which makes it quick to check the 

potential failure. It also needs little data such as the orientation of structure and fractures. This 

type of analysis is well coupled with limit equilibrium analysis; however, in principal, other 

methods can be used to solve the block stability. Kinematic analysis could be combined with 

statistical methods to find the probable block volume. Another advantage of kinematic analysis is 

that, in the early stages of project when there isn't enough data in detail, it can quickly find the 

optimized direction of opening regarding to the rock mass structural orientation.  

 

3-2-2 Disadvantages of Kinematic Analysis 

 

Due to the assumption that displacements are transitional, only sliding and falling failure mode of 

block failure could be analyzed by this approach (Priest, 1980). This method cannot give any 

point of view to the designer about the rotation of blocks.  

Another disadvantage of this method as mentioned by Priest (1980) is that it is often difficult to 

visualize the relationship between the information on the projection and the geometry of blocks 

that are kinematicaly feasible at a given inclined face.  

 The ubiquitous presence of joints means that the spatial variability of structure is not considered 

and this implies that all wedges have equal probability of being present at a particular site. 

Obviously, this is not necessarily true for most applications (Hadjigeorgiou and Grenon, 2005).  

 A common limitation to kinematic analysis is the inability to account the fracture location, 

frequency and size distribution which all have influence on the volume of blocks. 

Another disadvantage of kinematic analysis is that the fractures may cross each other and there is 

not any limitation to the number of crossing fractures in reality, while the kinematic analysis can 
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only estimate the tetrahedral blocks that are the result of 3 joint conjunctions in addition to the 

opening face.  

Kinematic analysis has the assumption that that the joint surface are assumed to extend entirely 

through the target volume. In other words, no discontinuities will terminate within the region of 

block (Ohnishi et al., 1985). Therefore, it cannot handle the complex concave blocks.  

 

3-3 Kinematic Analysis with Infinite Joint Length 

 

By having the primary in-data such as joint set and opening orientation, kinematic analysis can 

estimate the block existence, volume, and possible failure mode: falling or sliding on one (or two) 

plane(s).  Even if this approach is overdesign (Nord, et al. 2007 and Hwang, 2004) it could give 

the designer the ability to select the best orientation of opening, which produces the lowest block 

volume.  

 

3-4 Kinematic Analysis with Finite Joint Length 

 

Fracture length is an important key parameter in forming blocks around an opening as mentioned 

in section 1-5 and by Kim, et al. (2007); Villaescusa and Brown (1991) and ISRM (1978) 

Fracture length is not unlimited in reality. Block volume predicted by unlimited fracture length 

can be very conservative. A site investigation gives an idea about the fracture length, but this 

issue also has some degree of uncertainty. The fracture length could be estimated from a surface 

geological observation or from a site observation in the pilot tunnel or sections of excavated 

tunnel. In the latter case, the observed fracture length cannot exceed the opening size. The method 

to estimate length of discontinuity was described by Pahl (1981). Hwang (2004) proposed an 

algorithm to consider finite discontinuity persistency in kinematic analysis for both convex and 

concave blocks.   

The kinematic analysis could be performed by considering the fracture length observed 

from the site in two ways: deterministic and probabilistic.  In the deterministic way, fracture 

length is limited to its maximum observed length. In the other way, Monte Carlo analysis gives us 
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a probabilistic approach by having the fracture set length distribution, which could be used to 

limit fracture length. In the following section, the basis for probabilistic approach will be 

explained.  

 

3-4-1 Deterministic Approach of Kinematic Analysis with Finite Joint Length 

 

The joint length could be limited to either the maximum joint length, (which has been 

observed) or the mean value. Although the maximum fracture length could happen very rarely for 

a 3-joint set at the same time, it could determine the worst case. Therefore, it is a conservative 

design.  

 

3-4-2 Probabilistic Approach of Kinematic Analysis  

 

There is always variation in geological media, and it is very hard to find a representative 

deterministic value for geometrical parameters. Therefore, the application of statistical methods 

in geological media is inevitable. The applied probabilistic theory to analyze the geological media 

considers the variation of geometry properties (orientation and fracture length) of rock mass.  The 

deterministic approach will result in a block volume that cannot identify degree of uncertainty if 

the input data varies. The limitation to a deterministic value has the disadvantage of a 

conservative design. Therefore, the probabilistic approach is required to be carried out to avoid 

the conservative design. The biggest difference between a deterministic approach and a 

probabilistic one is due to the influence of the variance of input data. The deterministic approach 

doesn't consider the variance of input data, while variance has great influence both in reality and 

in the results of probabilistic approach (Park and West, 2001).  Kinematic analysis could be 

performed in the probabilistic way when the input data such as fracture length and orientation 

were considered to be stochastic values. Monte Carlo simulation could be used for this purpose. 

Duzgun and Einstein (2004) motioned that the probabilities could be determined either 

subjectively or objectively. Subjective determination of probabilities requires a well-experienced 

engineer to look at the ground condition and to tell about the present nature of rock mass and 

whether the probability of falling blocks has some value, according to his or her experiences. On 
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the other hand, objective methods of probabilities determination require the application of 

statistics and probability theories. The objective determination of probabilities could be 

performed by analyzing the data gathered from case histories or based on performing large 

number of Monte Carlo analysis in a deterministic process (for example, Duzgun and Einstein, 

2004). Monte Carlo simulation in its simplest form is a random number generator that is useful 

for forecasting, estimation, and risking analysis. A simulation calculates numerous scenarios of a 

model by repeatedly picking values from a user-predefined probability distribution for the 

uncertain variables and using those values as in-data for a model. All those scenarios produce 

related results, The advantage of estimating the probabilities based on Monte Carlo is that the 

complete probability distribution for factor of safety is obtained if the PDF of input data is 

precisely assessed and a correlation between the input parameters is estimated (Park and West, 

2001). The number of scenarios for a largest block volume from the Monte Carlo-Kinematic 

analysis could determine the probability of block with the maximum size formed in tunnel. The 

problem is that how many scenarios is enough.  

 

3-4-2-1 Probabilistic Kinematic Analysis with Varying Joint Orientation and Fracture 

Length 

 

Fracture orientation is another parameter that is marked highly in the block size, (Dip and 

Dip direction). Fracture orientation has a distribution that comes from geological survey or 

borehole exploration.  Monte Carlo analysis could be very helpful in conjunction with kinematic 

analysis. The values for both fracture orientation and length could be randomly selected from the 

defined distribution. The selected values will be entered to kinematic analysis as data.  
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3-5 DFN (Discrete Fracture Network) 

 

In Discrete Fracture Network modelling, two major issues are considered: the fracture system 

geometry and hydro/mechanical properties of every individual fracture. The former is based on 

stochastic representations of fracture systems, using the probabilistic density functions of fracture 

parameters (orientation, size, and aperture or transmissivity) formulated according to field 

mapping results, in addition to the assumption about fracture shape (circular, elliptical or 

generally polygonal) for three-dimensional problems. Due Fracture mapping can only be 

conducted at rock exposures of limited areas, boreholes of limited lengths, and with lower and/or 

upper cut-off limits; therefore  the reliability of fracture system characterization depends very 

much on the quality of mapping and characterization techniques. In addition, the determination of 

the hydro-mechanical properties of the fractures using in-situ and laboratory tests can only be 

performed with a limited number of fracture samples. The effect of sample size and location also 

needs to be evaluated. The fractal concepts have been applied to DFN in order to consider the 

scale dependent of fracture system geometry for up-scaling. Despite the above difficulty, the 

DFN model enjoys wide applications for problems of fractured rocks, perhaps due mainly to the 

fact that, thus far, it is an irreplaceable tool for modelling at the “near-field” scale because the 

dominance of the fracture geometry at small and intermediate scales can be explicitly 

approximated in detail. This advantage diminishes for “far-field” problems at large scales when 

explicit representation of large numbers of fractures makes the computational model less efficient 

and the continuum model with equivalent properties more attractive. DFN presents more realistic 

representation of geology and fracture network geometry. Fractures are planar polygons with 

three or more sides and there is no restriction on locations or orientation. The disadvantage of 

DFN is that it is highly dependent on the interpretation of in-situ fracture system geometry, which 

is roughly estimated. Recent developments on the characterization of rock mass fracture system 

by Schubert and Pötsch (2005) could be very helpful to have better in data to construct and 

calibrate DFN.  
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3-6 Problems in DFN Realizations  

 

The DFN models are based on stochastic representations of fracture systems using the 

probabilistic density functions of fracture parameters (orientation, size, and location in 2D 

modelling) that are formulated according to field mapping results. On the other hand, using the 

appropriate numbers of DFN realizations for numerical modelling is also very important and still 

is an issue that is hotly debated among researchers in this field. In order to evaluate the block 

volume around an excavation by DFN approach, a large number of DFN realizations should be 

generated. Also, there is no criterion to determine how many realizations are required to analyze 

the block stability.  The following example clarifies this problem:  

The TBM tunnel is a tunnel in the south eastern part of Sweden, approximately 300 Km south of 

Stockholm, in crystalline rock at the depth of 420 m, and was excavated by Tunnel Boring 

Machine (TBM). Total fracture trace length per sample area is defined as P21 by Dershowitz 

(1984). Table 3-2 shows the statistical parameters of fractures. P21 was reported as 0.55 1−m . 

Studies on the fracture size at Äspö indicate a lognormal distribution with an arithmetic mean of 6 

m and a standard deviation of 3 m (Hermanson, 1996) 

Table 3-2. Statiscal Parameters for Fractures Hermanson (1996). 

Set Distribution Mean Pole 

(Trend, Plunge) 

Dispersion 

k 

Percent of Fractures 

1 Fisher 58.7,11.7 13.37 48.1
2 Fisher 334.2,5.6 7.82 25.7
3 Fisher 71.7,85.8 11.92 26.2
 

Figures 3-2 a and b show two different realizations of DFN. As can be seen from Figure 3-2 a, 

there is not any block around the tunnel while another realization predicts potential unstable block 

with different volume. Figure 3-3 shows the potential unstable block volume resulted from 50 

DFN realizations. 
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a       b  

Fig. 3-2 Two realizations of DFN for the TBM tunnel 

 

Fig.3-3. Block volume for 1 m length of tunnel ( 3m ). 

 

As the above example shows, it is understood that different realizations give different volumes of 

potential failure block, which may vary greatly.  The solution to this problem will be explained in 

Chapter 6.  
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3-7 Discussions and Conclusions on the Design Tools for Block Existence and Volume  

 

 Different design tools have been described to estimate block existence and volume. The 

advantage and disadvantage of each are also described. Figure 3-4 shows a schematic view of the 

predicted block volume by different approaches. By infinite fracture length, a large volume of 

potential unstable blocks is predicted, while by limiting the fracture length to observed maximum 

fracture length, the volume of potential unstable blocks is reduced. The probabilistic approaches 

of kinematic analysis (finite joint length and orientation) and DFN are based on stochastic nature 

of fractures in mass, and will result in a distribution for potential unstable blocks.  

The main difference between DFN and kinematic analysis is that the kinematic analysis takes 

into account blocks that are formed by the conjunction of three joint sets, while in DFN, blocks 

can be formed by the conjunction of more than three joint sets. In another way, it could be said 

that, in kinematic analysis, blocks are assumed to have a tetrahedral shape while other polyhedral 

shape of blocks are possible in DFN approach. Another difference is that kinematic analysis has 

the purpose of finding the maximum block while DFN does not have this aim.  

 

     

Figure 3-4. Schematic view of different design tool to predict potential unstable block volume 
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One of the most significant uncertainties in block stability analysis is the block volume 

estimation. This comes from the fact that the true value for block volume could not be directly 

measured.  As is shown in Figure 3-4, the design tools could be compared to each other. Each of 

the methods has some assumptions that make that the model predictions differ from reality. 

However, among them, the calibrated DFN may predict block volume closer to reality.  
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4-1 Introduction 

 

As mentioned in the previous chapters, the analysis of block stability is divided into two 

questions: what is the size of block around opening and is the block stable? To answer the first 

question, design tools such as kinematic analysis and DFN were explained in Chapter 3. This 

current chapter focuses on the design tools in order to analyze the stability of block. The design 

tools to analyze the stability of block as shown in Figure 4-1 could be divided into two main 

groups: analytical and numerical. Analytical solution could be divided in to two groups, 

analytical solution based on limit equilibrium mechanics and analytical solution based on joint 

relaxation. Numerical solution, which can solve block stability (Discrete Element Method), could 

be divided into two numerical techniques: DEM and DDA.  Each design tool to analyze the block 

equilibrium will be explained with their limitations, advantages, and disadvantages. 

 

 

 

 

 

 

 

 

 

Fig, 4-1 Different design tools to analyze block stability 
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4-2 Analytical Solution  

 

Analytical solution is divided in two main groups: The first one is based on the limit 

equilibrium mechanics; and, the second one is based on the joint relaxation proposed by Bray and 

Crawford, 1983. These will be explained in detail in the following sections.  

 

4-2-1 Analytical Solution Based on Limit Equilibrium Mechanics 

 

Although many sophisticated numerical methods have been developed, the analytical solution 

based on Limit equilibrium mechanics is still dominate method used to evaluate block stability of 

both slope and tunnel; a lot of modern software has been developed based on limit equilibrium for 

practice in slope stability (such as Slice and Swedge) and block stability in tunnels (such as 

Unwedge), based on the combination of block theory and limit equilibrium analysis. According to 

the definition of limit equilibrium mechanics, it is generally used to analyze the condition that 

would exist at a collapse (Lambe and Whitman, 1969).  Limit Equilibrium Mechanics analysis 

assumes that the block is rigid. This assumption implies that the displacements that take place at 

discontinuities are much larger than the deformations that occur in the intact rock due to the 

stresses.  

Limit equilibrium technique compares the resisting forces and the driving forces. Driving forces 

(such as the gravitation force) are compared to the shear resistance forces offered by the contact 

surfaces to determine whether the block can fall or slide. Since confining stress is difficult to 

estimate,, the surrounding stress field has been ignored (Hoek et al., 1991). This technique has the 

disadvantage of ignoring the surrounding stress fields. However, in principal, the forces from 

confining stresses could be incorporated in limit equilibrium analysis. Therefore, the limit 

equilibrium technique could be divided into two groups: the first group of analysis considers all 

forces except forces from field stresses; the second group of analysis considers all forces 

including forces from stress field (see Fig 4-1). Fig 4-2 shows the limit equilibrium mechanics, 

which consider the clamping force. The stability condition would be satisfied if φβ ≤ .  
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Fig. 4-2 Limit equilibrium analysis by considering the clamping forces 

According to Mohr-Columb : 

tanS N ϕ≤      4-1 

According to Fig 4-2 we can write: 

( )
S
N

=− β90tan
   

4-2 

( ) 1cot
tan

Nan
S

β
β

= =
  

4-3 

βtanNS =     4-4 

tan tanN Nϕ β≤     4-5   

Therefore : φβ ≤    4-6 

The main advantage of LE is the simplicity of it and the fact that it could be used with graphical 

methods or hand calculations; it is quick and understandable.  

The analysis that ignores the confining forces is well applicable for near surface excavations in 

hard rock (Hoek et, al, 1991). The works by Warburton (1981 and 1985) and Goodman and Shi 

(1985) are samples of application of limit equilibrium analysis in block theory. 
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Limit Equilibrium Disadvantages 

 

Many block failure problems involve the geometry complexities, material anisotropy, non-linear 

behaviour, in-situ stress, and coupling process such as hydro mechanical and thermal. Also, the 

failure involves complex internal deformation and progressive fracturing that could not be 

considered in rigid block, which is a principal assumption in limit equilibrium method. The limit 

equilibrium method is relevant to simple block failure along discontinuities. Eberhardt (2002) 

recommended that in complex cases, limit equilibrium method should be used in conjunction with 

numerical modelling in order to have a better understanding of failure mechanism. Therefore, the 

design based on limit equilibrium is inadequate when the failure involved complex mechanisms 

such as creep, progressive fracturing, brittle fracture, etc. Limit equilibrium can analyze sliding 

and falling of blocks, and cannot consider rotational failure of blocks.  

