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Abstract

The heat transfer in the filling phase of injection moulding is studied, based on Gunnar
Aronsson’s distance model for flow expansion ([Aronsson], 1996).

The choice of a thermoplastic materials model is motivated by general physical properties,
admitting temperature and pressure dependence. Two-phase, per-phase-incompressible,
power-law fluids are considered. The shear rate expression takes into account pseudo-radial
flow from a point inlet.

Instead of using a finite element (FEM) solver for the momentum equations a general
analytical viscosity expression is used, adjusted to current axial temperature profiles and
yielding expressions for axial velocity profile, pressure distribution, frozen layer expansion
and special front convection.

The nonlinear energy partial differential equation is transformed into its conservative form,
expressed by the internal energy, and is solved differently in the regions of streaming and
stagnant flow, respectively. A finite difference (FD) scheme is chosen using control volume
discretization to keep truncation errors small in the presence of non-uniform axial node
spacing. Time and pseudo-radial marching is used. A local system of nonlinear FD equations
is solved. In an outer iterative procedure the position of the boundary between the “solid” and
“liquid” fluid cavity parts is determined. The uniqueness of the solution is claimed. In an
inner iterative procedure the axial node temperatures are found. For all physically realistic
material properties the convergence is proved. In particular the assumptions needed for the
Newton-Mysovskii theorem are secured. The metal mould PDE is locally solved by a series
expansion. For particular material properties the same technique can be applied to the “solid”
fluid.

In the circular plate application, comparisons with the commercial FEM-FD program
Moldflow (Mfl) are made, on two Mfl-database materials, for which model parameters are
estimated/adjusted. The resulting time evolutions of pressures and temperatures are analysed,
as well as the radial and axial profiles of temperature and frozen layer. The greatest
differences occur at the flow front, where Mfl neglects axial heat convection. The effects of
using more and more complex material models are also investigated. Our method
performance is reported.

In the polygonal star-shaped plate application a geometric cavity model is developed.
Comparison runs with the commercial FEM-FD program Cadmould (Cmd) are performed, on
two Cmd-database materials, in an equilateral triangular mould cavity, and materials model
parameters are estimated/adjusted. The resulting average temperatures at the end of filling are
compared, on rays of different angular deviation from the closest corner ray and on different
concentric circles, using angular and axial (cavity-halves) symmetry. The greatest differences
occur in narrow flow sectors, fatal for our 2D model for a material with non-realistic viscosity
model. We present some colour plots, e.g. for the residence time.

The classical square-root increase by time of the frozen layer is used for extrapolation. It may

also be part of the front model in the initial collision with the cold metal mould. An extension

of the model is found which describes the radial profile of the frozen layer in the circular plate
application accurately also close to the inlet.

The well-posedness of the corresponding linearized problem is studied, as well as the stability
of the linearized FD-scheme.
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1.1 Purpose and limitations

1 Introduction
1.1 Purpose and limitations

One of the main reasons for studying temperature in injection moulding is the need for
judging the risk of such local freezing that may lead to an incomplete filling of the mould
cavity. The typical cavity domain is characterized by a small extension in one — gap —
direction, i.e. the filling is “essentially” a 2D process.

In commercial FEM-FD (finite elements method, finite differences) programs the expansion flow
and the temperature of the molten plastic are computed simultaneously.

This thesis is based upon the distance model, which asymptotically (i.e. for power-law fluids of
small index values, see [Aronsson]) describes how a polymer melt expands from an injection
point and fills the mould cavity, without consideration of temperatures. Our separate tempera-
ture model becomes a consistency check, and may also act as a correction tool, if necessary.

The study is limited to the filling of the mould cavity. This means that the packing and
cooling phases of the process are omitted, and the varying influence of the inlet and cooling
channels on temperatures is ignored.

The cooling phase of the process gives the main reduction of temperatures, by 100 °C or
more during several tens of seconds. The objective for considering the shorter filling phase —
of magnitude 1-3 seconds — becomes e.g. to correctly identify situations where local freezing
of streaming fluid exceeds some critical limit, e.g. a prescribed proportion of the mould gap at
some mould positions, rather than to accurately describe the temperature distribution over the
gap or even the average temperature. Temperature effects can also be crucial for warpage,
poor welds (flow marks), burning, brittleness and parts flashing ([Becker et al.], p.203, and
[Berins], p.161).

The flow front velocities that are generated by the distance model, combined with a simple
viscosity based model, act as inputs to an energy equation; which makes the temperature
computation much simpler than when coupled with the traditional Navier-Stokes equations.
However, there is a need for additional assumptions:

e the local flow direction is steady,

e the pseudo-circles, that describe the flow front expansion (see [Aronsson], p.428), define
isobars until local stagnation,

e the cavity parts that share flow history are equivalent as to temperature evolution.

The general aim for the temperature model and its computational method is to match the
simplicity of the distance model and the fastness of the corresponding shortest route method,
hopefully making a later integration possible.

For comparison purposes several materials are studied, with data easily available and chosen
to reflect different properties of viscosity and latent heat.



1.2 Method principles

The work is theoretical and no practical evaluation on real moulding data has been performed.
The developed computer program is basically a numerical FD scheme, and simulation
comparisons are made with two commercial FEM-FD programs.

To be strictly consistent with the assumptions of the distance model, the fluid viscosity should
be independent of temperature — the isothermal case. In the standalone FD program this is a
special case of a more general material model.

The FD simulations are performed on a PC computer, using C++ for computational purposes
and Matlab (® The MathWorks, Inc.) for graphics.

1.2 Method principles

We consider two kinds of applications: disk- and polygonal star-shaped cavities, with one
“point” of injection. Our simplifying assumption is that the main flow is radial, an
“essentially” 1D process, i.e. that any angular flow and heat exchange can be neglected.
During the filling phase of a triangular cavity the flow situation may look like in Figure 1.1a.

Front arc

Passive-flow
sub-region of
stagnant fluid

Inlet

Active-flow
sector of
streaming fluid

Figure 1.1 a Regions of streaming and stagnant fluid during filling. Radial flow.
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Figure 1.1 b Computational quantities in axial section, for given radial and angular position.




1.2 Method principles

In Fig. 1.1a we identify three active-flow sectors (sub-regions), with one circular front arc
each, and three passive-flow sub-regions. These two types of regions are handled separately:

o In the active-flow sub-regions the resulting PDE is solved by time-marching, i.e. we
discretize the time from start to end of the filling phase in discrete time steps
k=1,...,K . For each time step k we practice radial marching in radial steps
i=1,...,k from inlet to front, i.e. we approximate the PDE by a system of FD
equations for the current temperature distribution at (k,7) . Because of the radial
symmetry, all nodes that are concentrically placed relative to the inlet (common i)
share flow history and are treated as one common node group. In both the disk- and
polygonal star-shaped applications one ray of maximum length, i.e. an arbitrary disk
ray and one polygonal corner ray, respectively, is sufficient to characterize the whole
active-flow process.

o In the passive-flow sub-regions we have to distinguish more node groups, since Fig.
1.1a shows that both the radial position and the time of stagnation, i.e. when the flow
hits the wall along the stream ray through the node, have to coincide to define
equivalent flow history. For each node group i of common flow history we perform
time-marching by steps & from the time of stagnation to the end of filling. The start
temperatures of the stagnant ray in focus are received from the active-flow evolution,
the snapshot taken at the time of ray stagnation (wall hit).

The solution method is the same in both types of flow regions, for every given time step £ and
node group i. In Figure 1.1b the basic symbols are shown. The gap-wise direction z is drawn
from the centre symmetry plane z =0 to the nominal wall surface z = H . The local effective
gap width A, that separates streaming fluid from “frozen” melt, is defined by the no-flow
temperature 7, . In each phase of state, “liquid” and “solid”, a system of nonlinear FD-

no— flow

equations is solved for the temperatures 7,, 7, at the given axial node positions z,,

j=0,,...,J (with J =20 in Fig. 1.1b). This is made in an inner iterative procedure for
fixed A, primarily by the damped Newton-Raphson method. The correct local position of 4 is
determined in an outer iterative procedure, taking into account the heat flow between the two
melt phases. The interaction with the metal mould is managed by a series expansion solution
for the wall temperatures 7, reducing the computation of local heat exchange mould - cavity
to a mere analytical updating. Our strategy involves solving two small systems of altogether
J+1 nonlinear FD-equations many times, once for each trial z-value of each (k,7) -
combination. The axial node positions are chosen to balance two conflicting aims: capturing
the steep temperature change at the frozen layer and reducing the truncation errors.



1.3 Structure of the thesis

1.3 Structure of the thesis

In Chapter 2 we describe the major elements of our temperature model for the filling phase
of injection moulding — the modes of heat transfer, the relevant materials properties, and the
basic model assumptions, equations and boundary conditions.

In Chapter 3 our model and method are presented, for (pseudo-)radial expansion flow. The
basic energy model is extended by some analytical submodels — one replacing the absent
pressure-momentum equations, one extrapolating the expansion of the frozen layer, and two
variants handling the flow front energy. A numerical FD-scheme and a positioning principle
for the axial nodes are derived. The general method (cf. Sec. 1.2) is fully described and its
expected behaviour is analysed.

Our method is implemented for two different applications. The first type, studied in Ch. 4, is
disk shaped cavities. Two commodity materials, an amorphous polycarbonate (PC) and a
semi-crystalline polyethylene (HDPE) are modelled. Four comparison simulation runs of the
FEM-FD-program Moldflow (of Moldflow Corp.) and our FD-program are evaluated. The
influence of our more extended material models upon the resulting temperature and frozen
layer profiles is studied. Some aspects of our method performance are documented.

In Ch. 5 we treat the second application type, polygonal star-shaped cavities (relative to the
inlet), of constant gap width (cf. Fig. 1.1a). The special geometry modelling is described.
Two commodity thermoplastics, an amorphous polystyrene (PS) and a semi-crystalline
polyoxymethylene (POM), are studied. Two, out of four intended, comparison simulation
runs of the FEM-FD-program Cadmould (of Simcon) and our FD-program are documented.
Apart from the comparison figures, some of our internal FD-model and method results are
reported, partly as colour plots. These include the calculated times of injection.

Our main conclusions are presented in Ch. 6.

In Appendices 1 — 5 some results related to the implemented routine are collected. We give
examples from the assumed class of velocity profiles and the corresponding temperature
profiles, derive a class of square-root solutions characterizing the expansion of the frozen
layer in radial flow, present a series expansion solution for the temperatures in the frozen sub-
regions, and treat the well-posedness of the linearized PDE as well as the stability of the
linearized FD-scheme for given frozen layer profiles.



2.1 Modes of heat transfer

2 Injection moulding and temperature modelling

In this chapter we describe the basic elements of our temperature model for the filling phase
of injection moulding. The conductive and convective heat transfer modes are identified in
Sec. 2.1. By using the practical concept of a no-flow temperature, which subdivides the fluid
into an essentially immobile (“solid”, “frozen”) and a mobile (“liquid”) phase of state, we can
treat both semi-crystalline thermoplastics and amorphous materials in Sec. 2.2. For the main
material properties — heat capacity, latent heat of crystallization, density, heat conductivity
and viscosity — we judge whether constant or simple linear or nonlinear functions of
temperature and/or pressure are needed to capture the main variations. We argue that the non-
asymptotic character and the dynamics of the filling process would make a model based upon
dimensionless quantities, like the Cameron number, of less value. In Sec. 2.3 the underlying
assumptions of the distance model, for flow expansion and pressure field, are listed. The basic
equations are formulated, with focus on the energy PDE. Due to the temperature dependent
fluid properties, the energy equation becomes nonlinear. A temperature dependent viscosity
makes the momentum/pressure field equations depend upon the temperature solution of the
energy PDE, while shear rate, convection velocity and pressure provide a link in the opposite
direction. Finally in Sec. 2.4 the boundary conditions are listed. The special difficulties of the
moving flow front are noticed.

2.1 Modes of heat transfer

From an inlet “point” (gate) where the thermoplastic is injected into the mould cavity, the
expansion of the hot polymer melt means a thermal convection that is essentially radial. In the
filled cavity parts heat is transferred by conduction mainly in the gap-wise (z-)direction to the
metallic walls, where cooling channels transport heat out of the mould.

Near the cavity walls streaming melt is subject to high shear rates, which tends to increase the
temperature through viscous dissipation. A frozen layer of cooled, stagnant melt is built up at
the walls, to some extent acting as an insulation layer between the streaming fluid and the
cold walls.

Since most polymers are non-opaque to infrared light, some radiation energy hits the metallic
wall surface.

In the absence of sharp cavity corners, laminar flow dominates the filling process except at
the flow front, where heat is transferred straight to the walls by convection across the gap.

The corresponding orientation of the polymer chains — normal at the very wall surface and
tangential in the laminar zone (see, e.g., [Tadmor & Gogos], p.608) — affects conduction.

For the filling phase, the fluid properties normally identify one temperature of dramatic
changes, the practical concept 7, 4, . (In Sec. 2.2 it can be identified as T,, or T;.)



2.2 Temperature dependent material properties

2.2 Temperature dependent material properties

2.2.1 Heat capacity and latent heat

In a process where the material density p is almost fixed, the constant-pressure heat capacity
¢, nearly coincides with the constant-volume heat capacity (the difference is around 10% for
polymers, see [Rao], p.37). For amorphous polymers, ¢, increases continuously and slowly
with increasing temperature except at a point of discontinuity — the glass transition
temperature 7; — where the polymer from a colder glassy state becomes more easily

deformable — rubbery — and the ¢, -curve has a step-up jump.

For semi-crystalline polymers, ordered crystalline regions are surrounded by a matrix of less
ordered, rubbery amorphous material, making the polymer tough and leathery above 7, and

brittle through a glassy amorphous matrix below 7; ([Morton-Jones], p.14). At the
temperature where the crystalline structure is lost, the ¢, -curve shows a narrow peak, where
the position of the maximum defines the melting point 7,, . By cooling such a material the
latent heat of solidification (crystallisation) L,, is released. Realistic modelling is
complicated by such phenomena as sub-cooling and slow crystallisation.

For practical purposes, ¢, can be considered as pressure independent ([Tadmor & Gogos],
p-139).

As for the physical state of injection moulded thermoplastics at room temperature, PP, HDPE
and POM are semi-crystalline between T;; and T, , and PA 6 is below T, while the

materials ABS, PVC, PMMA, PC and PS are examples of amorphous polymers below 7
(e.g. [Becker et al.], p.20).

When data are unavailable, [Van Krevelen], p.116 recommends the following linear,
empirical expressions, referring ¢, at T (in “C) to (extrapolated) values at room temperature:
cp (T)=1cp (25 °C)-[1+0.003- (T -25)], 2.1
cp (T)=c¢p,(25°C)-[1+0.0012- (T - 25)]. (2.2)
Here (2.1) is valid for s = “solid” state, i.e. both semi-crystalline polymers with 7' < 7,, and
amorphous thermoplastics with T' < T;; ; otherwise (2.2) applies — for £ = “liquid” state.

As an alternative, constant levels are used in the solid and liquid states, respectively. The error
of such an approximation can be evaluated by (2.1) and (2.2), where the cj -values change by

30% and 12%, respectively, over a 100 °C interval.

At constant pressure, the cumulative heat capacity of a material is its enthalpy. As a function
of temperature, the enthalpy curve shows a steep increase (discontinuity) at the melting point,
while the glass transition temperature corresponds to a discontinuity in its derivative only.
The heat of crystallisation L,, is of magnitude ([Van Krevelen])

L, =055¢,,25°C)(T, -T;),eg L, =100 kl/kg for PS, and is proportional to the
degree of crystallinity.
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2.2.2 Density and thermal conductivity

[Van Krevelen], p.90, presents one way to estimate the density p(7'), by use of the MTE-
model (the Molar Thermal Expansion model of polymers), based upon a concept of Simha &
Boyer:

The molar volume ¥ is the product of specific volume p~' and molar weight M , i.e.

V =M/ p. All necessary polymer properties are referred to the Van der Waals volume V,,

the volume enclosed by the electron clouds of the molecules. Extrapolation of data for
amorphous polymers in their rubbery () and glassy (g) states, respectively, gives

V.(20°C)=1.60-V,,, V,(20°C)=1.6-V,,.
The molar thermal expansivity E is defined by E = (g;{j .
P

According to the Simha & Boyer model and to experimental data
E, =110V, E,=045-10"V,.
Consider, e.g., PVC with p(20°C) =1.38kg/dm’, T, =80°C, M = 0.0625 kg/mol and
¥V, =0.0293dm*/mol, i.e. M /V,, =2.133kg/dm’. At T =200 °C, we get
V,(T)=V,(20 "C)+ E, -(Tg ~20)+E, (T ~T;) = 1.747-V,,
M MV,
V.(200 °C)  1.747

i.e. the density is around 12% less than at room temperature. By modelling two constant
levels, above and below T, , respectively, the error becomes less than 4% for PVC.

p(200 °C) = =1.22 (kg/dm?)

Van Krevelen’s suggested method for semi-crystalline materials is to weigh the molar
volumes of the pure states, crystalline and amorphous, according to the degree of crystallinity,
and to use

V.(20 °C)=1.435-7,,, V,(20 °C)=V,(20 °C),
E =E,, E, =E,
as well as the melting expansion
AVy =V, (T )=V (Ty) .
A simpler model is to apply two constant levels of density, above and below T, ,
respectively.

The isothermal compression of a thermoplastic from normal air pressure to the operating
pressure p (in kbar) can be estimated by the Tait-relation ([Van Krevelen], p.101)

V(1bar) -V (p) —0.0894-In| 1 + L 000457 2.3)
V(1 bar) ' 0.06- B ’ '

where T (in °C) is the operating temperature and B (in kbar) is the bulk modulus, i.e. the
hydrostatic pressure divided by the volume change per unit volume.

As a rule, models for the filling process phase are based upon incompressibility (contrary to
the succeeding packing phase of material compression). To judge such an assumption,

consider, for example, PVC with temperature 200 °C at the mould entrance and injection
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pressure 100 MPa = 1 kbar. Formula (2.3) predicts the shrinkage AV /V =0.047, i.e. around
5%.

Thermal conductivity A4 across an area 4 in the normal direction x of a body is defined by the

. L .. dT
heat transfer rate ¢ and the corresponding temperature (directional) derivative ™ as
X

([Holman], p.2) A:=—g¢q / A aa—T In theory ([Tadmor & Gogos], p.129), thermal conductivity
x

of a plastic is anisotropic — heat is transmitted easier along the primary chemical bonds than
between the polymer chains. Near the mould walls a high degree of orientation is expected.
These effects on heat transfer are possibly greater than the temperature induced conductivity
variations, the latter of order 30-40% for injection moulding. However there is a general lack
of data ([Kennedy], p.19).

If A is plotted against T/ T, for different materials, amorphous polymers and polymer melts
show similar A(T'/T)-curves ([Van Krevelen], p.529), increasing slowly up to T/T,; =1
and then levelling out or decreasing slowly linearly. Replacing such a curve by a constant
conductivity means an error of around 5% in the operating interval T/T,; € (0.6,1.5). Below
Ts, A/ pep is expected to be proportional to the sound velocity u ([Van Krevelen]). Since p
and u vary slowly, A is nearly proportional to ¢, in the glassy state (cf. Appendix 3).

For a semi-crystalline polymer, at T’ < T, , information about the pure crystalline and

amorphous states, respectively, can be weighed according to the degree of crystallinity. For
the pure crystalline state, the Leibfried-Schloemann formula 4 «< 1/T applies ([Perepechko],
p.51), since typical moulding conditions are above the Debye temperature. [Van Krevelen],

p.528 refers to results of Eiermann: A =210/T (W/m°K). Thus for PP, e.g., with melting
point 7}, =165 °“C the crystalline conductivity is reduced by 1/3 from room temperature up
to T,, . By a linear approximation the error becomes less than 3% for PP.

The thermal conductivity increases only slightly with the pressure, less than 5% from
atmospheric conditions up to 25 MPa ([Rao], p.39).

2.2.3 Viscosity

Let n=n(T, p,7) denote the fluid viscosity at temperature 7, pressure p and shear rate 7.

The distance model is derived from a power-law assumption, which for pure shear flow (7
denotes the shear stress and » the power-law index) is

t=-n-y, n=nT.p)7"";
where 7, is the temperature-pressure dependent “normed” viscosity (for 7 =1). For high
melt temperatures an Arrhenius-type model (see, e.g., [Agassant et al.], p.366) is expected:
No(T.p) =Ko e"'T e
For thermoplastics, pressure coefficient data f~2—6-10"* Pa™ are reported ([ibid.], p.366).
With p =100 MPa, say close to a point of injection, the normed viscosity for
S =33-10" Pa™ becomes around 27 times greater than at the free flow front; which should
be taken into account ([Rao], p.18). This recommendation seems unheard of in commercial
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programs: despite its six parameters, the Moldflow 2™ order viscosity model ([Kennedy],
p.11) neglects the pressure influence.

According to the WLF equation (Williams, Landel & Ferry 1955; see e.g., [Van Krevelen],
p.466), the extra free volume created from thermal expansion accounts for the rapid viscosity

drop between temperatures 7; and 7; +100. The average reduction is of magnitude 10°:1
from Tj; to 1.27;. The combined temperature-pressure dependence is here described by
seven parameters. However, for the filling phase, where the main flow occurs at an essentially
uniform temperature, the simpler Arrhenius-type model might do ([Isayev], p.22). [Bicerano],
p.298, describes the possibility to combine Van Krevelen’s universal curve for 7' € [T, a-1.2T, G]
with an Arrhenius-type model for 7 > 1.27; . As a compromise we implement the two-

parameter temperature dependence BT which permits rapid changes immediately above

T; (for T, =T, ) and turns into an Arrhenius-behaviour for 7 >>T,.

The power-law index 7 is essentially independent of temperature ([Baird & Collias], p.97).

However, at fixed temperature, the fitted n-value may be halved when the shear rate  is 10*-

fold increased (see [Van Krevelen], p.475). Such a span (107 :1) is standard across the mould

gap, since according to [Agassant et al.], p.142, 7= C(r)-z''" at the relative position z in a

disk-shaped mould (with z =0 at the centre plane and z =1 at the wall surface), i.e. the shear
1/n

- x] =102,

X

rate ratio between the outer x% and the inner x% of the flow, will satisfy (
e.g. for n=0.3 (or less) involving (the inner + outer) 2x = 40% of the flow.

The viscosity 7 is expected to show a general decrease by increasing shear rates from a
constant level of Newton-like fluid (n = 1) for low 7 -values to the asymptotic power-law
shear-thinning property for high 7 -values (n = 0.2, cf. [Agassant et al.], p.351). This
behaviour is captured by the two-parameter Carreau-Yasuda law models (e.g., [Siginer et al.],
p.945), with 77/, =1+ 6’}'/)"7] as a particular choice. As a compromise we implement the

power-law model but will choose the exponent # to reflect the operating conditions rather
than the asymptotic value. This leaves us with the five-parameter (K, B, T, 3,n) viscosity

model

n=K, T oAyt (2.4)
In divergent flow, like a centre-gated disk, the radially diverging streamlines cause stretching
in the tangential direction, notably in the centre plane (see [Pearson], p.610).

