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Abstract 

AIRCRAFT DEVELOPERS, like other development and manufacturing companies, 
are experiencing increasing complexity in their products and growing competition in the 
global market. One way to confront the challenges is to make the development process 
more efficient and to shorten time to market for new products/variants by using design 
and development methods based on models. Model Based Systems Engineering 
(MBSE) is introduced to, in a structured way, support engineers with aids and rules in 
order to engineer systems in a new way. 

In this thesis, model based strategies for aircraft and avionics development are stud-
ied. A background to avionics architectures and in particular Integrated Modular Avion-
ics is described. The integrating discipline Systems Engineering, MBSE and applicable 
standards are also described. A survey on available and emerging modeling techniques 
and tools, such as Hosted Simulation, is presented and Modeling Domains are defined 
in order to analyze the engineering environment with all its vital parts to support an 
MBSE approach. 

Time and money may be saved by using modeling techniques that enable under-
standing of the engineering problem, state-of-the-art analysis and team communication, 
with preserved or increased quality and sense of control. Dynamic simulation is an ac-
tivity increasingly used in aerospace, for several reasons; to prove the product concept, 
to validate stated requirements, and to verify the final implementation. Simulation is 
also used for end-user training, with specialized training simulators, but with the same 
underlying models. As models grow in complexity, and the set of simulation platforms 
is expanded, new needs for specification, model building and configuration support 
arise, which requires a modeling framework to be efficient. 
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The purpose of computing is insight, not numbers. 
- Richard Wesley Hamming, in the 1950’th 
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1 
Introduction 

SOFTWARE CONTENT in products is increasing, as is the number of electronic parts 
and components. Aircraft developers, like many other manufacturers, are today experi-
encing ever-growing complexity in products but also increasing competition in a global 
market. To specify, design and verify products before transition to end users is the chal-
lenge every industry must face, and become more efficient and careful so as not to let 
mistakes during development lead to end-product pricing or quality out of market ac-
ceptance. For aerospace products, regulations and authorities set specific requirements 
for safety and environmental reasons. 
 

Consider an engineering challenge where a new function/feature added to an exist-
ing product is required, driven by customer needs and constraints by official regula-
tions. Realization is performed by implementing and integrating new equipment and 
software, to ensure end-user training and provide documentation for usage, mainte-
nance, and certification.  
 

 
Figure 1. Value of the model based development approach 
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The development project life-cycle starts with a verbal formulation and ends with 
roll-out to customer and usage. There are obviously different ways to execute the pro-
ject, depending on the choice of engineering means, as illustrated in Figure 1. Maturity 
of functionality is reached through several activities, where modeling, simulation and 
analysis “get the function to mature” more rapidly compared to traditional document-
centric methods. Parts of both validation and verification are performed earlier with a 
Model Based Development (MBD) way of working, providing greater possibility to 
find defects or misunderstood requirements early. 

 
With this as a guiding example, further reading of this text will open up and pene-

trate questions of different aspects of development within the real-time, safety critical 
and embedded systems area.   

 
To support development of complex products, multiple methods and languages have 

been proposed in literature and evaluated in industry, as reported in [Mar 1991] and 
[Stevens 1998]. In recent years there has been much focus on MBD as means for man-
aging complexity by improving specification clarity, consistency and validation sup-
port, see [Alford 1992], [Long 1996], [Oliver 1997], [Friedenthal 2000], [Wymore 
2002], and [Engel 2008]. 

 
A central part of this thesis is thus to formalize the engineering design problem as 

the trade-off between skills, tools, and process implementation used within a develop-
ment project. 

1.1 Problem domain  
The problem area for this thesis is how to achieve efficient development of good prod-
ucts with “Model Based Systems Engineering”, and it focuses on questions that arise 
when a model based approach is to be used in a large development organization. Tech-
nical domain is the aerospace domain with integration of embedded and physical sys-
tems (avionics and aircraft subsystems). The problem is related to several systems engi-
neering practices and the problem is formulated as;  
 

How to achieve an efficient transition from (abstract) con-

cept evaluation to (detailed) development and further to 

sustained engineering based on a model based approach 

supporting systems including hardware and software. 

 
Further explanations of the components of this problem formulation are:  
 

• Efficient transition is when information from one activity is available and not 
in any major degree misunderstood in the following activity or activities. 
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• Concept evaluation is to compare and choose from alternative solutions in the 
earlier stages of a project where the information is not so detailed or complete 
in every aspect, but rather abstract. 

• (Detailed) development is to add the technical details to a selected concept, 
but also make other choices (as regards the details) 

• Sustained engineering is to add improvements/upgrades to an existing prod-
uct, where a mix of detailed and conceptual information is available. 

• Model based approach is an engineering way-of-working, based on models 
instead of documents. The models carry information in a format that can be 
transformed and used for both analysis and documentation purposes. 

• The application domain is systems including hardware and software, also 
called hybrid or heterogeneous systems. Hardware is not only computer hard-
ware or electronics, but also pistons, pumps, wheels and other mechanical, 
fluid or structural hardware. 

 
The central focus in the work is the model based approach, opening up further inter-

esting questions, for example “What is the optimal model architecture?” and “How to 
choose modeling technique in a specific situation?” These questions relates to systems 
engineering practices, as shown in Figure 2, and that are partly covered or discussed in 
this thesis. 
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Figure 2. Problem domain and related engineering practices 
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For reuse and utilization of verified solutions, component libraries are created. One 
objective is to use models to optimize the system design on a higher level of abstraction 
than in current methods. Modeling techniques of the future also need to represent more 
aspects of the system in the same model. For this there is a need for model (or meta-
model) alignment with proven applicable development processes and standards. 

1.2 Contributions 
Many research programs in this area can present powerful techniques and methods with 
small examples or with a specific or narrow problem to solve, but scaling up to indus-
trial usage is sometimes of less concern. In this work, scalability is one of the underly-
ing areas of interest, with the assumption that results should be useable for a wider 
range of employees, not only graduates or senior engineers. 
 

In this thesis a survey is made of different modeling techniques and modeling do-
mains and their further integration. The integration is studied both in terms of combina-
tion of modeling techniques and tools, but also integration of the model based approach 
into the development process. Contributions from this thesis to the field are the combi-
nation of emerging modularization technologies together with model based systems 
engineering and with a scalability focus: scalability in the sense of large systems, large 
organizations and growing datasets of engineering information. Definition of modeling 
domains based on tools and related techniques/methods creates a basis for analysis of 
existing, engineering environments or plan for buildup of new ones. Hopefully, the re-
sults from this and similar work will influence the future design of IDE (Integrated De-
velopment Environment) for aerospace, automotive or other companies with embedded 
systems development. 

1.3 Research method 
This work was performed as a survey of model-based techniques, tools and standards 
related to aircraft/avionics Systems Engineering. This research field is by nature multi-
disciplinary. The work does not take up actual systems or system models, but the avail-
able techniques and tools that can support engineers in building and using models.  
 

This can be viewed as the meta2 activity according to [Muller 2004], see Figure 3. 
Meta0 is the actual product creation and the development of system model(s), meta1 is 
the development methods1used to create and manage the product including its related 
models. Meta2 is the main focus of this thesis; a study of available methods and tools 
for the meta1 activities. At meta3, the research method for comparing tools and methods 
at meta2 is defined.  
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Figure 3. Research method formulation for method research 

adopted from [Muller 2004] 
 

Because this is an industrial thesis with a focus on industrial large-scale application 
of both emerging and proven techniques, the method of falsification by reasoning based 
on academic reports and industrial experience is appropriate and was chosen as the re-
search approach.  
 

1.4 Thesis outline 
This thesis consists of an extended summary and five papers. The remaining parts of the 
summary are outlined as follows; chapter 2 deals with the technical domain of this 
work; aerospace, avionics, and technical standards affecting development methods 
within the embedded systems and safety critical systems domains. In chapter 3 the sys-
tems engineering discipline is presented, together with development process mod-
els/standards and how the model based approach supports the discipline.  
 