Chan and Einstein (1981) discussed the limited consideration of driving and resisting forces such 

as simplified water pressure, seismic force assumptions, and external forces acting through the 

centre of gravity. They also mentioned that due to the assumption of rigid body deformations and, 

as a consequence, stresses are not known and the problem is fundamentally indeterminate.  

Usually, limit equilibrium analysis methods include implicit or explicit assumptions in order to 

make the problem determinate. 

Schubert (2005) mentioned that the shear resistance of joints is assumed to be fully developed at 

the same instance as the support provides its maximum bearing capacity. Limit equilibrium is 

purely based on the principal of static equilibrium. That is, the summation of horizontal and 

vertical forces should satisfy the equilibrium in case of stability. Limit equilibrium says nothing 

about the strain and displacement compatibility (Krahn, 2003).
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4-2-2 Analytical Solution Based on Joint Relaxation  

 

4-2-2-1 Introduction 

 

The importance of in-situ stress on the block stability in the roof of excavations has been 

noted by Miller (1979). The conservatism is more pronounced in cases with low apical angle of 

block (Elsworth, 1986 and Diedrichs, 2000). The purpose of analytical solutions is to estimate the 

stability of finite and removable blocks (according to Goodman and Shi, 1980) that pose one face 

as the excavation face.  The analytical solution based on joint relaxation was developed in order 

to consider the influences of horizontal stress field and joint stiffness. Crawford and Bray (1983) 

proposed a two dimensional plain strain analytical solution for stability analysis of blocks in the 

roof of excavation by considering the horizontal field stresses and discontinuities stiffness. The 

solution proposed by them covers both symmetric and asymmetric wedges in the roof of opening. 

They mentioned the model limitations such as the model is two dimensional while in reality the 

rock blocks are three dimensional.   Their work has been the basis for research that has been 

conducted after them. The detailed history of the works after the Crawford-Bray solution will be 

presented in the following sections.  

Brady and Brown (1985) formulized a safety factor based on joint relaxation. Sofianos (1984) 

developed a computer program to simulate behaviour of fractured rock based on Goodman’s joint 

element, and compared the results of the different roof wedges subjected to the horizontal stress 

field to those of the Crawford and Bray solution. Sofianos (1986) divided the solution proposed 

by Crawford and Bray into the two stages: First, the forces acing on the discontinuities are 

calculated by elastic analysis. In this stage, it was assumed that the stiffness of discontinuities is 

very high or in other words, the presence of discontinuities was ignored. In this stage, the rock 

mass is assumed to be linear elastic, homogenous, and isotropic.  In the second stage, the 

discontinuities’ deformation is taken in to account while the rock mass is assumed to be rigid. He 

also did a parametric study to find the influence of friction angle and the ratio of 
n

s
K

K on the 

carrying capacity of block subjected to horizontal stresses. His results show that the friction angle 

also has great influence on the factor of safety for low values of 
n

s
K

K . Also he mentioned to that 

the factor of safety of block doesn't increase monotonically when decreasing the apical angle. 
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Also the results of his study show, in both numerical and analytical approaches, the carrying 

capacity of the block is proportional to the horizontal stress field if the stiffnesses are constant 

during two stages of loading. 

Elsworth (1986) mentioned that one limitation of the Crawford and Bray solution is the 

idealization of homogenous uniaxial stress regime and therefore it is only valid for horizontal 

roof. Elsworth (1986) amalgamated the solution proposed by Crawford and Bray with analytical 

solution of stress adjacent a circular opening for hydrostatic stress in-situ condition. His research 

shows that the effect of stress redistribution consequent to block displacement is shown to 

markedly affect the ultimate pull-out resistance of blocks. He also mentioned that the developed 

formula is valid when the ratio of cavity depth to the radius of opening is approximately 25. The 

simplification of the Elsworth solution is hydrostatic and plain strain condition to calculate the 

stresses around opening. The assumptions for stress calculation are that the medium is 

homogeneous, isotropic, and linearly elastic. These limitations come from the limitations of 

analytical solutions to solve the stresses around a continuum media; this means that the effect of 

joint presence has not taken into account the stress distribution. The valid range of z/a (depth of 

excavation/tunnel radius) is suggested to be 25.  

Sofianos et al. (1999) used the Kirsch equations (Kirsch, 1898) to estimate tangential 

stress after excavation around symmetric wedge in non-hydrostatic stress condition. Nomikos et 

al. (2002) evaluated the tangential stress around a symmetric block in an inclined stress field.   

Nomikos et al. (2006) formulates the carrying capacity of block for asymmetric block under non-

hydrostatic loading. They took into account the effects of horizontal stress in non-hydrostatic 

loading of in-situ stress on the asymmetric blocks. Nomikos (2008) discussed the progressive 

failure of symmetric roof wedges. 



Chapter 4 Design Tools to Solve Block Stability based on Literature Survey      

 

  39 
 

 

 

4-2-2-2 Crawford and Bray Solution 

 

As aforementioned, the proposed solution by Crawford and Bray is the fundamental work to 

analyze the block stability with consideration of horizontal stress field and joint relaxation. In 

following, the solution will be explained in detail. 

 

Term Definition in the Crawford-Bray Solution: 

h
σ  Horizontal stress prior excavation; 

c wedge height; 

C horizontal force transmitted to across the wedge;  

N normal force acting on the joint plane; 

S shear force acting on the joint plane; 

δ  displacement;  

     α  Semi-apical angle of prism; and 

      K  fracture stiffness. 

Subscribes n and s refer to the normal and shear directions.  

Assumptions  

1. Blasting does not influence the stability of wedges. 

2. There is no vertical load on the wedge except weight of wedge. 

3. The criterion is purely friction Mohr-Coulomb criterion without any tensile strength for 

joints. 

4. Rigid body of wedge. 

5. Just falling and sliding modes could be considered. 

6. A stress field which is not varying with the depth is assumed. 
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7. Horizontal stresses in the roof of excavation remains constant. 

8. The solution is a two-dimensional solution and the analysis is done for unit length of 

excavation. 

9. Linear joint relaxation.  

Bray and Crawford (1983) proposed following solution based on the assumptions and 

force analysis. Figure 4-3-a and b show free-body and force diagram of symmetric 

triangle wedge generated by two sets of joints in the roof of the tunnel before and after 

excavation. 

 

 

Figure 4-3 Symmetric triangle wedge free-body diagram in the roof of opening: a) before excavation b) 

after excavation (Crawford and Bray, 1983) 

The transmitted force across the wedge(C) can be calculated as the following (before the 

excavation): 

cC
h

σ=      4-7 
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Also N and S could be calculated as the following:  

α= cosCN      4-8 

α= sinCS      4-9 

The block may be displaced by the amount of δ  due to the vertical load on the wedge (wedge 

weight) after excavation. The amount of displacement in the normal and shear directions of joints 

could be calculated as the following: 

αδ−=δ sin
n

     4-10 

αδ=δ cos
s

     4-11 

The forces in the joints will be changed due the occurred displacement and could be calculated as 

the following: 

αδ−=Δ sinKN
n

    4-12 

αδ=Δ cosKS
s

     4-13 

Therefore, the amount of the normal and shear forces after the block displacement could be 

calculated as the following: 

αδ−= sinKNN
n

'     4-14 

αδ+= cosKSS
s

'     4-15 

The horizontal force, C, after the block movement, changes and the relationship between C, N’ 

and S’ (normal and shear forces after block displacement) is as the following 

α+α= sinScosNC '''    4-16 

The summation of the forces in the vertical direction is as the following: 

( )α−α= sinNcosST ''2    4-17 

According to the Mohr-Coulomb equation, shear and normal forces have the following relations: 
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ϕ= tanNS ''      4-18 

The net vertical displacement (δ ) and vertical force applied to wedge (
yield

T ) and horizontal forces 

applied to wedge after movement, C’ could be calculated as the following: 

( )
( )αϕ+

α−ϕ
=δ

tantanKK
tantanC

ns

    4-19 

( )( )
( )αϕ+

α−ϕα+α=
tantanKK

tantansinKcosKCT
ns

ns

yield

222   4-20 

( )( )
( )αϕ+

αϕ+α+α
=

tantanKK
tantansinKcosKCC

ns

ns' 122   4-21 

At equilibrium, the vertical force applied to block, 
yield

T could be considered as two components: 

The first one is the wedge weight; the second one is the required force to cause the block failure.  

Therefore, 

WTT '

yield
+=      4-22   

'T  represents the marginal safety or in other words, the safety factor defined as  

W
WTFS

' +
=

     4-23 

 

4-2-3 Conclusion of Analytical Solution 

 

The stress field around block provides confining stresses around block and could significantly 

increase the factor of safety (Goodman and Shi, 1982) and (Curran et al, 2004). Analytical 

solution which considers the effect of clamping forces consists of the following stages: 

1_ Continuum analysis is conducted in order to evaluate the horizontal stress in the roof of 

opening, therefore regarding to in-situ stress and rock mass strength, elastic or elasto- plastic 

solution can be used.  
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2_ Calculation of static equilibrium equation, Equation 4-20, with considering confining stress 

obtained in stage 1.  

The analytical method as stated by Crawford and Bray (1983), takes in to account in-situ 

horizontal stress ( )cC hσ= together with effect of reduction of clamping force due to joint 

relaxation, but it doesn't consider the effects of stress redistribution. The works such as Elsworth 

(1986) Sofianos (1986 and 1999) and Nomikos (2002 and 2006) tried to cover this point and use 

the redistributed clamp force.  

The analytical solution is a simple solution and considers the clamping effects. Also, the variation 

of input data could simply be taken into account in a sensitivity analysis.  

 

4-3 Numerical Methods 

 

In numerical approaches, the media is divided into small components. For each component 

(element), equations for compatibility should be satisfied. For the whole body, the matrices will 

be assembled and solved. Solving of matrixes could be done by implicit or explicit techniques. 

The numerical methods are divided into two classes: boundary and domain methods. In the 

boundary method, only the boundary of excavation is divided into the elements, and the interior 

of rock mass is represented mathematically as infinite continuum. Domain methods divide the 

interior of model into simplified elements then the collective behaviour and interactions of 

elements depict the overall behaviour of structure. 

 The objective of numerical analysis may take the form of being fully predictable or in cases 

where the data is limited to establishing and understanding the dominant mechanism that affects 

the behaviour of the system. Numerical model provides a means to test several hypotheses in 

order to gain an understanding of the problem. During the modelling, the most appropriate 

methodology is to start with a simple model and to gradually build up its complexity as the 

problem dictates (Barbour and Krahn, 2004). The approach followed should incorporate 

sensitivity analyses on key input parameters. Changing the input parameters of a numerical model 

leads to a probabilistic approach as the discontinuities’ geometry, input strength parameters and 

boundary condition - and it is as a part of model evaluation. 
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4-3-1 Discrete Element Method 

 

Rock mass is a discontinum, anisotropic, and inhomogeneous material.  Joints can become open, 

closed or slipped.  These specifications make the designer to use specific design tools. For blocky 

ground, blocks move into the opening, and the displacement in joints is more than the 

displacement in the intact rock. The design tools such as FEM, FDM are based on continuum 

analysis. However, these methods are generally limited to the analysis of relatively small 

displacements. Although FEM and BEM methods can model discontinuities by joint elements 

such as the Goodman joint model (1976), there are limitations on the degree of deformation and 

number of discontinuities.  For this discontinum media, the behaviour of rock mass is governed 

by discontinuities, and modelling the fractures is also very important. Discrete element methods 

are specific design tools that could consider the presence of fractures and is broadly used in the 

underground openings design.  These methods can consider a large number of discontinuties in 

the mass and can handle the displacement along discontinuities and large deformation. 

Discontinum analysis permits the sliding along, and opening/closure between, blocks. Several 

variations of discontinum analysis exist: 

o Distinct element method (DEM) 

o Discontinuous deformation analysis(DDA) 

o Discrete element of granular material 

 

4-3-1-1 Distinct Element Method (DEM): 

 

The DEM is an explicit discrete element method based on finite difference principles, originated 

in 1970s by landmark work on the progressive movements of rock masses as two dimensional 

rigid assemblages (Cundall, 1971). The distinct element method treats the domain as the 

assemblage of distinct blocks subject to external loading.  Because of a high degree of non 

linearity due to joint existence, the use of explicit solutions is preferred in DEM. Joints are 

considered as block interfaces and they are treated as the boundary - not as the elements. The 

basic equation for solving the equilibrium is that the dynamic equation of equilibrium for each 

block is formulated and repeatedly solved until the boundary condition and laws for contact and 



Chapter 4 Design Tools to Solve Block Stability based on Literature Survey      

 

  45 
 

 

motion are satisfied. The contact displacements at the interfaces of a stressed assembly of blocks 

are identified and continuously updated throughout the deformation process, and are represented 

by appropriate constitutive models. The elements interact with one and other through the forces 

developed at contact points. This methodology is called DEM (Jing and Stephansson, 2007).  

The dynamic behaviour is numerically represented by a time stepping algorithm in which the size 

of the time step is limited by the assumption that velocities and accelerations are constant within 

the time step. The distinct element method is based on the concept that the time step is so 

sufficiently small that, during a single step, disturbances cannot propagate between one discrete 

element and its immediate neighbors. This corresponds to the fact that there is a limited speed at 

which information can be transmitted in any physical medium. The solution scheme is identical to 

that used by the explicit finite-difference method for continuum analysis. The time step restriction 

applies to both contacts and blocks. For rigid blocks, the block mass and interface stiffness 

between blocks define the time step limitation; for deformable blocks, the zone size is used, and 

the stiffness of the system includes contributions from both the intact rock modulus and the 

stiffness at the contacts (Jing and Stephansson, 2007 and Itasca, 2005 and Eberhardt et al. 1997 

and Cundal, 1971). 

 

DEM Advantages 

 

Both rigid and deformable solutions are available in DEM approach. The rigid body assumption 

is expressed in another solution to solve equilibrium of block analytical solution based on limit 

equilibrium and joint relaxation.  

In the rigid body assumption, any deformation is not allowed in intact rock. In analytical solution, 

it was assumed that the blocks are rigid and the analysis was limited to the translation motion 

only, while by DEM these two assumptions have been covered and intact rock could be 

considered as a rigid or a deformable body. However, it can also solve the rotational failure of 

blocks. The influence of pore pressure and seismic loading could be considered in DEM analysis.  
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DEM Disadvantages 

 

There is still a lack of knowledge about the contact behaviour and definition of system damping. 

The three dimensional variation in material properties’ geometry and loading condition will have 

a fundamental effect on the model outcome.  Although in principal, three-dimensional DEM 

(3DEC) is available to solve the problems, for complex fracture geometries the computer time is 

very long. Another drawback of DEM is that it does not give any direct indication of marginal 

safety. The end point where the factor of safety is equal to 1 is indirectly known; however, the 

marginal safety is not known.  

The distinct element method requires a prescriptive approach for the subdivision of the mass into 

complete blocks. The limitation of the approach can be understood where incomplete block 

formation may lead to increased safety margins or increased resistance.. Furthermore, the method 

cannot give any understanding of progressive damage, resulting in the formation of either single 

or multiple fractures (Pine et al., 2007). 

The difficulty in the DEM for solving the deformable media is that in order to discretize the 

media, the non-persistence joints that don’t make a block are omitted. Kulatilake et al. (1992) 

discussed the effects of non-persistence joints on the stress analysis of discontinum media. They 

proposed shear and normal joint stiffness of a fictitious joint in order to keep the non-persistence 

joints in the discontinum media, and to take them into account. Figure 4-4 shows the joint 

network of non-persistence joints and fictitious joints in order to make the rock block polygons. 
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Fig. 4-4 Network of non-persistent joints that does not discretize a 2-D rock block into polygons, b 
Introduction of fictitious joints to the joint network shown in Fig. a to discretize the rock block into 

polygons 

Note: All the inclined joints are actual joints; all the horizontal and vertical joints are fictitious joints 
(Kulatilake et al. 19982) 

They proposed the properties of a fictitious joint as the following: 

a) The same strength parameter values should be used for both the intact rock and the fictitious 

joints. 

b) A joint shear stiffness (JKS) value for fictitious joints should be chosen to produce a shear 

modulus/JKS ratio (G/JKS) between 0.008 and 0.012 m. 

c) A joint normal stiffness/JKS ratio (JKN/JKS) between 2 and 3 should be chosen; the most 

appropriate value to choose in this range may be the Young's modulus/G value (E/G) for the 

particular rock. 
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Omitting incomplete fractures imposes some inaccuracy in the stress analysis; also, for complex 

geometries, still mesh generator is not automatic and takes a lot of workforce. 