2.2.4 Dimensionless groups and asymptotic temperature profiles
The Reynolds number Re (see, e.g., [Holman], p.221) characterises laminar and turbulent
flow:
v H

.
For injection moulding typical values are of magnitude

p=10°kg/m®, v, =10"m/s, H=10"m, 7=10%/10"kg/m-s = Re<10”

i.e. creeping flow (Re<<1) is expected.

Re =
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The Cameron number Ca (see, e.g. [Agassant et al.], p.83) is the inverse of the Graetz number
Gz and describes how well developed the temperature distribution is:
Ca = Ker .
v.H?
Here « is the diffusivity, i.e. a material characteristic measuring how fast temperature
differences are reduced by conduction. Characteristic values are

r=10"-10" m, zc::i:lo”mz/s = Ca=10"-10°

Pep
which means a transition flow regime (10~ < Ca <10°), i.e. a developing temperature
profile; except at the very entrance where adiabatic conditions (Ca < 107*) are expected.

The Brinkman number Br (see [ibid.], p.86) relates the viscous dissipation and heat
conduction:
]
AT
Characteristic values are
A=10"W/m'C, AT =10 °C = Br=10"-10".
This means that both viscous dissipation and conduction influence the temperature profile.

Br:

The Péclet number Pe (e.g., [Rao], p.58) is the ratio of convective heat transfer to conduction:
Pe = vH .
K
A typical value is Pe =10° (Pe>>1), which characterises a “thin cold thermal boundary
layer” (of frozen melt) “surrounding a hot core region” (of streaming fluid; [Isayev], p.25).
However, Ca (or Gz) is preferred when heat conduction is in transverse flow direction
([Tucker], p.86).

The Pearson number Pn (see, e.g., [Tucker], p.120) describes how much the temperature
dependent exponent of the viscosity varies. If an Arrhenius-type exponent is used ([Van
Krevelen], p.342), then the temperature variation of many liquids (index ¢ ) corresponds to

Pn, =10°. A small Pn, and Br =1, means that the momentum equations decouple from the

energy equation — an isothermal flow. Injection moulding is a borderline case ([Pearson],
p.120).

Asymptotic results on temperature profiles (e.g., [Tucker], p.121) presume extreme (>>1 or
<<1) Ca and/or Pn values, and are therefore not generally applicable in typical moulding
situations. Moreover, the dynamic nature of the filling process — local fluid velocities varying
due to, e.g., complex cavity geometry — makes a classification by dimensionless quantities
uncertain.

2.2.5 Assumptions

In each thermoplastic phase of state, i.e. below and above T, (or 7,

no— flow

denoting a charac-

teristic “no-flow” temperature), respectively, o is assumed constant but A, c, may be linear
functions of temperature. Furthermore, L,, is considered and (2.4) is applied with fixed 7.
These assumptions will be examined in Ch. 4 and briefly commented in Ch. 6.

10



2.3 The governing equations

2.3 The governing equations

2.3.1 General notation

Consider a mass point at x in physical space, at time ¢. Notations:
p(x,1), v(x,t) density and velocity, respectively

p= 1 (— 8,0) coefficient of thermal expansion (notation in this Sec. only)
P

p \ daT
T(x,t) Cauchy’s stress tensor (notation in this Sec. only)
g(x,1) body force per unit mass, e.g. gravity (notation in this Sec. only)

p=—+tr(T) thermodynamic, isotropic pressure; where tr(A) = Zi A;

D= %(VV +(Vv)’ ) rate of strain (rate of deformation) tensor (notat. in this Sec. only)

7=~2D:D shear rate; where A:B:=) 4,B; (= tr(A*B)), A’ is the conjugate-
i,j

transpose of A

U(x,t) internal energy per unit mass
q(x,?) heat flux vector, e.g. conduction and radiation
A second-rank tensor form of the thermal conductivity for non-isotropic

materials (e.g., [Baehr & Stephan], p.280), cf. Sec. 2.2.2.

2.3.2 Mass and momentum balance

Equation of continuity (conservation of mass):
P
ot
Equation of motion, Cauchy’s law (conservation of linear momentum):

+div(pv) =0.

p%—div(T)—pg=0.
v v,

. T Dv
Here the material derivative is defined as — = —+ Vvev, where (Vv), =—
Dt ot Tox;
and « denotes tensor (here a matrix-vector) product.

Conservation of angular momentum: T is symmetric.

Constitutive equations:

Incompressible fluid: p =const, or a thermodynamic PVT-equation of state: p = p(p,T).

Generalised Newtonian fluid: T = —plI + 27D, power-law fluid: 7 :=7,7"", 1, =1,(p,T).

Apart from a small n-value, the basic assumptions of the distance model ([Aronsson]) are
essentially the Hele-Shaw flow ([Hieber & Shen]) and lubrication approximations (e.g.,

[Tucker], p.90):
e The fluid is incompressible and generalised Newtonian.
e The flow is fully developed and laminar.

e The flow is isothermal, or rather: 7 is a function of  only.

11



2.3 The governing equations

e The viscosity is of power-law type (with constant n).

e Inertial and body forces are negligible compared to viscous forces and pressure
differences.

e The gap width (defining the z-direction of a plate cavity), denoted 2H (x, y), is much
smaller than other (x-y) dimensions.

e The gap width is constant or varies slowly.

e There is no slip at the (horizontal) walls.

e The z-component of viscosity forces is negligible.

e The x-y velocities vary much slower in the x-y directions than in the z-direction.

The pressure is seen to be independent of z, i.e. p = p(x, y,t), and obeys the mass
conservation law

diV(H(x, y)2+% ‘Vp“l’_l Vp)= 0.
If H is constant, this turns into the elliptic (£ + 1) -harmonic equation, for n =1 written
Ap=0.
The main principle of the distance model is the pseudo-circle principle ([Aronsson], p.428):

For small n-values, the fluid region of the mould expands approximately like a family of
pseudo-circles with respect to the metric H (x, y)™' ds , where s is arc length, each having its
centre at the injection point.

An examination of the order of magnitude in the Hele-Shaw approximation (e.g., [Advani],
p-422) simplifies the momentum equations. In Cartesian coordinates, v =(v,,v,,v,):

apza( anJ
o o\ oz )
op o v,
L_Zip=2|, 2.5)
dy 0z|\ oz
P_y
3z

Assuming no-slip at the wall surface z=+H and symmetry dv, /dz =0,9v, /dz =0 at the

gap centre plane, the local velocities are retrieved from the pressure gradient by integration
over the gap (e.g., [Siginer et al.], p.952). From a given time evolution of the inlet pressure or
the inflow rate, the gap-wise average velocities v, (x,¢),V,(x,?) are determined for every
(x,t) according to the distance model (by efficient shortest-route calculations, even in

complex geometries, see e.g. [Johansson]). By use of the fluidity ([Siginer et al.]), the
pressure field gradient, and hence the local velocities, can be determined.

12



2.4 Boundary conditions

2.3.3 Energy balance

Assume that there is no internal heat generation, except for viscous dissipation.

Thermal energy equation, 1% law of thermodynamics (conservation of energy):
DU
—+div(q)-T:Vv=0.
Py (@

A temperature formulation is obtained by relating internal energy and temperature according
to thermodynamic relations and the equation of continuity ([Kennedy], p.54):
DU DT Dp .
—= — = I ———p-div(v).
P, = Per BT~ prdivy)
Constitutive equation:
Fourier’s law for conductive flux: q,,,;, =—A+VT or ¢q_,, =—A-VT (isotropic).

For a generalised Newtonian (incompressible) fluid, the energy equation becomes

DT . . Dp
2 rdivq)-nyr - BT =0.
Per T, v(q)-ny ﬁTDt

If radiation is omitted and conduction is isotropic, then a dimensional analysis (cf. [Kennedy],
p.69) shows that the energy equation for the filling phase can be simplified to
of . or ar arJ a( or

— — — |-=—| A= |-n9*=0. 2.6
pc”(az”xax”yayﬂzaz PR sz 4 (2-6)

The gap-wise convection term is relevant at the melt front and for tapered channel flow.

The momentum/pressure field equations and the energy equation are linked, if viscosity
depends upon temperature.

2 2
v,
In [Kennedy], p.71, the shear rate is approximated by y = (aav" j + (B}J . Motivated by
/4 /4

our intended applications, with fluid streaming radially from an inlet point (v, is the radial v-

component), but angular flow and angular shear (not stretching) being neglected, we extend
this (cf. [Tadmor & Gogos], p.121) to

22 A R -
0z or or r 0z 0z r

For strongly tapered flow the remaining terms should also be considered.

2.4 Boundary conditions

2.4.1 Symmetry, points of injection and mould walls
At the (“horizontal”) centre plane of the mould cavity, dv, /dz =dv, /dz =0 and 9T/dz =0.
The (majority of the) filling phase is controlled by a prescribed inflow rate function

0 =0, (t) attime ¢, possibly limited by an upper pressure bound p, at the inlet. The inlet
temperature is either uniform (implemented) or has a prescribed gap-wise profile 7 =T, (z),

13



2.4 Boundary conditions

characterized by the runner and gate systems; via the viscosity also specifying an initial fully-
developed velocity profile v, ;, v, , by the equations in Sec. 2.3.

The lubrication approximation does not apply at the “vertical” cavity wall surfaces. Here the
normal pressure gradient vanishes, dp/dn = 0. At the horizontal cavity walls the no-slip
condition means v, =v, =0. The vertical component v, is adjusted to the variation by time
and space of the (effective) cavity height. In case the whole injection cycle was to be
modelled, the temperature variations within the metal mould (cavity walls) should be
considered ([Rao], p.124). Unlike, e.g., glass forming ([Storck]) the temperature of the mould
surface is here much closer to ambient temperature and we therefore ignore the radiation
losses from the mould. Apart from the melt and cavity properties, the mould temperature
variations are related to the conductive and convective properties of the cooling (and runner)
systems. If the walls are not part of the model, then the temperature at the wall surface may be
assumed constant 7 =T, or obey Newton’s law of cooling (1-97/z) ,,,, =e-(T - T)

wall *
The heat transfer coefficient ¢ can be calculated for various cooling system layouts, as
o=A,,/d, where d denotes the thermal thickness, e.g. the normal distance from the wall
surface to the cooling channels of temperature 7, (e.g., [Advani], p.427). A special case is an
adiabatic regime, sometimes assumed close to the inlet ([Agassant et al.], p.64), whence the
conduction through the walls can be neglected, d7/dz = 0. We have implemented a specific

model of the horizontal mould walls — cf. Sec. 3.2.5 below. The heat flux through the vertical
walls is neglected, i.e. the (small) surfaces are assumed insulated.

2.4.2 Flow front

At the moving free melt front surface, pressure is atmospheric, p =0, or controlled, p = p;,
provided there is no built-up air pressure due to inadequate venting of the mould. To keep the
front profile intact as the front passes a horizontal position (x, y), fluid elements on all
vertical levels must have one and the same velocity in the flow direction 7, i.e.

v.(x,y,z) =v,.(x,y) .We will take the front to be flat and thus to advance uniformly according
to the average flow expansion rate (cf. [Isayev], p.27).

The heat transferred in the radial direction to the air may be part of the PDE ([Tadmor &
Gogos], p.597). Our special handling of the flow front — cf. Sec. 3.1.4 — neglects this, i.e. the
(small) surface is assumed insulated.

When two melt fronts collide and coalesce, forming a weld line, the boundary conditions state
that both the pressure and the normal velocity are continuous across the weld line ([Isayev],
p-48, and [Baird & Collias], p.281). These situations have not been implemented.

By formulating a thermal penetration length inside the mould wall, [Siginer et al.], p.963, use
thermal shock theory to describe the initial temperatures of wall surface and liquid fluid at the
front (to overcome the discontinuity 7, # 7, ). We use a similar model, but also include a

developing layer of immobile, “solid” fluid — see Sec 3.1.3.
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3.1 Analytical sub-models

3 Model and method
3.1 Analytical sub-models

In this Chapter our model and method are presented, for (pseudo-)radial expansion flow.
Since the distance model ([Aronsson]) prescribes the average radial velocities only, it has to
be supplied with a description of the velocity distributions. With focus on the energy
equation we want to consider the links with the momentum equations in a simple way. The
material in this Section is based upon an assumption of a special viscosity representation,
corresponding to an extension of the isothermal case. In Sec. 3.1.1 we obtain a series
expansion for the vertical profile of the radial velocity. The concept is illustrated in
Appendix 1. In Sec. 3.1.2 the radial pressure distribution is treated. In the simplest case of a
pressure dependent viscosity a logarithmic form is derived. In Sec. 3.1.3, motivated by our
special interest in freezing risk, we study the expansion of the frozen layer (melt below the
no-flow temperature). A minor extension of the classical square-root increase by time is
formulated, to be used as initial guesses in our numerical FD routine. A further extension, a
particular form of heat generation, is treated in Appendix 2. We also express the axial
velocity (v, -)distribution, related both to the radial variations of the (non-frozen) gap width
and to the packing effect of solidification. The laminar radial flow implies fast-moving hot
fluid at the centre plane (z =0) of the mould cavity. The overall heat balance requires a
special treatment of the moving front. Two options are given in Sec. 3.1.4, an extension of the
traditional fountain effect and a convective sub-model, both based upon the underlying series
expression for the z-factor of the (r, z) -separated viscosity form.

3.1.1 Vertical velocity profile

The distance model presumes isothermal viscosity. In a disk-shaped mould, with cavity gap
ze |- H,H], axis-symmetry and purely radial flow, the isothermal velocity profile (e.g.,
[Agassant et al.], p.142) is

const 141 141
v, (r2) == errmgz0),

where n denotes the power-law index and the constant is related to a prescribed flow rate. By
adopting such a universal velocity profile we would completely avoid the links with the
momentum equations of Seec. 2.3.2. On the other hand, some consideration of temperature and
pressure distributions for the local viscosity is conceivable — see (2.4). A radial-flow based
model extension of the isothermal case is implemented. It is applied explicitly: after the local
energy equations (for fixed time 7) have been solved for T'(,z), with a fixed velocity profile, a
new universal velocity profile is fitted, for use in the next FD time step.

Instead of using a full FEM model we will limit our ambitions to a simple separation solution
of the momentum equations. To accomplish that we will make an ansatz: let 4(r) be the

unfrozen cavity height at radial position », h(r) < H , and let Z denote the relative vertical
(axial) position at r, Z := z/h(r) . Consider the flow situation for fixed time, and assume that

n-1

the temperature-dependent factor K of the viscosity 7(r,z) := K(T)-e® 7" satisfies

K(T) = f(r)- () 3.1)
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3.1 Analytical sub-models

with g analytic, g(z) = Zb z",and f(r) =K K (T(r,%)) is the vertical average.
m=0
B

In particular for (2.4), K(T) =K, -e’ ", the implicit temperature profile is
T(r,z)=T,— B —. (3.2)
InK,+n-Inf(r)+n-Ing(2)
Although this “by-product” of our ansatz might be the base of an analytic solution — for an
illustration see Appendix 1 — we will (as promised) solve an energy PDE numerically.

In this Section let /4(r) =&, constant. For radial flow the equation of continuity becomes
1 o
——(rv =
5, )

const

This equation has a solution of the form v,(r,z) = -V (z), where the constant is chosen

const

h h
such that V = % . J.V(z)dz =1, i.e. v.(r)= % . I"r(”a z)dz = is the vertical average.
0 0

Following [ibid.], p.142, we have y = ‘avr /az‘ ==v.(r)-V'(z).

By dimensional analysis the momentum equations — cf. (2.5) — turn into

al’:a[ aVrJ
o oz 7782 ’

P _o,
oz
The special ansatz (3.1) makes it possible to write the first of these equations as
P (1) d( - n)_ —¢
S = g (E V'(z (3-3)
v, (r)- P dz (g( ) ) Bt

Integration and use of the symmetry condition V'(0) =0 gives

=@ 8E) et (2 s (=)'
Ve T [h] 2.0 [hj '

m=0

If the series is term-wise integrable and a no-flow condition is applied at z = 4, then

L b z oyt ~( z
—r. w1 £ =7z, 3.4
Vo= z { 2) Mh) 64

e s

where 7 =1 determlnes ¢ and the velocity profile 17(2) .

2+ +m

By letting ¢ = &, V =1 corresponds to Zcm Lxlntm =1 and the profile is
mn 1+l+m " 2+1/n+m
V(Z) ZC [ ~1+ +m:|. (35)

The isothermal Ve10c1ty profile corresponds to the leading term only, i.e. g(z) = b,, constant.
Since partial differentiation of (3.1), with 7 = T'(», Z), formally yields
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3.1 Analytical sub-models

oT n-K(T)- ZMme'”_'

oz K'(T) hg(Z)
the symmetry condition at z=0 implies 5, = 0. In Appendix 1 the profiles for one, two and
three leading terms are illustrated.

The implemented velocity profiles admit 0 — 2 extra terms, apart from the isothermal case.
The best powers m,, m, of the additional terms are estimated to

1
minimise ZWj | K (Ty) = fi o[y + by, S(ZH)m +b,, “(Z)H™ ]l
my,my i) ’ ’

where w; is the (control volume) weight of vertical position j and f; := f(r;) is chosen as the

vertical (j-)weighted average f, =K K (T..) - For fixed m,(,m,) the coefficients b,b,, (,b,, )

are computed by weighted least-squares (2 extra terms) or by fitting the average viscosity at
the central plane and at the frozen layer surface (1 extra term).

An advantage of (3.4) is to admit also non-isothermal profiles. However, to define a solution

of the equation of continuity, the coefficients (b, )”_, should be global (i.e. common to all

radial positions), and so should the temperature profile, by (3.2). In reality, velocity profiles
change shapes (cf., e.g., [Manzione], p.258, and [Agassant et al.], p.146). An obvious
alternative would be to estimate the coefficients locally, i.e. for fixed radius (and time). But
we want to avoid solving systems of equations for velocities and pressure. In doing so, a
drawback would be a negligence of restrictions — single fluid elements subject to the laminar
flow movement and pressure of horizontally nearby elements — and the local impact upon the
general flow pattern at the current time — especially near the front. Our implemented
compromise is to use the global coefficients (3.4), but to account for local incompressibility
(Section 3.1.3), front effects (Section 3.1.4) and inlet viscosity ((2.7)) — departures from the

Hele-Shaw assumptions in Sec. 2.3.2. But any separation ansatz v, (r,z) =V, (¥)-V(z) —

m=0

including the isothermal case — is compatible with (cf. Seec. 2.4.2) BC v, (r,z) =V, (r) at the
front, only if the front zone is separately handled.

3.1.2 Pressure distribution

The pressure is needed for viscosity calculations and for satisfying processing conditions. In the
isothermal case ([Agassant et al.], p.143) the radial profile, for prescribed rest pressure
p(R) = py at the front » = R, becomes
p(r)= p, +const-(R"™ —r'™).
In our more general setting, integration of the first (radial) formula in (3.3) for # # 0 gives

e =eh_p. TD(V')dr', D= [CM”,)HJ '
/ FAGLIGO N

Here the radial variation of freflects that of the average temperature. Hence in a first approxi-

mation f'and % are constant. If the inflow rate Q) is prescribed, then v, () =

, where
act

¢ . 1stheactive flow angle. Since ¢ is determined by (3.4) and V =1, the profile becomes
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logarithmic

1 - pe 0 ' e len
=——Injer - | = | (R- . (3.6)
p(r) ﬂ N I=n [2¢actfh2+n ] ( ' )

If, instead, the inlet pressure p, is given at  =r,, then v, and Q are settled by that condition.

For =0, with prescribed front pressure p(R) = p,, we get

p(r)= py + [ DO)dr -

To cover the cases of non-constant f'and/or A, the integrals for f#0 and £ =0 are
discretized by the trapezoidal rule to yield

() = plrg) + M0 “7 1D()+ D(r,,)]-

Here Ay = r

< —1;» the distance between consecutive radial node levels.

3.1.3 Freezing layer

As the polymer temperature drops towards the cold mould wall, the viscosity increases rapidly
and the flow eventually ceases. For a semi-crystalline material the melting point 7}, is a natural
temperature limit for a ceasing flow. Also for an amorphous polymer a practical no-flow

temperature 7 o flow

transition temperature 7, or (slightly) above. The growth of the frozen layer, characterised by

, here written T, , can be defined (e.g., [Kennedy], p.14), at the glass

T <T,,, at the cavity wall now becomes decisive for the possibility of filling the whole mould.

The Stefan problem, initially formulated for the thickness of polar ice, is to determine the
moving surface of separation between two phases. If convection is omitted and the mould gap
is considered as a 1-dimensional, semi-infinite medium of phase-specific properties, with

fixed temperature 7, at infinity, then a characteristic square-root increase by time of the
frozen layer thickness & .= H — } is obtained. By using a property index notation i=s (solid),
¢ (liquid), w (wall) for conductivity A,, density p,, specific heat ¢,,; and diffusivity

K, = A,/ pi.cp, » the position of the moving surface can be written J(¢) = 26\/@ , Where ¢
denotes the time of contact and £ is a constant yet to be determined: a square-root model. If
the wall surface is kept constant at temperature 7, and the change of volume on
solidification is taken into account as the surface advances, then £ satisfies ([Carslaw &
Jaeger], p.291)

eXp(_gz) G (I -Ty) ) eXp(_(ng)z) _ LM\/; e (3.7)

etfte) Ty, —T, l-erfce) cp (T —T) '

where L,, denotes the latent heat of crystallization, exp(a) = e”, erf is the error function (e.g.
[ibid.], .482), and

— A, \/’? - Py \/’7X

Cl'_ﬂs\/l(i7 C, p(,\/KT.

If, instead, the wall too is assumed to be a semi-infinite medium, with fixed temperature 7, at
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minus infinity and the change of volume by solidification is taken into account, then & can
easily be shown to satisfy (cf. [ibid.], p.288, where that effect is neglected)

exp(=¢’) T, =Ty) exp((e)") _  LyNz (3.8)
cyterfle) T, -T; 1—erf(c,e)  cp (Tyy —Tg)

A

In injection moulding the square-root models have to be local, with # =0 corresponding to

the front passage (local activation time). Although the BC at infinity, 7 =7, imitates the
strong inflow of heat near the centre plane of the mould cavity, some convective flow and all
viscous heat generation are ignored, and therefore the ¢ -formulas above, applied at the end of
the filling phase, overestimate the risk of total freezing. Furthermore, close to the injection
point a region of adiabatic flow regime leads to a steady O -decrease towards the inlet
(Lévéque solution, [Pearson], p.579, and [Tucker], p.131): the Stefan problem is 2D, at least.
If convection and viscous heat are included, only asymptotic results (e.g., [Tucker], p.132,

and [Pearson], p.600) exist.

where

Co

In Appendix A1.2 we extend the square-root models (3.7) - (3.8) to include a special form of
heat generation, to imitate the local net inflow of hot fluid and dissipation of viscous energy.
Although the result is a less crude estimate of the freezing risk, it has not been implemented
and evaluated. Instead, the general square-root behaviour is used to provide initial guesses for
the local freezing layer position, in the iterative numerical FD routine described below. The
temperature of the wall surface is accordingly initiated as
o DT

1+erf(e)/c
with & given by (3.8).

