
Department of Science and Technology Institutionen för teknik och naturvetenskap
Linköpings Universitet Linköpings Universitet
SE-601 74 Norrköping, Sweden 601 74 Norrköping

Examensarbete
LITH-ITN-MT-EX--05/059--SE

Adaptive Music System for
DirectSound

Sebastian Aav

2005-12-01

LITH-ITN-MT-EX--05/059--SE

Adaptive Music System for
DirectSound

Examensarbete utfört i Medieteknik
vid Linköpings Tekniska Högskola, Campus

Norrköping

Sebastian Aav

Examinator Björn Gudmundsson

Norrköping 2005-12-01

Rapporttyp
Report category

 Examensarbete
 B-uppsats
 C-uppsats
 D-uppsats

 _ ________________

Språk
Language

 Svenska/Swedish
 Engelska/English

 _ ________________

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering ___________________________________

Nyckelord
Keyword

Datum
Date

URL för elektronisk version

Avdelning, Institution
Division, Department

Institutionen för teknik och naturvetenskap

Department of Science and Technology

2005-12-01

x

x

LITH-ITN-MT-EX--05/059--SE

Adaptive Music System for DirectSound

Sebastian Aav

With the intention of surveying the field of research in adaptive audio systems for interactive media, a
suggested audio system design for adaptive music control is described, and a prototype implementation
of key parts of the system is presented and evaluated.

Foregoing midi-triggered sound banks, the proposed design uses layered segmented audio files, defined
and controlled by XML-scripts. The results demonstrate an inclination of a flexible system, capable of
adequate adaptive behaviour of high quality sound.

The implemented system will serve as an extensive basis for future work contributing to the research of
adaptive behaviour to both music and sound effects for interactive media, and also as a preliminary
foray into the more experimental field of stand-alone non-linear music playback.

Adaptive Music, Adaptive Audio, DirectSound, DirectX

Upphovsrätt

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Sebastian Aav

Master Thesis Report in Media Technology
at Linköping Institute of Technology, University of Linköping - Campus Norrköping

Adaptive Music System for
DirectSound

Sebastian Aav

Norrköping 2005-12-07

sebaa241@student.liu.se

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se ii

Abstract
This thesis has been done at the Linköping Institute of Technology, University of
Linköping – Campus Norrköping, with the intention of surveying the field of research in
adaptive audio systems for interactive media. A suggested audio system design for adaptive
music control is described, and a prototype implementation of key parts of the system is
presented and evaluated.

Foregoing midi-triggered sound banks, the proposed design uses layered segmented audio
files, defined and controlled by XML-scripts. The results demonstrate an inclination of a
flexible system, capable of adequate adaptive behaviour of high quality sound.

The implemented system will serve as an extensive basis for future work contributing to
the research of adaptive behaviour to both music and sound effects for interactive media,
and also as a preliminary foray into the more experimental field of stand-alone non-linear
music playback.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se iii

Preface
This report is a part of the master thesis in Media Technology at the Linköping Institute of
Technology, University of Linköping – Campus Norrköping.

The prototype implementation has been done with Microsoft Visual C# 2005 Express
Edition Beta (.NET 2 Beta). The XML Serialization support that is part of the .NET 2
Beta Framework is used to parse the XML-scripts. Microsoft DirectX 9.0c SDK has been
used for DirectSound functionality.

Note: Throughout, references to ”He” is aimed at both ”He/She”. When referenced to computer games as
a target application for adaptive audio, other media are also targeted. Computer games are at the forefront
of adaptive audio, but that doesn’t deter the fact that adaptive audio can be used in a wide variety of
circumstances (art installations, non-linear music etc.)

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se iv

Contents

1 BACKGROUND .. 1

1.1 DIRECTMUSIC... 2
1.1.1 Pros ... 2
1.1.2 Cons .. 2

1.2 LINEAR AUDIO.. 3
1.3 COMPARISON .. 3
1.4 OTHER TECHNIQUES.. 4
1.5 NEXT GENERATION PLATFORMS... 4
1.6 GLOSSARY .. 4

2 PURPOSE... 6

3 SYSTEM DESIGN... 6

3.1 OVERVIEW .. 6
3.1.1 Audio Engine... 7
3.1.2 Scripts ... 7
3.1.3 Integration and exterior application connectivity .. 7
3.1.4 Low-Level Audio Player .. 7
3.1.5 Audio Authoring and Audition Tools ... 7

3.2 DESIGN CONCEPTS .. 7
3.2.1 Intended user ... 7
3.2.2 Groups and Cues .. 8
3.2.3 Start- and Transition group ... 8
3.2.4 Group Transitions .. 10
3.2.5 Cue variation with Patterns and Tracks... 11
3.2.6 End Cues.. 11
3.2.7 Non-standard randomization.. 12

3.3 SCRIPTING... 12
3.3.1 Resources ... 12
3.3.2 Cues... 13
3.3.3 Transitions ... 15
3.3.4 Groups.. 15
3.3.5 Group Transitions .. 16
3.3.6 Script inter-connectivity ... 16

3.4 AUDIO ENGINE DATA-LOOP .. 16
3.5 TOOLS... 17

3.5.1 Authoring Tool ... 17
3.5.2 Audition Tool .. 17

4 PROTOTYPE IMPLEMENTATION .. 19

4.1 CURRENTLY IMPLEMENTED SYSTEM OVERVIEW 19
4.2 LIMITATIONS... 19

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se v

4.2.1 Panning... 19
4.2.2 Real time effects .. 20
4.2.3 Surround audio file support .. 20
4.2.4 Streaming buffers .. 20
4.2.5 Compressed audio files .. 20
4.2.6 Track-based variation of patterns... 20
4.2.7 Intensity Level transitions.. 20

5 RESULTS AND EVALUATION ... 21

5.1 BUGS AND ISSUES.. 21
5.2 FUTURE WORK .. 21

5.2.1 Stingers ... 21
5.2.2 Extended cue playback techniques... 22
5.2.3 Extended transition techniques and cue-to-cue beat synchronization...... 22
5.2.4 Surround support.. 22
5.2.5 Real-time effects.. 22
5.2.6 Non-linear music format ... 22
5.2.7 Application updates from Audio Engine .. 23

6 REFERENCES .. 24

APPENDICES ... 25

APPENDIX A – AUDIO AUTHORING TOOL GUI PROTOTYPE.................................. 25
APPENDIX B – TRANSITION MATRIX... 26
APPENDIX C - TRANSITION MATRIX SCRIPT (TRANSITIONS.XML) 27

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 1

1 Background
Adaptive Music (also known by the questionable term Interactive Music) is today primarily
used in computer games. The difference between computer games and movies is that in a
game - the events are under the players influence, and can be different each time, while a
movie doesn’t change no matter how many times it is played.