The assumption of material rigidity is good when most of the deformation in a physical system is 

accounted for by movement on discontinuities. For example, this condition applies in an 

unconfined assembly of rock blocks at a low stress level, such as a shallow slope in well-jointed 

rock. The movements consist mainly of the sliding and rotation of blocks and of opening and 

interlocking of interfaces (Itasca, 2005). 

 

4-3-1-2 Discontinuous Deformation Analysis (DDA) 

 

DDA is one design tool used to analyze block stability in rock slopes and tunnels; it was first 

developed for applications in geomechanics for the study of landslides and rock motions (Fig, 4-

5a-c) (Shi, 2008).  DDA was originally based on back analysis to determine the best fit to the 

deformed configuration of a block system from measured displacements and deformations (Shi 

and Goodman, 1985).  Coupling between finite element and rigid block system was called DDA 

by Shi (1988).  

The in-data for direct DDA are block geometries, loading forces, deformability constant such as E 

and υ , and boundary condition. The outputs are movements, deformations, stresses and strains of 

each block, contact force, and so on.  
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A 

 

B 

 

C 

Fig, 4-5 DDA examples: a) tunnel; b);arch c) foundation (Shi, 2008) 

 

The Unknown block displacements are obtained by minimizing the total potential energy of the 

system. The formulation is fundamentally discontinuous in the sense of the elements (as DEM). 

DDA has the ability to analyze blocks with any shapes by considering normal contacts and 

frictional forces at contact boundaries. 
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DDA provides a bridge between Finite Element Method (FEM) and limit equilibrium method 

(Shi, 2008). After some time steps, DDA reaches dynamic or static equilibrium for deformable 

block system. DDA is similar to DEM method, yet it is implicit while DEM is explicit. 

 In DDA, the behaviour of any point within a block can be described as using six unknown per 

block, two translation terms (one in x and another in y direction), one rigid body rotation term, 

two normal strain terms (one in x and another in y direction) and one shear strain term. 

Parameters used in DDA are the fracture geometries and mechanical properties such as friction 

coefficient, rock mass mechanical properties such as density, elastic module, and penalty 

coefficient, viscosity, velocity energy ratio, time increment, and allowable displacement in a time 

increment. Determination of some of these parameters with acceptable precision and difficulties 

has been discussed in Ohnishi et al., 2006.  

DDA has the following features (Wu et al. 2004):  

(1) The use of the principle of minimum total potential energy leading to an approximate solution 

as in the case with FEM. Hence, DDA can be implicitly coupled with FEM. 

(2) Topological identification of the block system. 

(3) Simultaneous consideration of rigid body movement and large deformation. 

(4) The use of the displacement approximation offers easy calculation of the behaviour of blocks 

with any shape. 

(5) Block kinematic: algebraic inequalities and open close iteration. 

(6) The use of the same formulations to solve both the dynamic analysis and static one. The static 

analysis can be achieved by applying the dynamic relaxation to the computations. Full dynamic 

computations can be achieved.  

(7) The modelling of any contact criterion (e.g. Mohr-Coulomb Criteria), boundary condition 

(e.g. displacement constraint), and load condition (e.g. initial stress, inertia force, volume force, 

etc.) 

DDA computes deformations and displacements of entire body (intact and fractures) based on 

measured displacements at specified points. Shi and Goodman (1985) showed that monitoring of 

3 non-collinear points provides sufficient data to do the analysis. The method can compute the 
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block displacement, block strain, sliding, and opening of the interface between the blocks based 

on least square minimization method (Shi and Goodman, 1985).  Large displacements are 

allowed. DDA such as DEM requires the input of all the joints in the rock mass to define the 

block system. In practice, this is impossible. 

Cheng and Zhang (2000) mentioned that the limitation of the original DDA formulation is also 

related to the linear displacement function used for the blocks. The stress and strain within each 

block are constant, which are basically only the average values. This is definitely a poor 

representation for a large block. The use of linear displacement function causes a change in block 

size; this is called free expansion phenomenon. The changes in the block size cause the 

misjudgement of contact identification. Wu et al. (2005) improved this problem.  

DDA has the following advantages over the DEM (Wu et al., 2004):  

(1) DDA is an implicit analysis method; the time interval used in each time step can be larger 

than that of DEM without causing numerical instability. 

(2) It is easy to convert an existing FEM code into a DDA code and to include many mature FEM 

techniques without inheriting the limitations of ordinary FEM, such as small deformation in a 

continuous material. 

(3) Different from DEM, DDA does not require the existence of artificial damping to obtain the 

converged answer with correct contact force (see also: Cheng and Zhang, 2000).  

 

In the DDA method, block contact constraints are enforced using the penalty method. This 

approach leads to inaccuracies. The penalty method also creates block contact overlap, which 

violates the physical constraints of the problem.  Improvement was made by Chihsen et al. (1996) 

using the augmented lagrangian method instead of the penalty method originated by Shi (1989) 

that makes certain that the block-to-block contact enforce is more precise, and that block contact 

forces are determined more precisely.  By using the sub-blocking, the DDA method could find 

the ability to determine the variation of stresses within each large block. Their improvement was 

made possible so that the blocks break in tension or shear. Sub block fracturing, which they 

propose, makes the method to investigate crack propagation possible.  
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4-4 Conclusions of Numerical Methods 

 

Although DEM is a general, flexible, and powerful tool for analyzing discontinuous rock mass, 

there are drawbacks to its usage. There is difficulty associated with obtaining reliable in-data of 

geometrical location of joints such as the orientation and the persistence of the discontinuities. 

There is usually a lack of information on material behaviour at contacts as well as how to define 

the damping of the system. DEM requires a considerable computation time to solve even simple 

problems. Although there are some disadvantages of DEM, it can give the idea to the designer 

about the importance of varying parameters and mechanism of failure. It remains as a qualitative 

tool and extremely useful in deformation and failure of blocky rock mass and provides insight 

into failure mechanisms. 

From the beginning age of DDA, which Shi (1988), initiated, there were many drawbacks of this 

method. Still many researchers are working to improve it (Cheng and Zhang, 2000). DDA is 

currently less powerful than DEM, and it has many limitations.   

Besides the limitation of the DDA, it is still not clear how to get the in-data and setting of DDA to 

solve the block failure. Ohnishi et al. (2006) mentioned the difficulties of determining the 

required parameters for DDA; they also said that the designer must still be careful about its 

results.   

 

4-5 Conclusions 

 

Although the use of kinematic-limit equilibrium or key block theory- limit equilibrium are quite 

simple, a system consisting of an assemblage of blocks cannot be studied. Discrete element 

methods could consider the system assembly of blocks. On the other hand, it is impossible to 

have exact joint locations and geometries in practice. Therefore, the use of numerical method is 

used more to understand the failure mechanism and effect of in-data changes on the results of 

analysis. The analytical solution based on Limit equilibrium mechanics without consideration of 

clamping forces is conservative. The analytical solution which takes into account the fracture 
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stiffness and joint relaxation may lead to a better estimation of failure mechanism and a better 

prediction of required rock support.  

Bray and Crawford proposes the solution of a more detailed analysis that considers the effect of 

fracture stiffness. For simple cases that follow the plain strain, the failure is sliding or falling or in 

the cases such as the persistence fractures, the use of analytical solution could be useful if their 

model uncertainty has become quantified.   

There are many parameters that are required to perform the DDA analysis. It is not clear how to 

obtain these parameters in practice. Still, DDA is underdeveloped and the use of DEM is 

recommended instead. The progressive failure in combination with fracturing propagation is a 

phenomenon that cannot solve by the current technology of DEM.  

DEM incorporates a careful stress analysis in order to analyze all block failure modes (rotation, 

falling or sliding). Therefore, DEM analysis is the most accurate analysis by today’s knowledge 

that can be performed by analyzing the block stability for non-progressive failure.  
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5-1 Introduction 

 

 Table 1-1 shows different combinations of design tools to estimate block volume and block 

stability. Chapter 3 discussed the design tools to estimate block volume (Kinematic analysis and 

DFN).  In Chapter 4, design tools to solve block stability such as DEM and analytical solution 

based on limit equilibrium mechanics has been discussed. In the present chapter, different 

approaches of Kinematic analysis in combination with limit equilibrium mechanics have been 

applied to one site in order to estimate unstable block volume. Different approaches of KLE are 

based on different assumptions in the joint length, field stresses, and joint orientation. The 

approaches could be both probabilistic and deterministic.    Also, a combination of DFN-DEM 

has been applied to one site in the south eastern part of Sweden, and its outcome was assumed as 

true value. The model uncertainty of different approaches of KLE could be estimated by 

comparing the results of them to those of DFN-DEM approach. This chapter covers blocks (A1, 

B1, C1, B'1, C'1 and D3) of Table 1-1.  

Methods to estimate block stability consist of design tools to estimate block size and design tools 

to estimate stability due to the acting forces. Works by Villaescusa and Brown (1991) and Kim et 

al. (2007) compared different design tools to estimate block size. Based on the authors’ 

knowledge, no report or research work about the comparison of different block stability methods 

currently exists. This is the first work in which the uncertainties of different approaches of 

Kinematic Limit Equilibrium (KLE) is identified. Figure 6-1 shows a view of different 

approaches of KLE and DFN-DEM in this chapter.   
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Fig. 5-1 Different approaches of KLE and DFN-DEM  

 

In the following sections, a review of Clab2 site will be given first. In section 5-3, 

conventional kinematic limit equilibrium has been applied to the Clab2. The KLE has been 

applied to the site with considering the fracture persistency (Section 5-4). In section 5-5, both the 

joint persistency and stress field have been taken into account in KLE analysis.  In section 6-6, 

the probabilistic approach of KLE (PKLE) has been applied to the site. In this study, a model 

uncertainty of KLE for is estimated and compared with the results of a hybrid DFN-DEM 

analysis, which provides a closer representation of reality. 

Section 5-7 discusses the application of DFN to the site. Based on statistical 

measurements from the site, different DFN realizations have been generated. DFN realizations 

have been compared and calibrated with the fracture mapping based on significant statistic test 

(section 5-8). The calibrated realizations of DFN have been imported to UDEC, which is based 

on DEM in order to solve the equilibrium. Section 5-9 shows the result from DFN-DEM 

approach. Finally, a discussion and conclusion of this chapter will be given in 5-10.  
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5-2 Clab 2 Cavern and Rock Mass Description 

 

Clab2 Cavern is intended to serve as an interim storage facility for spent nuclear fuel. It has the 

following dimensions: 115m length, 21m width, and 27m height in direction of N12E (Starzec 

and Anderson, 2002). Rock mass parameters are listed in Table 5-1 (Stille and Fredriksson, 

1996).  

Table 5-1. Rock mass parameters (Stille and Fredriksson, 1996). 

Parameter Value Unit
Elastic 40 GPa
Poisson 0.2
Volumetric 2.6  ton/ 3m  
Tensile 5 MPa
Cohesion 1.3 MPa
Friction 35 degree
Dilation 10 degree
Residual 1.3 MPa

 

Figure 5-2 presents mapped fractures and weak zones from the floor of cavern (Starzec and 

Andersson, 2002). Figure 5-3 shows the hemisphere projected joints from the mapped joints in 

the cavern floor (Starzec and Anderson, 2002). Starzec and Anderson divided the mapped 

fractures into 2 joint sets, while Stille and Fredriksson (1996) divided the same stereo projection 

into 6 joint sets (Figure 5-4). From the author’s point of view, both show same fracture mapping. 

The equivalency of 6 joint sets to that of two joint sets has been shown in Figure 5-5. From 

Figure 5-5 it can be observed that 6 joint sets cover the dispersion of shown two joint sets. 
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Fig. 5-2 Mapped fractures trace length and weakness zones from cavern floor  

 

Fig 5-3. Hemisphere projection from the mapped fracture in floor of cavern (Starzec and 

Andersson,2002) 



Chapter 5 Model Uncertainty of Kinematic Limit Equilibrium Analysis  
 

  59 
 

 

 

Figure 5-4. Hemisphere projection of joints (Stille and Fredriksson, 1996) 

 

Fig 5-5 Hemisphere projection from the mapped fracture in floor of cavern (Starzec and 

Andersson, 2002) and their equivalency to 6 joint sets. 

   

Joint mechanical parameters are listed in Table 5-2 (Stille and Fredriksson. 1996) and (Delin and 

Stille, 1993). Maximum principal stress has been reported horizontal and oriented E-W with 

magnitude of 6 MPa. Intermediate stress has been reported 4 MPa in N-S in horizontal plane. 

Minimum principal stress is vertical varying by value of overburden (Röshoff et al., 1983) 
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Table 5-2. Mechanical parameters of joints (Stille and Fredriksson, 1996) and (Delin and Stille, 1993). 

Joint Friction Joint Kn(GPa/m) Ks(GPa/m) 
30 0 58.3 10.3

 

At least three joint sets are required in order to perform kinematic-limit equilibrium analysis. 

Therefore 6 joint sets, as proposed by Stille and Frederiksson (1996), have been used for 

kinematic-limit equilibrium analysis. Joint sets could combine to form largest wedges, which 

have the potential for failure. There are 20 different combinations of block configuration from the 

6 different joint sets. 

Four kinds of analyses based on kinematic-limit equilibrium were applied to Clab2: conventional 

KLE analysis (unlimited joint length without application of field stresses), KLE with limited joint 

length, and KLE with considering both field stresses and limited joint length and finally 

probabilistic KLE. 

The results of KLE were compared to those of DFN-DEM. The statistical distributions with their 

properties are required in order to make DFN generations. In this study, the geometric parameters 

for generating fracture network are based on the floor mapping results of a site characterization at 

the CLAB 2 as described in (Starzec and Andersson, 2002). Two major fracture sets have been 

detected and the orientations of fracture sets follow the Fisher distribution. Table 5-3 shows the 

summary of orientation of set identification in CLAB 2. 

Table 5-3.  Orientation of identified joint sets in CLAB 2 (Starzec and Andersson, 2002). 

Orientation set Mean DipDirection 

(degree) 

Mean Dip 

(degree) 

Concentration 

coefficient, K 

Fracture percentage 

of the observed data 

(%) 
Set 1 156.6 60.1 7.63 66.1 
Set 2 67.6 75.5 9.81 33.9 
 

The fracture length varies between 1.1 to 25 meters and follows to the lognormal distribution 

according to provided data in Table 5-4 (Starzec and Andersson, 2002). 
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Table 5-4. Fracture radius (length) distribution parameters in CLAB 2 (Starzec and Andersson, 2002) 

Orientation set Arithmetic mean 

(m)
mμ  

Arithmetic std. 

dev.(m), S 

First 

moment, 

logl  

Second moment, b 

Set 1 4.8 1.7 1.268 0.778 

Set 2 4.5 1.4 1.233 0.738 

 

The observed two-dimensional fracture intensity (P21) in CLAB 2 was found to be 1.32 m/m2. By 

definition, P21 = Total fracture lengths/Unit area =Mean of fracture length ×  (Total number of 

fractures/Unit area) = mμ ×P20. 

Therefore, in this particular study, considering the fracture percentage of the observed data, then 

P21 =1.32 = (4.8×66.1%+4.5×33.9%)×  P20, and finally P20=0.28. 

P1
20=Fracture density for fracture set number 1= 0.28 ×66.1%=0.186 and likewise, 

 P2
20=Fracture density for fracture set number 2= 0.28 ×33.9%=0.095.  

 

5-3 Conventional Kinematic Limit Equilibrium Analysis 

 

The stereographical plot can be used to quickly check the risk for the block instability. The strike 

lines can be accommodated within the tunnel shape after finding the block volume and its weight. 

Stereo plot gives an indication to which block kinematically has potential to fail and should be 

analyzed in depth (Cartney, 1977). In the case of failure, equilibrium analysis could be used for 

detail analysis.  Limit equilibrium considers wedge weight. UNWEDGE software, which is based 

on KLE, has been used to analyze the wedge stability. The software is based on ubiquitous joint 

analysis, which means that joints are presented everywhere in the model (Cartney, 1977). As 

aforementioned, six joint sets, as proposed by Stille and Fredriksson (1996), have been used for 

kinematic-limit equilibrium analysis. Joint sets could combine to form largest wedges, which 

have the potential for failure. There are 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
3
6 = 20 different combinations of block configuration. 

