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ABSTRACT

Modern state-of-the-art equation based object oriented modeling languages such as Model-
ica have enabled easy modeling of large and complex physical systems. When such complex
models are to be simulated, simulation tools typically perform a number of optimizations on
the underlying set of equations in the modeled system, with the goal of gaining better simu-
lation performance by decreasing the equation system size and complexity. The tools then
typically generate efficient code to obtain fast execution of the simulations. However, with
increasing complexity of modeled systems the number of equations and variables are in-
creasing. Therefore, to be able to simulate these large complex systems in an efficient way
parallel computing can be exploited.

This thesis presents the work of building an automatic parallelization tool that
produces an efficient parallel version of the simulation code by building a data dependency
graph (task graph) from the simulation code and applying efficient scheduling and
clustering algorithms on the task graph. Various scheduling and clustering algorithms,
adapted for the requirements from this type of simulation code, have been implemented and
evaluated. The scheduling and clustering algorithms presented and evaluated can also be
used for functional dataflow languages in general, since the algorithms work on a task graph
with dataflow edges between nodes.

Results are given in form of speedup measurements and task graph statistics produced

by the tool. The conclusion drawn is that some of the algorithms investigated and adapted in

this work give reasonable measured speedup results for some specific Modelica models, e.g.
a model of a thermofluid pipe gave a speedup of about 2.5 on 8 processors in a PC-cluster.
However, future work lies in finding a good algorithm that works well in general.
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Chapter 1

Introduction

In this chapter we introduce the area of modeling and simulation, and ex-
plain why it is important to parallelize the simulation code generated from
simulation tools for equation based modeling languages.

1.1 Modeling and Simulation

Modeling and simulation tools are becoming a powerful aid in the product
development process. In order to shorten the time for developing and manu-
facturing a product, also known as time-to-market, modeling and simulation
have an important role to play. By building a model of the product using
advanced tools and languages, and simulate its behavior prior to producing a
physical prototype, errors in the design or in production can be detected at
an early stage in the development process. This leads to shorter development
time, since the earlier an error is detected, the cheaper it is to correct.

Quite recently in the history of modeling and simulation technology, mod-
els were built by hand. The equations and formulas describing the physical
behavior of a system described by a model were written by hand and gradu-
ally transformed and simplified so that an executable implementation of the
model could be written in an ordinary programming language such as Fortran
or C. Since much of the work was made manually, it was expensive to maintain
and change models in order to adapt them to new requirements. In fact, this
manual development of models is still used today, but is gradually replaced by
using automatic tools.

In this manual approach still used today, the knowledge of the models
typically is divided between different places and persons. Some people are
responsible for the physical behavior of the model with knowledge about the
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equations and variables of the model. Other people know how the equations
are implemented in the programming language used for the simulation of the
model. This also make maintenance expensive and reuse of models difficult.

To remedy these problems, object oriented modeling languages such as
Modelica [34] were developed. By using an object oriented modeling language
it is possible to describe the physical behavior of individual objects by us-
ing Modelica classes, corresponding to models of real physical objects. These
Modelica classes can then be instantiated as objects inside so called com-
posite objects and connected together to form larger models. By modeling
each physical object as an entity (or object) combined with the possibility of
reusing objects through inheritance, a true object oriented modeling approach
is gained.

Also, if the modeling language is equation-based, the reuse opportunities
increase even further. By describing the physical behavior of an object with
equations, the causality (i.e. the direction of the ”data flow”) of the object
is left unspecified. This makes it possible to use the component both as an
input and as an output. For instance, an electrical motor can both be used as
a traditional motor giving rotational energy from an electrical current or as a
generator transforming rotational energy into electrical energy. The causality
can be left to the tool to find out, based on the computation needs of the user.

1.2 The Need for Parallelization

With increasing complexity and size of modeled systems, the need for par-
allelization of the simulation code for such systems is emerging. An object
oriented equation based modeling language makes it feasible for a less expe-
rienced user to build large and complex models, with the help of advanced
graphical modeling tools [14, 17, 31]. One such tool is MathModelica [31],
where models can be built in the model editor in a drag and drop fashion as il-
lustrated in Figure 1.1. Typically, a large model can contain over one hundred
thousand equations, which can be both differential and algebraic equations.
When simulating such a model it is necessary to solve the equations for the
state variables and their derivatives for each time step of the numerical solver.
For large models this can be very time consuming and the need of paralleliza-
tion of these calculations are large.

In this thesis we develop and evaluate methods to speed up the execution
of the simulations of large and complex models described in the Modelica
modeling language. The speedup is achieved by an automatic parallelization
tool that translates the sequential simulation code generated for a Modelica
model into a parallel version of the code. This parallel code is executed on a
parallel computer giving a speedup of executing the simulation.
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The automatic parallelization tool translates the sequential simulation code
into a internal representation in the form of a task graph, which is a directed
acyclic graph. Each node in this graph is a small piece of computation, like an
expression or a function call. The edges of the task graph represent data that
is sent between tasks. Communication and execution costs are associated with
the edges and nodes of the task graph respectively. This information is used by
the clustering and scheduling algorithms that traverse the task graph, resulting
in a partitioning of the graph for a specific parallel computer. By using the
standard task graphs as input to the scheduling and clustering algorithms the
tool can be generalized to work for any functional dataflow language. Finally,
the automatic parallelization tool produces platform independent simulation
code for execution on the specified parallel computer.

Such an automatic parallelization tool would typically be integrated into a
modeling and simulation environment so that an engineer could easily use it
in an intuitive way. This requirement emphasizes the need of making the tool
fully automatic, to eliminate the complexity of parallelization for the user.
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Figure 1.1. The model editor in the MathModelica modeling and simulation
environment, showing a model of a car.
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1.3 Thesis Overview

The rest of this thesis is organized as follows. Chapter two gives some back-
ground regarding the Modelica language as well as basic concepts in parallel
computation and data dependency graphs used by scheduling and clustering
algorithms. Chapter three presents related work in scheduling and cluster-
ing algorithms. Chapter four presents the research problem of this thesis. In
Chapter five an automatic parallelization tool is presented. This tool is built
to validate the hypothesis regarding feasible automatic parallelization stated
in the section about the research problem. Chapter six presents some con-
tributions in the form of scheduling and clustering algorithms, followed by
performance results of these algorithms in chapter seven. A summary of the
work achieved so far is given in chapter eight. Finally, conclusions and future
work is presented in chapter nine.



Chapter 2

Background

This chapter presents the modeling language Modelica, which is an equation
based object oriented modeling language. This language has been designed
for increasing the reuse of model components and with the capability to build
complex hierarchical models of physical systems in a natural way. The chapter
also gives a background in parallel computation and automatic parallelization.

2.1 The Modelica Modeling Language

This work uses powerful modeling and simulation technology for dynamic and
complex physical systems of several application domains. The best representa-
tive for this technology is the new modeling language Modelica [35], a modern
object oriented equation based modeling language well suited for modeling of
large and complex physical systems.

A trivial example Modelica model with two variables and two ordinary
differential equations (ODE) is given in Figure 2.1. The variables are of the
builtin type Real. The x variable has an optional modification of the start
attribute, setting its value to 5.2 compared to the default value of 0 for Real
variables. The start value is used by the simulation tool to determine initial
values for the simulated model. The y variable has its start value set to zero.
After the variable declarations, an equation section follows, specifying the two
equations of the model. The der operator specifies the derivative of a variable.

The solution from a simulation of a Modelica model contains a number of
functions of time. For each variable, and each derivative, a sequence of values
for different time steps is returned from the execution of the simulation. These
variables can then be plotted, or processed in other ways. For instance, the
value curve of the y variable from simulating the ODE model for ten seconds is
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plotted in Figure 2.2.

model ODE
Real x(start=5.2);
Real y(start=0);

equation
der (x)=4*y-x;
der (y)=-2%x;
end ODE;

Figure 2.1. A small ODE example in Modelica.

Figure 2.2. The plot of the solution variable y after simulating for 10 seconds.

The basic building block in the Modelica modeling language is the class.
Everything in Modelica is a class or instance of a class. For example, the model
definition above is in fact a so called restricted class using the keyword model
instead of class. Classes can be instantiated inside other classes, enabling an
hierarchical modeling methodology. Basically, the end user can build complex
models by instantiating classes to create objects inside user defined model
definitions and connecting these objects together.

To enhance the component based modeling approach and to attract end
users to use already developed classes, the Modelica language has several ad-
vanced features for allowing reuse of classes.



2.1. THE MODELICA MODELING LANGUAGE 7

e Inheritance
A class can inherit equations and variables from a base class. Local
classes are also inherited.

e Redeclarations
The type of an instance can be replaced by a new type, which means that
the old declaration using the old type is replaced by a new declaration
using the replaced type. This is a special case of inheritance.

e Modifications
A class or an instance of a class can be modified using a list of mod-
ifications, changing for instance parameter values, constants, variables
or even local classes in that class. This is a simple, but quite common,
variant of redeclaration where the type of a variable is not changed.

Figure 2.3 shows these three language constructs in a small Modelica example.

record ColorData
Real red;
Real blue;
Real green;
end ColorData;

class Color

extends ColorData; // Standard Inheritance
equation

red + blue + green = 1;
end Color;

class SmallCircuit
replaceable Resistor R1;
end SmallCircuit;

// Redeclaration
MiniCircuit tempcircuitl(redeclare TempResistor R1l);

class SmallCircuit?2
Resistor R1(R=3); // Instantiation with modification
end C;

Figure 2.3. Three language constructs that enables reuse.
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Another important language construct in Modelica is the kind of restricted
class called connector, along with the connect operator. Instances of connec-
tor classes constitute the interfaces of a component, i.e. how it connects to
the outer world. A connector class contains instances of variables used for
communicating with other components. For instance, when building models
of electrical components a connector class for electrical properties is needed.
The Modelica standard library (MSL) [34] contain two connector classes for
electrical components (one for the positive pin and one for the negative pin of
an electrical component). The positive pin class definition is:

connector PositivePin
SIunits.Voltage v;
flow SIunits.Current i;
end PositivePin;

Since most electrical components have two pins, this information is col-
lected into a class called OnePort!, which is a base class for electrical compo-
nents with two pins:

partial model OnePort
SIunits.Voltage v;
SIunits.Current i;
PositivePin p;
NegativePin n;

equation
V=p.V - n.V;
0=p.i+mn.i;
i=p.i;

end OnePort;

The partial keyword indicates that the model (class) is an abstract class,
i.e. does not have a complete set of equations and variables and therefore can
not be simulated stand-alone since only partial information is given. This can
be determined by looking at the variables (v,i, p.i, p.v, n.i, n.v) and
the equations. There are only three equations and five variables, which makes
the system unsolvable (no unique solution can be found). The OnePort model
contains two variables for keeping the ”state” of the electrical component, the
current through the component and the voltage drop over it. It also contains

IThe term OnePort is used by specialists in the electrical modeling community to denote
components with two physical connection points. This term can be confusing since the
ordinary English language meaning of port is as a kind of communication or interaction
point, and OnePort electrical components obviously have two ports or interaction points.
However, this contradiction might be partially resolved by regarding OnePort as a structured
port containing two subports corresponding to the two pins.
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two connectors, which are instances of connector classes, one for the positive
pin (p) and one for the negative pin (n).

The OnePort base class can be inherited by many electrical components,
for instance an inductor, defined in the Modelica Standard Library as:

model Inductor

extends OnePort;

parameter SIunits.Inductance L=1;
equation

Lxder(i)=v;
end Inductor;

or Resistor, defined as:

model Resistor

extends OnePort;

parameter SIunits.Resistance R=1;
equation

v=R*1;
end Resistor;

Once the basic electrical components have been described, which are already
provided in Modelica Standard Library, any basic electrical circuit can easily
be modeled. For instance, the simple electrical circuit in Figure 2.4 has the
following Modelica definition:

model DAECircuit
Resistor R1(R=100);
Resistor R2(R=470);
Capacitor C1(C=0.0001);
Inductor L1(L=0.001);
Ground Ground;
SineVoltage V(freqHz=50,V=240);

equation
connect(V.p, Rl.n);
connect(R1.n, Cl.n);
connect(Cl.p, R2.n);
connect(R2.n, Ground.p);
connect(Ll.p, Ground.p);
connect(Ll.n, Rl.p);
connect(Ll.n, R2.p);
connect(V.n, Ground.p);

end DAECircuit;
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—
v () ?

C1

Ground

Figure 2.4. An electrical circuit resulting in a DAE problem.

2.2 Modelica Compilation

When the model has been described as Modelica source code it can be fed
to a Modelica compiler. The Modelica compiler performs type checking, in-
heritance, instantiation, etc., breaking down the hierarchical object-oriented
structure into a flat Modelica class. The flat model contains all variables de-
fined in the model such as state variables, parameters, constants, auxiliary
variables, etc., along with all equations of the model. These equations consti-
tute the complete set of equations from all components and their subcompo-
nents, along with equations generated from all the connect statements. The
complete set of equations is either a system of Ordinary Differential Equations
(ODE) or a system of Differential Algebraic Equations (DAE), depending on
the model.
An ODE system on explicit form can be expressed as:

X = f(X,t) (2.1)

where X is a vector of all state variables. A DAE system on implicit form is
expressed as follows:
g(X, X, Y, t) =0
hMX,Y,Z)=0

where X is the vector of state variables and Y is the vector of algebraic vari-
ables. When the DAE system is on an implicit form the equation system has

(2.2)
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to be solved for the derivatives and the algebraic variables.

For example, the equations generated from flattening the DAECircuit model
is shown in Figure 2.5. Equation 1-4 originates from the Resistor instance R1,
5-8 from R2, etc. Equation 23-25 are generated from the two connect state-
ments connecting C1, R1 and V together. The number of equations from the
DAECircuit are 33, resulting in a differential algebraic system of equations,
corresponding to Equation 2.2.

After the flattening phase of a Modelica compilation, several optimizations
on the set of equations can be performed. By reducing the number of equations
(and variables) in the problem, the execution time of the simulation will be
reduced. An efficient Modelica compiler such as Dymola [14], will perform
several equation oriented optimizations. Among these optimizations are:

e Simplification of algebraic equations
Simplification of algebraic equations involves removing simple equations
like @ = b, where the variable b can be removed from the equation system
and all references to it can be replaced by a. The equations used for
simplifications can also have a more complicated structure.

e BLT transformation

The BLT transformation transforms a system of equations into Block
Lower Triangular form, which will identify blocks of equations that form
subsystems of equations. This is done by building a bipartite graph of all
equations and variables and identify strongly connected components in
that graph. The vertices of the bipartite graph are of two types; equation
vertice or variable vertice. The edges, which are connecting two vertices
of different types, connect variables to equations. Each variable in an
equation is connected to its equation node.

The BLT transformation gives a unique representation of subsystems of
equations [22], where some of the subsystems can be solved analytically
while others constitute a system of equations that needs to be solved by
numerical solvers.

¢ Index reduction

Index reduction is an optimization performed to reduce the index of a
system of equations. The index of a system of equations corresponds to
the number of times a variable in the equation system must be differen-
tiated before the equation system can be solved. Some numerical solvers
can handle equation systems of index one or two. However if the equation
system has an index higher than what the chosen solver can handle, the
index needs to be reduced. For instance, models of mechanical systems
typically are index 3 problems.
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No. Equation Origin
1 Rl.v = Rl.p.v — Rl.nw OnePort
2 0= Rl.p.i+ Rl.n.i OnePort
3 Rl = Rl.pi OnePort
4 R1.R*+xRl.i= Rl Resistor
5 R2.v = R2.pv— R2.n.w OnePort
6 0=R2pi+ R2.n. OnePort
7 R2.9 = R2.p.q OnePort
8 R2.R*x R2.1 = R2.v Resistor
9 Clw=Clpyv—Clnw OnePort
10 0=C1lpi+ Cln.i OnePort
11 Cli=Clp.i OnePort
12 Cli=C1.C xder(Cl.v) Capacitor
13 Ilwv=1I1l.pv—Ilnov OnePort
14  0=1Ilpi+Ilni OnePort
15 Il =1I1.pi OnePort
16 Il.Lxder(Il.d)=1I1lw Inductor
17 Ground.p.v =0 Ground
18 Vow=Vpv—Vno OnePort
19 0=Vpi+Vni OnePort
20 Vi=Vpi OnePort
21 V.src.outPort.signal 1 = V.src.p of fset_1
+(iftime < V.sre.p_startTime_1thenOelse
V.src.p_amplitude_1 % sin(2 * V.src.pi
«V.sre.p-freqHz 1 % (time — V.sre.p_startT'ime_1)
+V.src.p phase_ 1)) SineVoltage
22 Vo = V.src.outPort.signal 1 SineVoltage
23 Clni+ Rlini+ Vpi=0 Connect
24 Rlnw=Clnw Connect
25 Vpov=Clnov Connect
26 Cl.p.i+ Ground.p.i+ Il.p.i+ R2.n.i+ Vni=0 Connect
27 Ground.p.v = Cl.p.w Connect
28 Il.p.v = Cl.pw Connect
29 R2.nwv=Cl.pw Connect
30 Vinow = Clpw Connect
31 Ilmn.i+ Rlpi+ R2.p:=0 Connect
32 Rlpwv=1I1l.nv Connect
33 R2.p.v=1TI1l.nv Connect

Figure 2.5. The complete set of equations generated from the DAECircuit
model.

¢ Tearing of equations
Tearing of equations is yet another way of optimizing equation sys-
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tems [16]. Tearing is used to break algebraic loops in a system of equa-
tions. A system of equations containing an algebraic loop is a simulta-
neous system of equations, which is a strongly connected component or
subsystem of equations after BLT transformation. These loops are found
by detecting loops in the bipartite graph built in the BLT transforma-
tion.

e Mixed Mode Integration

Mixed mode integration is a method for breaking apart an equation
system and using several numeric solvers together instead of one [46].
For the fast dynamics of the equation system, i.e. the equations that
are stiff, an implicit solver is used. A stiff equation system is a system
containing both fast moving dynamics as well as slow dynamics, making
the equation system much harder to solve numerically, thus smaller step-
size and better solvers need to be used. For the slow states of the system,
a more efficient explicit solver can be used, with longer step sizes because
of slow dynamics. When using an implicit solver, a non-linear equation
system has to be solved in each time step, which is time consuming.
However, by only using an implicit solver on the parts that really need
it, i.e. on the stiff parts of the system, the non-linear equation system is
reduced in size, and a speedup is achieved.

e Inline Integration
Inline Integration is an optimization method that inserts an inline ex-
pansion of the numerical solver into the equation system parts [15]. By
doing so, and again performing BLT transformations, etc., a substan-
tial speedup in simulation time can be achieved. The inline integration
method has successfully been combined with mixed mode integration to
further reduce simulation time [46].

When all optimizations have been performed on the system of equations
code is generated. The generated code corresponds to the calculation of the
right hand side of Equation 2.1, i.e. the calculation of f. For the DAE case, i.e.
Equation 2.2, the subsystems of equations that are on explicit form are gener-
ated as for the ODE case, with assignment statements of arithmetic expressions
to variables. But for the subsystems of equations which are on implicit form
code that solves the subsystems numerically is generated, and/or linked with
a numerical solver.

2.3 Exploiting Parallel Computing

Efficient simulation is becoming more important as the modeled systems are
increasing in size and complexity. By using an object oriented component
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based modeling language such as Modelica, it is possible to model large and
complex systems with reasonable effort. Even an inexperienced user with no
detailed modeling knowledge can build large and complex models by connect-
ing components from already developed Modelica packages, such as the Model-
ica Standard Library or commercial packages from various vendors. However,
the number of equations and variables of such systems tend to grow over time
since it is easier to build large simulation models when using Modelica. There-
fore, to increase the size of problems that can be efficiently simulated it is
necessary to exploit all possible ways of reducing the execution time of the
simulation.
Parallelism in simulation can be categorized in three groups:

e Parallelism over the method

One approach is to adapt the numerical solver for parallel computation,
i.e. to exploit parallelism over the method. For instance, by using a
Runge-Kutta method in the numerical solver some degree of parallelism
can be detected within the numerical solver [43]. Since the Runge-Kutta
methods involve calculations of several time steps simultaneously, par-
allelism is easy to extract by letting each time step calculation be per-
formed in parallel.

e Parallelism over time
A second alternative is to parallelize a simulation over time. This ap-
proach is however best suited for discrete event simulations and less
suitable for simulation of continuous systems, since the solution to con-
tinuous time dependent equation systems develop sequentially over time,
where each new solution step is dependent on the immediately preceding
steps.

e Parallelism over the system
The approach taken in this work is to parallelize over the system, which
means that the modeled system (the model equations) are parallelized.
For an ODE or a DAE this means parallelizing the calculation of the
states, i.e. the functions f and g (see Equation 2.1 and 2.2).

The simulation code consist of two separate parts, a numerical solver and
the code that computes new values of the state variable, i.e. calculating f in
the ODE case or solving g in the DAE case. The numerical solver is usually
a standard numerical solver for solving ODE or DAE equation systems. For
each integration step, the solver needs the values of the derivatives of each
state variable (and the state variable values as well and some of the algebraic
variables in the DAE case) for calculation of the next step. The solver is nat-
urally sequential and therefore in general not possible to parallelize. However,
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the largest part of the simulation execution time is used for the calculation of
f or g. Therefore, we focus on parallelizing the computation of these parts.
This approach has for instance successfully been used in [3, 20].

When the simulation code has been parallelized, timing measurements on
the execution time of the simulation code is performed. To measure parallel
programs in a problem size independent way the execution time of the parallel
program is not a suitable metric. Instead the term relative speedup is used,
defined as [19]:

Th

Srelative - E (23)

where

e 77 is the execution time for running the parallel program on one processor
and

e Ty is the execution time for running on N processors.

This speedup is called relative because the same program is used for measure-
ment of both the sequential time and the parallel time. However, there might
exist a more efficient sequential implementation of the program. Therefore,
there is also a definition for absolute speedup where the sequential execution
time is measured on the most efficient sequential implementation instead of
using the same parallel program also for the one processor case. The definition
of absolute speedup is thus:

Tse
q
Sabsolute -

N

(2.4)

where

o T4 is the execution time of the most effective sequential implementation
and

e Ty is the execution time of the parallel program for N processors as
above.

Since a sequential version of the simulation code exist for all models targeted
by the tool presented in this work, i.e. the code produced by the standard
Modelica compiler, the speedup definition used through out the rest of this
thesis is the absolute speedup.
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2.4 Task Graphs

A task graph is a Directed Acyclic Graph (DAG), with costs associated with
the edges and the nodes. It is described by the tuple

G=(V,E,e7) (2.5)
where

e V is the set of vertices (nodes), i.e. tasks in the task graph.

e F is the set of edges, which imposes a precedence constraint on the tasks.
An edge e = (v1,v2) indicates that node v; must be executed before v
and send data (resulting from the execution of v1) to vs.

e c(e) gives the cost of sending the data along an edge e € E.
e 7(n) gives the execution cost for each node v € V.

Figure 2.6 illustrates how a task graph can be represented graphically. Each
node is split by a horizontal line. The value above the line represents a unique
node number and the value below the line is the execution cost (7). Each edge
has its communication cost (c) labeled close to the edge.

Figure 2.6. Task graph with communication and execution costs.

A predecessor to a node n is any node in the task graph that has a path to
n. An immediate predecessor (also called parent) to a node n is any node from
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which there is an edge leading to n. The set of all immediate predecessors of
a node n is denoted by pred(n). Analogously, a successor to a node n is any
node in the task graph that has a path from n to that node. An immediate
successor (also called child) is any node that has an edge with n as source,
and the set of all immediate successors of a node n is denoted by succ(n).