Further details regarding basic modeling concepts and applicable modeling tech-
niques are presented in chapter 4 and chapter 5 describes how the tools and techniques 
are integrated into an engineering development environment. Implications of introduc-
ing model based approaches in terms of organizational changes and strategies are pre-
sented in chapter 6, and finally chapter 7 concludes the thesis with an evaluation and 
discussion of results obtained.  
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2 
Introduction to 

Aerospace 
and Avionics 

THE AEROSPACE ERA has more than hundred years of history. As new technologies 
have matured and been adopted into aerospace usage, new disciplines contribute to the 
development of the next generations of products. No one man is any longer able to pos-
sess knowledge of all parts of an aerospace project; it is a multidisciplinary challenge 
and it all has to be preformed in teams. The need for an integrating discipline, which 
divides the overall challenges into smaller engineering problems, is introduced; Systems 
Engineering. The Systems Engineering team has the overview of technical areas, for-
mulates new, preferably independent, engineering tasks and sets the common rules. One 
of the technical areas viewed as a discipline in its own right is avionics, with rapid 
evolvement enabled by new generations of computer and communication hardware, 
software languages, and development tools. So, even avionics has grown and become a 
“multidisciplinary discipline”. 
 

Avionics, in the way it is thought of today, is about half as old as aerospace. Avion-
ics is briefly “electronics for aircrafts” and the main function for which the avionics 
system is responsible is CNS; Communication, Navigation and Surveillance. As in sev-
eral modern products, new techniques, partly based on software, enable/require both 
new design solutions and new ways of working when performing the design activity. 
This chapter provides a background to avionics development and the challenges met in 
development based on modern, modular architecture. 
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2.1 Background to building blocks in aerospace 
In order to design and build a complex product, with hundreds of people involved, with 
time from first product ideas to introduction in the order of years, a balanced break-
down structure into simpler parts is required. In some sense, the success of a project is 
dependent upon how well the break-down structure (or architecture) supports the devel-
opment work. Designing the architecture is to define major building blocks in a system, 
applying abstraction and decomposition and thereby defining parts and interconnec-
tions. The system can be analyzed as a collection of parts together with the relationships 
between them.  

However, in many cases the problem is pushed from the parts to the connections be-
tween them which are still complex. The connections can be synthesized into a new 
field of knowledge such as electromagnetism, physical chemistry, etc. Providing system 
architecture for avionics applications is in line with this reasoning where the protocols 
on the buses have turned into a “component”.  

 
It has been proven in practice that a modular approach allows the design of products 

that satisfies varying requirements through the combination of distinct building blocks. 
Modularity also improves the ease of development, production, maintenance, reuse and 
recycling. In development, modularity enables concurrent engineering as teams can 
work in parallel, relatively independently, with each part/module of the system. In pro-
duction, modularity allows concurrent assembly where modules can be preassembled, in 
parallel, separate from the final assembly of the complete product [Blackenfelt 2001]. 

When viewing the architecture of an evolving system with a lifecycle perspective it 
is not possible to predict and propose a sustainable technical solution. With a growing 
proportion of the system implemented in software and/or with electronic parts, choosing 
and maintaining the architecture is an important issue for the future. An appropriate 
design will improve the capability to build advanced functionality, and the architecture 
of the network and choice of components also contributes to cost. The system architec-
ture is an increasingly important part of the complex and configurable product. 

 
Thus, on the one hand, the introduction of building blocks (modularization) simpli-

fies the management of complex products, while on the other hand the interface and 
configuration (tables) handling are added as a growing and in itself complex activity 
that will be further discussed herein. 

2.2 Saab, Gripen and engineering challenges 
Most of the work in and the inspiration for this thesis are related to development pro-
jects at Saab Aerosystems, Sweden. The JAS 39 Gripen lightweight fighter aircraft 
serves as a reference for modeling of large (complex) systems/products, se Figure 4. A 
short introduction to Saab and Gripen is therefore given here.  
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Figure 4. The Gripen fighter as a system model example 
 

The company develops and produces aircraft systems, and the main product during 
the last decade is the Gripen system, including aircraft, integrated sensors and weapons 
as well as ground support, operation support and training equipment. Traditionally, the 
company has a history of few large programs, tightly coupled to a single customer - the 
Swedish Air Force. The commercial environment for Saab Aerosystems is changing in 
several ways: 

• New product development and production programs with shorter turnaround 
are being introduced, such as the UAV program (Unmanned Aerial Vehicle) as 
described in Paper [V], 

• The Gripen program is expanding into a multi-customer, export environment 
which is forcing Saab to improve its handling of product variants and upgrade 
programs for older configurations, 

• Customers expect Saab to identify, fund, and develop new capabilities rather 
than the traditional customer-paid development model,  

• The market’s desire to contract for complete systems instead of parts, for ex-
ample deliver integrated solutions rather than provide aircraft and support 
equipment under separate contracts. 

• Early value creation and communication with suppliers and throughout the 
supply chain is playing an increasingly critical role.  

 
As a consequence of the changes identified above there is a drive to improve engi-

neering productivity and quality and the introduction of MBSE and, for example, 
UML/SysML is considered to have great potential. Modeling and simulation is also 
regarded as a key enabler for early validation and value creation within the supply chain 
in collaborative product development, as stated in [Fredriksson 2002]. 

  

 Embedded Controller 

 Task n 
Task … 

Sensors

Actuators 

Airframe/vehicle
- Physical 
  constraints 
- Behaviors 

Task 2
Task 1



10  Aircraft Systems Modeling 

 

A major internal change initiative at Saab Aerosystems, EMPIRE, described in 
[Backlund 2000], was conducted over the period from 1994 to 2000 and was connected 
to the research programs “Lean Aircraft Research Program”, (LARP, based at LiTH, 
Sweden) and “Lean Aircraft Initiative” (LAI, based at MIT, USA), see [Lilliecreutz 
2000]. With the EMPIRE project, a set of systems engineering techniques/tools was 
introduced along with supporting processes and methods. Further change initiatives in 
the SE area have been conducted, establishing the prerequisites for continuing engineer-
ing support and process improvements, such as Requirements Management, Product 
Data Management as well as graphical modeling and code generation. The ongoing 
methods and tools change program at Saab Aerosystems is shortly called MBSE, and 
reported achievements in Papers [II], [IV] and [V] are related to the MBSE program. 

2.3 Aircraft and avionics architecture 
In the following pages a short historical description is given of different generations and 
different design principles of the core avionics architecture. At the end of the section, 
aircraft systems are defined and one way to categorize aircraft systems is described. The 
description is based on [Spitzer 2001], [Moir 2004], [Tooley 2007], [Watkins 2007], 
and on Saab experiences.  

2.3.1 History of core avionics architecture 
In the 1950s and 1960s, avionics architecture was standalone systems with point-to-

point connections, as shown at the left side of Figure 5. Communication was performed 
unidirectionally by analog voltages, relay/switching contacts and similar.  

 
As more systems were added, especially the cockpit became crowded, but also the 

weight of controls, displays, relays and wiring increased. More and more information 
needed to be shared between systems in order to improve functionality and starting in 
the early 1970s more flexible information handling was enabled through the introduc-
tion of digital computers. The transfer of information was nonetheless still performed 
mainly by analogue means, requiring A/D and D/A converters.  
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Figure 5. Distributed avionics architectures 

 
The rapid evolvement of avionics technology took off with the introduction the mi-

croprocessor, enabling data transfer in digital form. Problems associated with bias and 
drift, which occurs in analog systems operating in a large temperature span, were re-
duced. The digital solution also had the benefit that bidirectional data exchange could 
be supported. Serial data-links became standard. In the late 1970s a major part of infor-
mation passing was performed with designs using digital communication over serial 
data-links. 
 

A large step in the increasing “bandwidth over weight ratio” was taken by sharing 
the interconnecting media, using a parallel communication link, and the 1553 Data Bus1 
was born, and the architecture layout is illustrated by the right side of Figure 5. Sub-
systems could now send data between themselves, one at a time in a defined sequence, 
making the system lighter but also more flexible: modifications or additions of new 
equipment were not longer such an integration nightmare.  
 