Figure 5-6 shows a schematic spatial location of wedges around opening.  
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Figure 5-6.  Spatial locations of wedges around opening 

 

The joint length is unlimited and the stress field is not considered in conventional analysis. Table 

5-5 shows the unstable block volume for 20 combinations that have the safety factor lower than 1 

from conventional analysis (unlimited joint length and without field stresses).  
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Table 5-5. Unstable block volume ( )3m by conventional KLE  

Combination Lower 
right 

wedge 

wall 

Lower left  
wedge

wall 

Upper 
left 

wedge 

Upper 
right 

wedge 

Roof  
wedge 

 

1,2,3 0.1 0.1 1661 
1,2,4 0.1 0.1 2721 
1,2,5 0.1 0.1 0.15 103.78 
1,2,6 0.1 0.1 1518.8 
1,3,4  5542 
1,3,5  199.2 14.6 
1,3,6  37889 
1,4,5 89 1 2.2 
1,4,6  13616 
1,5,6  600.4 104.8 
2,3,4 18.7 675 
2,3,5 131.2 120.4 
2,3,6 110.6 109.4 719.4 
2,4,5 36 0.75 30.2 
2,4,6 33.4 32.15 1080 
2,5,6   
3,4,5  378  
3,4,6  124117 
3,5,6  2652  
4,5,6  1439 0.6  

 

From the Table 5-5, it was understood that combination between joints 3,4 and 6 gives the largest 

block around the cavern. The volume of block was calculated as 124117 3m  . The required tunnel 

length to form the block is 21.5 m; therefore, the maximum block volume per 1 meter of tunnel 

length is calculated as 5778 3m . Block apex height was calculated as 1848m. However, the 

overburden is 30 m and the block apex is higher than the overburden. This type of analysis is an 

oversimplification of reality. Figure 5-7 shows the block in the roof of tunnel.  
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Fig. 5-7 Joint combination f 3,4,6 conventional KLE 

 

5-4 Kinematic Analysis Considering Joint Length 

 

In this type of analysis, joint length is limited to 25 m according to the maximum observed joint 

trace length (Starzec, 2002). The analysis doesn't consider field stresses. Table 5-6 shows the 

unstable block volume, when the joints are limited to the observed length.  
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Table 5-6. Unstable block volume ( )3m  from KLE with considering the joint length. 

Combination Lower 
right 

wedge 

wall 

Lower left  
wedge 

wall 

Upper left 
wedge 

Upper 
right 

wedge 

Roof  
wedge  

 

1,2,3 0.1 0.1    300.6 
1,2,4 0.1 0.1   122.7 
1,2,5 0.1 0.1 0.15  103.8 
1,2,6 0.1 0.1   53.8 
1,3,4  12    
1,3,5  195   14.6 
1,3,6  15    
1,4,5  87  1 2.2 
1,4,6  19.3    
1,5,6  473.2   104.8 
2,3,4 18.7 17.97 227.4 
2,3,5 131.2 127.2 120.4 
2,3,6 110.6 109.4 114.3 
2,4,5 36 0.75 30.2 
2,4,6 33.4 32.15 55.82 
2,5,6  
3,4,5 153.62  
3,4,6 0.29  
3,5,6 450.8  
4,5,6 554 0.6  

 

As it can be seen from table 5-6, combination between joints 4,5 and 6 gives the largest block. 

The largest block has been form in 18.2 m of tunnel length. A volume of 30.4 m 3  per 1 m of 

tunnel length resulted from analyses.  Fig 5-8 shows the block resulted from combination 

between joints 3,4 and 6.  

 

Fig 5-8 Combination 3,4,6 with considering  joint persistency  
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By comparing Figures 5-7 and 5-8, it is understood that, by considering the joint trace length, 

forming of that large block (124117 3m )  is impossible. By considering the joint trace length 

instead of that large block, two small blocks form, and the volume of unstable block from 124117 

is reduced to 0.29 3m . 

 

5-5 Kinematic Analysis Considering Joint Length and Stress Field  

 

In this type of analysis, both joint length and stress field have applied. The results have been 

shown in Table 5-7. As it can be seen from the table, the largest block has the volume of 473 
3m from the combination 1,5,6. The block is formed in the tunnel length of 21.6 m. The formed 

largest block volume per 1 meter of tunnel length could be calculated as 21.8 3m .  A comparison 

between Table 5-6 and 5-7 shows that, by considering the stress field, most of the roof blocks 

became stable. Figure 5-9 shows the combination 1,4,6 by considering both stress field and joint 

length; and Fig. 5-10 shows the same joint combination for conventional analysis. By looking at 

the tables 5-7 and 5-5 respectively, it is understood that by considering the stress field and joint 

length, the unstable block volume is zero while for conventional analysis, it is 13616 3m . The 

design based on conventional analysis is overdesign and it imposes expenditure to a project.  
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Table 5-7. Unstable block volume ( )3m from the KLE analysis by considering joint length and field 

stresses. 

Combination Lower 
right 

wedge 

wall 

Lower left  
wedge 

wall 

Upper left 
wedge 

Upper 
right 

wedge 

Roof  
wedge 

 

1,2,3 0.1 0.1     
1,2,4 0.1 0.1    
1,2,5 0.1 0.1 0.15   
1,2,6 0.1 0.1    
1,3,4      
1,3,5  195   14.6 
1,3,6      
1,4,5    1 2.2 
1,4,6      
1,5,6  473.2    
2,3,4  
2,3,5  
2,3,6  
2,4,5 36 0.75  
2,4,6 33.4 32.15  
2,5,6  
3,4,5  
3,4,6  
3,5,6  
4,5,6 0.6  

 

   

 

Fig 5-9. 1,4,6 Combination with applied stress and joint persistency 



Chapter 5 Model Uncertainty of Kinematic Limit Equilibrium Analysis  
 

  68 
 

 

 

Fig. 5-10. 1,4,6 Combination unlimited joint length (conventional analysis) 

 

 

5-6 Probabilistic Kinematic Analysis 

 

As it can be seen from the Table 5-5, the conventional KLE with infinite 

assumption of joint persistency is an oversimplification of reality and leads to an 

overestimation of unstable block volume around an opening. An estimation of the 

appropriate fracture length may result in a more economical design of an opening.  The 

effects of fracture persistency on the block volume estimation have been discussed in 

(Villaescusa and Brown, 1991 and Kim et al., 2007). There is always a variation in the 

fracture geometric data, and it is very hard to find a representative value for them. The 

deterministic approach will result in a block volume that cannot show the influences of 

in-data variation. Therefore, the application of probabilistic methods in fracture 
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geometric analysis is inevitable. The probabilistic theory applied to estimate block 

volume considers the variation of fracture geometries in rock mass.  

Kinematic analysis could be performed in the probabilistic approach if input data 

such as fracture length and orientation were considered as stochastic values. A Monte 

Carlo simulation could be used for this purpose.  A code based on Fortran has been 

developed to pick the values for joint persistency. Moreover, the code has been modified 

in order to pick the values for joint orientation, which will be explained in section 5-7-2. 

Figure 5-11a shows the contour plots of pole of fracture planes that are generated and 

used in our probabilistic KLE analysis as well as the contour plot of poles of mapped 

fracture during the excavation of the cavern (Fig. 5-11b). As can be seen, the fracture 

orientations generated using the Monte Carlo method (Fig. 5-11a) fit well with the real 

mapped fracture orientation shown in Fig. 5-11b. This confirms that random selection of 

joint orientation accommodate with those observed in the floor of the cavern.  
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Fig. 5-11. (a) Fracture orientation resulting from Monte Carlo simulation (b) and fracture orientation 
resulting from fracture field mapping (Starzec and Anderson, 2002) 

 

In this approach, the in-data for estimating block volume (including joint orientation and 

joint length) have been calculated based on probabilistic approach and the field stresses 

has been applied.  The volume of unstable blocks was estimated for 1m of tunnel length 

based on the probabilistic KLE. Figure 5-12 shows the estimated block volume per 1m of 

tunnel length, which is the result of the KLE approach. The calculated mean value of 

block volumes is 0.05m3 per meter of tunnel length.  
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Block volume (m3) per meter of tunnel length 

Fig. 5-12. Key block distribution resulting from probabilistic KLE 

 

5-7 DFN Generations 

 

The geometric parameters for generating fracture network were described in table 5-4. Table 5-3 

shows the summary of orientation of set identification in CLAB 2(Starzec and Andersson 2002). 

 

5-7-1- Fracture Trace Lengths 

 

The fracture length varies between 1.1 to 25 meters and follows the lognormal distribution, 

according to the following equation and using provided data in Table 5-4 in (Starzec and 

Andersson 2002): 

))}()]()([{2exp( logminminmax llglglgFberfinvl ++−= .  5-1 
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In this equation ]2/)[(ln)( log bllerflg −=  , erf() is error function of variable (), F is a 

number randomly generated using the uniform distribution in the range o-f 10 ≤≤ F , minl  and 

maxl are the minimum and maximum fracture lengths, logl  and b are first and second moments of 

lognormal distribution. 

 

5-7-2- Orientations of Fractures 

 

The orientations of fracture sets follow to Fisher distribution. If � is the angle of deviation 

from the mean orientation angle:  

 

⎭
⎬
⎫

⎩
⎨
⎧ −−

=
−

−
K

eeFe kkk )](ln[cos 1θ ,                                              5-2 

 

Where K is the Fisher constant, which is assigned for each joint set according to Table -3. The 

Monte Carlo Method is then used to generate the trace lengths and the orientations of fractures 

based on equations (5-1) and (5-2).  

 

5-7-3- Location of the Fractures 

 

In this study, location of fractures follows a Poisson process. The locations of fracture 

centres are generated by generating random numbers based on a recursive algorithm that adopts 

the decimal part of calculated numbers with the following recursive equation  

)0.27int(0.271 iii RRR −=+ ,                                              5-3 

where Ri is a random number in the range 0 ≤ Ri ≤ 1, int(x) is the integer part of the number x, and 

an initial value of R0 is generated from the multiplicative congruencies algorithm (Priest 1993). If 

the generation space is defined in terms of two coordinate ranges xg1 < xg2 and yg1 < yg2 along a 
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local set of Cartesian axes, mid-point coordinates (xi and yi) of every fracture can be generated 

through the following equations (Priest 1993) 

)( 121 ggigi xxRxx −+= ,                                                  5-4 

)( 1211 ggigi yyRyy −+= + .                                        5-5 

This algorithm was applied to generate the coordinates of the centres of the fractures in large-

scale DFN models. 

The observed two-dimensional fracture intensity (P21) in CLAB 2 floor was found to be 1.32 

m/m2. By definition, P21 = Total fracture lengths/Unit area =Mean of fracture length ×  (Total 

number of fractures/Unit area) = mμ ×P20. 

Therefore, in this particular study, considering the fracture percentage of the observed data, then: 

P21 =1.32 = (4.8×66.1%+4.5×33.9%)×  P20, and finally P20=0.28. 

P1
20=Fracture density for fracture set number 1= 0.28 ×66.1%=0.186 and likewise, 

 P2
20=Fracture density for fracture set number 2= 0.28 ×33.9%=0.095.  

Fig. 5-13 shows the distribution of mid-point location of fractures in 105m×105m model. 

 

 

 

 

 

 

 

 

 

Fig. 5-13 Mid-point location of fractures in 105m×105m model 
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Despite the fact that the fracture transmissivity, which is related to the hydraulic aperture 

through the cubic law, is found to follow either lognormal or power law distributions and could 

be correlated with fracture trace length (Baghbanan and Jing, 2007), and also the fracture 

deformability could be a function of fracture aperture (Baghbanan and Jing, 2008), in this study 

in the spirit of simplicity, it is considered constant fracture aperture and normal stiffness for all of 

the fractures in the DFN model.  

 

5-7-4- Fracture Generation Using Monte-Carlo Simulation 

 

Fracture generation was performed based on the information of fracture location, 

orientation, size (trace length in 2D), aperture and P20 (Fracture density). Fracture density 

is used according to the calculated fracture density for each fracture sets and a Monte 

Carlo Method is facilitated using their corresponding Cumulative Distribution Function 

to simulate another parameters. A FORTRAN program, which was originally developed 

and used in (Min et al., 2004 and Baghbanan and Jing, 2007) is modified and used for 

generation DFN models in this study. To avoid a boundary effect, sufficiently large 

parent fracture networks were generated first to produce all possible candidate fractures 

and, of these candidates, the fractures that within the analysis area are selected. The size 

of the parent network was chosen to be 300 m × 300 m. Then, small-scale DFN models 

are extracted from large-scale models. Fig. 5-14 shows an example of generation 

sequential DFN models from a parent model.  
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Fig. 5-14 Schematic view of generations of fracture networks 

 

5-8 Calibration of DFN  

 

In order to evaluate the rock block volume around an excavation using the stochastic DFN 

approach, a large number of DFN realizations should be generated. Furthermore, there is no 

criterion to determine how many realizations are required to analyze the block stability. This is 

still a subject of debate among researchers in this field of study.  

In this study, the William-Watson’s (W-W) statistical test was used to find the most 

similar DFN realizations with a mapped fracture pattern from the field. The W-W test is a 

statistical test of means for spherical data, which is conducted on the composite data set to 

determine the equivalency on the mean fracture orientations from two sets of observations. In this 

method, the orientation of fracture measurements is converted to polar coordinates for the 

calculation of a resultant vector. The resultant length of the vector is a measure of the 

concentration around a mean direction, if one exists. The calculated resultant lengths are used in a 

statistical F-approximation to test whether or not the mean fracture orientations of the two data 

sets are statistically different. The null hypothesis for the F-test states that the mean directions 

from two samples are not significantly different. This hypothesis is rejected when the calculated F 

statistic is greater than the critical value for a desired level of significance (Mardia, 1972 and 

Batschelet, 1981). The fractures in the roof and walls of the cavern and a cross cut perpendicular 
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to it were mapped (see Fig. 5-15) (Berglund, 2001). The W-W test was applied to both mapped 

tunnel surfaces (cross-cut of cavern and main cavern).  

 

Fig. 5-15 Fracture mapping of roof and walls in the cavern  

 

 100 DFN realizations were first generated. A code in FORTRAN was developed based 

on the W-W test to check the compatibility of DFN realizations with the results of fracture 

mapping. Out of 100 DFN realizations, 9 were good matches with both (main cavern and cross-

cut tunnel) fracture-mapping surfaces in the field.   

 

5-9 DFN-DEM 

 

The block assemblages which confirmed by W-W statistical test were analyzed by DEM.    

Figure 5-16 shows a pattern of the potential failed blocks from a DFN-DEM analysis. 

The red vectors show the displacements, and the assemblage of blocks is represented in 
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green. The estimated failed blocks in this analysis include both secondary blocks and 

other blocks located in the perimeter of cavern. Secondary blocks are the blocks which 

don't share a cavern boundary.  

 

 

Fig. 5-16. Failed block around the cavern 

Figure 5-17 show different types of block in the perimeter of the opening (see section 1-

3).    

 

 

Fig. 5-17 Block types around tunnel (Goodman and Shi, 1985) 
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The purpose is to find the failed key blocks from the other types of failed block in this 

figure. Only potential failed blocks that share a cavern boundary (wall or roof) are 

compared with the block types shown in Figure 5-17. They are then classified into 

removable and non-removable groups. Class III consists of the blocks located in the floor 

of cavern, which were not taken into consideration. Other failure categories defined by 

Goodman and Shi are categories I and II in Figure 5-17 (Goodman and Shi, 1985). 