A join node is a node with more than one predecessor, illustrated in Fig-
ure 2.7(a). A split node is a node with more than one successor node, see
Figure 2.7(b).

(a) A join node (b) A split node
Figure 2.7. Graph definitions

The edges in the task graph impose a precedence constraint: a task can
only start to execute when all its immediate predecessors have sent their data
to the task. This means that all predecessors to a node has to be executed
before the node itself can start to execute.

Since the task graph representation is used in this work as an input for the
scheduling and clustering algorithms the work can be generalized to partition
any program that can be translated into a task graph. Thus, the algorithms
and results given in this thesis can be useful for scheduling sequential programs
of any type of scientific computations, given that the programs can be mapped
to a task graph.

2.4.1 Graph Attributes For Scheduling Algorithms

The scheduling algorithms use additional values, or attributes, mostly associ-
ated with the nodes of the task graph. Some attributes are common to several
algorithms. Others are specific for one particular algorithm. This section
defines a subset of such attributes.

The most important attribute of a task graph is its critical path. The
critical path of a task graph is its longest path. The length is calculated by
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accumulating the communication costs ¢ and the execution costs 7 along a path
in the task graph. For instance, the critical path in Figure 2.6 is indicated by
the thick edges of the task graph, which has a critical path length of 32. The
term parallel time is also often used for the critical path length [6, 49, 55],
and is used as a measure of the optimal parallel execution time. Another term
used for the critical path is the dominant sequence, used in for instance [55].
The level of each task, i.e. of each node in the graph, is defined as:

0 ,pred(n) =
0

max, ., (level(k) + 7(K) +c(bn)) pred(n) 20 (20

level(n) = {

kepred(n)

The relation between the critical path and the level attribute is that for nodes
on the critical path, the level of a node will always be the maximum value
among all predecessors of the node.

Another pair of important attributes used in many scheduling algorithms,
with some varieties regarding the definitions, are the earliest starting time and
latest starting time of a node. Other references use different names, such as
ASAP (As Soon As Possible) time and ALAP (As Late As Possible) time [54].
We use the terms est(n) and last(n) and the definitions found in [12], which
will later be used when explaining the TDS algorithm in Section 3.2.1.

est(n) = N pred(n) =0
B minkep'r’ed(n) maXlered(n),k;él (ECt(k>’ BCt(k) + Ckyn) 7pr€d(n) # @
(2.7)
ect(n) = est(n) + 7(n) (2.8)
fored(n) = maz, . ..., (ect(k) + ckn) (2.9)
ect(n) , succ(n) =
lact(n) = min min  (last(k) — cn s min(last(k
( ) stucc((n)7k7£fp7(’ed(n)( ) 7kk:€succ(n)7k:(:fpre(d()n)))) ,SUCC(n) 7£
(2.10)
last(n) = lact(n) — 7(n) (2.11)

e est(n) is the definition for the earliest starting time for node n, which
means the earliest possible starting time of a node, considering the prece-
dence constraint and the communication costs. It is defined in Equa-
tion 2.7.

0
0
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e cct(n) is the earliest completion time for node n, which is defined as the
earliest starting time plus the execution time of the node. The definition
of earliest starting time assumes a linear clustering approach, i.e. if the
first predecessor of a node is scheduled on the same processor as the node
itself, then the rest of the predecessors to the node will not be scheduled
on the same processor. This is why the definition, see Equation 2.8 takes
the maximum value of the ect value of one successor and the ect value
plus the communication cost for another successor.

e last(n) is the latest (allowable) starting time of a node n, i.e. the latest
time a node has to start execute to fulfill an optimal schedule, as defined
in Equation 2.11.

e lact(n) is the latest allowable completion time for a node n, i.e the latest
time a node is allowed to finish its execution. The definition is found in
Equation 2.10.

e fpred(n) is the favorite predecessor of a node n, see Equation 2.9, used
in the TDS algorithm. It is the predecessor of a node which finishes
execution last among all predecessors, thus should be put on the same
processor as the node itself to reduce the parallel time.

The difference of the latest allowable starting time and the earliest starting
time of a task is sometimes referred to as the scheduling window for the tasks.
If the window is large the scheduler has many alternatives of scheduling that
particular task. However, if the scheduling window is small like for tasks on
the critical path the scheduler has less opportunity of moving that task around
in time when trying to schedule the task graph.

2.5 Parallel Programming Models

Developing parallel programs, whether it is performed automatically by a tool
or manually by a developer or a team of developers, is an advanced and error
prone process. It can be difficult for a developer to estimate the structural
or computational complexity of the program he/she has written. By having
a programming model to follow, the programmer can be guided both in the
design and the implementation of his or her parallel program, and obtain a
model over the complexity of the program with regards to time and memory
consumption for different multiprocessor architectures as well as varying sized
problem instances.

When choosing a parallel programming model, there are several factors to
consider. For instance, how complicated should the model be? Each model is
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a simplification of the real world. Some programming models which are par-
ticularly simple may give large errors in comparison with real world examples.
For manual parallel program development one must also consider how easy
the model is to comprehend and use for implementation of parallel programs.
Since parallel programming is complicated and error prone, it is important
that the programming model is simple enough to minimize the effort needed
for developers to implement and understand their parallel programs.

The following sections present some of the most common parallel program-
ming models.

2.5.1 The PRAM Model

The Parallel Random Access Machine (PRAM) model [18] is a simple pro-
gramming model and also the most popular one. Its popularity is due to its
simplicity, all global data is instantly available on all processors. This is a
powerful simplification which can also lead to large errors when comparing
the model with reality. The PRAM model divides a parallel computation into
a series of steps, where each step can be either a read or write operation be-
tween local and shared memory or an elementary operation with operands from
the local memory. There are also model refinements within the PRAM model
based on the strategy taken when two processors access the same shared mem-
ory. For instance, the PRAM-Concurrent Read, Concurrent Write (CRCW)
model allows both concurrent reads and concurrent writes of shared memory.
Concurrent writes to the same memory address leads to conflicts. These can be
resolved in different ways, for instance by giving each processor a priority and
letting the processor with the highest priority write to the memory address.

The greatest advantage, and the reason for the popularity of the PRAM
model is its simplicity. However, its major drawback is also the simplicity.
The communication cost is neglected, which often leads to large differences
between the model and the reality.

2.5.2 The Logp Model

The Logp model [10] is more sophisticated than the PRAM model. Its name
is composed from the four parameters of the model.

e Latency, L
The latency is the fixed size independent time delay involved when send-
ing a message from one processor to another. For instance, when sending
data between two processors connected through an Ethernet based net-
work, one term of the latency is proportional to the length of the physical
cable connecting the two computers.
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e Overhead, o

The overhead of sending a message between two processors is the extra
time needed for preparing the sending of the message. Such prepara-
tions can be for instance be copying of data into send buffers, calling of
send primitives in a communication API, etc. This parameter can vary
depending on the underlying architecture. For instance, if the commu-
nication is performed by a co-processor the overhead is lower compared
to if the communication must be handled by the main processor itself.
During the overhead period of time, the processor is busy and can not
perform other tasks.

e Gap, g
The gap is defined as the time interval between two consecutive sends (or
receives) of messages. This parameter can be motivated if for instance
a co-processor handles the communication and it is busy some period
of time after a message sending request has been received. During that
time, additional requests have to be postponed, thus giving a gap time
between consecutive sends.

e Processors, p
The last parameter defines how many processors the problem is parti-
tioned for.

The model also includes a capacity limit on the connecting network. A maxi-
mum of [L/g] messages can be sent between processors at the same time.

2.5.3 The BSP Model

In the Bulk-Synchronous Parallel (BSP) model [50] all tasks (processors) syn-
chronize at given time steps. Between these steps each processor performs
individual work only on local data. At each synchronization step, global com-
munication between processors occur. The time between two synchronization
steps is called a superstep. The BSP model defines a computer as a set of com-
ponents, each consisting of a processor and local memory, connected together
through a network. The BSP model has the following parameters:

o P
The number of processors.

o]
The cost of performing a barrier synchronization is given by the param-
eter L.
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*g
The parameter g is associated with the bandwidth capacity. It is defined
such that ¢ - h is the time it takes to communicate (i.e. either send or
receive) h messages.

The total cost of a super-step, using the parameters above, is [ +x + ¢ - h,
where 2 is the maximum execution cost among the processors within the super-
step and h is the maximum number of messages sent or received by one of the
processors.

2.5.4 The Delay Model

The models mentioned so far have a stronger focus on data parallel programs
than task parallel programs. For task parallel programs there is a simple model
called the Delay model, which corresponds to the task graph model described
earlier in Section 2.4. Some authors instead use the term macro data flow
model. The delay model has a task graph where a communication cost, i.e.
a delay cost, is associated with each edge. This model is the most common
for scheduling and partitioning of task graphs, even if alternative models for
scheduling and clustering algorithms are starting to appear in literature, like
for instance the Logp model. The delay model is used in the work presented
in this thesis. However, a discussion about choosing other models is given in
chapter 9.
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Chapter 3

Related Work on Task
Scheduling and Clustering

During the past three decades extensive research has been made in the area
of scheduling and clustering parallel programs for execution on multiproces-
sor architectures. Early research in the area focused on simple models with
many restrictions on the models. Over the years, these early restricted models
have become more precise and therefore also more complicated. More efficient
scheduling and clustering algorithms have also been developed. This chap-
ter introduces some of the many scheduling and clustering algorithms found
in literature and explains common techniques used in these scheduling and
clustering algorithms.

3.1 Task Scheduling

A task scheduling algorithm traverses a directed acyclic graph (DAG), as de-
fined in Section 2.4. The output of the algorithm is an assignment of each
node n € V to a processor, and a starting time of each node i.e. a partial order
of the nodes in the graph. The general case of the task scheduling problem
has been proven to be NP-complete [48], thus it is common to use heuristics
in scheduling algorithms.

Some classes of scheduling algorithms can schedule the DAG for any given
number of processors, whereas other algorithms require an unlimited number
of processors. An unlimited number of processors as a requirement means
that the number of processors available can not be specified as an input to
the algorithm. Thus the processor requirement varies over different problem
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instances. There are even algorithms for a specific number of processors, e.g.
for two processors there exist an optimal scheduling algorithm [9].

3.1.1 Classification

There exists a general classification scheme for task scheduling algorithms [§],
which gives a hierarchical categorization of the algorithms, see Figure 3.1.
At the top level, algorithms belong to one of two categories, local or global
scheduling. Local scheduling involves scheduling of tasks locally on a proces-
sor, while global scheduling considers the scheduling problem involving multi-
ple processors. Furthermore, global scheduling can be subdivided into static
and dynamic scheduling. In this work we have so far only considered static
scheduling, i.e. the scheduling takes place at compile time. Static scheduling
is further subcategorized into optimal and suboptimal scheduling.

The suboptimal category contains two subcategories, heuristic and approx-
imate scheduling. Approximate scheduling algorithms can be of four different
kinds: enumerative, graph-theory, mathematical programming and queuing the-
ory. These four classifications are also used for subdividing the optimal static

scheduling algorithms.

Global Local
Static ?@c

Optimal Sub-optimal
- Enumerative /\
- Graph theory
- Math prog,. Approximate  poyristic
-Queuing theory - Enumerative

- Graph theory

- Math prog.

-Queuing theory

Figure 3.1. An hierarchical classification scheme of task scheduling algo-
rithms.
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3.1.2 List Scheduling Algorithms

The list scheduling technique has been extensively studied in the literature [21,
26, 41, 42, 47]. The list scheduling algorithms belong to the heuristics category
in the classification scheme given in section 3.1.1. Thus, list scheduling is a
suboptimal static scheduling technique. This is illustrated when studying list
scheduling in closer detail.

All list scheduling algorithms keep a list of tasks that are ready to be sched-
uled, often called the ready-list. The ready-list contains all nodes that are free,
which means that all predecessors of the node already have been scheduled.
In each step of the algorithm, a heuristic assigns a priority to each node in the
ready list and chooses one of the nodes with the highest priority value to be
scheduled for execution on one of the processors. A common parameter that is
included in the heuristic is the level of the node, see Equation 2.6. If the level
of a node has a high value, there are many computations to be performed after
the node has finished its execution. Therefore, that node should be given a
higher priority when choosing nodes from the ready list, compared to another
node with a much lower level value.

When a node has been scheduled it is removed from the ready list and
potentially successor nodes to the scheduled node are added. The algorithm
terminates when the ready list is empty, i.e. all nodes have been scheduled.

Note that list scheduling is a compile-time scheduling technique, i.e. all
scheduling is performed before execution starts. There are also dynamic tech-
niques very similar to the list scheduling.

The ERT Algorithm

One list scheduling algorithm is the Earliest Ready Task (ERT) algorithm [26].
Initially all tasks without any predecessors are put in the list of tasks ready to
schedule. The next step in the algorithm is to calculate (for each processor)
the earliest starting time (called ready time) for all tasks in the ready list. This
is done by taking the maximum finishing time added to the communication
time among all parents of the task. This calculation is shown in Equation 3.1
as defined in [26]. In the ERT algorithm, the communication cost has been
divided into two parameters: the first parameter is the size of the message sent
between tasks, d(k,n) in Equation 3.1. The second parameter, tcomm (5, F;),
is the time required to send one message from processor P; to processor P;.
Finally, the Alloc function in Equation 3.1 performs the allocation of a task,
returning a processor number.

X(n, P;) = max F(k)+ d(k,n) * teomm(Alloc(k), B;)) (3.1)

kepred(n) (

However, the calculation of the ready time above can not always be met as



CHAPTER 3. RELATED WORK ON TASK SCHEDULING AND
20 CLUSTERING

the real ready time in a schedule, since no check if the processor is available at
that time is processed. Therefore, once the ready time has been calculated for
all processors, the real ready time is calculated by considering if each processor
is available or not, as performed in Equation 3.2.

R(n, P;) = max(Avail(P;), X (n, P;)) (3.2)

Then, the processor giving the earliest starting time is calculated for each task,
see Equation 3.3 (m is the number of processors).

R(n) = minje{lv_”m}R(n,Pj) (3.3)

Once all these calculations have been performed, the task to choose from
the ready list can be calculated. We simply choose the task from the ready
list with the minimum value for R, and allocate it to the processor for which
that minimal value was achieved. Thus, the ERT algorithm is greedy in the
sense that is always selects the task which has the minimal ready time.

The complexity of the ERT algorithm is shown in [26] to be O(mn?), for
m processors and n tasks in the task graph.

The ERT algorithm has some heterogeneous features. The communication
costs between processors can be set individually, allowing for a somewhat more
flexible network. It is however uncertain if the algorithm performs well for real
heterogeneous multiprocessor systems, since different processor speeds is not
supported.

3.1.3 Graph Theory Oriented Algorithms

Another category of static scheduling algorithms is the group of graph theory
oriented algorithms. In this class of algorithms we find techniques such as
critical path scheduling [39] and several clustering approaches [11, 27].

The critical path scheduling technique identifies the critical path of the
task graph, see Section 2.4.1. Then it schedules all nodes on the critical path
on one processor. After the nodes on the critical path have been scheduled
onto the same processor, the communication costs between the nodes on the
critical path becomes zero. Hence, after the scheduling of the nodes on the
critical path, a new critical path will appear in the task graph. The algorithm
will then schedule this critical path onto the next processor, and so on.

3.1.4 Orthogonal Considerations

The classification scheme presented in section 3.1.1 does not cover all aspects
of scheduling algorithms. There are some features that are orthogonal to the
classification scheme. However, these considerations are important in this work
and are therefore explained in detail below.
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Task duplication

One approach of improving the efficiency of a scheduling algorithm that has
increased in popularity over the past decade is to employ task duplication
as a means of reducing the communication cost [12, 25, 29, 38]. The use of
task duplication to reduce the total execution time of a parallel task graph is
illustrated in Figure 3.2.

For certain applications where the cost of communication is far from neg-
ligible, duplicating a task to several processors can decrease the execution
time significantly [25]. A drawback of using task duplication in a scheduling
algorithm is that it increases the time complexity of the algorithm. The in-
crease can be substantial. For instance, the CPFD algorithm[25] has a time
complexity of O(n*).

Pl P1 P2
P2
(a) Three tasks assigned (b) Three tasks assigned
to two processors without to two processors with
duplication. task a duplicated.

Figure 3.2. Using task duplication to reduce total execution time.

Granularity

An important metric for task graphs with communication costs as defined
in 2.5 is the granularity of the graph. The literature also contain variants on
the definition of granularity [25, 28, 37]. For instance, another variant is to
take the average values for the communication and execution costs. Other
authors use the term Communication to Computation Ratio (CCR) instead of
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granularity [25]. The granularity ¢ is defined by Equation 3.4.

max__, c(e)

7= min__, 7(n) (34)

The granularity factor is an important metric for task graph scheduling.
A fine grained task graph, i.e. when the granularity value is high due to large
communication costs and small execution costs, the scheduling algorithm must
take a large responsibility for preventing communication when possible. One
approach might be to apply task duplication to prevent communication. An-
other way of handling the problem is to increase the granularity of the task
graph. One such method is called grain packing. Grain packing is a method
for decreasing the granularity of the task graph by merging tasks [23].

Task Graphs With Fixed Structure

Many scheduling algorithms have certain properties for specific structures of
task graphs. For instance, a common structure of a task graph is a task graph
that is an out-tree. Out-trees have one node with no predecessor, the successors
of the node are all independent, each of them with their own independent
successors, and so on. Scheduling and clustering algorithms can for instance
take advantage of such task graphs not having join nodes, and thereby perform
a better schedule compared to arbitrary task graphs.

3.2 Task Clustering

Task clustering algorithms perform part of the work of a scheduling algo-
rithm. A cluster is a set of tasks, designated to execute on the same processor.
The goal of a task clustering algorithm is to reduce the critical path of the
scheduling algorithm by explicitly assigning nodes to clusters, reducing the
communication costs to zero for edges with both nodes in the same cluster.
The execution order within the cluster does not necessarily need to be
determined, except of course that it must fulfill the precedence constraints
imposed by the edges of the task graph. The algorithm does not determine
when the nodes in the cluster starts to execute. Thus, in order to achieve
the same function as a task scheduling algorithm, a task clustering algorithm
needs to be followed by a second phase, which usually is a simple list scheduler.

3.2.1 TDS Algorithm

The TDS (Task Duplication based Scheduling) algorithm is a linear clustering
algorithm, with task duplication. Linear clustering means that the algorithm
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only assigns one predecessor of a node to the cluster containing the node itself.
Thus, the clusters form linear paths through the task graph. Due to the linear
clustering technique of the TDS algorithm, it needs to be followed by a second
scheduling or mapping phase that maps the assignments to physical processors.

The first step in the TDS algorithm is to calculate the earliest starting time
(est) and the latest allowable starting time (last), and some other additional
parameters for each node is the task graph. Among these parameters is a
favorite predecessor assignment for each node. The favorite predecessor is the
predecessor with the maximum ect (earliest completion time) value plus the
communication cost, defined in Equation 2.9.

The linear clustering is performed by following the favorite predecessors
(fpred) of the nodes backward up through the task graph, and assigning the
collected tasks among the traversed path to a processor.

When following predecessors up through the task graph, eventually a node
which has already been assigned to a processor will be considered. The TDS
algorithm will then check if the task is critical or not. A task is z is critical
for a predecessor task, y if Equation 3.5 is fulfilled. This constraint says that a
predecessor task y is critical to a task z if the effect of placing them onto two
different processors will invalidate the latest allowable starting time of task x
since the communication cost ¢, , will have to be considered, increasing the
latest allowable starting time (last(z)).

last(x) — lact(y) < cay (3.5)

The TDS algorithm will only duplicate tasks that are critical, keeping the
number of duplicated tasks low. If the favorite predecessor has already been
assigned to a processor, and it is not critical, the algorithm will follow another
predecessor when traversing the task graph upwards.

3.2.2 The Internalization Algorithm

A task clustering algorithm called internalization is presented in [49]. The
internalization algorithm is a task clustering algorithm which traverses all the
edges of the task graph and checks if internalizing the two tasks associated with
an edge will cause an increase in the total parallel execution time. Internalizing
two task means assigning them to the same processor, i.e. putting them into
a common cluster. This also means that the communication cost between the
two tasks are zero.

The edges are first sorted in descending order of communication cost.
Hence, the most costly edge is considered first. The algorithm checks if the
parallel time decreases when the edge is internalized. If so, the clustering of



CHAPTER 3. RELATED WORK ON TASK SCHEDULING AND
30 CLUSTERING

the two nodes is performed, otherwise not. This step is followed by a recal-
culation of the parallel time, along with calculation of other task attributes,
after which the algorithm continues with the next iteration.

The complexity of the internalization algorithm is O(n?), for a task graph
containing n nodes.

3.2.3 The Dominant Sequence Clustering Algorithm

Another task clustering algorithm specially designed for a low time complexity
is the Dominant Sequence Clustering (DSC) algorithm [55]. Similar to the
internalization algorithm it starts by placing each node in its own cluster. It
subsequently traverses all nodes in a priority based manner, merging clusters
and zeroing the communication label of edges as long as the parallel time of
the task graph does not increase. Zeroing an edge means that the clusters
where the two nodes resides are merged, hence making the communication
cost of the edge reduced to zero, i.e. the same as internalization of two tasks
as described in Section 3.2.2 above.

The simplified version of the algorithm is given in Figure 3.3. The first
step is to calculate the blevel for each node. The blevel is the longest path
from the node to an exit node, i.e. a node with no successors. Similarly, the
tlevel is the longest path from a node to a top node, which is a node without
any predecessors. This calculation is performed for all entry nodes of the task
graph.

algorithm DSCI(G = (V, E, 1, ¢) : graph)

Calculate blevel for all nodes

Calculate tlevel for each node n where pred(n) =0

Assign each node to a cluster

UEG =V, EG =

while UEG # () do
ny = free node with highest priority from UEG
Merge ny with the cluster of one of its predecessor such that tlevel(ny)
decrease in a maximum degree. If tlevel(ny) increases, do not perform the merge.
Update priority values for the successors of ny
UEG =UEG — {nys}
EG = EG+ {ny}

end while

Figure 3.3. The simplified DSC algorithm, DSCI.

When the initial calculations have been performed, the main loop of the
algorithm can start. The first line of the loop identifies a free node with the
highest priority.
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A free node is a node for which all its predecessors already have been con-
sidered in earlier iterations, i.e n is free iff k € EG, Vk € pred(n). This
terminology is the same as is used for list scheduling algorithms, see Sec-
tion 3.1.2.

The priority which is used for selecting a task in the first step of the loop
is defined in Equation 3.6.

PRIO(ny) = tlevel(ny) + blevel(ny) (3.6)

Once a task node has been chosen, the clusters of the predecessors of the
node are considered for merging. The algorithm merges the cluster associated
with the chosen node, n ¢, with the cluster of the predecessor which will reduce
the parallel time to a maximum degree. The parallel time, PT is defined as:

PT = mazx,_, PRIO(n) (3.7)

S

However, if the merge results in an increase of the parallel time, the merge
operation is aborted, leaving the cluster associated with ny as a unit cluster,
and the next iteration is performed.

The merging of two or more clusters means that all the nodes in each of the
cluster are put together into the same cluster. Additionally, when the merge
is performed, the edges between nodes in the same cluster are zeroed, i.e. their
communication cost becomes zero. The merge operation is also responsible
for adding pseudo edges such that each cluster has a determined schedule.
Figure 3.4 clarifies the addition of a pseudo edge.

0 10 0 0

SA )R Cassr.

Step i Step i+1

Figure 3.4. The addition of pseudo edges when performing a DSC-merge.