                                                             
1 The MIL-STD-1553 specification was released in August of 1973 by USAF and was first used in the 
F-16 fighter aircraft. Successors are MIL-STD-1553A in 1975 and MIL-STD-1553B in 1978, and the 
“B” version is still in use in many programs, but there exist additions & restrictions. 
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Figure 6. Federated avionics architecture with centralized computing unit 

 
Display technique also made it possible to present more data and in a more flexible 

way. The Human Machine Interface (HMI) was increasingly based on software designs, 
and may be regarded as a subsystem in its own right. Different design philosophies re-
garding “degree of centralized computing” were developed. Many aircraft developers 
kept a separated or decentralized avionics architecture, with dedicated Electronic Con-
trol Units (ECU) for specific aircraft functions/subsystems. At Saab Aerosystems, for 
example, the design choice for the avionics core functions (such as navigation, commu-
nication, displays and weapon control) in fighter aircraft was to centralize the computa-
tional resources in one (central computer) or a limited set of Central Processing Units 
(CPU), in what is called an integrated architecture, see Figure 6. Most of the algorithms 
and data exchange between subsystems could now be done within the central computer, 
with the benefits of shorter time delays in time-critical calculations and simplified inter-
face handling. Most of the information in the whole system is available in the same 
software component (Computer Software Configuration Item, CSCI), so signal/data 
integration is simplified. Functions such as sensor-data-fusion are easier to implement 
in a centralized architecture.  
 

As hardware performance increased with new generations of CPUs, it was possible 
to build large software components in the range of MSLOC (Mega Source Lines Of 
Code). The drawback as the system grows is dependability, in terms of different as-
pects, for example:  

• Execution dependency; if one arithmetic operation fails (e.g. division by zero 
or data out of range), the whole subsystem will crash, and the computer needs 
to reboot. It is more difficult to handle failures locally. 
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• Criticality dependability, (a consequence of execution dependency); All soft-
ware in a CSCI has to be developed according to the same (highest) Design 
Assurance Level (DAL, see “Definition of Design Assurance Level”, on page 
27), even though only parts of the functionality are critical. More tests have to 
be performed, and this drives development time and cost. 

• Development dependability; because building (compilation & linking) of all 
software in the large CSCI is done as one activity, all development teams need 
to be synchronized. 

• Security dependability; it is difficult to restrict access to secret parts of the 
functions/code, while building, testing or debugging, for example should be 
not too complicated to perform.   

 
In commercial aerospace, led by the business jet community and based on COTS 

items, the Integrated Modular Avionics (IMA) has evolved, and been adapted also to 
the military application. 
 

 
Figure 7. Integrated Modular Avionics (IMA) architecture 

 
With the IMA architecture, shared computational resources are still centralized but 

explicitly allocated to “applications”2, (see A1-A6 in Figure 7) through the use of con-
figuration tables. These shared resources include the computing processors, common 
communications network, and common I/O units. During the allocation process, it is 
possible to maintain the flexibility to dynamically manage free resources through con-
trol of/changes to the configuration tables. With usage of [ARINC-653] partitioning, the 
applications can be safely separated so applications of different criticality/DAL level 
                                                             
2 Names found in literature are Partition, Application or Hosted Function 

Navigation 

I/O 

I/O 

CPU 

Displays 

I/O 

I/O 

CPU 

 
 
 
 

Comm. 

I/O 

I/O 

CPU 
 
 
 
 

SubSys X 

I/O 

I/O 

CPU 

Modular      
applications 
provide less 

dependencies 

IMA core computer 

I/O

A
1 

A
2 

A
3 

A
4 

A
5 

A
6 

 
 
 
 

SubSys Y 

I/O 

I/O 

CPU 

ARINC-653



14  Aircraft Systems Modeling 

 

may be hosted in the same physical resource. The principle is physical separa-
tion/division in space and time (meaning memory addresses and execution timeframes). 
ARINC-653 separation of software modules drastically reduces dependability as well as 
some of the drawbacks of the integrated architecture. 
 

The term “brick-wall partitioning” is used in the context of ARINC-653 to empha-
size the strong support for separation and protection mechanisms, see Figure 8. This 
technique thus makes it impossible for system events in one partition of the operating 
system (OS) to interfere with events in another; it can be compared to modern OS 
which provides security through Virtual Machine (VM) brick-wall partitions. It is called 
virtual because it seems as if each partition were its own separate computer. 

 
Figure 8. Brick-wall-partitioning 

 
Further refinement of the architecture framework is Distributed Integrated Modular 

Avionics (DIMA), meaning that several distributed computational units may host appli-
cations in an even more flexible manner. The DIMA technique will not be further dis-
cussed here.  

2.3.2 Data bus standards 
The MIL-STD-1553B, as mentioned above, is a dominating standard in the military 
avionics business. Its key characteristics are: 

• Configuration: bidirectional with centralized bus controller (BC) 
• Bit rate: 1 Mb/s 
• Number of remote terminals (RT): 31 

 
MIL-STD-1773B is an equivalent implementation for fiber optics providing greater 

immunity to high-intensity radiated electromagnetic fields (HIRF). 
 
In the commercial avionics business ARINC-429 has proven to be one of the most 

popular bus standards. It employs a unidirectional standard known as Mark 33 Digital 
Information Transfer System (DITS). ARINC-429 is a two-wire differential bus which 
can connect a single transmitter or source to one or several receivers or sinks. Two 
speeds are available; 12.5 kb/s and 100 kb/s.  

A1 
Loc 

A2 
LGC 

• High degree of modularity 
• A failure stays within one application 
• Enabling different DAL/criticality level 
• Separated functions and documentation 
• Supports parallel development 
• Strong separation of s/w from h/w 
• Enables third parties separated delivery of applications 
 
Example:  Applications Loc (Localization) and LGC (Landing 

Gear Control) are separated through ARINC-653  
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ARINC 664 is based on IEEE 802.3 Ethernet and utilizes COTS (commercial off-
the-shelf) hardware thereby reducing costs and development time. Built upon ARINC 
664 is AFDX (Avionics Full-Duplex Switched Ethernet) which is a deterministic bus 
for safety critical applications. AFDX was developed by Airbus for the A380 and pro-
vides guaranteed bandwidth. It utilizes a star topology network of up to 24 end systems 
tied to a switch, where each switch can be bridged together to other switches on the 
network. By utilizing this kind of structure, AFDX is able to reduce wiring and mini-
mize aircraft weight. 

 
Several other data bus standards are specified for different purposes; many are de-

fined as ARINC standards, but they will not be further documented herein. 

2.3.3 Aircraft systems 
In parallel to the core avionics system, design and development of other aircraft sys-
tems, such as the fuel system, power supply system, or mission computing system, is 
done in close interaction. The avionics system is responsible to provide, for example, 
communication/control means, navigation data, and reliable computational resources to 
the other systems.  
 

According to [Moir 2004], aircraft systems can be categorized into the following 
groups:   

• Airframe/Structure (e.g. fuselage, wings, and aerodynamics) 

• Vehicle systems (e.g. fuel, propulsion, and flight control) 

• Avionic systems (e.g. navigation, controls & displays, and communication) 

• Mission systems (e.g. weapons, data links, and mission computing) 
 

For many engineers, the design and development activity for a specific subsystem 
takes place at a single domain level. The systems map onto the knowledge domains in 
which many engineers are educated or into which they develop their careers. There is an 
increasingly need to consider integration issues, for example, the engineers who design 
the display system will need some knowledge of the entire weapons system, its driving 
requirements, life cycle considerations, and configuration management strategies for the 
product (or even the product family). 
 

For an introduction and brief overview of the characteristics of different types of air-
craft systems, including the design and development aspects, see [Moir 2004]. Every 
aircraft system has its own specific technology concerns, even though the design meth-
odology may be similar. An example of specific design methodologies and considera-
tions related to fuel system development is given in [Gavel 2007]. 
 





 

3 
Model Based 
Development 

MODELS OF SYSTEMS and products tend to be of greater value to developing and 
manufacturing companies as more and more information is kept within models. Models 
may be of many different kinds, from cost estimation to spare part logistics. The main 
focus is this thesis is on system models representing a system (e.g. an aircraft’s fuel or 
navigation system), that is composed of hardware, software and, when applicable, hu-
man interaction, as shown in Figure 9. A complete aircraft model is in turn composed of 
several such system models, but is still a system model, even though at a higher com-
plexity level. At an abstract level these system models define the names and relations 
among parts: these are collectively called system architecture or structure. When details 
of functions, flows and physical equations are added, the model can be used to predict 
performance and dynamic behavior; it becomes a simulation model. 
 

 
Figure 9. A system model represents the system 

 
Other kinds of models are also briefly treated, such as cost models and meta-models 

(special focus in Paper [III]).  
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There are several approaches to model based development depending on application 
domain and complexity of the product, but also depending on historical and organiza-
tional factors. Some of those approaches, with relevance for aircraft and avionics devel-
opment, are covered below. 