According to Goodman and Shi (1985), these types of blocks (types I and II) are the 

blocks that are dangerous and whose safety must be secured. Figure 5-18 shows an 

enlarged section marked by a blue line inside Figure 5-16. As can be seen in Figure 5-18, 

block number 1 can definitely be categorized as a tapered block and block number 2 as a 

key block. The third dimension of the block was calculated as the square root of the block 

area. Based on the third dimension of the block, it is possible to calculate the block 

volume for 1m of tunnel length. The number of blocks per 1m of tunnel length can also 

be obtained by determining the third dimension. For instance, when the block area is 

0.25, the third dimension of the block is 5.025.0 ==l , so the block volume 

is 125.025.05.0 =×=V . Therefore, in each unit length of tunnel, two blocks with this 

volume might appear. This procedure was applied for both block failure modes I and II in 

our analysis. Figure 5-19 shows the unstable key block volume distribution, which 

resulted from the DFN-DEM approach for each unit length of tunnel. The calculated 

mean value for the potential block volume is 0.34.  
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Fig. 5-18. Key block and tapered block around the cavern 

 

Block volume (m3) per meter of tunnel length 

Fig. 5-19. Distribution of key block volume resulting from DFN-DEM 
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5-10 Discussion  

 

The calculated volumes of possible failed blocks using the KLE method based on 

a Monte Carlo simulation yields results that are almost six times smaller than those from 

a DFN-DEM analysis (compare Figures 5-12 and 5-19).  

The reason for this significant difference is that, in a DFN-DEM analysis, fracture 

termination is taken into consideration while in a KLE analysis it is not taken into 

account. The fracture termination ratio is defined in (ISRM, 1978) as the following 

formula: 

oai

i
i NNN

NT
++

=
100

    5-6
 

Where Ni, Na, and No are respectively the total number of discontinuities whose 

semi-trace terminations are in intact rock, at other discontinuities or are obscured, these 

have been calculated for a complete scanline sample or for a specific discontinuity set. A 

larger value for the fracture termination ratio indicates that a large portion of 

discontinuities terminates in the intact rock. Therefore, in a rock mass such as this, a large 

number of rock bridges are created compared with the expected discrete blocks, which 

means that the size of the blocks generated is much larger than when the fracture 

termination ratio is small. Starzec and Anderson (2002) reported this ratio around 13% of 

the fractures terminate in intact rock in this specific site investigation; while in the KLE 

analysis, this ratio is negligible (0%). 

Figure 5-20 shows the fracture system before eliminating the incomplete fractures 

in UDEC. In this program, dead-end fractures (terminated fractures in intact rock) are 

eliminated, as shown in Figure 5-17.  Elimination of incomplete fractures decreases 

fracture intensity; consequently, estimated block volumes are increased.  

The two design tools used for the block stability analysis in this study are 

facilitated by different processes. The discontinuum formulation for rigid blocks and the 

explicit time-marching solution of the full equations of motion (including inertial terms) 

in DEM modelling allow the analysis of progressive, large-scale movements of blocks in 

blocky rock media; whereas, analytical solutions used in KLE compute the static force 
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equilibrium of the bodies and do not address the changes in force distribution that 

accompany displacements of the bodies. The solution using DEM was assumed to be the 

real solution; therefore, the difference between limit equilibrium and DEM could be 

counted as model uncertainty.  

Figure 5-21 shows the exposed area of the block in the roof of the cavern in 

question in the KLE analysis using the Unwedge program. The exposed area of blocks 

was also calculated based on fracture mapping performed at the site. Figure 5-22 shows 

the distribution for the exposed area from fracture mapping. The mean value for the 

figure calculated is 2.69 m2. For the repeated Monte Carlo simulations in the KLE 

analysis, the exposed area was calculated. Figure 5-23 shows the distribution for the 

exposed area based on the probabilistic kinematic analysis. The calculated mean value is 

0.97 m2. For the DFN approach, the mean value for the exposed area was calculated as 

2.7 m2.  

The ubiquitous presence of joints in a kinematic analysis means that the spatial variability 

of structure was not considered. This implies that all block wedges have the same possibility of 

being present in a particular situation. Obviously, this is not necessarily true for most applications 

(Hadjigeorgiou and Grenon, 2005).  

In real conditions, all fractures may cross each other and there is not a limitation on the 

number of crossing fractures; however, the kinematic analysis can only estimate the tetrahedral 

blocks, which are the result of three-joint plane conjunctions in addition to the opening face.  

 
Fig. 5-20. Fracture network before eliminating incomplete fractures 
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Fig. 5-21. Exposed area of a block in the roof of the opening 

 

 
Block area (m2) 

Fig 5-22. Distribution of the exposed area of block resulting from fracture mapping 

 

 
Block area (m2) 

Fig 5-23. Distribution of the exposed area of block resulting from repeated Kinematic Limit Equilibrium 
analyses performed based on Monte Carlo simulations for length and orientation of fractures 

 

Table 5-8 shows the outcome of different approaches to predict the unstable block volume for 1 m of 
tunnel length 



Chapter 5 Model Uncertainty of Kinematic Limit Equilibrium Analysis  
 

  83 
 

 

  

Table 5-8. Unstable block volume predicted by different approaches for 1 m of tunnel length 

Kinematic-Limit Equilibrium Analysis(m3) DFN-DEM 

Conventional Limited Joint 
Length 

Limited Joint 
Length ad Stress 

Field 

Probabilistic  

5778 30.4 21.8 0.05 0.34
 

 

5-11 Conclusions 

 

Results of DFN-DEM analysis, which have been confirmed by a William-Watson 

test, were considered to be real. The conventional KLE which doesn't consider the 

fracture length and field stresses is on safe side and leads to a conservative design. By 

considering the fracture length in KLE, the estimated unstable block volume is reduced. 

But still this approach is on safe side and it is overdesign. Considering of stress field 

together with fracture length will reduce the unstable block volume further. But still this 

approach is on safe side and it is overdesign. It can also be concluded that a kinematic 

analysis based on a Monte Carlo simulation estimates block volume smaller than reality. 

The results of probabilistic approach analyses (both PKLE and DFN-DEM) could be 

shown in a distribution for the potential unstable block volume. This will show the 

designer the probability for forming block with a specific volume. The designer could 

decide about the acceptable unstable block volume related to its probability.  

The results show that even considering limited joint length in kinematic analysis and 

the clamping forces in the limit equilibrium analysis, there is a great model uncertainty of 

our standard design tools for block stability analysis.   

The analyses show that the results of probabilistic kinematic analysis are interesting and 

commercial software ought to develop to facilitate the calculation. 
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6-1. Introduction 

 

As described in Chapter 4, the analytical solution proposed by Bray and Crawford (1983) is one 

design tool used to estimate safety and required rock support for blocks around tunnels. In order 

to perform the reliability analysis, it is necessary to consider the model of uncertainty.  The 

purpose of this chapter is to measure the model uncertainty of the analytical solution based on the 

theory of model uncertainty (described in Chapter 2).  

 

6-2. Methodology Used to Assess Model Uncertainty 

 

Model uncertainty can only be quantified either by comparison with other more involved models 

that exhibit a closer representation of the nature or by comparison with collected data from the 

field or the laboratory (Ditlevsen, 1982). The author has not found any recorded case in which 

failed block geometry, volume, resistance parameters, and stresses, were measured. Therefore, 

the results of Crawford-Bray model have been compared to those results of Distinct Element 

Method (DEM) which have closer representation of reality. Figure 6-1 shows the methodology 

employed to quantify the model uncertainty of Bray-Crawford solution. The methodology that 

has been used here to assess the model uncertainty is to calculate the vertical force at failure 

based on analytical solution (Tyanalytic Eq. 4-20), and compare it with the vertical force required to 

fail the block calculated by DEM (Tynumeric). In other word, model uncertainty factor (I) could be 

calculated as ⎟
⎠
⎞

⎜
⎝
⎛ =

Analytic

Numeric
T

TI .   

UDEC, which is based on DEM, has been used to solve the same block geometries with the same 

properties used in analytical solution. In numeric model, in order to assess the vertical force at 

failure, the block density was increased or decreased until it reaches to the limit equilibrium. The 

corresponding block weight at limit equilibrium represents the vertical force at failure (Tynumeric). 
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The Ty values higher than the natural weight of block (W) means that the block is stable. On the 

other hand, Ty lower than the natural weight of block means that the block is unstable. In other 

word Ty-W>0 means that the block is stable, while Ty-W<0 means that the block is unstable.   

Two groups of studies have been done.  First a primary study has been done to study the 

influence of vertical in-situ stress on the model uncertainty of analytical solution. In this study, 

Monte Carlo has been used to select friction angle and joint shear and normal stiffness.  

Thereafter a more detail study was carried out in order to describe how model uncertainty 

depends on variation of key parameters. In the last study, the selection of joint friction angle, 

shear and normal stiffness are not based on Monte Carlo. In this study the values of joint shear 

and normal stiffness are calculated based on in-situ stress, apical angle and friction angle. The 

following sections describe the Monte Carlo. 

 

 

Fig.6-1. Methodology to assess model uncertainty 
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6-2-1. Monte Carlo Simulation 

 

The Monte Carlo simulation in its simplest form is a random number generator that is useful for 

forecasting, estimating, and risking analysis. A simulation calculates numerous scenarios for a 

model by repeatedly picking values from a probability distribution for the uncertain variables and 

using those random values for in-data in the model. All those scenarios produce related results in 

a model.. Series of Monte Carlo simulations ran to select values for sn KK ,  and φ  selected from a 

typical rock condition. The statistical parameters for sn KK ,  and φ  are listed in Table 6-1 (Lanaro 

and Fredriksson, 2005). A code based on Fortran has been developed in order to select the input 

data based on Monte Carlo simulation. Note that the values of joint normal and shear stiffness 

(Kn and Ks) in analytical solution are related to those of the numerical solution by the length L of 

the discontinuity bounding the wedge (Crawford, 1982).  

Table 6-1. Statistical parameters for 
sn KK ,  and φ (Lanaro and Fredriksson, 2005) 

Parameter Distribution Minimum 
value

Mean value Maximum 
value

Standard 
deviation

 n
K  (GPa/m) Normal 

truncated
49.2 100.2 179.3 31.9 

s
K  (GPa/m) Normal 

truncated
10.3 29.3 48.7 10.6 

φ  degree Normal 24 32 40 4 
 

6-3 Primary Study 

 Figure 6-2 shows a two-dimensional geometry of the model that has been employed in order to 

assess the true value. The geometry consists of a m55×  square shape tunnel with a single 

triangular block with 30 degree of semi-apical angle and a base dimension of 3 m in the roof of 

tunnel. The horizontal stress was set to 6.6 MPa, which has been measured in a CLAB2 cavern 

and has an overburden of 30 m (Fredriksson et al., 2001). 



Chapter 6 Model Uncertainty of Bray-Crawford Solution                                                          

 

  88 
 

 

 

Fig.6-2. Employed geometry for both analytical and numerical method 

 

Two groups of modelling have been done. The groups are different according to vertical in-situ 

stress. The first group considered no value of vertical in-situ stress. The other group considered 

some value of vertical in-situ stress (5 and 10 MPa).   The rigid mode of analysis has been chosen 

for the numeric model as the analytical model has a rigid body assumption.  

According to Barton and Choubey (1977) and Barton (1971), as a rule of thumb, displacement 

equal to 1% of joint length is the displacement at failure. This criterion has been adopted in a Fish 

function in UDEC to check the stability condition. In addition to this criterion, the unbalance 

force has been recorded and checked to ensure whether or not the block is stable. 

The following sections show the model uncertainty for different values of vertical stress (0, 5 and 

10 MPa).  

 

6-4. Results Model Uncertainty in the Absence of In-Situ Vertical Stress  
 

The calculation based on the horizontal stress of 6.6 MPa has been conducted for many random 

selection of joint properties (Kn, Ks andϕ ) based on Monte Carlo. The ratio values for Tynumeric / 

Tyanalytical has been shown in Figure 6-3. In this figure, the horizontal axis is the coefficient of 

model uncertainty. The mean value and standard deviation for the coefficient I were calculated as 

1.013 and 0.26%, respectively.  
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Fig. 6-3. Model uncertainty for σx=6.6, σy=0 MPa 

 

As it is obvious from the Figure 6-3, in the absence of in-situ vertical stress and high value of 

horizontal stress, the analytical solution could estimate the block stability properly.  
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6-5. Results Model Uncertainty in the Presence of In-Situ Vertical Stress  
 

The model uncertainty for Bray-Crawford solution has been estimated for cases with σxx=6.6 

MPa, σyy=5 MPa and σxx=6.6 MPa, σyy=10 MPa,. Figures 6-4 and 6-5 show the model 

uncertainty of Bray and Crawford solution in the presence of vertical in-situ stresses by 5 and 

10 MPa, respectively. In those figures, the horizontal axis is the model uncertainty.  

 

 Fig. 6-4 Bray model uncertainty in the presence of 5 MPa vertical in-situ stress 
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Fig. 6-5 Bray model uncertainty in the presence of 10 MPa vertical in-situ stress 

 

It is understandable that uncertainty in the model is increased by increasing of vertical stress. The 

comparison between figures 6-4 and 6-5 shows that the mean value of model uncertainty factor is 

decreased by increasing of vertical stress in other word, the uncertainty in the model is increased 

by increasing of vertical in-situ stresses. The standard deviation of model uncertainty is increased 

by increasing of vertical in-situ stresses.  

Table 6-2 shows the model uncertainty of analytical solution for one realization of Monte Carlo 

in different in-situ vertical stress. The horizontal in-situ stress was assumed to be 6.6 in all cases. 

Table 6-2. Results of one realization with different vertical in-situ stress 
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It is obvious from Table 6-2 that by increasing the vertical stress, the uncertainty in model 

increases (model uncertainty factor is decreased) and the value of model uncertainty depends on 

the value of in-situ vertical stress.  

In this section, the model uncertainty has been assessed for various values of vertical in-situ stress 

while the horizontal stress is considered constant (6.6 MPa) for all cases. In the following section 

therefore it was tried to assess the model uncertainty in detail including more stress situations and 

more variation of joint resistance parameter ratio for different apical angle.   

 

6-6. Detail Study of Model  Uncertainty of Analytical Solution 

 

According to sections 6-3 to 6-5, it was discovered that the uncertainty of analytical solution 

depends on the in-situ stress condition. In principal, model uncertainty depends on model 

assumptions, simplification and in-data; therefore the model uncertainty of analytical solution 

was estimated for different stresses, resistance properties, and block geometries (apical angles).  

The tunnel depth was considered as 20, 100, and 400 m. For each depth, the K0 (ratio of 

horizontal stress to vertical stress) was considered to be 0.5, 1, and 2. Therefore, from the stress 

state, there are 3×3=9 states for stresses. Other important parameters are the block semi-apical 

angle and joint friction angle. The block semi-apical angle was considered to be 10, 20, 30, and 

40 degrees. The friction angle was considered 30, 40, and 50 degrees.  The cases in which the 

semi-apical angle is equal or greater than friction angle are neglected.   

Other important key parameters are joint shear and normal stiffness. The values of joint shear 

stiffness have could be calculated based on Eq. 6-1 (Barton and Chouby, 1977).   