Finally, the algorithm terminates when all tasks have been examined, re-
sulting in a clustered task graph.
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In [55] the initial version of the DSC algorithm is presented (also shown
in Figure 3.3) and weaknesses of that algorithm are identified, after which an
improved algorithm is designed. Omne weakness identified is that the initial
version of the DSC algorithm does not work well for join nodes. A join node is
a node with several incoming edges, i.e. several predecessors. The initial DSC
only clusters a join node with one of the predecessors. However, the optimal
solution could include merging several predecessors together with the node.

Also, the initial version was improved to consider partially free nodes as
being subject of selection when choosing nodes. A partially free node is a
node that has some of its predecessors considered, but not all. The reason for
considering these nodes is that if a partially free node that lies on the critical
path is not considered before other nodes, the non-critical path nodes could
be merged such that the critical path is not reduced to a maximum degree,
see [55] for details.

One drawback with the DSC algorithm is that the clusters formed by the
algorithm do not imply that the nodes can be merged in a strong meaning, i.e.
merged such that all communication of the merged task is performed before
and after the computation of the merged task. By merging nodes we normally
mean that the execution parts of the nodes to be merged are accumulated into
one task, with the all of the communication taking place strictly before and
strictly after the execution of the accumulated task. The DSC algorithm does
not support this. Instead the communication of data between a task inside
a cluster to a task outside the cluster must be performed immediately after
the execution of the task residing in the cluster. The clustered task graph in
Figure 3.5, also found in [55] shows this problem. The data produced by node
1 needs to be sent immediately to node 3, which belongs to another cluster.

The reason for the merge problem being a potential a drawback is that for
task graphs with high granularity value, a real merge including communication
is required to cluster several messages together. For fine-grained task graphs,
the communication cost is dominated by the latency. Thus, by merging several
messages together large improvements can be made. Related work of task
merging is discussed in more detail in the next section.

3.3 Task Merging

Task merging is stronger in the way tasks are joined compared to task cluster-
ing. When tasks are clustered, they are only assumed to be put on the same
processor, which means that the communication cost between tasks belonging
to the same cluster are zero. Unfortunately the communication of messages
between tasks of the cluster and other clusters is still performed at the task
level. As soon as each individual task has executed, it individually sends the
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Figure 3.5. A task graph clustered by the DSC algorithm

messages to each of its successor tasks.

Task merging, on the other hand, performs a complete merge of the tasks,
by joining the work performed by each individual task into a single work item
and composing the in-going messages to the tasks in the cluster into a single
message, and the outgoing messages into another single outgoing message.
Figure 3.6 shows how a merge is performed. The cluster of tasks are merged
into a new task graph that still is a DAG.

3.3.1 The Grain Packing Algorithm

A combined scheduling and task merging technique called grain packing is
presented in [23, 24]. The grain packing algorithm is designed to handle fine
grained task graphs, i.e. task graphs with high granularity. The grain packing
algorithm is a complete scheduling algorithm, i.e. it schedules fine grained task
graph onto a fixed number of processors.

The algorithm is divided into four steps [24]:

e Building a task graph
The first stage is to build a fine grained task graph. This approach builds
the task graph at the expression level, as is done in this thesis work.

e Scheduling
The fine grained task graph is then scheduled using a scheduler for a



CHAPTER 3. RELATED WORK ON TASK SCHEDULING AND
34 CLUSTERING

(a) The original task graph before the (b) The resulting
merge has been performed. task graph after
merge.

Figure 3.6. An example of task merging.

fixed number of processors. In [24] a scheduling algorithm called Dupli-
cation Scheduling Heuristic (DSH) is used. The DSH algorithm has a
complexity of O(n*), where n is the number of tasks.

e Grain packing
After the scheduling algorithm has executed, a grain packing algorithm
analyzes the schedule and tries to merge tasks together in order to re-
duce the parallel time. The grain packing also includes task duplication,
i.e. duplicating grains from other processors to further reduce execution
time.

e Code generation
Finally, code generation is performed based on the grains (merged tasks)
from the previous step.

The advantage of the grain packing technique is that since the scheduling
algorithm works on the fine grained task graph, all possible kinds of parallelism
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can be exploited. Thereafter, refinements of the schedule are performed, re-
sulting in a suitable grain size.

3.3.2 A Task Merging Algorithm

In [6] is a task merging algorithm presented. The input to the algorithm is a
fine grained task graph, from which the algorithm produces a new task graph
which has a higher granularity value and fewer tasks. The complexity of the
task merging algorithm, or code partitioning algorithm which is the term used
in [6], is O(e - n3) for a task graph with n nodes and e edges.

The basic idea in the algorithm is to repeatedly choose a pair of tasks to
merge by using a heuristic. The parallel time, i.e. the length of the critical
path, is calculated provided the two tasks are merged. If the parallel time has
decreased since the last iteration, the merge is approved and the algorithm
continues by choosing two new nodes using the heuristic. The heuristic is
based on a number of criterias. The most important criteria is that only
tasks connected by an edge will be subject to a merge operation. This is
obvious, since a merge of two tasks connected by an edge will not produce a
loss in parallelism in the resulting task graph, since the two tasks are already
sequential because of the edge.

Additional criterias are for instance if the edge connecting the two chosen
tasks belongs to the critical path of the task graph, or if the merge of the
edge connecting the two tasks introduces a cycle in the resulting task graph.
Introducing cycles can not be allowed, therefore a merge of two task causing
a cycle can not be performed.

3.4 Conclusion

There is much related work in the literature on scheduling and clustering of
task graphs for multiprocessor architectures. When considering fine grained
task graphs with high granularity values (according to the definition of gran-
ularity given in Section 3.1.4), task clustering and task merging algorithms
are needed. Ordinary scheduling algorithms designed for coarse grained task
graphs does not work well for fine grained task graphs as targeted in this work.
One such coarse grained approach, also targeting simulation code, is described
in [53].

Clustering and task merging algorithms often consist of several phases with
a normal scheduling algorithm as the final phase. Therefore, scheduling algo-
rithms combined with task clustering or task merging algorithms are needed
for scheduling a fine grained task graph for a multi processor architecture.
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Chapter 4

The Research Problem

This chapter states the major research problem of this work. First, a hypothe-
sis is stated which captures the essential research problem in a single sentence.
Then follows a division of the research problem stated in the hypothesis into
three parts. Finally we discuss the relevance of the work as well as the scientific
method.

4.1 Forming a Hypothesis

The research problem can be summarized by the following hypothesis:

Hypothesis 1

It is possible to build an automatic parallelization tool that efficiently translates
automatically generated simulation code from equation based simulation lan-
guages into a platform independent parallel version of the simulation code that
can be executed more efficiently on a parallel computer than on a sequential
one.

Hypothesis 1 says that from an equation based modeling language, such
as Modelica, it is possible to automatically parallelize the code and obtain
speedups on parallel computers. The tool should be efficient such that pro-
ducing the parallel code is possible within reasonable time limits. The parallel
code should also be efficient. This means that the parallelization should be
worthwhile, i.e. the parallel program should run substantially faster compared
to the sequential simulation code. Finally, the parallel code should be platform
independent so that it can easily be executed on a variety of different parallel
architectures.
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4.2 Subproblems

The following sections split the research problem stated in Hypothesis 1 into
three subproblems.

4.2.1 Parallelism in Model Equations

The most important problem that needs to be solved to verify the hypothesis
is how parallelism can be extracted from the simulation code, i.e. the model
equations. Earlier work investigated the extent of parallelism in simulation
code at three different levels [3] for an equation based modeling language called
ObjectMath [52, 33].

The highest level where parallelism can be extracted is at the component
level. Each component of a large complex system usually contain many equa-
tions. The computational work work for each component can potentially be
put on one processor, with communication of the connector variables in be-
tween processors. However, earlier work showed that in the general case there
is not enough parallelism at this level.

The middle level is to extract parallelism at the equation level, i.e. each
equation is considered as a unit. This approach produced better parallelism
compared to extracting parallelism at the component level, but the degree of
parallelism was in general not sufficient.

The third level is to go down to the subequation level, where we consider
parallelism between parts of equations like for instance arithmetic operations.
At this level, the largest degree of parallelism was found among the three
levels [3].

However, the Modelica compiler we are using (Dymola [14]) has far more
optimizations performed on the model equations prior to code generation
compared to the modeling framework used in earlier work (ObjectMath [52])
Therefore, parallelism is harder to extract in this case compared to previous
work. Thus, the research problem of extracting parallelism from simulation
code generated from highly optimized model equations still remains to be
solved. Also, even if parallelism is extracted, the problem of clustering has be-
come even more important for obtaining speedups, since the processor speed
has increased much faster that the communication speed.

4.2.2 Scheduling Algorithms

The results, i.e the speedups achieved in [3] were not good enough, due to
bad clustering techniques. Therefore, the research problem of performing an
efficient clustering of such simulation code still also remains unsolved. The
scheduling (including clustering) of task graphs for parallel machines has been
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studied extensively in this work, and in other work as well. Efficient algorithms
with a low complexity should be used in order to fulfill 1. Also, task duplication
has to be used to better exploit the sometimes low amount of parallelism that
can be extracted from the simulation code at the subequation level, i.e. looking
at expressions and statements in the generated C-code.

It is also of substantial practical importance that the scheduling algorithms
used have a low time complexity, so that a parallel program can be generated
within reasonable time.

4.2.3 Cost Estimation

Another research problem is to estimate the cost of each task in the task
graph built internally by the parallelization tool, see Section 5.3. The costs of
some tasks can be determined with high accuracy, like for instance the cost
of an arithmetic operation, or a function call to any standard math function.
Other more advanced tasks, like for instance the task of solving a non-linear
system of equations, can be harder to estimate accurately. The problem is
to estimate such tasks in a convenient and general way, such that combined
with the scheduling algorithm, it will produce an accurate estimation of the
actual speedup that can be achieved when the parallel program is executed on
a parallel computer.

A related research problem that also influences the scheduling algorithm
is which model of the parallel computer (i.e parallel computational model of
communication and computation time) should be used, see Section 2.5. If the
model is too simple and unrealistic the difference between estimated speedup
and measured speedup will be too great. However, if the parallel model is
too complicated the scheduling algorithm might increase in computational
complexity since it has more parameters to consider.

4.3 Relevance

The relevance of the research problem stated in Hypothesis 1 can be moti-
vated in several ways. First, modeling and simulation is expanding into new
areas where it earlier was not possible to model and/or simulate a given prob-
lem. But with modern modeling techniques, such as object oriented modeling
languages and advanced combined graphical and textual modeling tools, it
is possible to model larger and more complex models than previously. This
is a strong motivation for why new methods of speeding up the execution
time of simulations are important, since larger and more complex models will
otherwise have longer execution time on their simulation runs.
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Also, by using modern state-of-the-art modeling tools and languages the
modeling and simulation area is opened up to new end-users with no advanced
knowledge of their modeled systems. These users will probably have even less
knowledge of parallel computing. This makes an automatic parallelization tool
highly relevant if the tool is to be widely used by the modeling and simulation
community.

Finally, as indicated above, there is still theoretical work to be done re-
garding better algorithms for the clustering of fine grained task graphs that
are typically produced in this work. For instance, new scheduling and cluster-
ing algorithms adapted for a more accurate programming model is needed for
increasing the performance of parallel programs. This is also further discussed
in Chapter 9.

4.4 Scientific Method

The scientific method that is used within this work is the traditional system-
oriented computer science method. To validate the hypothesis stated in Hy-
pothesis 1, a prototype implementation of the automatic parallelization is
built. Also, theoretical analysis of the scheduling and clustering algorithms
used can be used for validating the hypothesis. The newly designed and
adapted scheduling and clustering algorithms described in the following chap-
ters are also implemented in this tool. The parallelization tool produces a
parallel version of the simulation code that is executed on several parallel
computers. Measurements of the execution time is collected from these execu-
tions. When comparing the parallel execution time with the execution time of
a simulation performed on a sequential processor (which is preferably a single
processor on the parallel computer) an exact measure of the achieved speedup
is gained.

Finally, from the measurements from executions of the generated code and
the automatic parallelization tool, together with the theoretical analysis per-
formed on the scheduling and clustering algorithms, the hypothesis can be
validated.
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Chapter 5

An Automatic
Parallelization Tool

This chapter presents a prototype implementation of an automatic paralleliza-
tion tool. Preliminary versions of this tool have previously been described
in [4, 5]. First an overview of the tool and its different parts is presented, fol-
lowed by a description of the format of the simulation code passed as input to
the tool. We also present the use of the parallel programming Message Pass-
ing Interface (MPT) [32] and other issues in the code generation and execution
phases of the tool.

5.1 Overview

Figure 5.1 gives an overview of how the parallelization tool is used and also
shows the normal compilation of Modelica models to sequential simulation
code. The input to the parallelization tool is a sequential program consisting
of automatically generated C-code with macro calls. The format of this code
is presented in detail in section 5.2. Internally, the tool builds a task graph,
applies a scheduling algorithm and generates code for parallel execution. These
different phases of the parallelization tool are shown in Figure 5.2. The code is
compiled and linked with platform independent message passing libraries and
numerical solver libraries. The executable can then be executed on a parallel
computer.

The following sections presents the different parts of the tool in detail,
except the scheduling algorithms which are presented in the next chapter.
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Figure 5.1. An overview of the automatic parallelization tool and its envi-
ronment.

5.2 Input Format

The input to the tool is the sequential simulation code generated from a Mod-
elica compiler, in our case Dymola [14]. The simulation code corresponds to
the calculation of the right hand sides, i.e. the function f in Equation 2.1 or
solving X from the equation system in Equation 2.2. The code is generated
C-code with macros. The syntax of the C-code is a limited subset of the C lan-
guage. Therefore, writing a parser for parsing the C-code is less complicated
than writing a complete parser for the C programming language. However,
each macro must also be parsed by the tool.

The subset of the C language that is needed is:

e Expressions
Most parts of the generated simulation code consist of expressions built
of arithmetic operations on constants and variables. The code can also
contain function calls, e.g. the standard math functions like sin, cos
and exp are frequently used.
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Figure 5.2. The internal architecture of the tool.

e Statements

The statements found in the code are mostly assignment statements,
where scalar variables or array elements with a constant index are as-
signed large expressions. However, some of the macro calls need also be
treated as statements, for instance the macro call for solving a linear
system of equations (SolveLinearSystemOfEquations) is treated as a
statement, even if it after macro expansion corresponds to a complete
block of statements.

e Declarations
The code can also contain declarations of temporary variables, used in
the expressions and as targets for the assignment statements.

e Blocks
In some cases, the code contains blocks of statements, i.e. a new scope
is opened with the ‘{’ character and closed with the ’}’ character, with
a sequence of statements in between. The reason for having such local
blocks is for instance to be able to use local variables.

e Miscellaneous
The simulation code can also contain some miscellaneous C language
constructs, like if statements.

For example, the generated C-code for the circuit example shown in Fig-
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ure 2.4 is given in Appendix A.

The parallelization tool uses Bison [13] for generating a parser to parse
the input. The lexical analysis is generated from a specification using the
Flex tool [40]. The parser calls a set of functions for building the task graph,
described in the next section.

5.3 Building Task Graphs

While parsing the input file, a fine grained task graph is built. For each
arithmetic expression, function call, macro statement, etc. a task is created.
A data dependency edge is created between two tasks from a definition (i.e
assignment) of a variable in one task to the corresponding use of the variable
in another task.

As an example, we use a simple model with only one variable:

model SmallODE
parameter Real a=3.5;
parameter Real b=2.3;
Real x;
equation
der (x)=-a*xx+b/(time+1);
end SmallODE;

Parts of the simulation code for the Small0DE examples appears as follows:

#define der_x Derivative(0)
#define x State(0)

#define a Parameter(0)
#define b Parameter(1)

der_x = a * x + divmacro(b,"b",Time+1,"Time+1");

From this code a task graph as shown in Figure 5.3 is built. First, when the
definitions of the variables in the code, (der x, a and b) are parsed, a task
for each variable definition is created. These tasks are definition nodes, hence
their execution cost is zero. A symbol table keeps track of the tasks that define
the value of a given symbol. For instance, the variable name der x points to
the define task for the variable der x, see Figure 5.3.

When the statement (that writes to variable der x) is parsed, tasks for
the division macro, the two additions and the multiplication are created. For
instance, when the multiplication task is created, the two operands are looked
up (i.e. the definition tasks for a and x are accessed) and edges between the
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operand tasks and the multiplication task are created. The symbol table entry
to the variable der x is updated, so that subsequent reads of the same variable
will connect data dependency edges to the new task instead of the definition
task of the der x variable. For scalar values the communication costs asso-
ciated with the edges are set to the cost of sending one scalar value between
processors. In the example we use the cost of 100 units, e.g could be 100
microseconds, for a communication of one variable.

o
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-

&
\ﬁ@ 8
-

Figure 5.3. The task graph produced from the simulation code for the
SmallODE example, on page 44.

5.3.1 Second Level Task Graph

The task graph built while parsing is not suitable as input to a scheduling
algorithm. There are several reasons for this statement. First, many scheduling
algorithms assumes a single entry, single exit task graph. This means that the
task graph should only have one entry node (a node without any predecessors)
and one exit node (a node without any successors).

Second, since a lot of definition nodes are created, one for each variable
defined in the simulation code, and these nodes have no computational cost,
they could preferably be joined into one task. This task could be the single
entry task of the task graph.
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Third, some constructs in the simulation code must be sequentialized and
performed atomically as one unit of execution without being divided. Mod-
elica when-statements is an example of such constructs. The following model
illustrates the problem:

model DiscreteWhen
discrete Real a(start=1.0);
discrete Integer b;
Real x(start=5);
equation
der(x) = -x;
b = integer(x);
when (b==2) then
a=2.3;
reinit(x,4);
end when;
end DiscreteWhen;

The DiscreteWhen model has two discrete-time variables and one continuous-
time variable. A discrete-time variable only changes at certain points in time,
at events, whereas continuous-time variables may change at any point in time.
The when statement is a discrete event handling language construct in Mod-
elica. It triggers at a specific event, specified by the code b==2, i.e. when the
discrete variable b equals two. At the event, two instantaneous equations be-
come active, resulting in the execution of two corresponding statements. The
first one sets the discrete variable a to the value 2.3, and the second one reini-
tializes the state variable x with a new value. The generated simulation code
for the when equation has the following structure!:

beginwhenBlock
whenModelica0ld(b0_0 == 2, 0)

a0_0 = 2.3;
endwhenModelica()
endwhenBlock

To solve these three problems related to the task graph built from parsing
the simulation code a second task graph is built, where each node in the
new task graph can contain one or several tasks from the first task graph.
Figure 5.4 illustrates the relationship between the two task graphs. The first
task graph contains all arithmetic operations, function calls, etc., and the
second one is built by clustering together tasks from the first task graph. This

"The when equation is split internally by Dymola and the reinit equation is treated
elsewhere in the code.
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First task graph

Second task graph

Figure 5.4. The two task graphs used in the tool.

is also an important reason for why the second task graph is built. For some
scheduling algorithms to work well, the granularity of the task graph, defined
in Equation 3.4, must have a low value. This can be achieved by running grain
packing or clustering algorithms on the original task graph, resulting in a new
task graph which is coarser than the original one.

5.3.2 Implicit Dependencies

The simulation code also contains implicit dependencies, not visible by parsing
the simulation code with its macros unexpanded. Such code can for instance
be initialization macro calls for matrices and vectors used by code sections
for solving a system of equations. This means that information about these
special macros, and their implicit dependencies, must be known by the tool,
and that additional pseudo dependencies must be added to the task graph.

An example of implicit dependencies is given in Figure 5.5. The code
fragment solves a non-linear equation system. In this case the implicit de-
pendencies makes the whole code fragment sequential. For instance, the first
macro ( NonLinearSystemOfEquations) declares several variables used in the
macros that follow and must hence be first in the code fragment. The sequen-
tialization of the code fragment is also motivated by the opening of a new scope
with the '{’ character, which forces the tasks inside the scope to be executed
atomically.
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{ /* Non-linear system of equations to solve. */
const char*const varnames_[]={"Pipe.Ploss[1]"};

NonLinearSystemOfEquations(Jacobian__, residue__, x__, 1, 1, 1,
154) ;

SetInitVector(x__, 1, Pipe_Ploss_1, Remember_(Pipe_Ploss_1, 0));

Residues;

SetVector(residue__, 1, Pipe_mdot_2-

ThermoFluid_BaseClasses_CommonFunctions_ThermoRoot (
divmacro (50*Pipe_Ploss_1*Pipe_mdotO*Pipe_mdotO,
"50*Pipe.Ploss[1]*Pipe.mdot0*Pipe.mdot0" ,Pipe_dpO0,
"Pipe.dp0"),
Pipe_mdint*Pipe_mdint)) ;

{ /* No analytic Jacobian availablex*/

SolveNonLinearSystemOfEquations(Jacobian

Pipe_Ploss_1 = GetVector(x__, 1);

EndNonLinearSystemOfEquations(residue__, x__);
/* End of Non-Linear Equation Block */ }

residue__, x__);

——2

Figure 5.5. Simulation code fragment with implicit dependencies, e.g. be-
tween SetInitVector and Residues.

5.4 Cost Estimation

When the task graph has been built, each task has to be assigned an execution
cost and each edge a communication cost. One approach of estimating the dif-
ferent costs is to use profiling. Since the simulation code is executed repeatedly
each time step of the numerical solver, with almost the same execution time,
a simple profiler can be used to measure the execution costs.

However, a simpler approach where each different task type is estimated
by hand could be sufficient. It is more important to give a good estimate
of the relation between communication cost and execution cost, since this is
the main factor that affects the possible speedup when executing on a parallel
computer. Once this relation has been measured with enough precision, the
other costs are worth considering.



5.4. COST ESTIMATION 49

5.4.1 Communication Cost

The communication costs can be measured by measuring the time it takes to
send different sized datasets between two processors on the targeted multipro-
cessor architecture. Typically, for small sizes of data, the affecting parameter
is mostly the latency of the parallel computer, see Section 2.5.2. Therefore, for
the fine grained task graphs produced in our parallelization tool, the latency
is the most important parameter.

Such measurements are commonly used to benchmark different communi-
cation APIs on different machines. Figure 5.6 gives the latency and bandwidth
measured (by each specific vendor) for different multiprocessor architectures
2 [45, 36]. The values in Figure 5.6 are measured at the MPI software level
(except for Firewire) , thus including the overhead of calling the API functions
when sending a message.

Bandwidth (Mbyte/sec) Latency us

Scali MPI (SCT network) 199.2 4.5
GM (Myrinet network) 245 7
SHMEM (SGI Origin 3800) 1600 0.2-0.5
Firewire (at hardware level) 50 125

Figure 5.6. Bandwidth and latency figures for a few different multiprocessor
architectures.

5.4.2 Execution Cost

The execution cost of the tasks in the task graph can be either estimated
given the architecture specifications of the targeted platform, or measured
by measuring the time by profiling the simulation code. The method used
depends on what accuracy is needed. When using estimates of the execution
cost instead of actual measurements, effects from the cache is often neglected,
giving large errors in the approximation.

On Pentium-based processors there is a special instruction that counts the
number of cycles elapsed since the last reboot of the processor. A single assem-
bler instruction put inside a function is sufficient for measuring high resolution
time. The code in Figure 5.7 illustrates how it can be used. One problem is
that the compiler might optimize the code, moving parts of the computation
that should be measured outside the two calls to the measuring function (rdtsc
in Figure 5.7). This can be solved by turning off the optimizations responsible

2The SGI computer is a shared memory machine, thus the figures denote writing data to
shared memory.
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for moving the code. However, this introduces errors in the measurements
which could be large.