3.1 Introduction to the modeling approach 
Models in different forms have always been used in engineering. There are several defi-
nitions of what a model is and the concept of ‘model’ can be defined as: 

A model is a simplified representation of a real or imagined system that brings out 
the essential nature of this system with respect to one or more explicit purpose. 

[Larses 2005] 

Models are used implicitly in the mindset of the engineer, in terms of construction of 
physical models/prototypes, in terms of symbolic models such as mathematics or writ-
ten text, and with the introduction of computers, through the use of CAE tools. Block 
diagrams without well defined semantics are an example of symbolic models. Formal 
symbolic models, which might also be called mathematical or analytical models, have 
proven to be very important tools for clarifying and solving engineering problems.  

There are many definitions of model based systems engineering (MBSE), model 
based development (MBD) and how they relate, but in this thesis these refer to: 

MBSE: The engineering approach which uses a central model to capture require-
ments, architecture and design, for support of the systems engineering activities. 

MBD: Development based on abstract representations with predefined semantics 
and syntax, supported by engineering tools. 
 
Relation: The principle of MBSE is used to perform MBD. 

 
Using the model(s) as the central/single source of information there are three “utili-

zation points” in which the chosen modeling technique(s) must fit in order to gain value 
in a model based approach, as illustrated in Figure 10. With the model M in the center, it 
utilizes the engineering activities; 

• Create understanding. Through a clear structure, common graphical notation or 
mathematical expressions, understanding of the engineering problem/solution 
is improved. 

• Communication within an engineering team is enabled, also based on common 
notation or language, but also on visual representation of the model. 

• Data. With the introduction of new engineering tools, meta-models, databases 
and analysis techniques, more information may be stored and it is nowadays 
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possible to analyze more aspects of a system/product on relatively simple 
computers. 

 
In a harmonized modeling approach, support for all those three points must exist; a 

chain is only as strong as its weakest link.  
 

 
Figure 10. The three utilization points of modeling: understanding, communica-

tion and data 
 

Many of the emerging techniques for model based development focus on a third 
utilization point (data storage), but are weak in the other two. One example is the many 
UML tools with automatic code generating add-ons introduced onto the market recent 
years. In most cases the focus is solely on the tool, its capabilities and features, but a 
defined and scalable method that supports understanding and communication is some-
times missing. 

 
Other terms besides MBD and MBSE with similar meaning are Model Based Design 

(MBD), Model Driven System Design (MDSD) or simply Model Based Engineering 
(MBE), where MBSE is wider because it explicitly spans the whole life-cycle. 

Definition of terms 

Basic definitions of terms used in this thesis (if not otherwise stated) are based on aero-
space standards [ARP 4754, 1996] and [ARINC 653, 2006] and are also a basis for 
aerospace engineering whether it is model based or not. Examples of such terms found 
in these standards and used in this thesis, but not explicitly defined, are; requirement, 
validation, implementation, integration, safety, and specification. Here are some terms 
with explicit definitions:  
 

Create 
Understanding
and Insight

Data storage
Analyze Simulation
Transformation

Communication
Visualization
Decision support
Documentation

??!

M
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Complexity An attribute of systems or items, which makes their operation difficult to 
comprehend. Increased system complexity is often caused by such items 
as sophisticated components and multiple interrelationships. 

Criticality Indication of the hazard level associated with a function, hardware or 
software, considering abnormal behavior alone, or in combination with 
external events. 

Design Assurance The level of rigor of tasks performed to items(s) in the process. The DAL 
   Level (DAL)3 is used to identify the RTCA/DO-254 and DO-178B objectives that need 

to be satisfied for an item. 

Partitioning The mechanism used to separate portions of a system or an item with 
sufficient independence such that a specific development assurance level 
can be substantiated within the partitioned portion. 

Some other terms used in several places in this thesis are defined below. 

Meta-model 
A meta-model is simply a model of models (that are similar to each other), and defines 
what modeling elements (classes), properties (attributes) and connections (relations) 
there exist in a specific modeling framework or technique. An example of a meta-model 
can be found as an attachment to Paper [III]. 
 
Mid-scale simulation 
The activity performed, when some simulation models of aircraft subsystems, devel-
oped with different modeling techniques, are integrated into a larger model, complex 
enough to not be simulatable in a desktop modeling and simulation tool. This kind of 
simulation activity is described in Papers [I] and [II]. 
 
Large-scale simulation 
When several simulation models of the aircraft subsystems are integrated and specific 
arrangements for performance or interoperability exist, the simulation is considered to 
be large-scale. Examples of such arrangements are real-time execution, “pilot in-the-
loop simulation” or “hardware in-the-loop simulation” (HILS) configurations. 

3.2 Systems Engineering 
In this thesis, Systems Engineering (SE) is interpreted as the engineering activities that 
are general regardless of technical discipline. It includes integration of the engineering 
and project management interface, but also integrates work in the different technical 
disciplines, as illustrated in Figure 11.  
 

This understanding of SE in mainly based on INCOSE definitions and the INCOSE 
Systems Engineering Handbook, [INCOSE 2007].  
 

                                                             
3 See also ”Definition of Design assurance Level” at page 27 
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Figure 11. Systems engineering in relation to other engineering/management disciplines. 

 
Activities included in SE are typically; 

• Specification & Requirements Management 
• Product breakdown & architecture 
• Management of engineering budgets; Weight, Power, Cooling… 
• Modeling, Simulation & Optimization techniques 
• Information handling & control 

o Interfaces 
o Changes 
o Configuration 
o Traceability 

• Risk Status & Control 
• Subcontractor Management 
• “-ilities” 

o Safety 
o Availability & Reliability 
o Maintainability 
o Reusability 
o Security 

• Performance of SE activities in interaction with technical domains 
o Education & training 
o Decision logging & communication 
o Design Reviews 

• Planning; Writing the Systems Engineering Management Plan 
 

The planning of engineering methods/activities is most important in a project’s start-
up phase, but has to be ongoing throughout the project as it includes activities in a 
product life-cycle perspective, which are not all possible to set at an early point. Here a 
just-in-time approach is preferable; decisions, descriptions, and education in each re-
spective activity/practice are done just ahead of when it is required in the project. More 
about planning and experiences of implementation of MBSE into a real project is found 
in Paper [V]. 
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3.3 Development process models and standards 
For industrial activities a range of defined models/processes exist for developing com-
plex products. Models used in aerospace are adapted from those and instantiated with 
specific needs. As the aerospace area is a wide one, further other useful standards, for 
example avionics, are adopted from the electronics or communication areas. Inter-
change of knowledge and standards between automotive and aerospace in the area of 
development methods for embedded systems is also ongoing. This section introduces 
some definitions to support development of complex products, especially relevant for 
embedded/avionics systems. 

3.3.1 Product and System lifecycle 
A widely used systems/software development model is the two dimensional model with 
system lifecycle phases versus process activities with visualization according to RUP4. 
Here the process activities are adapted from EIC/ISO 15288, see Figure 12. 
 

Life cycle stage

Process step Co
nc

ep
tio

n

De
fin

iti
on

De
si

gn

Bu
ild

Di
st

rib
ut

io
n

Op
er

at
io

n

Di
sp

os
al

Stakeholder Definition 4 5,18 3,62 2 1,17 0,67 0.1

Requirements Analysis 2,85 4,82 4,8 4 2,38 1,32 0.2

Architectural Design 3,44 4 4,43 3,26 2 0,93 0.1

System Safety 2 3 4 3 1 1 1

Equipment Development 4,4 4,53 4,63 4,8 1,45 0,26 0
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Figure 12. Process activities during product lifecycle 
 

Due to the multi-customer scenario and product strategy as described in section 2.2, 
the traditional product lifecycle model is enhanced with a system lifecycle definition 
including the “system-phases” of a whole product family seen from a development 
point of view. This definition may serve as a template when designing or changing the 

                                                             
4 Rational Unified Process by IBM  
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engineering environment (selection of methods and tools). Each system-phase requires 
different capabilities and performance of the engineering environment. 

 
Table 1. Definition of system-phases for a product family 
 
System 
phase 

Conception Core        
development  

New         
variants 

Enhancements Maintenance 

Main 
work 

User needs 
elicitation, Ex-
plore design 
alternatives, 
Trade off study 
Optimization 

Definition, 
specification, 
design, imple-
mentation and 
initial production 

Variants specifi-
cation, design 
and implementa-
tion. 