Music in games can take many forms and scales, and it is up to the developers as well as
the composer to establish how and where the music should adapt to the events of the
game. The music can respond to simple scenarios such as changing entire music cues
when the player character confronts an enemy, or more complicated ones such as subtly
introducing or changing instrumentation when the player character runs or walks through
changing environments. The complexity of situations requires a music system that can
perform an ample number of tasks, while providing a comprehensive design for the
composer to work with.

As the game is changing or adapting to the players decisions and actions, so does the
music. This is important knowledge to the composer. Instead of creating a linear piece of
music for any given situation, the composer creates several different cues of music and
then must figure out how to seamlessly transition musically between them. This is hard,
and few people have done it well. The notion of composing music that can play
indefinitely in one state and then transition seamlessly to another is far removed from
traditional linear composing.

Pioneering work in game audio was done in the 90’s when LucasArts graphical adventure
games used a proprietary system for adaptive music control. The Interactive MUsic Streaming
Engine or iMuse, used General MIDI (and later streamed audio files) – and was a way to
manage all the different music cues and ascertain a relation between cues via a graphical
layout as well as specifying transitions. iMuse was developed specifically for graphical
adventure games, where a character roam through locations that took up a whole screen at
a time – which meant that the game as well as the music was designed like a flowchart.
iMuse was used in about eight LucasArts titles and was at the forefront of adaptive
soundtracks of its time. (iMuse Island, 2005-11-14)

However the approach to adaptive control of the music in games today is often
implemented poorly if at all and this does not have to be a purely technological problem;
since the actual composing of an adaptive soundtrack is very hard to do successfully so
many game developers does not even consider adaptive audio control worthwhile to
implement. Thus, a modern general idea of non-proprietary tools for the sound
designer/composer is yet to be established, and the first steps towards such are marred by
difficulties. The main problem from the beginning days of the industry remains the prime
problem to date; how to make the music not sound repetitive. But there is also the
problem of how to create tools which a composer can use to design the music for adaptive
control.

Recently, two important techniques have handled music in games: DirectMusic (using
MIDI+DLS) and Linear Audio.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 2

1.1 DirectMusic
The most popular and accessible platform available today is the PC/XBOX that uses the
Microsoft DirectX API, and thus the audio part of DirectX – namely DirectSound and
DirectMusic – is the most used today. There are of course other platforms and API´s and
sound systems available – such as Miles Sound System (which is one of the oldest and
quite popular) and OpenAL (a cross-platform audio solution). While OpenAL (OpenAL,
2005-11-12) is free, Miles Sound System (The Miles Sound System, 2005-11-20) has to be
licensed for use. OpenAL is more focused upon 3D-only sound rendering – which makes
its use in terms of interactive music fairly limited.

DLS, or DownLoadable Sounds, are the primary reason for the success of DirectMusic,
and the term MIDI+DLS is a fairly straightforward idea: Unlike the sound bank system
used with General MIDI (originally the sound bank was a very small set of instruments on
the sound card ROM), the DLS instruments are located on the computers hard drive –
making it possible to use higher quality and, more importantly, custom made samples for
the MIDI to trigger.

Since DirectX is a popular API, many game producers build their own audio systems
and/or adaptive music systems upon its low-level DirectSound. Of course, there is the
possibility of using the built in functions of DirectMusic, however a broad audience of
users have found it extremely hard to work with (especially its authoring tool DirectMusic
Producer) – and it doesn’t always suit the needs of the music of their specific game.

However, despite its inherent complexity, DirectMusic can be considered as the first and
important attempt of an adaptive music standard tool using the technique of MIDI+DLS.
(DirectX 9 Audio Exposed, 2004)

1.1.1 Pros

• Broad interactive possibilities. DirectMusic is very feature rich. You can do amazing
things with interactivity in games if you have the tenacity to figure it all out.

• Extensive possibilities for variable music. With a combination of variations, scripting,
and chord maps, you can produce scores that surprise you even when you have heard
the piece countless times and thought you had heard all the possible variations.

• DirectMusic content is flexible and can be independent of the game engine, allowing
you to tweak many things without having to rebuild the game.

(Game Audio Pro, 2004-08-09)

1.1.2 Cons

• DirectMusic development has stopped at Microsoft. This means DirectMusic is
quickly becoming dated, and things that should have been fixed or improved are still
broken, badly implemented, or counter intuitive.

• DirectMusic is not easy to learn. There are many concepts that can be difficult to
grasp.

• DLS instruments are hard to make sound good. This is because all the DLS samples
must be loaded into RAM and are limited to whatever amount of RAM/CPU the
development team decides to use for music. If you try to counter this by using a lot of
effects you are going to use too much CPU power. It is very difficult to match

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 3

composers using state of the art samplers or live orchestras with only 5-12 MB of
DLS.

• DLS is not a popular format. To acquire good sounds, a lot of time is probably going
to have to be spent creating all the instruments from scratch or converting from other
sample libraries.

• DLS licensing/encryption is a great difficulty. Many major sample companies do not
want their samples in DLS collections to ship in a game. If you can work something
out with the sample companies, making the content secure is a time consuming task
for the programmers.

• Wave tracks are buggy and badly implemented. Lately DirectMusic composers have
switched to using wave tracks so they can avoid DLS issues and get higher quality
sound. But there is much to improve here.

• The authoring tool DirectMusic Producer is highly counter-intuitive and difficult to
comprehend.

(Game Audio Pro, 2004-08-09)

1.2 Linear Audio
The simplest possible way of presenting music in a game is actually what is often most
resorted to today. Simply playing CD- or MP3 audio tracks and changing to another track
of music when encountering an action sequence. This change is often a jarring experience
since there is no inherent system for transitional cues to smooth out the transitions
between two music cues. It’s mostly like flipping through the tracks on a CD player. (Game
Audio Programming, 2003)

The reason for it being a popular choice for music presentation today is that linear audio is
of high sound quality – there are no restrictions to available amount of memory such as
when using DLS-instruments.