T;'u)f = TE

Behind the front the /7 -coefficient is estimated by exponential smoothing, i.e. a weighted

average of the previous average and the current 5(t)/ Jt -value.

Since the focus is on freezing risk, the position of the frozen layer is subject to a special
model below. First we consider the fluid shrinkage rate due to solidification (o, > p,), a
pressure-dependent effect of order 10-20 % for typical semi-crystalline materials. The local
movement of the liquid zone surface & = h(x,t), x:=(x,y), h=H — 0, generates a
convection term along the z-direction: during time dt, when the zone surface advances a
distance dh(< 0) , i.e. opposite the z-direction, the formed mass of solid per unit area p.-| dh |

has been formed from liquid of thickness p, - dh‘ / p, . Thus the liquid moves along the z-axis

with velocity v_ = (A - 1J . —7dh at the surface ([Carslaw & Jaeger], p.291). Writing v_ in
-\ A 4

this way we admit shrinking frozen layers as well — cf., e.g., Fig. 5.11b below.

Apart from dependency on ¢, & = h(x,?) is also spatially dependent. Horizontal variations of
the effective height £, by non-uniform freezing or tapering flow, contribute to a vertical
velocity component. Here we focus on the radial case, # = A(r) . According to (3.5), the radial

velocity is
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oot} iz (-6

dv

Assuming v, (r) = const , forming — and applying the equation of continuity
rh(r) or
divv = o, +0r g o, =0,

ror oz
we get the vertical acceleration

aV B h’(}’) z 141/ n+m
—==v.(r)- e, | 1-2+1/n+m)-| — .
> ,()h(r);,m ( )15
From the symmetry condition v, =0 at z=0 the velocity becomes

v.(r,2)=v.(r)- h'(r)- h(Zr) : V{h(zr)j,

going to zero also at the effective boundary z = A(r), as it should.

. . h
We next consider the influence of % . Let

U(E):,i'jf(jjd ':jV(E')dZ':Z-Zcm -{1 W} (3.9)

_2+1/n+m

1+1/n+m

=1 implies U(1)=1.
Y+ lntm DS v

where Zcm :
m

. . ~ oh .
By assuming a vertical profile v, =—a-U (Z) , a= ('0“ - 1) e a correct behaviour at
Py

1 ~
z=h and at z =0 is guaranteed. Moreover, the ansatz v, (r,z) = b(r)- 7 4 (Zj solves the

. . e s 1 .
corresponding equation of continuity b'(#) +—-b(r) = a . (For constant a the general solution
r

const + % -r.) Thus the influence upon v, of dh/d¢ becomes limited to the r-

is b(r)=

dependent factor v, . In the numerical routine — cf. Sec. 4.1.1 below — this is implemented as a
successive correction of v, for the actual frozen layer.

In summary, the effect of a varying frozen layer (and tapering flow) is modelled as
vrmzy=v P E P2 [ Ly | g2, (3.10)
i or h h P, ot h

3.1.4 Fountain flow

At the flow front the no-flow BC at the mould wall is associated with a special form of
vertical convection — the fountain effect (e.g., [Tadmor & Gogos], p.600). We assume a
vertical front surface, kept by a continuous transport of fast moving particles from the centre

towards the wall. The neutral layer z,,, ([Advani], p.435) is defined by ¥ (z,,, )=V (=1).

neut
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For the isothermal velocity profile, z,,, = (2 + i)_]/ @ For the profile (3.5) the neutral layer

satisfies

T

" 2+1+ m’
Following ([Advani]) the fountaln effect means that the material order on the vertical front is
completely reversed for fluid elements moving faster than average at the front. A particle at
initial position z,(< z,,,) endsup at z,(>z,,, ), in general determined by the volume
balance

j[V(z) V]dz_j[V V(2))dz

z

and for (3 5) specifically
~ C ( ~l+ltm ) ~ C ( ~l+ttm )
z-y —— -2z, " )=2,- y —*—-\l-2, " " |.
1 ;2+%+m ' ’ ;2+%+m ’
At the wall surface, the maximum residence times are found close to the inlet — contrary to the
particle history below the neutral layer. In the isothermal case, a proportion

neut

neut

z

1/1 j[v (2)—¥,1dz = (24 Ly @/0)

r
of all fluid is subject to fountain convection, i.e. around 19% for a Newtonian liquid and a
vanishing percentage if n — 0.

In the implementation, the front nodes that are reached during a time step are treated in two

sub-steps. In the first sub-step, the fountain effect is modelled for every layer z,(> z,,, ),

accomplishing a temperature mixture with its mirror layer z,(< z,,,) . In the second sub-step,
modelled as a fixed percentage of the nominal time step, a succeeding standard conduction-
convection FD-equation is solved.

As an alternative to the reversing fountain effect, we consider a more conventional convection
upwards from the centre plane, but assumed to occur only at the front. To keep the front

straight (cf. Sec. 2.4.2) the net volume that is transported vertically at level z must be
proportional to the accumulated radial velocity surplus

[v,(z)=-%,1dz" =¥, -h-[0(Z)-71,
0
where z :=% and U is defined by (3.9). Thus

W(Z)—U(z) =% 22+ e (1_31+%+m)

determines the vertical velocity at the front as

V@)= [ ()T M = T ).
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3.2 PDEs and solution method

3.2 PDEs and solution method

This Section includes a discussion of the energy PDE and the solution method. We express
the problem by a system of PDEs for (U, /), where U is the internal energy and 4 is the non-
frozen cavity height. Apart from the angular subdivision into the two types of flow regions in
Fig. 1.1a we make an axial subdivision between fluid above and below the no-flow
temperature, and because of drastic simplification, the PDE is specially designed for all fluid
below the no-flow temperature and for stagnant fluid also above. Another argument, given in
Sec 3.2.1, for such a subdivision into regional PDEs is the discontinuity that the no-flow
temperature (melting point) makes for semi-crystalline materials, and the link between
temperatures and velocities (through /) for all thermoplastics. The well-posedness of the basic
PDE, linearized, in a fixed region of streaming flow, and its implications for the nonlinear
problem, is discussed in Appendix 4. In Sec. 3.2.2 the main solution strategy, time marching
and pseudo-radial marching, is described. In Sec 3.2.3 the outer iterative procedure is in
focus, for the position of the no-flow temperature, i.e. the frozen layer surface 4. The equation
to solve, f(h,t) =0, is a nonlinear differential relation for 2. We argue that, for fixed ¢ =¢, ,
all the f(h,t,)-terms are expected to decrease by 4, and that the extreme cases 7= H (no
frozen layer at all) and 4 = 0 (complete freezing, i.e. a case of incomplete filling) can easily
be identified. In Sec. 3.2.4 we are treating the inner iterative procedure, for the vertical (axial)
temperature profile 7'(h,¢,), given h. The discrete version will result in a local 1D-system of
nonlinear FD-equations to be solved. The main solution technique is the Newton-Raphson
(NR) method, supplied by a Goldstein-Armijo type of step length routine. An overall
objective function is used. Apart from an input-output data flow chart, two iteration flow
charts, for the active and passive flow regions of the cavity, are presented. In Sec. 3.2.5,
finally, the special handling of the cooling PDE is described. By a linearization of the
temperature evolution at the cavity wall surface during a time step, a series solution makes it
possible to update the interaction directly with the fluid equations. The discontinuity that
occurs when the hot front meets the cold wall is reduced, by shorter time steps at the front. A
further improvement is described in Appendix 2. If a particular form of heat capacity and
conductivity might do, the solid phase as well would benefit from a series solution, as treated
in Appendix 3.

3.2.1 General and regional melt PDEs

We shall formulate and solve an initial-boundary-value problem (IBVP), concerning the heat
balance during the filling phase, time 7€ (0,7 ,,], in a given centre-gated, plate-shaped cavity
domain X, of centre-plane extent r = (x,y)€ X and of constant gap width ze [-H,H].

Let x =(r,z) and let v, be the local (pseudo-radial) flow directional component. Since (see
Sec. 3.1) we will adjust v,, v_, 7 for changes in effective flow gap 4 = h(r,t) and since (see
(2.4)) i depends on T =T(x,¢) and on ¥, our model in its present form (cf. (2.6)) is described
by the PDE

pcP(T)[O;[T+vr(h,x,t) -O;FTJrvz(h,x,t)(;ZTj = i(ﬂ(T) -g)Jrn(T,h,x,t)- 72 (h,x,t). (3.11)
Here (z =)h is determined by the condition 7'(r,A,¢) = T,, . By the assumptions in Sec. 2.2.5
the coefficients ¢,(T), A(T) depend linearly on temperature 7. The viscosity 77 depends
nonlinearly on 7, and on /4, as do the velocities and the shear rate.
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3.2 PDEs and solution method

The PDE is quasi-linear (e.g., [Renardy & Rogers], p.45) and parabolic as defined by
[Renardy & Rogers], p.40, but not according to [Gustafsson et al.], p.273 — since 1D
conduction is assumed (i.e. one 2™ order derivative is missing = neglected). By the
transformation ([Ames], p.358)

V.= j‘/i(‘[)d‘[,

the quasi-linear PDE can be transformed into a semi-linear PDE
! (W+v(hxt) i+v(hxt) W) OjV
x(T ) or &

where k = 4/ pc, is the diffusivity and T =T (V) is uniquely determined, since

V'(T)= A(T) > 0. We perform such a substitution of variables in a special case only — see

App. 3. But in Sec. 3.3.1 below we will transform (3.11) into its conservative form

U 170 Jd U
7+f—( U)+—( U) = (K'o,)z)-i-?]j/, (3.12)

where U(T) = J. pc,(T")dT’ — which of course can be interpreted as a PDE for the internal
0

energy U. Anyhow, T =T (U) is uniquely determined, since U'(T) = pc,(T) > 0.

The cavity centre plane z =0 is considered as a symmetry plane, with BC % =0, and only

z 20 is explicitly modelled. At the wall surface z = H , in common with a separate cooling
model for the metallic mould (cavity wall) — see Section 3.2.5 below — we require continuous
local surface temperature and heat flux. At the internal moving boundary z = A(r,?), h< H ,
which separates frozen (’solid” s) and liquid (¢ ) melt, we impose conditions (BCs) on fixed
(no-flow) temperature 7 = 7,, and on balanced heat flux, including latent heat of
solidification. At the front a special treatment of the fountain effect (see Sec. 3.1.4) replaces
the free boundary BC. At the inlet r =0 a fixed temperature 7 = 7, is assumed (cf. Sec. 2.4).

As initial condition (IC), an empty mould cavity, with 7 = 7, at the inlet, is assumed.

The nonlinearity of (3.11) is most severe at the frozen layer surface z = &, in fact
representing a discontinuity of the coefficients c¢,,L,,,v, and 7. Moreover, v, ,v, and 7
depend on A(r,¢) . Furthermore, the uniformity of (3.11) is illusionary:

The flow front evolution is essentially given, since it is determined by the flow rates and by
the distance model. Both the local activation (front passage) time ¢, (r) and the local

stagnation (flow stop) time 7, (r)(>t,,(r)) are considered known. At each time 7 the plane

act

domain X is partitioned into three (disjoint) sets, corresponding to the flow conditions. One
set defines the points ahead of the flow front, the others are the active-flow set A(?) and the
passive-flow set B(t):

Ay ={re X|tet,, ()t ()}, B@)={reX|t=t, ().
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3.2 PDEs and solution method

For any r € X , the time interval [¢,,(1),¢,,, (1)) is the local streaming period and

stag
[, ()51 ) is the local stagnant period. Although equation (3.11) is generally applicable, it
can be substantially simplified for cavity regions of stagnant fluid and/or solid melt:

e The PDE for the temperatures in the frozen layer (phase s) is reduced to mere 1D heat
conduction, for ¢t = ¢, (r) at every r € X , since horizontal heat conduction is considered
negligible.

e In the stagnant period, i.e. for  2¢_(r) at every r € X , the PDE for the temperatures of

stag

the liquid phase (¢) is also reduced to mere 1D heat conduction.

These simplifications will lead to obviously simplified FD schemes — which are not explicitly
shown. Another simplification would occur if we were content with constant parameters
A,,¢,, in the solid phase or, more generally, if A4 (T') were proportional toc, (T), since

then the frozen layer might be handled by a series solution — see Appendix 3.

All these circumstances point at a reformulation of the problem: We consider the frozen
surface & = h(r,t) as a “primary” dependent variable, like 7' =T(x,¢), and end up with a
system of linked regional IBVPs, one for each phase of state (s, ) and for each of two flow
sets (active, passive). The regional energy equations are linked through / and the interface
condition

oT oT oh
/t(TM)(aZ) —/b(TM)(aZJ =LMPS'§ (r,)e XX(O’tﬁ[l]' (3.13)
s,z=h {,z=h

The additional IC is A(r,¢,,(r)) = H and the BC is A(0,¢) = H .

Let 4, ={(r,0)|0<t<t,,re A}, 4, ={(r,z,0)|0<t<1,,re A0),0<z<h(r,0)}.
The most general regional IBVP becomes the one that describes the heat balance in the liquid
phase of the active-flow set:

p,cm-[aT+vraT+vzaTj—a(ﬂ({aT)—ﬂ}"/Z:O (r,z,t) € 4,

T\ ot or dz ) oz oz

T=T, r=0, znelo, a0yl 314
a—T: z=0, (r,t)€4,,
oz
T=T, z=h, (r,t)e4,.

Both (3.14) and the discussion above presume that the no-flow temperature is attained in the
cavity gap. Otherwise, e.g. close to the inlet, an alternative BC of direct heat exchange with
the cavity wall has to be formulated at the wall surface — see the cooling model in Sec. 3.2.5
(also cf. App. 3). The other regional IBVPs (for passive ¢ and for s) are (weakly, i.e. at most
quadratically) nonlinear 1D true parabolic heat conduction PDEs.
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3.2 PDEs and solution method

3.2.2 Time marching and pseudo-radial marching

The distance model provides information about the average flow velocity v, at each position
r =(x,y)e X and time ¢, and implies a steady flow direction for the whole streaming period
of the filling. This means that the pseudo-circles, that describe the expanding flow front
according to the distance model, become isobars, i.e. of common pressure, during the whole
streaming period. At a given time the node points in our FD-routine should be treated in
logical flow-order, by starting from the inlet and ending up at the front. Now, even in an
application where the gap width varies, the front pseudo-circles (and isobars) define such a
steady partial (flow-) order, by the pseudo-radii r, for every (x,y)e X . We assume that all
transverse (angular) flow interaction — including any energy exchange — can be neglected so
that the flow can be considered 2D in space during the streaming period. The 2D energy
principle is a good approximation as long as the temperature varies slowly transversely. But
for a boundary stream line, i.e. close to a wall or a cavity region of stagnant fluid, the implicit
adiabatic condition is an undisputable simplification — although the boundary area is small, as
arule. An alternative would be to solve a full 3D problem — and lose the inherited simplicity
of the distance model. In our implementation we treat the horizontal positions in time-order
(time marching) and spatial pseudo-circle-order (-marching from inlet to front). The system
of FD equations that requires solution is then confined to the problems at the vertical (axial)
node levels, one 1D sub-problem for each fixed (x, y,?).

For the FD discretization we will distinguish pseudo-circles separated by a constant pseudo-
radial step Ar. In an application where the gap width varies, node points (x,y) are identified
as the intersection between the pseudo-circles and a set of stream lines (fluid trajectories). The
unique predecessor node of a nodal point is the point lying on the previous pseudo-circle and
on the same stream line. In case the gap width is constant and the cavity is star-shaped, the
flow front becomes circular and the stream lines become flow rays from the inlet.

3.2.3 Outer iteration: Surface of frozen layer

In Sec. 3.2.1 we could see that a natural approach is to solve the regional IBVPs, e.g. (3.14),
for T'=T(x,t) with a prescribed (provisional) non-frozen height % = a(r,¢) . The choice of 4,

to match (3.13), is then an outer problem. The implemented time and radial marching means
that we treat one time step k£ and pseudo-radial level i pair (£, i) at a time.

Formally the computation of / is performed in an outer iterative procedure. We consider the
heat balance for the movement of the layer surface 4 by solving (3.13), written as f'(h,¢) =0,

with
oT oT oh
hty=A1(T,) — -A,(T,) — -L —.
S(ht)=2/( M)[a j . ( M)(azl)” wPis,

Through the local vertical temperature profile T = T'(h,t), this is a nonlinear differential

s,z=h

equation for 4. In time step &, of length At, =¢, —¢t, |, at r =r,, the IC is h(r,,t, ) =h'".

In the discrete FD-version we wish to compute 4 = A(r,,t,) . Therefore we introduce for
radial level 7, time level k£ — apart from the fixed vertical levels — an extra (mobile) node
z=h/ to keep track of the local frozen layer surface. This node is characterised by a fixed
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3.2 PDEs and solution method

no-flow temperature 7, and it separates two cavity gap regions, ¢ = liquid phase
(0<z<h!)and s =solid phase (4} <z < H), of possibly different material parameters

A, p,c,. At the front (when i = k), the previous height 4" is taken as the result of an initial
fountain effect or front convection (see Sec. 3.1.4), normally /' = H . In general (when

i <k), we will use the FD approximation

oh hf—h'

R
An outer iteration means that a trial value 4 = A/ is evaluated. The heat fluxes through z = 4
at time ¢, are determined by the result 7 = T'(%,¢) of the inner temperature iterations (see next
Sec.). All three terms in the expression for f(4,t) are expected to be strictly decreasing
functions of 4 (= H —J , where d denotes the thickness of the frozen layer), since

e (1% term:) a fixed T, at z =k is to be matched by the local flux resulting from a
fixed cooling temperature 7 at the fixed position z = H + L (cf. Sec. 3.2.5),

o (2" term:) a fixed 7, W at z =h is to be matched by the local flux resulting from an
essentially constant temperature 7, at the fixed position z=0,

e (3" term:) enthalpy is absorbed (by the polymer) if g—}; >0.

Moreover, f(h,t,) becomes much less than zero by the first term if & — H (or T}, is

attained within the wall), and much greater than zero by the second term if 7 — 0 (or the
freezing is complete). Hence the singular states 2= H and /4 =0 can be identified. Otherwise

f(h,t,)=0 has exactly one solution 1 =h' € (0,H).

The updating of the trial value 4 is based upon accelerated linear extrapolation and weighted
quadratic interpolation/interval bisection, guaranteed to converge at least linearly. The initial

value is chosen by square-root extrapolation (see Sec. 3.1.3) from h,-k_] . Provided that the

convergence of the inner iterative (temperature) procedure can be proved, the overall
convergence is established.

3.2.4 Inner iteration: Vertical temperature profile

In the discrete version of (3.11), the time and radial marching means that we consider one pair
of discrete time ¢, and horizontal (radial) position r, at a time, and refer the problem to the
correct flow region, either active or passive. For fixed (k,7) the IBVPs of the two phases 7, s

are discretized differently, but the two sub-systems of FD equations — uncoupled since their
heat exchange is replaced by the interior BC T'=T,, at z = h(r,,t,) —for J +1 vertical

(axial) node level temperatures T = (T (r;,z;,1; ))jzo are treated simultaneously. Thus the PDE

turns into a local system of FD-equations f ; (T)=0 j=0,---,J,or f=0 for short. The
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3.2 PDEs and solution method

equations are nonlinear by the presence of the viscous energy term and the temperature
dependent parameters A,cp.

Let G = Vf denote the Jacobian matrix. For the FD-scheme that we will derive in Section
3.3.1, the partial derivatives will constitute a tri-diagonal matrix G = G(T). From a given

iterate T, new temperatures are searched along the Newton-Raphson direction u = -G ™'f .
For any linear f, and otherwise close to a solution of f =0, the optimal step length 1 is
expected. At a distance, step length control may be necessary. Consider an objective function

F = Z, f jz , minimised by the solution of the PDE system. The gradient vector of F satisfies

VF =2G"f . If G is non-singular and f # 0, then VF # 0 and the directional derivative
along the Newton-Raphson direction becomes VF Tu/ ‘u‘ =- 2‘f ‘2 / ‘u‘ < 0 — thus guaranteeing
descent of F. Our step length strategy is to accept step length 1 if the F-reduction exceeds a

predefined limit, e.g. 10% of VF"u . Otherwise we apply the Goldstein-Armijo algorithm
(e.g., [Ortega & Rheinboldt], p.503): the step length is halved until a proportionally reduced
limit is exceeded, or else the step length reaches a prescribed lower limit, e.g. 1/128. This
determines the new iterate T. If the partial derivatives in G are continuous and if the step
length is chosen properly, descent methods are guaranteed to converge to a true solution. If G
is positive definite, then damped Newton methods show super-linear convergence; with an
additional smoothness assumption of G the convergence becomes quadratic ([ibid.], p.312).

As a starting temperature point T in the first A-iteration, a weighted combination of the
temperature solutions at the same radial node, previous time, and at the preceding radial node,
same time, is used. In later A-iterations, the previous T(%)-solution is used as a starting point

T, adjusted to meet 7, at the new trial s-value. An alternative would be to use Richtmyer’s
linearization method (e.g., [Smith], p.144) as a start-up procedure.

As a backup procedure (e.g. in case of an almost singular Jacobian G), the steepest descent
direction u = —VF is applied, with initial step length s = F / ‘VF : , since this implies

F(T+s-u)=F(T)+s-VF(T)'u=0.

The exceptional case VF(T) =0, f(T) # 0 means that the iterative routine will stop ata T
that is not a solution. The risk of such a failure is investigated below in Section 3.3.2.

In Flowcharts 3.1-3, below, the data processing as well as the logic of the discrete FD-
solution routine is illustrated, for active-flow and passive-flow. For active-flow, Flowch. 3.2,
an angular equivalence is assumed, i.e. all nodes (of streaming fluid) on a radial level are
equivalent as to temperature evolution. (This is the implemented program version, i.e. the
special case where pseudo-radius and radius are synonymous.) For passive-flow, Flowch. 3.3,
we distinguish node groups of different flow history, on each radial level.