__inline__ unsigned long long int rdtsc()

{
unsigned long long int x;
__asm__ volatile (".byte 0xOf, 0x31" : "=A" (x));
return Xx;

}

int main(int argc, char **argv)
{

long int start,end;

start = rdtsc();

myfunc(argc,argv); // function to measure
end = rdtsc();

return end-start;

Figure 5.7. Pentium assembler code for high resolution timing

There are tasks that are harder to measure. For instance, the code for
solving of a non-linear system of equations is based on a fixed point iteration.
Thus, the execution cost for the corresponding task graph can not be estimated
well enough, since the number of iterations depends on the input values of the
involved variables. For these tasks, a less precise estimation is given.

For other tasks, corresponding to code solving a linear system of equations,
the cost estimate can be estimated from the number of involved variables.
Hence, the cost of for instance solving a linear system of equations involving
ten variables can be estimated by a function f(10). If the standard LaPack [2]
function for solving a linear system of equations is used (xGESV), the function
described in Equation 5.1 can be used, where C; and C5 are constants that
can be determined by for instance profiling as above.

f(n)=Cy-n®+Cy (5.1)

5.5 Code Generation

When the scheduling algorithm has executed the code generation phase is
started. The parallel code is generated in a master/slave fashion, where the
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master node runs the numerical solver, and each of the slave nodes executes
a part of the calculation of the right hand side, as illustrated by Figure 5.8.
The master processor first executes the numerical solver to calculate the next

solver idle idle idle idle idle

S—

—

ths, ths, ths, rhs, ths, ths,

Figure 5.8. The parallel code executes in a Master/Slave fashion, with the
numerical solver executing on processor 0.

values of the state variables. During this calculation the slave processors are
idle, since they are waiting for the master processor to send the state variables
and other variables, calculated by the numerical solver. When the numerical
solver has finished its integration step, the state variables are sent to the slave
processors. The slaves start their executions for calculating the right hand
sides, followed by another message sending phase when data is sent back to
the master processor. When the master processor has received all the data
from the slaves the process restarts with another call to the numerical solver,
for calculating the states at the next time step of the simulation.

The details of the code generation is described in the next section, followed
by a section describing several of the optimizations that can be performed in
the code generation phase.

5.5.1 Traversal of Task Graphs

From the second task graph, see Section 5.3.1, code is scheduled onto M
processors by building a list of tasks, one list for each processor. By having a
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list of tasks for the processor assignment of nodes it is possible to duplicate a
node onto several processors. The lists are first sorted in descending level order,
such that the precedence constraints imposed by the data dependencies of the
task graph are fulfilled (if not already performed by the scheduling algorithm).
Then, code for each task is emitted, including code to write the result of the
task to a temporary variable if needed. A typical case when temporaries are
needed is when generating code for the SmallODE example, which task graph
is shown in Figure 5.3. The generated code, when all tasks are assigned to the
same processor, is:

tempr[1] 1;

tempr[2] = tempr[1] + Time;

tempr [3] divmacro(b,"b",tempr[2],"tempr[2]");
tempr [4] a * x;

der_x = tempr[4] + tempr[3];

The reason for having temporary variables for expressions not assigned to
a value is that the scheduling algorithm might choose to put sub-expressions
within the same statement on different processors (i.e. assigning an expression
to a variable). Then the intermediary result from one expression to the next
needs to be stored in a variable. The divmacro macro call in the code above
is an ordinary division, but including error handling (hence the extra string
arguments) for preventing division by zero.

In our example above, the temporary variables are stored in an array.
However it might be necessary to store the result in local variables instead.
By storing the temporary variables in an array, the C compiler will with a
large likelihood not be able to optimize the code as well as compared to the
case where the temporary variables are stored in local variables. A C compiler
normally only considers local scalar variables to be stored in registers, thus
increasing performance by reducing the number of memory accesses. Our
parallelization tool can generate code for both cases. However, the difference
between the two approaches was in practice neglectable.

5.5.2 Optimizations

There are several optimization opportunities to consider in the code generation
of parallel code using message passing.

e Broadcast vs. individual message sending
For smaller examples data sizes of all variables that need to be sent to
the slaves are relatively small. Then it might be cheaper to broadcast
the complete data structure to all processors instead of dividing the data
into parts and send only the data required by each individual processor.
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The reason for this is that for small data sizes the network latency is
the dominant factor of the communication cost. Therefore it does not
matter if an additional amount of data is sent. Also, by not dividing the
data into parts for each processor the cost of performing the partitioning
of the data itself is removed.

By using a simple model of the network and an additional cost for the
splitting of data arrays, a payoff heuristic can be implemented that can
choose between the two different approaches.

e Collecting messages

If the scheduling algorithm itself does not perform a proper clustering of
tasks it can be worthwhile implementing an optimization to collect the
send primitives of n outgoing messages from one processor P; to another
processor P; into a single send primitive. By collecting n send primitives
the communication cost is reduced from n - (L +x) to L +n -z, where L
is the latency and z is the cost proportional to the data size of each send
primitive. The same optimization can also be performed on the receive
primitives in the code generated for processor P;.

This approach is somewhat ad-hoc since it tries to optimize a poor sched-
ule/clustering of a parallel program. The correct way to solve this prob-
lem should instead be to cluster (or merge) the nodes prior to scheduling.
Therefore, this optimization is not yet implemented in our parallelization
tool. Instead, effort has been put on developing clustering and merging
algorithms that can solve this problem.

e Remove resends of data

For some schedules a particular data item could already have been sent
from a processor P; to another processor P;. Thus it does not need to
be sent a second time. Figure 5.9 illustrates this typical scenario: the a
node allocated to processor P; sends data to both d and e, both allocated
to another processor P?;. But since d and e are both assigned to the same
processor, the data sent from a to both of the nodes are the same, the
second message sent (between a and e) is not needed.
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Figure 5.9. A task graph with processor assignment showing multiple sends
of the same data to different nodes on the same processor.
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Chapter 6

Scheduling and Clustering
Algorithms

This chapter presents our contributions in the area of scheduling and clustering
algorithms. The contributions consist of improvements of earlier algorithms
and insights in how well suited some scheduling and clustering algorithms
found in literature are in the area of scheduling automatically generated sim-
ulation code from optimized model equations.

First, we emphasize the requirements put on scheduling and clustering
algorithms for our application area. This is followed by a presentation of the
algorithms, or improvements on algorithms found in literature, contributed
in this work. Finally, an experimental task graph scheduling environment
developed in the Mathematica programming environment is presented, along
with some standard scheduling algorithms that also have been implemented
in that framework.

6.1 Requirements

The major requirement imposed by the task graphs from our parallelization
tool is the granularity of the graph. Since the parallelization tool builds the
task graph at the lowest level, building small tasks from each sub-expression,
the task graph granularity (communication to computation ratio as defined
in Equation 3.4), g, becomes high. Typical values for g lies between 100 and
1000, depending on the communication network of the parallel computer and
the processor architecture in general.

The choice of building task graphs at the expression level also affects the
number of tasks produced from the simulation code. Hence, a second impor-
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tant requirement is that the computational complexity of the task scheduling
and clustering algorithms must be low. For instance, consider a scheduling
algorithm of complexity O(n3), where each iteration takes about 1000 cycles.

For a task graph with 10000 tasks the algorithm would take (1041)3%106 sec-
onds = 11 days'. This example shows that it is very important to keep the
algorithm complexity low with respect to the task graph size.

The simulation code generated from the Modelica compiler that we use in
this work (Dymola [14]) is highly optimized, thus giving many dependencies
(i.e. edges) in the task graph. The large number of data dependencies, com-
bined with the high granularity value of the task graph, requires the use of task
duplication techniques in order to fully take advantage of the amount of paral-
lelism in the task graph. This requirement is in conflict with the requirement
on low computational complexity. By allowing task duplication to decrease
the parallel execution time, the complexity of the algorithm increases. Hence,
it is important to find a balance between the complexity added by introducing
task duplication and the total complexity of the scheduling algorithm.

6.2 The TDS algorithm

The TDS algorithm is a linear clustering algorithm with task duplication [12],
which produces an optimal schedule given some constraints on the task graph.
It has a low complexity (O(n?)) in comparison with many other scheduling
algorithms, which makes the algorithm attractive for our purpose. However,
there are several problems to consider when using the TDS algorithm.

Since the TDS algorithm is a linear clustering algorithm, it can not guar-
antee a fixed number of processors, i.e. the processor requirement is unlimited.
Therefore, for having a fixed number of processors a second algorithm has to
be run to reduce the number of processors to the desired value.

A second problem is the task graph constraint that needs to be fulfilled
for the TDS algorithm to produce the optimal schedule. For fine grained task
graphs, i.e. task graphs with a high granularity value, the optimality con-
straint is not fulfilled. Thus, the TDS algorithm does not produce the optimal
schedule for our application area. However, the task duplication feature of
TDS combined with the low complexity still makes it interesting for further
investigation.

A third problem is the linear clustering approach of the TDS algorithm.
Since the TDS algorithm uses linear clustering it will never put two siblings on
the same processor. However, for our fine-grained task graphs, such a restric-
tion can give poor performance. For instance, consider the small task graph in

I The processor speed is assumed to be 1GHz
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Figure 6.1. Since the communication cost is much greater than the execution
cost, the approach of only extracting linear clusters and assign them to proces-
sors is far from optimal. Instead, a non-linear clustering approach is far more
effective. The parallel execution time for the non-linear clustering with task
duplication, shown in Figure 6.2(a) is 6, whereas the parallel execution time
in the linear clustering with task duplication is 24, as shown in Figure 6.2(b).

&
SRy,
871

A s

1 1 1

10 10 10

Figure 6.1. A small DAG (Directed Acyclic Graph) with high granularity
value.

We have implemented the TDS algorithm in our parallelization tool [30]2,
as well as the second phase described above to limit the number of processors.
The second phase uses a combination of a load balancing strategy and a mini-
mization of communication sending strategy when choosing clusters to merge
tasks for limiting the number of processors.

6.3 A Pre-Clustering approach

The high granularity (defined in Equation 3.4) values of the generated task
graph is a problem when using an algorithm such as the TDS algorithm.
Therefore, a pre-clustering approach was also considered. The pre-clustering
approach merges tasks together, thus increasing the granularity of the task
graphs. Another positive side effect of merging tasks together is that the
message sizes increase.

2The TDS algorithm was initially implemented by Magnus Gustavsson, PELAB,
Linkoéping University, Sweden
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(a) A non-linear clustering with task duplication,
parallel execution time = 6.
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(b) A linear clustering with task duplication, parallel exe-
cution time = 24.

Figure 6.2. The problem of using linear clustering on fine grained task graph.
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Our pre-clustering algorithm builds on earlier work of merging tasks found
in [44]. The basic idea is to repeatedly add tasks to a set of tasks that will
be merged into a larger task by considering related tasks in a specific order.
Addition of new tasks is terminated when the sum of the execution costs of
the tasks in the set reaches a certain threshold. When adding a new task to
the set a cycle can occur in the resulting task graph. This is illustrated in
Figure 6.3 where adding a task b to the cluster consisting of a will cause a
cycle in the final task graph. This means that the resulting task graph does not
fulfill the properties of a DAG (Directed Acyclic Graph), thus many scheduling
algorithms can not be applied to the task graph. We have added prevention
of cycles into the algorithm, which is presented in Figure 6.4.

Figure 6.3. A cluster that forms a cycle in the resulting task graph when
putting node a and node b into the same cluster.

The algorithm buildCluster presented in Figure 6.4 takes a starting node
as a parameter and a list of nodes that are candidates for inclusion into the
cluster. The first candidates that are considered for addition to the cluster
are children of the starting node. The next candidates are children to already
added nodes that only have one predecessor. Then siblings to the starting
node, i.e. nodes with a common parent, are considered for inclusion into the
cluster. Finally, any node in the list of candidates is considered.

6.4 The Full Task Duplication Method

For task graphs with high granularity numbers, in the range 100 — 1000, a
simple method is to perform Full Task Duplication(FTD). This means that we
build clusters around each leaf node of the task graph, i.e. a task without any
successors, by collecting all predecessors of the leaf node. Hence, the resulting
clusters contain all tasks needed by the computation of the leaf task node.
Each cluster contains a tree traversal of the task graph originating from the
leaf node, following all edges upwards in the tasks, as depicted in Figure 6.5.
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algorithm buildCluster(n:node,l:list of nodes)
cluster:=addNode(n)
t:=calcSize(cluster)
while ¢ < size do
if ¢ € Child(n) and c ¢ cluster then
selectedNode:=c
break
end if
if ¢ € cluster and Length(Child(c)) = 1 and Child(c) ¢ cluster then
selectedNode:=Child(c)
break
end if
if ¢ € Sibling(n) and ¢ ¢ cluster then
selectedNode:=c
break
end if
if ¢ ¢ cluster and c € [ then
selectedNode:=c
end if
cluster:=removeCycles(cluster)
cluster:=addNode(selectedNode)
l:=removeNode(l,selectedNode)
t:=calcSize(cluster)
end while

Figure 6.4. Algorithm for merging tasks to increase granularity, used in the
pre-clustering approach described in Section 6.3.

When the clustering has been made, a second phase limits the number of
clusters until it matches the number of processors. This merge strategy is
performed in three steps.

e First the maximal cluster size among all clusters are determined. This
value is a measure on how much speedup can be achieved by parallelizing
the code using the F'TD approach.

e Secondly, tasks are merged in a load balancing manner by repeatedly
merging clusters as long as the size does not exceed the maximum clus-
ter size. This phase substantially reduces the number of clusters to a
reasonable value, making the next phase less time consuming.

e Finally, tasks are merged until the processor requirement is met by merg-
ing the two tasks with the largest number of common nodes. This ap-
proach is greedy, since it will always minimize the maximum cluster size.
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Figure 6.5. Applying full duplication to a task graph.

Figure 6.6 shows an algorithmic description of the FDT method. Step 0
in the algorithm creates the clusters by collecting the predecessors of each
exit node. Step 1 through 3 correspond to the three steps described above.
The clusters are described in the algorithm as a list data structure where each
element is a set of nodes. The input to the algorithm is a task graph as defined
earlier in 2.5, and the number of processors. The algorithm returns a list of
sets, where each element in a set contains the nodes to be executed on one
Processor.

Since the FTD algorithm duplicates all necessary tasks, there will be no
communication between slave processors during the computation of the right
hand side. Therefore, the communication that occurs is only between slave
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algorithm FTD(G: Graph (V| E, ¢, 7), N:Integer)
cl, cl2 : list of SCV
maxSize : Integer

cl:=emptyList()
cl2:=emptyList()
0. Vn eV | pred(n) :==0 do
cl:=addElt({n, predecessors(n)},cl)
L. mazSize := marvsec (D, cq T(1))
2. cl2 = addEIt( (cl(1) U...Ucl(d)),cl2) [ 3, canyu.. va T(1) < maxSize
while length(cl2) > N do
3Mind 51,82 € cl2 |3, cg,05, T(R) = min(ZvESiUSj 7(v))
Vi,j € {1...,length(cl2)}
cl2 := del Elt(S1, cl2)
cl2 := del Elt(S2, cl2)
cl2 := del BIt(S1 U Sy, cl2)
end while

Figure 6.6. An algorithmic description of the FTD Method.

processors and the master processor. The master processor will send the state
variables to each slave processor, either by broadcast or by individual message
sending, as discussed in section 5.5.2. After the slaves have finished their
execution they will send individual messages back to the master processor,
which will update the variables before the numerical solver is executed again.
With this simplified message sending strategy a simple but yet accurate cost
model can be used, see Equation 6.1. Here cl,,,, is the maximum execution
cost of a cluster, L is the latency of the communication network, and B is
the bandwidth of the network. The variable n is the maximum size of the
messages needed to be sent, thus giving an overestimation of the total cost.

Cp = Clmar +2% (L+nx* B) (6.1)

6.5 A Scheduling Framework in Mathematica

To be able to experiment with new scheduling and clustering algorithms in an
easy, interactive and powerful way, a task scheduling framework for developing
scheduling algorithms in the computer algebra system Mathematica has been
developed. Mathematica is also a powerful functional programming language,
which enables us to do fast implementations of prototype algorithms and still
keep the algorithms readable and easy to understand.
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The interactive programming environment that the Mathematica tool pro-
vides also increases productivity and quality of the algorithms developed, since
it enables the user to work in an interactive way, experimenting with different
ideas, different task graphs, several parameter settings, and so on.

The scheduling framework consists of a set of functions gathered in a Math-
ematica package. There are functions for building task graphs, setting execu-
tion costs and communication costs. Each task in a task graph is uniquely
represented by an integer value. The task graph is built from a list of edges,
where an edge is a list of two integer values identifying the edge between the
two tasks represented by those values. The direction of the edge is indicated
by the position of the task values in the list; the first position is the source
task and the second position is the target task of the edge.

There is also a function for generating graphical information from the task
graph, making it possible to view the task graph in a graph tool, Vcg [51] or
Aisee [1]. This ability is important for getting a good understanding on the
structure of the task graphs and on how clustering and scheduling algorithms
behave. The graph viewing tools also have some support for graph statistics
and other helpful means for better understanding the task graph structure and
how to attack the scheduling and clustering problem.

Figure 6.7 shows a Mathematica notebook with an example on how a task
graph is built and how it can be scheduled using the TDS algorithm.

The package also contains two additional implementations of known schedul-
ing algorithms. The ERT algorithm [26] is a list scheduling technique, earlier
described in Section 3.1.2, which is easily implemented in the framework. The
DSC algorithm [55] is also implemented, however without considering using
the most optimal techniques, like for instance priority queues. Instead, a more
straightforward implementation has been done, with somewhat higher com-
plexity in some parts of the algorithm.
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i

3 DAGs, Implementation using downvalues

]
4 The Earliest Ready Task alg. O(mn®) ]] J
]_

5 TDS Algorithm

5.0.1 Definition [N
5.0.2 Testing 1]
=]

tarig4p= | BuildDag[{{1, 2}, {1, 3}, {1, 4}, {4, 7}, {4, 6}, {3, 5}, {2, 5}, {7, 9},
{6, 9}, {6, 8}, {5, 8}, {9, 10}, {8, 10}}]

lariesi= | Hodes

cutfiesE | {1, 2,3,4,5,6, 17, 8,9, 10}

lafigei= | CommCost[1, 2] = 1; CommCost[1, 3] = 3; CommCost[1, 4] = 2; CommCost[4, 7] = 2;
CommCost[4, 6] = 4; CommCost[3, 5] =4; CommCost[2, 5] = 2; CormCost[17, 9] = 2;
CommCost[6, 9] = 2; CoomCost[6, 8] = 2: CommCost[5, 8] = 2; CommCost[9, 10] = 3;
CommCost[8, 10] = 2;

terie7i= | ExecCost[1] = 3; ExecCost[2] = 2; ExecCost[3] = 4; ExecCost[4] = 3;
ExecCost[3] = 27 ExecCost[6] = 6; ExecCost[1] = 2; ExecCost [8] = 2;
ExecCost[9] = 6;

ExecCost[10] = 3;

laresi= | TDS[]

1ai93i= | #-»> TDSAlloc[#] & /@ Hodes

OutftasE | {1 {P1, Pa, Ps, Py}, 25 (P}, 35 {2}, 45 {P1, Ps },
5 {Pa}, 6 = {P1}, T {Ps}, 8= {P2}, 9= {P1}, 10— {P1}}

oo ~ 4] | 4

Figure 6.7. A Mathematica notebook containing example pieces of the
scheduling framework.
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Chapter 7

Results

This chapter presents the main results achieved so far in this work. The results
consist of computed speedups based on the delay model and the task graphs
generated from the simulation code. Additionally, measured speedup from
executing the simulation code on a parallel computer is given. The results
also include an evaluation of several scheduling and partitioning algorithms
for scheduling of automatically generated scheduling code derived from the
optimized system of equations.

The different scheduling and clustering approaches are illustrated by a
small, but still realistic task graph built from the simulation code of a small
Modelica model. The model is the PreLoad mechanical model from the Model-
ica Standard Library, see Figure 7.2 below. Appendix A contains the Modelica
source code for the PreLoad example and Appendix A and C contains the se-
quential and parallel C code for the same model. The generated task graph is
depicted in Figure 7.2. The start node and the end node have been removed
to obtain a nicer graphical layout of the task graph.

Moreover, larger examples from the ModelicaAdditions library and mod-
els from the Thermofluid package are used. Table 7.1 contains a list of the
used models.

7.1 Results From the TDS Algorithm

Due to the linear clustering technique used by the TDS algorithm, combined
with the fine grained task graphs produced by our tool, the TDS algorithm
does not work well for the task graph generated in our tool. As an example,
we will use the small task graph shown in Figure 7.2. For that task graph, the
TDS algorithm produces the values found in Figure 7.3. The table shows the
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Model Size

(# equations)
ModelicaAdditions.MultiBody.Examples.Robots.r3 6071
ThermoFluid.Examples.PressureWaveDemo (n=50) 4725
ThermoFluid.Examples.PressureWaveDemo (n=100) 9175
ThermoFluid.Examples.PressureWaveDemo (n=150) 13625

Modelica.Mechanics.Translational.Examples.PrelLoad &4

Figure 7.1. The Modelica models used in this thesis as application examples
for automatic parallelization.

i+

ONO)

Figure 7.2. The task graph built from the code produced from the PreLoad
example in the mechanics part of Modelica Standard Library.

earliest completion time (ect) of the final node (i.e. the exit node of the dag)
for a set of different communication cost values of the task graph. The earliest
completion time is a measure of the parallel time, provided that the number
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of processors required by the algorithm is available. However, in practice the
number of required processors are too large. For instance, the robot example
requires 173 processors when applying the TDS algorithm.

The table shows that in order for the TDS algorithm to produce a schedule
that according to the delay model has a computed speedup > 1, the commu-
nication cost must be around 10 or less in comparison to the computational
size of the tasks. For the task graph produced by the PreLoad example, the
tasks are almost exclusively arithmetic expressions, thus the communication
cost of sending a scalar value should be only at most ten times more expen-
sive compared to performing an arithmetic operation on two scalar variables.
This is a far more demanding latency requirement than what most real multi
processor architectures can deliver today.

Total sequential execution time Number of nodes
100 221

(a) Graph size and total sequential execution cost.

c 1000 500 100 10 1
ect 5008 2508 508 58 16

(b) Parallel computation time, i.e. the
ect value of the exit node of the DAG,
for different values of node-to-node com-
munication cost c.

Figure 7.3. Results for the TDS algorithm on the PreLoad example with
varying communication cost.

We also ran the TDS algorithm on a larger example, the simulation code
from the robot example in the Modelica Standard Library, with inline integra-
tion and mixed mode integration, see section 2.2. The result for that example
is shown in Figure 7.4, using the same set of communication costs. For this
example, the results are a bit better. Computed speedup > 1 according to
the delay model is achieved if the communication cost is around 500 or less.
One reason for this improvement could be that the simulation code from the
robot example contains larger tasks, for instance to solve systems of equations,
thereby increasing the average granularity.

In the above results we have not looked at fixing the number of processors
to a specific value. One reason for this assumption is that by allowing a un-
limited number of processors, we can compare the result with other clustering
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algorithms like for instance the DSC algorithm. This assumption will produce
the best possible results from the TDS approach, i.e. a lower time bound.

Total sequential execution time Number of nodes
8369 6301

(a) Graph size and total sequential execution cost.

c 1000 500 100 10 1
ect 9401 6901 4901 4451 4406

(b) Parallel computation time, i.e. the ect value
of the exit node of the DAG, for different values
of node-to-node communication cost c.

Figure 7.4. Results of the TDS algorithm on the robot example, using mixed
mode and inline integration with varying communication cost.

