Linkdping Studies in Science and Technology

Thesis No. 1021

Integrated Optimal Code Generation for

Digital Signal Processors
by
Andrzej BEDNARSKI

Akademisk avhandling

som for avlaggande av teknologie doktorsexamen vid Linkdpings universitet kommer att
offentligt forsvaras i Planck, Fysikhuset, Linkdpings universitet, onsdagen den 7 juni 2006,
kl. 13.15

Abstract

In this thesis we address the problem of optimal code generation for irregular architectures
such as Digital Signal Processors (DSPs).

Code generation consists mainly of three interrelated optimization tasks: instruction se-
lection (with resource allocation), instruction scheduling and register allocation. These tasks
have been discovered to b&P-hard for most architectures and most situations. A common
approach to code generation consists in solving each task sepdratetya decoupled man-
ner, which is easier from a software engineering point of view. Phase-decoupled compilers
produce good code quality for regular architectures, but if applied to DSPs the resulting code
is of significantly lower performance due to strong interdependences between the different
tasks.

We developed a novel method for fully integrated code generation at the basic block
level, based on dynamic programming. It handles the most important tasks of code gener-
ation in a single optimization step and produces an optimal code sequence. Our dynamic
programming algorithm is applicable to small, yet not trivial problem instances with up to
50 instructions per basic block if data locality is not an issue, and up to 20 instructions if we
take data locality with optimal scheduling of data transfers on irregular processor architec-
tures into account. For larger problem instances we have developed heuristic relaxations.

In order to obtain a retargetable framework we developed a structured architecture spec-
ification language, xADML, which is based on XML. We implemented such a framework,
called OPTIMIST that is parameterized by an xADML architecture specification.

The thesis further provides an Integer Linear Programming formulation of fully integrated
optimal code generation for VLIW architectures with a homogeneous register file. Where it
terminates successfully, the ILP-based optimizer mostly works faster than the dynamic pro-
gramming approach; on the other hand, it fails for several larger examples where dynamic
programming still provides a solution. Hence, the two approaches complement each other.
In particular, we show how the dynamic programming approach can be used to precondition
the ILP formulation.

As far as we know from the literature, this is for the first time that the main tasks of code
generation are solved optimally in a single and fully integrated optimization step that addi-
tionally considers data placement in register sets and optimal scheduling of data transfers
between different registers sets.

This work has been supported by the Ceniit (Center for Industrial Information Technology)
01.06 project of Linkdpings universitet, ECSEL (Excellence Center for Computer Science
and Systems Engineering), and the RISE (Research Instituet for Integrational Software En-
gineering) project supported by SSF (Stiftelsen for Strategisk Forskning), the Swedish Foun-
dation for Strategic Research.

Department of Computer and Information Science
Linkdpings universitet
SE-581 83 Linkdping, Sweden

ISBN 91-85523-69-0 ISSN 0345-7524

Linkoping Studies in Science and Technology
Dissertation No. 1021

Integrated Optimal Code Generation for
Digital Signal Processors

Andrzej BEDNARSKI

\SGSUNIV
%,

D
< <
-9 5
%, &
g,

D,
N UN\\IQ‘

Department of Computer and Information Science
Linkopings universitet
SE-581 83 Linkoping, Sweden

Linkoping 2006

Printed by LiU-Tryck, Link6ping 2006

Jo Leonia ...

Abstract

In this thesis we address the problem of optimal code generation for irregular
architectures such as Digital Signal Processors (DSPs).

Code generation consists mainly of three interrelated optimization tasks:
instruction selection (with resource allocation), instruction scheduling and
register allocation. These tasks have been discovered to be NP-hard for most
architectures and most situations. A common approach to code generation
consists in solving each task separately, i.e. in a decoupled manner, which is
easier from a software engineering point of view. Phase-decoupled compilers
produce good code quality for regular architectures, but if applied to DSPs
the resulting code is of significantly lower performance due to strong interde-
pendences between the different tasks.

We developed a novel method for fully integrated code generation at the
basic block level, based on dynamic programming. It handles the most im-
portant tasks of code generation in a single optimization step and produces
an optimal code sequence. Our dynamic programming algorithm is applica-
ble to small, yet not trivial problem instances with up to 50 instructions per
basic block if data locality is not an issue, and up to 20 instructions if we take
data locality with optimal scheduling of data transfers on irregular processor
architectures into account. For larger problem instances we have developed
heuristic relaxations.

In order to obtain a retargetable framework we developed a structured ar-
chitecture specification language, xADML, which is based on XML. We im-
plemented such a framework, called OPTIMIST that is parameterized by an
xADML architecture specification.

The thesis further provides an Integer Linear Programming formulation of
fully integrated optimal code generation for VLIW architectures with a ho-
mogeneous register file. Where it terminates successfully, the ILP-based op-
timizer mostly works faster than the dynamic programming approach; on the
other hand, it fails for several larger examples where dynamic programming
still provides a solution. Hence, the two approaches complement each other.
In particular, we show how the dynamic programming approach can be used
to precondition the ILP formulation.

i

Abstract

As far as we know from the literature, this is for the first time that the main
tasks of code generation are solved optimally in a single and fully integrated
optimization step that additionally considers data placement in register sets
and optimal scheduling of data transfers between different registers sets.

This work has been supported by the Ceniit (Center for Industrial Informa-
tion Technology) 01.06 project of Linkopings universitet, ECSEL (Excellence
Center for Computer Science and Systems Engineering), and the RISE (Re-
search Instituet for Integrational Software Engineering) project supported by
SSF (Stiftelsen for Strategisk Forskning), the Swedish Foundation for Strategic
Research.

Acknowledgments

The work presented in this thesis could never be accomplished without the
support of many people. I would like to take the opportunity here to formally
thank them and apologize for those I forgot to mention.

First of all I would like to thank my supervisor Christoph KEessLER for his
precious help and advice during this whole period of Ph.D. study. He spent a
large amount of his time guiding me in research work and writing. For me he
was the perfect supervisor that a Ph.D. student may have ever expected. This
work could have never been completed without Christoph’s support.

Also, I would like to thank Peter FrrrzsoN who offered me the opportunity
to join Programming Environments Laboratory (PELAB) in March 1999, and
triggered in me the interest for code generation.

Many thanks go to Peter ARONssON for diverse administrative arrange-
ments and his effort for making me feel here in Sweden like at home. To-
day I am aware that without his help I would have probably never joined
Linkopings universitet.

I would like as well to thank all members of PELAB, who create a stimu-
lating environment, and in particular Jens Gustavsson, Andreas Bora, and
John WiLANDER. A particular memory to Emma LARSDOTTER NILSSON who
unfortunately passed away too early. Special thanks go to Levon SALDAMLI
for relevant discussions concerning C++ issues but, also as a friend, for mak-
ing my spare time enjoyable. Further, I am also thankful to Bodil MarTsson
KIHLSTROM, our secretary, who makes not only my stay at the university eas-
ier, but also of all other members of PELAB. A great thank to Jon EDVARDs-
sON, Tobias Rr1zau, and Damien WyART for tremendous help with IXTEX and
motivating discussions. I am grateful to Mikhail CHALABINE for helping me
with the thesis cover and to Mattias ERikssoN for proofreading the thesis. A
thank to professor Petru ELEs and Alexandru ANDREI from Embedded Sys-
tems Laboratory (ESLAB) of Linkopings universitet for providing us access
to CPLEX installation.

I would like to give credits to my master students, without whom this work
would probably never progress so far. Special thanks go to Anders EpQvist
who provided me with relevant feed back and contributed significantly in the

v

Acknowledgments

implementation and improvement of the project. The credits for writing ARM
specifications and improving xADML specifications go to David LANDEN. A
thank to Yuan Yonayi for providing me with the Motorola MC56K specifi-
cations. Further, I would like to thank Andreas REHNSTROMER who imple-
mented the first version of the graphical tool for writing xADML specifica-
tions.

Also a thank goes to administrative staff at IDA, in particular Lillemor
WALLGREN and Britt-Inger KARLSSON.

Finally I would like to thank my friends and my family who encouraged me
during these long years of expatriation. I also would like to thank Mingmin
whom I love tenderly.

Andrzej BEDNARSKT
Linkoping, May 2006

Contents

Abstract

|Acknowledgments|

[1._Introductionl

1.1. Introduction to Compilation and Code Generation tor DSP| . .
1.2. Compilation Process|
1.3. IVAtIONS| . v v o e e

1.6. Ornginofthe Chapters|.
1.7. Organizationof the Thesis|.

|2. Introduction to Code Generation for Digital Signal Processors
1. IVALIONS| « v v v v v e e e e e e e e e e e e e e e e e

2. 1n Tasks of neration|

2.2.2. Instruction Scheduling|
2.2.3. Register Allocation|
2.2.4. Partitioning|.
[2.3. Optimization Problems in Code Generation|

[2.3.1. Code Generation Techniques|.
2.4. Phase Ordering Problem|.
2.5. Integrated Approaches|.
2.6. DSP Challenges|
2.7. Need for Integrated Code Generation] v\ v ...
2.8. Retargetable Code Generation|

[3- Prerequisites|
B Notations
[3.2. Modeling the Target Processor|

Contents

[3.3. Termunology|. 27
3.3.1. IR-levelschedulingl 27

3.3.2. Instructionselectionl. 27

[3.3.3. Target-level schedulingl 29

B.4. Classesof Schedules 30
3.4.1. Greedy Schedules| 30

3.4.2. Strongly Linearizable Schedules and In-order |

| Compaction|, 30
3.4.3. Weakly Linearizable Schedules|. 32

4.4, n-linearizable Schedules| 32

3.5. Advanced Code Obtained by Superoptimization|. 33
3.6. Registerallocation| L L. 33

|4. Integrated Optimal Code Generation Using Dynamic Programming| 35
4.1. Overview of our Approach| 35
4.2. Main Approach to Optimal Integrated Code Generation| 36
4.2.1. Interleaved Exhaustive Enumeration Algorithm|. 36

4.2.2. Comparability of Target Schedules| 39

4.2.3. Comparability Il o oo 40

4.2.4. Comparability II, Time Profiles| 41

4.2.5. Comparability III, Space Profiles| 47

[4.3. Improvement of the Dynamic Programming Algorithms| 53
4.3.1. Structuring of the Solution Spacel 53

4.3.2. Changed Order ot Construction and Early Termination| 54

4.3.3. Putung the Pieces Together: Time-optimal Code Gen- |

| eration for Clustered VL.IW Architectures 55
434 Example.o 58

4.3.5. Heuristic Pruning ot the Solution Space]. 59

4.3.6. Beyond the Basic Block Scope| oL 60

[4.4. Implementation and Evaluation|. 61

[6. Energy Aware Code Generation| 67
5.1. Introduction to Energy Aware Code Generation|. 67
5.2. PowerModell 70
5.3. Energy-optimal Integrated Code Generation| 71
............................. 71

5.5. Construction of the Solution Space|. 72
5.6. Heuristics for Large Problem Instances| 74
5.7. Possible Extensions|. oL 76
G.8 RelatedWorkl 76

Contents

Vil

|6. Exploiting DAG Symmetries| 79
b.l. Motivationl. 79
[6.2. Solution Space Reduction| 81

6.2.1. Exploitng the Partial-symmetry Property| 81
6.2.2. Instrucuon Equivalence|o L. 83
6.2.3. Operator Equivalence| 83
6.2.4. Node Equivalencel 83
6.2.5. Improved Dynamic Programming Algorithm| 85
[6.3. Implementationand Results|. 86

[7._Integer Linear Programming Formulation| 91
ZI_Intoduction.ot 91
(2. TheILP Formulatonl. 92

721, Notations] . -+« « v v v i 93
[72.2. Solution Variables| 93
7.2 Parameter he ILP Model[. 94
(724, Instrucuon Selectionl. 95
7.2.5. Register Allocation| 97
7.2.6. Instruction Scheduling| 98
..................... 99

[7.2.8. Optimization Goal|. 100
[7.3. Experimental Results|. 100
7.3.1. Target Architectures| 101
7.3.2. Experimental Setup| 101
............................. 102

[8. xADML: An Architecture Specification Language| 107
B.1. Motivationl. 107
8.2. NOLAHONS| - -« » v v e e 108
8.3. xADML: Language Spectfications| 108

......................... 109

B4l TIssueWidthl. 110
8.4.2. Registers| 110
8.43. Residences| 110
B44. Resources L 111

B5 Patterns 112
B.6. InstructonSet. 113
8.6.1. One-to-one Mapping| 115

8.6.2. Pattern Mapping|

0.0 Nna d I 'y Ol 1IN] 10N and 1attern | 1€
[8.6.4. Data Dependence Edges|. 120

viil Contents

[8.7. Transter Instructions|« o oo 120
8.8. Formating Facithties| 122
8.9. Examples|. 123

8.9.1. Specification of Semantically Equivalent Instructions| . . 123

8.9.2. Associating Pattern Operand Nodes with |

| Residence Classes| 123
[8.10. Other Architecture Description Languages| 124

[9. Related Work] 129
[9.1. Decoupled Approaches| 129
9.1.1. Opumal Solutions| 129

9.12. HeunisticSolutionsl 130

[9.2. Integrated Code Generation|. 131
9.2.1. Heurisuic Methods|, . 131

[9.2.2. Optimal Methods| 132

0.3. SimularSoluzonsf L o 132
9.3.1. AvivFrameworkl. 132
O32CHESS . o oo oo e 135

[10. Possible Extensions| 137
[10.1. Residence Classes| 137
[102. xADML Extension| . .« . o« oottt ettt 137
[10.2.1. Parallelization of the |

[Dynamic Programming Algorithms| 138
(10.3. Global Code Generation|. 138
10.4. Sottware Pipeliming| oL oL oL 139
10.5. DAG Characterizationl, 142
[10.6. ILP Model Extensionsl 143
10.7.Spulling| 143
[11. Conclusions| 145
|A. Least-cost Instruction Selection in DAGs is NP-complete| 147
[B._AMPL Code of ILP Modell 149
References| 155

Index 169

Chapter 1.

Introduction

THIS CHAPTER IS A GENERAL introduction to our research area, that is optimal
code generation for irregular architectures. We define what an irregular archi-
tecture is and give a short introduction to compilation and code generation.
Further, we motivate the interest of optimal code generation and summarize
the contributions of our work.

1.1. Introduction to Compilation and Code
Generation for DSP

A Digital Signal Processor (DSP) is an integrated circuit whose main task is
to process a digital input signal and produce an output signal. Usually the
input signal is a sampled analog signal, for instance speech or temperature.
An Analog-Digital Converter (ADC) transforms analog signals into a digital
form, i.e. the input signal for a DSP. The output signal from the processor can
be converted back to an analog signal with a Digital-Analog converter (DAC),
or remain in digital form. Figure[l.1|depicts such a DSP system.

Today DSP systems represent a high volume of the electronic and embed-
ded applications market that is still growing. Mobile phones, Portable Digital
Assistants (PDAs), MP3 players, microwave-ovens, cars, air planes, etc. are

Apg- Al pall, o0

ﬁADCIﬁ DSPIﬁDAC ﬁ

Figure 1.1.: Model of a DSP system.

Chapter 1. Introduction

only some examples equipped with a DSP system. Most embedded systems
implement signal filters that are based on signal theory. Many filter computa-
tions are based on convolution:

that involves the fundamental operation of Multiplication and Accumulation,
for short MAC. Thus a MAC instruction is implemented in hardware on al-
most all classes of DSPs for efficiency purposes. The MAC instruction is
an example of various hardware solutions to cope with high market require-
ments.

Manufacturers produce DSP processors with different technical solutions
that meet computational requirements imposed by the market. As a conse-
quence, processors exhibit more and more irregularities: specialized register
sets, multiple memory banks, intricate data paths, etc. Thus, high require-
ments are achievable only if the code exploits DSP features and irregularities
efficiently.

For regular architectures, currently available compiler techniques produce
high quality code, but if applied to DSPs hand made code is hundreds of per-
cent better [Leu00a]]. This is because compiler techniques for standard pro-
cessors are unable to efficiently exploit all available resources. Thus, for hot
parts of the applications, DSP experts often write code directly in target as-
sembly language and integrate it into automatically generated assembly code.
Hand-coded parts of an application are generally of high quality but come
with several drawbacks:

e High cost: it is due to the need of highly qualified staff and longer pro-
duction time.

¢ Maintainability: it is difficult to update an application that is written
partially in high level language, such as C, and in assembly language.

e Hardware update: if the platform is replaced all parts of the assembly
code are likely to be totally rewritten. This is time consuming in terms
of implementation and testing.

Moreover, high competition in electronics market increases the time to mar-
ket demand drastically. Programmers are eager to write embedded applica-
tions in a high level language such as C instead of target depend assembly
code and leave the optimization task to the compiler. There are numerous rea-
sons for using the C language, mainly its popularity in industry for embedded

1.2. Compilation Process

systems and its flexibility. However, some basic operators implemented in a
DSP are of higher level than basic operators in C. For example, on most DSPs
the following C statement a=b*c+a; requires a single target instruction, called
multiply and accumulate, noted MAC. To map such a statement to the MAC
instruction the compiler needs to perform pattern matching on the intermedi-
ate code.

Additionally, retargetability of a tool is an issue for fast adaptation to new
emerging hardware.

1.2. Compilation Process

In general, a compiler is a software tool that translates programs written in a
high level language into equivalent programs in object code or machine lan-
guage that can be executed on a particular target architecture (could be a vir-
tual machine as well). The compilation process inside a compiler consists of at
least five steps [ASU86]:

o Lexical analysis takes as input character strings and divides them into
tokens. Tokens are symbolic constants representing strings that consti-
tute the vocabulary of the input language (e.g. “=", words, delimiters,
separators, etc.). Lexical analysis produces error messages if the input
character strings are incorrectly formed. The output of lexical analysis
consists of a stream of tokens.

e Syntactic analysis, or parsing, processes the stream of tokens and forms
a high level Intermediate Representation (IR) such as parse trees or ab-
stract syntax trees. A tree is a data structure accessed by the top node,
called root. Each node of a tree is either a leaf or an internal node that
has one or more child nodes. A syntax tree is a compressed representa-
tion of a parse tree. An operator appears as an internal node of a tree,
where its children represent operands.

e Semantic analysis takes as input a high level IR and verifies that the pro-
gram satisfy semantic properties of the input language. Usually, after
semantic analysis the IR is transformed to lower level, also known as
intermediate code generation phase.

e Optimizations that are target independent such as dead code elimina-
tion, local and global subexpression elimination, loop unrolling, etc. are
performed on a high and/or low level IR. The choice, order and level of

Chapter 1. Introduction

optimization depend on the overall optimization goal. Machine inde-
pendent optimizations are considered as add-ons intended to improve
code quality in various aspects.

e Code generation transforms the low level IR, or the intermediate code
into equivalent machine code. Besides the tasks of instruction selection,
instruction scheduling, and register allocation, numerous machine de-
pendent optimizations are performed inside the code generator.

A compiler includes additionally a symbol table, a data structure which
records each identifier used in the source code and its various attributes (type,
scope, etc.). The five tasks with the symbol table are summarized in Figure[1.2}

1.3. Motivations

The first criterion of a compiler is to produce correct code, but often correct
code is not sufficient. Users expect programs to use available hardware re-
sources efficiently. The current state-of-the-art in writing highly optimized
applications for irregular architectures offers two alternatives:

e Writing the applications directly in the assembly code for the specific
hardware. Often, it is possible to automatically generate assembly code
for those parts of the program that are not critical for the application,
and only concentrate on the computationally expensive parts and write
code for them by hand.

¢ Obtain highly optimized libraries from the hardware provider for a gi-
ven target architecture. Then, the work consists in identifying parts
of the application that may use a given library and call it. However,
there are few companies that can spend sufficient effort in implementing
highly optimized general purpose libraries, that are as well handwritten
directly in the assembly language by experts. Designing a good library
may be a difficult task, and it may work only for specific application
areas.

With the solutions above it is possible to generate highly optimized code but
at high cost in terms of man months. Further, the code needs to be rewritten
almost completely if the underlying hardware changes, since the methods are
rarely portable. In terms of software engineering, maintainability is difficult
as long as there is no unified framework where third-party components can
be updated more frequently than the application itself.

1.3. Motivations

Source program

Lexical analysis

Semantic analysis - -

|

|

!

|

|

!

|

|

|

!

| Syntactic analysis
|

|

|

|

|

|

!

! N
! ==+ Symbol table
|

Machine independent | _ -
optimizations

Instruction selection ,
Instruction scheduling |/
Register allocation

Code generator

Target machine code

Figure 1.2.: Global view of a compilation process for a specific target machine.

Chapter 1. Introduction

Within this work we aim at improving the current state-of-the-art in com-
piler generation for irregular architectures, where the user keeps writing appli-
cations in a high level language and the compiler produces highly optimized
code that exploits hardware resources efficiently. We focus particularly on
code generation and aim at producing an optimal code sequence for a given
IR of an input program. Optimal code sequence is of particular interest for
fixed applications where the requirements are difficult to meet, and often a
dedicated hardware is required. Furthermore, from the hardware designer
viewpoint, information about optimal code sequence may influence further
design decisions.

Moreover, we consider the retargetability issue. The code generation frame-
work should not encapsulate target hardware specific, but take the hardware
description as input information together with the application specified in a
high level language. From the hardware description it is either possible to
generate a compiler (code generator generator), or parameterize an existing
framework. A code generator generator is usually more difficult to build,
thus in this thesis we implement a prototype of a parameterizable retargetable
framework for irregular architectures.

1.4. Research Interest

In the rest of this thesis by IR we mean a low level IR where data dependences
are represented as a Directed Acyclic Graph (DAG). A DAG G = (V,E) is
a graph whose edges e € E are ordered pairs of nodes v € V and there is no
path that starts and ends at the same node. IR nodes correspond to operations
(except for the leave nodes) and the children of a node are the operands. The
graphical representation of the IR can be described in textual form by three-
address code. Three-address code consists of an instruction with at most three
operands. Such a representation is close to the assembly language. For in-
stance for a binary operation a three-address code is shown below.

destination = operandl operation operand2

In general, the compilation process does not work on the whole program or
the whole function at once but on a set of smaller units called basic blocks. A
basic block is a set of three-address codes (or IR statements) in which the flow
of control enters only at the beginning and leaves only at the end. Each time
the basic block is entered all the statements are executed exactly once.

Code generation research started at the time when the first computers ap-
peared. Today it is known that for most hardware architectures and for IR

1.5. Contributions

dependence graphs that form DAGs, most important problems of optimal
code generation are NP-hard.

Often, the quality of a compiler is evaluated using a set of benchmarks and
compared either to figures obtained by another compiler on the same set of
benchmarks or to hand optimized code. However, in both cases it is impos-
sible to indicate how far from the optimal code the generated code sequence
is because the optimum is not known. We do research aiming for a novel
method for fully integrated code generation, that actually allows to produce
optimal code for problem instances that could not be solved optimally with
the state-of-the-art technology.

From a code generation point of view, a program is a directed graph, also
called Control Flow Graph (CFG) whose nodes represent basic blocks. In this
thesis, and as a first step, we focus on code generation on basic block level, z.e.
local code generation. Generalization for global code generation is planned for
future work.

Integration of several NP-hard problems into a single optimization pass in-
creases considerably the complexity. We are aware that generating optimal
code is not feasible for large problem instances, such as basic blocks with hun-
dreds of instructions.

1.5. Contributions

In this thesis we provide both a dynamic programming and an integer linear
programming approach to retargetable, fully integrated optimal code genera-
tion that makes it possible to precisely evaluate a code generation technique.
Further, we see other domains that can benefit from optimal code generation:

* The method is suitable for optimizing critical parts of a fixed (or DSP)
application. Since the proposed optimization technique requires a large
amount of time and space, it is intended only for the final code genera-
tion before shipping the code on the hardware.

¢ For hardware designers it is possible to evaluate an architecture during
the design phase, and take decisions upon the resulting feedback. Thus,
it is possible to modify a hardware, reevaluate an application and analyze
the influence on code quality of such a modification.

As part of the discussion of future work in Chapter 10| we provide further
possible extensions and contributions.

Chapter 1. Introduction

1.6. Origin of the Chapters

KEsSLER started considering the problem of optimal code generation in 1993
with different scheduling algorithms [Kes98,Keff00]. In year 2000, he joined
Linkopings universitet and under his guidance we continued research on opti-
mal code generation. A large part of the material in this thesis originates from
the following publications:

e A. Bepnarskr and C. KessLer. Exploiting Symmetries for Optimal
Integrated Code Generation. In Proc. International Conference on Em-
bedded Systems and Applications, pages 83-89, June 2004.

e C. KessLER and A. BepDNARskI. Energy-Optimal Integrated VLIW
Code Generation. In Michael Gerndt and Edmund Kereku, editors,
Proc. 11th Workshop on Compilers for Parallel Computers, pages 227—
238, July 2004.

e C. KessLEr and A. BEDNARsKI. Optimal integrated code generation
for VLIW architectures. To appear in Concurrency and Computation:
Practice and Experience, 2006.

e A.Bepnarskr and C. Kesster. Optimal Integrated VLIW Code Gen-
eration with Integer Linear Programming. Accepted for publication at
Euro-Par 2006 Conference in Dresden, 2006.

1.7. Organization of the Thesis
The rest of the thesis is organized as follows:

e Chapter P|introduces the code generation problem and focuses on digi-
tal signal processor issues. In this chapter we motivate why, if searching
for an optimal code sequence, we require an integrated approach.

e Chapter 3| provides the necessary notations and formalisms used in the
rest of the thesis. Additionally, we provide a formal model of our target
architecture.

o Chapter 4| provides the dynamic programming algorithm for determin-
ing a time-optimal schedule for regular and irregular architectures. In
this chapter we also formally prove that the dynamic programming al-
gorithm to find an optimal solution.

1.7. Organization of the Thesis

o Chapter[5|is an extension of our work in the area of energy aware code
generation. Our method is generic and can be easily adapted to other
domains where it is possible to define a monotonic cost function of
the schedule length. The chapter presents a method for energy optimal
integrated code generation (for generic VLIW processor architectures)
based on an energy model from the literature.

o Chapter [6] presents an optimization technique that reduces time and
space usage of the dynamic programming algorithm. We exploit a so-
called partial-symmetry property of data dependence graphs that results
in higher compression of the solution space.

o Chapter [7] provides an integer linear programming (ILP) formulation
that fully integrates all phases of code generation as a single integer lin-
ear problem. The formulation is evaluated against the dynamic pro-
gramming approach and we show the first results.

e Chapter (8] provides the specification of our structured hardware de-
scription language called Extended Architecture Description Mark-up
Language (xADML), based on Extensible Mark-up Language (XML).

o Chapter[9]classifies related work in the area of decoupled and integrated
code generation solutions.

e Chapter[10gives different possible extensions of the thesis work.
¢ Chapter [11]concludes the thesis.

Chapter 2.

Introduction to Code Generation
for Digital Signal Processors

IN THIS CHAPTER WE INTRODUCE the code generation problem and concen-
trate more on digital signal processor (DSP) architectural issues. Additionally
we motivate why we need an integrated approach when we are searching for
an optimal code sequence. Further we provide related work in the area of
integrated code generation.

2.1. Motivations

The advances in the processing speed of current microprocessors are caused
not only by progress in higher integration of silicon components, but also by
exploiting an increasing degree of instruction-level parallelism in programs,
technically realized in the form of deeper pipelines, more functional units,
and a higher instruction dispatch rate. Generating efficient code for such pro-
cessors is largely the job of the programmer or the compiler back-end. Even
though most superscalar processors can, within a very narrow window of a
few subsequent instructions in the code, analyze data dependences at runtime,
reorder instructions, or rename registers internally, efficiency still depends on
a suitable code sequence.

The high volume of the embedded processor market asks for high perfor-
mance at low cost. Digital Signal Processors (DSPs) with a VLIW or clus-
tered VLIW architecture became, in the last decade, the predominant platform
for high-performance signal processing applications. In order to achieve high
code quality, developers still write critical parts of DSP applications in assem-
bly language. This is time consuming, and maintenance and updating are dif-
ficult. Traditional compiler optimizations developed for standard processors

12

Chapter 2. Introduction to Code Generation for Digital Signal Processors

IR-level _
aOvinstruction scheduling

a0

S N

@
A\ ,@(

>0
> @‘3\

Hevel
bcheduling

uonosjesloiPpFsul %
N
"~ uoIo9|as uononisul

Y target-level
Ky oagoqnstructlon s

duling

uoI}99]9s uolldnJisul
UORJ9|9s yollonJisul

Figure 2.1.: The tasks of code generation as phase-decoupled or integrated
problem. For clustered VLIW architectures, a fourth problem di-
mension (partitioning) could be added.

still produce poor code for DSPs [Leu00a]]. and thus do not meet the require-
ments One reason for this is that the main tasks in code generation, such as
instruction selection, instruction scheduling and register allocation, are usu-
ally solved in separate, subsequent phases in the compiler back-end, such that
the interdependences between these phases, which are particularly strong for
DSP architectures, are partially ignored. Hence, we consider the integration
of these tasks into a single optimization problem.

2.2. Main Tasks of Code Generation

The task of generating target code from an intermediate program represen-
tation can be mainly decomposed into the interdependent subproblems of
instruction selection, instruction scheduling, and register allocation. These
subproblems span a three-dimensional problem space (see Figure[2.1)). Phase-
decoupled code generators proceed along the edges of the cube, while an in-
tegrated solution directly follows the diagonal, considering all subproblems
simultaneously.

2.2.1. Instruction Selection

Instruction selection maps the abstract operations given in an intermediate rep-
resentation (IR) of the input program to machine-specific instructions of the

2.2. Main Tasks of Code Generation

13

target processor, where our notion of an instruction also includes a specific
addressing mode and a (type of) functional unit where it could be executed,
if there are several options. For each instruction, one can specify its expected
cost (in CPU cycles) and its semantics in terms of equivalent IR operations,
where the latter is usually denoted in the form of a (tree) pattern. Hence, in-
struction selection amounts to a pattern matching problem with the goal of
determining a minimum cost cover of the IR with machine instructions where
cost usually denotes latency but also may involve register requirements, in-
struction size, or power consumption. For tree-structured IR formats and
most target instruction sets, this problem can be solved efficiently. The dy-
namic programming algorithm proposed by Ao and Jounson [A]J76] gives
a minimal-cost covering for trees in polynomial time for most target instruc-
tion sets.

But, for DAGs minimal-cost instruction selection is NP-complete [Pro98]],
see also Appendix There are several heuristic approaches that split the
DAG into disjoint subtrees and apply tree pattern matching [EK91,PW96] on
these.

2.2.2. Instruction Scheduling

Instruction scheduling is the task of mapping each instruction of a program to
a point (or set of points) of time when it is to be executed, such that constraints
implied by data dependences and limited resource availability are preserved.
For RISC and superscalar processors with dynamic instruction dispatch, it is
sufficient if the schedule is given as a linear sequence of instructions, such that
the information about the issue time and the functional unit can be inferred
by simulating the dispatcher’s behavior. The goal is usually to minimize the
execution time while avoiding severe constraints on register allocation. Al-
ternative goals for scheduling can be minimizing the number of registers (or
temporary memory locations) used, or the energy consumed.

2.2.3. Register Allocation

Register allocation maps each value in a program that should reside in a reg-
ister, thus also called a virtual register, to a physical register in the target pro-
cessor, such that no value is overwritten before its last use. If there are not
enough registers available from the compiler’s point of view, the live ranges of
the virtual registers must be modified, either by:

* coalescing, that is, forcing multiple values to use the same register. Reg-
ister coalescing identifies copy operations of values that do not interfere

Chapter 2. Introduction to Code Generation for Digital Signal Processors

with each other and are not overwritten after the copy. Then, the un-
necessary copy is eliminated, and occurrences of the copied value are
replaced with the original value.

e spilling the register, that is, storing the value of that register back to the
memory and reloading it later, thus splitting the live range of value such
that a different value can reside in that register in the meantime.

Even for superscalar processors, which usually expose quite many general-
purpose registers to the programmer and internally may offer even more by
hardware register renaming, spilling caused by careless use of registers should
be avoided if possible, as generated spill code cannot be recognized as such
and removed by the instruction dispatcher at runtime, even if there are inter-
nally enough free registers available. Also, spill code should be avoided espe-
cially for embedded processors because more memory accesses generally im-
ply higher energy consumption. Finally, if less virtual registers are live across
a function call, less registers must be saved to the stack, which results in less
memory accesses, too. If the schedule is fixed and spilling cannot be avoided
completely, the goal is to find a fastest instruction sequence that includes nec-
essary spill code. Another strategy is to find a new schedule that uses less
registers, possibly by accepting an increase in execution time.

2.2.4. Partitioning

Partitioning of data and instructions across clusters becomes an issue for clus-
tered VLIW architectures, where not every instruction can use every register
as operand or destination register, due to restrictions implied by data paths or
instruction set encoding. We group registers that exhibit equal constraints on
addressability as operands in all instructions of a given instruction set into a
register class (a formal definition will be given later). While we could even treat
partitioning as a fourth problem dimension, the partitioning of data across
register classes can be considered a part of the register allocation task, and
the mapping of instructions to a unit in a specific cluster for execution can be
included in the instruction selection problem.

2.3. Optimization Problems in Code Generation

We refer to solving the problem of generating time-optimal code for a given
program fragment, that is, code that needs a minimum number of clock cy-
cles to execute, as time optimization. Likewise, by space optimization, we de-
note solving the problem of determining space-optimal code, that is, code that

2.3. Optimization Problems in Code Generation

15

needs a minimum number of registers (or temporary memory locations) for
storing intermediate results without spilling. For non-pipelined single-issue
architectures, this problem is also known as minimum register instruction se-
quencing (MRIS) problem. By adding an execution time deadline or a limit
in the number of registers, we obtain constrained optimization problems such
as time-constrained space optimization or space-constrained time optimization,
respectively.

2.3.1. Code Generation Techniques

During the last two decades there has been substantial progress in the devel-
opment of new methods in code generation for scalar and instruction-level
parallel processor architectures. New retargetable tools for instruction selec-
tion have appeared, such as IBURG [FHP92,[FH95|]. New methods for fine-
grain parallel loop scheduling have been developed, such as software pipelin-
ing [ANS8,|Lam88]]. Global scheduling methods like trace scheduling [Fis81}
ElI85], percolation scheduling [Nic84,[EN89], or region scheduling [GS90]
allow to move instructions across basic block boundaries. Also, techniques
for speculative or predicated execution of conditional branches have been de-
veloped [HHG™"95]. Finally, high-level global code optimization techniques
based on data flow frameworks, such as code motion, have been described
in [KRS98].

Most of the important optimization problems in code generation have been
found to be NP-complete. Hence, these problems are generally solved by
heuristics. Global register allocation is NP-complete, as it is isomorphic to
coloring a live-range interference graph [CAC'81}|Ers71] with a minimum
number of colors. Time-optimal instruction scheduling for basic blocks is
NP-complete for almost any nontrivial target architecture [AJU77, BRG89,
HG83, MPSR95, [PS93]] except for certain combinations of very simple tar-
get processor architectures and tree-shaped dependency structures [BGS93|
BG89,BJPR85,EGS95|[Hu61KPF95IMD94,PF91]]. Space-optimal instruction
scheduling for DAGs is NP-complete [BS76,(Set75], except for tree-shaped
[BGS93|[SU70Q] or series-parallel [Giit81] dependency structures. Instruction
selection for basic blocks with a DAG-shaped data dependency structure is
assumed to be NP-complete, too, and the dynamic programming algorithm
designed for (IR) trees can no longer guarantee optimality for DAGs, espe-
cially in the presence of non-homogeneous register sets [Ert99].

Optimal selection of spill candidates and optimal a-posteriori insertion of
spill code for a given fixed instruction sequence and a given number of avail-
able registers is NP-complete even for basic blocks and has been solved by dy-
namic programming or integer linear programming for various special cases of

16

Chapter 2. Introduction to Code Generation for Digital Signal Processors

processor architecture and dependency structure [AGO1,HKMW66,[HFG89,
MD99].

For the general case of DAG-structured dependences, various algorithms
for time-optimal local instruction scheduling have been proposed, based on
integer linear programming e.g. [GE92, Kis00a,WLHOO0|Zha96]], branch-and-
bound [CC95,[HD98, YWL89], and constraint logic programming [BL99].
Dynamic programming has been used for time-optimal [Veg92] and space-
optimal [Kes98] local instruction scheduling.

2.4. Phase Ordering Problem

In most compilers, the subproblems of code generation are treated separately
in subsequent phases of the compiler back-end. This is easier from a soft-
ware engineering point of view, but often leads to suboptimal results because
the strong interdependences between the subproblems are ignored. For in-
stance, early instruction scheduling determines the live ranges for a subse-
quent register allocator; where the number of physical registers is not suffi-
cient, spill code must be inserted a-posteriori into the existing schedule, which
may compromise the schedule’s quality. Also, coalescing of virtual registers is
not an option in that case. Conversely, early register allocation introduces
additional (“false”) data dependences and thus constrains the subsequent in-
struction scheduling phase.

Example Let us illustrate the phase ordering problem by a simple example.
We consider a pipelined single-issue architecture, z.e. only one instruction can
be issued per clock cycle. Figure2.2]shows a situation where performing reg-
ister allocation prior to target instruction scheduling decreases the number of
possible schedules by adding extra constraints, and thus may miss the optimal
solution. Let us consider that the register allocator allocates values computed
by instructions a, b and c to registers T, T2, and 11 respectively. We observe
that instruction b needs to be computed before instruction c, since c over-
writes the value of register ry that is required for computing b. Therefore, this
register assignment adds an extra dependence edge, the dashed edge in the fig-
ure, sometimes called “false” dependence that ensures that the content of ry is
not overwritten before its last use.