1.3 Comparison
Linear audio gives the highest possible quality of sound – but with apparent limited
adaptability/variation. DirectMusic (with its MIDI+DLS) gives a substantial control of the
music – even on note by note level – however it can lack in sound quality.

Reviewing the different techniques and tools for creating and playing back interactive
music in games, the only real “off the shelf” tool publicly available would be DirectMusic.
But its drawbacks are beginning to make composers and sound designers to steer away
from it. This leads to the question if something can be done in the field of interactive
music; music that has the degree of interactivity found in MIDI+DLS, and the sound
quality on the same level of linear audio.

One solution is a sort of combination of the concepts of MIDI+DLS and linear audio. As
an example, a parallel is drawn to the workings of a symphony orchestra:

The hardest sounds to emulate on computers are those of acoustical instruments or
ensembles, for example a symphony orchestra. A high degree of realism and real sound
quality of the orchestra can be achieved by recording the orchestra playing chunks of
music – and then transitioning from chunk to chunk. This is a simple, yet useful way of
handling the music – however it can be improved upon. Break down the music of a

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 4

symphony orchestra and one quickly ascertains the building blocks of the orchestra – the
different instrument groups or sections.

The symphony orchestra normally consists of strings, woodwinds, brass and percussion -
each of these is a section of the orchestra (these sections can of course be broken down in
more detailed groupings if one would like; violins, violas, cellos, double basses, trombones,
trumpets, french horns, etc). Instead of having a single audio chunk playing and then
transition to the next, each section of the orchestra is playing in separate audio channels.
The reason for this is variation; consider that the music is embedded in a single channel,
and the whole orchestra performs the music – the amount of variation is none, the next
time the music plays it is exactly the same. However, if we separate the orchestra into four
sections; and record each section playing the same music as before – the possibility of
playing back these sections in any combinations arise. It is still the same amount of music
material, but since it is broken up into five sections – the increased number of musical
combinations is substantial. The opportunity to create enough variation to keep the
material fresh is now prevalent, which is of help against repetitiveness.

In the case of a symphony orchestra broken up into our five sections – the maximum
polyphony of five channels (ten if stereo tracks are used) is playing at the same time.
Compare this to a strictly MIDI+DLS approach (with one or two channels playing one note
at any time) where the polyphony must be tightly restricted to not overwhelm the CPU.
The drawback is that while MIDI+DLS offer an almost unlimited adaptiveness to the
game (on note per note level), the approach of four sections playing has not the same kind
of immediate adaptiveness. However the variations of these five sections are adequate for
a skilled composer to render the music varied.

1.4 Other techniques
The only off-the-shelf product that exists today in terms of game audio is DirectMusic and
DirectMusic Producer. However game developer studios almost always use proprietary
software and tools made specific for their uses. And until the next attempt at a game audio
standardization is developed by the game industry – the situation today is a substantial lack
of competitive game audio management techniques. This thesis project intends to
contribute to that particular field of research.

1.5 Next Generation Platforms
As of this writing, Microsoft has released a Beta of XACT – Cross-Platform Audio Creation
Tool which is an audio authoring tool aimed at the XBOX360 and PC platforms. This is
what is most likely to replace Microsoft’s previous DirectMusic; however a complete
overview of the capabilities of the XACT is currently unknown to the author of this thesis
report. (MSDN Beta, 2005-11-20)

1.6 Glossary
Cue Music accompanying a scene, environment or setting. In the

audio engine, a cue is music for a specific intensity level.
Transition cue In the audio engine, a transition cue is a cue specifically for

transition music.
MIDI Musical Instrument Digital Interface. Commonly used as an

interface that enables a musical instrument, such as an electronic
keyboard, to communicate with sequencer and/or samplers.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 5

Metronome A device designed to mark exact time by a regularly repeated
tick. In the audio engine, a metronome beat is for instance used
to correctly synchronize segments to the tempo.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 6

2 Purpose
The purpose of this thesis project is to propose an adaptive music system for interactive
applications. This report will describe the workings of the design requirements of the
system, as well as describe the implemented prototype application that is intended as an
assessment of the method of the proposed design.

Foregoing midi-triggered sound banks, the audio engine uses layered segmented audio
files, defined and controlled by XML-scripts. The system attains a level of flexible and
adequate adaptive behaviour using a responsive transition system and high quality audio
playback.

In regards of this report; firstly the design of the proposed system will be described.
Secondly the actual implemented prototype application will be discussed and evaluated.
Finally, assessments of future work will be made.

3 System Design
This is a design description of the audio system.

3.1 Overview
The adaptive music system consists of several parts: scripts, audio engine, audio player and
API connectivity for external application.

Fig 1. System overview.

Furthermore, two GUI applications provide scripting functionality and audition playback
capabilities.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 7

3.1.1 Audio Engine
In the system, the audio engine, programmed in Visual C#, is the centrepiece. It contains
the functionalities for parsing the XML scripts and decides which audio files to play
according to these scripts and events from the external application (such as a game) using
the system. The Audio Engine receives events from the game, as well as parses the scripts
and issues proper calls to the audio player API.

3.1.2 Scripts
The audio engine is driven by the XML-scripts, which contains all rules, definitions and
resources for all the music in the game. This design is data-driven, meaning that audio
resources and rules are never hard-coded into the audio engine; they are completely
defined by separate data. This enables the composer to change the behaviour of the music
and also replace audio files without having to rebuild the whole game application.

3.1.3 Integration and exterior application connectivity
While the audio engine uses C#, the application (i.e. the game) itself might be written in a
different language, commonly C++. Thus calls to the audio engine are handled through a
wrapper API which provides proper connectivity.

3.1.4 Low-Level Audio Player
The audio engine issues calls through an API to the correct low-level audio provider used
(i.e. DirectSound). Through this separation, an API to another audio playback (for
instance OpenAL) can eventually be implemented without having to rebuild the audio
engine.

Volume for mono/stereo audio channels can be controlled in real-time. The system
supports initial panning of each audio channel.

3.1.5 Audio Authoring and Audition Tools
It would be possible to script everything manually with an XML-editor; however this is
somewhat daunting and prone to human errors. Therefore, a tool provides the user (sound
designer/composer) with the ability to automatically assemble the scripts through the
GUI.