 

  ⎥⎦
⎤

⎢⎣
⎡ +⎟

⎠
⎞⎜

⎝
⎛= r

n
ns

JCSJRC
L

K ϕσσ 10logtan100
  6-1 
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The in-data in equation 6-1 are normal stress on the joint plane, σn, total joint friction ( rϕ +i), and 

joint length (L). By knowing the values of vertical and horizontal stresses, the value of σn could 

be calculated from a continuum analysis, such as BEM, in the joint plane. The EXAMINE 2D 

(Curran, et al, 1995) based on BEM has been employed to calculate σn in different in-situ stress 

condition (vertical and horizontal) and different apical angles. Table 6-3 shows the calculated 

values for σn. Joint length has been calculated for a geometry in which the block has the specific 

semi-apical angle, and a base of 3 m. The value of total friction angle has been used instead 

of ⎥⎦
⎤

⎢⎣
⎡ +⎟

⎠
⎞⎜

⎝
⎛

r
n

JCSJRC ϕσ10log .  
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Table 6-3. Calculated values of σn based on BEM for different depth and stress state 

Depth(m) α σv (MPa) σh (MPa) σn(MPa) 

20 10 0.5 0.25 0.275
20 0.5 0.25 0.238
30 0.5 0.25 0.17
40 0.5 0.25 0.11
10 0.5 0.5 0.574
20 0.5 0.5 0.544
30 0.5 0.5 0.45
40 0.5 0.5 0.339
10 0.5 1 1.17
20 0.5 1 1.15
30 0.5 1 1.01
40 0.5 1 0.789

100 10 2.5 1.25 1.375
20 2.5 1.25 1.19
30 2.5 1.25 0.86
40 2.5 1.25 0.57
10 2.5 2.5 2.87
20 2.5 2.5 2.72
30 2.5 2.5 2.26
40 2.5 2.5 1.69
10 2.5 5 5.86
20 2.5 5 5.79
30 2.5 5 5.05
40 2.5 5 3.94

400 10 10 5 5.5
20 10 5 4.76
30 10 5 3.5
40 10 5 2.28
10 10 10 11.49
20 10 10 10.89
30 10 10 9.04
40 10 10 6.78
10 10 20 23.47
20 10 20 23.17
30 10 20 20.21
40 10 20 15.78

 

The joint normal stiffness could be calculated regarding to the values of joint shear stiffness and 

the ratio of Kn/Ks. The ratio of Kn/Ks depends strongly on the normal stress (Bandis, et al, 1981, 

Oda, et al. 1993). An extremely high ratio (let us say 130) appears on stress levels less than 

0.5MPa. Beyond 0.5MPa, the ratio decreases with increasing σn toward an asymptotic value of 

approximately 10. It seems reasonable, however, to assume that the ratio is within the range of 1 

to 10 if the normal stress σn, is larger than, at least, 0.5 MPa.  
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As can be seen from Fig 6-6, there are different ratios of normal to shear stiffness depending on 

the normal stress (for example, for the nσ =0.2, the possible range could be between 10 and 40). 

The selected ratio could be 10, 30, and 40. Total 243 models have been built in different apical, 

friction angle, horizontal and vertical stresses and different stiffness ratio.  

 

 

Fig. 6-6 Dependence of stiffness ratio (R) on normal stress (Bandis et al., 1981) 

 

Tables 6-4 through to 6-7 show the calculated values of Kn and Ks in different stress conditions, 

stiffness ratio, friction angle, and block apical angle. These values have the unit of MPa/m.  
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Table 6-4. Calculated Kn and Ks values for a block with semi-apical angle of 10 degrees 

vσ   hσ    
30 40 50 

Kn/Ks Kn/Ks Kn/Ks 
0.5 0.25 10 30 40 10 30 40 10 30 40
Kn   18.3 54.9 73.2 26.7 80.1 106.8 37.9 113.7 151.6
Ks   1.83 1.83 1.83 2.67 2.67 2.67 3.79 3.79 3.79

  Kn/Ks Kn/Ks Kn/Ks 
0.5 0.5 10 20 30 10 20 30 10 20 30
Kn   38.4 76.8 115.2 55.8 111.6 167.4 79.2 158.4 237.6
Ks   3.84 3.84 3.84 5.58 5.58 5.58 7.92 7.92 7.92
    Kn/Ks Kn/Ks Kn/Ks 

0.5 1 1 5 10 1 5 10 1 5 10
Kn   7.82 39.1 78.2 11.37 56.85 113.7 16.15 80.75 161.5
Ks   7.82 7.82 7.82 11.37 11.37 11.37 16.15 16.15 16.15
    Kn/Ks Kn/Ks Kn/Ks 
2.5 1.25 1 5 10 1 5 10 1 5 10
Kn   9.19 45.95 91.9 13.36 66.8 133.6 18.98 94.9 189.8
Ks   9.19 9.19 9.19 13.36 13.36 13.36 18.98 18.98 18.98
    Kn/Ks Kn/Ks Kn/Ks 
2.5 2.5 1 5 10 1 5 10 1 5 10
Kn   19.2 96 192 27.9 139.5 279 39.6 198 396
Ks   19.2 19.2 19.2 27.9 27.9 27.9 39.6 39.6 39.6
    Kn/Ks Kn/Ks Kn/Ks 
2.5 5 1 5 10 1 5 10 1 5 10
Kn   39.2 196 392 56.97 284.85 569.7 80.92 404.6 809.2
Ks   39.2 39.2 39.2 56.97 56.97 56.97 80.92 80.92 80.92
    Kn/Ks Kn/Ks Kn/Ks 
10 5 1 5 10 1 5 10 1 5 10

Kn   36.79 183.95 367.9 53.47 267.35 534.7 75.95 379.75 759.5
Ks   36.79 36.79 36.79 53.47 53.47 53.47 75.95 75.95 75.95
    Kn/Ks Kn/Ks Kn/Ks 
10 10 1 5 10 1 5 10 1 5 10

Kn   76.86 384.3 768.6 111.71 558.55 1117.1 158.67 793.35 1586.7
Ks   76.86 76.86 76.86 111.71 111.71 111.71 158.67 158.67 158.67
    Kn/Ks Kn/Ks Kn/Ks 
10 20 1 5 10 1 5 10 1 5 10

Kn   157.01 785.05 1570.1 228.2 1141 2282 324.1 1620.5 3241
Ks   157.01 157.01 157.01 228.2 228.2 228.2 324.1 324.1 324.1 

ϕϕ ϕϕϕ

vσ hσ
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Table 6-5. Calculated Kn and Ks values for a block with semi-apical angle of 20 degrees 

     
30 40 50 

Kn/Ks Kn/Ks Kn/Ks 
0.5 0.25 10 30 40 10 30 40 10 30 40
Kn   31.5 94.5 126 45.9 137.7 183.6 65.2 195.6 260.8
Ks   3.15 3.15 3.15 4.59 4.59 4.59 6.52 6.52 6.52
  Kn/Ks Kn/Ks Kn/Ks 
0.5 0.5 10 20 30 10 20 30 10 20 30
Kn   72.2 144.4 216.6 104.9 209.8 314.7 149 298 447
Ks   7.22 7.22 7.22 10.49 10.49 10.49 14.9 14.9 14.9
    Kn/Ks Kn/Ks Kn/Ks 

0.5 1 1 5 10 1 5 10 1 5 10
Kn   15.26 76.3 152.6 22.18 110.9 221.8 31.15 155.75 311.5
Ks   15.26 15.26 15.26 22.18 22.18 22.18 31.15 31.15 31.15
    Kn/Ks Kn/Ks Kn/Ks 

2.5 1.25 1 5 10 1 5 10 1 5 10
Kn   15.79 78.95 157.9 22.95 114.75 229.5 32.6 163 326
Ks   15.79 15.79 15.79 22.95 22.95 22.95 32.6 32.6 32.6
    Kn/Ks Kn/Ks Kn/Ks 

2.5 2.5 1 5 10 1 5 10 1 5 10
Kn   36.1 180.5 361 52.46 262.3 524.6 74.51 372.55 745.1
Ks   36.1 36.1 36.1 52.46 52.46 52.46 74.51 74.51 74.51
    Kn/Ks Kn/Ks Kn/Ks 

2.5 5 1 5 10 1 5 10 1 5 10
Kn   76.84 384.2 768.4 111.68 558.4 1116.8 158.62 793.1 1586.2
Ks   76.84 76.84 76.84 111.68 111.68 111.68 158.62 158.62 158.62
    Kn/Ks Kn/Ks Kn/Ks 

10 5 1 5 10 1 5 10 1 5 10
Kn   63.17 315.85 631.7 91.81 459.05 918.1 130.408 652.04 1304.08
Ks   63.17 63.17 63.17 91.81 91.81 91.81 130.408 130.408 130.408
    Kn/Ks Kn/Ks Kn/Ks 

10 10 1 5 10 1 5 10 1 5 10
Kn   144.5 722.5 1445 210.06 1050.3 2100.6 298.34 1491.7 2983.4
Ks   144.5 144.5 144.5 210.06 210.06 210.06 298.34 298.34 298.34
    Kn/Ks Kn/Ks Kn/Ks 

10 20 1 5 10 1 5 10 1 5 10
Kn   307.52 1537.6 3075.2 446.9 2234.5 4469 634.78 3173.9 6347.8
Ks   307.52 307.52 307.52 446.9 446.9 446.9 634.78 634.78 634.78

 

ϕ ϕϕ ϕϕ

vσ hσ
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Table 6-6. Calculated Kn and Ks values for a block with semi-apical angle of 30 degrees 

      
40 50 

Kn/Ks Kn/Ks 
0.5 0.25 10 25 50 10 25 50 

Kn  47.54898 118.8724 237.7449 67.5327 168.8318 337.6635
Ks  4.754898 4.754898 4.754898 6.75327 6.75327 6.75327 

  Kn/Ks Kn/Ks 
0.5 0.5 10 20 30 10 20 30 

Kn  126.4243 252.8487 379.273 179.5575 359.1151 538.6726
Ks  12.64243 12.64243 12.64243 17.95575 17.95575 17.95575
   Kn/Ks Kn/Ks 

0.5 1 1 5 10 1 5 10 
Kn  28.24969 141.2484 282.4969 40.12237 200.6119 401.2237
Ks  28.24969 28.24969 28.24969 40.12237 40.12237 40.12237
   Kn/Ks Kn/Ks 

2.5 1.25 1 5 10 1 5 10 
Kn  24.05419 120.2709 240.5419 34.1636 170.818 341.636 
Ks  24.05419 24.05419 24.05419 34.1636 34.1636 34.1636 
   Kn/Ks Kn/Ks 

2.5 2.5 1 5 10 1 5 10 
Kn  63.21217 316.0609 632.1217 89.77877 448.8939 897.7877
Ks  63.21217 63.21217 63.21217 89.77877 89.77877 89.77877
   Kn/Ks Kn/Ks 

2.5 5 1 5 10 1 5 10 
Kn  141.2484 706.2422 1412.484 200.6119 1003.059 2006.119
Ks  141.2484 141.2484 141.2484 200.6119 200.6119 200.6119
   Kn/Ks Kn/Ks 

10 5 1 5 10 1 5 10 
Kn  97.61526 488.0763 976.1526 138.6407 693.2033 1386.407
Ks  97.61526 97.61526 97.61526 138.6407 138.6407 138.6407
   Kn/Ks Kn/Ks 

10 10 1 5 10 1 5 10 
Kn  252.8487 1264.243 2528.487 359.1151 1795.575 3591.151
Ks  252.8487 252.8487 252.8487 359.1151 359.1151 359.1151
   Kn/Ks Kn/Ks 

10 20 1 5 10 1 5 10 
Kn  565.2735 2826.367 5652.735 802.8447 4014.223 8028.447
Ks  565.2735 565.2735 565.2735 802.8447 802.8447 802.8447

 

vσ hσ

ϕ ϕ
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Table 6-7. Calculated Kn and Ks values for a block with semi-apical angle of 40 degrees 

    
50

Kn/Ks
0.5 0.25 10 25 50

Kn 56 140 280
Ks 5.6 5.6 5.6

 Kn/Ks
0.5 0.5 10 20 35

Kn 173.3 346.6 606.55
Ks 17.33 17.33 17.33
  Kn/Ks

0.5 1 1 5 10
Kn 40.35 201.75 403.5
Ks 40.35 40.35 40.35
  Kn/Ks

2.5 1.25 1 5 10
Kn 29.15 145.75 291.5
Ks 29.15 29.15 29.15
  Kn/Ks

2.5 2.5 1 5 10
Kn 86.44 432.2 864.4
Ks 86.44 86.44 86.44
  Kn/Ks

2.5 5 1 5 10
Kn 201.5 1007.5 2015
Ks 201.5 201.5 201.5
  Kn/Ks

10 5 1 5 10
Kn 116.6 583 1166
Ks 116.6 116.6 116.6
  Kn/Ks

10 10 1 5 10
Kn 346.78 1733.9 3467.8
Ks 346.78 346.78 346.78
  Kn/Ks

10 20 1 5 10
Kn 807.11 4035.55 8071.1
Ks 807.11 807.11 807.11

 

Bray and Crawford suggested that the value for clamping force in Eq. 4-20 could be calculated as 

the hhC σ×=  in which h is the height of block and hσ  is the horizontal in-situ stress. Examine 

2D could be used to analyze stresses for openings with square shapes and the results are 

corresponding to those of Kirsch solution which has been implemented for block stability 

analysis for circular opening by Elsworth (1986). The use of EXAMINE 2D to determine the 

stresses around underground excavation and application of that to the relaxation process is 

reported (Mauldon and Zhao, 1995).  As it can be seen from table 6-8, in most of the cases, the 

calculated clamping force by EXAMINE 2D is higher than that suggested by Bray-

ϕ

vσ hσ
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Crawford ( )cC hσ= . Also, as expected, the values of clamping force decreases by increasing the 

semi-apical angle. Furthermore, by increasing the horizontal in-situ stress, the value of clamping 

force increases. The model uncertainty of analytical solution was determined based on the BEM 

calculations of clamping forces.  

The models have been built based on the geometry consists of a m55×  square shape tunnel with 

a single triangular block with different degree of semi-apical angle and base dimension of 3 m in 

the roof of tunnel. The deformable body of blocks has been chosen to analyze in UDEC.  

Table 6-8. Calculated clamping force in different stress condition 

Depth(m) α σv (MPa) σh (MPa) C(MN) 
BEM

C(MN)  Bray 

20 10 0.5 0.25 2.4 2.12
20 0.5 0.25 1.1 1.03
30 0.5 0.25 0.6 0.64
40 0.5 0.25 0.3 0.44
10 0.5 0.5 5 4.25
20 0.5 0.5 2.5 2.06
30 0.5 0.5 1.5 1.295
40 0.5 0.5 1 0.89
10 0.5 1 10.25 8.5
20 0.5 1 5.4 4.12
30 0.5 1 3.5 2.59
40 0.5 1 2.4 1.78

100 10 2.5 1.25 11.9 10.625
20 2.5 1.25 5.5 5.15
30 2.5 1.25 2.9 3.2375
40 2.5 1.25 1.6 2.225
10 2.5 2.5 25 21.25
20 2.5 2.5 12.6 10.3
30 2.5 2.5 7.8 6.475
40 2.5 2.5 5 4.45
10 2.5 5 51.3 42.5
20 2.5 5 27 20.6
30 2.5 5 17.4 12.95
40 2.5 5 12 8.9

400 10 10 5 47.7 42.5
20 10 5 21.8 20.6
30 10 5 11.8 12.95
40 10 5 6.4 8.9
10 10 10 100.2 85
20 10 10 50.5 41.2
30 10 10 31.1 25.9
40 10 10 20.3 17.8
10 10 20 205.3 170
20 10 20 107.9 82.4
30 10 20 69.8 51.8
40 10 20 48 35.6
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6-7. Results of Simulations 

 

Fig 6-7 shows the results of all simulations. As it can be seen in this figure, if there is not any 

information about the depth, stress ratio, stiffness ratio, apical, and friction angle, then the model 

uncertainty varies substantially. The range is between -1 and 1. The mean value for the model 

uncertainty factor is 0.42.  In this figures, the negative sign has the meaning that the analytical 

solution predicts the block is stable while DEM predicts the block is falling.  The model 

uncertainty varies based on the in-situ stress situation, joint stiffnesses, apical and friction angle. 

In the following section first the reason for the difference between the outcome of analytical and 

DEM will be described and thereafter the variation of model uncertainty and its dependent with 

the mentioned parameters will be discussed.  

 

Fig. 6-7 Model uncertainty for all models 
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6-8. Discussion 

 

The analyses show a difference between the results of DEM and analytical solution (see Fig 6-7).  

Some cases have been selected in order to discuss in detail. The selected cases are for depth of 

100 m and K0=0.5 with different stiffness ratio (1, 5, 10). The unit weight was considered as 2700 

KN/m 3  . In-data are described in table 6-9.  

Table 6-9. In-data for analyzed block  

Parameter Value
Semi-apical angle (degrees) 10

Friction angle (degrees) 30
Joint shear stiffness (MPa/m) 9.19

Vertical stress (MPa) 2.5
Horizontal Stress(MPa) 1.25

 

Figure 6-8 shows the applied geometry for the block in the roof of tunnel. According to the 

shown geometry, the joint length could be calculated as 8.63 m and the calculated clamping force 

by EXAMINE 2D is 11.9 MN. The in-situ condition is that the in-situ vertical and horizontal 

stresses are principal stresses.  