7.2 Results From the Pre-Clustering Approach

The pre-clustering approach, described in Section 6.3, did not produce a sat-
isfactory result. Figure 7.5 shows the resulting task graph after the pre-
clustering phase has been run. Due to the many dependencies between tasks
in the original task graph, an efficient pre-clustering could not be achieved by
using the algorithm presented in Figure 6.4. Any attempt of using a scheduling
algorithm on the task graph in Figure 7.5 will result in a sequential schedule.

One reason for the poor performance of the pre-clustering algorithm is that
the original task graph has such high granularity that many nodes need to be
clustered together before a merge can be performed. This phenomena, com-
bined with the non-duplication scheme in the pre-clustering algorithm intro-
duce many dependencies in the resulting task graph. An alternative viewpoint
is that the pre-clustering algorithm does not succeed in limiting the amount
of parallelism in such a manner that a sufficient amount of parallelism is left
in the resulting task graph.

Another reason for the poor performance are cyclic dependencies in the
resulting task graph. When a cycle is detected as a consequence of adding
a node, the whole cycle path is included (or excluded) in the cluster. This
substantially reduces the amount of parallelism in the task graph if the number
of nodes belonging to the cycle path is large.
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A conclusion that can be drawn from the above problem is that task du-
plication schemes have to be employed already at the pre-clustering phase, if
a multi phased scheduling approach is to be used. However, this is in conflict
with the low complexity requirement discussed in Section 6.1, since allowing
task duplication in the pre-clustering phase will increase the complexity of the
scheduling problem.

V|
: Lempr,BBSUquumimus : Lempr,6629k44 initial : tempi_340

7

* o o tempr_5111

K
1.33693261E-12

* 1 tempr_6411

h 4
: tempr71792|]

: t:ﬁpr7838l4417 : PipeDleprofifdqurfq*

[l sin

tempr_6849

Figure 7.5. The resulting task for simulation code from a thermofluid pipe
when pre-clustering is performed.

7.3 Results From the FTD Method

Figure 7.6 gives some computed theoretical speedup figures using the Full Task
Duplication Method for a discretized thermofluid pipe. Figure 7.8 contains the
same measurements for the robot example. Since the FTD method does not
involve any communication at all during the time between the computation of
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the states, the parallel time can easily be calculated using Equation 6.1. This
equation is used to calculate the cost for the FTD method for various values of
bandwidth and latency. However, since the latency cost is the most dominant
one, we simplify the two values into a single communication overhead, ¢, with
varying values. This simplification also makes the FTD method correspond
better to the delay model.

The parallel simulation code from the discretized thermofluid pipe has
also been executed on a PC-cluster with a SCI network as the communica-
tion device. Figure 7.7 gives the measured speedup when executing on the
PC-cluster. The measurements on execution time differ from the computed
theoretical speedup figures given in Figure 7.6 in several ways.

First, the achieved speedup values are lower in all three cases, compared
with the most expensive communication cost used in the computed theoreti-
cal case (¢ = 1000). Thus, the actual cost of communicating is higher than
1000. The fact that the cost has been simplified from two parameters, i.e. the
bandwidth and latency, to one combined parameter also affects the results.

Second, all curves have a tendency of degraded speedup as the number of
processors increase. The figures shows a degradation after about 8 processors.
This effect is due to the parallel communication and computation model used
in this work, the delay model described in Section 2.5.4. The delay model does
not cover all costs of communication, e.g. the gap cost (see Section 2.5.2) is not
taken into consideration. Therefore, when the number of processors increase
the master processor must spend more time communicating messages to slave
processors, thus reducing the speedup.

The FTD method has also been tried on the robot example, both using
mixed mode and inline integration and without, see Figure 7.8. When using
mixed mode and inline integration, the amount of parallelism clearly increases,
since the robot example only gives a two processor assignment when not using
mixed mode and inline integration, compared to up to nine processors when
using these optimization techniques. However, the speedups in both cases are
almost none.

Since the robot example is the most realistic example among the examples
studied in this thesis, it substantially influences the interpretation of the re-
sults. Therefore, a preliminary conclusion that can be drawn is that the FTD
method works well for some nice structured examples such as discretized flow
models but is less suited for general large and complex models. However, some
uncertainty still remains since larger models than the robot example have not
been tried yet.
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(a) Thermofluid pipe with 50 discretization points.

Speedup
8
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6
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(b) Thermofluid pipe with 100 discretization points.

Speedup
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(¢) Thermofluid pipe with 150 discretization points.

Figure 7.6. Computed speedup figures for different communication costs c
using the FTD method on the Thermofluid pipe model.
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Speedup
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# Proc

(a) Thermofluid pipe with 50 discretization points.

# Proc

# Proc

(¢) Thermofluid pipe with 150 discretization points.

Figure 7.7. Measured speedup figures when executing on a PC-cluster with
SCI network interface using the FTD method on the Thermofluid pipe model.
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(a) Mechanical robot model with a standard solver
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(b) Mechanical robot model with mixed mode and inline integra-
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Figure 7.8. Computed speedup figures for different communication costs, c,
using the FTD method on the robot example.
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7.4 The Scheduling Framework in Mathemat-
ica

Several scheduling algorithms have also been implemented in the prototype
scheduling framework written in Mathematica, see Section 6.5. Our paral-
lelization tool also have a rudimentary export functionality for transferring
task graphs from real simulation code files into the Mathematica framework.
The DSC clustering algorithm has been implemented in this framework
and Figure 7.9 gives some results for the parallel time produced by the DSC
clustering. In comparison with the TDS algorithm, the DSC algorithm per-
forms better. This is because the DSC algorithm is a non-linear clustering
algorithm, which makes it better suited for fine grained task graphs.

c 1000 500 100 10 1

Preload (PT) 2013 213 33 16 14
Robot (PT) 30321 4221 1611 - -

Figure 7.9. Computed results from the DSC clustering with different commu-
nication cost. The sequential costs (normalized) are 221 and 8369 for PreLoad
and Robot models respectively.
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Chapter 8

Conclusions

This chapter presents the conclusions that can be drawn so far in this work.
The conclusions emphasize the scheduling and clustering algorithms used.

8.1 Scheduling Approach

The traditional scheduling approach of solving the complete scheduling prob-
lem in one step does not work well for the task graphs built from simulation
code that can be produced by our tool. In fact, there exist no scheduling al-
gorithm in the literature with support for task duplication that schedules fine
grained task graphs well for a fixed number of processors in a single step algo-
rithm. And even if one such algorithm should be invented, the time complexity
of such an algorithm would probably be too large for practical usage.

By using the task clustering approach the scheduling problem is handled
in two stages. The first stage clusters tasks together and the second stage
schedules the clusters onto a fixed number of processors. The advantage of
this approach is that each phase gets a lower complexity, thus reducing the
overall complexity of the scheduling problem.

The conclusion regarding what scheduling approach to take is that a multi-
step approach to the scheduling problem with task duplication for a fixed
number of processors is the most suitable for this problem.

8.2 Task Graph Granularity

The task graph granularity, i.e. communication to computation ratio, is a cru-
cial factor when choosing which scheduling or clustering algorithm to use. In
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our case the task graph granularity value is high, which means that the execu-
tion costs are small in comparison to the communication costs. This implies
that an efficient solution to the parallelization problem must involve task du-
plication and task clustering algorithms in order to reduce the communication
overhead.

An alternative solution is to reduce the granularity of the task graph by
using task merging algorithms, such that traditional scheduling algorithms,
like for instance the TDS algorithm, work better. The results from our task
merging algorithm resulted in a task graph with little or no parallelism, thus
indicating that in order for this approach to be successful a task duplication
based merging algorithm should be used. However, no such algorithm based
on task duplication has been found in the literature.

Finally, results from the DSC algorithm shows that the clustering approach,
where tasks are first clustered for an unlimited number of processors and there-
after scheduled on a fixed number of processors, did not give a satisfying result.

One conclusion regarding the task graph granularity is that a satisfying
scheduling or clustering algorithm that handles task graphs with large gran-
ularity values has not yet been found. Either a new task merging algorithm
must be developed that decreases the task graph granularity such that any
standard scheduling algorithms can be used, or new scheduling algorithms
with low time complexity and task duplication haves to be developed in order
to produce successful results.

8.3 Cost Estimation

So far, we have only used simple estimations of the execution costs of the tasks.
For instance, the solution of an equation system is always given an execution
cost of 1000. This is a major simplification, and better cost estimations have to
be implemented in the parallelization tool. However, for the early development
of good scheduling and clustering algorithms the detailed execution cost is of
less importance. Further on in this work, a better cost estimation heuristic has
to be designed and implemented in order to tweak the algorithms for maximum
performance.
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Chapter 9

Future Work

This chapter introduces issues that have not been solved, or which have not
been solved efficiently enough with good results. The future work is divided
into subareas, each discussed in the sections that follow.

9.1 Scheduling and Clustering Algorithms

So far in this work, we have not found an efficient scheduling or clustering
algorithm that works well enough on the fine grained task graphs produced
from simulation code generated for equation based simulation languages. The
attempts tried in this work give varying results, where the F'TD approach works
reasonably well for some examples. However, we still have not tried very large
examples that would be impossible to execute on a single processor machine.
For such examples, it might be necessary to adapt the FTD algorithm even
further, by limiting the complete duplication by for instance some heuristic.
This implies that a scheduling phase needs to be used after the FTD clustering.

Another unexplored possibility is to build the task graphs from a different
level of granularity, for instance at the equation level, or even higher at the
block level. This could be necessary for parallelizing really large models, with
for instance more than one million equations and variables. Such systems
would generate too many tasks if the task graph were built at the expression
level. The drawback for building the task graph at a higher level is loss of
possible parallelism.

There are large research opportunities for developing efficient task duplica-
tion based clustering algorithms or task merging algorithms with duplication.
Such algorithms are needed to fully take advantage of all possible parallelism
in the fine grained task graphs produced by our tool.
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When efficient clustering and scheduling algorithms have been developed
and implemented, there are other ways of improving the performance. The
simple delay model used in most scheduling algorithms is often not precise
enough, yielding too large errors. Thus, a more realistic parallel computa-
tional model can be introduced. This will affect the scheduling and clustering
algorithms, giving additional variables to consider, which will increase the
complexity of the algorithms. However, with a more realistic model the per-
formance could increase, resulting in even more speedup.

9.2 Exploiting Parallelism

An orthogonal research area is to investigate how to further increase the
amount of parallelism in general for differential and algebraic equation sys-
tems. For instance, there are several optimizations performed on the equation
system prior to sequential code generation. One possibility could be to adapt
those optimizations to produce more parallelism. Omne such example is the
use of mixed mode integration combined with inline integration, which reveals
more parallelism in the simulation code, see Section 2.2.

Another area for future research is to adapt parallel solvers for solving the
different subsystems of equations that can be found in the simulation code. For
instance, solving a linear system of equations can be parallelized by using the
functionality provided by the Scalapack package [7]. In the examples studied
in this thesis the size of the subsystems of equations, linear or non-linear, are
typically in the range of one to ten equations. Hence, a parallelization does
not produce much speedup, or even no speedup at all. However for particu-
lar applications, like for instance large discretized models, larger subsystems of
equations might be found. For those examples it might be fruitful to parallelize
the solution of such systems of equations. This will also affect the scheduling
algorithm since the parallelization of the equation systems will need to be inte-
grated into the schedule. This will further complicate the scheduling problem.
The easiest approach is to allocate a set of slaves dedicated only to solving a
part of the subsystem. But to fully use all processors available, research has to
be made on how to integrate such data-parallel parts into the task scheduling
algorithm.

9.3 Data Parallelism in Modelica

The current version of the Modelica language has no support for data paral-
lelism, apart from arrays and loops being present in the language. In order to
fully support scientific computing using Modelica, and thereby increase the use
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of the Modelica language as a simulation language with the capabilities of per-
forming advanced scientific computations, data-parallel language constructs
might be needed.

A future research problem is to design data-parallel language constructs
that can in a consistent way be added to the Modelica language, or as a
separate extension of the Modelica language. These language constructs should
be easy to understand, with well defined semantics, enabling the programmer
to perform large and complex simulations and calculations by writing both
algorithmic data-parallel code and declarative model systems using equation
based models of physical systems.

9.4 Heterogeneous Multi-Processor Systems

For some types of simulations, like for instance Hardware-in-the-loop simula-
tions, it might be necessary to use a heterogeneous multi-processor architec-
ture. A hardware-in-the-loop simulation is a simulation of a physical system
where some parts of the systems are already implemented in hardware. For
instance, a control system for an industrial mechanical robot might be simu-
lated before the robot is actually built by coupling the control system together
with a computer simulating the physical behavior of the robot. For such simu-
lations, the execution time of the simulation is of uttermost importance. Since
some parts are already built, the simulation must be performed in real time.

To handle the simulation of large and complex systems in real time it is
sometimes necessary to parallelize the problem. Also, for specific simulations
the most economical solution might be to mix the computer hardware and
software resources. For instance, the cheapest solution to simulate a mechan-
ical robot might be to connect two conventional processors with two digital
signal processors.

To fully take advantage of such a heterogeneous multiprocessor system,
the scheduling algorithm must consider different processor speeds, computa-
tional skill, network layout, and so on. This area is becoming increasingly
important in the future and contains many unsolved research problems, like
the development of scheduling algorithms and parallel programming models
for heterogeneous systems. Research is also needed regarding cost effective ex-
ploitation of computational power for specific computational needs of different
kinds, like signal processing and scientific computations.
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Appendix A

Modelica source code for
the Preload example

This appendix contain the Modelica source code for the PreLoad example. The
source code is taken from the Modelica Standard Library, but the graphical
annotations in the source code have been removed to improve the readability
of the code.

model PreLoad "Preload of a spool using ElastoGap models."

extends Modelica.Icons.Example;
Translational.ElastoGap Springle(

s_relO=1e-3,

¢c=1000e3,

d=250) ;
Translational.ElastoGap SpringRi(

s_relO=1e-3,

c=1000e3,

d=250) ;
Translational.SlidingMass Spool(

L=0.19,

m=0.150,

s(start=8.5e-5));
Translational.Fixed FixedLe(s0=-95.5e-3);
Translational.SlidingMass PotLe(

L=2e-3,

m=10e-3,

s(start=-93e-3));
Translational.SlidingMass PotRi(

L=2e-3,

m=10e-3,
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APPENDIX A. MODELICA SOURCE CODE FOR THE PRELOAD
EXAMPLE

s(start=-69.25e-3));
Translational.Spring Spring(c=20e3, s_rel0=25e-3);
Translational.ElastoGap PlateLe(

s_relO=1.5e-3,

c=1000e3,

d=250) ;
Translational.ElastoGap PlateRi(

c=1000e3,

d=250,

s_rel0=1.5e-3);
Translational.Rod Rod(L=29.5e-3);
Translational.Damper Friction(d=2500);
Translational.Force Forcel;
Modelica.Blocks.Sources.Sine Sinel(amplitude={150}, freqHz={0.01});
Translational.Rod Housing(L=30.5e-3);

equation
connect (Springle.flange_b, Spool.flange_a);
connect (PlateLe.flange b, PotLe.flange_a);
connect (PotLe.flange_b, Spring.flange_a);
connect (Spring.flange_b, PotRi.flange_a);
connect (PotRi.flange_b, PlateRi.flange_a);
connect (SpringRi.flange_a, Spool.flange_a);
connect (PotLe.flange_a, SpringRi.flange b);
connect (Rod.flange_b, PotRi.flange_b);
connect (Rod.flange_a, Springle.flange_a);
connect (FixedLe.flange b, PlatelLe.flange_a);
connect(Friction.flange_a, FixedLe.flange_b);
connect (Forcel.flange_b, Spool.flange_b);
connect (Sinel.outPort, Forcel.inPort);
connect (FixedLe.flange_ b, Housing.flange_a);
connect (PlateRi.flange_b, Housing.flange_b);
connect(Friction.flange_b, Spool.flange_b);
end Preload;
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Appendix B

Sequential code for the
Preload example

This appendix shows the sequential C code produced by the Modelica com-
piler Dymola from the preload example. The actual code that is paral-
lelized is found after the macro DynamicsSection and ends before the macro
AcceptedSectionl.

/* DSblock model generated by Dymola from Modelica model Modelica.Mechanics.Translational.Examples.PreLoad

*/

#include <matrixop.h>

/* Prototypes for functions used in model */
/* Codes used in model */

/* DSblock C-code: */

#include <moutil.c>
#include <dsblockl.c>

/* Define variable names. */

#define Sections_

#define Springle_flangex_Oa_s Variable(0)
#define Springle_flangex_Oa_der_s Variable(1)
#define Springle_sx_Orel Variable(2)
#define Springle_der_sx_Orel Variable(3)
#define Springle_sx_Orel0 Parameter(0)
#define Springle_c Parameter(1)

#define Springle_d Parameter(2)

#define SpringlLe_Contact Variable(4)
#define SpringRi_flangex_Ob_f Variable(5)
#define SpringRi_sx_Orel Variable(6)
#define SpringRi_der_sx_Orel Variable(7)
#define SpringRi_sx_Orel0 Parameter(3)
#define SpringRi_c Parameter(4)

#define SpringRi_d Parameter(5)

#define SpringRi_Contact Variable(8)
#define Spool_s State(0)

#define Spool_der_s Derivative(0)
#define Spool_L Parameter(6)

#define Spool_flangex_Oa_s Variable(9)
#define Spool_flangex Oa_der_s Variable(10)
#define Spool_flangex_Oa_f Variable(11)
#define Spool_flangex_Ob_s Variable(12)
#define Spool_m Parameter(7)

#define Spool_v State(1)

#define Spool_der_v Derivative(1)
#define FixedlLe_sO Parameter(8)
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#define FixedLe_flangex_Ob_s Variable(13)
#define FixedLe_flangex_Ob_f Variable(14)
#define PotLe_s State(2)

#define PotLe_der_s Derivative(2)
#define PotLe_L Parameter(9)

#define PotLe_flangex_Oa_s Variable(15)
#define PotLe_flangex_Oa_der_s Variable(16)
#define PotLe_flangex_Oa_f Variable(17)
#define PotLe_m Parameter(10)

#define PotLe_v State(3)

#define PotLe_der_v Derivative(3)
#define PotRi_s State(4)

#define PotRi_der_s Derivative(4)
#define PotRi_L Parameter(11)

#define PotRi_flangex_Ob_s Variable(18)
#define PotRi_flangex_Ob_der_s Variable(19)
#define PotRi_flangex_Ob_f Variable(20)
#define PotRi_m Parameter(12)

#define PotRi_v State(5)

#define PotRi_der_v Derivative(5)
#define Spring_flangex_Oa_s Variable(21)
#define Spring_flangex_Ob_s Variable(22)
#define Spring_sx_Orel Variable(23)
#define Spring f Variable(24)

#define Spring_sx_Orel0 Parameter(13)
#define Spring_c Parameter(14)

#define PlateLe_flangex_Oa_s Variable(25)
#define PlateLe_flangex _Ob_f Variable(26)
#define PlateLe_sx_Orel Variable(27)
#define PlateLe_der_sx_Orel Variable(28)
#define PlateLe_sx_Orel0 Parameter(15)
#define PlateLe_c Parameter(16)

#define PlatelLe_d Parameter(17)

#define PlateLe_Contact Variable(29)
#define PlateRi_flangex Ob_s Variable(30)
#define PlateRi_sx_Orel Variable(31)
#define PlateRi_der_sx_Orel Variable(32)
#define PlateRi_sx_OrelQ Parameter(18)
#define PlateRi_c Parameter(19)

#define PlateRi_d Parameter(20)

#define PlateRi_Contact Variable(33)
#define Rod_s Variable(34)

#define Rod_der_s Variable(35)

#define Rod_L Parameter(21)

#define Rod_flangex_Ob_f Variable(36)
#define Friction_flangex_Oa_s Variable(37)
#define Friction_flangex_Ob_f Variable(38)
#define Friction_sx_Orel Variable(39)
#define Friction_der_sx_Orel Variable(40)
#define Friction_d Parameter(22)

#define Forcel_inPort_n Variable(41)
#define Sinel_nout Variable(42)

#define Sinel_outPort_n Variable(43)
#define Sinel_outPort_signal_ 1 Variable(44)
#define Sinel_y_1 Variable(45)

#define Sinel_amplitude &Parameter(23)
#define Sinel_amplitude_1 Parameter(23)
#define Sinel_freqHz &Parameter (24)
#define Sinel_freqHz_1 Parameter(24)
#define Sinel_phase &Parameter (25)
#define Sinel_phase_1 Parameter(25)
#define Sinel_offset &Parameter(26)
#define Sinel_offset_1 Parameter(26)
#define Sinel_startTime &Parameter(27)
#define Sinel_startTime_1 Parameter(27)
#define Sinel_pi Variable(46)

#define Sinel_px_Oamplitude &Variable(47)
#define Sinel_px_Oamplitude_1 Variable(47)
#define Sinel_px_OfreqHz &Variable(48)
#define Sinel_px_OfreqHz_1 Variable (48)
#define Sinel_px_Ophase &Variable(49)
#define Sinel_px_Ophase_1 Variable(49)
#define Sinel_px_Ooffset &Variable(50)
#define Sinel_px_Qoffset_1 Variable(50)
#define Sinel_px_OstartTime &Variable(51)
#define Sinel_px_OstartTime_1 Variable(51)
#define Housing_ s Variable(52)

#define Housing . Parameter(28)

#define Housing_ flangex_QOa_s Variable(53)
#define Housing_flangex_Oa_f Variable(54)
#define Housing_flangex_Ob_s Variable(55)



TranslatedEquations

InitialSection

Sinel_nout = 1;

Sinel_outPort_n = 1;

Sinel_pi = 3.14159265358979;
Forcel_inPort_n = 1;
BoundParameterSection
Sinel_px_Oamplitude_1 = Sinel_amplitude_1
Sinel_px_OfreqHz_1 = Sinel_freqHz_1;
Sinel_px_Ophase_1 = Sinel_phase_1;
Sinel_px_Ooffset_1 = Sinel_offset_1;
Sinel_px_OstartTime_1 = Sinel_startTime_1
Housing_s = FixedLe_s0+0.5*Housing_L;
PlateRi_flangex_Ob_s = Housing_s+0.5*Housing_L;
Friction_flangex_Oa_s = FixedLe_s0;
FixedLe_flangex_Ob_s = FixedLe_s0;
Housing_flangex_Oa_s = FixedLe_s0;
PlateLe_flangex_Oa_s = FixedLe_s0;
Housing_flangex_Ob_s = PlateRi_flangex_Ob_s;
InitialSection

DefaultSection

InitializeData(0)

OutputSection

DynamicsSection

PotLe_der_s = PotLe_v;

PotLe_flangex_Qa_s = PotLe_s-0.5%PotLe_L;

PlateLe_sx_Orel = PotLe_flangex_Oa_s-FixedLe_s0;

PlateLe_Contact = Less(PlateLe_sx_Orel,"Platele.s_rel", PlateLe_sx_OrelO,
"PlateLe.s_relO", 0);

PotLe_flangex_Qa_der_s = PotLe_der_s;

PlateLe_der_sx_Orel = PotLe_flangex_Oa_der_s;

PlateLe_flangex_Ob_f = IF PlateLe_Contact THEN PlatelLe_c*(PlatelLe_sx_Orel-—
PlateLe_sx_OrelQ)+PlateLe_d*PlateLe_der_sx_Orel ELSE 0;

Spool_flangex_0Oa_s = Spool_s-0.5%Spool_L;

SpringRi_sx_Orel = PotLe_flangex_Oa_s-Spool_flangex_Oa_s;