Testing the scripting is made through an additional audition tool which simulates the
events from the game engine with a GUI – enabling the audio designer to try out if their
scripted transitions, cues etc. are working correctly without having to run it through the
game engine.

3.2 Design concepts

3.2.1 Intended user
The design concepts of the system are of importance not only for its actual
implementation structurally, but also to the intended user of the system. Whether or not
the composer or sound designer has programmer-knowledge – it is important that the
tools and concepts are reasonable and usable. However, to successfully compose an
adaptive score, even with the help of the tools and the design notion of the script logics –
is hard from a musical point of view. A certain amount of skill is required to compose an
adaptive music score, and that is a skill that is quite different from linear composing.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 8

3.2.2 Groups and Cues
Since a computer game features all kinds of music for numerous occasions, the music that
underscores an environment in one part of the game might be different than in another
part of the game. As the player moves through game environments, the music follows.
Perhaps the composer wants the music to change when the player enters a particular
room. There are numerous of situations of where the music can change. The two most
important concepts in the audio system that is used when the music needs to change are
Groups and Intensity Levels.

A group is a set of cues (each with corresponding intensity level) that is used as a compilation
of music for a particular scene or environment or state in the game. Different Intensity
Levels are used in groups where the music still belongs to the group but have different
musical intensity.

As a hypothetical example, adaptive music shall be added to the Google Earth system
(Google Earth, 2005-11-13). Google Earth is an application which lets the user zoom in on
earth and view geographical locations of interest by the help of combined satellite imagery
and maps. Supposed adaptive music functionality would for example be in the form of
appropriate music for countries and locations – as well as zoom-dependant intensity shifts.
So music for a certain part of Asia has specific music which has different intensities
depending on how far in the user has zoomed. For this case, each geographical-based
music has specific groups (such as Asia, Africa, Ireland etc.) and consists of, for instance
two or three intensity levels for the zoom-levels – first intensity level for when zoomed
out and then higher levels for when zoomed in.

Suppose the user starts out with a zoomed out view of Ireland. The composer wants a
change in intensity of the music when the user zooms in. So he creates two cues in the
group Ireland called Ireland1 and Ireland2. Each of these cues are designated an intensity
level – Ireland1 has intensity level 1 and Ireland2 intensity level 2.

Fig 2. A group named “Ireland” with two cues.

The composer can for instance use fairly sparse and ambient music of low intensity
playing in Ireland1 while music for Ireland2 is much more up tempo.

3.2.3 Start- and Transition group
There are two reserved groups that are available: startGroup and transitionsGroup. A start
group is the first group that the audio player plays upon activation of the music engine.
The start group consists of a cue that only plays once, and then transitions to a designated
cue of another group. So to continue our example – the user hypothetically always finds
himself at a zoomed out view over Ireland. So the start group with a startCue is added and

Ireland

• Ireland2 [int.Lev: 2]
• Ireland1 [int.Lev: 1]

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 9

at the end of startCue the composer sets it to transition directly to Ireland1 in the group
Ireland (see fig 3).

The startCue is part of its own group but uses a transition event in its pattern to change cue
(and implicitly - its group) to the stated cue. Therefore it does not use a group transition
matrix (see 3.2.4 Group Transitions), it transitions to the new cue without additional
transition cues.

Fig 3. Transition from start cue.

A transition between Ireland1 and Ireland2 is needed, so as the user zooms in on Ireland –
the music will play a transition cue that the composer can use to smooth the transition to the
target cue. All transition cues are located in the reserved group transitionsGroup.

Fig 4. The transition group contains all transition cues.

So when the user zooms in, the application triggers an event that the music should
increase its intensity level. With the help of the groups own transition matrix (see Appendix
B - Transition Matrix, and Appendix C – Transition Matrix Script), the audio engine locates the
correct transition cue in consideration of its current group and target intensity level. In this
example, the Ireland1to2 plays. Transition cues do not loop, and will play the target cue
immediately after it has finished - so after Ireland1to2 has played once, it immediately starts
playing Ireland2.

Ireland

• Ireland2 [int.Lev: 2]
• Ireland1 [int.Lev: 1]

startGroup
• startCue

transitionGroup
• Ireland1to2

Ireland

• Ireland2 [int.Lev: 2]
• Ireland1 [int.Lev: 1]

startGroup
• startCue

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 10

Ireland1

Ireland2

Ireland1

-

Ireland1to2

T
ra

n
si

ti
on

 M
at

ri
x

Ireland2

Ireland2to1

-

Fig 5. The Transition matrix for Ireland (see fig 4) with an added
transition from Ireland2 to Ireland1. When the intensity level is raised, the
audio engine uses this matrix to find which transition cue corresponds to a
transition from start- and target cue.

3.2.4 Group Transitions
Any number of groups can be added. For example, a group Africa can be added which has
music for the continent of Africa. Instead of ending Ireland with an end cue and starting
the music engine over again but with Africa instead – a group transition can be used in its
place. A group transition is just like any other transition cue and is also located in the
transitionsGroup. However the group transition cue is set to transition to a cue in another
group.

Fig 6. Transition between two cues in different groups goes via a
corresponding transition cue in transitionsGroup.

A group transition cue can also be designated to transition to a cue which has a different
intensity level. For example: Ireland2toAfrica1 is a group transition from Ireland2 to Africa1.
The concept of group transitions enables the music to theoretically never actually stop
playing in a game – the music can just keep transitioning to new groups.

Ireland

• Ireland2 [int.Lev: 2]
• Ireland1 [int.Lev: 1]

startGroup
• startCue

transitionsGroup
• Ireland2to1
• Ireland1to2

• Ireland2toAfrica2

Africa
• Africa2 [int.Lev: 2]
• Africa1 [int.Lev: 1]

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 11

3.2.5 Cue variation with Patterns and Tracks
Cues contain information such as intensity level, tempo, length, patterns, tracks and more.
Variations of a cue are achieved by the concept of patterns, tracks and tags. When a cue
plays, a pattern is randomly chosen using non-standard randomizer (see 3.2.7 Non-standard
randomization). The principle of track-based variations is established with Tracks and Tags.
The principle can be best described as “patterns within patterns”. The basic idea is that
each track holds a specific set of segments, each with a designated Tag Id (see 3.3.2 Cues),
which are related. Any number of these sets of segments can exist, but in each set – only
one tagId (with corresponding segments) can be played.