There is only one possible target schedule after register allocation that is
compatible with such a register allocation, z.e. a, b, c. Now, if we suppose
that the instruction c has a latency of two clock cycles, and instructions a
and b take only one clock cycle, we obtain a schedule with a total execution
time of four clock cycles. Consequently, if we are optimizing for the shortest

2.4. Phase Ordering Problem

b c br2----=crl
\/)
register
a allocation arl

Figure 2.2.: Performing register allocation before instruction scheduling adds
additional constraints to the partial order of instructions.

execution time, we miss the optimal schedule, z.e. a, ¢, b that computes the
same result in three clock cycles, where b and c are overlapping in time. W

Moreover, there are interdependences between instruction scheduling and
instruction selection: In order to formulate instruction selection as a separate
minimum-cost covering problem, phase-decoupled code generation assigns a
fixed, context-independent cost to each instruction, such as its expected or
worst-case execution time, while the actual cost also depends on interference
with resource occupation and latency constraints of other instructions, which
depends on the schedule. For instance, a potentially concurrent execution of
two independent IR operations may be prohibited if instructions are selected
that require the same resource.

Example An example, adapted from [NN95], illustrates the interdependence
between the phases of instruction selection and instruction scheduling. Let
us consider an architecture with three functional units: an adder, a multiplier,
and a shifter. We assume a single-issue architecture. For the following integer
computation,

b—ax?2

it is possible to choose three different target instructions: multiply, addition
and left shift. Table [2.1}lists the three possibilities with their respective unit
occupation time. We assume that, for this target architecture and this example
each possible instruction runs on a different functional unit.

The code selection phase, if performed first, would choose the operation
with the least occupation time. In our example, the left shift instruction would
be selected, associating the shifter functional unit with the multiplication op-
eration. However, in the subsequent scheduling phase it might be the case
that the left shift instruction should be scheduled at time t; ., but the shift
unit is already allocated for computing another operation at that time t;, such
asy = x << 3 (see Figure[2.3). Figure[2.3|illustrates that the choice of using a
left shift operation instead of addition produces final code that takes one clock

Chapter 2. Introduction to Code Generation for Digital Signal Processors

Table 2.1.: Possible operations to perform the integer computation b < a x 2,
with their occupation time in clock cycles.

Operation Func. unit ~ Unit occupation
add(b, a, a) adder 4 cycles
mul(b, a, 2) multiplier 5 cycles
Ishift(b, a, 1) shifter 3 cycles

cycle longer, although the adder requires one additional occupation clock cy-
cle. Figure [2.3|(a) shows the resulting unit occupation schema if the shifter
unit performs the integer multiplication; Figure[2.3|(b) illustrates the schedule
if using the adder unit instead, which is shorter by one clock cycle.

ti: Ishift(y, x, 3) ti: Ishife(y, x, 3)

tiyr: NOP tivr: add(b,a,a)
tit2: NOP tif2: NOP
tiys: lshlft(b, a, 1) tiys: NOP
tivse: NOP titse: NOP
tiys: NOP

(a) Using the shifter (b) Using the adder

Figure 2.3.: Here, using an adder results in a shorter execution time than using
a shifter.

Furthermore, on clustered VLIW processors, concurrent execution may be
possible only if the operands reside in the right register sets, which is an issue
of register allocation. Especially for DSP processors where data paths and
instruction word encodings are optimized for a certain class of applications,
such interdependences can be quite involved. Hence, the integration of these
subproblems and solving them as a single optimization problem is a highly
desirable goal, but unfortunately this increases the overall complexity of code
generation considerably.

2.5. Integrated Approaches

There exist several heuristic approaches that aim at a better integration of in-
struction scheduling and register allocation [BSBC95,|[FR92,|GH88|KG92].

2.6. DSP Challenges

19

For the case of clustered VLIW processors, the heuristic algorithm proposed
by Karvras et al. [KAEO1] integrates cluster assignment, register allocation,
and instruction scheduling; heuristic methods that integrate instruction sche-
duling and cluster assignment were proposed by Ozer et al. [OBC98], LEu-
PERS [Leu00b] and by Nacrar and SrikanT [NSO4].

Nevertheless, the user is, in some cases, willing to afford spending a sig-
nificant amount of time in optimizing the code, such as in the final com-
pilation of time-critical parts in application programs for DSPs. However,
there are only a few approaches that have the potential —given sufficient time
and space resources—to compute an optimal solution to an integrated prob-
lem formulation, mostly combining local scheduling and register allocation
[BL99/Kas00alLeu97]). Some of these approaches are also able to partially inte-
grate instruction selection problems, even though for rather restricted machine
models. For instance, WiLsON et al. [WGHB94] consider architectures with a
single, non-pipelined ALU, two non-pipelined parallel load/store/move units,
and a homogeneous set of general-purpose registers. Araujo and MALIK
[AM95] consider integrated code generation for expression trees with a ma-
chine model where the capacity of each sort of memory resource (register
classes or memory blocks) is either one or infinity, a class that includes, for in-
stance, the TT C25. The integrated method adopted in the retargetable frame-
work Aviv [HD98]| for clustered VLIW architectures builds an extended data
flow graph representation of the basic block that explicitly represents all al-
ternatives for implementation; then, a branch-and-bound heuristic selects an
alternative among all representations that is optimized for code size.

Most of these approaches are based on integer linear programming, which
is again a NP-complete problem and can be solved optimally only for rather
small problem instances. Otherwise, integration must be abandoned and/or
approximations and simplifications must be performed to obtain feasible op-
timization times, but then the method gives no guarantee how far away the
reported solution is from the optimum. Admittedly, ILP is a very general
tool for solving scheduling problems that allows to model certain architec-
tural constraints in a flexible way, which enhances the scope of retargetability
of the system. ILP has also been used for several other integrated approaches,
by Wirson [MG95], LEuPERS [Leu97], and GovINDARAJAN et al. [GYZT99).

2.6. DSP Challenges

High performance requirements push DSP manufactures to build more and
more irregular processors. A typical irregular feature consists in dedicated
register sets, also called special purpose registers. Thus an instruction can only

20

Chapter 2. Introduction to Code Generation for Digital Signal Processors

be executed if the operands reside in special registers and/or it writes the result
in another specific register or register set. In some DSPs dedicated register sets
are context dependent.

Additionally, to increase data bandwidth, manufacturers of DSPs provide
separate data memory banks and support for word-parallel execution.

Today there exists different techniques that improve the overall code qual-
ity without significant changes in the compiler. Here, we enumerate some of
currently applied ad-hoc methods:

e Provide user directives to help the compiler to identify specific oppor-
tunities for code improvement.

e Allow direct access to the target specific instructions, ze. allow the user
to manually write a part of the code directly in the assembly language of
the architecture to perform certain critical operations of the application.
WaceNER and Leurers [WLO1|] provide access to the target processor
with so-called compiler-known functions, or compiler intrinsics. Com-
piler known-functions bring higher level abstraction provided by the
hardware into the programming language.

* Build ahead generic highly optimized libraries for most of the digital sig-
nal processing arithmetic operations. Thus, hardware providers do not
only manufacture a processor, but additionally related libraries. Usually
assembly and hardware experts write such libraries directly in assembly
language.

On the one hand, the methods enumerated above considerably improve the
final object code. But they are not portable and considerable time and effort
must be spent in rewriting applications and libraries for a different hardware.

Further, contrary to general purpose processors, DSPs offer a reduced num-
ber of addressing modes. Often, an addressing mode offers the possibility of
auto-decrementing or auto-incrementing an address. A restricted number of
addressing modes may be practical if programmers write applications directly
in assembly code, but it imposes on the compiler to carefully place data in
memory to efficiently access them, since address arithmetic instructions are
limited. LEUPERS [Leu00a] addresses the issue of offset assignment that con-
sists in rearranging local variables in memory such that the address generation
unit can access them efficiently with auto-increment and auto-decrement op-
erations.

Summarizing, DSPs exhibit numerous irregularities and thus increase con-
siderably the complexity of high quality code generation. Hence, producing
highly optimized code for DSPs is a challenging task.

2.7. Need for Integrated Code Generation

21

2.7. Need for Integrated Code Generation

In Section [2.4| we mentioned the existence of dependences between different
phases in a decoupled code generation. These interdependences are “stronger”
for irregular architectures, that present intricate structural constraints. In or-
der to produce optimal code it is necessary to combine the three main tasks
of code generation into a single optimization phase. In phase decoupled code
generators the code generation is illustrated as a path along the edges of the
code generation cube (see Figure [2.1), while integrated solutions follow di-
rectly the diagonal of the cube from the IR to target code.

For IRs in form of directed acyclic graphs (DAGs) and most architectures,
most subproblems of code generation are NP-hard (see Section [2.3.1). Con-
sidering them as a single problem leads to a complex and challenging opti-
mization problem.

For instance, if we consider an architecture with general purpose registers
(regular architecture) and an IR-level DAG with n nodes the number of all
possible (sequences) IR-level schedules is less than n!, the number of permu-
tations of the operations. Due to the data dependence constraints the number
of schedules depends on the DAG structure and is usually less than the up-
per bound. Brute-force enumerating all possible schedules is feasible for small
problem instances, with up to 15 instructions per basic block even if only
space-optimization is considered [Kes98].

For irregular architectures, where accessible registers for a given instruction
are context dependent, registers need to be carefully allocated. The location
of operands may influence the possibility of concurrent execution of given
instructions.

Example Letus consider two independent simple operations, an addition and
a multiplication. For the Hitachi SH7729 SH3-DSP [Hit99], if the operands
for addition are located in registers YO and Y1 and for the multiplication in
X0 and A1 then both cannot be scheduled simultaneously. The registers of the
destination also influence the possibility of parallelism, but we do not consider
it in this example. Then, possible target schedules are:

t1: ADD YO, Y1, YO and t1: MUL X0, A1, XO
t2: MUL X0, A1, XO t2: ADD YO, Y1, YO

However, if the operands and result destinations are carefully chosen, then
both operations can be executed simultaneously:

t1: ADD X0, X1, X0 || MUL YO, Y1, YO

22

Chapter 2. Introduction to Code Generation for Digital Signal Processors

Source code

{ Compiler for J

architecture o

Assembly code

for o

Figure 2.4.: In a dedicated compilation system, the compiler embeds the infor-
mation of the target architecture.

This shows that the number of possible target schedules may be larger than
the number of permutations of instructions. In the case of a fully integrated
solution of the three problems, the complexity is even higher.

2.8. Retargetable Code Generation

Writing compilers is generally time consuming, and consequently expensive.
In the worst case, once the compiler is available it might turn out that the
target hardware is already obsolete. Therefore, it is important, for a code
generation system to be easily reconfigurable for different architectures, i.e.
to be a retargetable code generation system.

Generally, most compilation systems that come with a processor are dedi-
cated compilers for that given architecture. However, in a design and devel-
opment phase it is desirable to have a retargetable system. In Section|l.2| we
described a classical view of a compiler that is a dedicated compiler for a spe-
cific hardware. Figure 2.4|illustrates a dedicated compiler for an architecture
o. In such designs the back-end is specific for a given architecture, but also it
may not be clearly separated from the rest of the compiler, and often the hard-
ware information is spread within the whole compiler. In order to produce
code for a different hardware, say B, it is necessary to spend considerable time
and effort in porting the existing « compiler for B architecture.

Modular compiler toolkits, such as the compilation system CoSy [[AAvS94],
provide facilities to exchange compiler components, also called engines, and
adapt the whole compilation system for a specific goal. Thus, if the target

2.8. Retargetable Code Generation

23

Source code DGS(.:rlptIOI'l of Desc.npnon of Source code
architecture o architecture o
Retargetable Compiler _ Compiler for
compiler generator architecture o

Assembly code

Assembly code

for o

for o

() (b)

Figure 2.5.: A retargetable compiler takes as input the program and the de-
scription of the hardware architecture.

processor changes, it is theoretically sufficient to replace the back-end (engine)
of any previously constructed compiler. Modular compiler toolkits facilitate
significantly the task of compiler construction, but it is still necessary to write
back-ends for each type of target architecture.

In contrast to dedicated code generation systems, retargetable compilers re-
quire additionally to the source program a description of the architecture for
which to produce code (see Figure 2.5). Thus, to produce code for the o
hardware we need to provide the « architecture description and the source
program. This looks like an extra overhead compared to a dedicated compiler,
but considerably facilitates the migration to some other hardware B, where it
is only requlred to modify the hardware specifications. Figure 2.5 represents
two variants of retargetable compilers: (a) parameterized, or dynam1cally re-
targetable such as GCC [FSF06]] or OPTIMIST [KBO05], and (b) generated, or
statically retargetable (e.g. IBURG).

A retargetable code-generator generator is a framework that takes the hard-
ware description as input and produces a compiler for the specified hardware.
OLIVE [BDB90] and IBURG [FHP92] are examples of a retargetable code-
generator generator tool. Code-generator generators are generally more com-
plex to write than dynamically retargetable frameworks.

Dynamically retargetable back-ends take the architecture description and
the source code simultaneously. A well known example is the GCC C com-
piler that includes descriptions for several processor architectures.

Chapter 3.

Prerequisites

IN THIS CHAPTER WE INTRODUCE necessary terminology for integrated optimal
code generation that we use in the rest of the thesis. Further, we give the
generic model of our target architectures.

3.1. Notations

In the following, we focus on code generation for basic blocks where the data
dependences among the IR operations form a directed acyclic graph (DAG)
G = (V,E). Let n denote the number of IR nodes in the DAG. An extension

to extended basic blocks [Muc97] will be given in Section For brevity,
we often use the IR node names also to denote the values computed by them.

3.2. Modeling the Target Processor

We assume that we are given an in-order issue superscalar or a VLIW proces-
sor with f resounrces Uy, ..., U¢, which may be functional units or other limited
resources such as internal buses.

The zssue width w 1s the maximum number of instructions that may be
issued in the same clock cycle. For a single-issue processor, we have w = 1,
while most superscalar processors and all VLIW architectures are multi-issue
architectures, that is, w > 1.

Example The DSP processor TI-C62x (see Figure has eight functional
units and is able to execute a maximum of eight instructions concurrently in
every clock cycle, i.e. w = 8. The full issue width can only be exploited if each
instruction uses a different functional unit. |

26

Chapter 3. Prerequisites

Program cache/Program memory

Register file A (AO-A15) Register file B (B0O-B15)
X2|

$ Ju N I N [K] [1] [K] $
Y1 Y| ¥ I [l N Y|y Y| ¥ Y|y

WY T

Data cache/Data memory

Figure 3.1.: Texas TI-C62x family DSP processor (VLIW clustered architec-
ture).

In order to model instruction issue explicitly, we provide w separate instruc-
tion issue units wi, 1 < i < w, which can take up at most one instruction per
time unit (clock cycle) each. For a VLIW processor, the contents of all u; at
any time corresponds directly to a (long) instruction word. In the case of a
superscalar processor, it corresponds to the instructions issued at that time as
resulting from the dynamic instruction dispatcher’s interpretation of a given
linear instruction stream.

Example The following instruction word for TT-C62x
MPY .M1 A1,A1,A4 || ADD .L1 A1,A2,A3 || SUB .L2 B2,B3,B1

consists of three instructions (multiplication, addition and subtraction) issued
concurrently, as indicated by | |. Note that NOPs are implicit. The mapping to
issue unit slots at time t is

Uq up us Ug Us Ug uy ug
L1 St M1 D1 D2 M2 §S2 L2
t ADD NOP MPY NOP NOP NOP NOP SUB

where we use mnemonics for each entry. []

Beyond an issue unit time slot at the issue time, an instruction usually needs
one or several resources, at issue time or later, for its execution. For each
instruction y issued at time (clock cycle) t, the resources required for its exe-
cution at time t, t + 1, ... can be specified by a reservation table [DSTP75]), a
bit matrix o, with oy (i,j) = 1 iff resource i is occupied by y at time t +j. Let
O; = maxy{j : oy(i,j) = 1} denote the latest occupation of resource i for any
instruction. For simplicity, we assume that an issue unit is occupied for one
time slot per instruction issued.

3.3. Terminology

27

An instruction y may produce a result, which may, for instance, be written
to a register or a memory location. The number of clock cycles that pass from
the issue time of y to the earliest possible issue time of an instruction that can
use this result is called the latency of that instruction, denoted by {(y). Hence,
the result of instruction y issued at time t is available for instructions issued at
time t + {(y) or later. We assume here that latency is always nonnegative. A
more detailed modeling of latency behavior for VLIW processors is given e.g.
by Rau et al. [RKA99].

3.3. Terminology

Our code generation methods are generally “driven” at the IR level because
this gives us the possibility to consider multiple choices for instruction selec-
tion.

We call an IR fine-grained for a given instruction set J if the behavior of
each instruction in J can be represented as tree/forest/ DAG patterns (see Fig-
ure a formal definition will be given later) covering one or several oper-
ations in the IR DAG completely. In other words, there is no “complex” IR
operator whose functionality could be shared by two adjacent target instruc-
tions, and the boundaries between two adjacent covering patterns therefore
always coincide with boundaries between IR operations.

From now on, let us assume that our IR is fine-grained. This assumption
is realistic for low-level IRs in current compilers, such as L-WHIRL in ORC,
or the LCC IR [FH95] that we use in our implementation.

3.3.1. IR-level scheduling

An IR schedule of the basic block (IR DAG) is a bijective mapping S : V —
{1,...,n} describing a linear sequence of the n IR operations in V that is com-
pliant with the partial order defined by E, that is, (u,v) € E = S(u) < S(v).
A partial IR schedule of G is an IR schedule of a subDAG of G. A subDAG
G’ = (V,EN(V'x V")) of a DAG G is a subgraph induced by a subset V' C V
of nodes where for each v/ € V' holds that all predecessors of v/ in G are also
in V'. A partial IR schedule of G can be extended to a (complete) IR schedule
of G if it is prefixed to a schedule of the remaining DAG induced by V —V’.

3.3.2. Instruction selection

Instruction selection is performed by applying graph pattern matching to the
IR DAG. The user specifies one or several patterns for each target instruction;

28

Chapter 3. Prerequisites

()

add1lé
D8 AD
- J

N
a)
_’

-
o)

\

(@) (ii) (i) T

Figure 3.2.: Instruction selection by covering (a part of) an IR DAG by pat-
terns, resulting in a target-level DAG. (i) A tree pattern for linked
multiply-add (mad) matches the multiplication and the addition
operation. (ii) mad does not match here because there is another
operation (div) using the result of the multiplication operation.
(iii) A forest pattern, describing a 16-bit SIMD-parallel addition of
two 8-bit integers. (iv) A DAG pattern for incrementing a mem-
ory location with address a (common subexpression) by integer
expression b.

a pattern is a small graph consisting of IR nodes and edges that describes the
behavior of the instruction in terms of IR operations and data flow. The pat-
terns may be trees, forests, or DAGs; some examples are given in Figure

Covering a set x of IR DAG nodes with a pattern By, for an instruction y
implies that each DAG node v € x is mapped one-to-one to a node By (v)
in the pattern with the same operator, and all DAG edges (v,w) between
nodes (v,w) € x? coincide with pattern edges (B, (v), By (w)) between the cor-
responding pattern nodes. There may be additional constraints, such as on
values of constants, on type, size, and location of operands, ezc. Moreover, for
the most interesting case [x| > 1, we usually have the constraint that “interior”
values v € ¥, corresponding to the sources of DAG edges (v, w) covered by a
pattern edge (By(v), By(w)), must not be referenced by edges (v,u) to DAG
nodes u ¢ X, because they will not be exposed by instruction y for use by
other instructions selected for wu.

An instruction selection Y for an IR DAG G = (V, E) and a given instruc-
tion set J is a surjective mapping V — J such that each DAG node v € V is
covered exactly once in a pattern for an instruction y € J. Moreover, for all
DAG edges that are not covered by pattern edges and thus represent data flow
between instructions, the type, size and storage of the source instruction’s re-
sult must match the corresponding expectations for the target instruction’s
operand. By applying an instruction selection Y to a (IR) DAG G, we obtain
a target-level DAG G whose f nodes correspond to target instructions and
thereby to covered subsets x of IR DAG nodes, and whose edges are prece-

3.3. Terminology

29

dence constraints among target instructions and correspond to the IR DAG
edges between covered node subsets.

Generally, there are several possible ways to cover each DAG node v and
thus many possible instruction selections for a DAG G. In order to keep track
of all alternatives, we denote by W(v) the set of all instructions in J such that
v may be covered by a leaf node in a pattern for y. We will use ¥ in our
algorithms to narrow the search space for matching instructions. It can be de-
rived automatically by analyzing the patterns specified for the instructions in
J. Note that for IR trees, more general preprocessing methods for fast match-
ing of tree patterns have been described in the literature, e.g. [HOS82].

Example A common example in the DSP world consists in covering a multi-
plication and a dependent addition IR node with a single MAC (multiply and
accumulate) instruction. Moreover, an integer multiplication of an operand by
2 is semantically equivalent to an integer addition of the operand with itself or
to a left shift of the operand by 1. Thus, if an IR node v represents an integer
multiplication, then ¥(v) = {MUL, MAC, ADD, LSH} contains instructions for inte-
ger multiplication, multiply-add, addition, and left shift. Our framework will
consider all alternatives, since they may imply different resource usage and
latency behavior. [|

3.3.3. Target-level scheduling

A target schedule is a mapping s from the set of time slots in all issue units,
{1,...,w} x IN, to instructions such that s;; denotes the instruction issued to
unit u; at time slot j. Where no instruction is issued to u; at time slot j, s;;
is defined as O, meaning that u; is idle. If an instruction s;; produces a value
that is used by an instruction s/, it must hold j* > j + {(sy;). Finally, the
resource reservations by the instructions in s must not overlap. The accu-
mulated reservations for all instructions scheduled in s can be described by
a resource usage map or global reservation table [DSTP75]], a boolean matrix
RU, where RU(i,j) = 1 iff resource i is occupied at time j.

The reference time p(s) of a target schedule s is defined as follows: Let t
denote the most recent clock cycle where an instruction (including explicit
NOPs) is issued in s to some functional unit. If there is any fillable slot left on
an issue unit at time t, we define p(s) = t, otherwise p(s) =t + 1.

The execution time t(s) of a target schedule s is the number of clock cycles
required for executing s, that is,

T(s) = max{j + £(sy) : si; # O

1)

30

Chapter 3. Prerequisites

A target schedule s is time-optimal if it takes not more time than any other
target schedule for the DAG.

3.4. Classes of Schedules

This notion of time-optimality requires a precise characterization of the solu-
tion space of all target schedules that are to be considered by the optimizer.
We will now define several classes of schedules according to how they can
be linearized and re-compacted into explicitly parallel form by various com-
paction strategies, and discuss their properties. This classification will allow
us to a-priori reduce the search space, and it will also illuminate the general re-
lationship between VLIW schedules and linear schedules for (in-order-issue)
superscalar processors.

3.4.1. Greedy Schedules

An important subclass of target schedules are the so-called greedy schedules
where each instruction is issued as early as data dependences and available
resources allow, given the placement of instructions issued earlier.

In a target schedule s, consider any (non-NOP) instruction s; j issued on an
issue unit u; at a time j € {0, ..., p(s)}. Let e denote the earliest issue time of s
as permitted by data dependences; thus, e = 0 if s;; does not depend on any
other instruction. Obviously, e < j. We say that s;; is tightly scheduled in s
if, for each time slot k € {e,e + 1, ...,j — 1}, there were a resource conflict with
some instruction issued earlier than time j if s; ; were issued (to u;) already at
time k.

A target schedule s is called greedy if all (non-NOP) instructions s;; # O in

s are tightly scheduled. Figure[3.3](i) shows an example of a greedy schedule.

Any target schedule s can be converted into a greedy schedule without in-
creasmg the execution time t(s) if, in ascending order of issue time, instruc-
tions in s are moved backwards in time to the earliest possible issue time that
does not violate resource or latency constraints [CC95].

3.4.2. Strongly Linearizable Schedules and In-order Compaction

A schedule s is called strongly linearizable if for all times j € {0, ..., p(s)} where
at least one (non-NOP) instruction is issued, at least one of these instructions
sij # 0,1 € {1,..., w}, is tightly scheduled.

The definition implies that every greedy schedule is strongly linearizable.
The target schedules in Figure [3.3| (i) and (ii) are strongly linearizable. The

3.4. Classes of Schedules

31

a time 3| ¢ 3| ¢ 3| ¢
2 2 2 b

1\d 1{d|b 1\ d

@ Q @ Olal|b 0|la 0| a
up up up up uy up
(i) (ii) (iit)

Figure 3.3.: A target-level DAG with four instructions, and three examples for
target schedules: (i) greedy, strongly linearizable, (ii) not greedy,
strongly linearizable, (iii) not greedy, not strongly linearizable. In-
structions a, ¢ and d with latency 3 are to be issued to unit uy, and
b to unit u, with {(b) = 1. We assume no resource conflicts.

schedule in Figure [3.3| (i1) is not greedy because instruction b is not tightly
scheduled. The schedule in Figure [3.3|(iii) is not strongly linearizable because
instruction b, which is the only instruction issued at time 2, is not tightly

scheduled.

Any strongly linearizable schedule s can be emitted for an in-order issue su-
perscalar processor without insertion of explicit NOP instructions to control
the placement of instructions in s. We can represent each strongly linearizable
schedule s by a sequence § containing the instructions of s such that the dy-
namic instruction dispatcher of an in-order issue superscalar processor, when
exposed to the linear instruction stream s, will schedule instructions precisely
as specified in s. For instance, a linearized version of the schedule in Fig-
ure (1) is (a,d,b,c). We can compute a linearized version § from s by
concatenating all instructions in s in increasing order of issue time, where we
locally reorder the instructions with the same issue time j such that a tightly
scheduled one of them appears first in 5. A similar construction allows to con-
struct linearized schedules § for EPIC/VLIW processors and reconstruct the
original schedule s from s if the in-order issue policy is applied instruction by
instruction.

In the reverse direction, we can reconstruct a strongly linearizable sched-
ule s from a linearized form § by a method that we call in-order compaction,
where instructions are placed on issue units in the order they appear in s, as
early as possible by resource requirements and data dependence, but always
in nondecreasing order of issue time. In other words, there is a nondecreasing
“current” issue time t such that all instruction words issued at time 1,...,t — 1
are already closed, i.e., no instruction can be placed there even if there should
be a free slot. The instruction word at time t is currently open for further in-

32

Chapter 3. Prerequisites

sertion of instructions, and the instruction words for time t + 1 and later are
still unused. The “current” issue time t pointing to the open instruction word
is incremented whenever the next instruction cannot be issued at time t (be-
cause issue units or required resources are occupied or required operand data
are not ready yet), such that the instruction word at time t + 1 is opened and
the instruction word at time t is closed. Proceeding in this way, the “current”
issue time t is just the reference time p(s) of the schedule s being constructed.

As an example, in Figure [3.3|(iii), we cannot reconstruct the original sche-
dule s from the sequence (a, d,b,c) by in-order compaction, as b would be
issued in the (after having issued d at time 1) still free slot s, 5, instead of the
original slot s, ;.

Generally there may exist several possible linearizations for a strongly lin-
earizable schedule s, but their in-order compactions will all result in the same
schedule s again.

In the context of in-order compaction of strongly linearizable schedules it
is thus well-defined to speak about appending an instruction y to a schedule s
(namely, assigning it an issue slot as early as possible but not earlier than p(s),
resulting in a new schedule) and about a prefix s’ of a schedule s (namely the
in-order compaction of the prefix s’ of a suitable linearization § of s).

3.4.3. Weakly Linearizable Schedules

Weakly linearizable schedules s, such as that in Figure [3.3| (iii), can only be
linearized if explicit NOP instructions are issued to occupy certain units and
thereby delay the placement of instructions that are subsequently issued on
that unit. In Figure [3.3|(iii), we could reconstruct the schedule e.g. from the
sequence (a, d,NOP1,b, c) where NOP1 denotes an explicit NOP instruction on
unit 1.

As we focus on time optimization in this chapter, it is sufficient to consider
greedy schedules when looking for a time-optimal one. We will see later that
our optimizer actually takes strongly linearizable schedules into account, for
technical reasons. However, non-strongly linearizable schedules such as that
in Figure[3.3|(iii) may be superior to greedy or strongly linearizable schedules
if register need or energy consumption are the main optimization criteria.

3.4.4. Non-linearizable Schedules

So far, we have not found any good example of a really non-linearizable sched-
ule. However, such schedules may exist for certain architectures if more de-
tailed latency models are considered. For instance, if there were pre-assigned
registers, anti-dependences may actually induce negative latencies for certain

3.5. Advanced Code Obtained by Superoptimization

33

combinations of instructions, which means that an optimal schedule may have
to schedule an instruction earlier than its predecessor in the dependence graph.
Such cases cannot be modeled in a straightforward way if methods based
on topological sorting of the dependence graph and in-order compaction are
used, as in our case. Here, this is not an issue because we assume nonnegative
latencies.

3.5. Advanced Code Obtained by Superoptimization

Note that we generally only consider such target schedules that can be derived
from covering the IR with specified patterns for instructions in the given in-
struction set. Such a collection of patterns can only yield a conservative ap-
proximation to the —in general, undecidable— complete set of schedules with
the same semantics as the IR. There may thus exist a more involved compo-
sition of instructions that computes the same semantic function as defined by
the IR DAG in even shorter time, but there is no corresponding covering of
the DAG. Finding such an advanced code by exhaustively enumerating arbi-
trary program fragments and semiautomatically testing or formally verifying
them to see whether their behavior is as desired, is known as superoptimiza-
tion [JNRO2||Mas87|] and beyond the scope of this work. Hence, the terms
“(target) schedule” and “optimal” in this thesis are used with respect to the set
of target schedules generatable by covering the IR DAG with patterns speci-
fied by the user for the instruction set.

3.6. Register allocation

A register allocation for a given target schedule s of a DAG is a mapping T
from the scheduled instructions s;;j to physical registers such that the value
computed by s; ; resides in a register (s ;) from time slot j 4 {(s;) and is not
overwritten before its last use. For a particular register allocation, its regis-
ter need is defined as the maximum number of registers that are in use at the
same time. A register allocation r is optimal for a given target schedule s if
its register need is not higher than that of any other register allocation r’ for
s. That register need is referred to as the register need of s. An optimal reg-
ister allocation for a given target schedule can be computed in linear time in a
straightforward way [Fre74]. A target schedule is space-optimal if it uses no
more registers than any other target schedule of the DAG.

Chapter 4.

Integrated Optimal Code
Generation Using Dynamic
Programming

IN THIS CHAPTER WE DESCRIBE our dynamic programming algorithms for de-
termining a time-optimal schedule for regular and irregular architectures. Our
dynamic programming algorithms are based on enumeration of topological
sortings; we introduce the concepts of selection tree and selection DAG. We
also prove compression theorems for generating time-optimal schedules. The
compression makes it possible to cope with basic blocks of reasonable sizes.
We evaluate our dynamic programming algorithm on various basic blocks
taken from real world DSP programs, and for regular and irregular architec-
tures.

4.1. Overview of our Approach

We consider local code generation for in-order issue superscalar processors,
regular VLIW processors (with a single general-purpose register file where
each register is equally accessible to each instruction), and clustered VLIW
processors (with multiple register files and operand residence constraints on
parallel execution). We propose an integrated approach based on dynamic
programming and problem-specific solution strategies which can deliver opti-
mal or highly optimized code. In principle, our method generates all possible
instruction selections and schedules but simultaneously applies compression
and pruning techniques to reduce the size of the solution space. The algo-
rithm finds a time-optimal solution among all generated code sequences. In
a previous work, KessLER has exemplified that, due to the compression, the

36 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

algorithm can solve non-trivial problem instances of finding space-optimal
schedules [Kes98]. In order to optimize for execution time on pipelined and
VLIW processors, we introduce so-called time profiles, structures that summa-
rize resource occupation and latency status of operations under execution at a
given point in the code, as far as relevant for future instruction selection and
scheduling decisions. As we will see later, partial solutions for the same subset
of IR nodes with equal time profiles are comparable, that is, our dynamic pro-
gramming algorithm needs to keep only one of these (namely a locally optimal
one) as building block for the construction of further solutions, which leads
to compression of the solution space.

For clustered VLIW architectures, we introduce the concept of space pro-
files, structures that describe the current residence of values that are alive at a
given point in the code. Space profiles are used for comparison of partial solu-
tions in a modified dynamic programming algorithm to produce time-optimal
code for such architectures. We show that compression by local optimization
of partial solutions for the same subset of IR nodes is applicable when their
space profiles and time profiles are identical.

We organize the space of partial solutions as a two-dimensional grid spanned
by axes for execution time and the number of IR nodes considered. By con-
structing partial solutions systematically in increasing order of execution time,
less promising partial solutions are postponed as far as possible, so that we
hopefully never need to explore them: As we will see, the first complete solu-
tion constructed by the algorithm is guaranteed to be an optimal one.

4.2. Main Approach to Optimal Integrated Code
Generation

For a better explanation of our subsequent dynamic programming algorithms,
we start with a simple brute-force algorithm for optimal integrated code gen-
eration that is based on exhaustive enumeration of target schedules, each of
which can be generated by interleaving topological sorting of the IR DAG
nodes with instruction selection and in-order compaction. We begin with the
case of a homogeneous register file and then generalize the approach to clus-
tered VLIW architectures.

4.2.1. Interleaved Exhaustive Enumeration Algorithm

The following enumeration algorithm constructs inductively all target sched-
ules for larger and larger subDAGs of an IR DAG G as follows:

4.2. Main Approach to Optimal Integrated Code Generation

37

{a’bb’c} ¢ level 0

a, ¢
(by forest
patiern)

o W B fod) vl fad () (a,ex level 2
a e

SREFAAE N

{a,c} {a,b} level 1
¢ a b

f#

Figure 4.1.: The selection DAG (right hand side) of the example DAG (mid-
dle bottom) as a compression of the selection tree (left upper cor-
ner) where all selection nodes with the same zero-indegree set
could be merged. Schedules are not shown. Note that selec-
tion edges for instructions whose pattern covers more than one
IR node (here, we assume a forest pattern covering a and c) ac-
cordingly skip some levels in the selection DAG.

We start with an initial configuration consisting of a zero-indegree set z
equal to the set of DAG leaves and an empty target schedule. The set sched-
uled(z) of already scheduled DAG nodes is thus still empty.

In each step, given a configuration (z, s) with a zero-indegree set z and some
target schedule s for the subDAG G, induced by the already scheduled nodes
scheduled(z), the algorithm enumerates new target schedules with prefix s by
selecting code for, and scheduling, at least one more IR operation in z: For
each IR node v € z, we explore all instructions y € ¥(v) whose pattern may
cover a set x of non-scheduled operations, including v as a leaf of the pattern.
For each v and each possible selection y € ¥(v), we arrive at a new configura-
tion by removing the set x of nodes covered by y from the DAG, determining
the resulting zero-indegree set z’, and appending the instruction y to the target
schedule s by in-order compaction, resulting in a new schedule s’. For each
of these possible new configurations (z’,s’), the same enumeration strategy is
inductively applied, until all DAG nodes have been scheduled.

For each (partial) target schedule s’ constructed by the algorithm, we im-

38 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

mediately compute its execution time and its register need. Among all enu-
merated complete target schedules for the entire DAG G, we pick a (time-)
optimal one. By a straightforward extension of the algorithm, configurations
with (partial) schedules s” whose register need exceeds the number of available
physical registers or whose execution time exceeds a specified time limit would
be discarded immediately and not considered further in the enumeration.

This strategy generates an enumeration tree whose nodes, also called se-
lection nodes, are the configurations, and whose edges, called selection edges,
denote single selection and scheduling steps made by the above enumeration
algorithm, see Figure 4.1| (left hand side) for an example. We call this tree a
selection tree. The selection nodes can be arranged in levels, such that the level
of a selection node describing a zero-indegree set z corresponds to the num-
ber |scheduled(z)| of already scheduled IR nodes “below” z, and thus selection
edges are always directed from lower to higher level selection nodes, where
the distance in levels spanned by the selection edge is just the number [x| of
nodes covered in the corresponding selection step. All selection nodes repre-
senting complete target schedules for the entire DAG with n nodes are at level
n.

In principle, we could as well first enumerate all possible coverings Y of the
DAG and then, for each such covering, enumerate all possible target sched-
ules s (see Figure [4.2); this method would enumerate exactly the same set of
target schedules. Likewise, we could enumerate all IR schedules S of the DAG
completely and then apply to each S all possibilities for covering contiguous
subsequences of operations in S by patterns for corresponding target instruc-
tions. Note that each possible covering by some pattern will eventually be
possible in this scenario because the IR operations to be covered will even-
tually be enumerated contiguously in some schedule S. We however prefer
interleaving the steps of selecting a “next” IR node to be scheduled and cov-
ering it, as this allows for incremental compaction and computation of the
accumulated execution time, and for earlier compression and pruning of the
solution space, which we will exploit later.

Theorem 4.2.1 The interleaved enumeration algorithm enumerates all strong-
ly linearizable target schedules for the inpur DAG.

Proof Assume there exists a strongly linearizable target schedule t, thus based
on instructions obtained by some covering of the IR DAG with specified
patterns, that is not enumerated by the algorithm. Consider any linearized
version of t, t = (y1,...,ya,). We conceptually compare t to each linearized
target schedule s = (x1,...,x4,) enumerated by the algorithm. By the assump-
tion, for each such s there must be a position k € {1, ..., min(fi, is)} such that

4.2. Main Approach to Optimal Integrated Code Generation

39

IR DAG t t—level DAG
> 4 y argel ege
P> instruction selection |

interleaved / l\

Y[enumeration

A\

IR-level y target—level
scheduling| scheduling
Y Y
IR schedule | _ target schedule
S - > linearization —
S I~ (Y) Se————>» §
S | ordered compaction |
emitter leminer
VLIW code superscalar code

Figure 4.2.: Survey of the interleaved enumeration process.