SpringRi_Contact = Less(SpringRi_sx_Orel,"SpringRi.s_rel", SpringRi_sx_OrelO,
"SpringRi.s_rel0", 1);

Spool_der_s = Spool_v;

Spool_flangex_0Oa_der_s = Spool_der_s;

SpringRi_der_sx_Orel = PotLe_flangex_Oa_der_s-Spool_flangex_0Oa_der_s;
SpringRi_flangex_Ob_f = IF SpringRi_Contact THEN SpringRi_c#*(SpringRi_sx_Orel-
SpringRi_sx_OrelQ)+SpringRi_d*SpringRi_der_sx_Orel ELSE 0;

PotLe_flangex_Oa_f = -(PlateLe_flangex_Ob_f+SpringRi_flangex_Ob_f);
Spring_flangex_Ob_s = PotRi_s-0.5%PotRi_L;

Spring_flangex_Oa_s = PotLe_s+0.5*PotLe_L;

Spring_sx_Orel = Spring_flangex_Ob_s-Spring_flangex_Oa_s;

Spring_f = Spring_c*(Spring_sx_Orel-Spring_sx_Orel0);

PotLe_der_v = divmacro(PotLe_flangex_Oa_f+Spring_f,”PotLe.flange_a.f+Spring.f",
PotLe_m, "PotLe.m") ;

Friction_der_sx_Orel = Spool_flangex_Oa_der_s;

Friction_flangex_Ob_f = Friction_d*Friction_der_sx_Orel;

PotRi_flangex_Ob_s = PotRi_s+0.5%PotRi_L;

Rod_s = PotRi_flangex_Ob_s-0.5%Rod_L;

Springle_flangex_Oa_s = Rod_s-0.5*%Rod_L;

Springle_sx_Orel = Spool_flangex_Oa_s-SpringLe_flangex_Oa_s;

Springle_Contact = Less(SpringLe_sx_Orel,"Springle.s_rel", Springle_sx_Orel0,
"Springle.s_relO", 2);

PotRi_der_s = PotRi_v;

PotRi_flangex_Ob_der_s = PotRi_der_s;

Rod_der_s = PotRi_flangex_Ob_der_s;

Springle_flangex_Oa_der_s = Rod_der_s;

Springle_der_sx_Orel = Spool_flangex_Oa_der_s-Springle_flangex_Oa_der_s;
Rod_flangex_Ob_f = -(IF Springle_Contact THEN SpringLe_c*(SpringlLe_sx_Orel-
Springle_sx_OrelO)+Springle_d*Springle_der_sx_Orel ELSE 0);
Spool_flangex_Oa_f = SpringRi_flangex Ob_f-Friction_flangex_Ob_f+
Rod_flangex_Ob_f;

Sinel_outPort_signal_1 = Sinel_px_Ooffset_1+(IF LessTime(Sinel_px_OstartTime_l,
0) THEN O ELSE Sinel_px_Oamplitude_1*sin(6.28318530717959+Sinel_px_OfreqHz_1*(
Time-Sinel_px_OstartTime_1)+Sinel_px_Ophase_1));

Spool_der_v = divmacro(Spool_flangex_Oa_f+Sinel_outPort_signal_1,
"Spool.flange_a.f+Sinel.outPort.signal[1]",Spool_m,"Spool.m");
PlateRi_sx_Orel = PlateRi_flangex_Ob_s-PotRi_flangex_Ob_s;

PlateRi_Contact = Less(PlateRi_sx_Orel,"PlateRi.s_rel", PlateRi_sx_OrelO,
"PlateRi.s_relQ", 3);

PlateRi_der_sx_Orel = -PotRi_flangex Ob_der_s;

Housing_flangex_Oa_f = IF PlateRi_Contact THEN PlateRi_c*(PlateRi_sx_Orel-
PlateRi_sx_OrelQ)+PlateRi_d*PlateRi_der_sx_Orel ELSE 0;

PotRi_flangex_Ob_f = Housing_flangex_Oa_f-Rod_flangex_Ob_f;

PotRi_der_v = divmacro(PotRi_flangex_ob_f—Spring_f,"PotRi.flange_b.f—Spring.f",

85
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PotRi_m,"PotRi.m");
AcceptedSectionl

AcceptedSection2

Sinel_y_1 = Sinel_outPort_signal _1;

Spool_flangex_Ob_s = Spool_s+0.5%Spool_L;

FixedLe_flangex_Ob_f = PlateLe_flangex_Ob_f-Housing_flangex_Oa_f+
Friction_flangex_Ob_f;

Friction_sx_Orel = Spool_flangex_Oa_s-FixedLe_s0;

DefaultSection
InitialSection

/* No equations */
DefaultSection
InitializeData(1)
EndTranslatedEquations

#include <dsblock6.c>

PreNonAlias(0)

StartNonAlias(0)

DeclareVariable("Springle.flange_a.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("Springle.flange_a.der(s)", "der(absolute position of flange) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("Springle.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\
, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("Springle.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("Springle.s_relQO", "unstretched spring length [m]", O, 0, \
0.0,0.0,0.0,0,0)

DeclareParameter("Springle.c", "spring constant [N/m]", 1, 1000000.0, 0.0,1E+100\

,0.0,0,0)

DeclareParameter("Springle.d", "damping constant [N/ (m/s)]", 2, 250, 0.0,1E+100\
,0.0,0,0)

DeclareVariable("SpringLe.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0\
,0)

DeclareVariable("SpringRi.flange_b.f", “"cut force directed into flange [NI", O, \

0.0,0.0,0.0,0,0)

DeclareVariable("SpringRi.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("SpringRi.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]1"\
, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("SpringRi.s_relO", "unstretched spring length [ml", 3, 0, \

0.0,0.0,0.0,0,0)

DeclareParameter("SpringRi.c", "spring comstant [N/m]", 4, 1000000.0, 0.0,1E+100\

,0.0,0,0)

DeclareParameter("SpringRi.d", "damping constant [N/ (m/s)]", 5, 250, 0.0,1E+100\
,0.0,0,0)

DeclareVariable("SpringRi.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0\
,0)

DeclareState("Spool.s", "absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\

, 0,0, 0.0,0.0,0.0,0,0)

DeclareDerivative("Spool.der(s)", "der(absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2)) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("Spool.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\
, 6, 0.19, 0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_a.s", "absolute position of flange [m]", O, \

0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_a.der(s)", "der(absolute position of flange) [m/s]1"\

, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_a.f", "cut force directed into flange [NI1", 0, \

0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_b.s", "absolute position of flange [m]", 0, \

0.0,0.0,0.0,0,0)

DeclareParameter("Spool.m", "mass of the sliding mass [kg]", 7, 0.15, 0.0,1E+100\

,0.0,0,0)

DeclareState("Spool.v", "absolute velocity of component [m/s]", 1, 0, 0.0,0.0,\

0.0,0,0)

DeclareDerivative("Spool.der(v)", "der(absolute velocity of component) [m/s/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("FixedLe.sO", "fixed offset position of housing [m]", 8, (\

-0.0965), 0.0,0.0,0.0,0,0)

DeclareVariable("FixedLe.flange_b.s", "absolute position of flange [m]", 0, \

0.0,0.0,0.0,0,1)

DeclareVariable("FixedLe.flange_b.f", "cut force directed into flange [N1", 0, \

0.0,0.0,0.0,0,0)

DeclareState("PotLe.s", "absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\

, 2, (-0.094), 0.0,0.0,0.0,0,0)

DeclareDerivative("PotLe.der(s)", "der(absolute position of center of component (s = flange_ a.s + L/2 = flange b.s - L/2)) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)
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DeclareParameter("PotLe.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\
. 9, 0.002, 0.0,0.0,0.0,0,0)
DeclareVariable("PotLe.flange_a.s", "absolute position of flange [m]", 0, \

0.0,0.0,0.0,0,0)

DeclareVariable("PotLe.flange_a.der(s)", "der(absolute position of flange) [m/s]1"\

., 0, 0.0,0.0,0.0,0,0)

DeclareVariable("PotLe.flange_a.f", "cut force directed into flange [N]1", 0, \

0.0,0.0,0.0,0,0)

DeclareParameter("PotLe.m", "mass of the sliding mass [kg]", 10, 0.01, 0.0,\

1E+100,0.0,0,0)
DeclareState("PotLe.v",
0.0,0,0)
DeclareDerivative("PotLe
, 0, 0.0,0.0,0.0,0,0)
DeclareState("PotRi.s",

"absolute velocity of component [m/s]", 3, 0, 0.0,0.0,\
.der(v)", "der(absolute velocity of compoment) [m/s/s]"\

"absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\

, 4, (-0.0655), 0.0,0.0,0.0,0,0)

DeclareDerivative("PotRi
, 0, 0.0,0.0,0.0,0,0)

.der(s)", "der(absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2)) [m/s]"\

DeclareParameter ("PotRi.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\

, 11, 0.002, 0.0,0.0,0.0

,0,0)

DeclareVariable("PotRi.flange_b.s", "absolute position of flange [m]l", 0, \

0.0,0.0,0.0,0,0)

DeclareVariable("PotRi.flange_b.der(s)", "der(absolute position of flange) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("PotRi.flange_b.f", "cut force directed into flange [N]", 0, \

0.0,0.0,0.0,0,0)

DeclareParameter ("PotRi.m", "mass of the sliding mass [kgl", 12, 0.01, 0.0,\

1E+100,0.0,0,0)
DeclareState("PotRi.v",
0.0,0,0)
DeclareDerivative("PotRi
, 0, 0.0,0.0,0.0,0,0)

"absolute velocity of compoment [m/s]", 5, 0, 0.0,0.0,\

.der(v)", "der(absolute velocity of component) [m/s/s]"\

DeclareVariable("Spring.flange_a.s", "absolute position of flange [ml", 0, \

0.0,0.0,0.0,0,0)

DeclareVariable("Spring.flange_b.s", "absolute position of flange [ml", 0, \

0.0,0.0,0.0,0,0)

DeclareVariable("Spring.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("Spring.f", "forcee between flanges (positive in direction of flange axis R) [N]1"\

, 0, 0.0,0.0,0.0,0,0)
DeclareParameter("Spring
0.0,1E+100,0.0,0,0)

DeclareParameter ("Spring.

0.0,0,0)
DeclareVariable("PlateLe
0.0,0.0,0.0,0,1)
DeclareVariable("PlateLe
0.0,0.0,0.0,0,0)
DeclareVariable("Platele
, 0, 0.0,1E+100,0.0,0,0)
DeclareVariable("Platele
, 0, 0.0,0.0,0.0,0,0)

.s_rel0", "unstretched spring length [m]", 13, 0.025, \

c", "spring constant [N/m]l", 14, 20000.0, 0.0,1E+100,\
.flange_a.s", "absolute position of flange [m]", 0, \
.flange_b.f", "cut force directed into flange [N]", O, \
.s_rel", "relative distance (= flange b.s - flange_a.s) [m]"\

.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]"\

DeclareParameter("PlateLe.s_relO", "unstretched spring length [m]", 15, 0.0015, \

0.0,0.0,0.0,0,0)

DeclareParameter("PlatelLe.c", "spring constant [N/m]", 16, 1000000.0, 0.0,1E+100\

,0.0,0,0)

DeclareParameter("PlatelLe.d", "damping constant [N/ (m/s)]1", 17, 250, 0.0,1E+100\

,0.0,0,0)
DeclareVariable("PlateLe
0)
DeclareVariable("PlateRi
0.0,0.0,0.0,0,1)
DeclareVariable("PlateRi
, 0, 0.0,1E+100,0.0,0,0)
DeclareVariable("PlateRi
, 0, 0.0,0.0,0.0,0,0)

.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0,\
.flange_b.s", "absolute position of flange [m]", 0, \
.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/sI"\

DeclareParameter("PlateRi.s_relO", "unstretched spring length [m]", 18, 0.0015, \

0.0,0.0,0.0,0,0)

DeclareParameter("PlateRi.c", "spring comstant [N/m]", 19, 1000000.0, 0.0,1E+100\

,0.0,0,0)

DeclareParameter ("PlateRi.d", "damping constant [N/ (m/s)]1", 20, 250, 0.0,1E+100\

,0.0,0,0)
DeclareVariable("PlateRi
0)
DeclareVariable("Rod.s",
, 0, 0.0,0.0,0.0,0,0)
DeclareVariable("Rod.der
, 0, 0.0,0.0,0.0,0,0)
DeclareParameter ("Rod.L"

.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0,\
"absolute position of cemter of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]l"\
(s)", "der(absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2)) [m/s]1"\

, "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\

, 21, 0.0275, 0.0,0.0,0.0,0,0)
DeclareVariable("Rod.flange_b.f", "cut force directed into flange [N]1", O, \

0.0,0.0,0.0,0,0)



88 APPENDIX B. SEQUENTIAL CODE FOR THE PRELOAD FXAMPLE

DeclareVariable("Friction.flange_a.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,1)
DeclareVariable("Friction.flange_b.f", “"cut force directed into flange [NI", O, \

0.0,0.0,0.0,0,0)

DeclareVariable("Friction.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("Friction.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("Friction.d", "damping constant [N/ (m/s)] [N/ (m/s)]", 22, \

2500, 0.0,1E+100,0.0,0,0)

DeclareVariable("Forcel.inPort.n", "Dimension of signal vector", 1, 0.0,0.0,0.0,\
0,1)

DeclareVariable("Sinel.nout", "Number of outputs", 1, 1.0,1E+100,0.0,0,1)
DeclareVariable("Sinel.outPort.n", "Dimension of signal vector", 1, 0.0,0.0,0.0,\
0,1)

DeclareVariable("Sinel.outPort.signal[1]", "Real output signals", 0, 0.0,0.0,0.0\
,0,0)

DeclareVariable("Sinel.y[1]", "", 0, 0.0,0.0,0.0,0,0)

DeclareParameter("Sinel.amplitude[1]", "Amplitudes of sine waves", 23, 150, \
0.0,0.0,0.0,0,0)

DeclareParameter("Sinel.freqHz[1]", "Frequencies of sine waves [Hz]", 24, 0.01, \
0.0,0.0,0.0,0,0)

DeclareParameter("Sinel.phase[1]", "Phases of sine waves [rad]", 25, 0, 0.0,0.0,\
0.0,0,0)

DeclareParameter("Sinel.offset[1]", "Dffsets of output signals", 26, 0, 0.0,0.0,\
0.0,0,0)

DeclareParameter("Sinel.startTime[1]", "Output = offset for time < startTime [s]"\
, 27, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("Sinel.pi", "", 3.14159265358979, 0.0,0.0,0.0,0,1)
DeclareVariable("Sinel.p_amplitude[1]", "", 0, 0.0,0.0,0.0,0,1)
DeclareVariable("Sinel.p_freqHz[1]", "", 0, 0.0,0.0,0.0,0,1)
DeclareVariable("Sinel.p_phase[1]", "", 0, 0.0,0.0,0.0,0,1)
DeclareVariable("Sinel.p_offset[1]", "", 0, 0.0,0.0,0.0,0,1)
DeclareVariable("Sinel.p_startTime[1]", "[s]", O, 0.0,0.0,0.0,0,1)

DeclareVariable("Housing.s", "absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\
, 0, 0.0,0.0,0.0,0,1)

DeclareParameter("Housing.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\
, 28, 0.0305, 0.0,0.0,0.0,0,0)

DeclareVariable("Housing.flange_a.s", "absolute position of flange [m]", 0, \

0.0,0.0,0.0,0,1)

DeclareVariable("Housing.flange_a.f", "cut force directed into flange [N]1", 0, \

0.0,0.0,0.0,0,0)

DeclareVariable("Housing.flange_b.s", "absolute position of flange [ml", 0, \

0.0,0.0,0.0,0,1)

EndNonAlias(0)

PreAlias(0)

StartAlias(0)

DeclareAlias("Springle.flange_a.f", "cut force directed into flange [N1", "\

Rod.flange_b.f", 1, 5, 36)

DeclareAlias("Springle.flange_b.s", "absolute position of flange [m]", "\

Spool.flange_a.s", 1, 5, 9)

DeclareAlias("SpringLe.flange_b.f", "cut force directed into flange [N]", "\

Rod.flange b.f", -1, 5, 36)

DeclareAlias("Springle.f", "forcee between flanges (positive in direction of flange axis R) [N]"\
"Rod.flange _b.f", -1, 5, 36)

DeclareAlias("Springle.v_rel", "relative velocity between flange L and R [m/s]"\

, "SpringlLe.der(s_rel)", 1, 5, 3)

DeclareAlias("SpringRi.flange_a.s", "absolute position of flange [m]", "\

Spool.flange_a.s", 1, 5, 9)

DeclareAlias("SpringRi.flange_a.f", "cut force directed into flange [N]", "\

SpringRi.flange_b.f", -1, 5, 5)

DeclareAlias("SpringRi.flange_b.s", "absolute position of flange [m]", "\

PotLe.flange_a.s", 1, 5, 15)

DeclareAlias("SpringRi.f", "forcee between flanges (positive in direction of flange axis R) [N]"\

, "SpringRi.flange_b.f", 1, 5, 5)

DeclareAlias("SpringRi.v_rel", "relative velocity between flange L and R [m/s]"\

, "SpringRi.der(s_rel)", 1, 5, 7)

DeclareAlias("Spool.flange_b.f", "cut force directed into flange [N]", "\

Sinel.outPort.signall1]", 1, 5, 44)

DeclareAlias("Spool.a", "absolute acceleration of component [m/s2]", "\

Spool.der(v)", 1, 6, 1)

DeclareAlias("PotLe.flange_b.s", "absolute position of flange [m]", "\

Spring.flange_a.s", 1, 5, 21)

DeclareAlias("PotLe.flange_b.f", "cut force directed into flange [N]", "Spring.f\

", 1, 5, 24)

DeclareAlias("PotLe.a", "absolute acceleration of component [m/s2]", "\

PotLe.der(v)", 1, 6, 3)

DeclareAlias("PotRi.flange_a.s", "absolute position of flange [m]", "\

Spring.flange_b.s", 1, 5, 22)

DeclareAlias("PotRi.flange_a.f", "cut force directed into flange [N]", "Spring.f\

", -1, 5, 24)



DeclareAlias("PotRi.a", "absolute acceleration of compoment [m/s2]", "\

PotRi.der(v)", 1, 6, 5)

DeclareAlias("Spring.flange_a.f", "cut force directed into flange [N]", "\

Spring.f", -1, 5, 24)

DeclareAlias("Spring.flange_b.f", "cut force directed into flange [N]", "\

Spring.f", 1, 5, 24)

DeclareAlias("PlateLe.flange_a.f", "cut force directed into flange [N]1", "\

PlateLe.flange_b.f", -1, 5, 26)

DeclareAlias("PlateLe.flange_b.s", "absolute position of flange [m]", "\

PotLe.flange_a.s", 1, 5, 15)

DeclareAlias("Platele.f", "forcee between flanges (positive in direction of flange axis R) [N]1"\

, "Platele.flange_b.f", 1, 5, 26)

DeclareAlias("PlatelLe.v_rel", "relative velocity between flange L and R [m/s]"\

, "PlateLe.der(s_rel)", 1, 5, 28)

DeclareAlias("PlateRi.flange_a.s", "absolute position of flange [m]", "\

PotRi.flange b.s", 1, 5, 18)

DeclareAlias("PlateRi.flange_a.f", "cut force directed into flange [N]", "\

Housing.flange_a.f", -1, 5, 54)

DeclareAlias("PlateRi.flange_b.f", "cut force directed into flange [N]1", "\

Housing.flange_a.f", 1, 5, 54)

DeclareAlias("PlateRi.f", "forcee between flanges (positive in direction of flange axis R) [NI"\
"Housing.flange_a.f", 1, 5, 54)

DeclareAlias("PlateRi.v_rel", "relative velocity between flange L and R [m/s]"\

,» "PlateRi.der(s_rel)", 1, 5, 32)

DeclareAlias("Rod.flange_a.s", "absolute position of flange [m]", "\

Springle.flange_a.s", 1, 5, 0)

DeclareAlias("Rod.flange_a.f", "cut force directed into flange [NI", "\

Rod.flange_b.f", -1, 5, 36)

DeclareAlias("Rod.flange_b.s", "absolute position of flange [m]", "\

PotRi.flange b.s", 1, 5, 18)

DeclareAlias("Friction.flange_a.f", "cut force directed into flange [N]", "\

Friction.flange_b.f", -1, 5, 38)

DeclareAlias("Friction.flange_b.s", "absolute position of flange [m]", "\

Spool.flange_a.s", 1, 5, 9)

DeclareAlias("Friction.f", "forcee between flanges (positive in direction of flange axis R) [NI"\
"Friction.flange_b.f", 1, 5, 38)

DeclareAlias("Friction.v_rel", "relative velocity between flange L and R [m/s]"\

, "Friction.der(s_rel)", 1, 5, 40)

DeclareAlias("Forcel.f", "driving force [N]", "Sinel.outPort.signall1]", 1, 5, \

44)

DeclareAlias("Forcel.flange_b.s", "absolute position of flange [m]", "\

Spool.flange_b.s", 1, 5, 12)

DeclareAlias("Forcel.flange_b.f", "cut force directed into flange [N]", "\

Sinel.outPort.signall[1l", -1, 5, 44)

DeclareAlias("Forcel.inPort.signal[1]", "Real input signals", "Sinel.outPort.signall1]\

", 1, 5, 44)

DeclareAlias("Housing.flange_b.f", "cut force directed into flange [N]", "\

Housing.flange_a.f", -1, 5, 54)

EndAlias(0)

#define NX_

#define NX2_

#define NU_

#define NY_

#define NW_ 56

#define NP_ 29

#define NI_ [}

#define NRel_ 4

#define NTim_ 1

0
4]

oo oo

#define NSamp_

#define NCons_

#define NA_ 41

#define SizePre_ 0O
#define SizeEq_ O

#define SizeDelay_ O
#define QNLmax_ O

#define MAXAux O

#define NrDymolaTimers_ O
#define NWhen_ O

#include <dsblockb.c>

StartDataBlock
EndDataBlock

59
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Appendix C

Parallel code for the
PrelLoad example

This appendix shows the parallel code from the PreLoad example produced
by the parallelization tool for two processors using the FTD method.