Production 
adaption 

Rework of sys-
tem, integration 
of new func-
tions/features 
Obsolescence 
management 

Maintenance and 
support of sys-
tem. Corrections.    
User feedback 
handling 

Main 
objective 

Defined optimal 
layout 

First product 
release 

Defined product 
family 

Keep product 
competitive 

Keep customers 
satisfied 

 
The system lifecycle phases in Table 1 are used in this work to analyze the long-

term effects of different choices of development method and its supporting engineering 
environment. 

3.3.2 Concept generation and selection 
Models play a central role in the concept phase of a project, simply because they in-
volve the study of technologies and components that may still not exist, so experiments 
on a physical product are impossible.  
 

Looking more deeply into the conceptual work, the aim is to determine the technical 
principle. According to [Ulrich 2000], the conceptual phase itself may be divided into 
two different activities: concept generation and concept selection. In the early stages of 
the conceptual phase, concept proposals are easily dismissed without deeper analysis. 
After selection of a smaller set of promising concepts, a new iteration for concept gen-
eration is performed, both by combining other concepts and by “inventing” new ones 
based on ideas and experience gained from earlier iterations, see Figure 13. As the 
number of concepts decreases, the need for deeper analysis with more sophisticated 
(and expensive) methods will increase.  
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Figure 13. Concept generation and selection model 
 

The value of more advanced modeling this early in the design process is question-
able, though, due to the large degree of uncertainty. A combination of simple spread-
sheet tools and uncomplicated modeling is normally sufficient early in the conceptual 
phase when concepts are still relatively numerous. Before the final selection is made, 
the information package as a base for the selection/decision needs to be complemented 
with more refined analysis such as dynamic modeling, performance calculations, safety 
analysis, or in-depth cost assessment.  

 
When large sets of data are to be handled during concept creation and selection, 

structuring of information in a Function/Means tree is convenient. This is described in 
section 4.4.2 on page 59 and more details can be found in Paper [III].   

3.3.3 Development and modeling standards 
In this section, guiding standards with major influence on avionics development are 
briefly described. Requirements stated in these standards are intended to be applied by 
policies and procedures that define the requirements for project implementation (or in-
stantiation) of the documented enterprise processes. 

ISO 15288 
ISO 15288 is a process framework covering Systems Engineering standard processes 
and life cycle stages and defines the processes, divided into four categories:  

• technical processes 
• project processes 
• agreement processes 
• enterprise processes 

 

-  (deleting) Concept reduction by selection 
+ (adding)   Concept generation by e.g. combination 
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Each description contains purpose, activities and outcomes. Life cycle stages de-
scribed are concept, development, production, utilization, support, and retirement. 

 
ISO 15288 is related to other systems engineering descriptions including the 

INCOSE handbook, ISO 12207, and CMMI. 

SS EN-9100 

EN-9100 is based on ISO 9100:2000 and instantiated for the aerospace industry. The 
standard considers for example organizational issues of the developing company/project 
and requires processes in the areas of:  

• planning and control of the product development activities 
• responsibility and authority for design and development 
• identification of mandatory steps and methods of configuration control 
• review of input data to ensure consistency with requirements 
• appropriate review, verification, and validation at each development stage 
• structuring the design effort into significant elements 
• interface management between different groups  
• “design tasks to be carried out shall be defined according to specified safety or 

functional objectives of the product in accordance with customer and/or regu-
latory authority requirements” 

 
The last (process) requirement in the list says, as in several standards, that there must 

be explicitly stated (product) requirements as a basis for:  
1) Formulating technical goals in order to execute the project 
2) Verifying the product against for airworthiness/certification purpose 

 
Separation of these two kinds of product requirements is  important, in the light of 

experience at Saab Aerosystems, because they have different purposes, but there is no 
good support for how to actually handle the separation in standards. 

ANSI/EIA-632 

The [ANSI/EIA-632 1999] standard “Processes for Engineering a System” from Ameri-
can National Standards Institute defines an approach to engineering (or re-engineering) 
a system, incorporating industry best practices. The approach has three parts: 

a) A system is one or more end products and sets of related enabling products that allow 
end products, over their life cycle of use, to meet stakeholder needs and expectations; 

b) Products are an integrated composite of hierarchical elements, integrated to meet the 
defined stakeholder requirements; 

c) The engineering of a system and its related products is accomplished by applying a 
set of processes to each element of the system hierarchy by a multidisciplinary team 
of people having the needed knowledge and skills. 
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A system consists generally of a product breakdown and specification structure as 
described in Figure 14. 
 

 
 

Figure 14. ANSI/EIA-632 definition of Enabling and End products 
 

Each product is broken down into sub-systems in a hierarchical manner, producing 
the system-of-systems view shown in Figure 15. This explicitly means that each system 
at every level has its own set of enabling products, which in the model based case in-
clude the actual models of the end product(s). 
 

 
Figure 15. Building blocks in layers according to EIA-632 
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The EIA-632 standard clearly distinguishes between “acquirer requirements” and 
“other stakeholder requirements”. Sources of other stakeholder requirements include, 
for example, government and industry regulations, international conventions, environ-
mental constraints and company directives. In general, other stakeholder requirements 
place constraints on the system development, both on the resulting product and the 
processes for developing it. It is usually impossible to meet all requirements for a par-
ticular system since they are conflicting relative to one another, so early and thorough 
requirements analysis is crucial, preferably by means of modeling (and simulation when 
appropriate).  

RTCA 

Guiding standards and recommendations from Radio Technical Commission for Aero-
nautics ([RTCA 2009], which is a private non-profit organization for standardization) 
have strong influence on development of avionics in civil aviation. With increasing in-
fluence also in the military sector are the RTCA/DO-xx series, where worth to be men-
tioned are; 
 

DO-178B, “Software Considerations in Airborne Systems and Equipment Certifica-
tion” is widely referenced and regarded as “the bible” within the air-borne software 
community. It helps developers, in a structured way, to be confident and show that the 
software aspects comply with airworthiness requirements [RTCA, 1992]. The definition 
of a new version, DO-178C, is ongoing and aims to take emerging software develop-
ment techniques and trends, such as model based methods, object oriented methods and 
formal methods into consideration. 

 
DO-254, “Design Assurance Guidance for Airborne Electronic Hardware” is provid-

ing help to aircraft developers and suppliers of aircraft electronics to assure and show 
that equipment safely performs its intended functions. [RTCA, 2000] 

 
DO-297, “Integrated Modular Avionics (IMA) Development Guidance and Certifi-

cation Considerations” is focused on IMA-specific aspects of safety and design assur-
ance. [RTCA, 2005] 

Aerospace Recommended Practice (ARP) 

Aerospace Recommended Practice, APR 4754, “Certification Considerations for 
Highly-Integrated Or Complex Aircraft Systems” [ARP 4754 1996] addresses devel-
opment of aircraft and systems that implement aircraft functions. It is partly aligned 
with software aspects in DO-178B, and hardware aspects in DO-254. It does not include 
specific details of software or electronic hardware development.   

Definition of Design Assurance Level 

Design Assurance Level (DAL) or criticality level is one of the fundamental definitions 
for development of software for modern aircraft. The definition is used in RTCA as 
well as in ARP as a foundation for several development and certification activities. It 
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gives implications on the choice of workflow, tools and modeling techniques. Criticality 
is defined in five levels according to the likely consequences of a system failure, as 
shown in Table 2.  
 
 Table 2. Definition of Assurance Levels 
 
Level  System failure Failure description  Probability 

description  
Likelihood of failure 
(per flight hour)  

A  Catastrophic 
failure  

Aircraft loss and/or fatalities  Extremely 
improbable 

Less than 10-9  

B  Hazardous/ 
severe major 
failure  

Flight crew can not perform 
their tasks; serious or fatal inju-
ries to some occupants  

Extremely 
remote  

Between 10-7   
and 10-9 

C  Major failure  Workload impairs flight crew 
efficiency; occupant discomfort 
including injuries  

Remote  Between 10-5  
and 10-7 

D  Minor failure  Workload within flight crew 
capabilities; some inconven-
ience to occupants  

Probable  Greater than 10-5  

E  No effect  No effect  Not          
applicable  

 

 
Examples of functions with different DAL: 

Critical: - Display of speed information  

 - Sensing and calculation of remaining fuel quantity 

Non-critical:  - Recording of operational data for tactical evaluation (military) 

 - Cabin entertainment functions (civil aviation) 

 
To comply with the objectives according to a higher level is of course more costly 

than to a lower one. How big the differences in increased development costs actually 
are is a debatable issue and depends on methodology, tools, and skills. Figures in the 
range of 75% to 200% are used for a level A/B system compared to a level D/E system. 
[Hilderman 2007] states that if ARP and RTCA are implemented efficiently, the initial 
increased avionics development cost is much less and will probably be cost-effective 
over the long-term because of improved reusability, fewer bug fixes, less down-time, 
and increased user/market acceptance. Reuse of software components is the major bene-
fit/saving in aviation development according to [Matharu 2006]. 