Y1 = X1,.++5 Yk—1 = Xk—1 but yx # xx. Now consider the zero-indegree set z
in the configuration after yi,...,yx—1 have been scheduled (for k = 1, z is just
the set of all leaves, as no node has been scheduled yet). Let z = {vy, ..., vq}. The
algorithm iterates through all vi, i = 1,...,,q, and for each v; through all pos-
sible patterns in W(v;), covering v; (and maybe some other, not yet scheduled,
IR nodes). As t is a valid schedule consisting of instructions with specified
patterns, and instruction yy is scheduled after yx_; in t, some pattern for yx
does cover some v; in z. Hence, as all possibly covering patterns have been
given as input to the enumeration algorithm, instruction yy is in ¥(v;) and
will be enumerated, contradiction. O

4.2.2. Comparability of Target Schedules

The reader may have noticed that multiple instances of the same zero-indegree
set z may occur in the selection tree. For all these instances, the same set
scheduled(z) of nodes in the same subDAG G, of G “below” z has been sched-
uled. This leads to the idea that we could perhaps optimize locally among sev-
eral partial schedules with equal zero-indegree set instances, merge all these
selection nodes to a single selection node and keep just one optimal partial
schedule to be used as a prefix in future scheduling steps (see Figure[4.1). By
this compression of the solution space, the selection tree becomes a selection
DAG. In the same way as in the selection tree, the selection nodes in a se-
lection DAG can be partitioned into n + 1 levels. An example is shown in
Figure[4.1] (right hand side).

We will now define an equivalence relation among target schedules, called
comparability, such that even with merging of selection nodes corresponding
to comparable schedules it is still guaranteed that an optimal solution is enu-
merated.

40 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

The definition of comparability depends on the architecture and the op-
timization goal. In either case, the comparability definition must fulfill the
following condition:

Comparable prefix schedule exchange condition (CPSEC): Any
prefix p in a linearized target schedule § can be exchanged by any
schedule p’ that is comparable with p, without affecting the cor-
rectness (but possibly the performance) of the resulting schedule.

We will consider three definitions of comparability for increasingly complex
architectures in Sections [4.2.3| |4.2.4} and 4.2.5] and prove that these fulfil the
CPSEC. A summary is given in Table[4.1]

4.2.3. Comparability |

For very simple RISC architectures with a single, non-pipelined functional
unit and unit latency for all instructions, time optimization is not an issue. For
minimizing the number of registers used, we define comparability by equal-
ity of zero-indegree sets, since there is a one-to-one relationship between a
zero-indegree set z and alive(z), the set of (results of) operations that reside in
(virtual) registers at the configuration described by z:

alive(z) ={u € scheduled(z) : A(w,v) € E, v & scheduled(z) }

The resulting compression of the solution space considerably decreases the
optimization time and makes it possible to generate space-optimal schedules
for DAGs of reasonable size [Kes98].

Before we generalize this for time optimization, we note a property of the
enumeration algorithm with compressed solution space:

Lemma 4.2.2 If comparability is defined by equality of zero-indegree sets, all
possible (with respect to the specified patterns) zero-indegree sets are enumer-
ated even if occurrences of the same zero-indegree set are merged.

Proof The interleaved enumeration algorithm enumerates all possible zero-
indegree sets. For multiple occurrences of the same zero-indegree set in the
selection tree, it will enumerate isomorphic subtrees that only differ in the
schedules (see Figure [4.1). Hence, no zero-indegree set will be missed if all
but one of these subtrees are cut. [

4.2. Main Approach to Optimal Integrated Code Generation

41

Table 4.1.: Comparability criteria for various optimal code generation goals
and processor architectures.

Architecture Optimization goal Comparability Section
single-issue, unit minimum register in- equal zero-indegree sets

latency struction sequencing EZ3
pipelined, in-order register-constrained equal zero-indegree sets and {24

issue superscalar / minimum time code equal time profiles!
VLIW generation

clustered VLIW register-constrained equal zero-indegree sets, {25
minimum time code equal time profiles, and equal
generation space profiles!

! Time profiles and space profiles will be introduced in Sections and[4.2.5] respectively.

4.2.4. Comparability Il, Time Profiles

For determining time-optimal schedules on single- and multi-issue processors
with pipelined units and non-unit latencies and occupation times, the defini-
tion of comparability of target schedules involves more factors. We introduce
the concept of a time profile to represent the occupation and latency status of
all issue units and resources at a given time. A time profile of a target schedule
s with reference time t records the occupation and latency effects of instruc-
tions in s that are under execution at time t and have not yet completed on ev-
ery resource, that is, they still occupy some resource or their results have not
yet been written, which may influence future scheduling decisions. Hence,
time profiles are a generalization of resource usage maps that includes latency
information, restricted to a small window of recently issued instructions in s.

We will see that, for time optimization for general pipelined VLIW and
superscalar processors, two partial schedules are comparable if they have the
same zero-indegree set and the same time profile. It will thus be sufficient
to keep, among all comparable schedules, only one with least execution time,
which results in considerable compression of the solution space.

Time Profiles

Given a target schedule s with reference time t = p(s), let X denote the set of
IR nodes covered by instructions in s that are under execution at time t (in-
cluding those issued at time t) and that are sources of dependence edges to IR

42 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

nodes covered by other instructiong'} Note that the nodes in X, correspond
to values that are being computed at time t.

For a processor with w issue units uy, ..., Uy, and f resources Uy, ..., Us with
latest occupations after Oy, ..., O¢ clock cycles, respectively, we define a time
profile P for s as a triplet

P:(B,A,ﬂf): ((ﬁl)"'aﬁw), }\3

(700,05 + o s TTLO =15 T02,05 -+ +»>T2,05—15 ++v5 TLf05- > TTF,0¢—1))

where B; € {0, 1} indicates whether some instruction has already been issued
to issue unit u; at time t, for i € {1,..,w}. A : X; — IN maps each value
v € X; under computation to its residual latency A(v), that is, the remaining
number of clock cycles from t until its result becomes available. Hence, for
an instruction sy j, issued to u; at time j < t and covering IR node v, its result
becomes available for instructions issued at time t + A(v) = j + £(sy;). The bit
matrix entries 7t ; € {0, 1} specify whether resource 1 is occupied at time t + j,
forie{l,..,flandj €{0,..,0; — 1.

Example Figureillustrates, for the ARMOE processor [ARMO2]], the time
profile for the schedule ...; b=ADD(...); c=LD(b) with reference time t.
Here, B = (0), Xs = {c}, and A = {(c — 1)}, i.e., the residual latency of c is 1.
As the latest occupation distances Oy, O; are 1 on both resources, misa 2 x 1
bit matrix. Here, = (0,0), as no instruction has subscribed to any resource
for time t yet. [|

Comparability and Compression with Time Profiles

For in-order issue superscalar and for VLIW architectures (corresponding to
our machine model) with an ordinary homogeneous register file, we define
comparability of two target schedules s, s’ by equality of the corresponding
zero-indegree sets and equality of the time profiles obtained for s and s/, re-
spectively.

The following theorem states that this comparability definition fulfills the
CPSEC. In other words, zero-indegree set plus time profile contain all the in-
formation required to decide about the earliest time slot where the instruction
for the node selected next can be scheduled.

Note that in the case where a set x of multiple IR nodes is covered by a single pattern, only the
root node(s) in x produce value(s) and the others can thus be omitted.

4.2. Main Approach to Optimal Integrated Code Generation

43

1 1 1 1

[i b — = =l — —

1 1 1 1 1 1 1

§ @D L

¢ :rB1=0]: :7\,= j: lrnz,o_ :rnz,u =j:

L Weoh 10 30)

1 1 1 1 1

(t-1) |LD Ve v 10

{(c2)}

Pl a7 T T T

(-2 jaoD Y 1[0 b

[Ea— T R

. 1 . 1 1 . 1 1 MULl ALUl
::ssl;:uucltlll(t)’n latency f:tségg;l resource usage

Figure 4.3.: Example of a time profile of a schedule (... a=ADD(...);

c=LD(b)) for the ARMIE processor. The symbol U denotes a fill-
able slot on an issue unit.

Theorem 4.2.3 For a DAG G and any subDAG G, of G, any target schedule s
of G that occurs as a prefix in some strongly linearizable schedule of G could be
replaced by any other target schedule s’ for the same subDAG G, that has the
same time profile P as s, without violating any data dependences or resource
reservations.

Proof Consider two target schedules s and s’ of G, with the same time profile
P = (B, A, m) but possibly different reference times t = p(s) and t’ = p(s’). For
any IR node v € z ready to be scheduled next, and any possible instruction
y € Y(v) that can cover v (and thus could be appended to both s and s’ by in-
order compaction at the reference time or later), the following three situations
may occur if y is scheduled:

(1) visaleaf in G, 7.e. it does not depend on any operation. Hence, y will be
scheduled by in-order compaction as early as the required resources and issue
unit are available (but not earlier than the reference time). As s and s’ have
equal resource usage 7 from the reference time on forward and the occupied
issue slots in B are identical, too, instruction y has to wait equally long after
the reference time if appended by in-order compaction to s and s’.

(2) v depends on an operand w computed by some instruction y = s;; that
is still in progress and thus occurs in Xs. As the mapping A is identical for both
s and s’ (and thus, Xs = X;/), operand w has the same residual latency A(w)
relative to the reference time; thus, instruction y must wait equally long for
w’s result becoming available if appended to both s and s’. The argument for
resource and issue unit occupation is the same as in (1).

(3) v depends on an operand w computed by some instruction y = s;; that
has already retired, 7.e., w’s result is already available, at the reference time

44 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

or earlier. Hence, w is no longer contained in Xs. As the time profiles of s
and s’ are equal, w is not contained in X either. Even though the respective
instructions covering w, their latencies, issue units and resource occupations
may differ in s and s’, this does no longer affect the issue time of y, because
in-order compaction cannot schedule y earlier than the reference time. As the
issue slot availability p and resource occupation 7 are also identical for both s
and s’ (see case (1)), the issue time of y found by in-order compaction will be,
relative to the respective reference time, the same for s and s’. O

Having established comparability by Theorem[4.2.3] we can now easily de-
rive the corresponding compression theorem, which forms the basis of the
dynamic programming algorithm. For this, we need the following observa-
tion:

Lemma 4.2.4 If comparability is defined by equality of zero-indegree sets and
time profiles, all possible (wrt. specified patterns) combinations of zero-indegree
set and time profile are enumerated even if occurrences of configurations with
the same zero-indegree set and time profile are merged.

The proof is similar to that of Lemma[4.2.2]

Theorem 4.2.5 For determining a time-optimal schedule of a DAG G, it is
sufficient to keep, for any subDAG G,, just one time-optimal target schedule
s among all those target schedules s’ for the same subDAG G, that have the
same time profile P, and to use this s as a prefix for all target schedules that
could be created from these target schedules s’ by a subsequent selection step.

Proof Itremains to show that merging configurations with comparable sched-
ules and and local optimization among these does not lead to a situation where
all optimal target schedules for G could be missed. By Lemma[4.2.4] all com-
binations of zero-indegree set and time profile that are enumerated by the
interleaved enumeration algorithm will also be enumerated if merging is ap-
plied. By Theorem [4.2.3] we could exchange any prefix schedule s in a given
schedule sg for DAG G by a comparable one without conflicting with data
dependences or resource allocations. If s and s’ have equal reference time (and
thus execution time), it is thus safe to drop any of these. Where s and s’ differ
in their reference time (and thus in their execution time), it is safe to drop the
slower one. The optimality of those target schedules for the entire DAG that
are finally kept when the enumeration with compression and local optimiza-
tion has run to completion, follows by induction over all subDAGs of G. We
will formally show this in Theorem[4.2.6] after having introduced the dynamic

programming algorithm. [J

4.2. Main Approach to Optimal Integrated Code Generation

45

Dynamic Programming Algorithm

The compression Theorem[#.2.5]yields directly a dynamic programming algo-
rithm for time optimization, resulting from applying compression and local
optimization in the interleaved enumeration algorithm. By keeping the inter-
leaved enumeration order, compression is applied as early as possible. Among
all configurations (z,s) (with s implying its time profile P) being enumerated,
we will keep only one configuration for each pair (z, P), namely one with lo-
cally optimal target schedule, and store it in a data structure called extended
selection nodes (ESnodes). Hence, we attach to each ESnode (z,P) a locally
optimal target schedule s*. The dynamic programming algorithm inductively
constructs all ESnodes as follows:

The algorithm starts with a single ESnode, consisting of a zero-indegree
set z containing all leaves in the DAG G, and an empty time profile (all issue
units are free and there are no dependences from operations that are still under
execution, and no reserved resources). An empty schedule is associated with
this ESnode.

From now on, we must make sure that, for each ESnode (z, P) with associ-
ated schedule s*, the algorithm proceeds to a successor configuration (z/,...),
using s* as an optimal prefix, only after having considered all configurations
that are comparable to s*. A partial order of constructing ESnodes that pre-
serves this constraint is the order implied by set inclusion of the sets sched-
uled(z) of already scheduled IR nodes. More conservative but easier to im-
plement is constructing all ESnodes strictly in increasing order of IR level,
because every selection step covers at least one IR operation. Hence, we ap-
ply the following expansion method to all ESnodes (z, P) level-wise (i.e., for
increasing IR schedule lengths | = |scheduled(z)]) until the entire DAG G has
been scheduled:

For each ESnode (z,P) at the current level 1, the algorithm considers, as
before, all possible new configurations (z’,s’) by covering any v € z with any
matching pattern for some instruction y, and determining the resulting target
schedules s’ by appending y to s by incremental in-order compaction. Each
s’ is a target schedule for the subDAG G, that includes G, and the nodes
covered by the pattern chosen for y. Let P’ denote the time profile for s’. For
each new configuration (z/,s’), one of the following three cases can occur:

Case 1: No configuration with a comparable schedule was enumerated yet,
so we keep s’ in a new ESnode (z/, P’).

Case 2: There exists an ESnode (z’,P’) with a comparable, previously enu-
merated schedule s* for G, whose execution time is not worse than that of s’.
In this case, s’ is discarded. (In the case of equal execution time, we may break
ties according to secondary optimization goals such as register need.)

46 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

Case 3: s’ was better than the associated s*, then s* is replaced in the ESnode
(z/,P') by s’.

This is continued level-wise, until all ESnodes at level n have been expanded
completely and thus all possibilities for selection and scheduling of the last
IR node in G have also been considered. Finally, we scan the schedules s*
associated with all ESnodes (0, ...) at level n + 1 and pick an optimal one. We
claim that this schedule is optimal for the entire DAG.

Theorem 4.2.6 For each strongly linearizable target schedule s of DAG G with
time profile P, there exists, after termination of the dynamic programming al-
gorithm above, a comparable target schedule s* (not necessarily different from
s) kept in the ESnode (1), P) such that the execution time of s* does not exceed
that of s.

Proof by induction over all possible subDAGs G, ordered by set inclusion
of their node sets scheduled(z).

When the algorithm starts, z is the set of all leaves, scheduled(z) = 0, and the
target schedule associated with the initial ESnode is the empty schedule with
execution time 0, hence the theorem holds for the initial case.

For the general case, consider any subDAG G, = (V,,E.) of G implied by
the set V, = scheduled(z). Assume that the induction hypothesis holds for all
subDAGs G,/ = (V,/, E,/) implied by a proper subset V. = scheduled(z') C
V,. Now assume that there is a target schedule s of G, with time profile P such
that s is faster than the schedule s* (t(s) < t(s*)) associated with ESnode (z, P)
after the algorithm has finished its work, that is, after it has explored all its al-
ternatives to generate code for G,. Consider any linearization § = (Y, ..., yq)
of s. Instruction y4 scheduled last covers a set x of IR nodes in scheduled(z).
Consider V! =V, —x. As yq was scheduled last, the nodes in x have no suc-
cessors in V'. Hence, there exists a unique zero-indegree set z’ with V,» = V',
Let G,/ denote the subDAG of G, induced by V... Consider the prefix sched-
ule s’ = (y1,...,yq_1) of s, and let P’ denote the time profile of s’. s’ is a
target schedule for G./. By Lemma[4.2.4] some ESnode (z/,P’) is eventually
created by the dynamic programming algorithm, as the configuration (z/,s’)
is enumerated by the interleaved enumeration algorithm. By the construction
of the dynamic programming algorithm, the schedule s’* that is associated
with ESnode (z/,P’) is comparable to s’ (note that s’ may even be identical
to s’*). By the induction hypothesis, s’* is optimal for (z’,P’); in particular,
the execution time of s’* is not worse than that of s’. As yg is a legal selec-
tion covering x and can be scheduled next after any target schedule for V,/,
the schedule § built by appending yq to s’ is eventually enumerated by our
algorithm and compared to the local optimum s* associated with (z,P). The

4.2. Main Approach to Optimal Integrated Code Generation

47

execution time T(3) cannot be worse than that of s. But this contradicts the
assumption that the target schedule that is finally stored in ESnode (z,P) be
worse than s, which completes the proof of the induction step. O

Again, the algorithm can easily be extended by immediately discarding com-
puted configurations with target schedules s’ whose register need or execution
time exceeds predefined limits.

Finally, we have to explain why the dynamic programming algorithm uses
in-order compaction and thereby considers the entire class of strongly lin-
earizable schedules—as stated above, it would have been sufficient, for pure
time optimization, if the interleaved enumeration algorithm limited its scope
of enumeration to greedy schedules, by applying greedy compaction. Incre-
mental greedy compaction inserts an instruction y into an existing schedule s
as early as allowed by operand latencies and resource occupations of instruc-
tions in s, such that y might then actually be inserted in a quite early free slot in
s that is out of the scope of the time profile of s, i.e., there may be no residual
latency of y at the reference time and no resource occupation by y may appear
in the 7 entries of the time profile of the resulting new schedule s’. In this case,
comparability as defined above would no longer be sufficient to decide which
schedule to keep for future expansion. Comparable schedules usually differ in
parts not covered by the time profile. Hence, we may have thrown away some
comparable schedule where greedy compaction could later have inserted some
instruction while this might not necessarily be possible with the schedule kept,
and thus an optimal schedule might have been missed. If in-order compaction
is applied, such insertions outside the scope of the time profile cannot occur.

4.2.5. Comparability Ill, Space Profiles

Now we consider clustered VLIW architectures with multiple register files.
We will see that we can apply the same compression mechanism as above
also in this case, provided that we define comparability by equality of zero-
indegree sets, time profiles, and space profiles, where a space profile describes
where the values in alive(z) reside, and when they reside there. For a formal
definition, we need to introduce the concepts of register classes and residence
classes.

Registers and Residences

We are given a DSP architecture with k registers Ry,...,Rx and « different
(data) memory modules My, ..., M. Standard architectures with a monolithic
memory have k = 1 memory module.

48 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

A value can reside simultaneously in several residence places, for instance,
in one or several registers and/or in one or several memory modules. For sim-
plicity, we assume that the capacity of each register is one valug] Furthermore,
we assume the capacity of a memory module to be unbounded.

Let R ={Ry,..., Ry} denote the set of register names and M = {My,...,M,}
the set of memory module names. Then, RM = R UM denotes the set of all
residence places.

The set of the residence places where a certain value v resides at a certain
point of time t is called the residence of v at time t.

An instruction takes zero or more operands (called operand 1, operand 2
etc. in the following) and generates zero or more results (called result 1, re-
sult 2 etc. in the following). For each instruction y and each of its operands
q and results q’, the instruction set defines the set of possible operand resi-
dence places, Res, (y, q) € RM, and the set of possible result residence places,

Res:(y,q").

Example Table[4.2]shows a few example instructions with constraints on ope-
rand and result residence for the TI-C62x DSP processor, a load-store archi-
tecture with two register files A and B and a single memory module. Note
that arithmetic operations such as MPY can also take one operand from the
other cluster via the corresponding cross path, see Figure[3.1} This cross path
is modeled as a resource, as it can be used at most once per time slot. An
intra-cluster direct load (LDW) instruction expects an address value as operand
1, which should reside in some register of the same cluster; the value being
loaded actually resides in memory. In order to model memory dependences,
we assume that the loaded value is implicitly given as operand 2 of a LOAD
instruction. The loaded value is then written to a register in the same cluster.
Similarly, a store instruction (STW) takes an address value as operand 1 and a
register holding the value to be stored as operand 2, and creates a value residing
in memory, which we denote as implicitly given result to model memory de-
pendences. We summarize all instructions that move values directly between
different memory modules and register classes as transfer instructions. In this
sense, LDW and STW are transfer instructions as well. [|

2Note that this is not generally the case for most DSPs. For instance, for the TI-C62x family
DSPs, the ADD2 instruction performs two 16-bit integer additions on upper and lower reg-
ister halves with a single instruction. A corresponding generalization of our framework is left
for future work.

49

AJoUrowr 03 19181391 © 91018 q v (wour) TV« 19 Ia MIS

A1owow woiy 1015131 e peo] (wow) q q 919 @ MdT

19151801 01 19151391 £d0d 193SN]I-19IUT - A q ¢4V XIS AN

q — Vv yed ssoxo Suisn gy uo uonedrdnnw q VA q LI IV XTI AN
ZIN uo uoneordnnu 11sn[o-enul q qd d td1d‘ed TN AIIN

17T 1tun uo uoneindwod anfea NN[osqe - Vv v TV IV I'T sS4V

Surueow

zpuerddo 1 puersdo 1 3msar

9JUIPISIT UO SIUTEIISTOD

(spuerado ajdwrexo yim)

uononasut

4.2. Main Approach to Optimal Integrated Code Generation

"Xg9D-1], 10J SUONONIsUl 19jsuen eiep pue andwod jo sojdwexy 'y 9[qey,

50 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

Register Classes, Residence Classes, and Versatility

We derive general relationships between registers and register classes by ana-
lyzing the instruction set.

For two different residence places R; and R; in RM, we denote by R; <
Rj (read: Rj is at least as wersatile as Ry) when for all instructions y, Ri €
Reso(y,q) = Rj € Reso(y,q) for all operands q and Ri € Res:(y,q’) =
R; € Resy(y,q’) for all results q’. In other words, wherever R; can be used
as operand or result, one may use R; as well. We denote Ry = R; for Ry <
R; A R; < R;.

For a given set J of instructions of the target processor, a register class is a
maximum-size subset of R, containing registers that can, in all instructions in
J, be used interchangeably as operand 1, as operand 2, as result 1, etc., respec-
tively. J could be the entire instruction set, or may be narrowed to the set of
instructions that are applicable at a certain scheduling situation.

Note that register classes are just the equivalence classes of the “equally
versatile” relation (=).

Example For the TI-C62x (see Figure[3.1)), there are two register classes A and
B consisting of 16 registers each, each one connected to a common memory.
|

A similar concept was proposed by Rau er al. [RKA99]; their access-equi-
valent register sets correspond to our register classes.

Following the generalization of registers to residences, we obtain the straight-
forward generalization of register classes to residence classes, where the resi-
dence class of a memory module residence is just that memory module name
itself. Note that residence class is a static characterization for a particular hard-
ware architecture. Let RC denote the set of all residence classes.

The thesis considers residence classes that do not overlap, which is a char-
acteristic feature of clustered VLIW processors.

We assume that the residence places of global program variables (in mem-
ory modules and/or registers) are given, while we will optimize the residence
classes of temporary variables (usually, in registers) for results computed by
the instructions, along with the necessary data transfer operations. A method
for optimizing the placement of global variables in clustered VLIW processors
has been described by TErRECHKO et al. [TTGT03].

Interleaved Enumeration with Generation of Transfer Instructions

As a first step to integrated code generation for clustered VLIW architectures,
we extend the interleaved enumeration algorithm by automatic generation of
data transfer operations.

4.2. Main Approach to Optimal Integrated Code Generation

51

Beyond enumerating all possibilities for choosing the next v € z and all
possible instructions y € ¥(v) covering v, resulting in a new configuration
(z',s’), we now also enumerate all possibilities for choosing any alive value
v € alive(z) and all possibilities of generating a possible transfer instruction
for v to a residence class where v is not yet residing or under way at time p(s),
also resulting in a new configuration (z,s”). Note that there is no progress in
the level, 7.e. in scheduled IR nodes, but the resulting schedule and maybe the
execution time will account for the additional transfer instructions. Note also
that these resulting configurations are purely speculative, as it is not known
yet whether there will be any need of v in that residence class at any time. If
a transfer later turns out to be unnecessary and only occupied resources that
could have been used better for other instructions, this will be reflected in
inferior execution time, and schedules built from this one will eventually be
discarded as suboptimal. On the other hand, if v is not present in a certain
residence class when it is needed there as operand of some instruction y’, then
y’ will simply not be selectable and not be enumerated by the algorithm—
another configuration where v will be in the right place at the right time will
eventually be enumerated, too.

Obviously this adds another level of combinatorial explosion to the inter-
leaved enumeration algorithm, but there seems to be a large potential for com-
pression, too. We will now define the comparability function that allows us to
derive a dynamic programming algorithm for clustered VLIW architectures.

Space Profiles

Consider a configuration (z,s) with target schedule s, reference time t = p(s),
and zero-indegree set z. Let Wy denote the set of values that are, at time t,
being copied by a data transfer operation (including transfers issued at time
t). A space profile for s is a pair Q = (y, n), where v : (alive(z) — Xs) — 2RC
describes in which residence classes each of the already computed values in
alive(z) — X; resides at time t, and p: (Wg x R€) — IN, (v,RC) + j maps each
value v that is being transferred to some residence class RC at time t, to the
residual latency j of the transfer, such that the value will be available in RC for
use by instructions issued at time t + j or later. Note that a value w € X, that
is still under computation at time t becomes only eligible for data transfers
issued not earlier than time t + A(w), that is, when w has been computed and
is taken up in the y part of the space profile.

Example For the TI-C62x, consider an IR addition ¢ with operands a and
b, such as in Figure at the scheduling situation given by z = {c}, with
alive({c}) = {a,b}. Assume that a resides in register A1 and b in register B2,

52 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

that 1s, the operands are in distinct register files, and the space profile entries
arey = {a — A, b — Bland p = 0. To perform a cluster-local addition on
register file B, a data transfer of value a to that register file is necessary, that
is, MV .L2X A1,B3. The transfer latency is one clock cycle. At the issue time
t of the transfer, we have u : {(a,B) — 1}, meaning that a will be available in
register file B for instructions issued at time t + 1 or later.

Alternatively, IR node ¢ could have been covered with a TI-C62x instruc-
tion that does both a data transfer (using the cross path X2 from A to B, see Fig-
ure and computation within a single clock cycle, such as ADD .L2X A1,
B1,B3, provided that the cross path is not yet occupied at that time. |

We define comparability of target schedules by equality of zero-indegree
sets, time profiles, and space profiles. The following theorem shows that this
fulfills the CPSEC and creates the basis for the subsequent dynamic program-
ming algorithm:

Theorem 4.2.7 For determining a time-optimal schedule for a clustered VLIW
architecture, it is sufficient to keep just one locally optimal target schedule s
among all those target schedules s’ for the same subDAG G, that have the
same time profile P and the same space profile Q. For any target schedule that
could be created from these target schedules s' by a subsequent selection step,
we could use s as a prefix without increasing the execution time.

Proof Consider two target schedules s and s’ of G, with equal time profile
P = (B,A,m) and equal space profile Q = (y,) (thus Wy = W) but poten-
tially different reference times t and t/, respectively. For the selectability of
an instruction y covering the next v € z, each operand vq, ¢ = 1,2,..., of y
must be available in the respective residence class RC € Res,(y, q) expected
by y (a similar argument holds for the selectability of transfer instructions,
too). Either, operand vq is already available (i.e., vq € (alive(z) — X;) and
RCq € v(vq)), or the latency of a not yet finished computation (A(vq) > 0) or
a transfer instruction (u(vq,RCq) > 0) has to be awaited, or a transfer of v
to RC4 has not been issued (i.e., neither RC4 € y(vq) nor vy € Ws). Hence,
for both s and s’, each operand q will be or become available in RCq at the
same relative time t + j and t’ 4 j for some offset j > 0 from the respective
reference time, or it will not be available and thus y not be selectable in either
case. If selectable, instruction y will be scheduled by in-order compaction as
early as possible, but not earlier than time t + j or t’ + j, respectively. As the
subscriptions to resources (7) from the reference time on forward are identical
in both cases, instruction y will be issued at the same relative time t + j’ and
t’ 4 j’, respectively, for some distance j’ > j. A similar argument holds for
scheduling selectable transfer instructions. This establishes comparability of

4.3. Improvement of the Dynamic Programming Algorithms

53

> time k

—Ikl —Ik2

Ll Ifk 1

Ll+{,k—7~ ; Ll-g»], \ Ll+l k+1 Ll+],k+2

I"
i

level Iy Lioi: Lk L L7k

Figure 4.4.: Structuring the space of partial solutions as a two-dimensional

grid.

s and s’. Hence, it is sufficient to keep one schedule with lower (reference)
time. O

Dynamic Programming Algorithm for Clustered VLIW Architectures

We apply Theorem to the interleaved enumeration algorithm with gen-
eration of transfer instruction of previous subsection, identifying ESnodes by
triplets (z,P, Q) consisting of a zero-indegree set z, a time profile P, and a
space profile Q. We obtain a new dynamic programming algorithm for the
case of clustered VLIW architectures, which generalizes the algorithm of Sec-
tion[4.2.4] A detailed description will be given in Section[4.3.3]

4.3. Improvement of the Dynamic Programming
Algorithms

4.3.1. Structuring of the Solution Space

We structure the solution space as a two dimensional grid, as shown in Fig-
ure The grid axes are the level (i.e., the number of scheduled IR nodes),
and the execution time. Every grid entry Ly is a list of ESnodes containing a
schedule s* with level 1 and execution time k.

Let maxLat= maxye1 {(y) denote the maximum latency of an instruction

54 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

(including transfer instructions), and maxPatSz denote the maximum number
of IR nodes in a pattern for some instruction. Appending an instruction y
that covers a set x of DAG nodes to an existing schedule s increases the exe-
cution time of the resulting target schedule s’ by at least 0 and at most maxLat
cycles, and the level by at least 1 and at most maxPatSz nodes. In contrast, ap-
pending a transfer instruction to s does not increase the level because it does
not cover any IR node (i.e., x =). Hence, if s was stored in some ESnode
in Ly, the resulting ESnode for s’ will be stored in exactly one of Ly |y x,
Lyl kt15 o Litlxlk-tmaxLae- Seen from the perspective of the new schedule s’
with level 17 and time k’, all ESnodes with schedules s from which s’ could
be built by appending an instruction will be located in the rectangular subgrid
Ll’fmaxPatSz,k’fmaxLata eeey Ll’fmaxPatSz,k’, ceey I—l’,k’fmaxLaty ooy Ll',k’-

As a first consequence, this observation narrows the search space for all
possible candidates for ESnodes with schedules that could be comparable to
s’, to the lists Li/ ' maxLars -+ L1k’ +-maxLar» provided that compression is con-
sistently applied immediately after each enumeration step.

A generalization to a three-dimensional solution space structure by adding
an axis for register need (or a higher-dimensional grid with one register need
axis per register class for clustered VLIW architectures) is possible, and a
similar observation of limits on the possible changes in register need can be
made [Kes98].

For searching within each list Ly x, we use hashing over the ESnodes” zero-
indegree sets, time and space profiles.

4.3.2. Changed Order of Construction and Early Termination

The fact that adding an instruction never decreases time and never decreases
the level (see the arrows in Figure also implies precedence constraints
among grid points (1, k) for the construction of partial solutions. Hence, we
can change the order of construction as far as possible such that the more
promising solutions will be considered first, while the less promising ones are
set aside and reconsidered only if all the initially promising alternatives finally
turn out to be suboptimal. This means that we will proceed along the time axis
as first optimization goal, while the axes for length (and maybe register need)
have secondary priority.

A complete IR schedule ends at level n (after all IR operations are sched-
uled). This allows us to optimize the look-up for final solutions by simply
checking L, x in the solution space after all configurations with execution time
k have been expanded. If there is any ESnode in L, its associated schedule
s* is time-optimal, and we can stop.

4.3. Improvement of the Dynamic Programming Algorithms

55

4.3.3. Putting the Pieces Together: Time-optimal Code
Generation for Clustered VLIW Architectures

An instruction y that may match a node v is only applicable (and thus, se-
lectable) in a certain selection step if its operands are available in the “right”
residence classes. Further instructions may become applicable after applying
one or several data transfer instructions that broaden the residence of some
values. For now, we do not generate transfers to memory classes.

According to Theorem[4.2.7} it is sufficient to keep among all target sched-
ules with equal zero-indegree set, equal time profiles and equal space profiles,

one schedule s* with shortest execution time, which we store as an attribute
1.s* of an ESnoden = (2, P, Q).

The overall algorithm, clustered_timeopt, is depicted in Figure[4.5|and Fig-
ure Initially, the solution space L, structured as two-dimensional grid,
contains a single ESnode with the DAG leaves as zero-indegree set zo (lines
4-5). The initial ESnode has an empty schedule (line 5) with execution time 0
and level 0 (line 6). The outer loop over k (line 8) progresses along the execu-
tion time axis of the solution space. The second axis of progress is the level 1
(line 10). The algorithm progresses in a wave front manner by first generating
all schedules that can be built from locally optimal schedules n.s* stored in
every ESnode in Ly, by selecting a zero-indegree node v and an instruction
y € ¥(v), and appending y to s* by incremental in-order compaction (lines 12—
18) for each ESnode. This generates new ESnodes, which are then compared to
previously computed ESnodes and inserted in the solution space by the func-
tion update_solution_space, given in Figure[4.6] Before the algorithm proceeds
to the next grid point, it tries all possibilities for inserting transfer instructions
for all already available, alive values to all possible register classes RC where
that value is not yet present (i.e., RC is not in y(v)) or under way (i.e., (v, RC)
is not in the domain of) (lines 20-23). The function update_solution_space
is called again (line 24) because new ESnodes are generated, as profiles and
maybe execution time are affected even though there is no progress in the IR
level 1. Then the algorithm proceeds to the next level. After all ESnodes at
time t have been processed, the algorithm progresses on the time axis. The
algorithm continues until the first nonempty list L, x of ESnodes at level n
1s considered, which means that all IR nodes have been scheduled. This is
checked by function checkstop (lines 51-54 in Figure [4.6). As there was no
nonempty ESnode at level nn at a time value encountered earlier, this solution
must be optimal, and we can stop.

The structuring and traversal order of the solution space allows us to opti-
mize the memory consumption of the optimization algorithm. As soon as we
have processed all ESnodes from list L x, we can safely remove L x completely

56 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

1: Lyx < new empty list of ESnodes, for all 1, k;
2: int maxtime «— 0;
3: function clustered_timeopt (DAG G with n nodes and set z; of leaves)
4: 1o «—new ESnode(zo, Py, Qo);
5: mg.s* « empty schedule;
6: Log.nsert(no);
7 // outer loop: over time axis
8: for kfrom O to infinity do
9: checkstop(k); // terminate if a solution with time k exists
10: for level LfromOton —1do
11: foralln = (z,P,Q) € Ly do
12: let t denote the reference time of the schedule s* stored in
13: forall vezdo
14: for all instructions y € ¥(v) that are now selectable,
15: given z, time profile P and space profile Q do
!/ instruction selection:
16: let x = { IR nodes covered by the pattern for instruction y };
17: z' « selection(z,x); // new zero-indegree set
18: s’ «— incr_in-order_compaction(s,y); // new schedule
19: update_solution_space(n, 1, k,z,s',x|);
// enter new partial solution
20: for all already available alive values v € alive(z) — Xs do
consider the space profile Q = (v, u):
21: for all possible transfers T of v to a register class RC ¢ y(v)
where (v,RC) ¢ dompu do
// suppress transfers to residence classes where v
// already resides or to where v is already under way
22: if T selectable then
23: s' «— incr_in-order_compaction(s,T); // new schedule
24: update_solution_space(n,l,k,z,s',0);
25: free L x and all ESnodes inside; // no longer needed

26: end function clustered_timeopt

Figure 4.5.: Dynamic programming algorithm for time-optimal code genera-
tion, taking data transfers into account.

4.3. Improvement of the Dynamic Programming Algorithms 57

27: function update_solution_space (ESnode n = (z,P, Q),

28: level 1, time k,

29: zero-indegree set z/, target schedule s/,
30: integer p (progress in level))

31: if register need of s’ exceeds resources then
32: discard s';

33: return;

34: P’ « time profile of s';

35: Q' « space profile for s’;

36: K «1(s'); // execution time of s

37: 1 <« new ESnode (2, P’, Q') with associated schedule s’;

38: forall Li,,; with k <j < maxtime do // note that maxtime < k+maxLat

39: ifn" « Liyp;.Jookup(z', P, Q') exists then

40: break;

41: if 0 = (2,P, Q') exists then

42: //j denotes the execution time of the schedule stored inn"

43: if k¥’ <j then

44: Liyp-remove(n); // as it was suboptimal

45: Lijp,xr-insert(n'); // improved solution

46: else forgetn’;

47: else Ly, xr.nsert(n'); // first solution found for (z/,P',Q’)

48: maxtime +— max(maxtime,X'); // update search scope for lookup

/] now check whether a new solution was entered with current time k:
49: if 1+p =nthen checkstop(k);
50: end function update_solution_space

51: function checkstop(k)

52: if Ly x.nonempty() then

53: exit with solution n.s* for somen € Ly, x;
54: end function checkstop

Figure 4.6.: The algorithm of Figure[4.5|continued.

58 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

zeroindegree set
time profile
space profile

execution time of associated schedule s*
reference time
’~— associated schedule s*

) 7 2 3
<---- S ,””,"1[11”” 1)
a) {a, ; {b} (b} b; [nop2;] mv b;
b a .
[c} 3 2 pffd 1 3 (g 2) T2 Al 3 A (T34 3
rn /; 2 / /) {(11 20 |onp "” I m (m l») S-S KRRy ML @D D) " —>u w f/
/a,b} {a,b} by Jap: (@00 {a,b} {a,b} {a,b} (b} a,bf favh)
‘prune nnt sc]utal)lc nul :dumhlc ng[selectal . c c ‘ prune’.
. - N s .
{d} 4
(/ m =<
b.c, allb; [nop2;] mv b; ¢; b; [nop2;]mv b ll a; ¢;

d

(1,0) {(d,1)}

i 4 3
never expanded l‘ounduptimufn nopsipmy b e RCI my
,c, b
Nantey/25* \anta/

Figure 4.7.: Solution space (extended selection DAG) for the example DAG
in the right lower corner.

because they will never be looked up again (line 25).