3.2.5 Cooling PDE and its series solution

Along the lines of an r-local, time step based FD-solution of the melt PDE, we formulate a
1D heat conduction model of the cooling problem. The model shall interact with our melt
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3.2 PDEs and solution method

model which, as an FD-output, delivers the temperature change b at the wall surface during
time step k and, as an input from the cooling model, receives the heat flux ¢, through the

wall surface. Consider a metallic mould (cavity wall) of vertical extension
Z’el0,L], z':=H+L-z (cavity ze [0, H]), where the temperature T .y at the cavity wall

surface z' = L is assumed to be a prescribed linear function of time (during time step k) — see
Figure 3.1 — and the temperature at the cooling channels z" =0 is constantly zero (BCs), i.e.
T denotes the excess temperature above a given cooling temperature 7. At local time ' =0,

t'=t—t,_, where t,_; denotes the initial time of step k, of length A¢, =1, —¢,_,, the
temperature profile f(z") is given (IC). In practice, a new trial b-value and fixed

a, f,C,(4t,),C,(At,) (see Fig. 3.1) determine g,,,,. When the final b-value has been found,
a, f are updated (for the next time step). The local IBVP ( x is constant) becomes

oT 9°T o
=K ,t (S O,L X O, At s
S G0 [0, ]x (0, 4, ]
7(0,t')=0 t'e (0,41, ]

T(L,t)=a+bt e (0,4, ],

T(z',0)= f(2)) Zelo,L]

I Iqs‘ur/‘_ﬂw [Cl(t )+b CZ(t )]
7=0 | | Wall | " el
(Te) | < 1

i Tsurf:a—"_bt I

| |

z=0 z=L

Figure 3.1 Input/output data at the series solution of the local cavity wall PDE. Time step k.

We look for a series solution. Let 7 =V + W , where V, W each satisfies a sub-problem

aV, :K.a%/ (2", e [0,L]x (0,4, ]
ot oz
V(0,£)=0 e (0,4,
V(Lt)=a+bt '€ (0,4, ],
V(z’,0) unspecified Zelo,L]
and
2
%I;V—K ‘—;Z/ (", e [0,L]x (0, 4z, ]
w(0,)=0 e (0,4,
W(L,t')=0 e (0,4,
W(Z'0)= f(z)-V(z0) Zelo,L]

The wall conduction problem is solved if the sub-problems are. Let y,, = % and take

’2 2
V,t)= £+bi~ 4z L ,
L L

6K

28



3.2 PDEs and solution method

W, t)= iWn -sin(u,z") exp(— K,unzt'),

n=1

([lrE)-U0)-sin(u, )z’

LN\N

Let a = f(L) (constant) and define g(z") = f(z) - T,

If g(z") has a Fourier sine series expansion g(z")=) g, -sin(,z"), then

n=l
W, =g, -2
KlLl)T

The initial temperature profile of the next time period, ]7(2') =T(z,4t,), is fixed by b and

T Z, ~/ 7

/(@) =(a+b'Atk)-z+g(Z )
20D (1 - exp(onu,2a1,)).
Ku L

g, =g, exp(—ku, At) +b-

n

At the wall surface,

(BTJ :a+bt +—+ZW,UH -D" exp( Kt )

82' 2= L 3K n=1
o L 2 &1 ’
=%+Zlgnlun '(_l)n eXp(_Klun )+b z+§_z lfexp(_’(#'ft)

=C,(t)+ C,(t')-b.
Here we are only interested in "= Az, . Thus C,(4¢,),C,(4t,) are locally fixed in time step &
and, as a response to a new b-value from the melt model, the updating computational work of

oT . .
Doy = Ay [8'] becomes a linear operation only.
: ).

The C,(¢’)-series converges absolutely for every ¢’ > 0, irrespectively of g(z’), and the
C, (¢")-series converges absolutely for every ¢"> 0. At the front, as 7 measures the

2-1)"

n

temperature above T, then a =T, =T, >>0,and f(z")=0.Here g, = -a , and the

, L , e . 2C, ,
C,(¢") -series diverges at ¢ =0, due to infinite initial heat flux. In this case, —~-¢'=C,

a

. . aT a . . R

holds in general. This means that p =C,- > +b | =0 is obtained at a time ¢’ =1,
1z ). -1 t

fulfilling b-¢, =—1a, i.e. when the initial temperature difference between melt and wall is

halved. If necessary, because of the basic linear approximation of flux and temperature, the
front time step should be subdivided into sub-steps much shorter than ¢, . In practice the sub-

step control at the front is activated, if the initial temperature difference melt-wall is reduced
by more than a prescribed percentage during At, . Behind the front, since a = (L), i.e.

g(L)=0, the C,(¢') -series is expected to converge rapidly also at ¢ =0.

To cope with the singularity for "= 0 at the front, i.e. when the hot melt meets the cold
metal, an improved initial time-substep is described in App. 2, where we replace the slowly
converging series solution by an analytical square-root solution, according to Sec. 3.1.3.

29



Flowchart 3.1 Data processing.

B,Ty,K,

Estimation of
viscosity parameters

Material data
A,cp Linear phase-specific functions of T
p  Phase-specific melt density

\ Ty (all materials:) No-flow temperature

L,, (semi-crystalline material:) Latent heat of solidif.

Simulation parameters

J Highest axial z-node level

K Number of time steps

N Highest series term wall solution

NVr Highest series term velocity & viscosity z-factor

zBeth Vertical transformation factor
uPhi  Number of node rays

uFountL Number of fountain flow z-levels

bInj  Indicator for computing times of injection
bInterp Indicator for using interpolation in A-iter.
bFount Indicator for applying fountain flow
bPhiEff Indicator for using effective flow angle
dPhiEff" Effective flow angle (per sector & side)
FhEps Residual error bound in #-eqn Fh =0
FTEps Residual error bound per T-eqn FT =0

hEps_1 Upper bound h-distance between

positions of negative and positive Fh
puFT Armijo reduction limit in T-eqns F7 =0
udT (active-flow:) Upper bound 7T-change per T-iter.
uTlter Maximum number of NR (& backup) T-iter.s
uTSteplter Maximum number of Armijo7-step-iter.s
pTCrit Lower bound of 7T-reduction per time step

K,, B Viscosity normed & pressure-related param.s

B,Ty Viscosity temperature-related parameters
n Power-law index
A, Thermal conductivity of metal mould

(pcp),, Density times heat capacity of metal mould

T

Cavity and wall geometry

R (disk-shaped cavity:) Radius

x,y (or star-shaped cavity:) Corners

H Nominal height (half-gap width) of cavity

H |, (constant:) Depth of cooling circuit in metal mould

{r,H,, (r)} (or variable:)File with radial profile of ditto

Process parameters
T,, Ty Inlet and cooling temperatures

qV s (volume controlled transfer to pressure ctrl:)

% Cavity volume
tV g (or time-controlled ditto:) Time

{t,0(?)} Pairs of time and inflow rate values

uP,;, Py Upper pressure bound & constant front pressure

K=

Active-flow

computation
Flowchart 3.

2

v

Passive-flow
computation
Flowchart 3.

> ‘\

30

Results
h,T,p,v,,v,,7 atthe end of filling,

and their time evolutions at a selection of nodes
(bInj=True:) Times of injection
Iteration statistics

Picture

production
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3.3 FD scheme

3.3 FD scheme

In this Section the FD-scheme is derived and examined. The discretization of the PDE (3.11)
is made by control volumes in Sec 3.3.1, in such a way that truncation errors become small.
Several potential FD schemes have been investigated in this project, but this thesis describes a
time-implicit scheme only. Since the temperature is expected to fall rapidly near the cavity
wall, the density of the gap-wise (axial), discrete node levels should increase towards the wall,
and the transformation we find does not reduce the order of accuracy. Another principle is to
base our discretization upon a conservative form of the PDE, in consideration of phase-
specific, linear heat capacity and conductivity functions of temperature, according to our
conclusions in Sec. 2.2.5. In Sec. 3.3.2 we investigate the existence and uniqueness of the
solution of the discretized problem, and formulate operational conditions for the NR routine
to converge. An FD-equation is said to be convergent if its solution approaches the PDE
solution as the step sizes tend to 0. For linear and linearized well-posed PDEs in simple

geometries, convergence in L* -norm of one-step FD-schemes is guaranteed by consistency
and stability, according to the Lax-Richtmyer equivalence theorem (e.g., [Strikwerda], p.222).
Consistency, i.e. that the truncation error tends to 0 as the step sizes do, is guaranteed by our
choice of FD scheme — see Sec. 3.3.1 — and by the convergence of our FD solution method —
see Sec. 3.3.2. Stability means that the FD routine does not amplify errors. Although stability
of a linearized scheme is no guarantee for overall stability, we investigate such schemes in
Appendix 5, in order to identify crucial quantities for the nonlinear problem. As for fluid
acceleration, the restrictions are similar to the well-posedness conditions in App. 4. But the

possibility of instabilities due to 4 | 0 now becomes evident.

3.3.1 Control volume approach and truncation error

Assuming one inlet at » =0, we consider a node O at radius » and a surrounding small cavity
volume with radial extension (r —1 Ar,r +4 4r), axial extension Az and covering the whole

active flow angle ¢, i.e. having the volume measure y,, =@, rArAz . The difference

between the PDE-terms and the approximating FD-equation terms for one and the same
temperature distribution is the truncation error. Consistency now means that the truncation
error tends to zero if the step sizes Ar, Az do. To prepare for an analysis by control volumes,
we introduce a local coordinate system (7,Z) surrounding node O. The third, angular,
dimension is implicit. Also time is implicit in the non-dynamic PDE terms below, since all
function evaluations are assumed to take place at the current time, i.e. without time error. The
explicit equation at O represents the heat balance within a rectangle (control volume) n-w-s-e,
the boundaries being placed half ways between O and each of its four neighbour nodes N, W,
S and E. The eastward (flow direction) step size Ar is assumed fixed; thus e = —w =1Ar /2
and Ar = e—w. However, the northward (vertical) step size Az is allowed to vary; thus

n# —s(>0) may hold in Az :=n—s(=n+|s|). This makes the control volume approach
useful, also in representing the energy weight of the corresponding FD-equation, by the
volume measure g, . The local coordinates (7,Z) of the surrounding node points become

N:=(02n), W:=(=Ar,0), S:=(0,25), E:=(Ar,0) —see Figure 3.2.
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Figure 3.2 Control volume.

First, consider the conduction term of the PDE, represented by

wirne =[] | 232 Yo+ gz =, [ [ 2 4% hetrs
p? R s

A PDE is said to be n conservative form (see, e.g., [Ozisik], p.5), if the coefficients of the
derivative terms are constant. Here the conductivity 4 (cf. Sec. 2.2.2) is assumed to be a
linear function of temperature, 4 =: A, + 4,T . Letting L(T) = (4, ++ A7) T the integral
takes the conservative form
7_ dL dL
Icond,PDE act jj (r + r)dw ¢act J.|:(0}j (&Zj :|(r + r)dN
w n

ws

L
In a more general setting, introducing u(¥,2) =@, - (r +7)- g the integral is of type

]cond,PDE = J.[u(75 I’l) - M(?,S)}fl;‘ .
Assume that u is an analytic function of (7,Z) in a neighbourhood of (0,0), i.e. of node O.

Then u can be described locally by the power series u(7,2) = Zu ijFiEf , convergent for

i,j=0
sufficiently small |7 |,| 2 |. Now the integral can be evaluated by termwise integration and use
of e=—w=4r/2 as

oo

1 .
_ i+l 1+1
Icnnd,PDE - Z uij . l(e
o0 it

= ug Ar Az + ugy Ar(n®—| s ) + ugy Ar(n’+ | s | )+Eu21Ar3Az +...

where higher order terms of Ar, Az are omitted.
If Tis analytic at O, then termwise u, T power series identification in

Ar2m+1

)= Y, 1)22,,,[f—(—|s|>~"]=

m=0;=1
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3.3 FD scheme

”(752)[: Puet " (1 +7) gj) = Pyt (r+7)(/10?):+/10T3:\J

yields

[+

J

1
ulj =¢act |:ﬂ’ (]+1)T/+1+Z'l Z ] Ttlj-f—l/ 1/j|

i'=0 j'=

i-1 j+l
+¢acl ﬂ’ (]+1)le+1+/ll ] i—i" 1/+1]TZJ'

1
i'=0 j'=1

In order to cancel the leading term of / by a matching FD-discretization /7, ,, wWe

cond ,PDE
evaluate and weigh A, T'at N, O, S. The basic approximation is

Icond,PDE = et J‘|:(i§j (ZIZJ\J :|(I"+I")f =

w

ol ol
{wa{um

Consistent heat flow across the borders between adjacent control volumes is accomplished by
using the implicit central difference scheme

L(Ty) - L(Ty,) _ L(T,) — L(Ts) u
1 = =1 T -1 T S P
cond ,FD |: 2n 2 ‘ s | AZ ( ) ( ) | ‘ AZ
where T =1(T, +T,), T, =+(T, +T,).Then
[cond,PDE _Icond,FD = _%uOZAr(nz_ | s ‘2)_u03Ar(n3+ | N ‘3)+éu21Ar3AZ+""

If (n—|s D/Az” — const #0 as Az — 0, 1.e. n—|s|= O(Az"), the error magnitude becomes
Uy - O(Ar* + Az™"721) 'Hence it is unaffected for p >2 (where fixed step size corresponds
to p — o). Since the steepest temperature variation occurs at the mould wall and since
freezing is in focus, the axial step sizes Az should decrease towards the wall. Although p =1

serves these demands, including, e.g., any geometric series of diminishing node distances, the
disadvantage is a reduced order of accuracy. Instead, we use a transformation from z e [0, H ]

to a uniform grid in the computational domain ¢ €[0,1], generated by (cf. [Ozisik], p.315):

In A(z) A(z):_ﬂ—i_iH 5 B

InB _z B-1
p H

=

where [ is a parameter, f> 1.
The inverse transformation is
_BB-D
B+l
Here a constant space step A¢ is applied to the computational domain.

A full transformation means that also the PDE is transformed. However, we prefer to work in
z-space — alas a non-constant step size Az.
The leading transformation derivatives are



3.3 FD scheme

;o 1 o (BS+D)?
o { (2 2:|_H'1nB'ﬂ2'4B§(>O)’
H-InB-| S —( )
H
£ 41)2(BY -
()= 2z _ (BS+D)*(B¥ -1)

H

As for the decisive (dimensioning) p-value we realize that, since {”(z) > 0 for z > 0
(£ >0),{’(z) will increase by z. Hence the critical behaviour is close to the wall surface,

2P H?-InB-B-8B%
H® InB- ﬂz—(zj

where z=H ,so { =1, and consecutive step sizes satisfy

-Az? = O(AZ?).

8BH
Thus p >2 everywhere (when A¢ 1 0), and the truncation error is unaffected.

As for the conservative form of the two convection terms, the coefficient p, (cf. Sec. 2.2.2) is
assumed constant but c,,, (cf. Sec. 2.2.1) is a linear function of 7, ¢, , =: ¢, +¢,T . Consider

the internal energy U(T) == p, (co +1cT ) T and let v denote the velocity vector. By the
equation of continuity (the fluid is incompressible) the convection terms can be put into the
conservative form

oT oT

PiCp ﬁ(T)'[VrJ"V: j = picp,(T)-(v.gradT) =
’ or oz ’ .

=U(T)-divv+v.gradU(T) = div[vU(T)]
By use of Gauss’s theorem the corresponding PDE-integral on the control volume can be
written

n e

Leowopo = Pac- | L+ P UL = [0+ F WU JE + 0y, - [ 12U, = [0 Jor 4+ 707

By letting u(¥,2) =¢,,-(r+7)-v,U, bounded for v, o< 1/(r +7)if r +7 — 0, the first

integral of 1, ppr becomes

[cunvl,PDE = J.{u(e, Z)—u(w, E‘)}dzw .

In a standard up-winding FD-scheme / is approximated (cf. Fig. 3.2) by

convl,PDE
Icmlvl,FD = (uO _uW)AZ .

~ir~

Assuming a series expansion u(7,z) = Zu”r Z/, the error becomes
i,j=0

oo Ar2m+l nj+1 _(_| s Djﬂ oo ;
1 o1 PDE _[convl,FD = Z Us i) 2o : 1 + zufo (_ Ar) A=
m,j=0 J+ i=1

= U A Az = 2u g AP Az + 1w, Ar(n® = | s P+ = gy, - O(Ar + ™02,

If we let u(7.,2) =@, - (r +7)-v.U, the second integral of /,,,, ppy turns into
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3.3 FD scheme

[conVZ,PDE = I{M(F, n) - M(F,S)W .

It resembles the final conduction integral 1, pp;» but now the integrand u can be evaluated

at N, O, S without further discretization error. We implement the “central” difference scheme
(cf. Fig. 3.2)

— 1
Iconv2,FD ‘_ E(uN _uS )Ar >

with a truncation error of order #;, - O(Ar* + Az™"P21y

Now consider the viscosity source term 7, . By introducing u(7,2) =@, - (r +7) -1y’

for the integrand, we get

ne . oo Ar2m+1 nj+1 _(_|SDH1
Ivisc,PDE = J.J.u(r ,Z)dFdZ = Z uz,w. T . -
s w m,j=0 (Zm + 1)2 ] +1
If discretization is made at node O, i.e. an implicit 1-point scheme
Ivisc,FD = MOAI’AZ b}

the corresponding error magnitude is 4, - O(Ar* + Azminlp ’2]) .

The time-dependent term is expressed in conservative form by U(T) and

UT) o of _ or
ai ):g[pf(co+%CIT)T]=,0(4(CO+CIT) o Pecp ()= ot

as

1L gyn.ppE = Pact J.J.Pf p( (’”+’”)de Pact - Ij (r+r)drdz,

sw

which is of the same form as 7, ,,, and the results above apply. If node O takes index
values (i, j, k), k= current time level, then the standard backward-time approximation is
U _UTH-UT _ au
E3 At At
Apart from the spatial truncation error, this adds a further term g, - O(At, +...).

Let us summarize the general FD scheme for the liquid phase ¢ of streaming fluid. In the
system of equations, the control volume weights u, differ only by Az. Therefore the

weighted FD equation, that corresponds to PDE (3.12) or (3.11), is written

AU Az A
Lt {(v U)o —0,U)y ~(1—:ﬂ+;~[(vZU)N ~(v.U)s]=
:ﬂ»(fn)ji—ﬂ( ) 0 S, A 777/ (3.15)

The FD-scheme has to be modified at the boundaries (cf. Sec. 2.4.1): At the mould (cavity
wall) surface z = H the northern conduction term of 7,,,; p is replaced by the heat flux

taken from the wall solution, and the two convection terms by 7, ,, =0 (no-slip v, =0)
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3.3 FD scheme

and 1, pp = Ardz-(uy, —ug)/2 s |, respectively.
At the surface of the frozen layer z = A(r,¢), regarded as the local position » for the last node
O in the liquid phase, the northern conduction term is based upon temperature 7, as
oL _ L(T,)-L({T,)
(%),

and the heat flux across /4 is extrapolated as

[E)Lj (aLj +(aLj iy T Ts| ni2
oz ), \oz 0z ), U 20s| | n/2+]s]

and the vertical convection term is replaced by (v,U), —1- [(VZU )o —W.U) S].

n

For converging tapered flow the radial convection 7, , is approximated as above, but for

expanding tapered flow and nodes O with z close to 4, 1, s

is exchanged for an upwind-
ing from the radial position between W and O where # hits vertical level z (i.e. where v, =0).
The symmetry (middle) plane node z, = 0 is regarded as the centre of a control volume

between n =z /2 and s =z /2 =-n,where z_; =—z, is a fictitious, symmetrically placed

. T
node. The symmetry conditions (cf. Sec 2.4.1) mean ?}— = aavz
z z

T(z)=T(z,), v,(z;) =—v,(z_,) etc. By applying the ordinary FD-scheme at z,, with halved

=0 at z,, and

weight, the order of accuracy will not decrease (cf. [Ozisik], p.47).
The first radial node level has radius » = 4 and the preceding node level corresponds to the
inlet, with a cylindrical extension of radius 4 Ar .

The general FD schemes for phase ¢ of stagnant fluid and for the solid phase s of streaming
as well as stagnant fluid are simplifications of (3.15) — without the convective and viscous
energy terms.

3.3.2 Convergence of inner iterations

In Sec 3.3.1 we introduced the notations f”n =5Ty+T,), 71 =1(T, +T§) and
U =p, (cO +3cT ) T, where c,, =:¢, +c,T . Denote the diffusivity of the liquid phase by
x,(T)=A,(T)/p,c,,(T). The FD-character becomes more obvious if we divide the

weighted FD equation (3.15) by 4z, to get an unweighted equation of finite differences for
the internal energy U):
AU

Ar 1
E + E |:(V U)() (V,‘U)W ’ (1 - rj:| + E ’ [(VZU)N - (VZU)S]

1 .~ U, -U U,-Ug
——— | x(T)- N YO _ (T
Az{f(") o (1) 205 } ny'.
Here the temperature 7 is uniquely determined from Uas

T=- (2U/p[)/(co el v 20U p, ) .

To emphasize the discrete character of the equation, replace the local node notations O etc. by
indices — radial level i, vertical level j and time level £, as follows
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3.3 FD scheme

U; =UT)), Tf=T(r,z,t,).
During an A-iteration, a trial value of the frozen layer surface 4 = h(r,t,) is fixed. Then
v,,v, and 7 become locally fixed, but 77 and (maybe) x, depend upon 7. The upper index k
is used to mark this implicity for 77 , x,, making the (unweighted) FD equation nonlinear:

k k-1 k k k k
U -Uj + VUi = Vi, (1-ar/r, )UH,_/. + Vi Ui =V aUi o
Aty Ar 24,
k k k k
1 k Ujm=-Uy Uy =Ui k(. 2
| KT 5 K =1y '(7@/) . (3.16)
; 2n; 2|s; |
J J J

In the inner iterative procedure for the active-flow cavity region a system of J +1 equations
of type (3.16) is solved for (U ;‘ )j:o (in reality for (T,.;‘ )Lo ), subdivided into two disjoint sets,

of liquid and solid fluid, modified at the boundaries and simplified in the solid phase. In each
phase of state let the system be written f =0 (LHS — RHS of (3.16)). An iteration of the
Newton-Raphson (NR) method means that the vector T of 7-variables is changed by an
amount u satisfying Gu = —f , where f and the tri-diagonal Jacobian matrix G are evaluated at
the current T-iterate. Here Thomas’s algorithm, i.e. simple LU-factorization (e.g., [Ozisik],
p.50) is well suited, producing the solution u by O(J) operations. For the solid phase and for
the whole passive-flow region of the cavity, the viscous energy term disappears. Then if x
does not depend upon temperature, G becomes constant, i.e. (3.16) is just a set of linear
equations (and only one NR-iteration is needed).