Model Driven Architecture 

The Model Driven Architecture (MDA) approach, as described in [Mellor 2002], is a 
way to support separation of functional specification from implementation. MDA is 
used in the development of software intensive systems where automatic code generation 
is part of the process. Its underlying concept is to separate ‘do the right thing’ from ‘do 
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the thing right’ by introducing platform-independent models (PIMs) and platform-
specific models (PSMs). Translation from PIM to PSM is defined by rules in a platform 
definition model (PDM) and this translation is generally performed by automated tools. 
Translation (or generation) from models to different source code languages, such as 
ADA, C++ or Java is used, but also translation to hardware (firmware) specification 
languages, e.g. VHDL is emerging in the field of hardware/software co-design [Rieder 
2006]. 
 

A specific UML subset or profile5, Executable UML, “xUML”6, is proposed for 
standardization to [OMG 2005] to support the MDA approach. Executable UML is the 
evolution of the Shlaer-Mellor method to UML. As reference to the Shlaer-Mellor 
method, see [Shlaer 1988] and [Starr 1996]. 

3.3.4 V-model 
Several different types of models can be used to describe the process of product devel-
opment. The V-model is a popular way to illustrate development of a whole system, see 
Figure 16. 

 
Figure 16. A simple illustration of the V-model 

 
On the left side, definition, specification and modeling activities are performed, mainly 
without any real parts of the product available. On the right side integration and test activi-
ties, with real parts/articles are included. The V-model tends to be rather top-down oriented, 
depending on the interpretation. 

3.3.5 Iterative and incremental methods 
Developing and delivering a larger system in increments is a way of reducing risk. In-
cremental methods for model driven software development have a history dating back 

                                                             
5 A UML profile is a standardized set of extensions and constraints that through a generic exten-
sion mechanism tailor UML for a particular use. 
6 Two abbreviations exist; xUML and also xtUML as in ‘executable & translatable’ 
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to the early 1990s. The core of the software models used for generating code was object 
models documented with class diagrams, use-cases and finite state machines.  

 
Since then a number of software development methods have appeared, ranging from 

the waterfall method to highly incremental ones like the extreme programming (XP) 
method [Beck 2000]. A common feature of modern incremental methods is that they 
foster some general values for a successful “culture”, further enforced by tool and li-
brary supported best practices. 

Extreme Programming (XP) 

Extreme programming was formulated by Kent Beck, as a consistent set of values that 
serve both human and commercial needs; communication, simplicity, feedback and 
courage. These values are expressed as practices.  

 
1. The Planning Game – Quickly determine the scope of the next release by combin-

ing business priorities and technical estimates. As reality overtakes the plan, update 
the plan. 

2. Small releases – Put a simple system into production quickly, and then release new 
versions on a very short cycle. 

3. Methaphor – Guide all development with a simple shared story how the whole sys-
tem works. 

4. Simple design – The system should be designed as simply as possible at any given 
moment. Extra complexity is removed as soon as it is discovered. 

5. Testing – Programmers continually write unit tests, which must run flawlessly for 
development to continue. Customers write tests demonstrating that features are fin-
ished. 

6. Refactoring - Programmers restructure the system without changing its behavior to 
remove duplication, improve communication, simplify, or add flexibility. 

7. Pair Programming – All production code is written with two programmers at one 
machine. 

8. Collective ownership – Anyone can change any code anywhere in the system at any 
time. 

9. Continuous integration – Integrate and build the systems many times a day, every 
time a task is completed. 

10. Work no more than 40 hours a week as a rule. Never work overtime two weeks in a 
row. 

11. On-site customer – Include real, live users, available full-time to answer questions. 

12. Coding standards – Programmers write all code in accordance with rules emphasiz-
ing communication through the code. 
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Telelogic Harmony 

Harmony [Douglass 2007] is a UML/SysML oriented incremental development method 
or process, which can be customized for system types like embedded software devel-
opment. It has 15 best practices, similar to those of XP, but is targeted towards larger 
projects with well documented team member roles, competences and task descriptions 
for roles. Examples of best practices are: 12 – Use Frameworks, 13 – Apply Patterns 
Intelligently, and 15 Manage Interfaces. Figure 17 shows an overview of the Harmony 
method. 

 
 

Figure 17. Simplified overview of the Harmony development method 
 
The systems engineering component of Harmony (Harmony-SE) uses a “service re-

quest-driven” modeling approach with the Systems Modeling Language (SysML) nota-
tion. System structure is described by means of SysML structure diagrams using blocks 
as structure elements. Communication between blocks is based on messages (service 
requests). Provided services are in the receiving part of service requests and state/mode 
change or operations (activities) are described as operational contracts.  

 
Harmony-SE has the following stated key objectives: 

• Identify / derive required system functionality. 
• Identify associated system states and modes. 
• Allocate system functionality / modes to a physical architecture. 

 
Functional decomposition is handled through decomposition of activity operational 

contracts. 
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3.4 Classification of Models and Modeling Domains 
Ever since modeling became a practice for specification or problem solving in science 
and engineering, the number of available techniques and tools has increased more and 
more rapidly. This is partly caused by the evolution of work stations/computers, but 
also thanks to the demonstrated value of modeling in the area of complex problem. 
Naturally, every modeling technique fits best for one small set of “problems”, even 
though it may be used for a broader set. In large development projects it comes to a 
choice or trade-off between on one hand the usage of many specialized, powerful tools, 
and on the other hand the use of a few multipurpose, but usually “dull” tools and tech-
niques. Many attempts have been made to classify modeling techniques, and the classi-
fication made herein is mainly based on the problem areas and available (substitutable) 
tools.  

3.4.1 Value of models 
When choosing a model technique, it should demonstrably add sufficient value to the 
project and it is important to recognize what characteristics a technique has. This list, 
adopted from [NASA 1995], includes:  

• Credibility in the eye of the decision maker  
• Responsiveness  
• Transparency  
• User friendliness  

 
These characteristics are crucial to the acceptance of a modeling technique for use 

by a team. Relevance is determined by how well a technique addresses the substantive 
cost-effectiveness issues in a trade-off study.  

 
A history of successful predictions gives credibility to a model, but full validation 

(proof that the prediction a model gives represents reality), is very difficult to achieve 
since observational data is not always available or is of lower quality.  

 
The responsiveness of a model is a measure of its ability to distinguish among the 

different alternatives being considered in e.g. a trade-off-study. A responsive avionics 
architecture cost model, for example, should be able to distinguish the costs associated 
with different system architectures or designs, operations concepts, or logistics strate-
gies.  

 
Another important characteristic is transparency, which means that the model’s 

mathematical relationships, algorithms, parameters, supporting data, and inner workings 
(i.e. its meta-model) are open to the user. The value of this visibility is in the traceabil-
ity of the models results. The results may not be accepted by everyone, but one knows 
anyway how they were derived. Transparency also helps models gain acceptance. It is 
easier for a model to be accepted when its documentation is complete and open for 
comment, which is facilitated by open languages, such as the [Modelica] language.  
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Proprietary models, on the other hand, are often difficult to gain acceptance for be-
cause of the lack of transparency. Examples of models that are documented, but that do 
not have source-code open to the users, are often seen in the case of component libraries 
for simulation tools from vendors with a proprietary policy, such as the [SimElectron-
ics] toolbox from The MathWorks. 

 
User friendliness towards end-users is about how the engineer can learn to use the 

modeling technique, prepare the inputs and interpret the outputs/results. User friendli-
ness towards super-users is related to the effort needed to update, validate, administer 
and support a model, but also to aid end-users to interpret advanced analysis of the out-
puts/results. One may also note that friendliness for the administrator (support organiza-
tion) play a role in the work of installation, upgrading, bug reporting and contact with 
vendors. 