For example, the composer has designated four tracks – brass, strings, woodwinds and
percussion. In the brass track there exists a number of segments – each of these has a
designated tagId (note that several segments can lay under one tag, giving them all an
identical tagId). During playback, the audio engine chooses a pattern and then randomly
selects one tag to play for each track.
This could mean that the following simultaneous playback occurs:
Track: Brass Play Tag: 1
Track: Strings Play Tag: 5
Track: Woodwinds Play Tag: 3
Track: Percussion Play Tag: 2

The resulting playback is a pattern that has a variation to itself – without this feature; every
pattern would play back the same way every time.

The concept of tracks is actually an example of how composers often construct their
music as each instrumental groupings of, for example, an orchestra can be given a specific
part. Of course the tracks designation is up to the composer and any other examples of
tracks are possible:

Percussion, Bass, Guitars, Backing Vocals and Lead Vocals
Or
Synthesizers and Drums
Or
Background, Middleground and Foreground
Etc.

The composer can also forego track-based variation if he for some reason want the music
to play back the same way each time the pattern plays – this will then be scripted as just
one single track with only one tag.

3.2.6 End Cues
Another type of cue is the End Cue. Any cue in a group can have a corresponding (shared
intensity level) end cue which plays if the game engine triggers the audio engine to end the
music. The end cue is played once and then the music engine stops the metronome beat,
discontinuing the audio playback.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 12

Fig 7. An added end cue in “Ireland”. Note that it shares intensity level
with its corresponding cue.

3.2.7 Non-standard randomization
Ordinary randomization when selecting patterns (as well as selecting tags; see 3.3.2 Cues)
would sometimes result in the same pattern being played more than once in sequence. To
remedy this, the selection procedure uses a non-standard randomization.

This means that the audio engine keeps track of which patterns have already been played,
resulting in that before a pattern is repeated all patterns in a cue must have played once.
(Audio For Games – Planning, Process, and Production, 2005)

3.3 Scripting
Having established the concept of the music system, the scripts describe these structures
of groups, cues, patterns and transitions etc.

A number of XML-files are used to contain the scripts: resources.xml, cues.xml, transitions.xml,
groups.xml, grouptransitions.xml

3.3.1 Resources
The resources script is a listing of all the audio file resources used in the cues. Audio files
are called segments in the cues. The resource.xml can contain any number of segments, and
each of these descriptions holds information about filename, tempo, initial volume setting
etc. Also of importance are the properties of the file itself, such as what type of
compression is used and at what sample rate and bit rate etc, which are used by the audio
engine to set up the streaming buffers correctly. The segment is referred with a segmentId,
which is used in the pattern events of the cues in cues.xml

<Resources>

<Segments>
 <Segment>

 <segmentId>drums00</segmentId>
 <filename>drums00.wav</filename>
 <timesignature>4/4</timesignature>
 <segmentTempo>84</segmentTempo>
 <segmentLength>1</segmentLength>
 <volume>-6.0</volume>

Ireland

• Ireland2 [int.Lev: 2]
• Ireland1 [int.Lev: 1]

• endCueIreland2 [int.Lev: 2]

startGroup
• startCue

transitionGroup
• Ireland1to2

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 13

 <pan>0</pan>
 <type>wav</type>
 <bitrate>16</bitrate>
 <samplerate>44100</samplerate>
 <channels>2</channels>

 </Segment>
 …
</Segments>

</Resources>
Fig 8 Part of the resources.xml script, showing the definition of a segment.

The definition of a segment includes:

segmentId A referenced string Id for the segment.
filename Path to the audio file.
timesignature Describes which time signature the music is in.
segmentTempo Tempo of the segment.
segmentLength This describes how long the segment is in measures.
volume Volume attenuation in dB (decibel).
pan Panning of the segment (-100 to +100 ; 0 being in center and -

100 and +100 being far left and right respectively).
type If and what codec is used (MP3, Ogg-Vorbis, uncompressed

WAV etc.)
bitrate File bit rate.
samplerate File sample rate in kHz.
channels Number of channels. (Mono, Stereo)

3.3.2 Cues
The cues.xml is the script that designates how the patterns play, which segments should be
triggered when etc. Properties such as cueId, intensity level and tempo etc. are designated.
Secondly, the play list is defined: it consists of any number of patterns, each referred with an
Id. When a cue plays, a pattern is randomly chosen and is played back. Each pattern can
have two types of events, play events and transition events. Play events is straight-forward: it
refers to a segmentId that shall play at a specific beat in the cue. Transition events refer to
another cue which shall start playing the beat after the referred beat. Transition events are
used in transition-cues as well as the start cue.

<Cues>

<Cue>
<cueId>Ireland1</cueId>
<intensityLevel>1</intensityLevel>
<tempo>80</tempo>
<timesignature>4</timesignature>
<cueLength>1</cueLength>
<transitiongrid>2</transitiongrid>
<playlist>

<pattern>
 <patternId>1</patternId>

<track>
 <trackId>”RythmSection”</trackId>
 <tag>
 <tagId>1</tagId>

<play>

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 14

<playSegmentId>bodhran00</playSegmentId>
 <playatBeatNumber>1</playatBeatNumber>

</play>
<play>

<playSegmentId>cymbals0</playSegmentId>
 <playatBeatNumber>1</playatBeatNumber>

</play>
<play>

<playSegmentId>claps0</playSegmentId>
 <playatBeatNumber>1</playatBeatNumber>

</play>
</tag>
...

 </track>
...

 </pattern>
 </playlist>
 </Cue>
 ...

</Cues>
Fig 9 Part of the cues.xml script, showing the definition of a single cue.

The definition of a cue includes:

cueId A referenced string Id for the cue.
intensityLevel The designated intensity level of the cue.
tempo The tempo of the cue.
timesignature number of beats per measure in the cue.
cueLength Cue length in measures.
transitionGrid Beat division for transitions. Ex: “1” designates that the cue can

transition on every beat. A “4” designates that the cue can only transition
on every fourth beat etc.

patternId A referenced Id for the pattern.
trackId The track Id.
tagId The tag Id for a group of segments.