For the general iterative procedure to be well-defined, G needs to be non-singular. We will
show that G is strictly diagonally dominant. Let the liquid phase correspond to the vertical
levels je [0, jh], with weights Az, =n +|s; |, n; s, |.

k k
| K (Tl/ ) | X (T'/ )
Moreover, let ay ;=3 | ———+v_; |, a5, =7" -v_; |- We focus on the general

2 n, |5 |
J J

expression, i.e. 0 < j < jh. The three non-zero elements in G-row j are

_ k
Gj‘j—l = _pfcp,f(Ti,j-l)'aN,j—l

1 vy 7 B
G, =pfc,,y/(Ti;‘)~{Az{+ Ty }+aN,, +a5711

4, A pz*cp,e(Tijk) (T,,k _Tg)z

k
Gj,j+] ==PCp, (Ti,j+l) A i
Assume that conduction dominates over vertical convection, in the sense that a, ,a; > 0. This
is a numerical and not a physical restriction, since it can be accomplished by sufficiently small

step lengths (Azj )j/; in any temperature region of interest. Now all the terms of G, are

0

positive, since v >0 (upwinding) and B > 0 (Arrhenius factor for real materials, cf. (2.4)).

i

The non-zero elements in column j fulfil

L vy 7 B
|G, |-G, 1=1G., = pc (T,k)Az — C— >
! Y s s N4y A p/c[’,/f(T;'jk) (T,,A -T,)’

Therefore G is an M-matrix ([Ortega], p.223), strictly (and irreducibly) diagonally dominant.
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3.3 FD scheme

Hence (e.g., [Ortega & Rheinboldt], p.48) G is invertible with G™' > 0, and the NR-iterates are
well-defined. Since the diagonal G-elements are positive, the diagonal dominance also ensures

jh . .
that the eigenvalues have a positive real part. The temperature vector T = (T £ )j=0 varies in an
open, convex set D, < R""', D, =={Te R/"|T, +& < T} <T_,Vj}, where T, is defined in

(2.4), and £(>0), T are artificial bounds. Now ([ibid.], p.143) T — f is a one-to-one
mapping in D, , and f =0 has at most one solution in D, . We want to show that a solution

always exists, or else that unacceptably high or low temperatures (above 7., or below T +¢€)

can be identified. Through a variable transformation — the mapping T -V, T =T, te Ui

v, = ln(T,.;‘ -T B) — the new variable vector V = (V. )jio defines a new mapping V — f,

J
f(V) =f(T(V)) in the open, convex set D, ={Ve R/ Vg <V; <V,,Vj}, where
Ve =lne,V_ =In(T, —T,).Intheory, €=0 and 7, =+oo,ie. Vy :=—cc and V_ :=+oo, are

possible. In case «,(T) and/or ¢, ,(T) are strictly decreasing functions of 7, the positivity
constraints a,,a, >0 will imply a theoretical bound 7 < 4. In practice, the acceptable
temperatures of the filling phase are far below the zeroes of «,(T), c,,(T) and any

application that leads to a solution above these practical acceptance limits should be interpreted
as non-solvable. The Jacobian G(V)of f(V)satisfies G(V) = G(T(V))Diag(e" ), i.e. with

Az .
B=p, -minfcp, (T +&),cp,(T.)] Aitj the non-zero elements in column ; fulfil
k

1Gy1=1G o 1=1G = (G, 1-1G,0, |-Gy 1)>

>,Be + Az ny;/UBe i >2,/,BAZ 771,7,,3 L,
This lower bound @, (> 0) is well-defined whenever & </4z,757°yB/ 8 <e'~. Thus (V) is

uniformly monotone in D, . For V == —co, V_ = +4oo ([ibid.], p.143) fisa homeo-morphism
of R™' onto R™' and f(V)=0,ie. f(T(V))=0, has exactly one solution T.

In order to apply the Newton-Mysovskii Theorem ([ibid.], p.412) we have to show that
(i): G satisfies a Lipschitz condition, and (ii): HG"1 H is bounded above, for some norm.

Property (i) follows at once, since we realize that f is twice-continuously differentiable.

To verify (ii) we start by showing that |G|| is bounded below. Take & := L %mh X7 and let
£ Jel0,)

‘Z(G)‘min denote the smallest absolute eigenvalue of G. Now since all diagonal elements {G jj}

are real and positive, the Gersgorin Circle Theorem ([ibid.], p.49) yields ‘/"t(G)‘ . 2o in Dy.

The L? -norm of the real matrix G is HGH2 = sup HGXH2 A A (G"G) . This is the largest
I, =1

singular value of G, satisfying ([Horn & Johnson], p.176) y/4,..(G'G) 2| A(G) |, -
Hence we get a positive lower norm bound in Dy,

HGH2 Zl J(G) ‘max>‘ ﬂ(G) |mm—
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3.3 FD scheme

Next we will use this lower bound to derive a general upper bound for HG’1 Hz .

The £2-norm of G~ is 67| =/2,,.(G76) ) = 1/ {2 (G7G).

The products of all eigenvalues and all singular values, respectively, satisfy ([ibid.], p.171)
Jh Jh
(detG|=)T{4,(GTG) =[[T14,(G)
J=0 J=0

Hence
(61, A G676 = (2 G676 A (676 2 [T /2, (G7G) =
=0

and finally

67, =V A0in 676G < (G, )" fc"t = . G517

a general upper norm bound. This shows property (ii).
(In particular, if we assume that G is normal, i.e. (e.g., [Meyer], p.547) has a complete set of
jh+1 orthonormal eigenvectors {zj }, corresponding to the eigenvalues {/1 j}, then any unit

> ajh+l

jh
[14,(6)
J=0

jh
. . T . .
length eigenvector z, corresponding to 4,,(G" G), can be written z = Z p;z; with
Jj=0

Jh
l=z2'z= Z| p; |*, where z* denotes the transposed complex conjugate of z. We get
Jj=0

Aoin(GTG) = 2,..(G'G)-2’'2=2"G"Gz = (Gz)'Gz =

(S| Sana - flof 2 S -
J J J J

and receive the stronger bound HG_I Hz <l/a=M in D, .)

Now if the first NR-iterate T, is chosen such that the start direction u,,, = -G~ (T o) )E(Tp))
has a sufficiently small norm, then the Newton-Mysovskii Theorem guarantees that the iterates
converge to the unique solution. In practice, as a security measure (see Sec. 3.2.4) we evaluate

the objective function F :=f"f, and use the damped Newton method if necessary. According
to [Dennis & Schnabel], p.121, the problem properties imply that the damped NR iterations &

lead to f(T,,) =0 for some k20, or
fim - ) Yo _
o Hu(") 2

The directional derivative satisfies, using inequality (3.17),
AT S S
ol Jel, le7 L M

>

i.e. it tends to O only if Hf H , does, and not because VI and u are orthogonal. Thus the inner

iterative procedure converges globally to a solution of f =0, irrespectively of starting point.
In theory we have to accept that the bounds 7 + £, 7., may be violated during the iteration
process, before the solution is found.
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4.1 Special modelling: Radial flow

4 Application: Circular plate

Our method has been implemented for two different applications. The first type, disk shaped
cavities, is studied in this Chapter. In Sec. 4.1 we are modelling the disk flow. The discrete
time steps are chosen such that the radial expansion per step becomes constant. A time step is
primarily determined from the (prescribed) inflow rate and the volume to fill, but we also
consider the shrinkage effect that solidification has upon the volume to fill, due to a density
variation by temperature. In a true circular case a front expansion rate according to the
distance model is uncontroversial. In Sec. 4.2 two specific materials, one amorphous poly-
carbonate (PC) and one semi-crystalline polyethylene (HDPE) are modelled. Data for the two
materials come from the data base of the FEM-FD-program Moldflow (of Moldflow Corp.).
We have made a somewhat critical comment on the Moldflow PVT, 2™ order viscosity and
enthalpy models. Unlike the 3D-capacity of Moldflow in modelling mould cavity and metal
mould, we rely on a 2D flow model and a 1D cooling model, describing the distance from the
cavity wall surface to the cooling lines as radially varying only. In Sec. 4.3 the comparison
runs, two of each material, are discussed. The Moldflow modelling and runs have been
performed by [Valtonen]. First the time evolution of pressure is studied. We have tried both
the isothermal viscosity model and the extension described in Sec 3.1.2. Next the tempera-
tures are investigated, as to time evolution as well as radial distribution and vertical profile at
the end of filling. Our two front models are compared, and as an alternative a constant depth
of the cooling lines is tried. Finally the radial profiles of the frozen layer (no-flow temperature
isotherm) at the end of filling are evaluated. In Sec. 4.4 we are investigating whether our
built-in, more advanced material models have any visible effect upon the basic HDPE run. In
this respect a latent heat of crystallisation and a phase-specific linear heat capacity, a phase-
specific linear heat conductivity and a pressure dependent viscosity are evaluated. In Sec. 4.5
some aspects of the method performance are documented, primarily the number of outer (%)
and inner (7)) iterations, and their relation to the number of vertical node levels.

4.1 Special modelling: Radial flow

Because of the expansion of the frozen layer, the radial flow has a vertical component
compensating for the contraction due to solidification (as p, > p,). When radial level i of
time level & is treated numerically, by the method of radial marching, the vertical expansion
— Ah! (h denotes non-frozen height) of the frozen layer at the preceding radial levels

i'=1,...,i—1 during A¢, is known. If the phase-change factor (cf. Sec. 3.1.3) is denoted
o=p,/p,—1 and @, is the average active flow angle during A¢, (with @, =27 in the
circular application), then the “lost” liquid volume up to i is

ql, = —ia 24h - @ rAr .
To estimate a n(;nllinal mean radial velocity, the melt at 7 is assumed to move radially from
r,—d/2 to r,+d/2, where the local distance d is given by the inflow rate Q, and

0,4, _qf—l =0, .2hik71rid'
The nominal velocity becomes

T da _ 0, —qt, /4, _

o At [ '2hi,Hrf

In our time-implicit implementation ﬁ,f, is based upon ¢! ,h’ instead of ¢*,,h"".
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Analogously, the front position is corrected (afterwards). During Af, the front is expected to
expand from 7, — 4r/2 to r, + Ar/2, by filling an area A4, . The “lost” liquid volume of the
previous time level & —1 is considered when the new time step A, is determined by the
nominal half-width A and

Q,At, =2H - M, +q.°,.
After that, the rate is corrected to measure the filling of new area exclusively,

0, =0, _‘]/]:1] /Atk .

4.2 Materials data

Simulation runs for comparison have been performed by [Valtonen], using the commercial
software Moldflow of Moldflow Corp., version 2.0.1. From the Moldflow (“Mfl” below) data
base of standard materials, one amorphous thermoplastic — the polycarbonate Makrolon 2205
of Bayer AG (“PC* below) — and one semi-crystalline material — the high density
polyethylene Lupolen 5031 L of Basf AG (“HDPE” below) — were (arbitrarily) chosen. One
run of normal processing conditions (“warm” below) and one of low temperature filling
(“cold” below) were simulated for each material. The circular cavity radius was chosen
extreme (40 cm) to provoke freezing. The plate thickness is 3 mm and the inlet is
(unintentionally) 1.5 cm from the plate centre, i.e. the inlet to wall distance varies between
38.5 and 41.5 cm in the Mfl runs. The comments below on Mfl are solely based upon the four
simulation runs. According to the materials documentation, the Mfl model assumes constant
heat conductivity, constant specific heat and the existence of a no-flow temperature. The no-

flow temperatures deviate a lot from the reported melting point 7,, =131 °C for Lupolen

(MatWeb, www.matweb.com) and from the glass transition temperature 7, =148 “C for

Makrolon (Bayer product information, www.makrolon.com/eigenschaften), which is
confusing — also see comment on Fig. 4.1 below. No specific modelling of the latent heat of
crystallization seems to exist. All convective heat transfer in the z-direction is ignored

([Kennedy], p.71). The shear rate is approximated as = ‘Bv,. / Bz‘ ([ibid.], p.70). The density

variations are described by a thermodynamic PVT model — cf. [ibid.], p.28-29, or considered
as incompressible ([ibid.], p.60). The underlying data points for pressure, specific volume and
temperature, as well as the model coefficients, are documented in the Mfl data base. However,
as can be seen from Figure 4.1 — which we have constructed from the 13 given calibration
points of Lupolen and which shows the two phase-specific Mfl sub-models — the modelling
routine seems imperfect: as we understand Mfl data, the sub-model for the liquid phase does
not fit the calibration points (and the Mfl no-flow value 120 °C is lower than can be
estimated from Fig. 4.1). In order to imitate the Mfl model, we have to use almost the same
density in both phases — and therefore the contraction effect of solidification becomes
(unrealistically) small. (According to the Mfl data base, the generic densities p =1/V of the
solid and liquid phases are 0.952 and 0.809, respectively; the latter value fits the data points in
Fig. 4.1 but is contradictory to the sub-model for the liquid phase.) As to viscosity, the user
may choose between a 1% and a 2™ order model — cf. [Kennedy], p.11. According to the 2™
order model, In7 is a 2™ order polynomial of T and In 7, and no theoretical, asymptotic
results are used — cf. Sec. 2.2.3. Such modelling is a risky business, especially if the
calibration points are few and close — see Figure 4.2, where the 6-parameter 2™ order
Moldflow model and the 6 underlying data points of Makrolon are shown. There are two
kinds of questionable behaviour: an increase by Iny for fixed 7 at low In 7 -values, and an
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increase by 7' for fixed Iny, shown by curves crossing at high In y -values. The latter model

weakness is merely theoretical — the shear rate is below 10* s~ here — but the former is non-
negligible: in our normal processing run for Makrolon, run PC-warm, 21% of the time-node
registrations fall within the first questionable region. Therefore the 2™ order viscosity model
has not been chosen here. The 1* order model is a power-law model with multiplicative
temperature dependence, of type exp(—cT), making the deviations from an Arrhenius-type

model relatively small. For Makrolon the Mfl viscosity shows a 20-fold decrease from 7,

no— flow

to 7, — a support for our non-isothermal model.

The materials data of the basic simulation runs are found in Table 4.1, where our fitted values
to the Mfl density and viscosity models are marked by asterisks. Data seem somewhat
uncertain, since e.g. Makrolon heat capacity 1170 J/kg"C and thermal conductivity

0.2 W/m°C are found in the online materials database MatWeb.

In the Mfl runs, the metal mould is modelled by [Valtonen] as a square block with sides 100
cm and height 50 cm. Two circular cooling circuits of diameter 30 mm, with c/c distance 10
cm are modelled — cf. Figure 4.3. For each circuit the distance between the inlet and outlet
channel legs is 40 cm and the cross leg is situated 30 cm from the closest mould side surface.
Thus the horizontal distance between the points on the cavity wall surface and the centre of
the closest cooling line varies between 0 and 20 cm, with an average of 8.9 cm, and the
overall distance to the closest tube wall varies between 3.5 and 19.1 cm, with an average of
9.15 cm — see Figure 4.4, where the radial variation is shown (inlet at » =0). Four Mfl nodes,
selected for special study, are also marked. Our FD program accepts a constant distance H,

to the closest tube wall or a specified radial distribution, like the one in Fig. 4.4. The standard
Mfl wall parameters are p, =7800kg/m*>, A, =29 W/m°C and c o =4601/kg"C.

Figurs 4.1 Pl caitration ponts and phass-spaciic PYT subenodsls, Lagsolan 5001 L. Qurves for conslan] prascyre
1.45

0 g
B Bamn
1all 180 MPa |
kL1
13|
21,25
= .
g
= 12
.
L'}
145/
| o
% ]
105}
1. - . . - - . 4
a 50 0 50 200 250 50 a0

T 1deg i
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Table 4.1 Materials data used in basic FD runs

Lupolen 5031 L Makrolon 2205

0, 900* 1120* kg/m®
2, 925* 1180* kg/m*’
A, =4, 0.175 0.173 W/m°C
c,, =c,. 3643 1700 Jke C
= LPTT gy 802.2 0.06195* £
n=K,- YK, 802 : Pa -s

B 1139.0% 5552.0* °C

7, 2732 273.2 C

n 0.4403 0.7351
H, 0 Tkg
T ion 120 170 C
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Figure 4.4 Maoldfiow mouwld. Distance from cantral cavity plane to closest coaling chanmnel
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4.3 Comparison runs

4.3.1 Pressure distribution

In the Moldflow (Mfl) runs, transfer to pressure controlled filling takes place when 98% of
the mould cavity is filled. Before that, filling is controlled by the inflow rate. In our FD
program this is implemented as a transfer to constant pressure at the inlet, as it (the pressure)
is computed when 98% of the volume is filled, and kept for the rest of the filling. The time
evolution of pressure, at four selected nodes, is shown in Figure 4.5. The vertical lines show
the nodal front passages and the end of filling. Notice that the Mfl pressure registrations occur
a little before the (in another data file) registered times of front passage. The steep increase of
the Mfl pressure values immediately before the pressure-controlled filling (the horizontal
pressure lines in Fig. 4.5) is probably due to the asymmetric placement of the inlet. The FD
runs presume symmetry. Up to the end of filling the pressure deviations between FD and Mfl
are relatively small for HDPE (in both runs). We have also tried isothermal pressure values
(not shown) and as expected — cf., e.g., [Agassant et al.], pp.141,146 — these are much lower,
even if based upon the average viscosity, and this simplifying model is therefore definitely
rejected here. For PC the Mfl and FD pressure evolutions follow different increase rates (in
both runs). Figure 4.7 below shows that the inflow rates are of the same magnitude in all
runs. The Mfl pressure evolutions in Fig. 4.5 are almost identical for both materials, while in
the FD runs the clear difference between the power law index n values — see Tab. 4.1 — has an
impact upon pressure propagation, according to (3.6). But shear thinning is of course also
temperature-dependent — see Fig. 4.7 for process temperatures 7, and 7, . Our logarithmic
pressure model is clearly visible for » =0 in Fig. 4.5b, and its systematic deviation from the
Mfl evolution may indicate a model error. But we are somewhat sceptical to the Mfl results
for both runs PC-warm and PC-cold — see Fig. 4.10 below, where the differences between the
top and bottom frozen layers, i.e. the vertical distances Xx—x and V —V , are big.
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Figure 4.5a Run HOPE-wanm: Mfl & FD. Time evolution of node pressure
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Figure 4.5b Run PC-warm: Ml & FO. Time evolution of node pressure
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4.3.2 Temperature distribution

All four runs show similar patterns of node temperature evolution— see Figure 4.6 for the
vertical average temperatures in run HDPE-warm. For Mfl there are two data files of
information — on the selected nodes and on the corresponding finite elements (at the end of
filling, only). For most nodes, the final FD temperatures lie between and/or close to these two
values. Although there is no severely divergent Mfl-FD pair of evolution curves, the average
deviation is more than 5°C for all nodes in all runs. However, the differences at the time of
filling between the Mfl node and Mfl element data are even bigger. This probably means that
if both these Mfl sources of information were available during the whole filling phase the FD-
curves in most cases would lie in between. For Mfl also notice the continuous temperature
rise at the inlet node (7 =0) and the sharp initial fall at all the other nodes. The former might
come from an implicit model for the inlet channels (runners), locally heating the metal mould
but unknown to us, and the latter from a cooler front than we get (even before the front
passage, as registered in another Mfl data file; which indicates an imprecise Mfl-time). The
big differences for >0 at the very front passage and thereafter have a simple explanation, as
we view it: Mfl ignores all heat transfer by vertical convection, here fountain flow. The
general temperature fall by time in both Mfl and FD comes from the dynamic expansion of
the frozen layer. The FD runs are shown with constant and with variable distance to the
cooling lines. The differences between them are small. The variable distance model is
expected to be the more realistic one close to the inlet — cf. Fig. 4.4 — and for the other nodes,
because of their position, both our models will probably accomplish slightly more cooling
than Mfl, but neither the Mfl node nor element temperatures seem to deviate systematically
from ours at the time of filling.

Figura 4 § Run HDPE-warm: Ml & FD. Time evolution of vertical average node temperature
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The radial temperature distribution at the end of filling is illustrated for run HDPE-cold in
Figure 4.8, letting the Mfl inlet, as well, correspond to » = 0. The picture is similar for all the
other simulation runs. For Mfl the two sources of vertical averages, for the selected nodes and
for the corresponding finite elements, are marked. Here a fifth Mfl node is included, at radial
position » =40.74 cm relative to the inlet. Since the Mfl end of filling corresponds to
r=41.5 cm (while FD assumes 40 cm), the Mfl nodes are on a different time scale. The first
time registration at the fifth Mfl node, e.g., occurs simultaneously to the transfer to pressure
controlled filling, at # =5.64 s, which in the FD run corresponds to radial position » =39.5
cm. Therefore the temperature differences in Fig. 4.8 are partly exaggerated. The remaining
deviations are probably due to our simplified front models. But to ignore completely vertical
heat transfer by convection, as Moldflow does, may be an oversimplification. The difference
between the two FD front models (see Sec. 3.1.4), fountain effect (dotted curve) and front
convection (dashdot curve), is not visible. The FD and Mfl temperature profiles have similar
shapes, with minimum at » = 0.25 — 0.3 m, but the Mfl profile is somewhat flatter. The
temperatures at the symmetry plane z =0 (core) for all FD and Mfl nodes are also plotted.
The immediate rise from the inlet temperature for the Mfl core values — and “Mfl Average:
Node” —at » =0 is not fully understood (if not an effect of the unknown runner system),
while the slight increase during the final filling comes from the asymmetric Mfl gate position.
Moreover, we consider more shear rate terms in (2.7) than Mfl does, which ought to increase
the FD values at the inlet. This is what the “Mfl Average: Element” indicates at » =0.

The resulting vertical temperature profiles for the studied amorphous polymer are shown for
the selected Mfl finite elements (including the fifth — ‘front’ — element situated near the cavity
radius) in Figure 4.9a-e. (The semi-crystalline thermoplastic is considered in Sec. 4.4.) For
Mfl the profile is subdivided into the positive and negative vertical positions (dashed and solid
curves, respectively, because of systematic deviations). The Mfl cooling system and the flow
direction of the coolant are symmetrically modelled (cf. Fig. 4.3), and the runner system is not
explicitly (asymmetrically) modelled. Despite this symmetry, the Mfl temperatures in Fig 4.9
differ between the upper and lower halves. If the runner system were implicitly modelled in
Mfl, we would expect the temperature differences to be greatest near the inlet, but this is not
the case. As for the FD and Mfl comparisons, the profiles are similar and there are clear
deviations only at the inlet and at the front (cf. comments on Fig. 4.8 above) — shown by the
two plotted Mfl-averages ‘Mfl Element Vertical average’ and ‘Mfl Node’, that otherwise
(nearly) surround the FD-average ‘FD Node Vertical average’ (dotted). However, the average
absolute deviations FD-MTl for the 21 individual vertical levels registered by Mfl are above 10
°C for all five nodes. The position of the frozen layer (i.e. the no-flow tempera-ture) is mar-
ked. Again the clear deviations are at the inlet and at the front element; otherwise the FD layer
position is between the upper and lower Mfl values. Notice the temperature levelling near the
front, by comparing Fig. 4.9¢ and Fig. 4.9d. As expected, this effect is strongest for FD (with
a special front model) but it is visible also for Mfl — unclear how. The success of the two FD
sub-models of variable (shown here) and constant height to the cooling lines is similar.