#include <mpi.h>
void procO(long *idemand, long *icall_, double *time
,double X_[1, double XD_[], double U_[], double DP_I[]
,long IP_[], long LP_[]
, double F_[], double Y_[], double W_[], double QZ_[]
, double duser_[], long iuser_[]
,long luser_[],long *QiErr);
#ifndef __DSBPART_MPI_MACRDS
#define __DSBPART_MPI_MACROS
#define MSEND(buf,count,type,proc,tag) MPI_Send(buf,count,type,proc,tag,MPI_COMM_WORLD)
#define MRECV(buf,count,type,proc,tag) MPI_Recv(buf,count,type,proc,tag,MPI_COMM_WORLD,&status)
#define BARRIER MPI_Barrier(MPI_COMM_WORLD)
#define KILLCOMMAND 99
#define SENDKILL {int __i; killbuf [0]=0;for(i=1;i<2;i++) MSEND(&killbuf,18+2*(NRel_+1),MPI_LONG,i,0);}
#define _BreakFunction(nr) {void proc_s##nr(void); proc_##nr();} } void proc_##nr(void) {
#endif
double sendvar,recvvar,killbuf;
MPI_Status status;
MPI_Request request;
int myrank,packedsize;
long tempil[11];
double tempr[48];
/* DSblock model generated by Dymola from Modelica model Modelica.Mechanics.Translational.Examples.PreLoad

*/

#include <matrixop.h>

/* Prototypes for functions used in model */
/* Codes used in model */

/* DSblock C-code: */

#include <moutil.c>
#include <dsblockl.c>

/* Define variable names. */

#define Springle_flangex_Oa_s Variable(0)
#define Springle_flangex Oa_der_s Variable(1)
#define Springle_sx_Orel Variable(2)

#define Springle_der_sx_Orel Variable(3)
#define Springle_sx_Orel0 Parameter(0)
#define Springle_c Parameter(1)

#define Springle_d Parameter(2)

#define Springle_Contact Variable(4)
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#define SpringRi_flangex_Ob_f Variable(5)
#define SpringRi_sx_Orel Variable(6)
#define SpringRi_der_sx_Orel Variable(7)
#define SpringRi_sx_Orel0 Parameter(3)
#define SpringRi_c Parameter(4)

#define SpringRi_d Parameter(5)

#define SpringRi_Contact Variable(8)
#define Spool_s State(0)

#define Spool_der_s Derivative(0)

#define Spool_L Parameter(6)

#define Spool_flangex_Oa_s Variable(9)
#define Spool_flangex_Oa_der_s Variable(10)
#define Spool_flangex_Oa_f Variable(11)
#define Spool_flangex_Ob_s Variable(12)
#define Spool_m Parameter(7)

#define Spool_v State(1)

#define Spool_der_v Derivative(l)

#define FixedLe_sO Parameter(8)

#define FixedLe_flangex_Ob_s Variable(13)
#define FixedLe_flangex_Ob_f Variable(14)
#define PotLe_s State(2)

#define PotLe_der_s Derivative(2)

#define PotLe_L Parameter(9)

#define PotLe_flangex_Oa_s Variable(15)
#define PotLe_flangex_Oa_der_s Variable(16)
#define PotLe_flangex_Oa_f Variable(1l7)
#define PotLe_m Parameter(10)

#define PotLe_v State(3)

#define PotLe_der_v Derivative(3)

#define PotRi_s State(4)

#define PotRi_der_s Derivative(4)

#define PotRi_L Parameter(il)

#define PotRi_flangex Ob_s Variable(18)
#define PotRi_flangex_Ob_der_s Variable(19)
#define PotRi_flangex Ob_f Variable(20)
#define PotRi_m Parameter(12)

#define PotRi_v State(5)

#define PotRi_der_v Derivative(5)

#define Spring_flangex_Oa_s Variable(21)
#define Spring_flangex_Ob_s Variable(22)
#define Spring_sx_Orel Variable(23)
#define Spring f Variable(24)

#define Spring_sx_Orel0 Parameter (13)
#define Spring_c¢ Parameter(14)

#define PlateLe_flangex_Oa_s Variable(25)
#define PlateLe_flangex_Ob_f Variable(26)
#define PlateLe_sx_Orel Variable(27)
#define Platele_der_sx_Orel Variable(28)
#define PlateLe_sx_OrelQ Parameter(15)
#define PlateLe_c Parameter(16)

#define PlateLe_d Parameter(17)

#define PlateLe_Contact Variable(29)
#define PlateRi_flangex_Ob_s Variable(30)
#define PlateRi_sx_Orel Variable(31)
#define PlateRi_der_sx_Orel Variable(32)
#define PlateRi_sx_Orel0 Parameter(18)
#define PlateRi_c Parameter(19)

#define PlateRi_d Parameter(20)

#define PlateRi_Contact Variable(33)
#define Rod_s Variable(34)

#define Rod_der_s Variable(35)

#define Rod_L Parameter(21)

#define Rod_flangex_Ob_f Variable(36)
#define Friction_flangex_Oa_s Variable(37)
#define Friction_flangex_Ob_f Variable(38)
#define Friction_sx_Orel Variable(39)
#define Friction_der_sx_Orel Variable(40)
#define Friction_d Parameter(22)

#define Forcel_inPort_n Variable(41)
#define Sinel_nout Variable(42)

#define Sinel_outPort_n Variable(43)
#define Sinel_outPort_signal_1 Variable(44)
#define Sinel_y_1 Variable(45)

#define Sinel_amplitude &Parameter(23)
#define Sinel_amplitude_1 Parameter(23)
#define Sinel_freqHz &Parameter (24)
#define Sinel_freqHz_1 Parameter(24)
#define Sinel_phase &Parameter(25)
#define Sinel_phase_1 Parameter(25)
#define Sinel_offset &Parameter(26)
#define Sinel_offset_1 Parameter(26)
#define Sinel_startTime &Parameter(27)



#define Sinel_startTime_1 Parameter(27)
#define Sinel_pi Variable(46)

#define Sinel_px_Oamplitude &Variable(47)
#define Sinel_px_Oamplitude_1 Variable(47)
#define Sinel_px_Ofreqlz &Variable(48)
#define Sinel_px_OfreqHz_1 Variable(48)
#define Sinel_px_Ophase &Variable(49)
#define Sinel_px_Ophase_1 Variable(49)
#define Sinel_px_Ooffset &Variable(50)
#define Sinel_px_Ooffset_1 Variable(50)
#define Sinel_px_OstartTime &Variable(51)
#define Sinel_px_OstartTime_1 Variable(51)
#define Housing_s Variable(52)

#define Housing L Parameter(28)

#define Housing_flangex_Qa_s Variable(53)
#define Housing_flangex_Qa_f Variable(54)
#define Housing_flangex_Ob_s Variable(55)

TranslatedEquations

InitialSection

Sinel_nout = 1;

Sinel_outPort_n = 1;

Sinel_pi = 3.14159265358979;
Forcel_inPort_n = 1;
BoundParameterSection
Sinel_px_Oamplitude_1 = Sinel_amplitude_1
Sinel_px_OfreqHz_1 = Sinel_freqHz_1;
Sinel_px_Ophase_1 = Sinel_phase_1;
Sinel_px_Ooffset_1 = Sinel_offset_1;
Sinel_px_OstartTime_1 = Sinel_startTime_1
Housing_s = FixedLe_s0+0.5*Housing_L;
PlateRi_flangex_Ob_s = Housing_s+0.5*Housing_L;
Friction_flangex_Oa_s = FixedLe_s0;
FixedLe_flangex_Ob_s = FixedLe_s0;
Housing_flangex_Oa_s = FixedLe_s0;
PlateLe_flangex_Oa_s = FixedLe_s0;
Housing_flangex_Ob_s = PlateRi_flangex_Ob_s;
InitialSection

DefaultSection

InitializeData(0)

OutputSection

DynamicsSection

/* schedule using 2 processors */
/* Processor 0 */

procO(idemand_,icall_,time,X_,XD_,U_,DP_,IP_,LP_,F_,Y_,W_,DZ_,duser_,iuser_,luser_,QiErr);
AcceptedSectionl

AcceptedSection2

Sinel_y_1 = Sinel_outPort_signal_1;

Spool_flangex_Ob_s = Spool_s+0.5%Spool_L;

FixedLe_flangex_Ob_f = PlateLe_flangex_Ob_f-Housing_flangex_Oa_f+
Friction_flangex_Ob_f;

Friction_sx_Orel = Spool_flangex_Oa_s-FixedLe_s0;

DefaultSection
InitialSection

/* No equations */
DefaultSection
InitializeData(1)
EndTranslatedEquations

#include <dsblock6.c>

PreNonAlias(0)

StartNonAlias(0)

DeclareVariable("SpringLe.flange_a.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("SpringLe.flange_a.der(s)", "der(absolute position of flange) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("Springle.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\
, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("SpringLe.der(s_rel)", "der(relative distance (= flange _b.s - flange_a.s))
, 0, 0.0,0.0,0.0,0,0)

DeclareParameter ("Springle.s_relO", "unstretched spring length [m]", O, 0, \
0.0,0.0,0.0,0,0)

[m/s]1"\
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DeclareParameter("Springle.c", "spring constant [N/m]", 1, 1000000.0, 0.0,1E+100\
,0.0,0,0)

DeclareParameter("Springle.d", "damping constant [N/ (m/s)]", 2, 250, 0.0,1E+100\
,0.0,0,0)

DeclareVariable("Springle.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0\
,0)

DeclareVariable("SpringRi.flange b.f", "cut force directed into flamge [NI", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("SpringRi.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("SpringRi.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("SpringRi.s_rel0", "unstretched spring length [ml", 3, 0, \
0.0,0.0,0.0,0,0)

DeclareParameter("SpringRi.c", "spring comstant [N/m]", 4, 1000000.0, 0.0,1E+100\
,0.0,0,0)

DeclareParameter("SpringRi.d", "damping constant [N/ (m/s)]", 5, 250, 0.0,1E+100\
,0.0,0,0)

DeclareVariable("SpringRi.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0\
,0)

DeclareState("Spool.s", "absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\

, 0,0, 0.0,0.0,0.0,0,0)

DeclareDerivative("Spool.der(s)", "der(absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2)) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("Spool.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\

, 6, 0.19, 0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_a.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_a.der(s)", "der(absolute position of flange) [m/s]1"\
, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_a.f", "cut force directed into flange [N]", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("Spool.flange_b.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,0)

DeclareParameter("Spool.m", "mass of the sliding mass [kgl", 7, 0.15, 0.0,1E+100\
,0.0,0,0)

DeclareState("Spool.v", "absolute velocity of component [m/s]", 1, 0, 0.0,0.0,\
0.0,0,0)

DeclareDerivative("Spool.der(v)", "der(absolute velocity of component) [m/s/sI"\
, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("FixedLe.sO", "fixed offset position of housing [m]", 8, (\
-0.0965), 0.0,0.0,0.0,0,0)

DeclareVariable("FixedLe.flange_b.s", "absolute position of flange [ml", 0, \
0.0,0.0,0.0,0,1)

DeclareVariable("FixedLe.flange b.f", "cut force directed into flange [N]1", O, \
0.0,0.0,0.0,0,0)

DeclareState("PotLe.s", "absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\

, 2, (-0.094), 0.0,0.0,0.0,0,0)

DeclareDerivative("PotLe.der(s)", "der(absolute position of center of component (s
, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("PotLe.L", "length of component from left flange to right flange (
, 9, 0.002, 0.0,0.0,0.0,0,0)

DeclareVariable("PotLe.flange_a.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("PotLe.flange_a.der(s)", "der(absolute position of flange) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("PotLe.flange_a.f", "cut force directed into flange [N]1", 0, \
0.0,0.0,0.0,0,0)

DeclareParameter("PotLe.m", "mass of the sliding mass [kg]", 10, 0.01, 0.0,\
1E+100,0.0,0,0)

DeclareState("PotLe.v", "absolute velocity of component [m/s]", 3, 0, 0.0,0.0,\
0.0,0,0)

DeclareDerivative("PotLe.der(v)", "der(absolute velocity of component) [m/s/s]"\

, 0, 0.0,0.0,0.0,0,0)

flange_a.s + L/2 = flange_b.s - L/2)) [m/s]"\

flange_b.s - flange_a.s) [m]"\

DeclareState("PotRi.s", "absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\

, 4, (-0.0655), 0.0,0.0,0.0,0,0)

DeclareDerivative("PotRi.der(s)", "der(absolute position of center of component (s = flange_ a.s + L/2 = flange b.s - L/2)) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("PotRi.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\

, 11, 0.002, 0.0,0.0,0.0,0,0)

DeclareVariable("PotRi.flange_b.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("PotRi.flange_b.der(s)", "der(absolute position of flange) [m/s]"\
, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("PotRi.flange_b.f", "cut force directed into flange [N]", 0, \
0.0,0.0,0.0,0,0)

DeclareParameter("PotRi.m", "mass of the sliding mass [kgl", 12, 0.01, 0.0,\
1E+100,0.0,0,0)

DeclareState("PotRi.v", "absolute velocity of component [m/sl", 5, 0, 0.0,0.0,\
0.0,0,0)

DeclareDerivative("PotRi.der(v)", "der(absolute velocity of component) [m/s/sl"\
, 0, 0.0,0.0,0.0,0,0)



DeclareVariable("Spring.flange_a.s", "absolute position of flange [ml", 0, \
0.0,0.0,0.0,0,0)
DeclareVariable("Spring.flange_b.s", "absolute position of flange [m]", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("Spring.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("Spring.f", "forcee between flanges (positive in direction of flange axis R) [N]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter ("Spring.s_relO", "unstretched spring length [m]", 13, 0.025, \
0.0,1E+100,0.0,0,0)

DeclareParameter ("Spring.c", "spring constant [N/m]", 14, 20000.0, 0.0,1E+100,\
0.0,0,0)

DeclareVariable("PlateLe.flange_a.s", "absolute position of flange [m]l", 0, \
0.0,0.0,0.0,0,1)

DeclareVariable("PlateLe.flange_b.f", "cut force directed into flange [N]1", O, \
0.0,0.0,0.0,0,0)

DeclareVariable("PlateLe.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("PlateLe.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter ("PlateLe.s_rel0", "unstretched spring length [m]", 15, 0.0015, \
0.0,0.0,0.0,0,0)

DeclareParameter ("PlateLe.c", "spring constant [N/m]", 16, 1000000.0, 0.0,1E+100\
,0.0,0,0)

DeclareParameter ("PlateLe.d", "damping comstant [N/ (m/s)]", 17, 250, 0.0,1E+100\
,0.0,0,0)

DeclareVariable("PlateLe.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0,\
0)

DeclareVariable("PlateRi.flange_b.s", "absolute position of flange [ml", 0, \
0.0,0.0,0.0,0,1)

DeclareVariable("PlateRi.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("PlateRi.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter ("PlateRi.s_rel0", "unstretched spring length [m]", 18, 0.0015, \
0.0,0.0,0.0,0,0)

DeclareParameter ("PlateRi.c", "spring constant [N/m]", 19, 1000000.0, 0.0,1E+100\
,0.0,0,0)

DeclareParameter ("PlateRi.d", "damping constant [N/ (m/s)]", 20, 250, 0.0,1E+100\
,0.0,0,0)

DeclareVariable("PlateRi.Contact", "false, if s_rel > 1 ", false, 0.0,0.0,0.0,0,\
0)

DeclareVariable("Rod.s", "absolute position of center of component (s = flange_a.s + L/2 = flange b.s - L/2) [m]"\

, 0, 0.0,0.0,0.0,0,0)
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DeclareVariable("Rod.der(s)", "der(absolute position of center of compoment (s = flange_a.s + L/2 = flange_b.s - L/2)) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter("Rod.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\

, 21, 0.0275, 0.0,0.0,0.0,0,0)

DeclareVariable("Rod.flange_b.f", "cut force directed into flange [N]1", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("Friction.flange_a.s", "absolute position of flange [ml", 0, \
0.0,0.0,0.0,0,1)

DeclareVariable("Friction.flange_b.f", "cut force directed into flange [NI", 0, \
0.0,0.0,0.0,0,0)

DeclareVariable("Friction.s_rel", "relative distance (= flange_b.s - flange_a.s) [m]"\

, 0, 0.0,1E+100,0.0,0,0)

DeclareVariable("Friction.der(s_rel)", "der(relative distance (= flange_b.s - flange_a.s)) [m/s]"\

, 0, 0.0,0.0,0.0,0,0)

DeclareParameter ("Friction.d", "damping comnstant [N/ (m/s)] [N/ (m/s)I", 22, \
2500, 0.0,1E+100,0.0,0,0)

DeclareVariable("Forcel.inPort.n", "Dimension of signal vector", 1, 0.0,0.0,0.0,\
0,1)

DeclareVariable("Sinel.nout", "Number of outputs", 1, 1.0,1E+100,0.0,0,1)
DeclareVariable("Sinel.outPort.n", "Dimension of signal vector", 1, 0.0,0.0,0.0,\
0,1)

DeclareVariable("Sinel.outPort.signal[1]", "Real output signals", 0, 0.0,0.0,0.0\
,0,0)

DeclareVariable("Sinel.y[1]", "", 0, 0.0,0.0,0.0,0,0)
DeclareParameter("Sinel.amplitude[1]", "Amplitudes of sine waves", 23, 150, \
0.0,0.0,0.0,0,0)

DeclareParameter("Sinel.freqHz[1]", "Frequencies of sine waves [Hz]", 24, 0.01, \
0.0,0.0,0.0,0,0)

DeclareParameter("Sinel.phase[1]", "Phases of sine waves [rad]", 25, 0, 0.0,0.0,\
0.0,0,0)

DeclareParameter("Sinel.offset[1]", "Dffsets of output signals", 26, 0, 0.0,0.0,\
0.0,0,0)

DeclareParameter("Sinel.startTime[1]", "Output = offset for time < startTime [s]"\
, 27, 0, 0.0,0.0,0.0,0,0)

DeclareVariable("Sinel.pi", "", 3.14159265358979, 0.0,0.0,0.0,0,1)
DeclareVariable("Sinel.p_amplitude[1]", "", 0, 0.0,0.0,0.0,0,1)
DeclareVariable("Sinel.p_fregHz[1]", "", 0, 0.0,0.0,0.0,0,1)

DeclareVariable("Sinel.p_phase[1]", "", 0, 0.0,0.0,0.0,0,1)
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DeclareVariable("Sinel.p_offset[1]", "", 0, 0.0,0.0,0.0,0,1)

DeclareVariable("Sinel.p_startTime[1]1", "[s]", 0, 0.0,0.0,0.0,0,1)

DeclareVariable("Housing.s", "absolute position of center of component (s = flange_a.s + L/2 = flange_b.s - L/2) [m]"\
, 0, 0.0,0.0,0.0,0,1)

DeclareParameter("Housing.L", "length of component from left flange to right flange (= flange_b.s - flange_a.s) [m]"\
, 28, 0.0305, 0.0,0.0,0.0,0,0)

DeclareVariable("Housing.flange_a.s", "absolute position of flange [ml", 0, \

0.0,0.0,0.0,0,1)

DeclareVariable("Housing.flange_a.f", "cut force directed into flange [N]", O, \

0.0,0.0,0.0,0,0)

DeclareVariable("Housing.flange_b.s", "absolute position of flange [m]", 0, \

0.0,0.0,0.0,0,1)

EndNonAlias(0)

PreAlias(0)

StartAlias(0)

DeclareAlias("Springle.flange_a.f", "cut force directed into flange [N]", "\

Rod.flange_b.f", 1, 5, 36)

DeclareAlias("Springle.flange_b.s", "absolute position of flange [m]", "\

Spool.flange_a.s", 1, 5, 9)

DeclareAlias("Springle.flange_b.f", "cut force directed into flange [N1", "\

Rod.flange_b.f", -1, 5, 36)

DeclareAlias("Springle.f", "forcee between flanges (positive in direction of flange axis R) [NI"\

, "Rod.flange_b.f", -1, 5, 36)

DeclareAlias("Springle.v_rel", "relative velocity between flange L and R [m/s]"\

, "Springle.der(s_rel)", 1, 5, 3)

DeclareAlias("SpringRi.flange_a.s", "absolute position of flange [m]", "\

Spool.flange_a.s", 1, 5, 9)

DeclareAlias("SpringRi.flange_a.f", "cut force directed into flange [N]1", "\

SpringRi.flange b.f", -1, 5, 5)

DeclareAlias("SpringRi.flange_b.s", "absolute position of flange [m]", "\

PotLe.flange_a.s", 1, 5, 15)

DeclareAlias("SpringRi.f", "forcee between flanges (positive in direction of flange axis R) [N]"\

, "SpringRi.flange_b.f", 1, 5, 5)

DeclareAlias("SpringRi.v_rel", "relative velocity between flange L and R [m/s]"\

, "SpringRi.der(s_rel)", 1, 5, 7)

DeclareAlias("Spool.flange_b.f", "cut force directed into flange [N]", "\

Sinel.outPort.signal[1]", 1, 5, 44)

DeclareAlias("Spool.a", "absolute acceleration of component [m/s2]", "\

Spool.der(v)", 1, 6, 1)

DeclareAlias("PotLe.flange_b.s", "absolute position of flange [m]", "\

Spring.flange_a.s", 1, 5, 21)

DeclareAlias("PotLe.flange_b.f", “"cut force directed into flange [N]", "Spring.f\

"1, 5, 24)

DeclareAlias("PotLe.a", "absolute acceleration of component [m/s2]", "\

PotLe.der(v)", 1, 6, 3)

DeclareAlias("PotRi.flange_a.s", "absolute position of flange [m]", "\

Spring.flange_b.s", 1, 5, 22)

DeclareAlias("PotRi.flange_a.f", "cut force directed into flange [N]", "Spring.f\

", -1, 5, 24)

DeclareAlias("PotRi.a", "absolute acceleration of component [m/s2]", "\

PotRi.der(v)", 1, 6, 5)

DeclareAlias("Spring.flange_a.f", "cut force directed into flange [N]", "\

Spring.f", -1, 5, 24)

DeclareAlias("Spring.flange_b.f", "cut force directed into flange [N]", "\

Spring.f", 1, 5, 24)

DeclareAlias("PlateLe.flange_a.f", "cut force directed into flange [N1", "\

PlateLe.flange_b.f", -1, 5, 26)

DeclareAlias("Platele.flange_b.s", "absolute position of flange [m]", "\

PotLe.flange_a.s", 1, 5, 15)

DeclareAlias("Platele.f", "forcee between flanges (positive in direction of flange axis R) [N]I"\

, "Platele.flange_b.f", 1, 5, 26)

DeclareAlias("PlateLe.v_rel", "relative velocity between flange L and R [m/s]"\
"PlateLe.der(s_rel)", 1, 5, 28)

DeclareAlias("PlateRi.flange_a.s", "absolute position of flange [m]", "\

PotRi.flange_b.s", 1, 5, 18)

DeclareAlias("PlateRi.flange_a.f", "cut force directed into flange [N]", "\

Housing.flange_a.f", -1, 5, 54)

DeclareAlias("PlateRi.flange_b.f", “"cut force directed into flange [N]", "\

Housing.flange_a.f", 1, 5, 54)

DeclareAlias("PlateRi.f", "forcee between flanges (positive in direction of flange axis R) [NI"\
, "Housing.flange_a.f", 1, 5, 54)
DeclareAlias("PlateRi.v_rel", "relative velocity between flange L and R [m/s]"\

"PlateRi.der(s_rel)", 1, 5, 32)
DeclareAlias("Rod.flange_a.s", "absolute position of flange [m]", "\
Springle.flange_a.s", 1, 5, 0)
DeclareAlias("Rod.flange_a.f", "cut force directed into flange [N]", "\
Rod.flange_b.f", -1, 5, 36)
DeclareAlias("Rod.flange_b.s", "absolute position of flange [m]", "\
PotRi.flange_b.s", 1, 5, 18)
DeclareAlias("Friction.flange_a.f", "cut force directed into flange [N]", "\
Friction.flange b.f", -1, 5, 38)



DeclareAlias("Friction.flange_b.s", "absolute position of flange [m]l", "\

Spool.flange_a.s", 1, 5, 9)

DeclareAlias("Friction.f", "forcee between flanges (positive in direction of flange axis R) [N]1"\

"Friction.flange_b.f", 1, 5, 38)
DeclareAlias("Friction.v_rel", "relative velocity between flange L and R [m/s]"\
"Friction.der(s_rel)", 1, 5, 40)

DeclareAlias("Forcel.f", "driving force [N]", "Sinel.outPort.signall1l", 1, 5, \

44)

DeclareAlias("Forcel.flange_b.s", "absolute position of flange [m]", "\

Spool.flange_b.s", 1, 5, 12)

DeclareAlias("Forcel.flange_b.f", "cut force directed into flange [N]", "\

Sinel.outPort.signall[1l", -1, 5, 44)

DeclareAlias("Forcel.inPort.signal[1]", "Real input signals", "Sinel.outPort.signal[1]\

"1, 5, 44)

DeclareAlias("Housing.flange_b.f", "cut force directed into flange [N]", "\

Housing.flange_a.f", -1, 5, 54)