Script commands for describing the pattern events:
play Play a segment (referenced by its segment Id) at a certain beat

number.
…

<play>
<playSegmentId>guitar0</playSegmentId>

 <playatBeatNumber>1</playatBeatNumber>
</play>

 …

transition Transition to a cue (referenced by its cue Id) at the beat

following the calculateTransitionAtBeatNumber.

Note that transition events are located in a specific track with a reserved name
“transitionTrack”, which always looks like this:

...
<track>

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 15

<trackId>transitionTrack</trackId>
 <tag>
 <tagId>1</tagId>

<transition>
<playCueId>cueB</playCueId>
<calculateTransitionAtBeatNumber>6</calculateTransitionAtBeatNumber>

</transition>
</tag>

</track>
...

Fig 10. Part of the cues.xml script, showing the definition of the reserved transition track.

3.3.3 Transitions
The intra-transitions in a group are located in transitions.xml. This is the aforementioned
transition matrix depicted in XML (See Appendix B - Transition Matrix, and Appendix C –
Transition Matrix Script).

3.3.4 Groups
The Groups script (groups.xml) is a listing of all the groups as well as all the corresponding
cues as well as the number of intensity levels contained in a group. It is used for the audio
engine to keep track of which cue belongs to which group. Reserved groups for use for
the starting cue as well as the transition cues are labelled startGroup and transitionsGroup
respectively. Of note is that the reserved groups (startGroup and transitionsGroup) do not use
intensity levels.

<groups>

<group>
<groupId>Ireland</groupId>
<intensityLevels>2</intensityLevels>
<cues>

<cue>
 <cueId>Ireland1</cueId>
</cue>
<cue>
 <cueId>Ireland2</cueId>
</cue>
<cue>
 <cueId>endCueIreland1</cueId>
</cue>
<cue>
 <cueId>endCueIreland2</cueId>
</cue>

 </cues>
 </group>
...

</groups>
Fig 11. Part of the groups.xml script, showing the definition of group.

The definition of a group has two important designations:

groupId A string reference to the group Id.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 16

intensityLevels The number of intensity levels in this group (start group and
transition groups do not use intensity levels).

3.3.5 Group Transitions
The group transitions script (groupTransitions.xml) is constructed in the exact same way as
the transition matrix for intra group transitions (See Appendix B – Transition Matrix), but
where the initial and target states are different groups respectively.

<GroupTransitionMatrix>
<groupTransitionID>IrelandtoAfrica</groupTransitionID>

<!-- GroupId is the Group to which this transitionmatrix
belongs-->
<start_groupId>Ireland</start_groupId>
<target_groupId>Africa</target_groupId>
…
<!—Group Transition Matrix-->

…
</GroupTransitionMatrix>

Fig 12. Part of the grouptransitions.xml script.

groupTransitionID A string reference to the group transition matrix.
start_groupId The Id of the current group.
target_groupId The Id of the target group that will be transitioned to (via the

transition cue).

3.3.6 Script inter-connectivity
All the scripts are inter-connected, that is for example – references to segmentId (in
resources.xml) are made in cues.xml. This inter-connectivity is what renders the scripting
somewhat cumbersome if done by hand: common human errors for example such as
simple misspellings of referenced keywords in a transition matrix will cause the audio
engine to lose sync as it tries to operate with cueId’s that do not match.

3.4 Audio Engine data-loop
The audio engine issues data calls and trigger pattern events on every beat. On start-up,
the audio engine performs these tasks:

A. The audio engine parses all of the scripts and builds corresponding data
structures.

B. The reserved startGroup is selected as start group, and the corresponding
startCue. The metronome beat is paused. Run-time information from the cue
(tempo, intensity level) is selected.

C. When a “Start Music”-event from an external application is received, the
metronome is started at correct tempo. A pattern is selected (through non-
standard randomization) and the subsequent pattern events are triggered as the
metronome progresses.

The following constitutes the real-time data-loop of the audio engine:

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 17

1. Each beat, the audio engine updates its state and notifies the external
application for example whether or not the audio engine is locked.

2.
a. If no transition event is triggered from the pattern event list, a new

pattern is selected (to play at the next beat) at the last beat of the current
pattern.

b. If a transition event is triggered from the pattern event list, the
corresponding cue is selected and plays at next beat.

3. Intensity level change / Group change events issued by external application
immediately triggers the audio engine to select a transition cue via a corresponding
transition matrix.

4. If the currently playing cue is a transition cue (residing in the group
transitionGroup), start cue or end cue the audio engine locks and cannot receive
external events. These events will instead be queued and trigger the audio engine
when it is unlocked.

5. If an “End Music”-event is triggered from an external application; the audio
engine selects the cue in the current group, which has a shared intensity level as
the currently playing cue – and transitions on the next beat. At the last beat of the
end cue, the metronome is stopped.

3.5 Tools

3.5.1 Authoring Tool
As stated before; if scripting by hand, the probability of human error is substantial. These
scripts can be automatically generated by the authoring tool.

The audio authoring tool is for composers/sound designers aimed at providing music for
the game, and serve as a content provider and constructor of scripts and events. While it is
completely possible to manually script the complete musical behaviour, a tool is pivotal to
simplify and automatically write the scripts. The authoring tool provides a way of setting
transition points, transition matrices, transition cue logics, group supervision and
management of audio file resources.
See Appendix A for Authoring Tool GUI prototype.

3.5.2 Audition Tool
The audition tool is of help to the composer/sound designer when testing the music and
the scripts with the audio engine, without having the game engine triggering events. The
same events and group listings that are available to the game engine are available in the
authoring tool.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 18

Fig 13. The Implemented Prototype Audition Tool GUI. The highlighted
blue row shows the current group.

From this GUI, events can be sent to the audio engine:

Start Music Starts the metronome beat, and starts playing

startCue in startGroup.
End Music Transitions to the current playing cue’s

corresponding end cue (if existing).
Increase Intensity Level Increases the intensity level by one level.
Decrease Intensity Level Decreases the intensity level by one level.

Group changes are done by clicking on the target group in the data grid. The groups are
color-coded whereas only orange-colored groups are possible to transition to (have a
corresponding group transition matrix) and non-colored groups are not. Dark grey groups
are reserved for the startGroup and transitionsGroup and cannot be selected.

The data grid also presents information of relevancy such as groupId, intensity levels (currently
playing intensity level, and also the total number of intensity levels), currently play cue as
well as its tempo, pattern information and length.