Function #pdate_solution_space first checks the register need of a gener-
ated schedule s’ and discards it immediately if available resources are exceeded
(lines 31-33). Otherwise, the algorithm derives the execution time, time pro-
file and space profile for s’ and creates a new ESnode with s’ as associated
schedule (lines 34-37). Then it tests if the new node is to be inserted into the
solution space or not. For that, the algorithm searches for an ESnode n” with
the same zero-indegree set, time and space profile (lines 38-40). If there is no
such node, the new ESnode is inserted (line 47). If a comparable ESnode ex-
ists (line 43) but has a worse execution time j, then the “old” ESnode n” was
found to be suboptimal and is replaced by the current one, which is inserted in
Lisp,x instead (line 45). Otherwise the new solution s’ was no improvement,
and we discard it (line 46).

4.3.4. Example

Figure [4.7| illustrates the resulting extended selection DAG for the example
DAG shown in the lower right corner of Figure The example assumes a
target processor with two issue units. Instructions that could be selected for
DAG node b have latency 2 and are to be issued to unit uy, those for all other
DAG nodes to uy with latency 1. For simplicity, we assume that the processor
has only two residence classes, namely register files RC1 and RC2, which are

4.3. Improvement of the Dynamic Programming Algorithms

59

attached to units u; and wu, respectively.

For better readability, each node of Figure[4.7)is organized into three layers.
The top layer of each node represents the zero-indegree set z, the reference
time t, and the execution time 7 of the associated schedule s*. For example,
the top node contains the set of DAG leaves as zero-indegree set, {a, b}, and
the execution time is O, as the initial schedule is empty. The second layer
represents parts of the time profile: the issue unit usage (B) and the residual
latencies (A) at time t, where the latter is written as set of pairs of value and
residual latency. Initially, all functional units are empty and the reference time
is 0. The bottom layer shows the y part of the space profile, z.e. the mapping
of already available, alive values to residence classes; the p part is not shown.
Initially, the nodes reside in none of the residence classes. We could have
started with a preset residence profile, but here we assume for simplicity that
the leaves are constants and do not need to reside in any residence class. We
also display, for some ESnodes, the associated schedule s* in pseudoassembler
format at their right lower corner.

In Figure the ESnodes are only grouped according to their level (in-
creasing from top to bottom). The dashed arrows represent transfer instruc-
tions inserted by the algorithm; these make no progress in level. The crossed
ESnodes are pruned by the algorithm. ESnodes marked “not selectable” are
not expanded further because their space profile does not match the require-
ments of the candidate instructions that could be selected there.

The second ESnode in the last row contains the optimal solution, which
takes 5 clock cycles, and contains a transfer instruction (move) inserted by the
algorithm. Table [4.3| gives the complete schedule: for each time slot it shows
the instruction word, the status of the functional units and the residences of
alive values. Note that node d is alive at the exit of the basic block (time slot
5) and resides in RC1.

4.3.5. Heuristic Pruning of the Solution Space

Despite considerable compression of the solution space, the combinatorial
complexity of the dynamic programming algorithm remains high. For larger
problem instances, we therefore enhance the algorithm with a heuristic that
limits the number of configurations generated at each intermediate stage. This
heuristic pruning considerably reduces computation time and still generates
highly optimized code, which however is no longer guaranteed to be optimal.

For architectures with homogeneous register files, the heuristic limits the
number of generated variants at each selection step of the algorithm (line 13
in Figure [4.5). This is controlled by an integer value N, that only considers
at most N candidates from the zero-indegree set z for selection. If N = 1,

60 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

Table 4.3.: Final optimal solution for the example of Figure The first
column indicates the issue time slots in the schedule. The second
column represents the instruction word (linearized form), and the
third column shows the mapping to issue units. Symbol ¢ indicates
that the issue unit is idle. nop2 denotes a NOP on unit 2 to fill the
delay slot of computing b.

instruction issue unit occupation values resident in

t word u up RC1 RC2
0 alb a b - -

1 [nop2] O O (delay) a -

2 movb O mov a b

3 c c O a,b b

4 d d ¢ be b
6) - o 0 d -

we obtain a variant of list scheduling where the next node v is selected ran-
domly among all the candidates in the zero-indegree set z. Observe that we
still consider all possible coverings of that candidate node v. This is necessary
to guarantee that at least one successor configuration will be found. If we ad-
ditionally limit the selection among all possible target instructions (¥(v)) to a
subset, the algorithm may fail to find a solution, which is particularly com-
mon in the case of clustered VLIW architectures where not all operands may
be available in the expected residence classes.

In case of clustered VLIW architectures, we additionally control the num-
ber of transfer instructions inserted after each selection step. This is achieved
in the similar manner as described above, where at most M transfers are issued

(line 20 in Figure[4.5).

4.3.6. Beyond the Basic Block Scope

An extended basic block [Muc97] is a set of basic blocks connected by control
flow edges that form a tree, that is, there are no join points of control flow
(except maybe for the root block of the tree). If we process the basic blocks in
topological order for generating code, we can simply propagate the outgoing
time and space profile of a basic block B (after having scheduled the branch
instruction) forward to all control flow successors of B as ingoing time and
space profile, and continue code generation for each successor independently.

4.4. Implementation and Evaluation

61

For the successor block, we thus start the algorithm with that ingoing time and
space profile instead of blank profiles. Note that we do not consider moving
IR operations across basic block boundaries, in contrast to global scheduling
techniques such as trace scheduling [Fis81], and we do not consider pattern
matching across branches either.

If there were join points of control flow, we would instead lose precision
because normally the ingoing profiles do not match. In the context of back-
ward branches, some ingoing profiles may not even be known in advance.
Extending our method to entire loops is an issue of future work.

4.4. Implementation and Evaluation

We 1mplemented a prototype compiler called OPTIMIST with the above dy-
namic programming algorithms for integrated code generation. We use LCC
[FH95] as C front-end, and the rest of the system is implemented in C++. The
target processor is specified in our XML-based architecture description lan-
guage xADML (see Chapter[8). The specification contains structural informa-
tion of the target processor: issue units, resources, register sets and memory
modules grouped in residence classes. It specifies the instruction set architec-
ture in terms of DAG patterns, reservation tables and residence constraints.
Finally, for clustered architectures it lists the set of transfer instructions that
are to be considered by the optimizer.

Table [4.4| shows the time requirements for finding a time-optimal sched-
ule on a collection of basic blocks taken from the TI-Cé4x benchmarks and
FreeBench. We considered only basic blocks of the benchmarks with sizes
greater or equal to 10 nodes. The evaluation was performed for the ARM9E
(in ARM mode) and TI-C62x processors. In order to study the effect of clus-
tering on optimization times and the complexity of the solution space, we
added a single-cluster variant of the TI-C62x, with a single register file and an
issue width of four. The measurements have been performed on a Linux PC
with 1.6 GHz AMD processor and 1.5 GB RAM. Column BB refers to the
corresponding basic block in the benchmark. Columns 4-6, 7-9 and 10-12 re-
port results for the ARMOE, single-cluster TI-C62x, and the TI-C62x, respec-
tively. Columns 4, 7 and 10 display the time (in seconds) for finding a time-
optimal schedule. Columns 5, 8 and 11 indicate the number of occurrences
of comparable ESnodes that are detected by the algorithm and merged into
a single node. Column #ESnodes lists the memory requirement by reporting
the total number of ESnodes in the solution space. The ratio between the to-
tal number of configurations generated by dynamic programming (#merged +
#ESnodes) and the number of ESnodes kept (#ESnodes) represents the aver-

62 Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

age indegree of an ESnode, which gives a rough impression of the compres-
sion achieved. For instance, for the ARM processor and basic block 24 of
benchmark codebk_srch, we get an ESnode indegree of almost 9 on average.
Computations that did not produce a result within 6 hours or exceeded the
available memory appear in the table as dashes.

Table gives results for the ARM9 and a single-cluster version of TI-
C62x, and Table[4.¢]for TI-C62x, using the heuristic pruning method HY, that
limits the number of candidates v considered from the zero-indegree set to N
and, for TI-C62x, the number of data transfers issued to M, per configuration
expanded by the algorithm. Note that M > 2 makes no sense for the TT C62x,
as at most 2 transfers can run in parallel.

We observe that the single-cluster variant of C62x leads to higher optimiza-
tion times and larger solution spaces, because its larger issue width, more re-
sources, and deeper pipelines yield more variation in time profiles. Medium-
sized problems with up to 40 nodes can be solved optimally.

When comparing the smgle cluster variant to the double-cluster C62x, we
observe a dramatic increase in optimization time and space requirements, in
spite of the higher compression rate achieved by space profiles. This demon-
strates the effect of the additional transfer instructions. Most problems with
more than 20 nodes cannot be solved optimally.

The heuristic pruning methods HY, show a much larger impact of the num-
ber N of zero-indegree candidates considered on both code quality and opti-
mization time and space requirements, compared to the limit M on transfers.
In many cases, time-optimal or almost time-optimal code is found already for
N = 2, in the cases where we could verify this using the dynamic programming
algorithms.

63

4.4. Implementation and Evaluation

- - - €eeLy
- - - 9¢0C1
£€0¢6 665¢¢c 001 1 4%44
- - - [A%10) 8
- - - 6009/
- - - ¢1961
£99¢¢ 0cees Y91 849
/26661 8¢68¢ 8'9¢ 9%
960+0C 6S¥098 T¥0V9 e
(4404 Srest 601 GLE
- - - 0826¢C
- - - ce10€9

99948
LLYOY
96V
£8+0¢
6/00%¢C
S99L¥
899
T4
6v¢S
€Cs
6GSTe

0'8¢
8'¢
'l
144
oSt
€8
(4]
(4]
80
10
I'v1

6GC¢
9101
196
SIcI
08586
€CLE
(454}
9¢C
1474
43
991
€861

8€S/LYSC TET9Cl S96C9

€6/8
9csy
98
6/Y¥
$G8¢8L
08¢0¢
0889
§6S
894
866¢C
68¥
€£960¢
06¢9¥¢

e
¥0
(4]
S0
G6'8/1
(44
L0
[0
1’0
€0
10
699
6'86

8¢
| ¥4
6C
€C
[44
194
1c
Sl
14"
L1
¥l
1¢
148

€0¢
16

i
1
MOTeULINOJ
dppesa™1y
:uﬁl&ﬁﬁg
OIS 3qopod
oIS ¥qopod
Juamlm@oﬁOQ
aswwiq
aswwiq
aswwq

10z ATeue
IozATeue

sopougH# padowy [s|h
X¢90-1L

sopougy# padiowy [s]
101sNP-I[3UIS X79D -],

sopougy# podiowy [s]a

SpoWl WHV-d6INYV

971 g MMNELUQQJ

.m&hwaﬂoﬁwﬂ dSd N.V@UlH,H wﬂu EO.@ m&ooﬁﬁ oﬁwwﬁ wSOTSwNV MOw aoeds @Gw QEMP EOURNMEMHQO Yy DMO_N.HA

Chapter 4. Integrated Optimal Code Generation Using Dynamic Programming

64

Table 4.5.: Impact on optimization time and code quality of heuristic for ARMOYE and single-cluster C62x.

ARM9E-ARM mode

TI-C62x single-cluster

IZHH IZHN IZHw OHV,HA IZH~ IZHN IZHu OHV‘H‘
benchmark BB size t[s] t[cc] t[s] T[cc] t[s] tlcc] T[cc] t[s] T[cc] tls] tlcc] t[s] T[cc] Tlec]
analyzer 51 34 0.1 21 0.7 15 8.2 15 15 0.1 43 1.5 18 58.3 18 18
mbm_v\wa 59 45 0.1 27 1.1 18 30.3 18 — 0.1 55 3.1 29 879 22 —
bmmse 0 53 0.1 41 1.4 33 572 33 — 0.1 53 442 24 — — —
bmmse 3 141 0.2 159 303.2 132 — — — 0.5 218 — — — — —
codebk_srch 10 57 0.1 66 33 58 — — @ — 0.1 75 734 50 - - —
codebk_srch 20 23 0.1 23 0.1 17 0.7 17 17 0.1 36 0.3 23 5.1 18 14
codebk_srch 24 42 0.1 43 0.7 33 8.1 33 33 0.1 67 2.8 37 266.4 31 —
irr 7 38 0.1 48 0.2 41 0.8 41 41 0.1 56 0.8 35 7.2 31 30
minerr 5 88 0.1 105 416 93 — — — 0.3 107 13939 59 — — —

65

4.4. Implementation and Evaluation

Sl Gl oe <l 'S¢ Sl I's 6cC 90 6c [ACNA wns 594
- 9¢ 695 9¢ 6'6S1T 9¢ ¢£0c 6¢ 60 6&¢ 0 ¢ ¢ dppsa™orew
- ¢l ¢l ¢l 8’61 ¢l ¢l Lc I'o /¢ I'o 1¢ ¥ it
- 61 o1l <l 89 61 [4 G0 ¥¢C ¢o /1 0Ol dposa™iy
14! 14 91T ¥l I'c 14 60 o6l I'0 61 I'0 ¥I Ty Y2Is ¥qIpod
- L1 I'te 91 L'1¢ /1 L&A1 o I¢ T0 61 ¥€ Y2IS qOpOd
14 14" I'o ¥l 4 14 I'o ¢l I'o <1 ['0 ST I€ YdIs 3qapod
YA yA 0 £ 1’0o L I'o ¢l I'o ¢l I'0 0F 6T YdIs 3qapod
YA 17 A VA 4 17 I'o 91 ' 91 I'0 IT ST YdIs 3qapod
- Ic oy 61 ¢918s 1¢ 691 ¥¢ [AhN 4% 0 €T 0T YdIs ¥qapod
Sl 61 6'T ¢Sl 9'¥ 61 &1 LC I'0 /¢ I'0 61 T YdIs ¥qapod
6 0} ST 6 4 0} &1 81 ¥0 81 €0 v1I 11 ostuq
6 ¥l Y 6 (4] 14 (4 A ¥4 ¢0 ¢C ¥0 /1 01 osuiuq
6 6 01T 6 'l 6 G0 81 I'0 81 I'o v ¥ osuiuq
[09]2 [09]x [s]r [99]r [sPa [00]r [s]r [oo]r [s]r [99]r [s]3 ozIs gg S[rewyoudq
1dO TRH e=nH o=~H fNH RH

"Xg9D-11, oy3 10] ‘Gurunid onsunay yaia LA1penb apoo pue swn uoneindwo)) '9' A[qey,

Chapter 5.

Energy Aware Code Generation

OPTIMAL INTEGRATED CODE GENERATION is a challenge in terms of problem
complexity, but it provides important feedback for the resource-efficient de-
sign of embedded systems and is a valuable tool for the assessment of fast
heuristics for code generation. In this chapter we present a method for energy
optimal integrated code generation for generic VLIW processor architectures
that allows to explore trade-offs between energy consumption and execution
time.

5.1. Introduction to Energy Aware Code Generation

Power dissipation in embedded systems is of serious concern especially for
mobile devices that run on batteries. There are various approaches in embed-
ded processor design that aim at reducing the energy consumed, and most of
these have strong implications for power-aware code generation.

Voltage scaling reduces the power consumption by reducing voltage and
clock frequency. The processor can be switched to such a power-saving mode
in program regions where speed is of minor importance, such as waiting for
user input. This technique is only applicable to coarse-grained regions of the
program because transitions between modes have a non-negligible cost.

Clock gating denotes hardware support that allows to switch off parts of
a processing unit that are not needed for a certain instruction. For instance,
for integer operations, those parts of the processor that only deal with float-
ingpoint arithmetics can be switched off. Deactivation and reactivation re-
quire some (small) additional amount of energy, though. This feature for fine-
grained power management requires optimizations by the code generator that
avoid long sequences of repeated activations and deactivations by closing up
instructions that largely use the same functional units. The method described
in this chapter will take this feature into account.

68

Chapter 5. Energy Aware Code Generation

Pipeline gating reduces the degree of speculative execution and thus the uti-
lization of the functional units. And there are several further hardware design
techniques that exploit a trade-off between speed and power consumption.
See [BBS™00] for an overview. Other factors that influence power dissipation
are rather a pure software issue:

Memory accesses contribute considerably to power dissipation. Any power-
aware code generator must therefore aim at reducing the number of memory
accesses, for instance by careful scheduling and register allocation to minimize
spill code, or by cyclic register allocation techniques for loops, such as register
pipelining [SSWMO1].

Switching activities on buses at the bit level are also significant. In CMOS
circuits, power is dissipated when a gate output changes from 0 to 1 or vice
versa. Hence, bit toggling on external and internal buses should be reduced.
Hardware design techniques such as low-power bus encoding may be useful if
probability distributions of bit patterns on the buses are given [Ped01]. How-
ever, the code generator can do much more. For instance, the bit patterns for
subsequent instruction words (which consist of opcodes, register addresses
and immediates) should not differ much, i.e. have a small Hamming distance.
This implies constraints for instruction selection and for register assignment
as well as for the placement of data in memory. Moreover, the bit patterns
of the instruction addresses (z.e., the program counter value) do matter. Even
the contents of the registers accessed have an influence on power dissipation.
Beyond the Hamming distance, the weight (i.e. the number of ones in a binary
word) may have an influence on power dissipation — positive or negative.

Instruction decoding and execution may take more or less energy for dif-
ferent instructions. This is a challenge for instruction selection if there are
multiple choices. For instance, an integer multiplication by 2 may be replaced
by a left shift by one or by an integer addition. Often, multiplication has a
higher base cost than a shift operation [MSWO1]. Different instructions may
use different functional units, which in turn can influence the number of unit
activations/deactivations. Hence, resource allocation is a critical issue. In the
multiplication example, if the adder is already “warm” but the shifter and mul-
tiplier are “cold”, z.e. not used in the preceding cycle, the power-aware choice
would be to use the adder, under certain conditions even if another addition
competes for the adder in the same time slot.

Execution time in terms of the number of clock cycles taken by the program
is directly related to the energy consumed, which is just the integral of power
dissipation over the execution time interval. However, there is no clear corre-
lation between execution time and e.g. switching activities [STD94|. There are
further trade-offs such as between the number of cycles needed and the num-
ber of unit activations/deactivations: Using a free but “cold” functional unit

5.1. Introduction to Energy Aware Code Generation

69

increases parallelism and hence may reduce execution time, but also increases
power dissipation. Such effects make this issue more tricky than it appears at
a first glance.

In order to take the right decisions at instruction selection, instruction sche-
duling (including resource allocation) and register allocation (including regis-
ter assignment), the code generator needs a power model that provides quite
detailed information about the power dissipation behavior of the architecture,
which could be given as a function of the instructions, their encoding, their re-
source usage, their parameters, and (if statically available) their address and the
data values accessed. On the other hand, such a power model should abstract
from irrelevant details and thus allow for a fast calculation of the expected
power dissipation for a given program trace. Ideally, a power model should
be applicable to an entire class of architectures, to enhance retargetability of a
power-aware code generator.

The information for a power model can be provided in two different ways:
by simulation and by measurements. Simulation-based approaches take a de-
tailed description of the hardware as input and simulate the architecture with a
given program at the microarchitectural level, cycle by cycle to derive the en-
ergy consumption. Examples for such simulators are SimplePower [YVKIOO0]
and Wattch [BTMOQ]. In contrast, measurement-based approaches assume
a small set of factors that influence power dissipation, such as the width of
opcodes, Hamming distances of subsequent instruction words, activations of
functional units, ezc., which are weighted by originally unknown parameters
and summed up to produce the energy prediction for a given program trace.
In order to calibrate the model for a given hardware system, an amperemeter is
used to measure the current that is actually drawn for a given test sequence of
instructions [TMW94]. The coefficients are determined by regression analysis
that takes the measurements for different test sequences into account. Such a
statistical model is acceptable if the predicted energy consumption for an ar-
bitrary program differs from the actual consumption only by a few percent.
Recently, two more detailed, measurement-based power models were inde-
pendently developed by LEE et al. [LEMO1] and by STEINKE et al. [SKWMO1]],
for the same processor, the ARM7TDMI; they report on energy predictions
that are at most 2.5% and 1.7% off the actual energy consumption, respec-
tively. We will use an adapted version of their power model as a basis for the
energy optimizations described in this chapter.

Higher level compiler optimization techniques may address loop transfor-
mations, memory allocation, or data layout. For instance, the memory layout
of arrays could be modified such that consecutive accesses traverse the ele-
ment addresses in a gray code manner. If available, some frequently accessed
variables could be stored in small on-chip memory areas [MSWO1]. In this

70

Chapter 5. Energy Aware Code Generation

work, we assume that such optimizations are already done and we focus on
the final code generation step.

Not all factors in a power model are known at compile time. For instance,
instruction addresses may change due to relocation of the code at link or load
time, and the values residing in registers and memory locations are generally
not statically known, even though static analysis could be applied to predict
e.g. equality of values at least in some cases.

We present a method for energy-aware integrated local code generation that
allows to explore trade-offs between energy consumption and execution time
for a generic VLIW processor architecture. Our framework can be applied
in two ways: It can determine power—optlmal code (for a given power model)
and it can optimize for execution time given a user-specified energy budget for
(parts of) the program. An integrated approach to code generation is neces-
sary because the subproblems of instruction selection, instruction scheduling,
resource allocation and register allocation depend on each other and should
be considered simultaneously. This combined optimization problem is a very
hard one, even if only the basic block scope is considered (see Chapter [2).
Fortunately, the application program is often fixed in embedded systems, and
the final production run of the compiler can definitely atford large amounts of
time and space for optimizations. Finally, an optimal solution is of significance
for the design of energy-efficient processors because it allows to evaluate the
full potential of an instruction set design. Furthermore knowing the optimal
solution allows to evaluate the quality of fast heuristics, as we will show later.

5.2. Power Model

We adopt a simple power model [MSWO1,[LEMO1] that largely follows the
measurement-based power models described above, which we generalize in
a straightforward way for VLIW architectures. Our model assumes that the
contribution of every instruction y to the total energy consumption consists
of the following components: (i) a base cost bcost(y) that is independent of
the context of the instruction, (ii) an overhead cost ohcost(y,y’) that accounts
for inter-instruction effects with the instruction y’ that precedes y in the same
field of the instruction word, such as bit toggling in the opcode fields, and (ii1)
an activation/deactivation cost ac; that is paid if functional unit U; is activated
or deactivated.

5.3. Energy-optimal Integrated Code Generation

71

5.3. Energy-optimal Integrated Code Generation

As we mentioned in Chapter [3] we focus on code generation for basic blocks
and extended basic blocks [Muc97]] where the data dependences among the IR
operations form a directed acyclic graph (DAG) G = (V,E). n denotes the
number of IR nodes in the DAG.

Some instructions issued at time t < p(s) may not yet terminate at time p(s),
which means that the time slots p(s)+1, ..., T(s) in s must be padded by NOPs to
guarantee a correct program. In order to account for the energy contribution
of these trailing NOP instructions we transform the base cost of all instructions
Yy to cover successive NOPs: basecost(y) = bcost(y) — bcost(NOP). In particular,
the transformed basecost(NOP) is 0. Thus the base cost for target schedule s is:

Ebel(s) = t(s) - beost(NOP) + Z basecost(o7 ;).
% #NOP

The overhead cost for a target schedule s can be calculated as follows:

T(s)

w
Z ohcost(03;,0%5 1)

f
Eact(s):Z acy - 5(511351] 1)

where

5'(a,b) QiffaZ2LAbD#L)V(a=1LAb=1), and
’ 1 otherwise.

Then the total energy cost for s is E(s) = Epc(s) + Eon(s) + Eact(s).

5.4. Power Profiles

A power profile TI(s) = (St—1,15 - St—1,w> Q1,--, a) for a target schedule s at
reference time t = p(s) contains the instructions s;_1x issued in each slot k
of the next-to-last instruction word in s at time t — 1, and the activity status
a; € {0,1} in the last filled slot of unit U; in s, that is, at time t if some
instruction or a definite NOP was already scheduled to unit U; at time t, and
t — 1 otherwise.

72

Chapter 5. Energy Aware Code Generation

The power profile thus stores all the information that may be necessary to
determine the impact of scheduling steps at time t on power dissipation: the
activity status of all functional units says whether a unit must be activated
or deactivated, and the information about the preceding instructions allows
to calculate inter-instruction power effects for instructions to be selected and
scheduled at time t. Given the power profile and a new instruction y to be
appended to the current target schedule s, the new power profile can be cal-
culated incrementally.

We can thus associate with every target schedule s for G, the accumulated
energy E.(s) that was consumed by executing s from time 1 to t(s) according
to our power model. The goal is of course to find a target schedule s for
the entire basic block that minimizes Ey(s). If we optimize for energy only
(and thus ignore the time requirements), two target schedules s; and s; for the
same subDAG G, are comparable with respect to their energy consumption
if they have the same power profile, as they could be used interchangeably
as a prefix in future scheduling decisions. Hence, the following compression
theorem allows us to apply our dynamic programming framework to energy
optimization:

Theorem 5.4.1 For any two target schedules for the same subDAG G, s;
with reference time t1 = p(s1) and s; with reference time t, = p(sz), where
M(s1) = TI(s2), the si with higher accumulated energy consumption E,(si) can
be thrown away, that is, needs not be considered in further scheduling steps,
without losing optimality. If E,(s1) = E.(s2), either si or sy can be thrown
away without losing optimality.

The theorem follows from the fact that all information that is not stored in
the power profile, such as instructions issued at a time earlier than t—1 or units
active at a time earlier than t — 1, has no influence on the power dissipation in
cycle t (reference time) according to our power model.

5.5. Construction of the Solution Space

For energy-only optimization, an extended selection node (ESnode for short)
M = (z,T7) is characterized by a zero-indegree set z and a power profile T =
T1(s) for some target schedule s of G, that is locally energy-optimal among all
target schedules for G, with that power profile. The ESnode stores s as an
attribute.

Figure |5.1| represents the whole solution space for the matched DAG rep-
resented on the left side that computes y=x*x. The target architecture has
two functional units U; and U, with latency ¢ = (2,1) and activation cost

5.5. Construction of the Solution Space

73

Tovel 0
gz
/3 /S 1\ 1\

Tevel 1

Tevel 2

1 1

N

\ {C2INC-INF =3[[{C2INYCNINDT:3

@ {035 £:30 {035 £:30

<> 0 0 0
3 T3 5| [CNInDT:s

Figure 5.1.: Solution space for squaring on a 2-issue architecture with 2 functional
units { = (2,1), with base costs: 4 for st, 3 for others, 1 for NOP, and
instruction overhead of 0.

Tevel 3

ac = (6,5). The base cost for node 0 is 4, 3 for others, and 1 for NOP. Node
0 is to be executed on unit U, and other nodes on either U; or U,. ESnodes
are grouped according to their level (length of the IR schedule). The first row
of each ESnode represents the power profile and its reference time p(s). For
example, for the leftmost ESnode at level 1, {(3|—)(—|—)} means that node 3
(Id) matches instruction 3 and is scheduled on unit U; at the current time slot.
The status of unit U, is empty (denoted by —). In other ESnodes, N denotes
an explicit NOP inserted by the dynamic programming algorithm. Remark that
we show explicitly the occupation status of each functional unit at reference
time t = p(s) and t — 1. Edges are annotated with nodes selected in the se-
lection step of topological sorting (see Section [4.2.1). Edges that fall into a
single ESnode indicate that the resulting partial solution nodes are equivalent.
Unlabeled edges (horizontal) show an improvement of a partial solution, i.e.
a partial ESnode is constructed that dissipates less energy than an equivalent
ESnode that was already in the solution space; the resulting ESnode is the one
with least energy dissipation. The second row in each ESnode represents the
zero-indegree set (e.g., 1,2: nodes 1 and 2), followed by the total execution
time in terms of number of clock cycles (2 for the example node). Finally, we
show the energy required for the partial schedule (10).

We structure the solution space as a two-dimensional grid L, spanned by an
energy axis and a length axis. In order to obtain a discrete solution space we
partition the energy axis into intervals [k-AE, (k+1)-AE[of suitable size AE and
normalize the lower bounds of the intervals to the integers k = 0,1, 2, ... Grid
entry L(L,E) stores a list of all ESnodes that represent IR schedules of length
1 and accumulated energy consumption E. This structure supports efficient

74

Chapter 5. Energy Aware Code Generation

retrieval of all possible candidates for comparable partial solutions. When
constructing the solution space, we proceed along the energy axis as driving
axis, as energy is supposed to be the main optimization goal, while the length
axis has secondary priority. The grid structure allows, by taking the prece-
dence constraints for the construction of the partial solutions into account, to
change the order of construction as far as possible such that the more promis-
ing solutions will be considered first while the less promising ones are set aside
and reconsidered only if all the initially promising alternatives finally turn out
to be suboptimal.

This is based on the property that the accumulated energy consumption
never decreases if another instruction is added to an existing schedule. Most
power models support this basic assumption; otherwise a transformation as
in [KBO2] can be applied to establish monotonicity for the algorithm.

5.6. Heuristics for Large Problem Instances

The structuring and traversal order of the solution space allows us to opti-
mize the memory consumption of the optimization algorithm. Once all par-
tial solutions in an ESnode (E,1) have been expanded it can be removed, as it
will never be looked up again. Our algorithm for finding an energy-optimal
schedule appears to be practical up to size 30, see Table[5.1]

Large DAGs require heuristic pruning of the solution space to cope with
the combinatorial complexity. As a first attempt we control the number of
variants generated from a scheduling situation, i.e. the number of ESnodes
produced at each selection step. Instead of generating all possible selections
we stop after N variants. Increasing the value of N results in better schedules
with a slight computation time overhead. Using this heuristic significantly de-
creases computation times, that still present exponential behavior, and results
in highly optimized code quality within 10% to optimal. We additionally im-
plemented list scheduling (LS) and simulated annealing (SA) heuristics. For
the results obtained with LS heuristic we observe an overhead of 173% on av-
erage and for SA 55%. This significant overhead for both heuristics is caused
by that they do not consider using an already “warm” functional unit, nor the
long delays for certain instructions resulting in switching on and off functional
units often.

Table 5.1 shows the time requirements for finding an energy optimal sched-
ule of our energy-only optimization algorithm on a collection of basic blocks
taken from handwritten example programs and DSP benchmarks. Measure-
ments have been performed on a Linux PC with 1.6GHz AMD processor
(Athlon) and 1.5GB RAM. Column BB refers to a basic block among different

75

5.6. Heuristics for Large Problem Instances

— €97 — §9¢ — GS0¥IT — €69 — 6971 — +0I — — (%) 2199
— 0 — 81 — §90S¢ — CTIIS — TI91 — TEl — — (¥)91qq
— 0 — 8¢ — 0¢s€T — SHE — €¢I — 1T — — (o¥)s199
79 €07 61 6¥E O €SFE 0 TS 0 86e /1 I'S STl 8¢€86y (£€)+199
86 861 6/1 6¥€ O 8°0S¢ 0 96/ 0 €/€ 81 0§ STl 0+s0s (€€) €199
9¢ T/ 691 96T O 056 0 8t6 0 9z¢ 0z 06 011 o¢crie (z€) 7199
€S €1 S/ TIE 6 09¢€ 6 TEL 11 1'ZT 06 0SS €11 §1€09 (TE) 1199
79 161 T91 60€ O S6l€ 0 79 0 YT ¥ Ot 811 +'8698 (0€) 0199
09 081 I/ #0€ O 8¢S 0 €T 6 8TI 0C 9C TIL ¥TIl (0€) 699
0S TSI +/1 /LT O 68, 0 €e€r Ol Tl ¥€ LT 101 0095 (£2) 899
GG 8SI 691 ¥/ O 0¥l 0 8/ 0 TS /1 8T TOI 991 () £99
79 TS 91 6ST O L9¢ 0 L7 0 88 8T 61 +6 O€IT (§2) 999
0S €SI 691 ¥/C O Tyl 0 8/ 0 0¢ /1 61 01 T/ (¢2) 99
19 $€1 661 8¥T O 86 1 ¥9 ¥I ¥€ 0T I’ €8 08l (€2) 99
8 9¢1 €81 €4T O ¥SI 0 8¢ 0 €y 6 T1 98 L6S (T2) €99
€9 Syl 991 /€T O I'6l I +¥6 €1 I'S 8 /1 68 0O (zT2) 799
8T II1 TSI /€T O 't 0 96 0 Al T 1 ¥6 L1 (T2) 199
(%)0 (NP) (%)o (NP) (%)o (51 (%)o (N (%)o (5 (%)o (s (Nd2) (5N

Vs ST (s)szH (s)0TH ()sH G)1H 1dO a4

.\AHM_NS—U o._uOo ._Uﬁ.m It ﬁOﬁNuSQEOo uo woﬂum@ﬁﬂuﬂ wO OUQOSGQH TG oﬁﬂ.ﬂH

76

Chapter 5. Energy Aware Code Generation

benchmark programs, where the size is indicated in parenthesis. The second
column reports the time in seconds for finding an energy-optimal schedule
and its corresponding energy dissipation in energy unit (eU). If the algorithm
run out of the time quantum (6 hours) it was interrupted, and indicated in
the table by a dash. Columns 3-6 represent computation times for different
values of N (1, 5, 10 and 25) and energy overheads compared to the optimal
solution found in the optimal search. Finally, columns LS and SA indicate the
energy dissipation and overhead obtained with a naive list scheduling (LS) and
simulated annealing (SA) heuristics.

5.7. Possible Extensions

In principle, our framework can be extended to almost any power model, al-
though this may affect the performance of our algorithm. For instance, we
plan to study the effect of register assignment on energy consumption. In that
case, we need to solve, for each partial solution, a register assignment problem
for a partial interference graph and a partial register flow graph. Such algo-
rithms exist in the literature [CP95,[KSMS02|] and could be adapted for our
purposes.

5.8. Related Work

LEE, LEE et al. [LLHTOOQ] focus on minimizing Hamming distances of subse-
quent instruction words in VLIW processors. They show that their formula-
tion of power-optimal instruction scheduling for basic blocks is NP-hard, and
give a heuristic scheduling algorithm that is based on critical-path scheduling.
They also show that for special multi-issue VLIW architectures with multiple
slots of the same type, the problem of selecting the right slot within the same
long instruction word can be expressed as a maximum-weight bipartite match-
ing problem in a bipartite graph whose edges are weighted by negated Ham-
ming distances between microinstructions of two subsequent long instruction
words.

LEE, TtwartI et al. [LTMF95] exploit the fact that for a certain 2-issue Fujitsu
DSP processor, a time-optimal target schedule is actually power-optimal as
well, as there the unit activation/deactivation overhead is negligible compared
to the base power dissipation per cycle. They propose a heuristic scheduling
method that uses two separate phases, greedy compaction for time minimiza-
tion followed by list scheduling to minimize inter-instruction power dissipa-
tion costs. They also exploit operand swapping for commutative operations

5.8. Related Work

77

(multiplication).

ToBUREN et al. [TCR98] propose a list scheduling heuristic that could be
used in instruction dispatchers for superscalar processors such as the DEC
Alpha processors. The time behavior and power dissipation of each func-
tional unit is looked up in an xADML-like description (see Chapter [8) of the
processor. The list scheduler uses a dependence level criterion to optimize for
execution time. Microinstructions are added to the current long instruction
word unless a user-specified power threshold is exceeded. In that case, the
algorithm proceeds to the next cycle with a fresh power budget.

Su et al. [STDY4] focus on switching costs and propose a postpass schedul-
ing framework that breaks up code generation into subsequent phases and
mixes them with assembling. First, tentative code is generated with register
allocation followed by pre-assembling. The resulting assembler code contains
already information about jump targets, symbol table indices ezc., thus a ma-
jor part of the bit pattern of the final instructions is known. This is used as
input to a power-aware postpass scheduler, which is a modified list scheduling
heuristic that greedily picks that instruction from the zero-indegree set that
currently results in the least contribution to power dissipation. The reordered
code is finally completed with a post-assembler.

Chapter 6.
Exploiting DAG Symmetries

OUR DYNAMIC PROGRAMMING ALGORITHMS presented in Chapter 4| and [5] re-
quire a large amount of time and memory. Measurements show that the time
and space requirements of the algorithm increase exponentially with the size
of the problem instance. This chapter presents an optimization technique that
exploits during processing a specific property of DAGs, which we call partial-
symmetry, to reduce time and space usage.

We observe that numerous DSP applications have DAGs that are partial-
symmetric according to our definition. Exploiting the partial-symmetry prop-
erty shows a significant reduction in time and memory usage for real world
DSP and handwritten example programs.

6.1. Motivation

Our algorithm presented in Section[4.3.3|for irregular register sets is applicable
to small, but still not trivial problem instances of size up to 20 instructions.

This chapter introduces a technique for pruning the solution space as early
as possible, based on an idea presented by Crou et al. [CC95] for optimal
instruction scheduling. CHOU er al. establish and exploit equivalence relations
among instructions of a basic block to cope with the combinatorial explo-
sion of the solution space resulting from a branch-and-bound optimization
approach. Similarly, we exploit partial-symmetry in our framework to reduce
time and space usage. Informally, for time optimization two DAG nodes are
partial-symmetric if interchanging them and their corresponding DAG succes-
sors in a given schedule does not make any difference for the final execution
time.

To illustrate the partial-symmetry property let us consider the following C
statement:

80

Chapter 6. Exploiting DAG Symmetries

Sty

a, mul,

a(d/As\ub7

6

zd/\\a/:\zd
L1

0 1 2

Figure 6.1.: IR-DAG for C statement a=(b+c) *(c-d).

a=(b+c)*(c-d);

which corresponding DAG is shown in Figure The DAG contains 11
nodes numbered from O to 10. There are 12 partial-symmetric pairs of nodes
that occur during exploring all possibilities for scheduling the DAG on a sim-
ple load-store architecture with one arithmetic unit with unit latency and one
multiplier with a two clock cycles latency. Let us assume that the arithmetic
unit performs addition and subtraction, and the multiplier is used for the mul-
tiplication and LOAD/STORE operations. For instance, at a given scheduling
situation where nodes 3 and 5 are possible candidates for being selected next,
we observe that the execution time of the complete schedule remains the same
indifferently if we select node 3 or 5 first.