 

Fig. 6-8. Geometry of block 
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Eq. 4-19 which could be use to estimate block displacement is based on full mobilization of 

friction angle. This is not the case for all blocks with a natural density. In order to compare 

displacements from analytical and numerical solution, Eq. 4-19 must be revised in the way that 

the mobilization of friction angle is corresponding to the weight of the block. The displacement 

could be calculated from the Eq. 2-6, which is obtained from putting the block weight equal to T 

in Eq. 11-4, and is also by putting Eq. 8-4 and 9-4 into Eq. 11-4 and solving forδ . 

( )2 2
2

cos sins n

W

K K
δ

α α
=

+
  6-2 

Table 6-10 shows the analytical and numerical calculations for shear, normal forces, and 

displacement. It is obvious that there is substantial difference between the outcome of DEM and 

analytical solutions (Table 6-10).  

Table 6-10. Analytical and Numerical calculations 

Parameter R=1 R=5 R=10 
Analytic Numeric Analytic Numeric Analytic Numeric 

Kn 79.4(MN/m) 9.19(Mpa/m) 397 45.95(Mpa/m) 794 91.9(Mpa/m) 
Ks 79.4(MN/m) 9.19(Mpa/m) 79.4 9.19(Mpa/m) 79.4 9.19(Mpa/m) 

δ (mm) 2.17 49.77 1.93 44.45 1.7 39.22 
S'(MN) 2.23 2.01 2.21 1.6 2.19 1.2 
N'(MN) 11.68 10.4 11.58 8.12 11.48 5.85 
Model 0.8 0.65 0.45 

 N' is the normal force to the joint after relaxation and S' is the shear force to the joint after relaxation. 

 

Table 6-11 shows displacement and forces at different stages of relaxation in presence of in-situ 

stress (vertical and horizontal). Fig 6-9 shows the joint shear displacement about 0.06 mm at the 

stage before excavation. By excavating the tunnel, the vertical force disappears. The gravity force 

does not act in this stage.  This stage could be called the first stage of relaxation (after excavation 

and before acting gravity force). In this stage, numerical solution shows a considerable amount of 

shear displacement in the joint.  Fig 6-10 shows the joint shear displacement in the first stage of 

relaxation. The maximum amount of joint shear displacement is about 41mm.  As it can be seen 

from Table 6-11, the normal force in this stage is reduced and the sign of shear force is changed. 

The changes in the sign of shear force mean that the direction of shear force has been changed 

due to the relaxation of the in-situ stress.  
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Table 6-11. Force and displacement in different stage of relaxation 

 

Forces state after acting the 

gravity force 

 

Forces state after the 

excavation without 

acting gravity  

 

In-situ forces before 

the excavation 

Parameter Kn/Ks 

10.4 10.5 11.1 N(MN) R=1 

2.01 1.85 -1.84 S(MN) 

49.77 47.64 0 δ (mm) 

8.12 8.24 11.1 N(MN) R=5 

1.6 1.45 -1.84 S(MN) 

44.45 42.56 0 δ (mm) 

5.85 6.06 11.1 N(MN) R=10 

1.2 1.07 -1.84 S(MN) 

39.22 37.6 0 δ (mm) 
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Fig. 6-9. Joint shear displacement in presence of in-situ stress without the excavation of tunnel for R=5 
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Fig. 6-10. Joint shear displacement after relaxing the in-situ stress without acting the gravity ( stage 1 of 

relaxation) 

The last column of Table 6-11 depicts the second stage of relaxation due to the acting of gravity 

force. The amount of normal force in this stage is reduced while the shear force increases 

according to the table 6-11. Fig. 6-11 shows the shear displacement at stage 2.  
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Fig. 6-11. Joint shear displacement after relaxing the in-situ load and gravity force (stage 2 of relaxation 

The analytical solution proposed by Bray and Crawford cannot calculate the first stage of 

relaxation (relaxation of in-situ stress). The analytical solution could only calculate the relaxation 

of block from stage 1 to stage 2. The amount of relaxation in the first stage of relaxation is much 

higher compared to that of stage 2.    

Table 6-12 shows the predicted displacement due to gravity acting by two methods of analytical 

and DEM. The values in the table for DEM calculated based on the difference between column 4 

and 5 of table 6-11. Table 6-12 shows both DEM and analytical solution predict the displacement 

due to gravity force equally. But the analytical solution doesn't consider the displacement due to 

relaxation of in-situ stress and the analytical solution calculates the difference between two last 

stages of relaxation.  
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Table 6-12. Predicted displacement due to gravity force by DEM and analytical method 

Predicted displacement due to 

weight by Analytic 

Predicted displacement due to 

weight by DEM 
Kn/Ks 

2.17 2.13 R=1 

1.93 1.9 R=5 

1.7 1.62 R=10 

 

The occurred shear displacement in the first stage of relaxation causes an increase in the amount 

of total displacement. Increasing total displacement decreases the normal force since the 

displacement of the block has to be vertical from the symmetrical reason. Getting the lower 

normal force to the joint means having lower safety, and the block is closer to failure. This is the 

reason why the DEM predicts lower safety for blocks   

The vertical force at failure in analytical solution (Tyanalytic) depends on 4 parameters (apical 

angle, friction angle, horizontal in-situ stress and ratio between joint normal and shear stiffness). 

DEM solution considers 6 parameters as in-data (vertical and horizontal in-situ stress, shear and 

normal joint stiffness, apical angle and friction angle). DEM requires not only the ratio between 

shear and normal joint stiffness but also values of shear and normal joint stiffness and vertical in-

situ stress. Each of the neglected key parameters generates uncertainty in the model (Ditlevsen, 

1982). Although the values of joint shear and normal stiffness is influence indirectly by vertical 

stresses but it is not considered in the analytical solution directly. Ignoring key parameters such as 

joint shear and normal stiffness together with first stage of relaxation lead to uncertainty in the 

model.  

A sensitivity analysis has been run in order to assess the model precision and biased factor. 

Figure 6-12 shows the differences between precision, biased and accuracy (Stille, et al. 2003).  
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Figure 6-12 precision, biased and accuracy (Stille, et al. 2003). 

As it could be seen from figure 6-7, if there is not any accessible information, the uncertainty in 

model varies substantially. In this case the precision is poor. In order to increase precision of the 

outcome of the analytical solution more information than depth is required (Fig. 6-13- 6-15).   

 

 

Fig. 6-13 Model uncertainty for  depth of 20 m 
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Fig. 6-14 Model uncertainty for  depth of 100 m 

 

Fig. 6-15 Model uncertainty for  depth of 400 m 

The second useful piece of information is K0 value. From figures 6-16- 6-18 it can be seen that 

for the analytical solution the case with K0=0.5, is more uncertain than K0=1 and K0=2.  
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Fig. 6-16 Model uncertainty for depth of 20 m and  K=0.5 

 

Fig. 6-17 Model uncertainty for depth of 20 m and K=1 
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The cases with K0=2 has the lowest uncertainty in the analytical model, it is more precise than 

other cases. For this case, the model uncertainty varies from 40% to 80%.  

The third information that is useful is the stiffness ratio. Figure 6-19- 6-21 show the model 

uncertainty in depth of 20m and K0=1 with different R (ratio of normal stiffness to the shear 

stiffness) values and angle ratio (
ϕ

α ). From these figures, it could be understood that in the 

depth of 20 m and K0=1, the outcome of analytical model is not precise. 

 

Fig.6-19  Model uncertainty for depth of 20 m and K0=1 and R=10 

 

Fig. 6-18 Model uncertainty for depth of 20 m and  K=2

0.80.50.20.0-0.2 

5 

4 

3 

2 

1 

0 

Mean =0.34

N =9

0.90.80.70.60.5 0.4 0.3 

6 

5 

4 

3 

2 

1 

0 

Mean =0.64

N =27

N
um

be
rs

 
Std. Dev. =0.128

Std. Dev. =0.274 

N
um

be
rs

 



Chapter 6 Model Uncertainty of Bray-Crawford Solution                                                          

 

  113 
 

 

 

Fig.6-20 Model uncertainty for depth of 20 m and K0=1 and R=20 

 

Fig. 6-21 Model uncertainty for depth of 20 m and K0=1 and R=30 

 As it can be seen from Figure 6-19 - 6-21, the uncertainty in the model is increased by increasing 

of the stiffness ratio (ratio of normal stiffness to the shear stiffness). The fourth piece of 

0.60.40.20.0-0.2 -0.4

N
um

be
rs

 

3

2

1

0

Mean =0.12 
Std. Dev. =0.273 

N =9 

0.60.40.20.0-0.2 -0.4 

N
um

be
rs

 

3 

2 

1 

0 

Mean =0.17 
Std. Dev. =0.303 

N =9 



Chapter 6 Model Uncertainty of Bray-Crawford Solution                                                          

 

  114 
 

 

information that is useful to estimate model uncertainty is the angle ratio (ratio of semi-apical 

angle to the friction angle). Fig 6-22 - 6-25 show the model uncertainty for the cases of 20 m 

dept, K0=1 and R=10 for different values of angle ratio between 0.2-0.8. All these figures (6-22 - 

6-25) show a more precise estimation of model uncertainty and their coefficient of variation is 

lower than 10%. However in some cases the estimation is also biased (see fig 6-25). It becomes 

clear from the figure that, as angle ratio reaches to 1, the outcome of the model becomes more 

biased. By increasing the stiffness ratio, the outcome of the model becomes more biased too. 

 

Fig 6-22 Model uncertainty for depth of 20 m, K0=1, R=10 and angle ratio 0.32-0.2 

 

Fig 6-23 Model uncertainty for depth of 20 m, K0=1, R=10 and angle ratio 0.6 -0.4 
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Fig 6-24 Model uncertainty for depth of 20 m, K0=1, R=10 and angle ratio 0.75 -0.6 

 

Fig 6-25 Model uncertainty for depth of 20 m, K0=1, R=10 and angle ratio 0.8 
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For the sake of brevity, some diagrams were presented in here. Other condition of stresses, 

stiffness ratio and angle ratio are shown in appendix.  

The designer needs to know both about precision and biased factor of the outcome of the model. 

The precision could be improved by having more information about more key parameters. In case 

of acceptable precision, the biased factor could be used to calibrate the analytical solution.  

 

6-9. Conclusions 

 

Model uncertainty of analytical solution based on joint relaxation has been assessed. The analyses 

show that Bray-Crawford solution has good accuracy for the tunnels with negligible vertical in-

situ stress and high value of K0.  

The DEM considers the relaxation of in-situ stress, while the analytical solution does not. The 

relaxation of in-situ stress gives the joint normal displacement which makes reduction of 

clamping force. This is not considered in analytical solution; therefore, the analytical solution 

overestimates the block stability.  

With decreasing of K0, the mean value of model uncertainty factor decreases. This corresponds to 

that the outcome of the analytical solution is more biased.  The standard deviation of model 

uncertainty factor increases with decreasing of K0. Neglecting key parameters such as vertical 

stress, joint shear and normal stiffness together with relaxation of in-situ stress generates model 

uncertainty. Thus the analyses show that the vertical stress plays important role in estimation of 

block stability in crown of openings.  

Three important parameters to identify model uncertainty have been recognized. They are K0, 

ratio between joint normal and shear stiffness, and ratio between block semi-apical angle and 

friction angle. As the amount of information about the in-situ stress state, joint stiffness, apical 

and friction angle increases, the variation of model uncertainty factor decreases and the model 

uncertainty factor could be determined more precisely. Information about the all identified key 

parameters is required in order to assess acceptable precision.  
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The results of the analyses indicate that, by increasing the ratio between joint, normal stiffness, 

and shear stiffness, or the ratio between semi-apical angle and joint friction angle the outcome of 

model is more biased. Cases with higher value of vertical in-situ stress than horizontal stresses - 

especially for the shallow depth tunnels or the cases in which the friction angle is closed to semi-

apical angle, the analytical solution overestimates the block stability. By having biased factor in 

an acceptable precision, the outcome of analytical model could be modified. The analytical 

solution could be used in combination with the tables for determining model uncertainty factor.  
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The purpose of this research has been to quantify the model uncertainties of different design tools 

in order to calculate block stability. The author has described different design tools to estimate 

block volume such as kinematic analysis and DFN, and also design tools to estimate block 

stability such as analytical solutions and DEM.  

Different approaches of Kinematic limit equilibrium with various assumptions in the joint length, 

stresses, and joint orientation have been applied to a cavern. These results have been compared to 

those of DFN-DEM, which show that the conventional KLE (unlimited joint length and without 

field stress) overestimate the unstable block volume. However, while by applying the joint length, 

the unstable block volume is reduced. By considering the joint length and field stresses around 

the largest unstable block, its volume is reduced. Monte Carlo could be used to define a 

representative value for joint length and the orientation which could be used in a Kinematics limit 

equilibrium which considers the clamping forces from in-situ stress. The comparison between this 

approach and DFN-DEM shows that this approach predicts the unstable block volume lower than 

DFN-DEM.  

Another conclusion of KLE analysis is that the information about joint length and stresses could 

lead to a better design. Once again, the costs for obtaining the information about the joint length 

and stresses must be compared with the costs for overdesign. As an example that relates to the 

case study in conventional KLE analysis, the support must be design for a 5779 3m of block per 1 

meter of tunnel length. While considering the joint length and stress field, it is reduced to 22 3m  

per tunnel length.  

 

The analytical solution based on joint relaxation could be used together with kinematic analysis in 

order to estimate the stability of block. Model uncertainty of the analytical solution has been 

assessed. The analyses show that Bray solution has good accuracy for the tunnels with negligible 

vertical in-situ stresses and high value of K0.  

The DEM considers the relaxation of in-situ stress, while the analytical solution does not. The 

relaxation of in-situ stress gives the joint normal displacement which makes reduction of 

clamping force. This is not considered in analytical solution; therefore, the analytical solution 

overestimates the block stability.  
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With decreasing of K0, the mean value of model uncertainty factor decreases. This corresponds to 

that the outcome of the analytical solution is more biased.  The standard deviation of model 

uncertainty increases with decreasing of K0. Neglecting the vertical stress, values of joint shear 

and normal stiffness together with relaxation of in-situ stress generate model uncertainty. Thus 

the analyses show that the vertical stress plays important role in estimation of block stability in 

crown of openings.  

Three important parameters to identify model uncertainty have been recognized. They are K0, 

ratio between joint normal and shear stiffness, and ratio between block semi-apical angle and 

friction angle. As the amount of information about the in-situ stress state, joint stiffness, apical 

and friction angle increases, the variation of model uncertainty factor decreases and the model 

uncertainty factor could be determined more precisely. Information about all the identified key 

parameters is required in order to assess acceptable precision.  

The results of the analyses indicate that, by increasing the ratio between joint normal stiffness and 

shear stiffness, or the ratio between semi-apical angle and joint friction angle the outcome of 

model is more biased. Cases with higher value of vertical in-situ stress than horizontal stresses - 

especially for the shallow depth tunnels or the cases in which the friction angle is closed to semi-

apical angle, the analytical solution overestimates the block stability. By having biased factor in 

an acceptable precision, the outcome of analytical model could be modified. The analytical 

solution could be used in combination with the tables for determining model uncertainty factor.  

 

Further Research  

 

Although block failure is a common failure mode in underground openings, there is still a need 

for more research on the probabilistic design against block failure. Further research could perform 

to analyze the effects of key parameters such as K0, angle ratio, and stiffness ratio on the 

reliability index.  

The analyses show that there is a systematic error in Bray-Crawford solution. The solution needs 

to be improved in order to consider the effects of in-situ stress relaxation.  The analytical solution 
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based on joint relaxation could be revised in order to consider the joint stiffness changes due to 

changes of loading.    

Moreover, current available commercial software cannot perform the probabilistic approach. 