During playback, information is updated per beat, meaning that all information is updated
from the metronome notification from the audio engine. Updates to the audio engine are
also issued through user input (changing groups etc) – which simulates updates from the
game engine to the audio engine.

Certain states of the audio engine are also depicted to the user – for example if the current
intensity level is the highest possible in a certain group, it is not possible to raise the
intensity level further and feedback of this is presented as disabled buttons.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 19

4 Prototype Implementation
The prototype implementation consists of the audio engine with XML parser as well as an
auditioning tool. At the writing of this report, an API for external connectivity with game
engine, as well as the authoring tool - is not implemented.

The prototype implementation has been done with Microsoft Visual C# 2005 Express
Edition Beta. The XML Serialization support that is part of the .NET Framework is used
to parse the XML-scripts. Microsoft DirectX 9.0c SDK has been used for use of
DirectSound functionality. (MSDN DirectX, 2005-11-20)

4.1 Currently Implemented System Overview

Fig 14. The Currently Implemented Prototype System

4.2 Limitations

• Panning
• Real-time effects
• Surround audio file support
• Streaming buffers
• Compressed audio files
• Track-based variation of patterns
• Intensity Level transitions

4.2.1 Panning
No panning settings are currently implemented, though supported in the scripts. Panning
of audio is thoroughly supported in DirectSound and would be simple to implement.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 20

4.2.2 Real time effects
Each wave file is recommended to be recorded with a reverb tail end. Support for
additional reverb, chorus, phasing etc. effect controllers are currently not supported. These
types of effects are however already supported in DirectSound itself and a proper
implementation of effect controllers in the audio engine would therefore be fairly
straightforward.

4.2.3 Surround audio file support
The system supports mono and stereo tracks and outputs. Multi channel (surround) audio
management is currently not supported. Also this feature has support in DirectSound,
which leads to a feasible implementation.

4.2.4 Streaming buffers
The current implementation has no support for streaming buffers, but uses static buffers
instead. To be viable as a useable application with a game engine, the audio engine must
use streaming data buffers – however as a prototype, the functionality of the script based
logic can still be thoroughly examined with the current use of static buffers. DirectSound
supports streaming sound buffers and proper implementation would, if not
straightforward, be not entirely difficult.

4.2.5 Compressed audio files
The audio engine does not support compressed audio files, such as Ogg Vorbis (Ogg
Vorbis Audio Codec, 2005-11-12) etc. While the functionalities of the system can be
demonstrated with uncompressed audio (WAV-file) – compressed audio files are a
necessity if the system is to be used in conjunction with a game engine. Implementing a
third-party audio compression algorithm could require ample development time.

4.2.6 Track-based variation of patterns
Current script support of track-based variations of patterns is incomplete. The segments in
a pattern can only be designated a single track and has no tag id and as such, the patterns
themselves play in the same manner every time they are triggered. Proper implementation
of this feature is undemanding and feasible.
See - 3.2.5 Variation with Patterns and Tracks, and 3.3.2 Cues.

4.2.7 Intensity Level transitions
The intensity levels can only transition incrementally; larger leaps - i.e. raising the intensity
level by more than one level - are currently unsupported in the audio engine however
supported in the scripting. This feature of the audio engine would also be reasonably
effortless to implement.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 21

5 Results and Evaluation
The prototype implementation is an ample inclination of the workability of the adaptive
audio system. While providing a framework for the composer, the relative simplicity of the
script logics offers a powerful approach to adaptive audio for interactive media.

This type of adaptive audio system can be used in a variety of forms, adding adaptive
behaviour to both music and sound effects for interactive media, but also as a basis to the
more experimental field of non-linear playback.

5.1 Bugs and issues

• If a group transition matrix exists for two cues, but not all the intensity levels have a
set target cue (i.e. the composer wishes a group transition to not take place specifically
on the third intensity level of a particular group), the audio engine will lose sync as a
group transition is deemed viable if a group transition matrix exists. A solution to this
would be to have the audio engine check if the target cue is viable in the group
transition matrix.

• When all patterns in a cue have played once, the audio engine refreshes its pattern
history but does not keep track of what patterns had been playing prior to refreshing.
This results in the possibility that the last pattern played before refreshing, and the
first pattern to play after refreshing will be the same.

• The audition tool uses a Windows form data grid to display the group listings;
however Windows has a substantial CPU overhead when updating data grids (15-16
ms per update). The result is a slight latency of the audio engine since the data grid is
updated after every pattern change. This latency would not be present if the audio
engine would be used in conjunction with a game engine. A solution would be to
avoid the use of data grids altogether, and have another way of displaying the group
information.

• A rare issue is the systems failure to keep track of segments that should fade-out. This
has to do with an issue with synchronization of certain data structures using C#.

• Given that implementation has been done in Microsoft Visual Studio Express Edition
2005 Beta and Microsoft .NET 2 Framework Beta, performance can be marred by
bugs that are due to issues with Beta software.

5.2 Future work
In addition to the stated system design, a number of functions are currently planned for
later implementation.

5.2.1 Stingers
A stinger is a one-shot sound or musical “sound effect” which can be triggered in
particular circumstances. They are often a loud and sudden crash - or “sting”, hence the
name.
Ex: If the composer wants to accentuate something in a game which happens once, but
does not want to alter the intensity level – a stinger can be used instead. The game engine
thus sends a triggered event to the audio engine which immediately plays the stinger (in
disregard to the metronome beat). Examples of stingers used in movies are highly
prevalent in horror scores or other situations where the visuals, sound effects and music
try to frighten the audience with sudden scares.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 22

An advantage of letting the audio engine handle musical stingers (instead of treating them
as for instance ordinary sound effects) is the possibility of using a different stingers
dependant on which group or cue currently plays. Therefore, the audio engine only needs to
receive a single event to trigger a stinger and it will automatically play the cue’s
corresponding stinger.

Implementation-wise, this feature will require some work to enable control-features for the
external application, as well as providing audio engine script support for the stingers.

5.2.2 Extended cue playback techniques
The cues will also have rules that dictate which segments play against each other. For
instance, the composer will be able to designate that a particular segment can only play if
another particular segment is also playing etc.