We define an equivalence relation for operators that increases the number
of possible partial-symmetries. Such an extension is target dependent and re-
quires additional information. For instance, it is possible that pair (6, 7) may
be considered as equivalent although the nodes represent different operators,
i.e. addition (ADD) and subtraction (SUB).

We observed that several benchmarks for DSPs exhibit a high degree of
partial-symmetry in terms of the defined equivalence relation. Table [6.1] re-
ports the measurements of the number of symmetries detected in the Texas
Instruments “comp_bench” benchmark set for the example architecture in-
troduced above. We also added some examples of basic linear algebra com-
putations. The first column gives the name of the benchmark file, the second
refers to the basic block that is being optimized, and the third indicates the size
of the DAG, i.e. the number of IR nodes. The number of partial-symmetries,
shown in the last column, gives the number of pairs of nodes in the DAG that
occur to be equivalent during scheduling.

6.2. Solution Space Reduction

81

Table 6.1.: Evaluation of the number of partial-symmetries in standard DSP
benchmarks for an architecture with two functional units with la-
tencies 1 and 2.

Name BB IRnodes #symmetries
codebk_srch.c 28 23 116
codebk_srch.c 33 17 6
cplx.c 0 14 182
cplx.c 2 22 4469
dot.c 4 17 64
fir_vselp.c 7 25 139
fir_vselp.c 10 19 0
Mmatrixcopy.c 4 18 0
scalarprod.c 3 17 64
summatrix.c 3 17 23
sumvector_un.c 2 17 8
vecsum_c.c 6 20 69

6.2. Solution Space Reduction

In this section we describe our optimization technique that exploits partial-
symmetries in DAGs and improve our previous dynamic programming algo-
rithm for determining a time-optimal schedule.

6.2.1. Exploiting the Partial-symmetry Property

To be able to handle larger problem instances we investigate a property that
we call partial-symmetry as a base for early pruning of the solution space.

In [CC95]] CHOU et al. define an equivalence relation, based on symmetry
properties of DAGs to prune the solution space of their branch-and-bound
method. The main difference with our work is that CHOU et al. do not merge
(selection) nodes but perform enumeration on the selection tree. Additionally,
they address the problem as a separate phase of code generation, i.e. instruc-
tion scheduling at the target level after instruction selection was done. In our
framework, we address phases concurrently. Thus the selection of a target
instruction for an IR node v is performed only when v is selectable, .¢. all pre-
decessors of v have already been scheduled. In the problem definition given
in this chapter, this does not make a difference since for simplicity we do not
consider data locality and assume that all operands are available at the right

82

Chapter 6. Exploiting DAG Symmetries

3 e ~

8 ml<9 8 ml<9 8 ml<9
a/ﬁl sub a/; sub a%; sub
/ N4 \ N \ AN AN
ld, . U 3 . ldg 3 4 5
L T Ao

0 1 2 0 1 2 0 1 2

(step a) (step b) (step ¢)

Figure 6.2.: Example DAG for C statement a=(b+c)*(c-d) ; under process-
ing.

places. Generally, in our approach the problem occurs on a higher abstraction
level, that is, on the IR level and not on target level as in CHOU et al. [CC95].

We say that two IR nodes u and v that belong to a zero-indegree set z are
equivalent if exchanging u and v and their respective successors in the final
optimal schedule does not modify the execution time, the time profile at the
exit of the basic block, nor the register need. That is, we could transform
every schedule S,, of G, starting with u into a schedule S, starting with v by
interchanging equivalent nodes with their “mirror” nodes, such that S, has the
same time and space behavior.

Figure [6.2] illustrates one possible scheduling process of the statement of
Figure [6.1} that starts with the zero-indegree set containing nodes 3 and 5
(step a), marked by light gray area. Light gray nodes belong to scheduled(z),
and black nodes are nodes above the zero-indegree set. The example starts
with selecting node 3, which results in the new zero-indegree set consisting
of nodes 6 and 5 (step b). We show another possible subsequent selection
step that consists in choosing node 5, resulting in a new zero-indegree set
consisting of nodes 6 and 7 (step ¢). Thus, we obtain a part of the schedule
that contains the sequence of nodes 3 and 5. We would obtain the same result
in terms of execution time and time profile shape if we started at (step a) by

selecting first node 5 then 3. We remark in this example that the mirror node
of node 3 is node 5.

6.2. Solution Space Reduction

83

6.2.2. Instruction Equivalence

An instruction y; is equivalent to instruction y; if both are executed on the
same functional unit. We assume here that instructions that are executed on
the same functional unit require the same number of clock cycles to be com-
pleted. Thus, appending instruction y; to a schedule s with time profile P re-
sults in a schedule s’ with time profile P’. We obtain an equivalent time profile
P”, i.e. with the same shape and the same completion time as P/, by appending
yj to s.

6.2.3. Operator Equivalence

The set of functional units on which an operation op(v) of a DAG node v may
be computed is denoted by F(v) = {U; | Jy € Y(v),y is being executed on Uy}
We say that two opcodes op(u) and op(v) are operator-equivalent, denoted
U =4p V, if and only if F(u) = F(v).

Example Let us illustrate operator-equivalence on the example of the C state-
ment a=(b+c)*(c-d) ; whose DAG is shown in Figure The scheduling
is performed for a target processor with two functional units Uy, U, and a
load/store unit. Uy computes addition (add) and subtraction (sub). Multipli-
cation (mul) and load (1d) are performed on unit U,. Thus, operations (sub)
and (add) (node 7 and 6) are equivalent, and we denote node(7) =o,, node(6).

|

6.2.4. Node Equivalence

Let us consider a scheduling situation given by an ESnode n = (z, P, t) with
current zero-indegree set z, time profile P and reference point t of P inn.sched-
ule. Let u and v be two nodes in z. Let p1,p2, ..., Pk (resp. di,dz,---, qx) de-
note the parents of u (resp. v). For simplicity we assume that inner DAG
nodes are either binary or unary. An extension to higher node degrees is
straightforward. We denote by other_child(p;) the other child of p; (that is
not u). If the number of parents of u and v differs, u and v cannot be equiv-
alent. Let t(v) be the issue time of the instruction computing v. We denote
by
O(u) =t+ max {0,t(cy) + 212(1)}
i€(1,2)

the earliest schedule time of u, where c; is the i-th child of u still in the time
profile P computed by functional unit Uy ;. t(ci) represents the issue time of
node c;.

84

Chapter 6. Exploiting DAG Symmetries

We say wand v are equivalent, denoted u =, v, if (1) = 8(v) and u =1
v, where:

U =ypw v (upwards equivalence) if:
(1) wand v are identical, or

(2) uw and v are roots of the DAG and the IR operations of u and v are
operator-equivalent, denoted as u =4, v, or

(3) there is a permutation § of qi,dz,...,qx such that p; =ypw @i for all
i€ 1,2,...,k and other_child(p:i) =awn other_child(G:) and u =4 v.

U =gywn v (downwards equivalence) if:
(1) wand v are in the zero-indegree set z, u =4, v and 8(u) = 6(v), or

(2) wand v are in alive(z), for u and v the number of parents that are not in
scheduled(z) are the same, and the predecessors of u and v are no longer
in the time profile P, or

(3) wand v are unary, u =,p, vand their children are downwards equivalent,
or

(4) wand v are binary and u =4, v and:
either u.lc =4,yn v.lc and w.rc =44n v.7C,
or w.lc =gwn v.rec and w.re =gy v.lc,
where lc denotes the left and rc the right child.

The above relation =g, is reflexive, symmetric, and transitive, thus it de-
fines an equivalence relation.

We remark that for equivalent nodes u and v, u and v are mirror nodes, and
the p; and §; are mirrors of each other. If u,v € z are equivalent then any
pattern (tree, forest, DAG) containing u (and maybe some of u’s successors)
has a mirror pattern containing v (and the mirrors of those successors of u).

Example We consider the DAG of Figure|6.1]at a given scheduling situation
where z = {3, 5}, scheduled(z) ={0,1,2,4,8}, 6 =,,, 7 and 3 =,,, 5 represented
in Figure[6.2] (step a). The followmg induction rules show that nodes 3 and 5
are equivalent where the numbers in parentheses indicate the matching rule of
the equivalence relation.

true true
4 c alive(z) NO=0 (2)
4 =dwn 4

6.2. Solution Space Reduction

85

true true true
true 3,5€zA3=,,5A0(3)=0(5) (1) true
6=op 7N\ 3=4wn b Nd=gwn 4 (4)
6 =awn 7
true true true
9=upw IN6=aun 7AN9I=0p 9 true true
6 =upw 7 Nt =qgwn 4N6=5, 7 (3)
J=upw 4
true true
3=1pw 4N0(3) =0(5)

3=ym 5

The equivalence relation allows us to reduce (in the best case) the solution
space by a factor up to two for each pair of equivalent nodes. That is, whenever
two nodes u and v at a given scheduling step are simultaneously present in z
and are equivalent, the algorithm needs consider only one sequence that starts
either with u or v, but not both of them.

6.2.5. Improved Dynamic Programming Algorithm

In this chapter we consider regular architectures, and thus we first adapt the
clustered_timeopt algorithm from Section by removing the part of the
algorithm that concern transfers between different residence classes (see Fig-
ure lines 20-24) and call it zzmeopt. To perform symmetry evaluation, we
modify the loop for all v € z (see Figure line 13) such thatanode v € z
is skipped if it is equivalent to any other preceding node v/ € z. The modified
part of the algorithm is given in Figure

Note that node equivalence is not a static property of the DAG but (par-
tially) depends on the other nodes in z and on the relevant history of schedul-
ing decisions, ze. the time profile. This means that an individual equivalence
test must be run at each selection step, and therefore we must be careful that
testing overhead does not outweigh the gains by compression due to found
equivalences.

86

Chapter 6. Exploiting DAG Symmetries

function timeopt (DAG G with n nodes and set z, of leaves)
1o —new ESnode(z, Po);

Mo.s* « empty schedule;

Loo.insert(No);

forall v; € z={v,vs,...,vq} do
if 3 €{1,2,...,i—1}:8(v;) = 0(vi) AND v; =, vi then
skip v;
else

z' « selection(z,x); // new zero-indegree set

fi
od

end function timeopt

Figure 6.3.: Modified algorithm that exploits the equivalence relation for de-
termining a time-optimal schedule.

6.3. Implementation and Results

At the present time we implemented a simple version of the equivalence test
algorithm of Section which takes exponential time. In Chapter (10| we
discuss possible alternatives as part of future work. We evaluated our method
with two architectures:

(1) single-issue with four functional units with latencies 1, 1, 2 and 2.

(2) two-issue with three functional units with latencies 1, 2 and 2.

The benchmarks have been computed on a PC machine, with a 1.6GHz
Athlon processor and 1.5GB RAM.

Table 6.2 shows the gain in terms of time by exploiting symmetries in dif-
ferent DSP programs. The first column gives the name of the benchmark, the
second indicates the basic block that is being optimized, and the third gives
the size of the basic block in term of number of DAG nodes. Column GT1
(resp. GT2) gives the gain in time for Architecture (1) (resp. Architecture (2))
by exploiting symmetries. Columns #sy; and #sy; indicate the number of
symmetries that occur during computation for each architecture. We show
in columns t; and t, computation times for the algorithm without exploiting
symmetries.

6.3. Implementation and Results

87

Architecture 1

Architecture 2

VI GT1[%] #sy; ti(s) GT2[%] #sys ta(s)
@) 23 -13.89 220 0.72 8.62 30 0.58
(b)y 22 6576 7042 43.66 5221 5306 23.98
) 25 241 763 0.83 8.62 920 1.16
d) 33 2272 18761 190.44 2938 52872 1599.80
() 22 3648 11137 25.25 35.94 28796 168.02
25 -1495 185 2.81 695 136 1.87
(g) 44 2432 60257 5748.33 19.96 97728 11106.23
(h) 30 362 641 246.01 048 2220 284.20
(i) 40 020 14888 6818.14 0.17 39248 13190.48
G) 25 952 1195 0.84 2333 1317 1.2
k) 33 3623 25111 187.61 3922 66507 1557.99
q) 22 -16.05 10 081 -10.91 29 0.55
(m) 30 -3131 766 214 2332 716 1.93
(n) 27 -21.33 90 300 -1931 139 2.02
(0) 32 -2541 670 1897 -20.94 1051 16.33
(p) 32 264 4908 170.08 266 4896 339.38

Table 6.2.: Time gain by exploiting symmetries in DSP benchmarks.

88

Chapter 6. Exploiting DAG Symmetries

We observe that the gains are significant for larger problem instances that
take long time to compute. The highest gain is 66% for a complex multipli-
cation (benchmark (b), architecture (1)). In general loop unrolling increases
significantly the amount of symmetric cases. However, for summatrix bench-
marks (I)~(o) the gain is negative, i.e. in that situation we suffer from the over-
head of computing node equivalence even if the unrolling factor for the main
loop is 4. The same case occurs for benchmark (p).

Figure|6.4]and Figure[6.5|illustrate the relation between the amount of po-
tential symmetries and the gain in time for architecture (1) and (2) respectively.
The no-symm (resp. symm) bars indicate the computation time for algorithm
without (resp. with) exploiting the symmetry property. For each benchmark
we show the overhead in identifying symmetries (sym-id) and the amount of
symmetries (#symm) reported by the framework that occurs during computa-
tion. The left y-axis indicates time in seconds, and the right y-axis the number
of symmetries. The name of benchmarks correspond to the names of Tablel6.

Generally, a high number of symmetries decreases the computatlon t1
For small problem instances the overhead for computlng symmetries is higher
than the gain. It is also unexpected for matrix multiplication unrolled once
(benchmark (1)) that the computation time does not decrease significantly de-
spite the large number of symmetric situation is high. In that case most of the
symmetric situations occur at the end of computation when the solution space
is large. Thus, the overhead for identifying symmetries and the gain are small.

IWe observe that exploiting symmetries decreases or uses the same amount of memory, but never
increases it.

89

1500

6.3. Implementation and Results

I | W/MM/V/V//V/V%M\\\\\ »k | w ; : \o
-l m m L| T R

illustrating the computation

time (left y-axis) without exploiting the symmetry property (no-
symm), computation time with symmetry property (symm), sym-
metry overhead (sym-id) and the amount of symmetries (#symm)

Figure 6.4.: Time results for Architecture (1)
reported on the right y-axis.

Chapter 6. Exploiting DAG Symmetries

90

1500

SolPWWASH#

o
o o
o
- [Te}

Symm s
sym-id

no-symm v
HSYMM e

A\

2

- o
(s) awm

30000
20000

solleWWAsH

10000
100000

vl
AN

soleWWAsH

o o
o o
o
(=] o
© <

80000
o]

1 20000

A

SYym-id s
HSYMM e

Symm s

nNo-symm zrren

A\

%

SYymM-id s
HSYMM —

SYMM s

no-symm

40
300

(s) swn

100 -

10000 r
5000

(s) swn

Figure 6.5.: Time results for Architecture (2) using the same notation as in Fig-

ure

Chapter 7.

Integer Linear Programming
Formulation

To OUR KNOWLEDGE THERE IS ONLY one Integer Linear Programming (ILP)
formulation in the literature, by Wirson [WGBY4], that fully integrates all
steps of code generation, i.e. instruction selection, register allocation and in-
struction scheduling, on the basic block level. We give in this chapter an im-
proved version of this ILP formulation that also covers VLIW processors.
Moreover, our ILP formulation does no longer require preprocessing the ba-
sic block’s data flow graph to support instruction selection. We also evaluate
and compare our ILP formulation with our DP method on a VLIW processor.

7.1. Introduction

We consider the problem of optimal integrated code generation for instruc-
tion-level parallel processor architectures such as VLIW processors. Inte-
grated code generation solves simultaneously, in a single optimization pass,
the tasks of instruction selection, instruction scheduling including resource
allocation and code compaction, and register allocation.

In Chapter 4, we developed a dynamic programming approach and imple-
mented it in our retargetable framework called OPTIMIST [KBO5|. However,
there may be further general problem solving strategies that could likewise be
applied to the integrated code generation problem. In this chapter, we con-
sider the most promising of these, integer linear programming (ILP).

Integer linear programming (ILP) is a general-purpose optimization method
that gained much popularity in the past 15 years due to the arrival of efficient
commercial solvers and effective modeling tools. In the domain of compiler
back-ends, it has been used successfully for various tasks in code generation,
most notably for instruction scheduling. WiLkeN ez al. [WLHOO] use ILP

92

Chapter 7. Integer Linear Programming Formulation

for instruction scheduling of basic blocks which allows, after preprocessing
the basic block’s data flow graph, to derive optimal solutions for basic blocks
with up to 1000 instructions within reasonable time.

The formulations that search for time-optimal schedules integrating instruc-
tion scheduling and resource allocation are either time-based or order-based.
In time-based formulations the main decision variable indicates the time slot
when an operation is to be started. In order-based formulations the decision
variable represents the flow of the hardware resources among intermediate
operations (resource flow).

Gesotys [GE91]] formulates a time-based formulation that integrates in-
struction scheduling, resource allocation and computes time-optimal sched-
ules. Leurers and MARWEDEL [LM97] provide a time-based ILP formula-
tion for code compaction of a given instruction sequence with alternative
instruction encodings. ZHANG [Zha96], CHANG et al. [CCK97] and KAst-
NER [Kis00a]] provide order-based and/or time-based ILP formulations for
the combination of instruction scheduling with register allocation.

We know of only one ILP formulation in the literature that addressed all
three tasks simultaneously, which was proposed by WirLson ez al. [WMGB93|
WGHBY4|. However, their formulation is for single-issue architectures only.
Furthermore, their proposed model assumes that the alternatives for pattern
matching in instruction selection be exposed explicitly for each node and edge
of the basic block’s data flow graph (DFG), which would require a prepro-
cessing of the DFG before the ILP problem instance can be generated.

In this chapter we provide an ILP formulation that fully integrates all three
phases of code generation and extends the machine model used by Wirson
et al. by including VLIW architectures. Moreover, our formulation does no
longer need preprocessing of the DFG.

7.2. The ILP Formulation

In this section we first introduce various variables and parameters and then
provide the ILP formulation for fully integrated code generation. The reader
can find the complete ILP model in the Appendix[B] specified in AMPL lan-
guagd’] However, first we introduce some notations that we use in the formu-
lation.

"Mathematical programming language mainly used for solving operational optimization prob-
lems. http://www.ampl.com

http://www.ampl.com

7.2. The ILP Formulation

93

7.2.1. Notations

We use uppercase letters to denote parameters and constants provided to the
ILP formulation (model). Lowercase letters denote solution variables and in-
dexes.

Indexes i and j denote nodes of the DFG. We reserve indexes k and 1 for
instances of nodes composing a given pattern. t is used for time index. We use
the common notation [X| to denote the cardinality of a set (or pattern) X.

As usual, instruction selection is modeled as a general pattern matching
problem, covering the DFG with instances of patterns that correspond to in-
structions of the target processor. The set of patterns B is subdivided into
patterns that consist of a single node, called singletons (B”), and patterns con-
sisting of more than one node, with or without edges (B’). Thatis, B = B’UB”
such that ¥p € B/, |p| > 0 and ¥p € B”,|p| = 1.

In the ILP formulation that follows, we provide several instances of each
non-singleton pattern. For example, if there are two locations in the DFG
where a multiply and accumulate pattern (MAC) is matched, these will be
associated with two different instances of the MAC pattern, one for each pos-
sible location. We require that each pattern instance be matched at most once
in the final solution. As a consequence, the model requires to specify a suffi-
cient number of pattern instances to cover the DFG G. For singleton patterns,
we only need a single instance. This will become clearer once we have intro-
duced the coverage equations where the edges of a pattern must correspond
to some DFG edges.

7.2.2. Solution Variables

The ILP formulation uses the following solution variables:

® Cip k.t abinary variable that is equal to 1, if a DAG node 1 is covered by
instance node k of pattern p at time t. Otherwise the variable is 0.

® Wik a binary variable that is equal to 1 if DFG edge (i,j) is covered
by a pattern edge (k, 1) of patternp € B’.

® s, a binary variable that is set to 1 if a pattern p € B is selected and the
corresponding instruction issued at time t, and to 0 otherwise.

® 1i¢ a binary variable that is set to 1 if DFG node i must reside in some
register at time t, and O otherwise.

* Taninteger variable that represents the execution time of the final sched-
ule.

94

Chapter 7. Integer Linear Programming Formulation

We search for a schedule that minimizes the total execution time of a basic
block. That is, we minimize T.
In the equations that follow, we use the abbreviation c; , for the expression

ZVteO..Tmux Cip.k,t, and s, for ZVtGO..TmaX Sp,t-

7.2.3. Parameters to the ILP Model

The model that we provide is sufficiently generic to be used for various instru-
ction-level parallel processor architectures. At present, the ILP model requires
the following parameters:

Data flow graph:
¢ G index set of DFG nodes
* Eg index set of DFG edges

e OP; operation identifier of node i. Each DFG node is associated with
an integer value that represents a given operation.

OUT; indicates the out-degree of DFG node i.
Patterns and instruction set:

* B’ index set of instances of non-singleton patterns
* B” index set of singletons (instances)
* E, set of edges for pattern p € B’

* OP, x operator for an instance node k of pattern instance p. This relates
to the operation identifier of the DFG nodes.

e OUT, x is the out-degree of a node k of pattern instance p.

* L, is an integer value representing the latency for a given pattern p. In
our notation, each pattern is mapped to a unique target instruction, re-
sulting in unique latency value for that pattern.

Resources:

e Fisan index set of functional unit types.

* M represents the amount of functional units of type f, where f € F.

7.2. The ILP Formulation

95

e U, is a binary value representing the connection between the target
instruction corresponding to a pattern (instance) p and a functional unit
f that this instruction uses. Itis 1 if p requires f, otherwise 0.

* W is a positive integer value representing the issue width of the target
processor, Z.e., the maximum number of instructions that can be issued
per clock cycle.

¢ R denotes the number of available registers.

® Tiax 1S a parameter that represents the maximum execution time bud-
get for a basic block. The value of Tiyax 1s only required for limiting
the search space, and has no impact on the final result. Observe that
Tmax must be greater than (or equal to) the time required for an optimal
solution, otherwise the ILP problem instance has no solution.

The rest of the section provides the ILP model for fully integrated code
generation for VLIW architectures. First, we give equations for covering the
DFG G with a set of patterns, i.e. the instruction selection. Secondly, we spec-
ify the set of equations for register allocation. Currently, we address regular
architectures with general purpose registers, and thus only check that the reg-
ister need does not exceed the amount of physical registers at any time. Next,
we address scheduling issues. Since we are working on the basic block level,
only flow (true) data dependences are considered. Finally, we assure that, at
any time, the schedule does not exceed available resources, and that the in-
structions issued simultaneously fit into a long instruction word, z.e., do not
exceed the issue width.

7.2.4. Instruction Selection

Our instruction selection model is suitable for tree-based and directed acyclic
graph (DAG) data flow graphs. Also, it handles patterns in the form of tree,
forest, and DAG patterns.

The goal of instruction selection is to cover all nodes of DFG G with a set
of patterns. For each DFG node i there must be exactly one matching node
k in a pattern instance p. Equation forces this full coverage property.
Solution variable ¢y + records for each node 1 which pattern instance node
covers it, and at what time. Beside full coverage, Equation also assures a
requirement for scheduling, namely that for eace DFG node 1, the instruction
corresponding to the pattern instance p covering it is scheduled (issued) at

96

Chapter 7. Integer Linear Programming Formulation

some time slot t.

Vi€eG,)) cipr=1 (7.1)

peEB kéEp

Equation records the set of pattern instances being selected for DFG
coverage. If a pattern instance p is selected, all its nodes should be mapped to
distinct nodes of G. Additionally, the solution variable s, ; carries the infor-
mation at what time t a selected pattern instance p is issued.

¥p € B/, ¥t € 0.Tmaxs) D Ciplet = [Plsp.e (7.2)

ieG kep

If a pattern instance p is selected, each pattern instance node k maps to ex-
actly one DFG node i. Equation (7.3)) considers this unique mapping only for
selected patterns, as recorded by the solution variables s.

Vp € B/,Vk € p, Z Cip,k = Sp (7.3)
i€G

Equation implies that all edges composing a pattern must coincide with
exactly the same amount of edges in G. Thus, if a pattern instance p is se-
lected, it should cover exactly |E, | edges of G. Unselected pattern instances
do not cover any edge of G. Remark that in our model each pattern instance
is distinct, and that we further assume that there are enough pattern instances
available to fully cover a particular DFG.

Vp € B, Z Z Wijpktl = [Eplsp (7.4)

(L,j)eEG (k) €E,

Equation assures that a pair of nodes constituting a DFG edge covered
by a pattern instance p corresponds to a pair of pattern instance nodes. If we
have a match (Wi j k1 = 1) then we must map DFG node i to pattern instance
node k and node j to pattern instance node | of pattern instance p.

V(i,j) € Eg,Vp € B/,V(k, 1) e Ep, 2wi,j,p,k,1 < Cip,k T Cjp,t (75)

Equation (7.6) imposes that instructions corresponding to a non-singleton
pattern (instance) p are issued at most once at some time t (namely, if p was
selected), or not at all (if p was not selected).

VpeB’, s, <1 (7.6)

7.2. The ILP Formulation

97

& A
e

N /N

(i) (i)

Figure 7.1.: Pattern coverage restrictions: (i) Pattern p cannot cover the set of
nodes since there is an outgoing edge from b, (ii) pattern p covers
the set of nodes {a, b, c}.

Equation (7.7) checks that the IR operators of DFG (OP;) corresponds to
the operator OP,, x of node k in the matched pattern instance p.

Vi€ G,Vp € B,Vk € p,Vt € 0. Tmaxs Ciput (OP; — OPp) =0 (7.7)

Our model forbids, as is the case for almost all architectures, to access a
partial result that flows along a covered edge and thus appears inside a pattern.
Only a value flowing out of a node matched by a root node of the matching
pattern is accessible (and will be allocated some register). This situation is
illustrated in Figure[7.1] A possible candidate pattern p that covers nodes a, b,
and c cannot be selected in case (i) because the value of b is used by another
node (outgoing edge from b). On the other hand, the pattern might be selected
in case (i1) since the value represented by b is only internal to pattern p.

For that, Equation simply checks if the out-degree OUT, x of node k
of a pattern instance p equals the out-degree OUT; of the covered DFG node
i. As nodes in singleton patterns are always pattern root nodes, we only need
to consider non-singleton patterns, z.e. the set B'.

Vp € B,V(4,j) € Eg,V(k,1) € p, Wi jpir1(OUTy —OUT,) =0 (7.8)

7.2.5. Register Allocation

Currently we address (regular) architectures with general-purpose register set.
We leave modeling of clustered architectures for future work. Thus, a value
carried by an edge not entirely covered by a pattern (active edge), requires a

98

Chapter 7. Integer Linear Programming Formulation

register to store that value. Equation (7.9) forces a node i to be in a register if
at least one of its outgoing edge(s) is active.

vt € 0..Timax, Vi € G,

Z Z Z Z Cip,kty — Z Ci,p,Lty < NTi,t (79>

t¢=0(1,j)€Eg PEB \kep lep

If all outgoing edges from a node i are covered by a pattern instance p, there
is no need to store the value represented by i in a register. Equation (7.10)
requires solution variable ri ¢ to be set to O if all outgoing edges from 1i are
inactive at time t.

vt € 0..Timax, Vi € G,

t
Z Z Z ZCi,p,k,tL—ZCj,p,l,tL >riye (7.10)

t¢=0(1,j)€Eg PEB \kep lep

Finally, Equation (7.11) checks that register pressure does not exceed the
number R of available registers at any time.

Yt € 0.Tmaxs Y Tit <R (7.11)

ieG

7.2.6. Instruction Scheduling

The scheduling is complete when each node has been allocated to a time slot
in the schedule such that there is no violation of precedence constraints and
resources are not oversubscribed. Since we are working on the basic block
level, we only need to model the true data dependences, represented by DFG
edges. Data dependences can only be verified once pattern instances have been
selected, covering the whole DFG. The knowledge of the covered nodes with
their respective covering pattern (z.e., the corresponding target instruction)
provides the necessary latency information for scheduling.

Besides assuring full coverage, Equation constraints each node to be
scheduled at some time t in the final solution. We need additionally to check
that all precedence constraints (data flow dependences) are satisfied. There are
two cases: first, if an edge is entirely covered by a pattern p (inactive edge), the

7.2. The ILP Formulation

99

latency of that edge must be 0, which means that for all inactive edges (i,j),
DFG nodesiandj are “issued” at the same time. Secondly, edges (i,j) between
DFG nodes matched by different pattern instances (active edges) should carry
the latency L,, of the instruction whose pattern instance p covers i. Equations
and guarantee the flow data dependences of the final schedule. We
distinguish between edges leaving nodes matched by a multi-node pattern, see
Equation (7.12), and the case of edges outgoing from singletons, see Equation
(7.13).

Vp € B/, ¥(i,j) € Eg, Vt € 0. Tmax — Ly + 1,

t+L,—1
D Cipkit))) Caku <1 (712)
kep qeP t:=0 ke€q

a#p

Active edges leaving a node covered by a singleton pattern p carry always
the latency L, of p. Equation (7.13) assures that the schedule meets the latency
constraint also for these cases.

Vp € B”, ¥(i,j) € Eg, ¥t € 0. Tmax — Ly + 1,

t+L,—1
D Cipaet))) Ciakn <1 (713)
kep qeB ty=0 keq

7.2.7. Resource Allocation

A schedule is valid if it respects data dependences and its resource usage does
not exceed the available resources (functional units, registers) at any time.
Equation verifies that there are no more resources required by the fi-
nal solution than available on the target architecture. Currently in the ILP
model we assume fully pipelined functional units with an occupation time of
one for each unit, z.e. a new instruction can be issued to a unit every new clock
cycle. We leave the modeling of intricate pipelines, as part of future work.
The first summation counts the number of resources of type f required by in-
structions corresponding to selected multi-node pattern instances p at time t.
The second part records resource instances of type f required for singletons

100

Chapter 7. Integer Linear Programming Formulation

(scheduled at time t).

Yt € 0. Tmax, VFEF, 3 spet D 3 > Cipir < My (7.14)

peB’ peB” ieG kep
U, =1 U, =1

Finally Equation assures that the issue width W is not exceeded. For
each issue time slot t, the first summation of the equation counts for multi-
node pattern instances the number of instructions composing the long instruc-
tion word issued at t, and the second summation for the singletons. The total
amount of instructions should not exceed the issue width W, i.e., the number
of available slots in a VLIW instruction word.

V€O Tmaxs D Spat D D D Cipkt <W (7.15)

peEB’ peEB 1€G kEP

7.2.8. Optimization Goal

In this chapter we are looking for a time-optimal schedule for a given basic
block. The formulation however allows us not only to optimize for time but
can be easily adapted for other objective functions. For instance, we might
look for the minimum register usage or code length.

In the case of the time optimization goal, the total execution time of a valid
schedule can be derived from the solution variables c as illustrated in Equation
(7.16).

Vi€ G, Vp €P, Vk €p, ¥t € 0. Trmaxs Ciprt * (t+Lp) <7 (7.16)

The total execution time is less or equal to the solution variable 1. Looking
for a time-optimal schedule, our objective function is

minT (7.17)

7.3. Experimental Results

First, we provide two theoretical VLIW architectures for which we generate
target code. Secondly we describe the experimental setup that we used to eval-
uate our ILP formulation against our previous DP approach and summarize
the results.

7.3. Experimental Results 101

7.3.1. Target Architectures

In order to compare OPTIMIST’s DP technique to the ILP formulation of
Section[7.2} we use two theoretical VLIW target platforms (Case I and Case II)
with the following characteristics.

Case I: The issue width is a maximum of two instructions per clock cycle.
The architecture has an arithmetic and logical unit (ALU). Most ALU opera-
tions require a single clock cycle to compute (occupation time and latency are
one). Multiplication and division operations have a latency of two clock cy-
cles. Besides the ALU, the architecture has a multiply-and-accumulate unit
(MAC) that takes two clock cycles to perform a multiply-and-accumulate op-
eration. There are eight general purpose registers accessible from any unit.
We assume a single memory bank with unlimited size. A load/store unit (LS)
stores and loads data in four clock cycles.

Case II: The issue width is of maximum four instructions per clock cycle. The
architecture has twice as many resources as in Case I, 7.e. two arithmetic and
logical units, two multiply-and-accumulate units, and two load/store units
with the same characteristics.

7.3.2. Experimental Setup

We implemented the ILP data generation module within the OPTIMIST frame-
work. Currently our ILP model addresses VLIW architectures with regular
pipeline, i.e. functional units are pipelined, but no pipeline stall occurs. We
adapted hardware specifications in xADML (see Chapter [8) such that they
fit current limitations of the ILP model. In fact, the OPTIMIST framework
accepts more complex resource usage patterns and pipeline descriptions ex-
pressible in xADML, which uses the general mechanism of reservation ta-
bles [DSTP75]]. As assumed in Section we use for the ILP formulation
the simpler model with unit occupation time and latency for each instruction.
An extension of the ILP formulation to use general reservation tables is left to
future work.

Figure[7.2|shows our experimental platform. We provide a plain C code se-
quence as input to OPTIMIST. We use LCC [FH95|] (within OPTIMIST) as
C front-end. Besides the source code we provide the description of the target
architecture in xADML language (see Chapter|[8). For each basic block, OP-
TIMIST outputs the assembly code as result. If specified, the framework also
outputs the data file for the ILP model of Section The data file contains
architecture specifications, such as the issue width of the processor, the set of
functional units, patterns, etc. that are extracted from the architecture descrip-
tion document. It generates all parameters introduced in Section[7.2.3] Finally

102

Chapter 7. Integer Linear Programming Formulation

HW spec.
i xml
.c LCC-IR .asm
SRC —>| LCC-FE > OPTIMIST [——>

.dat

.mod ILP solution
ILP model — | CPLEX ——>

Figure 7.2.: Experimental setup.

we use the CPLEX solver [Inc06] to solve the set of equations.

Observe that for the ILP data we need to provide the upper bound for the
maximum execution time in the ILP formulation (Tyqx). For that, we first run
a heuristic variant of OPTIMIST that still considers full integration of code
generation phases, and provide its execution time (computed in a fraction of a
second) as the Tyax parameter to the ILP data.

7.3.3. Results

We generated code for basic blocks taken from various digital signal process-
ing benchmark programs. We run the evaluation of the DP approach on a
Linux (kernel 2.6.13) PC with Athlon 1.6GHz CPU and 1.5GB RAM. The
ILP solver runs on a Linux (kernel 2.6.12) PC with Athlon 2.4GHz CPU,
512MB RAM using CPLEX 9.

We should mention a factor that contributes in favor of the ILP formulation.
In the OPTIMIST framework we use LCC [FH95]| as C front-end. Within our
framework we enhanced the intermediate representation with extended basic
blocks (which is not standard in LCC, see Section[4.3.6). As consequence, we
introduced data dependence edges for resolving memory write/read prece-
dence constraints. In the current ILP formulation we consider only data flow
dependences edges. Thus, we instrumented OPTIMIST to remove edges in-
troduced by building extended basic blocks. Removing dependence edges re-
sults in DAGs with larger base, i.e. with larger number of leaves, and in general
a lower height. We are aware that the DP approach suffers from DAGs with a
large number of leaves, as OPTIMIST early generates a large number of par-
tial solutions. Further, removing those edges build DFGs that may no longer
be equivalent to the original C source code. However, it is still valid to com-
pare the ILP and DP techniques, since both formulations operate on the same
intermediate representation.

103

7.3. Experimental Results

1INV 1°€0Z €T | w 4! ¢ 799 gun~poidrefedss (0g
TNV 6018 ¥ 0¥ 0l 7¢ 7qq pof[oiun wns 294 (6]
TdNV VAVAIVT AR AR I 19 6 0¢ 9qq InwxLiew (8]
XdT1dO 6Vl 6l 0¢ 01 T4 ¢qq run—poxdreredss (/]
XdTdO LAT4 0¢ 8¢ 01 144 ¥qq run xXmewwns (9]
XdTdO 9°0v 61 T4 6 €C 9qq dpsa™1y - (g1
1'¢9 L1 | 8'8%S L1 [44 L €C 0799 Y2Is73[qapod (41
XdT1dO £'68 61 LT 9 [44 1199 1y Iy (g1
9 0c | +969¢ Q¢ L1 9 Ic yqq g I (71
e L] 869 L1 €C 8 Ic +qqo1qnd (17
al 91 | € 91 | 61 L 8] #qq Adod"xmmew (01
811 91 | +'1 91 81 8 L1 ¢qqumnsToaa (6
8¢l VAR A L1l 81 8 L1 7qq poxdrereds (g
88 91 | 0¥ 91 Ll 8 /1 $9q dooj wns~xiew (/
8 91 | +'¢ 91 L1 6 L1 01qq dpsa™ig (9
LS AR vl 91 9 9199 21qn2 - (¢
8/ 1 | €19 Gl 14! € 91 69910415 (¥
9'¢ Y1 199 14! Gl L 91 6199 ensylp (¢
€1 It 190 1 4! 14 4! 8qq xew 294 (7
60 01 | ¢0 01 01 14 01 699 Y 1T (]
(09s)31 ()1 | (99s)3 (99)2 | [93] 1wy |9 s[o0[q d1sBg
d'II da

21M10911YdIe T 9se) I3 10 saydeoidde uonesouad apoo parerdaur A[[nJ J(J put JTI Jo uonenfeay :'/ 9[qe],

104

Chapter 7. Integer Linear Programming Formulation

Table [7.1| reports our results for the Case I architecture. The first column
indicates the name of the basic block. The second column reports the number
of nodes in the DAG for that basic block. The third and fourth columns give
the height of the DAG and the number of edges, respectively. Observe that
the height corresponds to the longest path of the DAG in terms of number of
DAG nodes, and not to its critical path length, whose calculation is unfeasi-
ble since the instruction selection is not yet known. The fifth column reports
the amount of clock cycles required for the basic block, and in the sixth col-
umn we display the computation time (in seconds) for finding a DP solution.
Columns seven and eight report the results for ILP. The computation time
for the ILP formulation does not include the time for CPLEX-presolve that
optimizes the equations.