3.4.2 Specification and Analysis models 
One classification is to divide models into “specification” and “analysis” models. An 
example from solid modeling and hardware/structure development is the following: 

• A specification model is the definition of surfaces (shape) and the content (ma-
terials) of a component. It is typically done in a 3D CAD (Computer-aided de-
sign) tool, in a visual prototyping manner. 

• A connected analysis model is used for stress analysis on the same component, 
based on the specification, but with information on boundary conditions (spec-
trum of forces) added. 

 

 
Figure 18. The specifying model is the basis for definition and for analyses of a system. 

 
An analysis is performed with a subset of information from the specification model, 

but with additional information for the specific analysis to be performed, as shown in 
Figure 18. The same specification system model can consequently be the basis for per-
forming analyses of several aspects of the system. Examples of analysis from avionics 
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design are fault tree analysis (TFA), formal methods analysis, and analysis by simula-
tion. 

3.4.3 Modeling domains 
To divide and sort modeling tools and related techniques/methods into modeling do-
mains was a means to analyze strengths and weaknesses of different modeling meth-
ods/tools and to organize the work in the MBSE change program at Saab Aerosystems 
(2006 – 2009). One purpose was to verify that the efforts were broad enough and that 
all domains were covered by appropriate investigations/studies and investments to 
evolve the organization further. Objectives were to achieve higher efficiency, quality, 
and an attractive engineering environment. The change program covered more than 
support only for avionics design and aircraft simulation, but the main contributions to 
this area are related to these modeling domains, so all the defined modeling domains are 
described here.  

Overview 

The modeling domains are defined as shown in Figure 19. These modeling domains are 
discussed in this section, but the main focus is on “Usage, Needs and Requirements” 
and “Architecture and interfaces”. The other domains are briefly defined here, but they 
are related to more specific modeling techniques, which are covered in chapters 4 and 5. 

 
 

 
Figure 19. Definition of Modeling Domains 
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The lower part is related to physical objects and their properties, such as; space, 
time, energy and matter, whereas the upper part relates to information (and information 
about information). 

Usage, Needs and Requirements 

Design of a product with embedded electronics/software (e.g. avionics) is typically 
governed by requirements as regards its capabilities. The domain of usage, needs and 
requirements contains modeling means for specifying the context of the product at such 
a level of detail that a competitive product for that context can be engineered. 
 

Functional requirements related to usage are preferably modeled by descriptive use-
cases in UML or SysML. Discrete-event simulations on an abstract level are also valu-
able to show interaction with users, connected systems or the environment. Non-
functional requirements are elicited with specialized processes and associated informa-
tion is handled by a combination of means, such as databases, spreadsheets and plain 
documents. Examples of non-functional, technical aspects are;  

• System safety 
• Performance 
• Reliability 
• Availability 
 

Examples of more non-technical aspects are;  
• Cost 
• Security 
• Obsolescence handling 
• Flexibility & Growth Potential 
• Affordability & Risk 

 
For an example of sources for technical requirements in Flight Control Design, see 

Figure 1 in Paper [1]. 
 

Cost modeling may be performed by several methods, where COCOMO and 
COSYSMO [Valerdi 2008] is widely used. Cost models based on the product break-
down is easy to set up and align with other development activities, but has to be kept on 
an aggregation level, in order not to grow too large. Another cost prediction method is 
the Lichtenberg Method [Lichtenberg 2000] involving an analysis group in a creative, 
multi-disciplinary process where qualitative and quantitative data are captured and 
modeled. 

 
In addition, handling of assumptions (as complement to requirements) is a growing 

field of interest, supported by, for example, ARP 4754, and the emerging SPEEDS 
technique. See the SPEEDS section on page 55 for more details. 
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Architecture modeling 

The architecture model of a system defines the system boundary, its internal parts 
(components or subsystems), the behavioral responsibility of each component, and in-
terfaces (internal and external). To complete the picture, a top level model describes 
actors acting on the system but also the physical environment of the system to operate 
in. A simple example of a top-level architecture model in UML/SysML notation is 
shown in Figure 20. Different views are required to describe and analyze possible archi-
tectures, or to “explore the design space”. In addition, good tool support is needed to 
enable modeling, analysis, design and document generation. 
 

 
Figure 20. Example of a top-level architecture model in UML/SysML notation 

 
The decomposition provides a modular framework allowing any refined version of a 

module to be plugged in without considering (or redo) the rest of the model. 
 
For parts of a product (sub-systems) performing safety critical functions, visualiza-

tion of the data-flow is crucial in order to be able to really understand the causality (de-
pendencies) and perform design reviews in larger teams. Several books and research 
results in the area of architectural modeling for embedded systems exist, among which 
can be mentioned [Lavi 2004], [Muller 2004], [Larses 2005], and [Weilkiens 2008]. 

Control 
The core of the control modeling domain is the closed loop view of the system. It also 
provides modeling methods to specify operation schemes of the product, its subsystems 
and components. The control model specifications range from high-level mission sce-
narios, through intermediate abstract control-theory models, down to executable code in 
the real-time operating computer hardware or control mechanisms implemented in me-
chanical, electrical, hydraulic and/or other hardware. Models’ characteristics are causal, 
signal-flow oriented, and the dynamics is based on differential or difference equations, 
which enables transformations (e.g. Laplace or Z-transforms) between the time and fre-
quency domains.  
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Information 

The information domain contains modeling facilities for specifying the terminology, 
explicit meaning, naming and representational format of information for storage and 
communication between different co-operating actors in the avionics systems. An actor 
can be anything ranging from a human operator to software and hardware. Information 
modeling has a specific relevance in development through modeling, with the fact that 
everything managed within the kind of models treated here, is information. Specifying 
the semantic rules for a model is also a model; its meta-model. 

Man Machine Interface & Virtual surrounding 

The domain of Man-Machine Interface (MMI) and virtual surrounding contains model-
ing of display surfaces, real-time interaction and recorded history of behavior. It focuses 
on the interaction between human and machine, i.e. possibilities for the user (pilot) to 
get situation awareness in information-loaded scenarios, facilities for communicating 
the mission planning, and operating situation. 

Structure 

Basic information in the structure domain is spatial and material related. Usage of CAD 
models enables the designer to verify at an early stage that equipment can be  install and 
connected to electrical contacts and cooling connections. The structure domain contains 
modeling facilities for specifying, dimensioning, calculating and analyzing the proper-
ties of primarily load-carrying hardware components in the avionics product.  

Physical systems 

The domain of physical systems contains modeling facilities for specifying, simulating 
and virtually interacting with the mechanical hardware and fluid/energy flows. In early 
phases, concept evaluation with relatively simple models is performed. In later stages, 
verification of the system through the model is the goal, even though final verification 
generally requires the end product configuration. Differential equations and especially 
differential-algebraic equations (DAEs), see definition in section 4.2.4, are powerful for 
modeling in this domain. 

Electronics, Optronics 

The domain of electronics and optronics contains modeling facilities for specifying, 
simulating, and virtually interacting with the electronics circuitry and optronic compo-
nents of the avionics product and its environment. Analyzes during design, such as 
Fault Tree Analysis (FTA), and model based diagnostics/troubleshooting during main-
tenance are fundamental techniques within this domain.  
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Model integration and system simulation 

Models are integrated for the purpose of verifying some aspects of the integrated sys-
tem. One example is 3D digital mock-ups for installation and collision analysis used in 
the CAx based process. For software/system verification, mid- to large-scale simulation 
as reported in sections 5.3.3 and 6.2.2 fall in this domain. 

Tool support 

For every modeling domain there are a set of tools for modeling (defining or specifying 
the system), but also for analyzing some aspect of the modeled information. Table 5 in 
section 5.2.8 “Tools summary” on page 75 shows examples of tools used for modeling 
and analysis in the different modeling domains. 



 

4 
Modeling and 

analysis techniques 

IN THIS CHAPTER various modeling techniques specifically applicable for the aero-
space and avionics industries are presented and classified. Different properties of mod-
els, such as static/dynamic or discrete/continuous are defined. Analysis of the system 
through the model is penetrated, and in particular the widely used simulation technique, 
where the introduction of errors through fault injection during a simulation is described. 