The final frozen layer positions in all runs are shown in Figure 4.10. As for time-scale
differences Mfl-FD — see comments on Fig. 4.8. The Mfl values for Z<0 and Z>0 differ a lot
for the amorphous PC, but not as much for the semi-crystalline HDPE. Why? The maximum
layer thickness for HDPE is obtained at a smaller radius than for PC according to FD, but
rather the opposite according to Mfl. All Mfl and FD maxima occur at approximately 2/3-3/4
of the plate radius, differing from some earlier results for disk-shaped cavities, e.g. [Tadmor

48



4.3 Comparison runs

& Gogos], p.600, where the relative radial position is below 40%. The absence of front
convection places the Mfl maximum closer to the disk radius.
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Figure 4.9a Run PC-cold: Mfl & FD. Vertical tamp.profile & frozen layer at the and of filling. Mfl r=0.0000, FD r=0.0047{m)
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Figure 4.9¢ Run PC-cold: Mfl & FD. Vertical temp.profile & frozen layer at the end of filling. MA r=0.2080, FD r=0.2130m)
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Figure 4.9e Run PC-cold: Ml & FD. Vertical temp.profile & frozen layer at the end of filling. WA r=0.4074, FD r=0.397&{m}
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4.4 Variation of physical model
4.4.1 Latent heat of crystallization

The constant value ¢, =3643 J/kg°C, found for the semi-crystalline polymer Lupolen 5031 L
in the Moldflow database, presumably reflects the overall enthalpy drop from recommended
inflow temperature to cooling temperature, including the latent heat of crystallization L,, at
T,,- Now we model L,, explicitly, and for a comparison with the basic runs above we adjust
the molar weight (= 0.0298 kg/mol) to get the same overall enthalpy drop. Our applied model
—cf. (2.1), (2.2) —with T'in °C is

¢, (I)=1680+4.3-(T-25), c,,(T)=2080+2.6-(T-25)J/kg’C, L, =270000J/kg.
According to Figure 4.11 and Figure 4.12 below (where the boldfaced curves refer to the
basic model, i.e. the one with constant ¢, , A and pressure-coefficient f=0), the tempera-
tures are significantly affected by the L, # 0, linear ¢ ,-model (dashed curves) near the
front, where the small ¢, , -value offers little initial resistance to decreasing temperatures.

(For general comments upon the basic model, cf. Fig. 4.8 for run HDPE-cold and Fig. 4.9b,e
for PC-cold.)

4.4.2 Heat conductivity

The constant value 4 =0.175J/m°C, found for Lupolen 5031L in the Moldflow database, is
used in the basic runs above. To get a comparable overall heat conductivity of a general
HDPE material according to [Van Krevelen], we have to assume the crystallinity less than
23% (1), letting

A,(T)=0.235-0.000431-(T -25), A,(T)=0.126-0.000137-(T-25) J/m°C.
Despite the (unrealistically) small conductivity below T,, the resulting deviations — see the
linear 4-model in Fig. 4.11 and Fig. 4.12 below (dashdot curves) — from the basic runs are
evident, especially behind the front — A_ increasing the heat flow through the frozen layer and
hence decreasing the temperature. The opposite occurs at the front — where the conductivity is
dominated by 4,, less than the overall average A . The discontinuity of the temperature

derivative at the frozen layer in Fig. 4.12 is expected.

4.4.3 Viscosity dependence of pressure

In the Mfl comparison runs above the pressure coefficient of viscosity is put to zero. The
reported pressure coefficient for HDPE, cf. [Van Krevelen], is = 0.68-10" m*/N. For
Lupolen the effect is noticeable behind the front — see the pressure coefficient f # 0 model
in Fig. 4.11 and Fig. 4.12 (dotted curves) — 3 slightly increasing the viscosity and thus the

viscous heat and the temperature. (The exponential coefficient is four times as big for PC
polymers, like Makrolon, but we limit our comparisons to the HDPE runs.) The pressure
profile is also markedly affected, increasing the pressure levels in the HDPE runs by 20 - 25
%.
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4.4 Variation of physical model

Figure 4.11 Run HDPE-warm-E: Ml & FD. Radial temperature distribution at the end of filling. Time =581
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4.5 Method performance

Figure 4.12b Run HOPE-cold-E: MA & FD. Vertical temperature profile at the end of filling. M r=0.4074, FD r=0.297G(n
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4.5 Method performance
4.5.1 Relations to the number of vertical levels (control volumes)

With time step & and radial step i fixed, the number of control volumes J +1 is also the total
number of equations in two systems, to solve for 7, and 7, respectively. As J is varied, for

compatibility the acceptance limits for a 7-solution (with the non-frozen height 4 fixed) are
taken equal, as measured by residual per equation. These simulation runs, named ‘HDPE-
cold-E’, coincide with run HDPE-cold in Sec. 4.3 but are here supplied with the more
sophisticated physical HDPE properties ¢, — L, , 4, # in Sec. 4.4 (but remember that A,

corresponds to a low crystallinity). The managing of these equations is illustrated by the
vertical temperature profile in Figure 4.13 for radius » =0.1 m and for different J:s. The
radial profiles of average temperature are found in Figure 4.14. In the Mfl runs above, 11
vertical levels were used per half-width Z <0,Z >0, i.e. in all 21 levels. In the FD runs this
number is rather too small to provide reliable results (cf. Fig. 4.13, Fig. 4.14), and J =40 is

recommended for this application. However, to be on the safe side we used J =80 in the
comparison runs above.

The A-equation, i.e. the determination of the frozen layer surface, is solved once per (k;,1)-
combination and the systems of 7-equations are solved once per A-iteration. The average
number of iterations per program call for a solution varies slightly, for the 4-equation from
8.26 (J =10) to 6.58 (J =600) and for the T-equations from 3.73 (J =10) to 3.36
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(J =600). For each T-iteration an iterative 7-step routine is called. However, the standard
Newton step length 1.0 is directly accepted in most cases — for J =10 the 7-step routine is
called 8 times (out of 115 403 T-iterations overall), for J =20 2 times (out of 108 496) and
for J =40 1 time (out of 95 758), and otherwise not at all. In all these exceptional cases the
remaining residual sum, squared, is close to the acceptance limit of a solution, and neither a
step length reduction nor (with one exception) the backup routine steepest descent provides
improvements. All these difficulties occur at the inlet (7 = 1), where the idealized
initial/boundary conditions — (IC/BC) 7, constant across the cavity gap, and (IC) 7, constant
in the wall — form a challenge. However, the overall method works also in these cases, by
reducing the A-step length (closer to the solution of the previous time level £-1). The full
distributions of iterations are shown in Figure 4.15. As for the A-computing, 1 iteration per
program call corresponds to &= H .

The computing time increases by J from around 11 sec. (K =84,J =10) via 20 sec.
(K =84,J=40)to 3 min. (K =84,J =600) on a 32-bit 600 MHz Pentium-3 PC, i.e. slower
than proportionally to J.

4.5.2 Wall series solution

We have varied the number N of wall series terms as well. In run HDPE-warm N =20 is
enough to describe the temperature and frozen layer profiles for the inner cavity half (< 0.2
m), while at least N =40 is needed further out (# = 0.2 m). This is due to the worsened
convergence properties at the front — cf. Sec. 3.2.5. Another possibility is to decrease the time
step at the very front: we have used pTCrit =0.9 (cf. Flowchart 3.1), i.e. a reduction by at

most 10% per time step of the temperature difference solid melt — wall.

4.5.3 Control volume at the frozen layer

Let jh denote the axial index value of the last liquid node, locally. Our original idea was to
surround a movable node at the frozen layer position z = 4 by a control volume of vertical
extension z € [5(z;, +h),5(h+z,,,)], i.e. of fixed length as long as ;A is fixed, and to

exclude that volume from the system of temperature equations (since the temperature is
prescribed at % as T,,). However, each time & changes jh -value the total weight of the
frozen layer equations changes discontinuously, which might imply that the computed
residual of the % -equation (3.13), discretized, becomes discontinuous as well. In fact, in one
of the runs, HDPE-cold, 1722 # -iterations out of 9766 had one non-decreasing LHS-term in
the % -equation as a function of %, and the number of /% -iterations were almost twice that of
our final choice; where we simply exclude the volume surrounding %, letting the neighbour
volumes, which surround z,, z,,,, , have one boundary at z = /. For this choice only 14 out

0f 42040 £ -iterations in all four comparison runs had one of the three LHS-terms of the 4 -
equation non-decreasing, and in none of them this unexpected behaviour (cf. Sec 3.2.3) meant
a non-decreasing LHS.
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Fmﬂljg;:'m HDPE-coid-E: FD. Temp. T(z) at the end of filling, as the numbear of vertical levels J+1 vares, r=0.108

-
e e e o e e e e

-

ZD i 1
0 0.5 1 1.5

wertical position 2 (m) x10°

Figure 4,14 Run HOPE-cold-E: FO. Vartical average Tir) at the end of filling, as the number of vertical levels J+1 varies
1W T T T

185

150

145

2 T 1 1
! oﬂ 0.05 01 015 0.2 0.25 0.3 0.35 0.4

radiuvs rim)

57



4.5 Method performance

ralative frequency

58

0.7

06;

(=]
I

=
(X!

0.2}

Figure 4.15 Run HDPE-cold-E: FD. Reralions overall and per program call, J=40

b 27540 iteralions (average 7.25 iterfeall)
T: 95758 iterations (average 348 iter fcall)
Tstep: 25768 iter. (average 1.00 iter.fcall)

T-cormputing h-cormpauti

| R

1 2 3 4 5 ]
nurmber of iterations per call




5.1 Special modelling: Geometry

5 Application: Triangular plate

This Chapter documents the second application type, polygonal star shaped cavities (relative
to the inlet), of constant gap width. For the radial flow assumed, the distance along a stream
ray to the cavity wall is crucial for the time when the streaming phase ends and the stagnant
phase begins, for the ray in question. The geometry needs to be taken into account for the
determination of each time step, based upon the active flow angle, the additional filled area
and the gap width. This is done in Sec. 5.1. In Sec. 5.2 we describe the data and model-ling of
a concrete application, a uniform triangular plate. Materials data for one amorphous
thermoplastic, a polystyrene (PS), and one semi-crystalline material, a polyoxymethylene
(POM), come from the data base of Cadmould, a FEM-program of Simcon. We have made a
somewhat critical comment about the Cadmould viscosity and enthalpy models. As a
simplifying option in Cadmould, the metal mould has not been explicitly modelled (by
[Nilsson]). To match this we assume a constant depth of the cooling lines from the cavity wall
surface. In Sec. 5.3 the comparison runs, two of each material, are analysed. The Cadmould
runs are performed by [Nilsson]. We have to report fatal problems in the FD runs of POM,
and limit the discussion to the PS runs. To compensate for our (perhaps too) strict subdivision
into rays of full stream intensity and rays of complete stagnation we mention the possibility to
use effective instead of nominal flow angles. The symmetry of the uniform triangle defines,
e.g. three equivalent corner rays and three equivalent mid-side rays. This and the expected
symmetry between the upper and lower halves of the cavity gap are used in plots of the
vertical temperature profile vs. radius and vs. angular deviation from the nearest corner ray.
The radial profile of the frozen layer surface (of no-flow temperature) is also evaluated. Sec
5.4 includes a few com-ments about the method performance. Apart from the iteration
statistics we are also evaluating the square-root increase by time of the frozen layer.
Furthermore, our velocity model has been applied to plot the time of injection for different
material points at the end of filling.

5.1 Special modelling: Geometry

The mould cavity is here assumed to be star shaped relative to the inlet — positioned at » =0
of a polar (r,¢,z) coordinate system — and the vertical cavity width is constant 2H , with
symmetry plane z = 0. By the principle of the distance model and the corresponding energy
principle all node points of equal flow history are equivalent as to velocities and temperatures.
This means that all node positions (r,¢) of a common radius » (equal activation time ¢, )
are equivalent during the streaming phase, but equivalence during the succeeding stagnant
phase also requires a common distance to the mould wall along the radial flow directions
(equal stagnation time ¢ and thus equal residence time of the fluid). As input the vertical

stag

boundary planes of the cavity are specified by the consecutive (x, y)- corner positions. For a

computation of ¢ as well as active flow angle ¢, ., and the filled volume, the geometry

stag >

needs to be taken into account.

Since the mould cavity has constant gap width, the fluid expansion is viewed as an essentially
2D-space process in a flat, polygonal domain X. Consider a boundary line of X. Its intersection
L with X is specified by the two corner points a, b — endpoints of the line segment L — and
given by (,,¢,),(7,,¢,) where @, > @, is assumed. In the star shaped domain, L occupies a

positive sector angle ¢, — ¢, as viewed from the injection point at the origin. The region
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5.1 Special modelling: Geometry

enclosed by L and its two endpoint radii is a triangle 7, and X is a union of such triangles.

Consider for a moment a basic boundary line, written in parameter form
{x(t) =x,+t-Ax, Ax=x,—x,
VO =y, +t-Ay, A=y, -y,
where (x,,y,),(x,,y,) are the endpoints of the line segment L, which has the length

d,y = () + () .
The boundary line point (x(), y(¢)) closest to the injection point at the origin is determined
by
fom K MY, Ay

d,,

and its distance from the origin is
X, Ay—y, A

d .
Denote by 7, the distance of L from the injection point; whence 7, determine
{ 7 7 €(0,)

min(r,,r,] otherwise.

Fo=

Ty

Now let  denote a front circle radius of the expanding fluid. For a mathematical description
of the part of 7 covered by fluid, four cases are distinguished during the filling process.

1. Before the front reaches L, i.e. as » <r,, the covered part of T is a circle sector of area

727’2-¢b_¢a =r2‘¢b_¢a
2 2

2. When the front intersects L at two points (7, ¢,),(r,®,), , > ¢,, i.e. as the point on L
closest to the origin lies between its endpoints and 7, <7 < min[r,,7,], one triangle in the
middle plus two surrounding sectors contribute to the area

rresin(g, @) o (@, =0+ (@ -9,)
2 2

3. When the front intersects L at one point (r, ), i.e. as min[r, 7, ] <r < max[r,,r, ], fluid
covers L from one endpoint up to the point of intersection. The covered part of T'is a
triangle plus a sector, of area

r-r,sin(g—e,) 2 P
2 2

r-1,sin(g, — @) +,2.27%
2 2

incase 7, >r,,

incase r, <r,.

4. When the fluid covers L completely, i.e. as » = max[r,,r,], all of the triangle T is filled
area
1ty Sin(@, —9,)
5 .
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In these cases only the circle sector parts contribute to the active front at ». Their angular sum
is the overall active flow angle ¢, (7).

For a point (x,y) € T, at a distance »(> 0) from the injection point at the origin, the
(x,y) is when the flow radius through (x,y) reaches L:

y, Mx—x, -4y
r,.,=p-"1, = (=1).
stag ﬂ ﬂ yAx—xAy ( )
During time step No. &, when the radius of the front circle expands another Ar, the additional
covered polygonal area A4, is obtained by summing up 7-areas, and — in consideration of the

efficient local gap width & — the time step A¢, etc. can be determined as in Sec. 4.1.1.

stagnation time ¢

stag

5.2 Materials data

Simulation runs for comparison have been performed by [Nilsson], using the commercial
software Cadmould of Simcon, Fill version 1.110. In the concrete application, X in Sec. 5.1
was chosen as an equilateral triangle, with the inlet almost in the middle (4 mm from the
centroid). From the Cadmould (“Cmd” below) data base of standard materials, one
amorphous thermoplastic — the polystyrene Polystyrol 158 K of Basf AG (“PS” below) — and
one semi-crystalline material — the polyoxymethylene Delrin 100 NC-10 of DuPont (“POM”
below) — were (arbitrarily) chosen. One run of normal processing conditions (“fast” below)
and one of slow filling (“slow” below) were simulated for each material. The triangle sides
were chosen extreme (60 cm) to provoke freezing. The plate thickness is 2 mm. The
comments below on Cmd are solely based upon these four simulation runs. According to the
materials documentation, the Cmd model assumes constant heat conductivity, constant
diffusivity and the existence of a no-flow temperature. These temperatures deviate a lot from

the reported melting point 7,, =178 "C for Delrin (DuPont product information,

www.dupont.com/ enggpolymers) and from the glass transition temperature 7, =100 “C for

Polystyrol (MatWeb, www.matweb.com). The latent heat of crystallization seems to be
neglected. The density variations are described by a Carreau PVT model — cf. [Kennedy],
p.28-29. The viscosity obeys a model of 7', 7 that includes 2 universal and 5 material
specific parameters, according to [Kutschera] — for Delrin see Figure 5.1, which we have
constructed from the Cmd input data. Here the overall increase by T for fixed In y is indeed
questionable. However, for comparison we have adjusted the FD Arrhenius parameter of 77 in
a best-fit estimation procedure to this questionable behaviour.

In Table 5.1 all materials data of the simulation runs are collected, together with our fitted
parameters, marked by asterisks. Our FD densities are estimated from the Cmd PVT model,
and our heat capacities are then determined by the given diffusivity values.

In the Cmd runs, as a simplifying option, the metal mould has not been explicitly modelled.
According to [Kutschera], the contact temperature at the inner wall surface is computed from
standard wall conductivity and diffusivity, and prescribed wall temperature. The exact model
is unknown to us. To match that model we have used the standard Moldflow mould wall
parameters — see Sec. 4.2 — and have applied a constant depth of the cooling channels,

H,, =9 cm, the rounded average in the Moldflow runs.
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5.2 Materials data

Figure 5.1 Cadmould viscosity model, Delrin 100 NC-10. Curves of constant shear rate
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Table 5.1 Materials data used in basic FD runs
Polystyrol 158 K Delrin 100 NC-10
P, 1015 1240* kg/m*
P, 1045* 1320 kgm*
A, =4, 0.14 0.158 W/m°C
Cps 1473 2708 JkgC
Cput 1517 2883 Jkg°C
n=K, "7 Ky 45740 316352 Pa -s"
B 2005.2* -184.76* °C
Ty |273.2 141.79* °C
n0.24836* 0.37405*
H, 0 Tkg
Too fiow 130 153 °C
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5.3 Comparison runs

5.3.1 Average temperature

The Cadmould (Cmd) runs assume “pressure-controlled filling 99%”. Since no explicit
pressure bound seems to be prescribed, we interpret this as if the pressure registered at the
inlet, when 99% of the cavity volume is filled, is dimensioning and is kept constant
throughout the rest of the filling phase. In practice this means a successive reduction of the
final flow rate.

During the first 99% of filling a constant flow rate is applied, chosen to provide the prescribed
99%-filling times 2.006 s (run PS-fast) and 8.000 s (run PS-slow), respectively. This causes
big differences between the runs in resulting temperatures — see Figure 5.2 for a general view
of the final average temperatures in our FD runs, presented on one and the same colour scale.
The steep temperature rise at the corner rays are subject to several comments below. If the
nominal residence times, computed in the absence of freezing and for a plug-formed v, -

velocity profile, were decisive to the result, the coldest regions would be along the triangle
sides, and there would be no reversing of temperatures along any stream ray from the inlet
and outwards.

Both our FD runs on the high viscosity POM Delrin have failed: In run POM-slow, although
our FD method works, the vertical temperature profiles are characterized by a narrow peak of
extremely high temperature (and viscous energy), originating in the last second of filling
simulation. In run POM-fast the Jacobian matrix G in Sec. 3.3.2 becomes ill-conditioned (by
B <0) and the backup routine is not sophisticated enough to provide acceptable convergence
from the chosen starting point. Since the temperatures even in run POM-slow of Delrin
become non-physically high, we have not worked on improving our method to handle run
POM-fast as well. A plausible explanation for the failure is the non-physical Cmd viscosity
model for this material — see Fig. 5.1 — also remaining in our model — see Tab. 5.1, where the
negative B-value indicates that the viscosity increases by temperature. Since the volume flow
rate is prescribed, the high K -value causes high viscous energy levels and correspondingly

high temperatures, which add to the viscosity instead of acting as the ordinary stabilizing
mechanism. The severity of these extreme input data is reinforced by the shortcomings of our
model as discussed below, revealed as the flow sectors are narrowing. For these reasons we
will limit our discussion to the two PS-runs.

A Cmd result data file documents the state at the end of filling, as to pressure, temperature,
shear stress, velocity and frozen layer. According to the Cadmould file name convention, the
whole filling phase takes 2.054 s in run PS-fast and 8.368 s in run PS-slow. Our
corresponding times are 2.082 s and 8.277 s, respectively. The time deviations are attributed
to pressure differences. The Cadmould pressure data indicate final levels at the inlet around
650 bar in run PS-fast and 800 bar in run PS-slow. These are contradictory to our
interpretation of “pressure-controlled filling 99%”, both as to magnitude and relation: Our
dimensioning 99%-pressures become 1177 bar in run PS-fast (after 2.005 s) and 1027 bar in
run PS-slow (after 8.011 s). As for relations, a higher pressure level is expected in run PS-fast
than in run PS-slow due to the higher flow rate. As for the pressure magnitudes, we see some
weaknesses of our distance model, where the active flow angle concept (cf. Sec. 5.1) assumes
rigid boundaries between streaming and stagnant fluid. In practice we would expect these
boundaries to be flexible, admitting some tangential outflow to the stagnant sectors close to
the inlet in a high-pressure situation and compensated by tangential inflow ahead of the flow
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front. We might instead use the term effective flow angle to describe these phenomena. As an
illustration, see Figure 5.9 below for “run PS-fast-E”, which denotes run PS-fast with the
addition of a 10° flow angle, whenever possible, to each side of every active flow sector in
the FD run, i.e. the overall effective flow angle is 60° (=3 - (10 +10)) more than the nominal
angle at the end of filling. Fig. 5.9a-b should be compared with Fig. 5.3a and Fig. S.4c,
respectively — see comments below. The final pressure at the inlet in FD run PS-fast-E is 901
bar, and the filling takes 2.039 s. We have not developed the concept effective flow angle
further, but it might be relevant also in case of non-star shaped cavities, where flow around
corners causes singularities, if the strict distance model is applied.