In the table we use three additional notations: CPLEX indicates that the
ILP solver ran out of memory and did not compute a result. AMPL means
that CPLEX-presolve failed to generate an equation system, because it ran
out of memory. Where the DP ran out of memory we indicate the entry as
MEM.

For all cases that we could check both techniques report the same execution
time (7). It was unexpected to see that the ILP formulation performs quite
well and in several cases with an order of magnitude faster than DP. For cases
4), 12) and 14) the DP takes almost eight times, eighty times and nine times re-
spectively longer than the ILP solver to compute an optimal solution. Since we
removed the memory data dependence edges (as mentioned earlier) the result-
ing test cases present two, four and two unrelated DAGs for case 4), 12) and
14) respectively. We know that DP suffers from DAGs with a large number
of leaves because a large number of selection nodes is generated already at the
first step. For the rest of the test cases, DP outperforms the ILP formulation
or has similar computation times. Observe that we reported for cases 3) and 5)
that ILP takes shorter time to compute an optimal solution. But if we include
the time of CPLEX-presolve, which runs for 7.1s in case 3) and 8.3s in case 5),
the ILP times are worse or equivalent. For problems larger than 22 nodes, the
ILP formulation fails to compute a solution. For problem instances over 30
nodes, the CPLEX-presolve does not generate equations because it runs out
of memory.

Table [7.2 shows the results for the Case II architecture. The notations are
the same as for Case I. We added an additional column in the ILP part, de-
noted t, that reports the ILP computation time when the upper bound Tpnax
is derived from a run of a heuristically pruned DP algorithm HN=2 described
in Section [¢.3.5] (this decreases the number of generated equations by provid-
ing a value of Tyax closer to an optimal solution). The time for DP algorithm
HN=2 run is not included in t'.

105

7.3. Experimental Results

TINV TdNV ~ — |6€61Z 91 | ST 6 €T 9qq dpsa™1y (g1
XATIdD TINV — — |WIN — | T L €T 0799 YPIsTHQREPOd (1
Xd1dO TNV — |WIN — | & 9 T 1199 3y 1y (€1
v/ TINV ar | WIN — | 4T 9 | X4 ¥qq Iy I (Z1
XdT1dD TdANV — | £89¢8 91 | €T 8 |14 ¥9qo1qnd (171
't 1INV #1 | ¥'68 v1o| 61 L 81 #qq £doo xew (0]
9¥ XATdO €1 | +11 €1 | 81 8 /1 €qq wns™24 (6
XATdD Xd1dO — |00I ST | 81 8 /1 2qq poxdieeds (8
cor XATdD ST | T06 ST | /1 8§ /1 $qqdoojwnsTxinew (£
6% XAT1dO +1 | 129 v1o| L1 6 L1 o1qq dpsa™ay (9
8¢ XATdD T | €epIl T | 91 9 /L 9199 o1qno (g
4 I'6 6 |68t 6 | ¥I € 91 699 Y 1Y (¥
Ty L01 Y1 | SeL v1| ST L 91 6199 ensylip (¢
L0 91 or | +C or | T v 8qq xew 224 (g
0 §'1 6 |90 6 | o1 v 0l 699 #yg I (1
(03s) 3 (995)3 (99) 1| (998)3 (99)1 | [93] yBH [9| o01q dtseq
dTI dd

*21N10931YdIE [T 3seD) 10§ sayoeordde uonerouad spoo parerdanur A[[nJ J pue JTJ Jo uonen[eay g’/ d[qeL,

106

Chapter 7. Integer Linear Programming Formulation

Also for the second case, ILP and DP yield the same execution time 7 for
solutions obtained with both approaches, as expected. For the cases 4) and
12) DP performs worse than ILP. For the case 12) DP runs out of memory,
whereas the ILP could compute a solution within 7.4s if Tiyax is close enough
to the optimum. Case II results show that it is beneficial to spend time to min-
imize Trmax. We could gain about four additional nodes for the ILP problem
size. For Case II, if the ILP compute a solution it outperforms the DP.

Chapter 8.

xADML: An Architecture
Specification Language

WE PROVIDE A RETARGETABLE CODE GENERATION framework for various hard-
ware architectures. Therefore, we have developed a structured hardware de-
scription language called Extended Architecture Description Mark-up Lan-
guage (xADML), based on Extensible Mark-up Language (XML). The struc-
ture of the processor, as far as relevant for the generation of optimal code, is
specified in xADML.

In this chapter we provide xADML specifications for parameterizing the
OPTIMIST framework and retarget it to a specific target architecture.

8.1. Motivation

Providing a compiler for newly developed processor architectures is a time
and money consuming task in industry. New compilers may reuse exist-
ing parts of existing frameworks, such as front-ends, high level optimizations
modules, etc. But the back-end usually needs to be rewritten to a large extent.
Writing a specific back-end for each new hardware is not an option where the
time-to-market is short. Instead, a specification of the target processor in a
high level description language is provided to either automatically generate a
back-end or parameterize a generic back-end of a compiler framework (see
Section[2.8).

In this chapter we present a hardware description language called xADML,
eXtensible Architecture Description Mark-up Language, that we use as para-
metrization language for our retargetable code generation framework OPTI-
MIST. xADML allows the OPTIMIST framework to be retargeted efficiently
to different architectures. We used xADML in the OPTIMIST framework for

108

Chapter 8. xADML: An Architecture Specification Language

very different processor types: a multi-issue clustered VLIW architecture TT-
C62x, a multi-issue Motorola MC56K DSP processor [YonO6[|, and a single
issue processors, ARMOIE [Lan05|.

Additionally, we build variants of these processors to evaluate the impact of
the architecture complexity on the dynamic programming algorithms.

The motivation for building a2 “home” hardware language, rather than us-
ing an existing one, was to be able to start with a simple and low complexity
language and progressively extend it during the work.

8.2. Notations

In the rest of this chapter we use following notations for the specification
language: ellipses (...) are only used for brevity and are not part of the
hardware specification. Further, we denote by [string] a string of alphanu-
meric characters. The string starts with an alphabetic or numeric character and
may contain spaces. [integer] represents a positive or zero integer value and
[integerx*] a strictly positive integer.

8.3. xADML: Language Specifications

An xADML document is divided into five parts, or sections, that can be spec-
ified in any order. The five parts of the documents are:

* Declaration of hardware resources, such as registers, memory modules
and resources that are part of reservation tables of target instructions.

e Definition of generic patterns that are mapped to given target instruc-
tions in the instruction set definition part.

e Instruction set definition, which provides the set of target instructions
for the processor.

e For irregular architectures, copy instructions are declared in the transfer
section.

e Finally, global formatting of the output can be parameterized in the for-
mating part.

An xADML specification contains thus both a structural and behavioral

description of a target processor. In the following subsections we describe in
detail the different parts of xADML depicted in Figure|8.1}

8.4. Hardware Resources

109

<?xml version="1.0" encoding="iso-8859-1"7>
<architecture name="[stringl" version="[string]">
<!-- Hardware resources -->
;;;— Patterns -->
;;;— Instruction set -->
<;;— Transfer instructions -->
;;;— Formating facilities -->
</;;éhitecture>

Figure 8.1.: Structure of xADML specification document.

Our architecture description language is based on XML. As xADML is a
standard XML document, it begins with the version and encoding information
definition. This is necessary for XML parsers and tools. In our framework
implementation we use Xerces-(Jl} an XML parser. As any XML document,
xADML can be viewed as a tree structure. The specification tree is rooted at
node architecture (see Figure .

Both attributes of the architecture node are optional.

e name records the name of the architecture specified in the xADML doc-
ument.

e version represents the version of the specification file. This allows the
user to record different variants of the specification, if for instance the
hardware is changing during the design phase.

8.4. Hardware Resources

The resource section of an xADML document enumerates hardware resources
available for the computations. xADML allows to specify registers, residence
classes and any kind of resource that is part of the reservation table.

IXerces-C++ parser is a project hosted at the Apache XML homepage, http://xml.apache.
org/xerces-c/|

http://xml.apache.org/xerces-c/
http://xml.apache.org/xerces-c/

110

Chapter 8. xADML: An Architecture Specification Language

<!-- Hardware resources -->
<issue_width>[integer*]</issue_width>
<registers> ... </registers>
<residences> ... </residences>
<resources> ... </resources>

Figure 8.2.: Resources part of the xADML specification document.

<registers>
<reg id="[string]" size="[integerx*]"/>

</registers>

Figure 8.3.: Declaration of data registers. Each register has a name and an op-
tional size.

8.4.1. Issue Width

We specify the issue width (w, see Section3.2), within the issue_width node,
as depicted in Figure[8.2] The issue width is a strictly positive integer, repre-
senting the number of instructions that can be issued in the same clock cycle.

8.4.2. Registers

The registers node defines all registers of the architecture available for com-
putation. xADML does not include set of control registers, such as the pro-
gram counter register (PC) or status registers. Each register entry reg (Figure

8.3) has two attributes:

e id represents the name of the register. Those names are used in the
format part when emitting assembler code. Each register requires an id
attribute.

* size an optional attribute that specifies the size, in terms of bits.

8.4.3. Residences

In the residences node we find the set of all residence classes (see Section
4.2.5) derived from the instruction set of the target architecture. For the res-
idence classes formed by the set of registers, xADML declares all registers

8.4. Hardware Resources

111

<residences>
<residence id="[string]">
<reg id="[string]"/>
</residence>
<residence id="[stringl"/>

</residences>

Figure 8.4.: Definition of residence classes. A residence class may be com-
posed of registers, or be of unlimited size.

<resources>
<resource id="[string]"/>

</resources>

Figure 8.5.: Declaration of resources for the reservation table of target instruc-
tions. Resources declared in this section of an xADML document
represent the column entries of reservation tables.

composing that class (see Figure[8.4} first residence declaration). Observe that
the name of a register that composes a residence class must first appear in the
registers node. For residence classes of infinite size, such as memory mod-
ules, xADML declares simply a name for that class (see Figure second
declaration).

8.4.4. Resources

The resources node includes all other type of resources required by the in-
struction set. For instance, functional units, buses ezc. appear in this part of
the document. Note that registers and residence classes are not part of the
resources node. xADML models resources using the general principle of
reservation tables [DSTP75]. Each target instruction requires a particular re-
source at a specific time. The resources part of the specification simply enu-
merates all available resources. Each resource represents a column entry in
the reservation table. The particular time of resource usage is defined in the

112

Chapter 8. xADML: An Architecture Specification Language

reservation table (see Section[8.6.3).

Defining the set of all resources of the reservation table ahead allows to
report errors in the cases where a resource is used, but undeclared. In the
specification document each resource requires a unique name.

8.5. Patterns

The node patterns allows to declare generic patterns where each of them is
mapped to a single target instruction in the instruction set section. Hence, a
pattern may be reused across several target instructions. We see patterns as
subDAGs of the intermediate representation (IR). In our framework the IR is
low enough, so that there is no such IR node that requires at least two target
instructions to compute its operation.

The attribute id of node pattern, required for each pattern, is a unique
identifier of the pattern being specified. This identifier is referred to when be-
ing associated with a target instruction in the instruction set part of the speci-
fication.

Each pattern is composed of nodes and directed edges. A node node has an
optional id attribute. This attribute represents the reference, or the symbolic
name of that node, that we can refer to within the pattern. It is a unique
identifier within the pattern.

Each node of a pattern represents an instance of an IR node. We map pattern
nodes to IR nodes with the poper construct, where the obligatory attribute
id indicates the IR node. Further, the arity attribute specifies the number of
descendants of the nodd’] Children of an IR node are specified via kid nodes.
A kid node has a required nr attribute, representing the child number of the
parent node. The number of children must match the arity specified in the
parent node. The kid node has an optional id attribute used as reference, or
symbolic name if specified. Each kid node builds implicitly a data dependence
edge from child kid to parent poper. A kid node may have further descendant
node nodes. Figure[8.6|illustrates the patterns section of xADML.

To simplify the process of writing specifications, xADML allows to specify
generic patterns using the <or>...</or> construct to provide different alter-
natives for similar patterns that are mapped to the same target instruction.

Example As en example of a generic pattern with alternatives let us consider
a DAG pattern on the right hand side of Figure Triangular shaped nodes
represent operands (i.e. subDAGs that are reduced to a given residence class).
Circular shaped nodes mark IR nodes. Node c/d shows that there are two

215 the LCC-IR [FH95],, each node has at most two descendants.

8.6. Instruction Set

113

<!-- Patterns -->
<patterns>
<pattern id="[string]">
<node id="[stringl">
<poper id="[string]" arity="[integer]"/>
<kid nr="[integer]" id="[string]">
<node id="[string]">
</node>
</kid>
</node>
</pattern>

</patterns>

Figure 8.6.: In this section we declare all generic patterns where each pattern
is mapped to a single processor target instruction.

possibilities of IR operators that will match (c or d). This alternative is ex-
pressed with the <or>...</or> construct illustrated on the left hand side of
Figure For instance, if the operator of node e is an IR assignment and
the operator of the c/d node an addition (2 bytes integer addition for ¢ and 4
bytes addition for d), the pattern represents a post-increment computation.

|

Although XML is a tree based representation, our definition of patterns in

xADML is generic enough to allow users to specify patterns in forms of trees,
DAG:s or forests.

8.6. Instruction Set

An instruction in XADML represents an association between an IR pattern
(often a single IR node) and a machine target instruction that performs that
computation. For complex target instructions that correspond to a set of
IR nodes (tree, DAG or forest patterns) xADML first defines IR patterns in
patterns section and then associates a pattern with a given target instruction
in the instruction_set section.

The association between a single IR node and a target instruction differs
slightly from the association of a pattern and a target instruction. We call the

114

Chapter 8. xADML: An Architecture Specification Language

<!-- Patterns -->
<patterns>
<pattern id="alt_sample'>
<node>
<poper id="e" arity="2"/>
<kid nr="0" id="a"/>
<kid nr="1">

alt_sample

<node>
<or>
<poper id="c" arity="2"/>
<poper id="d" arity="2"/> 0
</or>

<kid nr="0" id="a"/>
<kid nr="1" id="b"/>
</node>
</kid>
</node>
</pattern>

</patterns>

Figure 8.7.: Example of DAG pattern with two alternatives for an instance
node specified using the <or>...</or> construct.

<!-- Instruction set -->
<instruction_set>
<!-- One-to-one mapping -->
<instruction id="[string]"> ... </instruction>

<!-- Pattern mapping -->
<pattern id="[string]"> ... </pattern>

</instruction_set>

Figure 8.8.: Instruction set is composed of one-to-one mapping and pattern
instructions.

8.6. Instruction Set

115

<!-- One-to-one mapping -->
<instruction id="[string]">
<target id="[stringl" desti="[string]"
srcl="[string]" src2="[string]">
<!-- Resource usage, formating and conditions -->
</target>

</instruction>

Figure 8.9.: Defining a target instruction and associating its operands with
their residence classes in a one-to-one mapping.

first case a one-to-one mapping, and the second a pattern mapping (see Figure
8.8). Both mappings share common constructs for emitting code, condition
checking and definition of reservation table.

8.6.1. One-to-one Mapping

For a one-to-one mapping between an IR operation and a target instruction,
the instruction node simply identifies the IR node and specifies the associ-
ated target instruction. An instruction node has an id attribute that identi-
fies the IR operation to associate with a target instruction. The target instruc-
tion is specified in the target node, a child node of the instruction node
(see Figure[8.9). The target node contains formating information, resource
requirement and condition checking, which are describe later in Section|[8.6.3]

We remark that it is common that an IR operation has several possible se-
mantically equivalent target instructions that differ, for instance, in resource
usage (see Section[8.9|for an example). Thus an instruction node may con-
tain several target nodes.

A target node has the following attributes:

e id, an optional attribute that records the name of the matching rule. It
is mostly used for debugging and checking purposes.

e dest1 indicates to which residence class the instruction outputs the re-
sult. For instructions that do not produce any result, the attribute is
unspecified.

e srclrepresents the residence class of the first operand of the instruction.
For leaf IR nodes, this field is unspecified.

116

Chapter 8. xADML: An Architecture Specification Language

<!-- Pattern mapping -->
<pattern id="[string]">
<ptarget id="[string]" destl="[string]">
<op id="[string]"><id>[string]</id></op>

<!-- Resource usage, formating, conditions and DD edges -->
</ptarget>

</instruction>

Figure 8.10.: Associating operands of an instruction the their residence classes
in a pattern mapping.

* src2 specifies the residence class of the second operand if any. For leaf
and unary nodes it is not defined.

8.6.2. Pattern Mapping

The mapping between a pattern and a target instruction is accomplished in
the pattern node within the instruction set section. Node pattern has a re-
quired id attribute that refers to a pattern defined in the patterns section.
In a similar way as for the instruction node, a pattern node has one or
more child nodes, here called ptarget. Each ptarget node corresponds to
a target instruction associated with the pattern. A ptarget node has an op-
tional attribute, dest1, that indicates the residence class where the result of
the computation corresponding to a pattern is stored if any.

Operands of a pattern are referred to through their symbolic names (i.e.
references) that are defined in the pattern definition. Each operand node is
associated to a residence class as follows:

® <op id="[string]"> refers to the symbolic name of the node.

e <id>[string]</id> indicates the residence class of the operand that is
referred above.

* </op> ends the mapping for the node.

There are as many op nodes as operands defined in the pattern (see Section

8.6. Instruction Set

117

<!-- Resource usage -->

<cycle_matrix [string]="[integer*]" ...>
<cycle_matrix [string]l="[integer*]" ...>

</cycle_matrix>
</cycle_matrix>

Figure 8.11.: Modeling of reservation tables in xADML: each cycle_matrix
construct starts a new layer of resources usage on top of a previ-
ously defined one.

8.6.3. Shared Constructs of Instruction and Pattern Nodes

In this section we describe common constructs shared by target and ptarget
nodes. Each of these constructs is optional within a pattern or one-to-one

mapping.

Resource Usage

A target instruction uses hardware resources to perform a desired computa-
tion. The resource usage of that instruction is specified in xADML via the
reservation table (called cycle_matrix), that is, a matrix where columns rep-
resent resources and rows time slots when a given resource is used by the
instruction.

We use the hierarchical structure of XML to build reservation tables. A
reservation table is defined using the construct cycle_matrix. The attributes
of a cycle_matrix node refer to resources defined within the resources sec-
tion. Only resources that are used by the instruction appear as attributes.

Each new entry (descendant) defines a new row (i.e. a new relative time
slot) of resource usage that is pushed on top of the latest time of a resource
utilization. To define empty rows, xADML provides a delay node, whose
required attribute d specifies the number of time slots that are unused in the
reservation table. Figure[8.12]illustrates how to specify a complex reservation
table in xADML.

The representation of the reservation tables in xADML is not unique. For
that, we could have restricted that each row can increment by a single clock
cycle the reservation table height. In this case it would be unnecessary to
specify the number of cycles that a resource is busy. But for architectures
with deep pipelines the proposed syntax decreases considerably the length of
the reservation table specification.

118

Chapter 8. xADML: An Architecture Specification Language

- Ry | R2 | Rs
<cycle_matrix R1="2" R2="1"> T3 | % »
<delay d="1"/> ro)
<cycle_matrix R1="1" R3="1"/> +1
</cycle_matrix> tt X
t| x X

Figure 8.12.: An instruction uses three resources for its execution: Ry, Ry, and
Rs. Its reservation table is illustrated on the right hand side, with
the relative time of each resource usage. The left hand side spec-

ifies the corresponding xADML definition of the reservation ta-
ble.

Formating

Nodes target and ptarget have an optional child format that formats the
output, if any, for the emitterf} It is often the case that the data to be emitted is
embedded within IR nodes. Thus the hardware language must provide access
functions to retrieve required information from IR nodes. Our compilation
framework OPTIMIST provides such access functions.

The format construct is defined as:

<format>[string]</format>

where the string represents the format to be output.

Each IR node of the instruction or pattern is matched to a symbolic name,
for instance srcl in the case of one-to-one mapping instruction. Symbolic
names that refer to IR nodes are escaped in the format node by enclosing
them with curly brackets. If the residence class of the symbolic name is built of
registers, the name is replaced with a given register when the emitter outputs
the format. Otherwise, the emitter emits any information stored in the IR
node, using the access functiong?}

Example Let us define a load instruction (1d), that takes an address, repre-
senting a memory location of a four bytes integer value and loads that value in
a register. Let us assume a single memory module called MEM, and a set of eight
general purpose registers REG = {r0, rl, ..., r7}. A possible definition
of such an instruction in xADML could be:

3Usually the emitter outputs assembly code as target language, but it could be any other format.
*OPTIMIST framework uses LCC as C front-end, and thus each node is of C type struct
node, as described in [FH95|.

8.6. Instruction Set

119

<instruction id="INDIRI4">
<target id="load" destl1="REG" srcl="MEM">

<format>1d {destl1},@{src1.SYMO.X.NAME};</format>
</target>
</instruction>

If we assume that this instruction is selected, it may produce the following
output: 1d r3,@i;. The symbolic name dest1 is replaced by an allocated reg-
ister from the set of registers in REG. The symbolic name srcl is replaced with
the name stored in the IR node that matches the source operand of the instruc-
tion. To access that name OPTIMIST provides access functions capable of
queering IR nodes. In this example the name is accessed via the . SYMO.X.NAME
access function, which points to the field node->syms [0] ->x .name of struct
node structure (see [FH95]). That field records the name of a global variable
that is mapped to a memory location. The rest of the string is copied as plain
text. |

Conditions

The condition construct allows to check for a certain condition that need to
be fulfilled for a pattern to match. A condition contains plain C expressions
(enclosed within the test construct) that are evaluated when a given pattern
is tried for a match. If the expression evaluates to true, then the pattern is
selected, otherwise it is skipped.

Within the condition, xADML provides and and or constructs to build
boolean expressions. This is provided only for XML readability, since these
constructs can be expressed in plain C as well. If the logical construct is un-
specified, then boolean expressions are assumed to be connected with a logical
and. Observe that C expressions may contain a set of control characters of
XML. In this case it is necessary to specify the expression using the XML es-
cape mode that does not interpret characters, but simply copies them as plain
text. It starts with the character sequence <!CDATA[and ends with sequence
11>

Boolean expressions in the condition construct access IR nodes referenced
by their symbolic names in a given match. Each symbolic name points to a
data structure representing an IR node. In OPTIMIST this corresponds to the
C struct node of LCC (see [FH95]| for further details).

Example Let us illustrate a possible condition expression. One possibility
consists in using plain XML format that expresses logical constructs with and

120

Chapter 8. xADML: An Architecture Specification Language

and or constructs, as illustrated in the upper example of Figure Ob-
serve that we need to escape the pointer indirection of the C expression, and
this is why it is enclosed within a CDATA construct. The equivalent C rep-
resentation is depicted in the lower part of Figure[8.13] and uses the CDATA
construct as well.

u

8.6.4. Data Dependence Edges

The standard representation of an XML tree cannot express additional data
dependence edges that occur in DAG-based IRs. xADML provides a con-
struct ddep that adds a data dependence edge into a pattern to resolve prece-
dence constraints. The edge is directed from the source (src) to the destina-
tion (dest), and is specified as:

’ <ddep src="[stringl" dest="[stringl"/> ‘

where the strings represent symbolic names of nodes composing a pattern.
The need for adding additional edges appeared when we enhanced LCC
basic blocks to extended basic blocks (see Section [4.3.6)).

8.7. Transfer Instructions

For irregular architectures, such as clustered VLIW processors, some data may
need to be copied from one residence class to another to satisfy availability of
operands in the “right” residence classes (see Section[4.3.3). Such transfers are
not part of the source code of an application, but are inserted by the dynamic
programming algorithm.

The transfer instructions are specified in the transfer section of the xAD-
ML document, using the target nodes. The target node of the transfer sec-
tion is exactly the same construct as the target node of one-to-one instruc-
tion mapping (see Section [8.6.1), except that in the transfer section, a target
node has exactly one source srcl and one destination dest1, as depicted in
Figure Source srcl indicates the residence class of a value computed
by IR subDAG rooted at matched node. The destination dest1 indicates to
which residence class this value should be copied. Also, a target node in-
cludes all the common nodes of Section[8.6.3]

A target node has an optional id attribute that is used for debugging. It
allows to identify which transfer instructions have been selected in the final
code.

8.7. Transfer Instructions

121

<or>

</or>

<!-- Conditions -->
<condition>

<and>
<test><![CDATA[{dest1}->syms[0] !=NULL]]></test>
<test><![CDATA[

</and>
<or>

<test><![CDATA[

<test><![CDATA[{srcl1}->syms[0]->type==1lcc::INT]]></test>
</or>

<condition>

{dest1}->syms[0] ->sclass==1cc::STATIC]] ></test>

{src1}->syms [0]->scope==1cc: :CONSTANTS]]></test>

The above expression can be equivalently specified as:

<!-- Conditions -->
<condition>
<test><![CDATA[
(({dest1}->syms[0] !=NULL) &&
({dest1}->syms[0]->sclass==1cc::STATIC)) | |
(({src1}->syms[0]->scope==1cc: : CONSTANTS) | |
({src1}->syms[0] ->type==1lcc: :INT))
11></test>
</condition>

Figure 8.13.:

Two variants of specifying a condition in xADML: the upper
specification uses XML constructs to express a logical expres-
sion, whereas the lower formulation uses C syntax.

122

Chapter 8. xADML: An Architecture Specification Language

<!-- Transfers -->

<transfer>
<target id="[stringl" destl="[string]" srcil="[string]l">
</target>

</transfer>

Figure 8.14.: Modeling of transfers in xADML.

<!-- Formating facilities -->
<slot_row_prefix>[string]</slot_row_prefix>
<slot_row_suffix>[string]</slot_row_suffix>
<slot_row_separator>[string]</slot_row_separator>
<nop_instruction>[string]</nop_instruction>
<implicit_nops>[YES|NO]</implicit_nops>

Figure 8.15.: Formating specification for the general output format included
in xADML.

8.8. Formating Facilities

We intend to have a free format of the output (usually assembler code). Each
instruction contains a node format that indicates how it should be output.
For single-issue architectures this is usually sufficient. However, for multi-
issue platforms, we need to format each slot of an instruction word. Currently
we use the following formating nodes (see Figure that indicate how an
instruction word should be formated.

e slot_row_prefix specifies a string that is printed before the first in-
struction is output. It might be a special character such as tabulation or
space. If the node is unspecified or left empty, nothing is printed in front
of first instruction of an instruction word.

* slot_row_suffix indicates the character to output at the end of an in-
struction word. Usually we want to have a new-line character (\n).

* slot_row_separator encodes, if necessary, a separator between differ-
ent instructions of an instruction word.

8.9. Examples

123

* nop_instruction specifies the name of a NOP instruction. Many as-
sembler languages use a macro definition for NOP instructions.

e implicit_nops can have a value of YES or NO. If the flag is set to YES,
it is unnecessary to explicitly write a NOP instruction in the assembler
file. If set to NO, then each NOP instruction is output if it is required,
as for architecture with delay slots.

8.9. Examples

In this section we provide two examples of situations that often occur in
xADML specification. The first example illustrates how to declare semanti-
cally equivalent instructions that match the same pattern. The second example
shows how to associate each pattern operand node with a residence class.

8.9.1. Specification of Semantically Equivalent Instructions

In mutation scheduling semantically equivalent instructions are considered for
a same computation. In xADML alternatives are specified in separate target
node constructs. For instance, Figure illustrates an xADML specifica-
tion of an integer multiplication of an operand by another operand that is a
power of two. The operation can be performed by either using a left shift or a
multiplication operation.

For the multiplication, we do not need to check if the second operand src2
is a power of two. Thus we do not need a condition construct. In the case of
left shift, the operation is equivalent only if the second operand is a power of
two. This is checked in the condition, which first checks if the operand is an
integer data type, and then that it is a power of two. Observe that the emit
part (format node) emits the number of bits to be shifted, and not the initial
second operand value.

8.9.2. Associating Pattern Operand Nodes with Residence
Classes

In this example we associate the pattern of Figure[8.7|to a target instruction,
SAMPLE.

We assume that operands must come from residence class REG, the set of
general purpose registers, and the result is written to the same residence class
for the pattern to be selected. Figure[8.17]illustrates how pattern alt_sample
is associated to a target instruction SAMPLE that takes three comma-separated

arguments. The first argument is the destination register, represented by dest1.

124

Chapter 8. xADML: An Architecture Specification Language

<instruction id="MULI4">
<target id="MPY .M1" dest1="RA" srcl= RA" src2="CONST">
<cycle_matrix Mi="1"/>
<format>MPY .M1 {srci},#{src2},{dest1}</format>
</target>

<target id="MPY .M1" destl= RA" srcl="RA" src2="CONST">
<cycle_matrix S1="1"/>
<condition>
<and>
<test>IS_INTEGER ({src2})</test>
<test>IS_POW_OF_2({src2})</test>
</and>
</condition>
<format>SHL .S1 {srcl},#L0G_2({src2}),{dest1}</format>
</target>
</instruction>

Figure 8.16.: Semantically equivalent target instructions for a pattern are sim-
ply enumerated using the target construct.

The second argument corresponds to common subexpression in our example
node a, and the third corresponds to node b. We assume, for completeness,
that the target instruction uses resource R1 for two clock cycles to perform the
SAMPLE instruction.

In most code generation framework, the back-ends work on an IR in forms
of trees. One of the motivation for writing our own specification language
concerns the specification of DAG patterns.

8.10. Other Architecture Description Languages

xADML uses ideas from different architecture description languages. Here
we give credits to those languages that influenced the xADML design.

The nML [[Fre93] specification language uses an elegant and compact repre-
sentation of the instruction set. Instructions of a target processor exhibit some
common properties that can be grouped in a hierarchical representation. The
identification (by the user who specifies the architecture) of such properties
reduces considerably the size of the specification file, thus possible errors. In
nML an instruction specification has several attributes:

* action indicates the semantics of the target instruction as C code with

8.10. Other Architecture Description Langnages

125

<pattern id="alt_sample">
<ptarget id="SAMLPLE_id" destl="reg">
<op id="a"><id>reg</id></op>
<op id="b"><id>reg</id></op>
<cycle_matrix R1="2"/>
<format>SAMPLE {dest1},{a},{b}</format>
</ptarget>
</pattern>

Figure 8.17.: Association of pattern alt_sample to the SAMPLE target in-
struction.

some additional DSP-related operators.
e image indicates the binary form of the target instruction being specified.

* syntax encodes the assembly mnemonic of the target instruction.

From an nML specification, it is possible to derive different tools, such as
simulator or code generator, making the language suitable for software hard-
ware co-design. In nML the conflicts among resources are specified implicitly.
Basically, the user is required to specify all the legal combinations of target in-
structions. Another approach, adopted in ISDL (described below) is to spec-
ify illegal combinations. Depending on the target architecture the first or the
second variant may be more appropriate. Further, nML seems to be primar-
ily designed for rather simple single issue architecture. nML was successfully
used in the CHESs retargetable code generation framework (see Section[9.3.2).

The Instruction Set Description Language (ISDL) [HHDO97] used in the
Aviv framework (see Section includes several features of nML. How-
ever, ISDL was specially designed for VLIW processors. Similarly to xADML,
ISDL is organized in different sections:

e The instruction word format section defines how an instruction word is
subdivided into subfields. This provide a general (tree) representation
of instruction words of a VLIW processor.

* The global definitions section provides global definitions that are used
in other sections. The purpose of global definitions is to facilitate the
generation of assembler from ISDL specification.

e The storage resources section lists storage resources, such as registers and
memories available for user programs.

126 Chapter 8. xADML: An Architecture Specification Language

e The assembly syntax section describes each operation composing a VLIW
instruction. Each instruction may be associated with a cost, such as the
number of clock cycles, or the instruction size.

e The constraints section enumerates combinations of disallowed combi-
nations of operations or instructions. Thus the compiler can check (at
any time) if the generated sequence of target instructions is legal.

* The optimization information section provides hints to the compiler to
improve the global code quality of the final code.

As in nML, ISDL requires to specify legal combinations of instructions of
an instruction word. But contrary to nML, ISDL also constrains the code gen-
erator on a set of forbidden combinations, rather than enumerating all (possi-
ble) legal ones.

The Maril [BHE91] architecture language, which is primarily designed for
RISC processors, presents most of ISDL’s features, but cannot be used for
VLIW processors. An interesting concept of Maril consists in including a sec-
tion that represents calling conventions for a particular processor, z.e. models
the run time behavior.

A Maril specification file is divided into four sections:

e declarations define hardware resources, such as registers, buses, memory
banks, pipeline stages etc.

* run-time model or compiler writer virtual machine specifies the run-
time model of the processor. The model is relatively simple, but it is a
step towards the formalization of calling conventions.

* instructions enumerates processor target instructions. We describe this
section in more details below.

* mapping the IR specifies how to map IR operations to target instruc-
tions.

The instruction section of Maril is subdivided into five parts:
* mnemonic and operands specify the assembly instruction of an operand.
* data rype constraints indicates expected data types for an instruction.

e tree-pattern definition describes the tree patterns for the code generator’s
pattern-matcher.

e reservation table specifies the set of resources that the specified instruc-
tion uses at each clock cycle.

8.10. Other Architecture Description Langnages

127

* instruction metrics specify the cost, latency and delay slots of an instruc-
tion.

Maril is used in the Marion [BHE91]] system, which used an early version
of LCC [[FH95] as C front-end. We use the same front-end in the OPTIMIST
framework [KBO5||, but we operate on DAGs and not on trees, as in the case
of Marion.

The Targer Description Language (Tpr) [Kis00c] was designed for post-
pass optimization. It is part of the PROPAN system [KasO0b|, a retargetable
framework for code optimization at assembly level. In a post-pass optimizer,
the source language is assembly code and the output is (optimized) assembly
code for the same architecture, or for a different one. TpL is subdivided in
several sections:

e resource specifies the available resources of the target processor. It enu-
merates registers, memory modules, functional units and also caches. In
a TpL specification, all resources could be used in parallel (simultane-
ously). As this is not usually the case, restrictions on resource usage are
provided in the constraints section.

e instruction set is the central part of the specification where the user pro-
vides the set of target instructions with their timing behavior and re-
source requirement. The instruction also provides its semantics in regis-
ter transfer language (RTL) [Kas00c| to be able to derive a cycle accurate
simulator.

* constraints represent a set of boolean rules that restrict the instruction-
level parallelism and resource usage according to the architecture.

e assembly represents the assembly mnemonic of each instruction. This
section also includes assembly directives to preserve the semantics of
source during code transformations.

The PrROPAN post-pass optimization framework has been successfully used
e.g. for ADSP-2106X SHARC and Philips TriMedia TM1000. Now commer-
cialized (aiPop) by AbsInt GmbH, Saarbriicken.

Chapter 9.
Related Work

MANY RESEARCH GROUPS HAVE ADDRESSED code generation issues for a long
time, and have achieved high code quality for regular architectures. However,
the recent emergence of the electronics market that involves DSP processors
constitutes a large pool of irregular architectures, for which standard tech-
niques result in unsatisfying code quality.

In this chapter we classify other work on optimizing code generation for
irregular target processors. We differentiate between integrated and decoupled
approaches.

9.1. Decoupled Approaches

There are various methods that are able to solve exactly one of the subprob-
lems of code generation for reasonable basic block sizes.

9.1.1. Optimal Solutions

Ano and Jounson [A]76] use a linear-time dynamic programming algorithm
to determine an optimal schedule of expression trees for a single-issue, unit-
latency processor. The addressed processor class has a homogeneous register
set and allows multiple addressing modes, fetching operands either from reg-
isters or directly from memory.

Cuou and CHUNG [[CC95]] enumerate all possible target schedules to find
an optimal one. They propose methods to prune the enumeration tree based
on structural properties of the DAG such as a symmetry relation. Their algo-
rithm works fine for basic blocks with up to 30 instructions, but instruction
selection and residences are not considered. Further, they do not consider a
more compressed representation of the solution space, such as our selection
DAG.

130

Chapter 9. Related Work

ErTL and KrarL [EK91]] generate an optimal schedule by specifying the
instruction scheduling problem as a constraint logic programming instance. A
time-optimal schedule is obtained for small and medium-size basic blocks.

WiLKEN et al. [WLHOO] present a set of transformations of the DAG that
help to derive an advanced integer linear programming (ILP) formulation for
the instruction scheduling phase. First, they show that the basic formulation
of the ILP of a given problem leads to unacceptable compile time. Then, pro-
viding transformations of the DAG, they decrease the complexity of the ILP
instance, and the resulting formulation can be solved in acceptable time for
basic block with up to 1000 instructions.

Additionally, WILKEN et al. derive special optimization techniques based
on the shape of the DAG. They show that an hourglass-shaped DAG can be
scheduled by applying a divide-and-conquer method, where a globally op-
timal solution is the concatenation of optimal solutions for each subDAG,
below and above the articulation node. Note that an explicit application of
this simplification is not necessary in our DP approach. Our DP algorithms
exploit automatically such a structural property of the DAG. In fact, for reg-
ular architectures an hourglass-shaped DAG results in an hourglass-shaped
selection DAG. For cases where data locality is an issue, concatenation of two
optimal solutions for each subDAG does not necessarily result in an optimal
global solution.

YANG et al. [YWL89]] describe an optimal scheduling algorithm for a spe-
cial architecture where all instructions require one time unit, and all functional
units are identical. Generating an optimal schedule, even for such an architec-
ture, is still NP-complete.

VEGDAHL [Veg92] proposes a dynamic programming algorithm for time-
optimal scheduling that uses a similar compression strategy as described in
Section [4.2.1]for combining all partial schedules of the same subset of nodes.
In contrast, he does not exploit any symmetry characteristic of DAGs. He
first constructs the entire selection DAG, which is not leveled in his approach,
and then applies a shortest path algorithm. Contrary to VEGDAHL, we take
the time and space requirements of the partial schedules into account immedi-
ately when constructing the corresponding selection node. Hence, we need to
construct only those parts of the selection DAG that could still lead to an opti-
mal schedule. Further, instruction selection and residences are not considered
in [Veg92].