EndAlias(0)

#define NX_

#define NX2_

#define NU_

#define NY_

#define NW_ 56

#define NP_ 29

#define NI_ 0

#define NRel_ 4

#define NTim_ 1

#define NSamp_ 0
0
4

cocoom

#define NCons_

#define NA_ 1
#define SizePre_ O
#define SizeEq_ O
#define SizeDelay_ O
#define QNLmax_ O
#define MAXAux 0O

#define NrDymolaTimers_ Q
#define NWhen_ O

#include <dsblockb.c>

StartDataBlock

EndDataBlock

extern double _mpimsendbufO[];
extern double _mpimrecvbuf(Q [1;
extern double _mpimsendbufill[];
extern double _mpimrecvbufl[];
/* Processor 0 */

void procO(long *idemand, long *icall_, double *time
,double X_[], double XD_[], double U_[], double DP_[]
,long IP_[], long LP_[]

, double F_[], double Y_[], double W_[], double QZ_[]

, double duser_[], long iuser_[]
,long luser_[],long *QiErr) {

double dlocbuf [7+2#NRel_+1+(3* (NRel_+1))+SizePre_+2*SizeEq_];

long llocbuf [18+2%(NRel_+1)1;

extern int inJacobian_;

int i,j;

1locbuf [0]=1;1locbuf[1]=*idemand; llocbuf[2]=*icall_; llocbuf[3]=*QiErr;

1locbuf [4]=Init; 1llocbuf [6]=Event;llocbuf [6]=PrintEvent;llocbuf [7]=AnyEvent;

1locbuf [8]=Iter;

1locbuf [9]=solverHandleEq_;

1locbuf [10]=inJacobian_j;

1locbuf [11]=QInfRev

;1locbuf [12]=Qi0pt

;1locbuf [13]1=QNnl

;1locbuf [14]=Qinfo

;1locbuf [15]=QNLnr

;1locbuf [16]1=(QBase

;1locbuf [17]=NewParameters

MSEND(&1locbuf, 18,MPI_LONG,1,0);

/* Send to 1 */

i=0;

_mpimsendbufl[i++]=1.0;

_mpimsendbufil[i++]=*time;

_mpimsendbufl[i++]=EPS_;

_mpimsendbuf1[i++]=Time;

_mpimsendbuf1[i++]=EqRememberiTime_;

_mpimsendbuf1[i++]=EqRemember2Time_;

_mpimsendbuf1[i++]=Qtol;

for(j=0; j<SizePre_;j++) _mpimsendbufl[i++]=QPre_[j];

for(j=0;j<SizeEq_;j++) _mpimsendbufl [i++]=EqRememberl_[jl;

for(j=0;j<SizeEq_;j++) _mpimsendbufl [i++]=EqRemember2_[j];
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_mpimsendbuf1 [0+7+SizePre_+2*SizeEq_]=Spool_m;
_mpimsendbuf1[1+7+SizePre_+2*SizeEq_]=Sinel_px_Qoffset_1;
_mpimsendbuf1[2+7++SizePre_+2*SizeEq_]=Sinel_px_Oamplitude_1;
_mpimsendbufl [3+7+SizePre_+2*SizeEq_]=Sinel_px_OstartTime_1;
_mpimsendbuf1 [4+7+SizePre_+2*SizeEq_J]=Friction_d;
_mpimsendbuf1[5+7+SizePre_+2*SizeEq_l=Springle_sx_0rel0Q;
_mpimsendbuf1[6+7+SizePre_+2*SizeEq_l=SpringRi_sx_0rel0;
_mpimsendbuf1[7+7+SizePre_+2*SizeEq_]=Sinel_px_Ophase_1;
_mpimsendbufl [8+7+SizePre_+2*SizeEq_]=Springle_d;
_mpimsendbufl [9+7+SizePre_+2*SizeEq_]=Springle_c;
_mpimsendbuf1[10+7+SizePre_+2*SizeEq_]=SpringRi_d;
_mpimsendbuf1[11+7+SizePre_+2*SizeEq_]=SpringRi_c;
_mpimsendbuf1[12+7+SizePre_+2%SizeEq_l=Sinel_px_OfreqHz_1;
_mpimsendbuf1[13+7+SizePre_+2*SizeEq_]=Spool_v;
_mpimsendbuf1[14+7+SizePre_+2*SizeEq_]=Spool_s;
_mpimsendbuf1[15+7+SizePre_+2*SizeEq_]=PotLe_v;
_mpimsendbuf1[16+7+SizePre_+2*SizeEq_]=PotLe_s;
_mpimsendbufl[17+7+SizePre_+2*SizeEq_]=Rod_L;
_mpimsendbuf1[18+7+SizePre_+2xSizeEq_]=Spool_L;
_mpimsendbuf1[19+7+SizePre_+2*SizeEq_]=PotLe_L;
_mpimsendbuf1[20+7+SizePre_+2%SizeEq_]=PotRi_v;
_mpimsendbuf1[21+7+SizePre_+2*SizeEq_]=PotRi_s;
_mpimsendbuf1[22+7+SizePre_+2+*SizeEq_]=PotRi_L;
MSEND(&_mpimsendbufl, 23+7+SizePre_+2*SizeEq_,MPI_DOUBLE, 1,134849120) ;
tempr[27] = 0.5;

tempr[26] = tempr[27] * PotRi_L;
tempr[25] = 0.5;
tempr[46] = 0.5;
tempr[40] = 0.5;

PotRi_flangex_Ob_s = PotRi_s + tempr[26];

tempr[24] = tempr[25] * Rod_L;
tempr[23] = 0.5;

PotRi_der_s = PotRi_v;

tempr [46] = tempr[46] * PotLe_L;

tempr[39] = tempr[40] * Spool_L;

Rod_s = PotRi_flangex_Ob_s - tempr[24];

tempr[22] = tempr[23] * Rod_L;

PotRi_flangex_Ob_der_s = PotRi_der_s;

PotLe_der_s = PotLe_v;

PotLe_flangex_Oa_s = Potle_s - tempr[45];

Spool_flangex_Oa_s = Spool_s - tempr[39];

Spool _der_s = Spool_v;

Springle_flangex_Oa_s = Rod_s - tempr[22];

Rod_der_s = PotRi_flangex_Ob_der_s;

PlateLe_sx_Orel = PotLe_flangex_0Oa_s - FixedLe_s0;
PotLe_flangex_Oa_der_s = PotLe_der_s;

SpringRi_sx_Orel = PotLe_flangex_Oa_s - Spool_flangex_Oa_s;
Spool_flangex_Oa_der_s = Spool_der_s;

SpringLe_sx_Orel = Spool_flangex Qa_s - Springle_flangex Oa_s;
SpringLe_flangex_Oa_der_s = Rod_der_s;

PlateLe_der_sx_QOrel = PotLe_flangex_Oa_der_s;

tempr[44] = PlateLe_sx_Orel - PlateLe_sx_Orel0;

SpringRi_der_sx_Orel = PotLe_flangex Oa_der_s - Spool_flangex_Oa_der_s;
tempr[38] = SpringRi_sx_Orel - SpringRi_sx_0Orel0;

tempr[33] = 0.5;

tempr[31] = 0.5;

Springle_der_sx_Orel = Spool_flangex_Oa_der_s - SpringlLe_flangex_0Oa_der_s;
tempr[21] = SpringLe_sx_Orel - SpringLe_sx_Orel0;

PlateRi_sx_Orel = PlateRi_flangex_ Ob_s - PotRi_flangex_Ob_s;

tempi[10] = 0;

tempr[43] = Platele_c * tempr[44];

tempr[42] = PlatelLe_d * PlateLe_der_sx_Orel;
tempi[8] = 1;

tempr [37] = SpringRi_c * tempr[38];

tempr[36] = SpringRi_d * SpringRi_der_sx_Orel;

tempr[32] = tempr[33] * PotRi_L;

tempr[30] = tempr[31] * PotLe_L;
tempi[6] = 2;
tempr[20] = Springle_c * tempr[21];

tempr[19] = Springle_d * Springle_der_sx_Orel;
PlateRi_der_sx_Orel = - PotRi_flangex Ob_der_s;
tempr[56] = PlateRi_sx_Orel - PlateRi_sx_OrelQ;
PlateLe_Contact =PlateLe_sx_Orel < PlatelLe_sx_OrelO;
tempr[41] = tempr([43] + tempr[42];

tempi[9] = 0;

SpringRi_Contact =SpringRi_sx_Orel < SpringRi_sx_OrelQ;
tempr[35] = tempr[37] + tempr[36];

tempi[7] = 0;

Spring_flangex_Ob_s = PotRi_s - tempr[32];
Spring_flangex_Oa_s = PotLe_s + tempr[30];
Springle_Contact =Springle_sx_Orel < SpringlLe_sx_OrelQ;
tempr[18] = tempr[20] + tempr[19];

THE PRELOAD
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tempi[5] = 0;
tempil[2] = 3;
tempr[4] = PlateRi_c * tempr[5];
tempr[3] = PlateRi_d * PlateRi_der_sx_Orel;
PlateLe_flangex_Ob_f = IF Platele_Contact THEN tempr[41] ELSE tempil[9];
SpringRi_flangex_Ob_f = IF SpringRi_Contact THEN tempr[35] ELSE tempil7];
Spring_sx_Orel = Spring_flangex Ob_s - Spring_flangex Oa_s;
tempr[17] = IF SpringLe_Contact THEN tempr[18] ELSE tempil5];
PlateRi_Contact =PlateRi_sx_Orel < PlateRi_sx_OrelO;
tempr[2] = tempr[4] + tempr[3];
tempil[1] = 0;
tempr[34] = PlatelLe_flangex_Ob_f + SpringRi_flangex_Ob_f;
tempr[29] = Spring_sx_Orel - Spring_sx_OrelQ;
Rod_flangex_Ob_f = - tempr[17];
Housing_flangex_Oa_f = IF PlateRi_Contact THEN tempr[2] ELSE tempil1l;
PotLe_flangex_Qa_f = - tempr[34];
Spring_f = Spring c * tempr[29];
PotRi_flangex_Ob_f = Housing_flangex_Oa_f - Rod_flangex_Ob_f;
tempr[28] = PotLe_flangex_Oa_f + Spring_f;
tempr[1] = PotRi_flangex Ob_f - Spring_ f;
PotLe_der_v = divmacro( tempr[28], "PotLe.flange_ a.f+Spring.f", PotLe_m, "PotLe.m");
PotRi_der_v = divmacro( tempr[1], "PotRi.flange_b.f-Spring.f", PotRi_m, "PotRi.m");
/* RecvToMaster */
/* Recv to end proc 1 */
MRECV (&_mpimrecvbuf0, 26 ,MPI_DOUBLE, 1,39280) ;
Spool_der_v=_mpimrecvbuf0[0];
Sinel_outPort_signal_1=_mpimrecvbufQ[1];
Spool_flangex_QOa_f=_mpimrecvbuf0[2];
Rod_flangex_Ob_f=_mpimrecvbuf0[3];
Friction_flangex_Ob_f=_mpimrecvbuf0[4];
SpringRi_flangex_Ob_f=_mpimrecvbuf0[5];
Springle_Contact=_mpimrecvbuf0[6];
Friction_der_sx_Orel=_mpimrecvbufQ[7];
SpringRi_Contact=_mpimrecvbuf0[8];
Springle_der_sx_Orel=_mpimrecvbuf(Q[9];
SpringRi_der_sx_Orel=_mpimrecvbufQ[10];
Springle_flangex_Oa_der_s=_mpimrecvbuf0[11];
Springle_sx_Orel=_mpimrecvbufQ[12];
Spool_flangex_Oa_der_s=_mpimrecvbuf0[13];
SpringRi_sx_Orel=_mpimrecvbuf0[14];
PotLe_flangex_0Oa_der_s=_mpimrecvbufQ[15];
Rod_der_s=_mpimrecvbuf0[16] ;
Springle_flangex_Oa_s=_mpimrecvbuf0[17];
Spool_der_s=_mpimrecvbufQ[18];
Spool_flangex_Oa_s=_mpimrecvbuf0[19];
PotLe_flangex_0a_s=_mpimrecvbuf0[20] ;
PotLe_der_s=_mpimrecvbuf0[21];
PotRi_flangex_0b_der_s=_mpimrecvbuf0[22];
Rod_s=_mpimrecvbuf0[23];
PotRi_der_s=_mpimrecvbufQ[24];
PotRi_flangex_Ob_s=_mpimrecvbuf0[25];
leave:
finish:
BARRIER;
}

/* Processor 1 */

void proci() {

long llocbuf [18+2+(NRel_+1)];

extern int inJacobian_;

long *idemand_=&llocbuf[1];

long *icall_=&llocbuf[2];

long *QiErr=&llocbuf[3];

long * QL_=&llocbuf[18];

long * Qenable_=&llocbuf [18+NRel_+1];

double *time=&_mpimrecvbufl[1];

double X_[NX_],XD_[NX_1;

double U_[NU_1,Y_[NY_1;

double W_[NW_],DP_[NP_];

double F_[NX_];

double _mpimrecvbufi[7];

double =%_mpimrecvbufl[7+2+«NRel_+1];

double _mpimrecvbufl[7+2«NRel_+1+NRel_+1];

double _mpimrecvbufi[7+2*NRel_+1+NRel_+1+NRel_+1];

double *QPre_=&_mpimrecvbufl[7+2*NRel_+1+NRel_+1+NRel_+1+NRel_+1];
double *EqRememberl_=&_mpimrecvbufl[7+2*NRel_+1+NRel_+1+NRel_+1+NRel_+1+SizePre_];
double *EqRemember2_s=&_mpimrecvbufl[7+2#NRel_+1+NRel_+1+NRel_+1+NRel_+1+SizePre_+SizeEq_];
long *IP_;

bool *LP_;

MRECV(&11locbuf, 18+2* (NRel_+1) ,MPI_LONG,0,0) ;

Init = llocbuf[4];

Event = 1llocbuf [5];
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PrintEvent = llocbuf[6];
AnyEvent = 1locbuf[7];
Iter = llocbuf[8];
solverHandleEq_ = llocbuf[9];
inJacobian_ = 1locbuf [10];
QInfRev=1locbuf [11]
;Qi0pt=1locbuf [12];
QNnl=1locbuf [13];
Qinfo=1locbuf [14];
QNLnr=1locbuf [15] ;
QBase=1locbuf [16] ;
NewParameters = llocbuf[17];
if ( 1locbuf[0] == 0) { MPI_Finalize(); exit(0);}
MRECV(&_mpimrecvbuf1,23+7+2+NRel_+1+(3*(NRel_+1))+SizePre_+2*SizeEq_,MPI_DOUBLE,0,134849120);
EPS_ = _mpimrecvbuf1[2];
Time = _mpimrecvbuf1[3];
EqRemember1Time_=_mpimrecvbufl[4];
EqRemenmber2Time_=_mpimrecvbufl[5];
Qtol=_mpimrecvbuf1[6];
Spool_m=_mpinrecvbufl [0+7+SizePre_+2*SizeEq_];
Sinel_px_Ooffset_1=_mpimrecvbufl[1+7+SizePre_+2+SizeEq_];
Sinel_px_Oamplitude_1=_mpimrecvbufl [2+7+3izePre_+2*SizeEq_];
Sinel_px_OstartTime_l=_mpimrecvbufl[3+7+SizePre_+2*SizeEq_l;
Friction_d=_mpimrecvbufl[4+7+SizePre_+2*SizeEq_];
Springle_sx_OrelO=_mpimrecvbuf1[5+7+SizePre_+2%SizeEq_];
SpringRi_sx_OrelO=_mpimrecvbuf1[6+7+SizePre_+2%SizeEq_];
Sinel_px_Ophase_1=_mpimrecvbufl[7+7+SizePre_+2*SizeEq_l;
Springle_d=_mpimrecvbufl [8+7+SizePre_+2*3izeEq_l;
Springle_c=_mpimrecvbufl[9+7+SizePre_+2*SizeEq_l;
SpringRi_d=_mpimrecvbufl[10+7+SizePre_+2+3izeEq_];
SpringRi_c=_mpimrecvbuf1[11+7+SizePre_+2*SizeEq_];
Sinel_px_OfreqHz_l1=_mpimrecvbufl[12+7+SizePre_+2*SizeEq_];
Spool_v=_mpimrecvbufl[13+7+SizePre_+2*S8izeEq_];
Spool_s=_mpimrecvbufl[14+7+SizePre_+2*SizeEq_];
PotLe_v=_mpimrecvbufl [15+7+SizePre_+2*SizeEq_l;
PotLe_s=_mpimrecvbufl [16+7+SizePre_+2*SizeEq_l;
Rod_L=_mpimrecvbufl [17+7+2+SizePre_+2*SizeEq_];
Spool_L=_mpimrecvbufl [18+7+SizePre_+2*3izeEq_];
PotLe_L=_mpimrecvbufl[19+7+SizePre_+2*SizeEq_];
PotRi_v=_mpimrecvbufl[20+7+SizePre_+2*SizeEq_];
PotRi_s=_mpimrecvbufl[21+7+SizePre_+2*SizeEq_l;
PotRi_L=_mpimrecvbufl [22+7+SizePre_+2*SizeEq_];
tempr[27] = 0.5;
tempr[26] = tempr[27] * PotRi_L;
tempr[25] =
tempr [46]
tempr [40] =
PotRi_flangex_Ob_s = PotRi_s + tempr[26];
tempr[24] = tempr[25] * Rod_L;
tempr[23] = 0.5;
PotRi_der_s = PotRi_v;
tempr[45] = tempr[46] * PotLe_L;
tempr[39] = tempr[40] * Spool_L;
Rod_s = PotRi_flangex_Ob_s - tempr[24];
tempr[22] = tempr[23] * Rod_L;
PotRi_flangex_Ob_der_s = PotRi_der_s;
PotLe_flangex_Oa_s = PotLe_s - tempr[45];
PotLe_der_s = PotLe_v;
Spool_flangex_Oa_s = Spool_s - tempr[39];
Spool_der_s = Spool_v;
Springle_flangex_Oa_s = Rod_s - tempr[22];
Rod_der_s = PotRi_flangex_Ob_der_s;
tempr[14] = 6.28318530717959;
PotLe_flangex_Oa_der_s = PotLe_der_s;
SpringRi_sx_Orel = PotLe_flangex Oa_s - Spool_flangex Oa_s;
Spool_flangex Oa_der_s = Spool_der_s;
Springle_sx_Orel = Spool_flangex_Oa_s - Springle_flangex_ Oa_s;
Springle_flangex_Oa_der_s = Rod_der_s;
tempr[13] = tempr[14] * Sinel_px_OfreqHz_1;
tempr[12] = Time - Sinel_px_OstartTime_1;
SpringRi_der_sx_Orel = PotLe_flangex Oa_der_s - Spool_flangex_QOa_der_s;
tempr[38] = SpringRi_sx_Orel - SpringRi_sx OrelO;
Springle_der_sx_Orel = Spool_flangex Oa_der_s - Springle_flangex_Oa_der_s;
tempr[21] = Springle_sx_Orel - SpringlLe_sx OrelO;

0.5;
0.5;
0.5;

tempr[11] = tempr[13] * tempr[12];
tempi[8] = 1;

tempr [37] = SpringRi_c * tempr([38];

tempr[36] = SpringRi_d * SpringRi_der_sx_Orel;
tempi[6] = 2;

tempr[20] = SpringLe_c * tempr[21];

tempr[19] = Springle_d * Springle_der_sx_Orel;
tempr[10] = tempr[11] + Sinel_px_Ophase_1;



SpringRi_Contact =SpringRi_sx_Orel < SpringRi_sx_OrelO;

tempr [35] = tempr[37] + tempr[36];

tempil7] = 0;

Friction_der_sx_Orel = Spool_flangex_Oa_der_s;
Springle_Contact =Springle_sx_Orel < SpringlLe_sx_Orel0;

tempr[18] = tempr[20] + tempr[19];

tempi[6] = 0;

tempil[4] = 0;

tempr [9] = sin( tempr[10]1);

SpringRi_flangex_Ob_f = IF SpringRi_Contact THEN tempr[35] ELSE tempil7];
Friction_flangex_Ob_f = Friction_d * Friction_der_sx_Orel;
tempr[17] = IF Springle_Contact THEN tempr[18] ELSE tempil[5];
tempr [15] = LessTime( Sinel_px_OstartTime_1, tempil4]1);

tempil[3] = 0;
tempr[8] = Sinel_px_Oamplitude_1 * tempr[9];
Rod_flangex_Ob_f = - tempr[17];

tempr[16] = SpringRi_flangex_Ob_f - Friction_flangex Ob_f;
tempr[7] = IF tempr[15] THEN tempil[3] ELSE tempr([8];
Spool_flangex Qa_f = tempr[16] + Rod_flangex_Ob_f;
Sinel_outPort_signal_1 = Sinel_px_Ooffset_1 + tempr[7];
tempr[6] = Spool_flangex_Oa_f + Sinel_outPort_signal_i;
Spool_der_v = divmacro( tempr[6], "Spool.flange_a.f+Sinel.outPort.signall1]l",
/* SendToMaster */
_mpimsendbuf1[0]=Spool_der_v;
_mpimsendbuf1[1]=Sinel_outPort_signal_1;
_mpimsendbuf1[2]=Spool_flangex_Oa_f;
_mpimsendbuf1[3]=Rod_flangex_Ob_f;
_mpimsendbufl[4]=Friction_flangex_Ob_f;
_mpimsendbuf1[5]=SpringRi_flangex_Ob_f;
_mpimsendbuf1[6]=Springle_Contact;
_mpimsendbuf1[7]=Friction_der_sx_Orel;
_mpimsendbuf1[8]=SpringRi_Contact;
_mpimsendbuf1[9]=SpringLe_der_sx_Orel;
_mpimsendbuf1[10]=SpringRi_der_sx_Orel;
_mpimsendbuf1[11]=Springle_flangex_Oa_der_s;
_mpimsendbuf1[12]=SpringlLe_sx_Orel;
_mpimsendbuf1[13]=Spool_flangex_0a_der_s;
_mpimsendbuf1[14]=SpringRi_sx_Orel;
_mpimsendbuf1[15]=PotLe_flangex_0a_der_s;
_mpimsendbuf1[16]=Rod_der_s;
_mpimsendbuf1[17]=Springle_flangex_Oa_s;
_mpimsendbuf1[18]=Spool_der_s;
_mpimsendbuf1[19]=Spool_flangex_0a_s;
_mpimsendbuf1[20]=PotLe_flangex_0a_s;
_mpimsendbuf1[21]=PotLe_der_s;
_mpimsendbuf1[22]=PotRi_flangex_Ob_der_s;
_mpimsendbuf1[23]=Rod_s;
_mpimsendbuf1[24]=PotRi_der_s;
_mpimsendbuf1[25]=PotRi_flangex_0b_s;
MSEND(&_mpimsendbuf1,26,MPI_DOUBLE,0,39280) ;
leave:
finish:
BARRIER;
}

int main (int arge, char *argv[])
{
int val,i,flag;
long killbuf [18+2% (NRel_+1)];
MPI_Init(&argc,&argv);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ;
MPI_Pack_size(1,MPI_DOUBLE,MPI_COMM_WORLD,&packedsize) ;
if (myrank == 0) {
val = dymosimMain(argc,argv);
SENDKILL;
MPI_Finalize();
return val;
i
dymmdp_(); /* Set up machine constants for NL solving*/
while (1) {
switch(myrank) {
case 1:
proci();
break;
}
i
}
double _mpimsendbuf0[26];
double _mpimrecvbuf0Q[26];
double _mpimsendbufi[26];
double _mpimrecvbufl1[26];

Spool_m,

"Spool.m");
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