The vertical average temperatures, computed for different node positions (7, ¢) at the end of
filling, are presented in Figures 5.3-5.6, where Fig. 5.3-5.4 refer to run PS-fast and Fig. 5.5-
5.6 to run PS-slow. The plot symbols for the Cmd values differentiate between cavity nodes at
the upper wall surface z =+1 and at the lower surface z =—1. Due to triangular symmetry,
nodes of equal r and equal ¢ —deviation from the closest corner ray (from inlet to triangle

corner) are equivalent as to temperatures, etc. The ¢ —deviation 0° corresponds to nodes on a

corner ray — the three final flow directions — and 60° refers to nodes on a midside ray — the
three directions of first stagnation. In Fig. 5.3, 5.5 the node rays are grouped into

3° @ —deviation classes, of which a subset is presented. Especially in run PS-slow there are

extreme differences — more than 100 °C near the inlet — between the Cmd temperatures
registered for the z = +1-and z = —1-nodes, respectively. According to [Kutschera] both are
average nodal values from wall to wall (—1< z <+1). Even if the vertical positions are
weighted differently for the two node groups and if the implicit Cmd cooling model handles
the upper and lower part differently, we have no obvious explanation for such big differences.
Notwithstanding this big temperature span of Cmd, our FD temperatures show systematic
deviations. In Fig. 5.3a all nodes close to the corner rays are plotted. Our FD temperatures are
higher, except at the inlet (» = 0) and at the mould wall (» = 0.35m) . For each plot in Fig.
5.3 the FD temperatures fall in relation to the Cmd temperatures — except at the mould wall.
The same phenomenon appears for the six radial classes in Fig. 5.4a-e, where the Cmd
temperatures decrease much slower tangentially, from the final flow direction

(¢ -deviation = 0") to the direction of first stagnation (¢ - deviation = 60°). The overall

average fluid temperatures Cmd-FD coincide, 187 “C. In run PS-slow, Fig. 5.5-5.6, the

overall average temperatures differ, 132 “C for FD and 139 “C for Cmd. When the strict
distance model is applied in run PS-fast, we contribute some of the discrepancies to our above
mentioned negligence of tangential convection, to which our negligence of tangential
conduction should be added, together preventing any tangential temperature levelling. On the
other hand, an increased steepness near ¢ - deviation = 0° is expected due to finally accele-

rating shear rates, instead of the levelling out that the Cmd temperatures show in Fig. 5.4.
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Figure 5.2a Run PS-fast: FD. Vertical average temperalure (deg.C) at the end of filling, t=2.08(s)
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Figure 5.3 Run PS-fast: Cmd and FD. Vertical average temperatures at the end of

filling. Rays of different ¢ —deviations, measured from the closest corner ray.
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5.3 Comparison runs

Figure 5.7a Run FPS-slow: FD. Temperature T (deg.C) at the end of filling, t=8.28(s). Comer ray.
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Figure 5.7b Run PS-slow: FD. Temperature T (deg.C) at the end of filling, t=8.28(s). Midside ray.
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Figure 5.8a Run PS-slow: FD. Vertical temp.profile T{z) of streaming fluid. Node radius r=0.004 {m})
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temperatures at the end of filling. (a): rays of similar ¢ —deviations, measured from the

closest corner ray, (b): concentric circles of similar radius.

5.3.2 Temperature profiles

In Figure 5.7a-b we illustrate the temperature contrast at the end of filling in run PS-slow,
between two flow directions — a corner ray is shown in Fig. 5.7a and a midside ray (where the
fluid hits the wall after 4.83 s) in Fig. 5.7b. One and the same colour scale is used. In Fig.5.7b
part of the fluid is frozen to the bottom, in Fig. 5.7a we recognize the frozen layer profile
from Ch. 4, with the maximum layer thickness far from the inlet. In Figure 5.8a-b we con-
sider the time evolution of vertically registered temperatures, at two nodes chosen on a corner
ray. At the inlet — see Fig. 5.8a — a thin frozen layer is built up initially, but towards the end of
filling the increased pressures, velocities and shear rates make the layer melt. At 9.5 cm from
the inlet— see Fig. 5.8b — the same kind of evolution is even more pronounced — two thirds of
the layer that exists at 5.05 s are molten at the end of filling. (This phenomenon, but far more
extreme, is decisive for our Delrin simulation failures. Realistic or not: our model behaves
like this when the flow is confined to narrowing flow sectors.) The final temperature rise is
also traced as the hot spot in Fig. 5.7a. This is also an explanation for the slow fall of the FD
average temperature in Fig. 5.5a (run PS-slow) and for the initial rise by radius in Fig. 5.3a
(run PS-fast). Comparisons with the Cmd frozen layers in run PS-fast for all nodes in two ¢ -
deviation classes are shown in Figure 5.10a-b below. The Cmd bottom layer is much thicker
than the top layer, for unknown reasons, if not for the implicit cooling. As can be seen in Fig.
5.10a for the corner rays, the Cmd maxima at the lower and upper walls occur at a smaller
radius than the corresponding FD value. There is a systematic change of FD maximum
position and value as the ¢ -deviation angle increases, while the Cmd maxima are essentially
constant — both as to radial position and, especially at the lower wall surface, as to extension.
Before the (local) time of stagnation the relative, rather than the absolute, position along a
flow line is expected to be decisive for the maximum. At the end of filling a tangential heat
flow, which we completely ignore, might have accomplished some levelling, but the almost
full angular symmetry of the Cmd frozen layers is hard to understand.
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5.4 Method performance

5.4.1 Square-root parameter
To predict the frozen layer thickness § = H — h after a new time step, a /¢ —¢,, -increase (cf.

Sec. 3.1.3) is optional in our simulation program, both for the streaming fluid and in the
stagnant regions. For the streaming fluid in run PS-fast this option does not perform better
than to start the A-iterations (% is the non-frozen height) from the previous value, without
extrapolation. A glance at Fig. 5.8 explains this, since the normal increase during the first
seconds is followed by a shrinking layer. In run PS-slow a 50-50-weighted combination of the

latest square-root coefficient, computed as 5/ t—t,, ,and the previously registered average

act 3
coefficient performs better. In the stagnant phase the growth rate (faster) differs radically
from that of the streaming fluid. Therefore a node specific, equivalent activation time ¢, is
estimated initially and used thereafter. By extrapolating the latest registered expansion rate,
according to the square-root formula, a few percent of the A-iterations are saved.

5.4.2 lteration statistics

Since the stagnant phase, for fixed /4 and with constant parameters, represents linear systems
of equations in each phase, liquid and solid, we expect the Newton temperature iterations to
converge in one step to the solution. This is accomplished — always with step length 1 — if we
avoid applying an upper limit of accepted temperature changes per iteration; which is used in
the nonlinear case. The average number of iterations per program call, for the computation of
a new h-solution (for fixed node and time), is the same as in Ch. 4 (with nonlinear viscosity
and temperature dependent parameters): 6.31 A-iterations per call in the streaming phase and
6.73 in the stagnant phase for run PS-fast. The rather tough convergence criterion used, with
an overall residual squared sum F =f”f below 107 for J = 80 vertical node levels, is no
problem. Stop values in Flowchart 3.1 are FTEps=1.665-10"", FhEps=10"" and

hEps _1=5.3-10". The whole run, with extensive checking and saving on files, takes a few
minutes if K =84 time steps (radial levels), uPhi =20 nodes per radial level and J =80 are
used.

5.4.3 Velocity profiles and residence time

In this application we have used two terms only in the power series expansion of viscosity and
velocity components. Apart from the isothermal exponent 1+ in (3.4), the estimated

exponent of the additional term always becomes 3+ . The velocity components can be used

for computing the residence time, or equivalently, the time of injection for the stagnant fluid
at the end of filling. In Figure 5.11a the vertical average time of injection is shown for the
triangle, in Figure 5.11b the vertical distribution is plotted for a corner ray. Due to the hot,
fast moving material at the centre plane, redirected vertically at the front, and to the freezing
followed by melting as the shear rate increases at the walls, the pattern becomes complex.
Fig. 5.11a can be compared with Fig. 5.2a. The distributions of residence time (time of
injection) and the average temperature are similar, although both show a non-standard
behaviour, influenced by local freezing and succeeding melting.
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Figure 5.11a Run PS-fast: FD. Vertical average fime of injection {s) at the end of filling, t=2.08(s)
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6 Conclusions

In the two implemented radial flow applications the plus points for our FD program are:

It admits variable material properties of both melt and metal mould (Sec. 2.2, 3.2.5).

It can be run with material and process input data similar to those used in commercial
programs.

Some interaction between the momentum and energy equations is considered by an
analytical pressure-velocity model, fitted to FD-computed temperatures via a linking
viscosity (Sec 3.1).

Fairly realistic temperature profiles in Fig A1.1 (cf. Fig. 4.9) indicate that our analytical
link with the pressure-velocity fields replaces a FEM model reasonably well. The stable
velocity profiles in Fig. A1.1 support our approximation by a common profile along the
flow ray.

It takes full advantage of the symmetries, streaming fluid being handled by a single flow
ray and stagnant fluid by one representative for each node group sharing flow history.

We use the possibilities to simplify the basic PDE in regions of stagnant fluid and in
cavity parts of “solid”, “frozen” fluid.

The axial node spacing can be chosen non-uniform, adjusted to a steeper temperature
variation at the cavity wall, without jeopardising the numerical accuracy (Sec. 3.3.1).

The resulting nonlinear systems of FD-equations are small, efficiently solved on a
standard PC.

For realistic materials our solution method is reasonably robust, being supported by
theoretical and practical convergence results (Sec. 3.2, 3.3.2, 4.5, 5.4).

The qualitative agreement FD - Mfl (Moldflow) and FD - Cmd (Cadmould) is
acceptable/good, as a rule, both for pressure evolution (Fig. 4.5) and temperatures
(Sec. 4.3.2,5.3.1).

In the comparison runs with the two commercial FEM-FD programs we notice big
temperature differences in two cases:

At the flow front (FD - Mfl). We refer this to different PDE-formulations of axial heat
flow (Sec 2.3.3 and [Kennedy], p.71). Our two front models, conventional convection
and fountain flow (cf. Fig. 4.8), are unanimous in this respect, and we claim they are
realistic.

In narrow flow sectors (FD - Cmd). We explain this by our negligence of angular
convection and conduction. The discrepancy is fatal for a material with unrealistic
viscosity dependence upon temperature. Although our FD-method converges in one
such run, the rapid temperature rise in the diminishing flow sectors is unrealistic An
isothermal viscosity model would perform better here but worse on realistic material
models. Our decisive model weakness is an exaggerated shear rate (Sec. 5.3.1).
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As for the commercial programs we are critical in some respects, with reservations for our
limited study and insight:

Some basic material data and some modelling methods show questionable quality:
different values are found in different data bases, and unrealistic data are
indiscriminately used (Sec. 4.2, 5.2, 5.3.1).

The realism of some parts of the material model might be improved: the viscosity model
should rely on known asymptotic results and — according to our findings in Sec. 4.4 —
also allow pressure-dependence, and the material model should admit temperature-
dependent thermal conductivity, specific and latent heat. (However, we have not set an
example, in relying on the power-law behaviour with fixed index n.)

The asymmetry between the upper and lower cavity halves is in some cases extreme, for
unknown reasons (Fig. 4.9-10, 5.3-6).

The axial heat convection, especially at the flow front, should not be ignored (Mfl; the
Cmd model is unknown to us).

The angular stretching part of the shear rate should not be neglected in radial flow
(Sec. 2.3.3 and [Kennedy], p.70).

Some observations of the general filling process are:

Our radial temperature profile takes its minimum and the frozen layer is thickest closer
to the inlet than suggested by Mfl (FD - Mfl: Fig. 4.8, 4.10). We consider this to be an
implication of the different axial heat models at the front.

The axial temperature profiles and the frozen layer thickness show non-monotone
evolution by time (FD: Fig. 5.11b). We explain this by local viscous heating and
melting caused by increased shear rates in narrowing flow sectors. (Hence our effect
might be somewhat exaggerated.)

Our main experience and insight is:
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As for the narrow flow sectors, in relying on the commercial program Cmd, we must
admit the shortcomings of the distance model and our 2D heat flow principle, even in a
triangular case (cf. Fig. 5.4). Although we have mentioned the possibility to modify our
principle (by the concept of an effective flow angle, Fig. 5.9), such a modification is
hard to implement in a general case. In this sense our 2D temperature model fails to be
equally robust as the distance model itself. For educational purposes, on the other hand,
even a 2D FD-model is too sophisticated to balance the simplicity of the distance
model.

As a by-product we have formulated two different analytical forms of temperature
solutions — see App. 1-2 — based on our pressure-velocity model and on an extended
Stefan problem, respectively. These or similar classes of temperature profiles are
hopefully robust, e.g. in narrow flow sectors and in complex geometries, simple enough
to be transparent and yet capture the main variation. In the development of such
standard profiles our FD program might be of some value.
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Appendix 1 Vertical velocity profiles
2
As one example, consider (3.1) with the special choice g[%) =1-3. (%) for |z|<h, h<H.The

viscosity increases as | z[T 4 by the factor 7"~ and here, due to the temperature gradient, also by

the factor ¢®"~"*) . The no-slip boundary condition V(%) =0 implies

1 141 3y 341 1 1
" " zc” " 1 2+)4+-
V(iz)=——|1- L R Sharl
1 1
1+ 34

corresponding to the two leading terms of the series expansion (3.4). The velocity profile becomes
less plug-like than for the isothermal case — see Figure Al.1a. Unlike the isothermal case,
maximum shear rate does not occur at the very no-flow boundary, but inside (cf. [Manzione],
p.259, and [Pearson], p.610). A corresponding temperature profile, based upon (3.2), is illustrated.

Figure A1 _1a Vertical velocity & temperabure profies, n=003
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As a second example we choose g(%) =1+2- [%) -1 (%] — see Figure Al.1b. Although the

velocity profiles in Fig. Al.1a,b are quite similar, the temperature profiles differ a lot — cf. the
assumption in Sec. 3.1.1 of a common V(z) and the temperature profiles in, e.g., Fig. 4.9.
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Appendix 2 Further comments on the Stefan problem
A2.1 Freezing layer in the presence of particular heat generation

In our FD-implementation we use the square-root model of the frozen layer expansion & = d(¢) to

estimate both the time evolution in the filled region and, optionally, the initial temperature profile at
the flow front. These estimates are based upon the formulas in Sec. 3.1.3. In this Appendix we will
describe two possible improvements of the temperature estimates. As it happens the first extension
to a high extent captures the decreasing frozen layer thickness towards the inlet in a radial flow
situation, unlike the standard square-root model (cf. [Carslaw & Jaeger], p.282). Here we extend
the 1D Stefan problem of Sec. 3.1.3, by considering internal heat generation Q(z,¢) per unit volume

and time, imitating local convection and dissipation. (The horizontal position x, y is fixed.) It is
reasonable that the square-root behaviour of &(r):=2¢,/x,¢ remains for a certain class of generation

functions. The z-axis is here reversed, so that one-dimensional heat conduction is in the opposite z-
direction, i.e. the wall surface corresponds to z=0 and the mould gap is the semi-infinite medium

z>0.Let ¢y = f \/7 , where phase region ¢ corresponds to z>dJ(t), i.e. y >c3€.
Kyt

In the solid region 0<z<5(r), let the BC at the wall surface z=0 be 7,(0,1)=0.
In the liquid region the PDE is written

9’1, + PP sy, of, 1 9T, _ Q(z1)
azz Peky dz Kk, ot Ao
The 2™ term on the LHS corresponds to the convective term in PDE (3.11), with v, according to

3.10), where oh =0, U(Z)=U(1)=1 is assumed. As for the BCs at the layer surface z = §(r) and at
3 y
N

z — o , see [Carslaw & Jaeger], p.284. We make a separable-solution ansatz D(y)- g(¢) . For the
three PDE-terms on the LHS to have a common #-factor we must have g’(t) =« - g(¢)/t,

i.e.g(¢)=const-t%, o arbitrary, and Q(z,1) = .f'(z/1l4ic€t)~ 1“7 Let

z 4 ,
NaK,t
where U satisfies the corresponding homogeneous PDE in the liquid region and takes care of the
BC at infinity, and D(y) for y >c;¢e solves the inhomogeneous ODE

T,(z,)=U(z,1) + D[

4
PeCpy
In consideration of the time dependence of T, (z,¢) upon ¢ — there is one BC at infinity (z — =)

and two BCs at z=J(¢) to satisfy when ¢ varies — =0 is necessary for general f-s. This makes the
1

D"(y)+2(y+D))D'(y)—4aD(y) ==Dy f(y), Dy =(c;—c3)e, D, =

ODE of 1* order and linear for D’(y) — but restricts the class of generation functions to f(y)-¢~
For the assumed form () , the temperature function U for some constant B ([ibid.], p.291) satisfies

U(z,t) =T, — D(w0)— B-| 1—erf| ———+D, ||.
\aK,t
Since U for =0 also solves the homogeneous ODE, D is taken as a particular solution determined
by the initial values D(c;€), D’(c;¢€) (cf., e.g., [Birkhoff & Rota], p.41). A power series solution is
easily obtained given a series expansion of f ([ibid.], p.99).
The BC corresponding to (3.7), determining the layer expansion parameter €, becomes
exp(—€®) ¢;-[T; = D() =Ty +D(c38)] exp(~(c,6)*) eVaD'(cz6) _ LyNm
erf(e) T, —T l-etf(c,6) 2Ty ~Tp)  cpy(Ty —Tp)
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Here the excess melting temperature (above the zero wall temperature) is denoted 7, — 7.

If, instead, the wall is modelled as a separate semi-infinite region ([ibid.], p.288), then, as in Ch. 3
(cf. (3.8)), we obtain a correction by ¢, in the denominator of the first term of the £ -equation.

To illustrate the function class f(y)-7~", we consider f(y)=a-(1+2D,y)e™” : , a>0,where Q
takes its maximum at z = D, ,/4k,¢ . For all functions in the class, the overall (integrated) heat

generation in {(z,7)[z>d(1),0<t<t 4} becomes proportional to /7, . In the special case we get

D(y)=a-(D,/2)e™ " as the additional temperature due to heat generation. This is illustrated in
Figure A2.1a-c, for model (3.8) and its O-extension. The relations between the a-values in Fig.
A2.1a-c correspond to the viscous energy relations attributed to the different radial positions and
their influence upon the average radial velocity and 7"*'. The time since activation is 2 s in a
(r=03m),3sinb (»=0.2m) and 5sin ¢ (»=0.1m). In Fig. A2.1a we notice that already (3.8),
i.e. a=0, yields a shape similar to the FD simulated temperature profile, taken from Fig. 4.9d, but
in Fig. A2.1b-c, which represent cavity parts far behind the front and behind the maximum frozen
layer (cf. Fig. 4.9¢c-b), the O-extended model provides better fit (especially in the frozen layer).
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A2.2 |Initial front temperatures by the square-root model

We saw in Sec. 3.2.5 that the wall sine series converges slowly when the hot melt and the cold
metal initially collide. This is not surprising, since the collision represents a singularity, with the
initial heat flux tending to infinity. We also described how a stepwise linearization at the front,
through a split time step, can cope with the fast initial change of heat flux. But the initial singularity
remains. A possibility to get the flux and energy correct is to apply one of the square-root formulas
in Sec. 3.1.3 or App. A2.1. Since the front anyhow is subject to special handling, by fountain flow
or front convection, it is natural to consider a simultaneous, square-root based conduction during an

initial given time substep 7. We choose (3.8), since the approximation L/ 2./, 7 >>1 is easily
fulfilled in practice. The routine can be formulated as follows:

e Determine the stationary wall surface temperature 7, in Sec. 3.1.3 by solving (3.8) for €.

¢ Determine the heat flux g, and the transferred heat energy E,,,, (per m?) between the metal
and the solid melt:

AuPuCro ( N AwPouCpoy T
Dsurf = D surf 'ma Esu;jf = J.qsu,f (T )d’l’ = ZTSW/, . % .
0

e Let ¢,  replace the wall series solution at the end of the substep 7 and correct the front
temperatures close to the wall surface in such a way that E,,,, is matched.

o Apply the usual wall series solution for the rest of the front time step Ar;, — 7, starting from the

analytical solution (describing excess temperatures above the cooling temperature 7, see [Carslaw
& Jaeger], p.288).

Let us consider the materials in Ch. 4. According to the square-root model the wall temperature is
1% of the difference T,,,, — Ty above T at the distance z=1.0mm from the wall surface after

7=0.01 s, and at z=3.3mm after 7=0.1 s, and the frozen layer expands to é =0.02 mm and
0 =0.065mm, respectively. In the liquid melt the temperature is 1% of the difference 7, — T,
below 7, at the distances 0.1 mm and 0.3 mm, respectively, from the layer surface. These are the

essentially affected mould and cavity parts that should be temperature corrected in an initial time
substep at the front.
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Appendix 3 Solid melt: a series solution

For both the active-flow set A(¢) and the passive-flow set B(t), defined in Sec. 3.2.1, the heat
balance of the frozen layer z € (h(x,t), H] is controlled by one and the same conduction PDE.
The interaction with the metallic mould (cavity wall) is two-way: the heat flux ¢,, through the

wall surface is a result of the wall series solution in Sec. 3.2.5, and the surface temperature — to
be determined here — is an input to the wall PDE. The frozen layer IBVP has BCs 7' =T, at

oT . .
z=h(r,t) and A, > =gq, at z=H , and no IC, since the frozen region is an empty set at =0,
)z

and the local activation time ¢, satisfies A(r,?,, (r)) = H for all cavity positions r.

act act

For semi-crystalline polymers with p_,c, ,A, approximately independent of temperature, the

PDE becomes linear and a series solution exists. For all amorphous materials below T, the

A
conductivity A, = A, +4, -T is nearly proportional to ¢, =i¢c, +c, - T,ie. a=""-= “50.m
0o Co
. A . U U
this case, use U ::T+g~T2, K=—" to get the linear PDE a—,: Ka = -
2 PCoy t oz’

Thus U can be

2U

treated as T above, with corresponding IC and BCs. The solution U determines 7 = ———.
1+V1+20U
Since the solution routine of the liquid phase in subregion A(¢) takes small time steps Az, , it is
reasonable to assume an approximately linear evolution of the heat flux ¢,, during a time step.
For a trial layer position A(r,¢,) it is now possible to determine both the solid melt and the wall

solutions simultaneously, and deliver an estimated heat flux through z =/ as an output. The
series solution is derived as in Sec. 3.2.5. Let z':=z — , i.e. the wall surface is written

Z=H’, H'=H —h, and use local time ¢":=¢—1t,_,, where #,_;,i.e. 1’ =0, denotes the initial time
of step k. The temperature profile f(z") is given at #'= 0. See Figure A3.1 for the interactions.

| s — {5
- 2
7, | | Wal 7, | Solid melt |
z=H z=h
(=H") ('=0)

Figure A3.1 Input/output data at series solution of wall and solid melt PDEs. Fixed 4, time step .