9.1.2. Heuristic Solutions

In the literature various heuristic methods for code generation have been pro-
posed. Heuristic methods are practical for industrial code generators since the

9.2. Integrated Code Generation

131

complexity is significantly reduced compared to exact solutions. In general,
they can produce effective results within limited time and space, but they do
not provide optimality information.

Methods for instruction selection are generally based on tree pattern match-
ing [GG78] and dynamic programming.

Graph coloring [Ers71,/CAC™81]] methods are still the state-of-the-art for
global register allocation. In order to allocate registers using the graph color-
ing method, the register allocation phase is usually performed after instruction
scheduling, because the live range of the program values have to be known in
order to be able to build the live range interference graph. In the interfer-
ence graph, nodes correspond to live ranges, and there is an undirected edge
between two nodes if they overlap in time and consequently cannot use the
same register. Thus register allocation consists in coloring the interference
graph with N colors, where N is the number of registers. A graph coloring is
a decoration of the nodes with colors such that connected nodes do not have
the same color.

The list scheduling algorithm is popular heuristic for local instruction sched-
uling [Muc97]. List scheduling determines a schedule by topological sorting.
The edges of the DAG are annotated by weights, which correspond to laten-
cies. In critical path list scheduling, the priority for selecting a node from the
zero-indegree set is based on the maximum-length path from that node to any
root node. The node with the highest priority is chosen first. There exist ex-
tensions to list scheduling which take more parameters into account, such as
data locality for example.

9.2. Integrated Code Generation

The state-of-the-art in optimizing code generation frameworks for irregular
architectures is based on ILP. The problem is formulated as an integer pro-
gram, which is given to a solver. Solving an integer program is NP-complete,
hence exact solutions can be produced only for small problem instances. For
larger problems the exactness is abandoned, but still a high code quality is
produced.

9.2.1. Heuristic Methods

Leupers [Leu00a, Chap. 4] uses a phase-decoupled heuristic for generating
code for clustered VLIW architectures. The mutual interdependence between
the partitioning phase (i.e., fixing a residence class for every value) and the

132

Chapter 9. Related Work

scheduling phase is heuristically solved by an iterative process based on simu-
lated annealing.

9.2.2. Optimal Methods

KA&sTnER [[K4s00b] developed a phase coupled postpass optimizer generator
that reads in a processor specification described in Target Description Lan-
guage (Tpr) and generates a phase coupled postpass optimizer which is spec-
ified as an integer linear program that takes restrictions and features of the
target processor into account. An exact and optimal solution is produced, or a
heuristic based, if the time limit is exceeded. In this framework, the full phase
integration is not possible for larger basic blocks, as the time complexity is too

high.
9.3. Similar Solutions
We describe two frameworks that attempt to solve the problem of efficient

code generation for irregular architectures in an integrated manner in more
detail.

9.3.1. Aviv Framework

data bus
| Y) Y y
ADD ADD

Figure 9.1.: Example of a simple target architecture to illustrate split-node
DAG data structure.

The optimizing retargetable code generator framework Aviv [HD98] simul-
taneously addresses, on the basic block level, the problems of instruction se-
lection, resource allocation, and instruction scheduling. The hardware archi-
tecture is described in Instruction Set Description Language (ISDL) [HHDY7].

Avtv transforms the IR DAG into the split-node DAG, a graph represent-
ing all possible implementations of the IR operations for a given hardware
processor. Additionally, the split-node DAG allows to explore instruction
parallelism. A split-node DAG is similar to a DAG that represents operations

9.3. Similar Solutions

133

within a basic block of a source code, but contains two additional types of
nodes:

* A split node corresponds to an original DAG operation. Split-node chil-
dren represent all possible alternative implementations of the operation
on the target architecture by exploiting the available functional units.

* A data transfer node is inserted on the data path if a data transfer be-
tween register files is required.

To deal with the combinatorial explosion, the framework uses a branch-
and-bound mechanism with an aggressive heuristic for prunmg suboptimal
solutions as early as possible. The resultmg code sequence is “nearly” optimal
for small basic blocks with up to 20 instructions.

To illustrate a split-node DAG, let us first define a target architecture with
two functional units U; and U,. Both functional units perform addition (ADD
instruction) and each functional unit contains its own register file. Functional
units are connected by a data bus to each other and to instruction and data
memory modules. The architecture is represented in Figure[9.1}

Let us consider a basic block that consists only of a single assignment state-
ment a=b+c+1;. The source DAG is represented on the left hand side in Fig-
ure The associated split-node DAG for the simple architecture described
above is shown on the right hand side in Figure Each split-node (black
filled circles) has children that correspond to the original operation executed
on different functional units. For example, the computation of b+c may be
executed either on unit Uy or Uy. Transfer nodes (boxes) are inserted if a data
transfer is required between functional units. Originally, operands b and ¢ are
located in the memory and need to be transferred to the local register file of
unit Uy or U,.

Subsequent steps in Aviv code generation operate on the split-node DAG,
which contains all necessary informations for code generation. The frame-
work receives basic blocks which are connected by a control flow graph, and
performs optimization independently on each basic block. Thus Aviv does
not perform any global optimizations.

First, the algorithm selects several functional unit assignments of least cost
for further computation. The cost is evaluated by traversing the split-node
DAG in a top-down manner, where the cost function considers the amount
of parallelism (associated with a covering) and the number of data transfers
required for the assignment. Calculating the cost for all possible assignments
is impractical even for basic blocks of small size. To cope with the size of the
solution space, the framework selects the most promising assignments based
on a heuristic.

134

Chapter 9. Related Work

ab

Figure 9.2.: Source DAG (left hand side) and its associated split-node DAG
(right hand side).

For selected assignments of lowest cost, the required transfer nodes are in-
serted. This may result in a large number of possibilities for target architec-
tures that present multi-path data transfer. Similarly to assignment selection,
the algorithm selects candidates with the lowest cost, where the cost function
only takes into account the amount of parallelism.

Next, the algorithm groups possible nodes to be executed in parallel, called
cliques. Basically, the grouping is similar to code compaction [Fis81]] in VLIW
architectures. Once more, generating all possible groups is time consuming.
To reduce time for generating cliques, the framework applies a heuristic that
limits the distance (in split-node DAG) between candidate nodes for being ex-
ecuted in parallel. Resulting cliques are checked against hardware specification
if their instructions can be executed concurrently.

In a bottom-up manner the algorithm covers the split-node DAG starting
with selecting the largest clique that does not exceed the amount of available
resources and have all their predecessors already scheduled. During the se-
lection process a scheduled clique may contain a set of nodes that belongs to
a still unselected group. Therefore, each time a selection is performed, the
remaining cliques are shrunk (updated) by removing already scheduled nodes.

Finally, the remaining cliques that exceed the number of available resources
are computed. The algorithm selects a candidate node for spilling based on the
most needed resource and its number of parents. Then it inserts required spills
and loads in the split-node DAG. A schedule obtained by the cliques covering

9.3. Similar Solutions

135

algorithm satisfies the precedence relation among the nodes, and is thus valid.

The last step consists in performing the detailed register assignment using a
graph-coloring method. During the clique selection step, the algorithm guar-
antees that the amount of required resources does not exceed the amount of
available resources. Thus the graph-coloring always finds a feasible register
allocation.

We see Aviv as a not really integrated framework, as instruction selection
and resource allocation are performed first. Then a phase of alternating sched-
uling and register allocation produces final code.

9.3.2. CHESS

CHess [MG95] is retargetable code generation environment that addresses
DSPs and Application Specific Integrated Processors (ASIP). The framework
is concerned with a special class of target processors, mainly load-store ar-
chitectures with homogeneous or heterogeneous register set where each in-
struction is microcoded, thus the computation takes one clock cycle for each
instruction.

As input, CHEss takes two descriptions: the source code of the application
and a structural and behavioral description of the target processor specified
in nML [Fre93]. nML provides high level structural information and the in-
struction set for the target processor. From the two descriptions CHESs derives
common internal data structures for code generation, called control-data flow
graph (CDFG) and instruction-set graph (1ISG) [MG95].

Additionally to the machine code, the framework provides some statistics
that show how well the modeled target processor fits the application. This
information is useful in the design loop for an embedded application, where
the choice or the design of the target processor is addressed.

As a first step the IR of the program is lowered, such that all operations
can be covered by an instruction from the instruction set of the processor.
The phases of code selection, register allocation, bit alignment and scheduling
are solved in an integrated manner. They are run separately but use a com-
mon data structure, so each phase takes into account information from other
phases.

Code selection, as in most approaches, is based on pattern matching tech-
niques for DAGs. The patterns are automatically derived from the target pro-
cessor description in nML. Similarly to our approach, the patterns are identi-
fied when processing the DAG, and the algorithm avoids exhaustive enumer-
ation of all possible coverings where unnecessary. The validity of a covering

is checked against the ISG [MG95].

136

Chapter 9. Related Work

Register allocation in CHESss consists of routing data between different in-
structions to satisty data locality. The framework considers spilling into mem-
ory, transferring data between registers and regeneration (rematerialization)
of values. The choice of data transfer, based on the transfer path length, is
selected in a branch-and-bound manner.

Finally, global scheduling, which also compacts micro-instructions into in-
structions (code compaction), uses an adapted list scheduling algorithm.

Chapter 10.

Possible Extensions

IN THIS CHAPTER WE PRESENT POSSIBLE topics for the future work in the area
of integrated optimal code generation. We give a brief and non-exhaustive
description of different topics. In particular, we expect to move beyond the
extended basic block level, starting with loop optimization. Loops are hot
spots in most DSP applications, where a slight code improvement may result
in a considerable performance gain.

10.1. Residence Classes

In Section we generalized register classes to residence classes, and es-
tablished the versatility relation. We think of exploiting the versatility relation
among residence classes by constructing a lattice of residence classes to narrow
the exploration of possible schedules and thus the solution space. However,
for irregular architectures residence classes may overlap with each other. For
instance, an unary instruction y; may use the set of registers, {r{, 12} as source
and destination operands, and instruction y; may use registers {2, 13}. In such
a case, register T, belongs simultaneously to two overlapping sets (see also
ScuoLz and EcksteIN [SEQ2]).

Thus the hierarchy in the lattice cannot be constructed in a straightforward
manner. Further work is needed to investigate how we should represent and
treat overlapping residence classes.

10.2. xADML Extension

xADML was developed in order to allow us to retarget OPTIMIST frame-
work for various target architectures. xADML is based on XML, which makes
it convenient to manipulate, since there exist various tools and libraries for

138

Chapter 10. Possible Extensions

processing XML files. However, the XML tagging principle makes the spec-
ification lengthy and difficult to handle if edited by hand. Further, the size
of the specification grows rapidly with complex architectures, especially with
complex addressing modes, which results in a large number of pattern defini-
tions and associations.

Currently, we are working on a graphical tool to assist users in writing hard-
ware specification [Reh06]. The tool includes a graphical pattern editor, that
builds patterns with a drag and drop mechanism. It also includes a graphi-
cal tool for definition of reservation tables, in the form of a reservation table
matrix representation, where the user simply crosses the resources (columns)
used at relative times (rows). A first version of the tool is available at the
OPTIMIST home page [KBO5].

We also consider providing a Data Type Definition (DTD) for xADML to
check the correct syntax of an xADML specification document. The checking
is then performed automatically by XML tools.

10.2.1. Parallelization of the Dynamic Programming Algorithms

The dynamic programming algorithms presented in Section [4.2] offer poten-
tial for parallel computation. The algorithms structure the solution space,
such that different processes can work simultaneously with processing a list
of nodes at the same level but different execution time coordinates. We have
to take care of the information that is written back to the memory, and thus a
shared memory architecture is preferable in a first step. We also consider more
distributed parallelization such as cluster machines or even grids.

10.3. Global Code Generation

Local optimization is a first step that we need to pass. The highest potential
of optimization in DSP applications can be obtained if optimizing beyond
(extended) basic block boundaries.

The main issue concerns loops, which are extensively used in DSP pro-
grams, and there is a considerable possible gain. We will, in the near future,
consider loop optimization issues based on our dynamic programming ap-
proach and ILP as well. We should consider different profiles (e.g. time, space,
power) as connectors between basic blocks. For instance, at the entry of a
basic block we start with a predefined configuration. In the case of loop op-
timization we may consider loop unrolling and look for a fixed point after a
number of iterations in a similar way as Korson et al. [KNDK96] did optimal
register assignment for loops.

10.4. Software Pipelining

139

An alternative could consist in providing information about data locality to
the compiler by the programmer, and then observe the resulting code. For
each different configuration (profiles), the dynamic algorithm will give an op-
timal solution for that distribution.

10.4. Software Pipelining

Software pipelining [Muc97] is an optimization technique that tends to in-
crease the throughput of a loop. It consists in overlapping the execution of
instructions from successive iterations of a loop and thus decreasing the com-
putation time of the application. Our dynamic programming algorithms do
not exploit software pipelining and we consider that issue as part of future
work where loop optimization is being addressed.

We could try to extend VEGDAHL’s method [Veg92|] for software pipelining.
First we need to integrate instruction selection and register allocation phases
into the algorithm. VEGDAHL considers an operation as a non-compacted in-
struction. By “instruction” the author means a compacted instruction, such
as a VLIW instruction word, where several operations (instructions in our
terms) are gathered to form a single (target) instruction. With these proper-
tied| he builds a data dependence graph (at the operation level) with conflicts
and fine-grained dependences.

VEGDAHL’s dynamic-programming algorithm for loops builds a complete
solution space for a loop body. The loop body is considered with differ-
ent unroll factors A. If A = 1 the scheduling is similar to straight-line code
scheduling. For A > 2 the loop is unrolled A times. For these cases the algo-
rithm considers the issue of reentering code. Once the entire solution space is
built, the algorithm proceeds to find a shortest cyclic path that corresponds to
a most-compacted code sequence.

It remains unclear how far the result is optimal. If optimizing loops for code
size, then it is possible to choose the smallest code (in terms of bytes) among
the shortest cyclic paths. However, if optimizing for time, the shorter cycle
does not necessarily mean shorter execution time.

In order to integrate instruction selection with the compaction phase (and
other phases) we might build a variant of Vegdahl’s instruction-set graph, where
nodes instead represent the set of selection nodes (same level and execution
time with different time profiles) and edges are annotated with selected nodes
in the selection step.

1We see Vegdahl’s properties as a limitation for applying tree and forest pattern matching tech-
niques, since operations are already matched to a given non-compacted instruction.

140

Chapter 10. Possible Extensions

This structuring defers (and eventually prunes) expensive partial solutions,
which may increase the efficiency of VEGDAHL’s algorithm in the same way as
it worked out in earlier work on local code optimization. Hence we should try
to interleave the shortest-path computation with the construction of the solu-
tion space, instead of having two separate phases as proposed by VEGDAHL.

When the algorithm constructs a backward edge, it needs to match the most
suitable time profile and particularly the space profile to fit between instruc-
tions placed at the boundaries of the loop kernel.

In another alternative we may try to “apply OPTIMIST at two levels” in a
two-level nested loop. The outer loop decides upon the set of nodes (from dif-
ferent iterations) that compose the kernel (kernel recognition). The inner loop
simply uses the current OPTIMIST technique to schedule the kernel (block).

Figure depicts the principle of OPTIMIST?: the loop body (being op-
timized) is contained with the rectangular area. Nodes outside the loop body
are contained within the INIT part (showed at the top left in Figure[10.1] as
node vo, which is a dummy node that allows to describe live-in values and
incoming time profile). We (virtually) unroll the loop for showing carried de-
pendences between different loop iterations. Each instance of node vj of the
loop is annotated with its iteration i, vi. OPTIMIST? starts by applying OP-
TIMIST to the initial loop, which produces a valid schedule (see additional re-
marks later in this section). Then, iteratively the outer loop removes one node
from the zero-indegree set out of the current loop body (marked extract
in Figure and inserts the corresponding node from the next iteration of
the loop. Then OPTIMIST is applied to the new DAG, which now includes
nodes from iteration iand i + 1.

The outer loop implicitly builds a “kernel tree” (similar to the selection tree)
where nodes are kernel DAGs to be scheduled with OPTIMIST. Similarly to
the selection tree, we observe that multiple instances of kernel DAGs occur in
the kernel tree. We merge those multiple occurrences of the same node into a
single node, which results in a DAG of kernel DAGs.

OPTIMIST? complexity will certainly increase significantly compared to
the complexity of the current (local) OPTIMIST algorithm. We should imple-
ment such a method in our prototype and evaluate it. We could use heuristics
for the inner loop to speed up the method. Further, we may look for strategies
for building and traversing the DAG of kernel DAGs in a structured manner,
such as depth-first-search. We intend to rank a kernel with respect to the “ap-
propriateness” for software pipelining. We would like to prune or postpone
poor alternatives (if we can identify them) and follow branches first that lead
to a quick reduction in computation time of an optimal schedule. The traversal
can use a variant of branch-and-bound to favor the best partial solutions.

Additionally, we may specify how far ahead OPTIMIST? should consider

10.4. Software Pipelining

INIT ; LOOP VIRTUALLY UNROLLED ITERATIONS
i i+1 i+2
dummy
predecessor
node

v LOOP v LOOP
1 1
i i i .
S . A
v .
R i+
R V2 ./

v LOOP
1

vh /’Vi P
V'fl.:

i \'

Vi;/., oy

Figure 10.1.: OPTIMIST?: The principle of applying OPTIMIST at two lev-

els.

142

Chapter 10. Possible Extensions

nodes to enter the current kernel DAG (i.e. the maximum depth between the
current iteration i and the last considered iteration i + d)

Remark that OPTIMIST produces schedules that are valid with respect to
data dependences within a single iteration. We need to check (after a sched-
ule is computed) that for each node that emits a loop-carried dependence the
latencies are respected.

Known techniques for software pipelining [AJLA95] are usually applied
after the instruction selection phase. This is somehow obvious, since software
pipelining exploits the fine granularity of instructions to improve the schedule.
Furthermore, the integration allows to perform instruction selection across
loop iteration boundaries.

Techniques for computing the initiation interval (I1), that is, the length of
the loop kernel, such as cycle enumeration or shortest path computation rely
on the instruction selection phase. The advantage of OPTIMIST? is that we
do not need to estimate the minimum initiation interval (MII) and thus not
approximate it through an iterative process as done in traditional software
pipelining methods’} The information should actually be obtained directly
from the algorithm.

In the case of OPTIMIST? we cannot calculate IT ahead the schedule be-
cause the instruction selection is performed simultaneously to other phases.
However, once we obtained a valid schedule (with a given instruction selec-
tion) we can verify if the lower bound for the IT is achieved, or if it is achievable
or not.

10.5. DAG Characterization

In Chapter|6] we observed cases for which the partial-symmetry does not im-
prove the computation time significantly, even if there is significant number
of symmetries. We plan to investigate deeply how to statically characterize
DAGs that are likely to benefit from exploiting symmetries. Alternatively, a
method for deciding at runtime if exploiting symmetries would pay off, that
uses a heuristic estimation based on the shape of the DAG, may also be consid-
ered. We also need an extension of the partial-symmetry definition to irregular
architectures that takes data locality into consideration.

We can use similar approach for characterizing DAGs statically suitable for
either ILP solver or DP.

Further, we plan to develop other pruning techniques to identify alterna-
tives that do not lead to optimal solutions as early as possible. For larger

2Current techniques estimate a lower bound for II after the instruction selection has been per-
formed.

10.6. ILP Model Extensions

143

problems, we may relax our goal of finding an optimal solution and produce
highly optimized, but no longer optimal code.

10.6. ILP Model Extensions

The current ILP formulation presented in Chapter [7] lacks several features
available in OPTIMIST framework. In the ILP model we considered and
provided a target architecture with characteristics that we modeled. We will
consider extending the formulation to handle cluster architectures, such as
Veloci-TT DSP variants. For that, we will need to model operand residences
(i.e., in which cluster or register set a value is located). This will certainly
increase the amount of generated variables and equations and affect ILP per-
formance.

Our ILP formulation is based on a simpler resource usage model that is
limited to unit occupation times per functional unit and a variable latency per
target instruction. It would be of interest to have a more general model using
reservation tables for specifying arbitrary resource usage patterns and complex
pipelines, like the one already implemented in OPTIMIST’s DP framework.

10.7. Spilling

For now, we do not consider transfers to memory modules. If we did, we
could as well explore all ways of spilling values from registers and reloading
them at any time. Also, we assume that the register classes have enough ca-
pacity to hold all values of interest. However, this is no longer true for small
residence classes, as e.g. in the case of the Hitachi SH3DSP. Our algorithm is,
in principle, able to generate optimal spill code and take this code into account
already when selecting instructions and for determining an optimal schedule,
and not afterward, where the optimality of a given schedule may be compro-
mised by later insertion of spill code.

On the other hand, taking spilling into consideration may considerably in-
crease the space requirements. We plan to develop further methods for the
elimination of uninteresting alternatives for this case.

Chapter 11.

Conclusions

IN THIS WORK, WE DEVELOPED a framework for integrated code generation
with algorithms to optimally solve the main tasks of code generation in a single
and fully integrated optimization step for regular and irregular architectures,
using dynamic programming and integer linear programming.

We first provided the concept of time profile and the compression theorem
for regular architectures. The dynamic programming algorithm for super-
scalar and regular VLIW processors is suitable for small and medium-sized
problem instances. Secondly, for irregular architectures we introduced the
concept of space profiles to describe data locality information and provided
the compression theorem for irregular architectures. The dynamic program-
ming algorithm for clustered VLIW processors is applicable to small but not
trivial problem instances.

Spilling to memory modules is currently not considered, as we assume that
the register classes have enough capacity to hold all values of interest. How-
ever, this is no longer true for small residence classes, as e.g. in the case of
the Motorola MC56K. In principle our algorithm is able to generate optimal
spill code and take this code already into account when determining an op-
timal schedule. On the other hand, taking spill code into consideration may
considerably increase the space requirements.

The dynamic programming method is suitable for optimizing for time, space,
energy, and mixed goals. We adopted an energy model from the literature and
presented a framework for energy-optimal integrated local code generation.
We defined a suitable power profile, which is the key to considerable com-
pression of the solution space in our dynamic programming algorithm. Our
method is generic and not limited to a fixed power model. If more influence
factors are to be considered that are known at compile time, it can easily be
adapted by modifying the power profile definition accordingly.

146

Chapter 11. Conclusions

In order to address larger problem instances we described an optimization
technique that exploits partial symmetries in DAGs for regular architectures.
The idea of pruning partial solutions that can be shown to be equivalent to
others by analyzing local symmetries in scheduling situations did not lead to
substantial improvements because the (moderate) size reduction of the solu-
tion space was outweighed by the symmetry analysis time. Partial-symmetry
optimization techniques still need further investigations and extensions for ir-
regular architectures.

Large DAGs require heuristic pruning of the solution space to cope with the
combinatorial complexity of fully integrated code generation. We showed that
limiting the number of alternatives generated from a partial solution nodes
(ESnode) produces code with still high quality in much shorter computation
times.

Further, in this thesis we provided an integer linear programming formula-
tion for fully integrated code generation for VLIW architectures that includes
instruction selection, instruction scheduling and register allocation. We have
implemented the generation of data for the ILP model within the OPTIMIST
framework and compared it to the dynamic programming approach. Cur-
rently, the ILP formulation lacks support for memory dependences and for
irregular architecture characteristics, such as clustered register files, complex
pipelines, etc. We intend to extend the formulation as part of future work.

Finally, we addressed the issue of retargetable code generation. We devel-
oped an architecture description language called xADML that is based on
XML. We successfully retargeted the OPTIMIST framework to three very
different processors: ARMOE a single issue processor, TI-C62x a multi-issue
clustered VLIW architecture, and Motorola MC56K a multi-issue DSP pro-
cessor.

As future work, we need address the problem of overlapping register classes
and extend our approach beyond local code generation. Some ideas for ex-
tending the DP approach to software pipelining have been described.

Appendix A.

Least-cost Instruction Selection in
DAGs is NP-complete

PROEBSTING proved in 1998 that least-cost instruction selection in DAGs is
NP-complete [Pro98], but the proof is unpublished and only available in elec-
tronic form at the author’s home page. Here follows his proof:

Producing least-cost instruction selections for DAGs by finding
pattern “matches” (or “covers” or “parses”) is NP-complete. The
trivial proof follows by reducing satisfiability to it. Build a DAG
for the formula you want satisfied. Then, have the following rules
(all with unit cost):

True: VARIABLE

False: VARIABLE

False: not(True)

True: not(False)

True: or(True, True)
True: or(True, False)
True: or(False, True)
False: or(False, False)
True: and(True, True)
False: and(True, False)
False: and(False, True)
False: and(False, False)

If you can derive a cover of the DAG that reduces to True with
a cost exactly equal to the number of nodes, then the formula is
satisfiable. Otherwise it is not.

148 Appendix A. Least-cost Instruction Selection in DAGs is NP-complete

Unless you have a different model of optimality, this proves op-
timal DAG code generation is NP-complete. Note that it does not
rely on the usual complication of (1) number of registers, or (2)
asymmetrical instructions.

Note that ErTL [Ert99] showed that least-cost instruction selection in
DAGs can be computed in polynomial time for almost all regular processors.

Appendix B.
AMPL Code of ILP Model

In this appendix we provide the integer programming model presented in
Chapter [7} The model is provided in AMPL mathematical programming lan-
guage (see http://www.ampl.com).

Use CPLEX solver
option solver cplex;

.
Data flow graph
B oo~
DFG nodes

set G;

DFG edges

set EG within (G cross G);

Operator of DFG nodes
param OPG {G} default O;

Out-degree of DFG nodes
param 0DG {G} default O;

Pattern indexes
set P_prime; # patterns with edges
set P_second; # patterns without edges

http://www.ampl.com

150 Appendix B. AMPL Code of ILP Model

set P := P_prime union P_second;

param n integer > O; # Dummy nodes for parameters instances
set PN := 0 .. n - 1; # Generic pattern nodes

Patterns

set B {P} within PN;

Pattern edges

set EP {P_prime} within (PN cross PN);
Operator of patterns

param OPP {P,PN};

Out-degree of patterns

param ODP {P,PN} default O;

Latencies

param L {P};

Functional units

set F;

Maximum FUs

param M {F} integer >0;

Resource mapping p <-> FU
param U {P,F} binary default 0;

Issue width (omega)
param W integer > O;
Number of registers
param R integer > O;

var w {EG,P_prime, (PN cross PN)} binary default O;
var x {EG} binary default 0;

Maximum time

151

param max_t integer > 0;

set T := 0 .. max_t;

var ¢ {G,P,PN,T} binary default 0;
var exec_time integer >= 0;

Records which patterns (instances) are selected, at which time
var s {P_prime,T} binary default O;

Records if a node i requires a register at time t
var r {G,T} binary default O;

minimize Test:
exec_time;

Minimize the number of steps
subject to MinClockCycle {i in G, p in P, k in B[p], t in T}:
cli,p,k,t] * (t + L[p]) <= exec_time;

Each node is covered by at most one pattern
subject to NodeCoverage {i in G}:
sum{p in P} sum{k in B[pl} sum{t in T} c[i,p,k,t] = 1;

Record which patterns have been selected at time t
subject to Selected {p in P_prime, t in T}:
sum{i in G} sum{k in B[pl} cli,p,k,t] = slp,t] * card{B[pl};

Unique coverage:
each pattern node corresponds to a unique DFG node (if p selected)
subject to Unicity {p in P_prime, k in B[pl}:

sum{i in G} sum{t in T} c[i,p,k,t] = sum{t in T} s[p,t];

For each selected pattern,
assure that all pattern edges matche DFG edges
subject to EdgeCoverage {p in P_prime}:

152

Appendix B. AMPL Code of ILP Model

sum{(i,j) in EG} sum{(k,1) in EP[pl} w[i,j,p,k,1]
= card{EP[pl} * sum{t in T} s[p,t];

For each pattern edge,

assure that DFG nodes are matched to pattern nodes

subject to WithinPattern {(i,j) in EG, p in P_prime, (k,1) in EP[p]}:
2 * wli,j,p,k,1] <= sum{t in T}(c[i,p,k,t] + c[j,p,1,t]);

Only one instance of a pattern might be selected at some time t
subject to MaxOneInstance {p in P_prime}:
sum{t in T} s[p,t] <= 1;

Operator of DFG and pattern nodes must match
subject to OperatorEqual {i in G, p in P, k in B[pl, t in T}:
c[i,p,k,t] * (OPG[i] - OPP[p,k]) = O;

The out-degree of DFG and pattern nodes must match
subject to OutDegree {p in P_prime, (i,j) in EG, (k,1) in EP[pl}:
wli,j,p,k,1] * (ODG[i] - ODP[p,k]) = O;

Register pressure
Set value to register r[i,t] if there is at least one active edge
at time t
subject to SetReg {t in T, i in G}:
sum{tt in 0..t} sum{(i,j) in EG} sum{p in P} (
sum{k in B[pl} c[i,p,k,tt] - sum{l in B[pl} c[j,p,1,tt]
) <= rl[i,t] * 1000;

If there are no active edges at time t left, set r[i,t] to zero
subject to ZeroIfNoActiveEdges {t in T, i in G}:
sum{tt in 0..t} sum{(i,j) in EG} sum{p in P} (
sum{k in B[pl} c[i,p,k,tt] - sum{l in B[pl} c[j,p,1,tt]
) >= r[i,t];

Check that the number of registers is not exceeded at any time
subject to RegPressure {t in T}:
sum{i in G} r[i,t] <= R;

153

Precedence constraints for patterns-to (pattern or singleton)
subject to PrecedencePT {p in P_prime, (i,j) in EG, t in T}:
sum{k in B[pl} c[i,p,k,t] +
sum{q in P: q != p}
sum{tt in O .. t + L[p] - 1: tt <= max_t}
sum{k in B[ql} c[j,q,k,tt] <= 1;

Precedence constraints for singleton-to (pattern or singleton)
subject to PrecedenceST {p in P_second, (i,j) in EG, t in T}:
sum{k in B[pl} c[i,p,k,t] +
sum{q in P} sum{tt in O .. t + L[p] - 1: tt <= max_t}
sum{k in B[ql} c[j,q,k,tt] <= 1;

At each scheduling step we should not exceed
the number of resources
subject to Resources {t in T, f in F}:
sum{p in P_prime : Ulp,f] = 1} s[p,t]
+ sum{p in P_second : U[p,f] = 1}
sum{i in G} sum{k in B[pl} c[i,p,k,t] <= M[f];

At each time slot, we should not exced the issue width w
subject to IssueWidth {t in T}:
sum{p in P_prime} s[p,t]
+ sum{p in P_second} sum{i in G} sum{k in B[pl}
cli,p,k,t] <= W;

Each pattern should be associated with som functional unit
check {p in P}:
sum{f in F} U[p,f] > 0;

References

[AAvS94]

[AGO1]

[AJ76]

[AJLA95]

[AJU77]

[AM95]

[ANSS]

[ARMO2]

Martin Art, Uwe AssMANN, and Hans van SOMEREN. CoSy
Compiler Phase Embedding with the CoSy Compiler Model. In
Peter A. FriTzsoN, editor, 5th International Conference, CC*94,
pages 278-293, Edinburgh, U.K., April 1994. LNCS, Springer-
Verlag.

Andrew W. ArpEL and Lal GEOrGE. Optimal Spilling for CISC
Machines with Few Registers. In Proceedings of the ACM SIG-
PLAN 2001 conference on Programming language design and
implementation, pages 243-253. ACM Press, 2001.

Alfred V. Ao and S. C. Jounson. Optimal Code Generation
for Expression Trees. Journal of the ACM, 23(3):488-501, July

1976.

Vicki H. ArLAN, Reese B. Jongs, Randall M. Leg, and Stephen J.
ArrLan. Software Pipelining. ACM Comput. Surv., 27(3):367—
432, 1995.

Alfred V. Ano, S.C. Jounson, and Jeffrey D. UrLman. Code
Generation for Expressions with Common Subexpressions. J.
ACM, 24(1):146-160, January 1977.

G. Araujo and S. MaLik. Optimal Code Generation for Em-
bedded Memory Non-Homogeneous Register Architectures.
8th International Symposium on System Synthesis (ISSS), pages
3641, 1995.

Alexander A1kEN and Alexandru Nicorau. Optimal Loop Par-
allelization. In Proc. ACM SIGPLAN Conf. Programming Lan-
guage Design and Implementation, pages 308-317. ACM Press,
1988.

ARM Ltp. ARM9E-S™. Technical Reference Manual ARM
DDI0240A Rev. 2, May 2002.

156

References

[ASUS86]

[BBS*00]

[BDB90]

[BG89]

[BGS93]

[BHE91]

[BJPRS5]

[BL99]

[BRGS9]

Alfred V. Ano, Ravi SETH]I, and Jeffrey D. UrLmAN. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

David M. Brooxs, Pradip Bosk, Stanley E. SCHUSTER, Hans Ja-
COBSON, Prabhakar N. Kupva, Alper BuyukTosunoGLy, John-
David WELLMAN, Victor ZyuBaN, Manish Gupta, and Peter W.
Cook. Power-aware microarchitecture: Design and model-
ing challenges for next-generation microprocessors. Annual
IEEE/ACM Int. Symp. Microarchitecture, pages 26—44, Nov-
Dec 2000.

A. BALACHANDRAN, D. M. DHAMDHERE, and S. Brswas. Effi-
cient Retargetable Code Generation using Bottom-up Tree Pat-
tern Matching. Computer Languages, 15(3):127-140, 1990.

David BERNSTEIN and Izidor GERTNER. Scheduling Expressions
on a Pipelined Processor with a Maximal Delay of one Cycle.
ACM Trans. Program. Lang. Syst., 11(1):57-66, January 1989.

Denis BARTHOU, Franco GASPERONI, and Uwe
ScuwiEGELSHOHN. Allocating Communication Channels
to Parallel Tasks. In Environments and Tools for Parallel Scien-
tific Computing, volume 6 of Advances in Parallel Computing,
pages 275-291. Elsevier Science Publishers B. V., Amsterdam,
The Netherlands, 1993.

David G. BrapriE, Robert R. HenRrY, and Susan J. EGGERs.
The marion system for retargetable instruction scheduling. In
Proc. ACM SIGPLAN Conf. Programming Language Design
and Implementation, pages 229-240, New York, NY, USA, June
1991. ACM Press.

David BERNSTEIN, Jeffrey M. JaFFE, Ron Y. PINTER, and Michael
Ropen. Optimal Scheduling of Arithmetic Operations in Par-
allel with Memory Access. Technical Report 88.136, IBM Israel
Scientific Center, Technion City, Haifa (Israel), 1985.

Steven BasHFORD and Rainer LEuPERs. Phase-Coupled Map-
ping of Data Flow Graphs to Irregular Data Paths. In Design
Automation for Embedded Systems, volume 4, pages 1-50, The
Netherlands, 1999. Kluwer Academic Publishers.

David BERNSTEIN, Michael RopEH, and Izidor GERTNER. On
the Complexity of Scheduling Problems for Parallel/Pipelined

References

157

[BS76]

[BSBC95]

[BTMOO]

[CAC*81]

[CC95]

[CCK97]

[CP95]

[DSTP75]

[Edq04]

Machines. IEEE Trans. Comput., 38(9):1308-1314, September
1989.

J. Bruno and R. SetHI. Code Generation for a One—Register
Machine. J. ACM, 23(3):502-510, July 1976.

Thomas S. Brasier, Philip H. Sweany, Steven]. BeaTy, and
Steve CarRr. CRAIG: A Practical Framework for Combin-
ing Instruction Scheduling and Register Assignment. In Proc.
Int. Conf. Parallel Architectures and Compilation Techniques
(PACT), 1995.

David Brooxs, Vivek Trwari, and Margaret MARTONOSI.
WATTCH: A Framework for Architectural-Level Power Anal-
ysis and Optimizations. In Proc. 27th Annual Int. Symp. Com-
puter Architecture, pages 8394, June 2000.

G.J. CrArTIN, M.A. AUsLANDER, A.K. CHANDRA, J. COCKE,
M.E. Hopkins, and P.W. MARKSTEIN. Register Allocation via
Coloring. Computer Languages, 6:47-57, 1981.

Hong-Chich CHou and Chung-Ping CHUNG. An Optimal In-
struction Scheduler for Superscalar Processors. IEEE Transac-
tions on Parallel and Distributed Systems, 6(3):303-313, 1995.

Chia-Ming CHANG, Chien-Ming CHEN, and Chung-Ta KiNg.
Using Integer Linear Programming for Instruction Scheduling
and Register Allocation in Multi-issue Processors. Computers
Mathematics and Applications, 34(9):1-14, 1997.

Jui-Ming CuaNG and Massoud PEpraM. Register Allocation

and Binding for Low Power. In Proc. 32nd Design Automation
Conf. ACM Press, January 1995.

Edward S. Davipson, Leonard E. SHAR, A. Thampy THOMAS,
and Janak H. PaTeL. Effective Control for Pipelined Computers.
In Proc. Spring COMPCON?7S5 Digest of Papers, pages 181-184.
IEEE Computer Society Press, February 1975.

Anders EpqQvist. High-level Optimizations for OPTIMIST.
Master thesis LITH-IDA-EX-04/078-SE, Linkopings univer-
sitet, November 2004.

158

References

[EGS95]

[EK91]

[ELI85]

[ENS9]

[Ers71]

[Ert99]

[FH95]

[FHP92]

[Fis81]

[FR92]

Christine Eisensers, Franco Gasperoni, and Uwe
ScuWIEGELSHOHN. Allocating registers in multiple instruction-
issuing processors. In Proc. Int. Conf. Parallel Architectures
and Compilation Techniques (PACT) (PACT’95), 1995. Ex-
tended version available as technical report No. 2628 of INRIA
Roquencourt, France, July 1995.