5.2.3 Extended transition techniques and cue-to-cue beat
synchronization

The ability to cross fade directly to another intensity level (without the use of a transition
cue) is a traditional way for the composer to handle transitions. Cue-to-cue beat
synchronization would propose the possibility of synchronizing the playback of for
instance different intensity levels – meaning the metronome beat would be synchronized
and a cross fade transition between for example intensity level 1 and intensity level 2
would result in fading between two different cues but at the same beat position. An
example: intensity level 1 and 2 features the same music but different instrumentation, a
cross fade transition would fade out the former intensity level and into the new intensity
level while never resetting the metronome beat – so the music cross fades to a new level
but at the same beat position it were on in the original intensity level. This would
contribute to the transitioning techniques available to the composer. An extensive
expansion of the audio engine capabilities is required for this type of implementation.

5.2.4 Surround support
Panning of segments in surround is supported in DirectSound, and would be fairly
uncomplicated to implement.

5.2.5 Real-time effects
Effects such as reverb, chorus, real-time panning, phasing and other effect controllers is
feasible however not entirely easy (although supported by DirectSound) to implement in
the future.

5.2.6 Non-linear music format
Games are currently the most common application to use non-linear music; however the
fairly new prospect of non-linear playback of commercial music is in its initial stages. The
technique used in the audio engine as well as other techniques involving adaptive audio
(such as DirectMusic etc.) can be used without games or interactive media in mind – but
for a non-linear playback of commercial or popular music.

The workings of a non-linear music playback system would require a quite different
approach to controlling the audio engine than from a game engine type point of view, and
thusly it is safe to say that implementation of a non-linear music format (although using

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 23

the same fundamental functions as in a game engine controlled adaptive music player)
would be a serious endeavour. (Beyond Games: Bringing DirectMusic into the Living Room, 2004)

5.2.7 Application updates from Audio Engine
Since the audio engine already updates the audition tool every beat – it is reasonable to
implement a similar update call to the exterior game application. In this way for example,
elements in the game can be synchronized to events from the audio engine – this gives
way to a number of possibilities, such as having game characters synchronize their
footsteps to the beat of the music, or waiting for specific points in the music before game
events occur.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 24

6 References
James Boer, Game Audio Programming, Charles River Media, Inc. ISBN: 1-58450-245-2,
2003

Todd M.Fay et. al., DirectX 9 Audio Exposed – Interactive Audio Development, Wordware
Publishing Inc. ISBN: 1-55622-288-2, 2004

T. Buttram, Beyond Games: Bringing DirectMusic into the Living Room, - in
DirectX 9 Audio Exposed: Interactive Audio Development, T.M. Fay (ed.),WordwarePublishing
Inc. ISBN: 1-55622-288-2, 2004

Alexander Brandon, Audio For Games – Planning, Process, and Production, New Riders, ISBN:
0-7357-1413-4, 2005

http://groups.yahoo.com/group/gameaudiopro/, Mail group Game Audio Pro (Professional
Game Audio Designers discussion group), 2005-11-12

http://msdn.microsoft.com/directx/sdk/, Microsoft Developers Network, 2005-11-12

http://msdn.microsoft.com/directx/beta/, MSDN DirectX Beta Program, 2005-11-20

http://www.openal.org/, OpenAL - Cross-platform 3D Audio, 2005-11-12

http://www.radgametools.com/miles.htm, The Miles Sound System, 2005-11-20

http://www.vorbis.com/, Ogg Vorbis Audio Codec, 2005-11-12

http://earth.google.com/, Google Earth, 2005-11-13

http://imuse.mixnmojo.com/what.shtml, iMuse Island, 2005-11-14

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 25

Appendices

Appendix A – Audio Authoring Tool GUI Prototype

Fig 15. Prototype of the Audio Authoring Tool GUI.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 26

Appendix B – Transition Matrix

Target state

S1

S2

S3

S1

-

T1-2

T1-3

S2

T2-1

-

T2-3 In

it
ia

l s
ta

te

S3

T3-1

T3-2

-

Fig 17. The concept of the Transition matrix

For 3 music states (that is; intensity levels) 6 transition cues are needed.

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 27

Appendix C - Transition Matrix Script (transitions.xml)

<Transitions>

<TransitionMatrix>
<!-- GroupId is the Group to which this transitionmatrix belongs. -->

 <groupId>Template</groupId>
<!-- ******************Example of TransitionMatrix definition -->
<!-- |cueId1 |cueId2 |cueId3 -->
<!-- cueId1 |cell 1 (empty) |cell 2 (tr.Cue) |cell 3 (tr.Cue) ... -->
<!-- cueId2 |cell 4 (tr.Cue) |cell 5 (empty) |cell 6 (tr.Cue) ... -->
<!-- cueId3 |cell 7 (tr.Cue) |cell 8 (tr.Cue) |cell 9 (empty) ... -->
<!--** -->
<!-- When a transition from a specific cue to another is triggered, the cue id in the
corresponding cell is set as transition cue - and the target cue will play after that. --
>

<rows>
<row>

<!-- This is the name of the row. -->
<cueId>cueA</cueId>
<cell>

<!-- cell 1 -->
<transitionCueId>emptyCell1</transitionCueId>

</cell>
<cell>

<!-- cell 2 -->
<transitionCueId>trCell2</transitionCueId>

</cell>
<cell>

<!-- cell 3 -->
<transitionCueId>trCell3</transitionCueId>

</cell>
</row>
<row>

<cueId>cueB</cueId>
<cell>

<!-- cell 4 -->
<transitionCueId>trCell4</transitionCueId>

</cell>
<cell>

<!-- cell 5 -->
<transitionCueId>emptyCell5</transitionCueId>

</cell>
<cell>

<!-- cell 6 -->
<transitionCueId>trCell6</transitionCueId>
</cell>

</row>
<row>

<!-- This is the name of the row. -->
 <cueId>cueC</cueId>
<cell>

<!-- cell 7 -->
<transitionCueId>trCell7</transitionCueId>

Adaptive Music System for DirectSound

Sebastian Aav sebaa241@student.liu.se 28

</cell>
<cell>

<!-- cell 8 -->
<transitionCueId>trCell8</transitionCueId>

</cell>
<cell>

<!-- cell 9 -->
<transitionCueId>emptyCell9</transitionCueId>

</cell>
</row>

<!-- ...and so on -->

 </rows>
</TransitionMatrix>
…

<Transitions>
Part of the transitions.xml script, showing the scripting template of a transition matrix.