More work is needed to develop the software that could be helpful in research and practice.  
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Fig. A-1 Model uncertainty for depth of 20 m and  
K=0.5 

Fig. A-2 Model uncertainty for depth of 20 
m and  K=1 

 

 

 

 

Fig. A-3 Model uncertainty for depth of 20 m and  K=2  
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Fig. A- 4 Model uncertainty for depth of 20 m and  K=1 
and R=10 

 

Fig. A-5 Model uncertainty for depth of 20 m 
and  K=1 and R=10, Angle ratio 0.3-0.2 

 

 

 

Fig. A-6 Model uncertainty for depth of 20 m and  
K=1 and R=10, Angle ratio 0.6-0.4 

Fig. A-7 Model uncertainty for depth of 20 m and  
K=1 and R=10, Angle ratio 0.75-0.6 
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Fig. A-8 Model uncertainty for depth of 20 m and  K=1 and R=10, Angle ratio 0.8 

  

 

  
 

Fig. A-9 Model uncertainty for depth of 20 m and  
K=1 and R=20 

Fig. A-10 Model uncertainty for depth of 20 m 
and  K=1 and R=20, Angle ratio 0.3-0.2 
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Fig. A-11 Model uncertainty for depth of 20 m 
and  K=1 and R=20, Angle ratio 0.6-0.4 

Fig. A-12 Model uncertainty for depth of 20 m and  K=1 
and R=20, Angle ratio 0.75-0.6 

 

 

 

Fig. A-13 Model uncertainty for depth of 20 m and  K=1 and R=20, angle ratio 0.8 
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Fig. A-14 Model uncertainty for depth of 20 m and  
K=1 and R=30 

Fig. A-15 Model uncertainty for depth of 20 m and  
K=1 and R=30, Angle ratio 0.3-0.2 

 

 

 

Fig. A-16 Model uncertainty for depth of 20 m and  K=1 and R=30, Angle ratio 0.6-0.4 
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Fig. A-17 Model uncertainty for depth of 20 m and  K=1 and R=30, Angle ratio 0.75-0.6 

 

 

 

Fig. A-18 Model uncertainty for depth of 20 m and  K=1 and R=30, angle ratio 0.8 

-0.05-0.10-0.15-0.20-0.25 -0.30 

1.0

0.8

0.6

0.4

0.2 

0.0 

Mean =-0.19 

Std. Dev. =0.068 

N =2

-0.18-0.20-0.22-0.24-0.26-0.28-0.30 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Mean =-0.24

Std. Dev. =null

N =1

N
um

be
rs



Appendix            

 

  139 
 

 

 

 

 

Fig. A-20 Model uncertainty for depth of 20 m and  K=2 , R=1 

 

 

 

Fig. A-19 Model uncertainty for depth of 20 m and  K=2 

 
0.850.800.750.70 0.65 

3

2

1

0

Mean =0.75

Std. Dev. =0.043 

N =9

0.90.80.70.60.50.40.3

N
um

be
rs

 

6 

5 

4 

3 

2 

1 

0 

Std. Dev. 
=0.128 

N =27 

Mean =0.64 



Appendix            

 

  140 
 

 

Fig. A-21 Model uncertainty for depth of 20 m and  
K=2 , R=5 

Fig. A-22 Model uncertainty for depth of 20 m and  
K=2 , R=10 

 

 

 

Fig. A-23 Model uncertainty for depth of 20 m and  
K=2 , R=1, Angle ratio 0.3-0.2 

Fig. A-24 Model uncertainty for depth of 20 m and  
K=2 , R=1, Angle ratio 0.4-0.6 

 

 
0.8250.800.7750.750.725

2.0

1.5

1.0

0.5

0.0

 
Mean =0.77

Std. Dev. =0.029
N =3

 
0.8250.80 0.7750.75 0.725

2.0 

1.5 

1.0 

0.5 

0.0 

 

Mean =0.78

 
Std. Dev. =0.029

N =3

 
0.70 0.600.500.40

2,0

1.5

1.0

0.5

0.0

 
Mean =0.54

Std. Dev. =0.113

N =9

 
0.800.70 0.600.50 0.40 

N
um

ber 

4 

3 

2 

1 

0 

  Mean =0.61

Std. Dev. =0.101

N =9 N
um

ber 
N

um
be r 

N
um

be
r  



Appendix            

 

  141 
 

 

 

Fig. A-25 Model uncertainty for depth of 20 m and  
K=2 , R=1, Angle ratio 0.75-0.6 

Fig. A-26 Model uncertainty for depth of 20 m and  
K=2 , R=1, Angle ratio 0.8 

 

Fig. A-27 Model uncertainty for depth of 20 m and  
K=2 , R=5, Angle ratio 0.3-0.2 

Fig. A-28 Model uncertainty for depth of 20 m and  
K=2 , R=5, Angle ratio 0.6-0.4 
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Fig. A-29 Model uncertainty for depth of 20 m and  
K=2 , R=5, Angle ratio 0.75-0.6 

Fig. A-30 Model uncertainty for depth of 20 m and  
K=2 , R=5, Angle ratio 0.8 

 

Fig. A-31 Model uncertainty for depth of 20 m and  
K=2 , R=10, Angle ratio 0.3-0.2 

Fig. A-32 Model uncertainty for depth of 20 m and  
K=2 , R=10, Angle ratio 0.6-0.4 
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Fig. A-33 Model uncertainty for depth of 20 m and  K=2 , 
R=10, Angle ratio 0.75-0.6 

Fig. A-34 Model uncertainty for depth of 20 m 
and  K=2 , R=10, Angle ratio 0.8 

 

 

Fig. A-35 Model uncertainty for depth of 100 m and  K=0.5 
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Fig. A-36 Model uncertainty for depth of 100 m and  K=0.5 , R=1 

 

 

Fig. A-37 Model uncertainty for depth of 100 m 
and  K=0.5 , R=5 

Fig. A-38 Model uncertainty for depth of 100 m and  
K=0.5 , R=10 
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Fig. A-39 Model uncertainty for depth of 100 m and  
K=0.5 , R=1, Angle ratio 0.3-0.2 

Fig. A-40 Model uncertainty for depth of 100 m 
and  K=0.5 , R=1, Angle ratio 0.4-0.6 

 

Fig. A-41 Model uncertainty for depth of 100 m 
and  K=0.5 , R=1, Angle ratio 0.75-0.6 

Fig. A-42 Model uncertainty for depth of 100 m and  
K=0.5 , R=1, Angle ratio 0.8 
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Fig. A-43 Model uncertainty for depth of 100 m and  
K=0.5 , R=5, Angle ratio 0.3-0.2 

Fig. A-44 Model uncertainty for depth of 100 m 
and  K=0.5 , R=5, Angle ratio 0.6-0.4 

 

Fig. A-45 Model uncertainty for depth of 100 m 
and  K=0.5 , R=5, Angle ratio 0.75-0.6 

Fig. A-46 Model uncertainty for depth of 100 m and  
K=0.5 , R=5, Angle ratio 0.8 
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Fig. A-47 Model uncertainty for depth of 100 m and  
K=0.5 , R=10, Angle ratio 0.3-0.2 

Fig. A-48 Model uncertainty for depth of 100 m 
and  K=0.5 , R=10, Angle ratio 0.6-0.4 

 

Fig. A-49 Model uncertainty for depth of 100 m and  
K=0.5 , R=10, Angle ratio 0.75-0.6 

Fig. A-50 Model uncertainty for depth of 100 
m and  K=0.5 , R=10, Angle ratio 0.8 
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Fig. A-51 Model uncertainty for depth of 100 m and  K=1 

 

 

Fig. A-52 Model uncertainty for depth of 100 m and  
K=1 and R=1 

 

Fig. A-53 Model uncertainty for depth of 
100 m and  K=1 and R=1, Angle ratio 0.3-
0.2 
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Fig. A-54 Model uncertainty for depth of 100 m and  
K=1 and R=1, Angle ratio 0.6-0.4 

Fig. A-55 Model uncertainty for depth of 100 m 
and  K=1 and R=1, Angle ratio 0.75-0.6 

 

 

Fig. A-56 Model uncertainty for depth of 100 m and  K=1 
and R=1, Angle ratio 0.8 

Fig. A-57 Model uncertainty for depth of 
100 m and  K=1 and R=5 
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Fig. A-58 Model uncertainty for depth of 100 m and  
K=1 and R=5, angle ratio 0.3-0.2 

Fig. A-59 Model uncertainty for depth of 100 m 
and  K=1 and R=5 Angle ratio 0.6-0.4 

 

Fig. A-60 Model uncertainty for depth of 100 m and  
K=1 and R=5, angle ratio 0.75-0.6 

Fig. A-61 Model uncertainty for depth of 100 m 
and  K=1 and R=5, Angle ratio 0.8 
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Fig. A-62 Model uncertainty for depth of 100 m 
and  K=1 and R=10 

Fig. A-63 Model uncertainty for depth of 100 m and  
K=1 and R=10, Angle ratio 0.3-0.2 

 

Fig. A-64 Model uncertainty for depth of 100 m and  
K=1 and R=10, angle ratio 0.6-0.4 

Fig. A-65 Model uncertainty for depth of 100 m 
and  K=1 and R=10, angle ratio 0.75-0.6 
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Fig. A-66 Model uncertainty for depth of 100 m and  K=1 and R=10, 
angle ratio 0.8 

 

Fig. A-67 Model uncertainty for depth of 100 m and  K=2 Fig. A-68 Model uncertainty for depth of 100 
m and  K=2 , R=1 
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Fig. A-69 Model uncertainty for depth of 100 m and  
K=2 , R=5 

Fig. A-70 Model uncertainty for depth of 100 m 
and  K=2 , R=10 

 

Fig. A-71 Model uncertainty for depth of 100 m 
and  K=2 , R=1, Angle ratio 0.3-0.2 

Fig. A-72 Model uncertainty for depth of 100 m and  
K=2 , R=1, Angle ratio 0.4-0.6 
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Fig. A-73 Model uncertainty for depth of 100 m and  
K=2 , R=1, Angle ratio 0.75-0.6 

Fig. A-74 Model uncertainty for depth of 100 m 
and  K=2 , R=1, Angle ratio 0.8 

 

Fig. A-75 Model uncertainty for depth of 100 m and  
K=2 , R=5, Angle ratio 0.3-0.2 

Fig. A-76 Model uncertainty for depth of 100 m 
and  K=2 , R=5, Angle ratio 0.6-0.4 
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Fig. A-77 Model uncertainty for depth of 100 m and  
K=2 , R=5, Angle ratio 0.75-0.6 

Fig. A-78 Model uncertainty for depth of 100 m 
and  K=2 , R=5, Angle ratio 0.8 

 

Fig. A-79 Model uncertainty for depth of 100 m and  
K=2 , R=10, Angle ratio 0.3-0.2 

Fig. A-80 Model uncertainty for depth of 100 m 
and  K=2 , R=10, Angle ratio 0.6-0.4 
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Fig. A-81 Model uncertainty for depth of 100 m and  
K=2 , R=10, Angle ratio 0.75-0.6 

Fig. A-82 Model uncertainty for depth of 100 m 
and  K=2 , R=10, Angle ratio 0.8 
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Fig. A-83 Model uncertainty for depth of 400 m and  K=0.5 

Fig. A-84 Model uncertainty for depth of 400 m and  K=0.5 , R=1 
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Fig. A-85 Model uncertainty for depth of 400 m 
and  K=0.5 , R=5 

Fig. A-86 Model uncertainty for depth of 400 m and  
K=0.5 , R=10 

 

 

 

Fig. A-87 Model uncertainty for depth of 400 m 
and  K=0.5 , R=1, Angle ratio 0.3-0.2 

Fig. A-88 Model uncertainty for depth of 400 m and  
K=0.5 , R=1, Angle ratio 0.4-0.6 
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Fig. A-89 Model uncertainty for depth of 400 m and  
K=0.5 , R=1, Angle ratio 0.75-0.6 

Fig. A-90 Model uncertainty for depth of 400 m 
and  K=0.5 , R=1, Angle ratio 0.8 

 

Fig. A-91 Model uncertainty for depth of 400 m and  
K=0.5 , R=5, Angle ratio 0.3-0.2 

Fig. A-92 Model uncertainty for depth of 400 m 
and  K=0.5 , R=5, Angle ratio 0.6-0.4 
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Fig. A-93 Model uncertainty for depth of 400 m and  
K=0.5 , R=5, Angle ratio 0.75-0.6 

Fig. A-94 Model uncertainty for depth of 400 m 
and  K=0.5 , R=5, Angle ratio 0.8 

 

Fig. A-95 Model uncertainty for depth of 400 m and  
K=0.5 , R=10, Angle ratio 0.3-0.2 

Fig. A-96 Model uncertainty for depth of 400 m 
and  K=0.5 , R=10, Angle ratio 0.6-0.4 
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Fig. A-97 Model uncertainty for depth of 400 m 
and  K=0.5 , R=10, Angle ratio 0.75-0.6 

Fig. A-98 Model uncertainty for depth of 400 m and  
K=0.5 , R=10, Angle ratio 0.8 

 

 

 

Fig. A-99 Model uncertainty for depth of 400 m and  K=1 
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Fig. A-100 Model uncertainty for depth of 400 m and  
K=1 and R=1 

 

Fig. A-101 Model uncertainty for depth of 
400 m and  K=1 and R=1, Angle ratio 0.3-
0.2 

 

 

 

Fig. A-102 Model uncertainty for depth of 400 m 
and  K=1 and R=1, Angle ratio 0.6-0.4 

Fig. A-103Model uncertainty for depth of 400 m and  
K=1 and R=1, Angle ratio 0.75-0.6 
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Fig. A-104 Model uncertainty for depth of 400 m and  K=1 
and R=1, Angle ratio 0.8 

Fig. A-105 Model uncertainty for depth of 
400 m and  K=1 and R=5 

 

 

 

 

Fig. A-106 Model uncertainty for depth of 400 m 
and  K=1 and R=5, angle ratio 0.3-0.2 

Fig. A-107 Model uncertainty for depth of 400 m and  
K=1 and R=5 Angle ratio 0.6-0.4 
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Fig. A-108 Model uncertainty for depth of 400 m and  
K=1 and R=5, angle ratio 0.75-0.6 

Fig. A-109 Model uncertainty for depth of 400 m 
and  K=1 and R=5, Angle ratio 0.8 

 

 

 

 

Fig. A-110 Model uncertainty for depth of 400 m 
and  K=1 and R=10 

Fig. A-111 Model uncertainty for depth of 400 m 
and  K=1 and R=10, Angle ratio 0.3-0.2 
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Fig. A-112 Model uncertainty for depth of 400 m and  
K=1 and R=10, angle ratio 0.6-0.4 

Fig. A-113 Model uncertainty for depth of 400 m 
and  K=1 and R=10, angle ratio 0.75-0.6 

 

 

Fig. A-114 Model uncertainty for depth of 400 m and  K=1 and R=10, angle ratio 0.8 
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Fig. A-115Model uncertainty for depth of 400 m and  
K=2  

Fig. A-116 Model uncertainty for depth of 400 m 
and  K=2 , R=1 

 

 

Fig. A-117 Model uncertainty for depth of 400 m and  
K=2 , R=5 

Fig. A-118 Model uncertainty for depth of 400 m 
and  K=2 , R=10 
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Fig. A-119 Model uncertainty for depth of 400 m 
and  K=2 , R=1, Angle ratio 0.3-0.2 

Fig. A-120 Model uncertainty for depth of 400 m and  
K=2 , R=1, Angle ratio 0.4-0.6 

 

 

Fig. A-121 Model uncertainty for depth of 400 m 
and  K=2 , R=1, Angle ratio 0.75-0.6 

Fig. A-122 Model uncertainty for depth of 400 m 
and  K=2 , R=1, Angle ratio 0.8 
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Fig. A-123 Model uncertainty for depth of 400 m 
and  K=2 , R=5, Angle ratio 0.3-0.2 

Fig. A-124 Model uncertainty for depth of 400 m and  
K=2 , R=5, Angle ratio 0.6-0.4 

 

Fig. A-125 Model uncertainty for depth of 400 m and  
K=2 , R=5, Angle ratio 0.75-0.6 

Fig. A-126 Model uncertainty for depth of 400 m 
and  K=2 , R=5, Angle ratio 0.8 
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Fig. A-127 Model uncertainty for depth of 400 m 
and  K=2 , R=10, Angle ratio 0.3-0.2 

Fig. A-128 Model uncertainty for depth of 400 m 
and  K=2 , R=10, Angle ratio 0.6-0.4 

 

Fig. A-129 Model uncertainty for depth of 400 m and  
K=2 , R=10, Angle ratio 0.75-0.6 

Fig. A-130 Model uncertainty for depth of 400 m 
and  K=2 , R=10, Angle ratio 0.8 
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