M. Anton ErTL and Andreas Krarr. Optimal Instruction
Scheduling Using Constraint Logic Programming. In Proc. 3rd
Int. Symp. Programming Language Implementation and Logic
Programming (PLILP), pages 75-86. Springer LINCS 528, Au-

gust 1991.

John R. Ervris. Bulldog: A Compiler for VLIW Architechtures.
PhD thesis, Yale University, 1985.

Kemal EBcrocLu and Alexandru Nicorau. A Global Resource-
constrained Parallelization Technique. In Proc. 3rd ACM Int.
Conf. Supercomputing. ACM Press, 1989.

A.P.ErsHOV. The Alpha Programming System. Academic Press,
London, 1971.

M. Anton ErTL. Optimal Code Selection in DAGs. In Proc.
ACM SIGPLAN Symp. Principles of Programming Languages,

1999-

Christopher W. Fraser and David R. HANsON. A Retargetable
C Compiler: Design and Implementation. Addison-Welsey
Publishing Company, 1995.

Christopher W. FRASER, David R. Hanson, and Todd A. PrRoEB-
sTING. Engineering a Simple, Efficient Code Generator Gener-
ator. ACM Letters on Programming Languages and Systems,
1(3):213-226, September 1992.

Joseph A. FisHER. Trace Scheduling: A General Technique for
Global Microcode Compaction. I[EEE Transactions on Comput-
ers, 30(7):478-490, July 1981.

Stefan M. FREUDENBERGER and John C. RUTTENBERG. Phase
Ordering of Register Allocation and Instruction Scheduling. In
Code Generation: Concepts, Tools, Techniques [GGI1], pages
146-170, 1992.

References 159

[Fre74] R.A. FREIBURGHOUSE. Register Allocation via Usage Counts.
Comm. ACM, 17(11):638—642, 1974.

[Fre93] Markus FrReerick. The nML Machine Description Formalism.
Technical report, TU Berlin CS Dept., July 1993.

[FSF06] Inc. FRee SorTwarRe FounpaTtion. GCC homepage. http://
gcc.gnu.org, 2006.

[GE91] Catherine H. Gesorys and Mohamed I. ELmAsRY. Simultane-
ous Scheduling and Allocation for Cost Constrained Optimal
Architectural Synthesis. In DAC *91: Proceedings of the 28th

conference on ACM/IEEE design automation, pages 2—7, New
York, NY, USA, 1991. ACM DPress.

[GE92] C. H. Gesorys and M. I. ELmasrY. Optimal VLSI Architectural
Synthesis. Kluwer, 1992.

[GG78] R.S. GranviLLE and S.L. Graram. A New Method for Com-
piler Code Generation. In Proc. ACM SIGPLAN Symp. Princi-
ples of Programming Languages, pages 231-240, January 1978.

[GGI1] Robert GiegericH and Susan L. Granawm, editors. Code Gen-
eration - Concepts, Tools, Techniques. Springer Workshops in
Computing, 1991.

[GH38] James R. Goopman and Wei-Chung Hsu. Code Scheduling and
Register Allocation in Large Basic Blocks. In Proc. ACM Int.
Conf. Supercomputing, pages 442—452. ACM Press, July 1988.

[GS90] Rajiv Gupra and Mary Lou Sorra. Region Scheduling: An
Approach for Detecting and Redistributing Parallelism. /EEE
Trans. on Software Engineering, 16(4):421-431, April 1990.

[Giit81] Reiner GUTTLER. Erzeugung optimalen Codes fiir series—
parallel graphs. In Springer LNCS 104, pages 109-122, 1981.

[GYZ"99] R. Govinparajan, Hongbo Yang, Chihong ZHANG, Jose Nel-
son AMARAL, and Guang R. Gao. Minimum register instruc-
tion sequence problem: Revisiting optimal code generation
for DAGs. CAPSL Technical Memo 36, Computer Architec-
ture and Parallel Systems Laboratory, University of Delaware,
Newark, November 1999.

http://gcc.gnu.org
http://gcc.gnu.org

160

References

[HD98]

[HFG$9]

[HGS3]

[HHDY7]

[HHG'95]

[Hit99]

[HKMW66]

[HOS$2]

[Hu61]

[Inc06]

[JNRO2]

Silvina HaANoNoO and Srinivas DEvapas. Instruction Selection,
Resource Allocation, and Scheduling in the AVIV Retargetable
Code Generator. In Proceedings of the 35th annual conference
on Design Automation Conference, pages 510-515, San Fran-
cisco, California, United States, 1998. ACM Press.

Wei-Chung Hsu, Charles N. FIsCHER, and James R. GooDMAN.
On the Minimization of Loads/Stores in Local Register Alloca-
tion. IEEE Trans. on Software Engineering, 15(10):1252-1262,
October 1989.

John HeEnnEssy and Thomas Gross. Postpass Code Optimiza-
tion of Pipeline Constraints. ACM Trans. Program. Lang. Syst.,
5(3):422-448, July 1983.

George Hapjryiannis, Silvina HANONO, and Srinivas DEVADAS.
ISDL: An Instruction Set Description Language for Retar-
getability. In Proc. Design Automation Conf., 1997.

Wen-mei W. Hwu, Richard E. Hank, David M. GALLAGHER,
Scott A. MAHLKE, Daniel M. LavERY, Grant E. Haas, John C.
GYLLENHAAL, and David I. August. Compiler Technology for
Future Microprocessors. Proc. of the IEEE, 83(12):1625-1640,
December 1995.

Hrraca1 Ltp. Hitachi SuperH RISC engine SH7729. Hardware
Manual ADE-602-157 Rev. 1.0, September 1999.

L.P. Horwirz, R. M. Karp, R. E. MILLER, and S. WINOGRAD.
Index Register Allocation. J. ACM, 13(1):43-61, January 1966.

Christoph M. Horrmann and Michael J. O’DoNNELL. Pattern
Matching in Trees. J. ACM, 29(1):68-95, January 1982.

T. C. Hu. Parallel Sequencing and Assembly Line Problems.
Operations Research, 9(11):841-848, 1961.

ILOG Inc. CPLEX homepage. http://www.ilog.com/
products/cplex, 2006.

Rajeev JosHr, Greg NeLsoN, and Keith RanparL. Denali: A
goal-directed superoptimizer. In Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pages
304-314, 2002.

http://www.ilog.com/products/cplex
http://www.ilog.com/products/cplex

References

161

[KAEO1]

[Kis00a]

[Kis00b]

[Kis00c]

[KBO02]

[KBO5]

[Kes98]

[Kef00]

[KG92]

[KNDK96]

Krishnan Kairas, Ashok Acrawara, and Kemal Escrocru.
Cars: A new code generation framework for clustered ilp pro-
cessors. In HPCA °01: Proceedings of the Seventh Interna-
tional Symposium on High-Performance Computer Architecture
(HPCA’01), pages 133-143. IEEE Computer Society, 2001.

Daniel KASTNER. Retargetable Postpass Optimisations by Inte-
ger Linear Programming. PhD thesis, Universitit des Saarlan-
des, Saarbriicken, Germany, 2000.

Daniel KAsTNER. PrOPAN: A Retargetable System for Postpass
Optimisations and Analyses. In ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Systems, Van-
couver, CA, June 2000.

Daniel KAsTNER. TDL - A Hardware and Assembly Description
Language. Technical report, Universitit des Saarlandes, Saar-
briicken, Germany, 2000.

Christoph KessLer and Andrzej BepNarskl. Optimal Inte-
grated Code Generation for Clustered VLIW Architectures.
In Proc. ACM SIGPLAN Conf. on Langunages, Compilers and
Tools for Embedded Systems / Software and Compilers for Em-
bedded Systems, LCTES-SCOPES 2002, Berlin, Germany, June
2002. ACM Press.

Christoph KessLer and Andrzej Bepnarskr. OPTIMIST.
http://www.ida.liu.se/ chrke/optimist} 2006.

Christoph W. KessLeR. Scheduling Expression DAGs for Mini-
mal Register Need. Computer Languages, 24(1):33-53, Septem-
ber 1998.

Christoph W. KessLER. Parallelism and Compilers. Habilitation
thesis, FB IV - Informatik, University of Trier, December 2000.

Tokuzo Krvorara and John C. GyLLENHAAL. Code Scheduling
for VLIW/Superscalar Processors with Limited Register Files.
In Proc. 25th Annual IEEE/ACM Int. Symp. Microarchitecture,
pages 197-201. IEEE Computer Society Press, 1992.

David J. Korson, Alexandru Nicorau, Nikil Dutrt, and Ken
KeNNEDY. Optimal Register Assignment to Loops for Embed-
ded Code Generation. ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 1(2):251-279, 1996.

http://www.ida.liu.se/~chrke/optimist

162

References

[KPF95]

[KRS98]

[KSMS02]

[Lam88§]

[Lan05]

[LEMO1]

[Leu97]

[LeuO0a]

[LeuO0Ob]

[LLHTO0]

Steven M. KURLANDER, Todd A. PROEBSTING, and Charles N.
Frsuer. Efficient Instruction Scheduling for Delayed-Load Ar-
chitectures. ACM Trans. Program. Lang. Syst., 17(5):740-776,
September 1995.

Jens Knoor, Oliver RUTHING, and Bernhard Sterren. Code
Motion and Code Placement: Just Synonyms? In Proc. Euro-
pean Symp. Programming. Springer LNCS, 1998.

Eren Kursun, Ankur Srivastava, Seda Ogrenci MEmIK, and
Majid SarrarzapeH. Early Evaluation Techniques for Low
Power Binding. In Proc. Int. Symposium on Low power elec-
tronics and design. ACM Press, August 2002.

Monica Lam. Software Pipelining: An Effective Scheduling
Technique for VLIW Machines. In Proc. ACM SIGPLAN Symp.
Compiler Construction, pages 318-328. ACM Press, July 1988.

David LanpéN. ARMOYE Processor Specification for OPTI-
MIST. Master thesis LiTH-IDA-EX-05/022-SE, Linkopings
universitet, February 2005.

Sheayun LEg, Andreas ERMEDAHL, and Sang Lyul Min. An Ac-
curate Instruction-Level Energy Consumption Model for Em-
bedded RISC Processors. In ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Systems, pages
1-10. ACM Press, 2001.

Rainer LEUPERS. Retargetable Code Generation for Digital Sig-
nal Processors. Kluwer Academic Publishers, 1997.

Rainer LEuPERrs. Code Optimization Techniques for Embedded
Processors. Kluwer Academic Publishers, 2000.

Rainer LeuPERrs. Instruction Scheduling for Clustered VLIW
DSPs. In Proceedings of the International Conference on Paral-
lel Architecture and Compilation Techniques, Philadelphia, PA,
October 2000.

Chingren LEg, Jenq Kuen LzE, TingTing HwaNG, and Shi-Chun
Tsar. Compiler Optimization on Instruction Scheduling for
Low Power. In Proc. 13th Int. Symposium on System Synthe-
sis, pages 55-60. ACM Press, 2000.

References

163

[LM97]

[LTMF95]

[Mas87]

[MD94]

[MD99]

[MG95]

[MPSR95]

[MSWO01]

[Muc97]

[Nic84]

Rainer LEUPERS and Peter MARWEDEL. Time-Constrained Code
Compaction for DSPs. [EEE Transactions on VLSI Systems,
5(1):112-122, 1997.

Mike Tien-Chien LEg, Vivek Trwari, Sharad MavLix, and
Masahiro Fujita. Power Analysis and Low-Power Scheduling
Techniques for Embedded DSP Software. In Proc. 8th Int. Symp.
on System Synthesis, pages 110-115, 1995.

Henry MassaLIN. Superoptimizer-A Look at the Smallest Pro-
gram. In Proc. of the Second International Conference on Ar-
chitectural Support for Programming Languages and Operat-
ing Systems (ASPLOS II), pages 122-126, Palo Alto, California,
United States, 1987. IEEE Computer Society Press.

Waleed M. MELE1s and Edward D. Davipson. Optimal Local
Register Allocation for a Multiple-Issue Machine. In Proc. ACM
Int. Conf. Supercomputing, pages 107-116, 1994.

Waleed M. MEevrE1s and Edward D. Davipson. Dual-Issue
Scheduling with Spills for Binary Trees. In Proc. tenth annual
ACM-SIAM symposium on Discrete algorithms, pages 678 — 686,

1999-

Peter MARWEDEL and Gerd Goossens. Code Generation for
Embedded Processors. Kluwer, 1995.

Rajeev. MoTwant, Krishna V. Parem, Vivek SArRkAR, and
Salem REYEN. Combining Register Allocation and Instruction
Scheduling (Technical Summary). Technical Report TR 698,
Courant Institute of Mathematical Sciences, New York, July

1995-

Peter MARWEDEL, Stefan STEINKE, and Lars WEHMEYER. Com-
pilation Techniques for Energy-, Code-Size-, and Run-Time-
Efficient Embedded Software. In Proc. Int. Workshop on Ad-
vanced Compiler Techniques for High Performance and Embed-
ded Processors (IWACT), 200r1.

Steven S. MucHNICK. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann Publishers, 1997.

Alexandru Nicorau. Percolation Scheduling: A Parallel Com-
pilation Technique. Technical Report 85-678, Cornell Univer-

sity, 1984.

164

References

[NIN95]

[NS04]

[OBC98]

[Ped01]

[PF91]

[Pro98]

[PS93]

[PW96]

[Reh06]

[RKA99]

Steven Novack and Alexandru Nicorau. Mutation Scheduling:
A Unified Approach to Compiling for Fine-Grain Parallelism.
Lecture Notes in Computer Science, 892:16-30, 1995.

Rahul Nagpar and Y. N. Srikant. Integrated Temporal and
Spatial Scheduling for Extended Operand Clustered VLIW Pro-
cessors. In CF’04: Proceedings of the first conference on com-
puting frontiers on Computing frontiers, pages 457—-470. ACM
Press, 2004.

Emre OzER, Sanjeev BANER]1A, and Thomas M. ConTE. Uni-
fied Assign and Schedule: A New Approach to Scheduling for
Clustered Register File Microarchitectures. In MICRO 31: Pro-
ceedings of the 31st annual ACM/IEEE international symposium
on Microarchitecture, pages 308-315. IEEE Computer Society
Press, 1998.

Massoud Pepram. Power Optimization and Management in
Embedded Systems. In Proc. Asia South Pacific Design Automa-
tion Conference. ACM Press, January 2001.

Todd A. ProeBSTING and Charles N. Fiscuer. Linear-Time,
Optimal Code Scheduling for Delayed-Load Architectures. In

Proc. ACM SIGPLAN Conf. Programming Language Design
and Implementation, pages 256-267, June 1991.

Todd A. ProessTING. Least-Cost Instruction Selection for
DAGs is NP-Complete, 1998.

Krishna V. PaLEM and Barbara B. Stmons. Scheduling Time-
Critical Instructions on RISC Machines. ACM Trans. Program.
Lang. Syst., 15(4):632-658, 1993.

Todd A. PROEBSTING and Benjamin R. WHALEY. One-pass, Op-
timal Tree Parsing — with or without Trees. In Tibor Gyi-
MoTHY, editor, Compiler Construction (CC’96), pages 294308,
Linkoping, 1996. Springer LNCS 1060.

Andreas REHNSTROMER. Xe — A Graphical Editor for Writing
xADML Processor Specifications. Master thesis LiTH-IDA-
EX-06/006-SE, Link&pings universitet, May 2006.

B. Ramakrishna Rau, Vinod KartHAIL, and Shail ADITYA.
Machine-Description Driven Compilers for EPIC and VLIW

References

165

[SE02]

[Set75]

[SKWMO1]

[SS02]

[SSWMO1]

[STD9%4]

[SU70]

[TCR9S8]

[TMW94]

Processors. Design auntomation for Embedded Systems, 4:71-
118, 1999.

Bernhard Scro1rz and Erik EcksTeIN. Register Allocation for
Irregular Architectures. In Proceedings of the joint confer-
ence on Languages, Compilers and Tools for Embedded Systems
(LCTES), pages 139-148. ACM Press, 2002.

Ravi SeTH1. Complete Register Allocation Problems. SIAM
Journal on Computing, 4:226-248, 1975.

S. STEINKE, M. KNAUER, L. WEHMEYER, and P. MARWEDEL. An
Accurate and Fine Grain Instruction-Level Energy Model Sup-
porting Software Optimizations. In Ifnternational Workshop
on Power And Timing Modeling, Optimization and Simulation
(PATMOS), September 2001.

Y. N. SRikanT and Priti SHANKAR, editors. Architecture Descrip-
tion Languages for Retargetable Compilation, in The Compiler
Design Handbook: Optimizations & Machine Code Generation,
chapter 14. CRC Press, 2002.

Stefan STEINKE, R. ScuwaRrz, Lars WEHMEYER, and Peter MAR-
WEDEL. Low Power Code Generation for a RISC Processor by
Register Pipelining. Technical Report 754, University of Dort-
mund, Dept. of CS XTI, 2001.

Ching-Long Su, Chi-Ying Tsut, and A.M. Despain. Low Power
Architecture Design and Compilation Techniques for High-
Performance Processors. In Proc. Compcon Spring *94, Digest
of Papers, pages 489—-498, February 1994.

Ravi SeTHI and Jeffrey D. ULLMAN. The Generation of Optimal
Code for Arithmetic Expressions. J. ACM, 17:715-728, 1970.

M. TosUReN, T. CoNTE, and M. RELLy. Instruction Schedul-
ing for Low Power Dissipation in High Performance Micropro-
cessors. In Proc. Power Driven Micro-architecture Workshop in
conjunction with ISCA’98, June 1998.

V. Trwart, S. MaLIK, and A. Worre. Power Analysis of Em-
bedded Software: A First Step Towards Software Power Mini-
mization. In J[EEE Transactions on Very Large Scale Integration
(VLSI) Systems, volume 2 of 4, pages 437-445, Dept. of Electr.
Eng., Princeton Univ., NJ, USA, 1994.

166

References

[TTG*03]

[Veg92]

[WGBY%4]

[WGHBY4]

[WLO1]

[WLHO00]

[WMGB93]

[Yon06]

[YVKIOO]

Andrei TERECHKO, Erwan Le THENAFF, Manish Gara, Jos Van
EnnbpuOVEN, and Henk CorroraaL. Inter-Cluster Communi-
cation Models for Clustered VLIW Processors. In The Ninth
International Symposium on High-Performance Computer Ar-
chitecture (HPCA’03), pages 354-364, February 2003.

Steven R. VEGDAHL. A Dynamic-Programming Technique for
Compacting Loops. In Proc. 25th Annual IEEE/ACM Int.
Symp. Microarchitecture, pages 180-188. IEEE Computer So-
ciety Press, 1992.

Thomas Charles WiLson, Gary William Grewat, and Dilip K.
Banerj1r. An ILP Solution for Simultaneous Scheduling, Allo-
cation, and Binding in Multiple Block Synthesis. In Proc. of the
International Conference on Computer Design (ICCD), pages
581-586, 1994.

Tom WiLsoN, Gary GREWAL, Ben HALLEY, and Dilip BANER]T.
An integrated approach to retargetable code generation. In I§SS
’94: Proceedings of the 7th international symposium on High-
level synthesis, pages 70-75. IEEE Computer Society Press,
1994.

Jens WaGNErR and Rainer Leupers. C Compiler Design
for a Network Processor. [EEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD),
20(11):1302-1308, November 2001.

Kent WiLkeN, Jack Liu, and Mark HerrErNAN. Optimal In-
struction Scheduling Using Integer Programming. ACM SIG-
PLAN Notices, 35(5):121-133, May 2000.

Thomas Charles WiLsoN, N. MUkHERJEE, M.K. GarG, and
Dilip K. BANERJI. An integrated and accelerated ilp solution
for scheduling, module allocation, and binding in datapath syn-
thesis. In The Sixth International Conference on VLSI Desing,
pages 192-197, January 1993.

Yuan Yongyr. Optimization of Amplifier Code for the Mo-
torola DSP 56367 Processor with OPTIMIST. Master thesis
LiTH-IDA-EX-06/032-SE, Linkopings universitet, April 2006.

W. YE, N. VijaYKRISHNAN, M. KANDEMIR, and M. J. Irwin. The
Design and Use of SimplePower: A Cycle-Accurate Energy Es-
timation Tool. In Proc. 37th Design Automation Conf., 2000.

References

167

[YWL89]

[Zha96]

Cheng-1. YANG, Jia-Shung Wang, and Richard C. T. Lee. A
Branch-and-Bound Algorithm to Solve the Equal-Execution
Time Job Scheduling Problm with Precedence Constraints and
Profile. Computers Operations Research, 16(3):257-269, 1989.

L. ZuaNG. SILP. Scheduling and Allocating with Integer Linear
Programming. PhD thesis, Technische Fakultat der Universitit
des Saarlandes, Saarbriicken (Germany), 1996.

Index

Symbols
E, see total energy cost
E., see accumulated energy
Eact, see schedule activation / de-
activation cost
Ebe, see schedule base cost
Eoh, see schedule overhead cost
Q, see space profile
S, see IR schedule
Trax, S€€ maximum execution time
Y, see instruction selection
0,29
T, see power profile
Y, see alternatives
basecost, see transformed base cost
X, see covered nodes
¢, see latency
=adwn, see downwards equivalence
=,p, See operator-equivalent
=4ym, see node equivalence
=upw, see upwards equivalence
7, see extended selection node
A, see residual latency
w, see issue width
p, see reference time
T, see execution time
9, see earliest schedule time
a, see activity status
e, see earliest issue time
T, see register allocation
z, see zero-indegree set

J, see instruction set

ac, see activation / deactivation cost
bcost, see base cost

ohcost, see overhead cost

A

accumulated energy, 72, 73
activation cost, 70, 71, 73
active edge, 97, 99
activity status, 71
ADC, see analog-digital converter
alive set, 40, 47, 51, 52, 56, 84
alternatives, 29, 37, 39, 43, 51, 55,

56, 60, 83
analog-digital converter, 1

B
back-end, 11, 12, 16, 22,23, 91, 107,
124
base cost, 70
basic block, 6, 7, 15, 19, 21, 25, 27,
35, 59-61, 70-72, 74, 76,
79, 80, 82, 86, 91, 92, 94,
95, 100-102, 104, 120, 129,
130, 132, 133, 138
level, 7, 91, 95, 98, 132, 137,
138

C
CFG, see control flow graph
clock gating, 67

170

Index

clustered VLIW architecture, 11, 12,
14, 18, 19, 26, 35, 36, 47,
50-55, 60, 108, 120, 131,
145, 146

coalescing, see register coalescing

code

compaction, 91
generation, 4, 11, 81
generator, 69

comparable prefix schedule exchange
condition, 40, 42, 52

compilation process, 3, 5

compiler, 3

intrinsic, 20
known function, 20

compression, 35

control flow graph, 7

convolution, 2

covered nodes, 28, 37, 38, 42, 46,
54, 56, 86

covering, 28

CPSEC, see comparable prefix sched-
ule exchange condition

cycle_matrix, see reservation table

D

DACGC, see digital-analog converter
DAG, see directed acyclic graph

pattern, 27, 28, 95, 112
deactivation cost, 70, 71
dedicated

compiler, 22

register, 19
digital signal processor, 1, 11
digital-analog converter, 1
directed acyclic graph, 6, 25, 71
downwards equivalence, 84
DSP, see digital signal processor, 2

E

earliest

1ssue time, 30
schedule time, 83
energy
aware code generation, 70
optimal schedule, 74
equivalence relation, 80, 84, 85
equivalent
1nstruction, see instruction
equivalence
node, see node equivalence
operator, see operator equiva-
lence
ESnode, see extended selection node
execution time, 29, 38, 47, 68, 71,
104
extended basic block, 25, 60, 71, 102,
120
extended selection node, 45, 53, 55—
57,59, 7274, 83

F
forest pattern, 27, 28, 95
full coverage, 95, 98

G
graph pattern matching, 27
greedy schedule, 30

H
hardware
description language, 107
heuristic pruning, 59, 62, 74, 104

I

ILP, see integer linear programming
in-order compaction, 31, 32, 36, 47
instruction

decoding, 68

equivalence, 83

execution, 68

scheduling, 12, 13, 16, 17, 68—

70, 81, 91, 92, 98

Index

171

selection, 12, 17,27, 28, 38, 69,
70, 81, 91, 95
set, 27-29, 50
integer linear programming, 19, 91
integrated
code generation, 11, 12, 21, 70,
91
intermediate
code generation, 3
representation, 3, 6, 12,25, 102,
112
IR, see intermediate representation
fined-grained, 27
schedule, 27, 38, 45, 54, 73
irregular architecture, 1, 2, 4, 6, 8,
19, 21, 35, 108, 120, 129,
131, 132, 137, 142, 145,
146
1ssue time, 83
issue width, 25, 95, 100, 101, 110

K
kernel tree, 140

L
latency, 27, 72
lexical analysis, 3
local code generation, 7

M
MAC, see multiply and accumulate
maximum execution time, 94-100,
102, 104, 106
measurment, 69
memory access, 68

minimum register instruction sequenc-

ing, 15

mirror node, 82, 84

modular compiler, 22

MRIS, see minimum register instruc-
tion sequencing

multiply and accumulate, 2, 29, 93
mutation scheduling, 123

N
node
equivalence, 83
equivalent, 82
non-linearizable schedule, 32

(@]
one-to-one mapping, 28, 114, 115,
117,118, 120
operator
equivalence, 83
equivalent, 83, 84
optimal
code, 11
code generation, 8, 91, 107
instruction scheduling, 79
optimization, 3
order base formulation, 92
overhead cost, 70

P
parsing, 3
partial
IR schedule, 27
symmetric, 79
symmetry, 79-81
partitioning, 14
pattern, 13, 28, 112
mapping, 115, 116
matching, 13, 45
phase
decoupled code generation, 12,
17,21
ordering, 16
pipeline gating, 68
power
aware code generation, 69
aware scheduling, 77

172

Index

dissipation, 68

model, 69, 70

optimal code generation, 70
profile, 71-73, 138

R
reference time, 29, 41, 51,71, 73
register
allocation, 12, 13, 16, 33, 68—
70, 91, 97

assignment, 69
class, 14, 47, 50
coalescing, 13, 16
need, 32, 33, 38, 45, 47, 54, 57,
58, 82
regular architecture, 2, 8, 21, 35,
85, 95, 97, 129, 130, 145,
146, 148
relocation, 70
reservation table, 26, 29, 61, 101,
108, 109, 111, 112, 115,
117,118, 126, 138, 143
residence, 36, 48, 50, 55, 59, 61
class, 47, 50-52, 55, 56, 58-61,
85,109-112, 115, 116, 118,
120, 123, 131, 137, 143,
145
residual latency, 42, 43, 51, 52, 59
resource
allocation, 69, 70, 91, 92, 99
usage map, 29, 41
retargetable
code generation, 22, 146
compiler, 6, 15, 19, 22, 23, 91,
107,125, 127,132,135

S
schedule
activation/deactivation cost, 71
base cost, 71
overhead cost, 71

scheduled set, 3740, 45, 46, 82, 84
selection
DAG, 35, 37, 39, 58, 129, 130
edge, 38
node, 38
tree, 35, 38—40, 140
semantic analysis, 3
simulation, 69
single-issue architecture, 16, 25, 92,
129
singleton, 93
software pipelining, 15, 139, 140
space
constrained time optimization,
15
optimal, 14
schedule, 33
optimization, 14
profile, 36, 47, 51-53, 55-57,
138
special purpose register, 19
spilling, 14-16, 68, 134, 136, 143
strongly linearizable schedule, 30,
32, 46, 47
superoptimization, 33
superscalar processor, 25
switching activity, 68
symbol table, 4
syntactic analysis, 3
syntax tree, 3

T

target schedule, 16, 21, 22, 29-31,

33, 36-47, 51, 52, 54, 55,

57,71, 72, 76,129
target-level DAG, 28
three-address code, 6
tightly scheduled, 30
time

based formulation, 92

Index

173

constrained space optimization,
15
optimal, 14, 30, 35
optimal schedule, 35, 92
optimization, 14
profile, 36, 41, 42, 47, 52, 55,
83, 85, 138
token, 3
topological sorting, 33, 35, 36
total energy cost, 71
transfer instruction, 48, 51
transformed base cost, 71
tree, 3
pattern, 27, 28, 95

U

unit
activation, 67, 68
activation cost, 76
cold, 68
deactivation, 67, 68
deactivation cost, 76
warm, 68

upwards equivalence, 84

Vv
versatility, 50, 137
virtual register, 13
VLIW architecture, 25, 67, 70, 76,
91
voltage scaling, 67

\\4
weakly linearizable schedule, 32

X
xADML, 77,107,108, 137
node
architecture, 109
condition, 119
ddep, 120

delay, 117
format, 118, 122
instruction, 115
issue_width, 110
kid, 112
pattern, 112, 116
poper, 112
ptarget, 116-118
registers, 110, 111
residences, 110
resources, 111
target, 115, 117, 118, 120
test, 119

section

hardware resource, 108
instruction set, 108, 113
patterns, 108, 112, 113
transfer, 108, 120

V4

zero-indegree set, 3742, 44—47,51—

60, 62, 72, 73, 77, 82-84,
86, 131, 140

No 14

No 17

No 18

No 22

No 33

No 51

No 54

No 55

No 58

No 69

No 71

No 77

No 94

No97

No 109

No 111

No 155

No 165

Department of Computer and Information Science
Linkopings universitet

Dissertations

Linkoping Studies in Science and Technology

Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt sprak, 1977, ISBN 91-
7372-168-9.

Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

Sture Hiigglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

Piar Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

Osten Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

James W. Goodwin: A Theory and System for

No 170

No 174

No 192

No 213

No 214

No 221

No 239

No 244

No 252

No 258

No 260

No 264

No 265

No 270

No 273

No 276

No 277

No 281

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

Johan Fagerstrom: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

Jonas Lowgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies, 1991, ISBN 91-7870-784-6.

Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

Nils Dahlbiéck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

Ralph Ronnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

Bjorn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

Christer Béckstrom: Computational Complexity

No 292

No 297

No 302

No 312

No 338

No 371

No 375

No 383

No 396

No 413

No 414

No 416

No 429

No 431

No 437

No 439

No 448

No 452

No 459

No 461

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

Arne Jonsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

Ulf Séderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

Andreas Kagedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

Cecilia Sjoberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.
Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

Lena Strombéck: User-Defined Constructions in

No 462

No 475

No 480

No 485

No 494

No 495

No 498

No 502

No 503

No 512

No 520

No 522

No 526

No 530

No 555

No 561

No 563

No 567

No 582

Unification-Based Formalisms, 1997, ISBN 91-

7871-857-0.

Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och anvinds efter foretagsforvirv, 1997, ISBN 91-
7871-914-3.

Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

Goran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

Martin Skold: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

Johan Ringstrom: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

Anna Moberg: Nirhet och distans - Studier av
kommunikationsmmonster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

Mikael Ronstrom: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

Jonas Hallberg: Timing Issues in High-Level Syn-
thesis, 1998, ISBN 91-7219-369-7.

Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

Jorgen Lindstrom: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

Vanja Josifovski: Design, Implementation and

No 589

No 592

No 593

No 594

No 595

No 596

No 597

No 598

No 607

No 611

No 613

No 618

No 627

No 637

No 639

No 660

No 688

No 689

Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

Rita Kovordanyi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

Jorgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

Jimmy Tjader: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

Marcus Bjidreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720

No 724

No 725

No 726

No 732

No 745

No 746

No 757

No 747

No 749

No 765

No 771

No 772

No 758

No 774

No 779

No 793

No 785

No 800

No 808

Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

Pir Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
917373 258 3.

Johan Aberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.
Henrik André-Jonsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.
Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-

318-0.

Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.
Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,

ISBN 91-7373-349-0.

Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

Mathias Broxvall: A Study in the

Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

Lars Hult: Publika Informationstjédnster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

Lars Taxén: A Framework for the Coordination of
Complex Systems” Development, 2003, ISBN 91-
7373-604-X

Klas Gire: Tre perspektiv pa forvintningar och
fordndringar i samband med inférande av informa-

No 821

No 823

No 828

No 833

No 852

No 867

No 872

No 869

No 870

No 874

No 873

No 876

No 883

No 882

No 887

No 889

No 893

No 910

No 918

No 900

tionsystem, 2003, ISBN 91-7373-618-X.

Mikael Kindborg: Concurrent Comics - program-
ming of social agents by children, 2003,

ISBN 91-7373-651-1.

Christina Olvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.
Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous
Time Systems, 2003, ISBN 91-7373-683-X.
Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.
Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

Jo Skamedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

Linda Askenis: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.
Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.
Magnus Bang: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5
Robert Eklund: Disfluency in Swedish
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

Anders Lindstrom: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.
Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
5.

Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

Real-

No 920

No 929

No 933

No 937

No 938

No 945

No 946

No 947

No 963

No 972

No 974

No 979

No 983

No 986

No 1004

No 1005

No 1008

No 1009

No 1013

No 1016

No 1017

Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.
Mikael Ciker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

Jonas Kvarnstrom: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

Ola Angelsmark: Constructing Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005, ISBN 91-85297-
99-2.

Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

Bjorn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.
Aleksandra Tesanovic: Developing Re-

usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

Wilhelm Dahlléf: Exact Algorithms for

Exact Satisfiability Problems, 2006, ISBN 91-
85523-97-6.

Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-

No 1018

No 1019

No 1021

79-8.

Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

Linképing Studies in Information Science

Nol

No 2

No3

No 4

No 5

No 6

No 7

No 8

No 9

No 10

No 11

No 12

No 13

Karin Axelsson: Metodisk systemstrukturering- att
skapa samstimmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-
296-8.

Stefan Cronholm: Metodverktyg och anvéndbar-
het - en studie av datorstodd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

Anders Avdic: Anvindare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

Owen Eriksson: Kommunikationskvalitet hos in-
formationssystem och afféarsprocesser, 2000. ISBN
91-7219-811-7.

Mikael Lind: Fran system till process - kriterier for
processbestamning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

Ulf Melin: Koordination och informationssystem i
foretag och nitverk, 2002, ISBN 91-7373-278-8.

Pir J. Agerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

Ulf Seigerroth: Att forsta och forindra
systemutvecklingsverksamheter - en taxonomi

for metautveckling, 2003, ISBN91-7373-736-4.
Karin Hedstrom: Spar av datoriseringens virden -
Effekter av IT i dldreomsorg, 2004, ISBN 91-7373-
963-4.

Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

Malin Nordstrom: Styrbar systemforvaltning - Att
organisera systemforvaltningsverksamhet med
hjélp av effektiva forvaltningsobjekt, 2005, ISBN
91-85297-60-7.

Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra forutsittningar for
polisarbete, 2005, ISBN 91-85299-43-X.

	Abstract
	Acknowledgments
	Introduction
	Introduction to Compilation and Code Generation for DSP
	Compilation Process
	Motivations
	Research Interest
	Contributions
	Origin of the Chapters
	Organization of the Thesis

	Introduction to Code Generation for Digital Signal Processors
	Motivations
	Main Tasks of Code Generation
	Instruction Selection
	Instruction Scheduling
	Register Allocation
	Partitioning

	Optimization Problems in Code Generation
	Code Generation Techniques

	Phase Ordering Problem
	Integrated Approaches
	DSP Challenges
	Need for Integrated Code Generation
	Retargetable Code Generation

	Prerequisites
	Notations
	Modeling the Target Processor
	Terminology
	IR-level scheduling
	Instruction selection
	Target-level scheduling

	Classes of Schedules
	Greedy Schedules
	Strongly Linearizable Schedules and In-order Compaction
	Weakly Linearizable Schedules
	Non-linearizable Schedules

	Advanced Code Obtained by Superoptimization
	Register allocation

	Integrated Optimal Code Generation Using Dynamic Programming
	Overview of our Approach
	Main Approach to Optimal Integrated Code Generation
	Interleaved Exhaustive Enumeration Algorithm
	Comparability of Target Schedules
	Comparability I
	Comparability II, Time Profiles
	Comparability III, Space Profiles

	Improvement of the Dynamic Programming Algorithms
	Structuring of the Solution Space
	Changed Order of Construction and Early Termination
	Putting the Pieces Together: Time-optimal Code Generation for Clustered VLIW Architectures
	Example
	Heuristic Pruning of the Solution Space
	Beyond the Basic Block Scope

	Implementation and Evaluation

	Energy Aware Code Generation
	Introduction to Energy Aware Code Generation
	Power Model
	Energy-optimal Integrated Code Generation
	Power Profiles
	Construction of the Solution Space
	Heuristics for Large Problem Instances
	Possible Extensions
	Related Work

	Exploiting DAG Symmetries
	Motivation
	Solution Space Reduction
	Exploiting the Partial-symmetry Property
	Instruction Equivalence
	Operator Equivalence
	Node Equivalence
	Improved Dynamic Programming Algorithm

	Implementation and Results

	Integer Linear Programming Formulation
	Introduction
	The ILP Formulation
	Notations
	Solution Variables
	Parameters to the ILP Model
	Instruction Selection
	Register Allocation
	Instruction Scheduling
	Resource Allocation
	Optimization Goal

	Experimental Results
	Target Architectures
	Experimental Setup
	Results

	xADML: An Architecture Specification Language
	Motivation
	Notations
	xADML: Language Specifications
	Hardware Resources
	Issue Width
	Registers
	Residences
	Resources

	Patterns
	Instruction Set
	One-to-one Mapping
	Pattern Mapping
	Shared Constructs of Instruction and Pattern Nodes
	Data Dependence Edges

	Transfer Instructions
	Formating Facilities
	Examples
	Specification of Semantically Equivalent Instructions
	Associating Pattern Operand Nodes with Residence Classes

	Other Architecture Description Languages

	Related Work
	Decoupled Approaches
	Optimal Solutions
	Heuristic Solutions

	Integrated Code Generation
	Heuristic Methods
	Optimal Methods

	Similar Solutions
	Aviv Framework
	Chess

	Possible Extensions
	Residence Classes
	xADML Extension
	Parallelization of the Dynamic Programming Algorithms

	Global Code Generation
	Software Pipelining
	DAG Characterization
	ILP Model Extensions
	Spilling

	Conclusions
	Least-cost Instruction Selection in DAGs is NP-complete
	AMPL Code of ILP Model
	References
	Index