Put T = U +V , where U takes care of the BCs and ¥ handles the IC T(z’,0)= f(z") of time

(n+ %)7[
step k. Let u, = 7 and take

2 ’3
uz

’ ’ H ’ ’
Uiz,t)=Ty, +(u0—ul2)2+ulzt+ o’
K K

- "
V(' t)y=>V, sin(u,z) exp(— K,unzt'l v, = Hi I [f(z)-U(2",0)]-sin(u, z")dz" .
0

n=0
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If f(z') has Fourier sine series expansion f(z)=Y_ f, -sin(x,z"), then
n=0

2T,  2(-D)"u, N 2(-D)"u,
’u”H’ funzH’ lun4KH’ .
At the wall surface

Vn :f;l_

72

H

4 j~H’+u1H't’+
K

{ e
H =5 p

= . , H?® 2 &1 ,
+;fn(_l) exp(— K;l,lnzt )+ l/ll |:H t—y"‘g ;;exp(— K;Unzt )}

Hr3 oo
T(H',t')=T), +(”0 u]6/c NACHE eXP(‘ ’fﬂnzf')
n=0

n

exp(— K',Unzt,):| +u, - [H'—Ij : i%exp(— K,uft')]

=T,+T; u,
Here u, = (dfj (given) and ¢" = A¢, is of our interest; thus T, T are fixed in time step k
Z=H
(for given h). The T(H',At, ) -expression is used as an input to the wall model in Sec. 3.2.5:
T.(H' At ) =T, +Ty -u, =Ty +T, - At;
where T, = f(H’) (given) determines
=T, -Ty+Ty -u)/ At,.
In Sec. 3.2.5 the heat flux through the wall surface is
A, %(L,Atk) =A, (w,+u,-T).
This expression is an input to the solid melt model as prescribed heat flux
Ay -y tuy -T)=A - (ug +u, - At,).
Once the fixed values 7'y, Ty, T, ,up,u 4,u, are computed, the parameters 7;,u, become
(A = Aug)At, + (T, =Ty)A,up
AAE =4, Tpup
(Ayuy = Aug)Tg +(T, —Ty)AAL,
AN =2, Tauy '
Now both the series solutions — of wall and solid melt — are determined. For the outer A-iteration,
an estimated heat flux through h is needed. Let 7 := x-A¢, and compute

u, =

Ti:

+u| At, +ZV H, eXp( 'u" )

oT
?(O,Atk)=u0
4 n=0

oo

-3 fouy ol >T Senbu el |12 S el

= n=0 n
CHE L2 D
.| Aty Iy +KH' nzz(:) ,u”3 exp( M, 1)}

Also for the liquid phase in the passive-flow region B(?), a series solution is an alternative to the
FD scheme, provided that the material parameters p,,cp,,4, are approximately constant.
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Appendix 4 Comments on the PDE and its well-posedness

Well-posedness is an important concept when studying the existence, uniqueness and stability of
solutions of PDEs. For nonlinear problems in general only local results are to be expected
([Gustafsson et al.], p.153). Often the nonlinear PDE and its solution can be considered as the
limit of a sequence of linearized problems and their solutions ([ibid.], p.154); the linearized
problems then ought to be well posed. We will consider (3.14) for a given surface evolution
h=h(r,?)(>0). (In reality 4 and T interact two-way.) Now v,,v,,7 depend only upon (x,?), but

the non-linearity of the PDE through x,7 remains. The viscous-energy term G =7y is

linearized as G =G, + c¢- T . Here the sign of the Arrhenius parameter B in the 77-factor BT
of (2.4) determines the sign of ¢ :=dG/dT =— (T_BT o G, evaluated at a relevant temperature. For

realistic materials models (and G T oo as T T,) ¢ <0 is to be expected.

Well-posedness is related to the properties of both the equation and the BCs. To study the former
we will first treat an initial-value problem (IVP) for the homogeneous (without G,,), linearized
PDE, PDEL, with an IC that is periodic in each dimension r, z, but has arbitrary periods (cf.
[Straughan], p.4). If the domain is static and its boundary smooth, well-posedness of the PDEL is
guaranteed by the well-posedness of the PDEL with frozen (constant) coefficients (e.g.,
[Strikwerda], p.235). By considering simple wave solutions of the frozen PDEL, introducing
w,,w, as arbitrary real wave numbers, we identify the PDE symbol (i.e. its Fourier transform,
[Gustafsson et al.], p.127)

P(iw) = —szz —i-(v,w, +v,w,)+c.
Since P and its complex conjugate P* for real materials fulfil

P+ P ==2kw." +2¢<0,
any such homogeneous IVP is well-posed ([ibid], p.129). By Duhamel’s principle ([ibid.], p.149)
also the (constant) inhomogeneous [VP is well-posed.

As for the influence of the BCs upon well-posedness, we will next study an idealization of the
linearized IBVP (3.14) (cf. [ibid.], p.385, for 1D). We assume an expanding flow radius R = R(¢)
and a 3D family of domains

X, ={rcosg,rsing,2)| re [e, RO p € [0,0,.,()} 2 € [0,h(r,0)]},
where 0 < &< R(0). Let U =T —T,,, assume angularly independent solutions U = U (r,z,¢) and,
as a description of the temperature levelling fountain flow at the front, take dU/dz =0 as BC at
r=R(t). The IC in (r,z) € [, R(0)|x[0,H] is U =T, —T,, . This is also the BC at r = ¢,
ze [O,H). For fixed ¢, z = h(r,t) is assumed to vary slowly with 7 and, since v, =0 at &, the
normal component fulfils v, =v,. Assume smooth, real coefficients x,v,,v.,c: k(r,z,¢) >0,

s Vs

v,(r,z,t)>0 for ze [0, h(r,t)) , v,(r,0,) =0 and c(r,z,¢) <0. Consider the PDE written as
%—?:PU+G0, P:=a[ J j—v,a—v i+c,

K.i z
dz\ dz or 0z
and define the energy E(¢) := % U0 |P= % _[| U [ dx (cf. [Straughan], p.4). Multiply the

X/
homogeneous PDE by U and integrate. Integration by parts, identification of the front expansion
rate R'(¢) =v.(R(¢),t), and use of Gauss’ theorem and the no-divergence condition yields

85



dE d h(rt) Pac (1) ,
— 2I\U\ dx jUa—dH [ 1UP rdpdz “R(t) =

z=0 ¢@=0

r=R(t)

h(r,t)
= U-Pde+1R(t)¢)ac,(t)~[ | Uzdz-vr(r,t)}

X, z=0

r=R(t)
h(r,t)
rdr

z=0

f Ve[ + 0 Rj)[w_ U}

h(r,t)
+ 2RO, (1) - U (R(0),51)- { (A v,(r,z,z))dz}

z=0

h(e.t)
+1ep,., (1) [ | v,.Uzdz}

z=0

r=R(t) r=¢€

In the final expression, the first two terms are bounded above by some %0{ U I*=0E@), a<0,

where a <0 is used if x or ¢ is uniformly bounded below (and a Wirtinger type inequality, cf.
[Straughan], p.207, is applied). The 1% integral (for r) vanishes, due to BCs, U =0 at z =4 and
v. =0 plus 9U/dz =0 at z = 0. By the definition of the average v, (r,?), the 2" integral (for z)

evaluates to 0. The 3™ integral (for z) takes the positive value %eqpm Oh(E ), (&,)0T, - Ty, )2

and since (T, —T),) is the temperature dependent factor of £(0) the integral value is of type
B)E(0); with S independent of U. Hence the energy fulfils

% <aE(t)+ BOEO), E(t)<E(0)- {e“‘ +] /f‘(”df}-
0

In terms of [Gustafsson et al.], p.383, the homogeneous linearized IBVP is strongly well posed,
and P is maximally semi-bounded. As the source term G,, is smooth, Duhamel’s principle

applies and the well-posedness can be extended to the inhomogeneous linearized problem.

Finally we will argue that the IBVP for the nonlinear PDE is locally well posed. We therefore
consider a given solution 7, and local variations 7 =T, +u . The viscous energy term is
rewritten

G(T,x,t) = G(T,,x,t) + c(Ty,x,t) - u,
a 1* order Taylor expansion at 7. Now u =0 (i.e. T,) solves the corresponding inhomogeneous

PDEL as well, and the remaining equation coincides with 3—? = Pu above. Any initial value

perturbation u(r,z,0)=u,(r,z) can be evaluated as above, by the energy method, but now all
BCs are homogeneous. Therefore the £(¢)E(0) -term disappears and only the aF(¢)-term
remains. If & is assumed negative in a fixed time interval, then we will have local nonlinear
stability of the basic solution 7}, (cf. [Straughan], p.9).

A global well-posedness of the general problem (3.11) would require that 4 is allowed to vary by
T — cf. Section 3.2.3 — to satisfy (3.13). No such well-posedness can exist, since we know from

practice that close to a total freezing situation % | 0, the imposed v, ,7 and 7 (through 7 and
pressure) have no a priori bounds.
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Appendix 5 Stability of linearized FD scheme

Linear schemes with constant coefficients, obtained by freezing the coefficients in a variable
coefficient scheme in every possible way, can be used to prove stability of general linearized
schemes in simplified geometries ([Strikwerda], p.51, and [Gustafsson et al.], p.183).

Initially we look at a frozen-coefficient formulation. Let 7-index i be exchanged for m to clarify
the intended Fourier transformation, i.e. von Neumann analysis (e.g., [Smith], p.67, and
[Strikwerda], p.40). We make a transformation to the uniform ¢ -grid (cf. Sec. 3.3.1), and

consider the transformed PDEL, the linearization of PDE (3.12), where we assume v, and x

constant, d(rv,)/dr = 0 (reasonable in radial flow situations), and (cf. App. 4) 77” = g, + g U :

aa—(t/+v,aa—(rj+ —g“() rr[g“( é’] +(g + gU).

Here we assume periodic FD-solutlons (U m,) from initial values (U 3,,) on a grid of, say, M+1

equidistant r-levels r,, =m-Ar and J+1 equidistant ¢ -levels {'; = j-A¢:

M J m,/r L vinym
Wy, T Wy § s .
= ZZAW,Z ZZA,W sl =0,.., M j=0,...,J
m=0n,=0 m=0n,=0
nzx n,w
where w, =——, w,_=-—2_.
' MAar *Jag

These initial value equations determine the complex coefficients (An,nz ) uniquely. By linearity it

is sufficient to study the propagation of some initial wave U, = &) from initial time
Uk — l(nlr,,,erzz/)

mj

t, =0, with constant growth rate ¢, to -e™ attime ¢, . In the corresponding

FD equation (cf. (3.16) for the untransformed nonlinear case), let

AN <C) ARG NG

N Ag“ yile 2 20

o = AI{K( L g“”(z))m ;’(z)} b o A,
AL AL 2 2 Ar

Here we assume a,,,a, >0, i.e. the conduction term exceeds the vertical convection term. This

, c=A4g,.

is a restriction upon the grid density A¢, and can always be accomplished since (see Sec. 3.3.1)
@)V Y(H - mB-B)>0 (and {"(z) L 0)as z 1 0. Moreover, v, >0,1i.e. b, >0, and ¢ <0
(cf. App.4). Substitution into the FD equation, neglecting the inhomogeneous viscous energy
term g, , yields

™ = [1 —c+b, - (1 —e e )+ ay, - (1 —eM A )+ ag - (1 — g A )]71 .
This is the amplification factor, usually denoted by g, g(w;,w,) = e™" _In order to investigate
the stability condition | g(w,, w,) |<1 ([Strikwerda], p.42), we look for the minimum value of the

g-denominator. We may consider the last three terms of the denominator as the sum of a fixed
point (b, +a, +ag,0) and, as w,,w, vary, three rotating vectors in the complex plane. The

smallest denominator magnitude, 1 —c, is attained at w, =w, =0, i.e.
| g(w,,w,)|< g(0,0)=1/(1-¢), and since ¢ <0 the FD-scheme is unconditionally stable.
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From now on, we will consider the non-frozen FD-scheme. In order to linearize the FD-equation
(3.16), replace the diffusivity coefficients and the viscous energy term by local values — simply
marked by the exclusion of their upper (time step) index & in (3.16).

We consider the corresponding homogeneous scheme, which means ignoring the source term g,,.

Moreover, we consider the FD-equation as matrix-valued, each entry corresponding to one node
(i,j) of radial level i and vertical level j, for fixed k. Introduce the operator symbols I (identity op.)
and Q. As we will see below, the linearized equation has the form (backward Euler)

[I—Ath]Uk = Uk—l’ U e CM+HXUH)

According to [Gustafsson et al.], p.186, backward Euler schemes are unconditionally stable, if Q
is semi-bounded, i.e. fulfils

Re(V,QV) < of V[’ forall Ve M+,
Here <A,B> is any inner product for the matrices A, B such that HAH = <A,A> is an operator
norm. However, [ibid.] implicitly assume A¢, <1/e in their stability proof.
Since (cf. Sec. 3.3.1) control volume (i, j) has measure u, =@, (1) r,Ardz ;, we introduce the
weight matrices E_ = diag(e, ) for x =r, z, with positive diagonal elements

W e, \/7/ , and (cf. Sec. 2.3.1) define inner products and norms on a

fixed (r;,z;)-grid in (r, z)e [€,R]x[0,H] as (“ denotes complex conjugate):

(A.B),, = tl(E,AE,)" (E,BE,)|= EXABy ey Ple, P AL, =(AA),,

<a,b>x = trl(E,a)" (E,b)|= Zam wleon P (xom)=(r.i), (z.)), a=(a,)b=(b,),
i.e. the 2D and the 1D row and column norms are related by (cf. [ibid.], p.487)

<AaB>rZ = Z<a,.ab > |er,i |2 = Z<a.‘,‘9b.‘/>r |ez,j ‘2 .
J

In order to treat the dynamic BCs at the frozen surface z = i(r,t) < H and at the front
r=k-Ar <R, we define Ulf =0 outside the liquid part of subregion A(¢). At the front we either
start from U ,ﬁ;’l =0 and derive U ,3 by radial marching from U ,ffl’ ; or we use a special (unspeci-

fied) form of Q, subject to the same semi-bound ¢, to derive U, from U, (with US> =0).

To show stability of the linearized FD-scheme (3.16) we follow [Gustafsson et al.], p.182, and
describe the scheme using linear 1D difference operators D (forward), D, (central) and D_

(backward), for the set of nodes O in Fig. 3.2, at (r;,z,), and for (x,m)=(r,i), (z, j) written

Y1 — A _Qyq—a _a,—a,,
(Dﬂxoa)m '_ M’ (D+Xoa)m T M’ (Dfxoa)m =
Xt = X X+l — Xm X — X1
By use of the Hadamard product o, (A B) = A4, B;; , the linearization of scheme (3.16) in time

step k at node O can be written
[I-a, QU =U*""+ 4, Gy, Q=Q,+Q,+G,, G, =g,(r.z;,t;), n=12,
Q. U=-F,D_ (W, oU), W,; =rv, (1,2 /,xk) F, ::dlag((l/r-)-)

QZU::_DOZO(WZOU)+D—anD+zOU’ w T Vz(ri’zjbtk) K _K(w j+1/2’tk)'

z,jj
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Consider the homogeneous — backward Euler — scheme. Stability is guaranteed if Q is semi-
bounded. Since the operators Q,,Q, are essentially 1D, Q, for fixed j of type AD_,,(Bu) with

A =diag(a), B :=diag(b) depending on the space variable (general notation x), we will initially
derive a general result for such operators. Consider an E_ -weighted 1D grid inner product,
assume a, breal, a=>0, b>0 and let

2 2
Fx :diag(fx )’ ‘f:‘c,m = \/ame’ 6”1 = am+1bm ‘ex,erl | ~a, |€X,m | bm -
bm bm+1 Axm+1 A)Cm
By using 2 Re(V,QW> = <V»QW> + <QW,V> we derive (cf. [Gustafsson et al.], p.446):
(AD_ (BV), W) +(v,AD_,(Bw))" =
u | [ m ‘ u ‘ e, "
= - b -b Cw o X
mz=[ Axm am( mvm m—1 vm—l) Wm mz=:€ 3

2 2
|

c —
Vinlm (bm Wiy — bmfl Win-1 ) -

u u b2 e 2 ) “
=(F,D_,(BV),F,D_o(BW)), = > &, v;,w, +Mﬂ cw, (A5.1)
m={ m+1 Axm+1 /-1
2 2
4 b e m—. e m .
Analogously, with &, =| Zzn=12n [t | -a, o | b,, , we obtain
bm—l Axm—l Axm
<ADero (Bv), w>‘; + <V, AD_ o (Bw)>'; =
Cdlen . wlewn . B
- z N am (bm+lvm+l - bm vm ) Wm + z VinGm (bm+lwm+l - bm Wm ) -
m=( m m={ m
" 4 b2 |e |2 u+l
=—(F,D,,o(Bv),F,D, o (BW))' + Y &, viw, +%#V;W’” (A5.2)
) m=( m—1 m—1
I3

To allow b >0 in (AS.1) we need an alternative. Let
‘2

” . ” ” ” | e +1 |2 | e

Fx = dlag(fx )’ fx,m = ambm—IAxm H 5m = amem be’: - am (bm—l - me) be’:
m+l1 m
The wanted result is
(AD_yo (BV), W), +(Vv,AD_,o(Bw)), =
lexn P o[
u N e §
= <F3’(’D—x0v’ F;D—xowﬁ - z 51’;1Vrcnwm + amem &anwm (A53)
) m=/( Amerl -1

We will now investigate whether Q, _is semi-bounded (for fixed z =z, implicit below). Since

r

v,.(r,t) is generated by a finite radial inflow rate at each time ¢, and » = £(> 0) is assumed, v,
is approximately constant so it is reasonable to assume that the radial velocity v, (r,t) is non-
negative and fulfils a Lipschitz-type condition

| v, (1,0) =1y, (1, 0) IS 4, (¢) - max[r, ] [ =1 |
Consider the domain r € [r,R], r, =&, with BC U(r,,t) = g, () and IC U(r,0) = f(r). In time
step k we use the active grid r, =7, +i- Ar,i =0,1,...,k” , where k" =kork+1, k"< K,
R =K Ar.Due to the BC at r =r,, every FD-solution U must have U, () = g, () at r,; which
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can be excluded from the grid norm. Using (A5.3) with A =F,, B = diag(W,.,, j) and u = (U)

we get

°j>

2Re(u,Q,u)* =2Re(u,Q,u)" =
q ” k” )2 L ” 2 2 2
=7 ‘FXD—I'O (BU)HI - Z 51' |ui | + @y (t)rk'vr,k” |le~ | Pt (t)f’ovr,o | 8gr (t) ‘
i=1

v

< Al (t) ) (Hqu )Z + Dact (f)”o"r,o ‘ 8y (t) ‘zg Al (t) : mquK)z + Dact (Z)rOVV,O | g (t) ‘2 .
The semi-boundedness of Q, can be deduced from a homogeneous BC instead of the more
general BC U, = g,, by the variable transformation

~ k" Ar—r
U(r,)) =U(r,0) = g, (t) - ————
(r,7) (V)g()kﬂr_r0
which also has an influence upon IC
~ ~ k7 Ar—
70)=000)= 1)~ g,(0) ="
k™ Ar—ry

and upon the generation term of the corresponding inhomogeneous PDE. Now Q, is semi-

bounded with a bound & = ¢, , if there exists an upper bound «, =1- sup 4, (¢), i.e. similar to
te[0,t7]

a uniform Lipschitz condition for the whole filling process. This condition is reasonable —
however impossible to fulfil for any case that develops to complete freezing (v, T o in a narrow
cavity gap), when the solution procedure should collapse as well.

. | K | K
Next consider Q, . Let a, ; =7 “V.ia|» s, =7 +v,,, | and assume that

" I's; |

conduction predominates over vertical convection in the sense that a,,ag = €,(t) >0 (cf. Sec.

3.3.2). Moreover, assume that the vertical velocity fulfils a Lipschitz condition (r =7, is fixed)
. . . T
|v.(z,,0)=v.(2,,t) |< Ay (t)-| z, — z, | . Consider the domain z € [0, 2] with BCs %—(0,1) =0,
Z
T(h,t)=g.(t)(=T, ) and IC T(z,0) = f(z). Assume that z = h(r;,t) corresponds to z ;,, with

Jjh<J, H=z,.By using the variable transformation U(z,) =U(z,0)— g.()-z/h we geta

homogeneous BC at z ,, not affecting the semi-boundedness of Q, . Let u:= (INJ)i, , with
-1

0 To derive a semi-bound, let
J=

ﬁj (t)=0 for j = jh,and use the active grid norm (zj)

K, =diag(K,), V, = diag(W

z,ie

2Re(u,Q,u)=—-2Re(u, Dy, V,u) +2Re(u,D_, K,D qu)=

),use le, |2/Az]- =1, &z, =n;+|s; | and consider

u..,—Uu; u.—u:

_ el 1 J+l J J J- | _

= 2Re%:uj 5(‘ Ve gl TV oy )"' K2 T ~ K2 Tsj' =

2
=2-2 Relusfay 0 =, -2 ZRG(”E s o, =, ))- 2O =va) [uy
J J J

Identification of the first two terms in the final expression with the middle-expressions in (AS5.2)
and (AS5.1),forb=1, v=w=u, a=ay and a = ag, respectively, yields
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2Re(u,Q,u)’ " = 2Re{u,Qu)" " = —(F.D_oul"" | - (F.D_oul"" |

Jjh-1 , 2 2 _]h 1
+Z(5j+6j_Vz,j+1+vz,j—l)‘uj| +tay i lu;l ‘ —ag Uy ‘ =
=0
ﬂ 7 F - (ro_ou ' 1"( )iu, P
== ‘FXDJrzOuHO - ‘FXD—ZOUHO ) Z zl+1 zl—l |uj |
—ay_ (O 1Uy(1) I —ag 5 (DU () ? +ag () |U_(2) . (AS.4)

In the final expression (A5.4) positive contributions come from the last term in each of the two
lines. The very last term can be bounded by a Sobolev inequality (e.g., [Gustafsson et al.], p.459):
for every € =¢(t), € >0, we have

g 1 \2 2
L 0P=00Fs max 10,05 e(Doulf o+ et (ol f.

(A somewhat weaker bound is obtained if |[D,ou| is considered as well.) The grid density — cf.
Fig. 3.2 — fulfils 2n, <Az, <2|s, |. To accomplish semi-boundedness, we choose &€ >0 such

‘jh—l

that ag () €- Q‘D_Zou“gh7] )2 < (HF,‘D_zOuH(]]%l )2 , where ||D_,oul; ‘jhil

2 HD_ZOu‘1 and

ih-1 |2 ih-1 2
(Fo>ouly” 22,0215, o oul ™
As for the last term in the first line of the final expression (AS5.4), the Lipschitz condition implies
|v A (1) |z Ay (1) 24,

z,j+ v, ,j-1 |— J+l _Zj—l ‘:

Re(n.Qu); < (a0 o7+ et} ) < (o o7 we ') ol
Thus Q, is semi-bounded, if there exists an upper bound
o, =% sup (AZ O+h+e”! (t)),

t€[0,tpy

i.e. if the Lipschitz condition and the lower bounds of a, ,a, are uniform for the filling process.

The last term of Q, G, comes from the local temperature derivative of the viscous energy term
(cf. App. 4), uniformly bounded, | g, [< 4, , for T 2T}, (> Ty).

Now also the 2D operator Q =Q, +Q, + G, is semi-bounded ([Gustafsson et al.], p.485), and
the stability of the linearized FD-scheme follows.
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