4.1 Introduction and classification of techniques 
A modeling technique is based on some way to describe the phenomenon/system under 
consideration. The definitions, general names and properties of modeling elements and 
their relationships are denoted as the meta-model. Many attempts have been made to 
classify modeling techniques and tools in a classification tree. Those trees are dependent 
on the context for which the classification is to be used, so no general classification is 
meaningful here. An example of a classification tree from [Cassandras 1999] is shown 
below in the section on behavior modeling techniques. 
 

One main classification is to separate structure models from behavior models. These 
two ways of viewing a system, structure and behavior, are the essential views of any 
system description. Behavior is what it does and structure is how it is built. The two 
views, with a mapping of behavior onto structure, form the system description. If the 
desired behavior is defined separately from a structure, then alternative structures can be 
readily identified and the desired behavior can be mapped onto each of them [Oliver 
1997]. 
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4.1.1 Architecture modeling techniques 
Architectural modeling is also defined as “systems architecting” or “modeling of the 
system structure”. The architecting activity strives for consistency and balance from 
requirement to actual product. The number of people working in product creation may 
vary from a few to several hundred, and the level of concurrency is high. Engineers 
working on the development of a new product have knowledge of only a (small) subset 
of the information. Inconsistencies and local optimal (sub-optimal) solutions occur fre-
quently. Architecting is one way to manage this natural degradation of the system qual-
ity. Pro-active, through clear and unambiguous requirements and system decomposition, 
and reactive, by following up the feedback from detailed design, implementation, and 
test. 
 

During the creation of a product many design decisions are taken and quite often 
these decisions are made within the scope of a particular moment in time, which means 
that subsequent decisions may be contradictory. A simple but powerful aid for consis-
tent architecture information is the data dictionary: a centralized repository of informa-
tion about components, names, meanings, relationships to other components, history, 
and decisions made. Even if a data dictionary sounds simple, its implementation can be 
challenging in an environment of both new and legacy components, reuse of both civil 
and military parts, and with different computer networks for security reasons. Modeling 
and architecting of the data dictionary itself are therefore recommended. 
 

The architecture model of a system contains at least boundaries, internal parts and 
interfaces (internal and external). Different views or level of transparency for a part or 
model may be defined as follows; 

• Black-box:  Name and interfaces are visible, but no information about inter-
nals. This view is used e.g. for specification and verification 
when a part only has to be treated from an “outside” point-of-
view. Is preferably modeled with the SysML “Block Definition 
Diagram” (bdd).  

• Gray-box:  Black-box view plus internal part structure, the parts’ connec-
tivity, and the states and parameters of the model (including 
parts). Is convenient to use to gain knowledge of the internal 
structure, but not every detail. May be modeled with SysML “In-
ternal Block Diagram” (ibd). It can also be used for “semi-
physical” models where equations based on natural laws and pa-
rametric black-box models are mixed.  

• White-box:  Gray-box view plus all system variables, behaviors etc. For a sys-
tem specification or a system model, all information about the in-
ternals is visible. For safety critical software components, white-
box specification and testing are required in order to verify that 
e.g. design rules are met. 
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• Extended: All information that exists, for example functionality for initia-
tion, execution, state update and simulation enhancement. With 
this extended view, information related to the model or modeling 
technique itself is also visible. 

Information elements for architecture or structure modeling are described below in 
section 4.2.1 “Modeling with objects and classes”. 

4.1.2 Behavioral modeling techniques 
In order to create a description of behavior, a number of modeling elements are re-
quired. The necessary set of semantic elements, as defined in [Oliver 1997], includes: 

• functions, which accept inputs and transform them to outputs 

• inputs and outputs, of various types, and 

• control operators, which define the ordering of functions 

One example of classification of behavioral models from [Cassandras 1999] that 
holds for Discrete Event Systems (DES) modeling techniques is shown in Figure 21. 
The lower part with bold text in the figure is included in the DES definition. Those are 
defined as event-driven, discrete-state, non-linear, time-invariant, dynamic models. 

 

 
 

Figure 21. Model classification adapted from [Cassandras 1999] 
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Here follows a list of the essential properties of models.  
 
Static or dynamic 
When relations between the variables of a model are instantaneous, it is static. An ideal 
resistor is an example, because the electric current is directly proportional to the voltage 
(Ohm’s law). There is no effect from earlier levels of the variables; no history depend-
ency. In the dynamic model, the behavior depends on its history. A dynamic model is 
built out of differential and/or difference equations.  
 
Time-invariant or time-varying 
This classification relates to whether the rules of interaction for a model depend on 
time. A model is time invariant if the rules of interaction are independent of time. Oth-
erwise, the model is time-varying. 
 
Linear or nonlinear 
A model is linear if there are only linear dependencies between input signals, states and 
output signals. A nonlinear model may be linearized in some point of operation, but 
then it is valid only in the neighborhood of that point. Linear models are in general eas-
ier to analyze. 
 
Discrete-state or continuous-state 
This relates to the range sets for model descriptive variables. In a discrete-state model, 
variables assume a discrete set of values. A discrete-event model is a continuous-
time/discrete-state model. In a continuous-state model, variable ranges can be repre-
sented by the real numbers (or intervals thereof). A differential equation model is a con-
tinuous-time/continuous-state model. 
 
Time-driven or event-driven 
In a time-driven model, the time is a central modeling element, whereas in event-driven 
models, time might not even be defined. This makes integration of those two kinds of 
models challenging. 
 
Deterministic or stochastic 
This classification is based on the cause-effect relationships in the model. A model is 
deterministic if it only includes exact relations between variables; no random variables 
appear. A stochastic (probabilistic) model is described by stochastic variables or sto-
chastic processes and contains at least one random variable.  
 
Discrete-time or continuous-time 
Models may be classified according to their time base. In a continuous-time model, time 
is specified to flow continuously - the model clock advances smoothly through the real 
numbers toward ever-increasing values. In a discrete-time model, time flows in jumps. 
The model clock advances periodically, jumping from one integer to the next (the inte-
gers represent multiples of some specified time unit). 
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Causal or non causal 
Causality is the property of cause-effect. For information flow or models of sensors or a 
CPU, the system’s inputs and outputs decide the causality. For physical systems with 
energy and mass flows the causality is a question of modeling techniques/tools. In non 
causal (or a-causal) models, the causality has not to by explicitly stated. There are simu-
lation tools (for example [Dymola]) sorting the equations from a non causal model to 
simulation code. When creating a causal model, the modeler has to choose what is con-
sidered as a component’s input and output, and the bond graph modeling technique is a 
method that aids in transformation from a non causal to a causal model. Bond graph is 
an energy-based graphical technique for building mathematical models of dynamic sys-
tems, see [Cellier 1995]. 
 
Synchronous or asynchronous   
This refers to communication between sub-systems in a compound system, but can also 
define the properties of a larger model. Synchronous communication occurs at regular 
intervals. Asynchronous communication is used to describe communications in which 
data is transferred intermittently rather than in a steady stream. In simulation systems 
with a central solver, the models execute synchronously. With decentralized solvers 
asynchronous behavior is more relevant.  
 
Open or closed 
Another category relates the model to its environment. If the environment has no effect 
on the model (no input), the model is closed (or autonomous). An open or non-
autonomous model has input variables whose values are not controlled by the model, 
but to which it must respond. 

4.2 Basic modeling concepts 
For every modeling tool or technique there is a modeling concept (or several, com-
bined). The concepts are related to different underlying concept models, which may be 
founded in mathematics, object orientation or a cause-effect kind of approach. The basic 
concepts described below are just examples but are relevant for the application area of 
aircraft and avionics. 

4.2.1 Modeling with objects and classes   
The object oriented (OO) modeling approach has attracted considerable interest lasting 
recent decades. In analysis (OOA), design (OOD), and documentation of large systems, 
the approach is an attractive one as it supports, for example, encapsulation and modular-
ity. The introduction of programming/modeling languages such as ADA 95, C++, Java, 
and UML supports the object-oriented programming (OOP) paradigm. [SysML], [Mel-
lor 2002] and [Johansson 1996] are used as references for descriptions of the concepts. 
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Application of object oriented methods 

In aircraft and avionics development, OO techniques may be used for several purposes. 
In this section the descriptions’ main focus is on two fairly different application areas:  

(i) Aircraft subsystem/software functional development, with dependence to 
real-time behavior and systems safety aspects. 

(ii) Development of tools for Engineering Data Management (EDM) which is 
partly founded in information theory. 

In both cases the identification and classification of objects are central, but they dif-
fer, for example, in the respect that (i) includes analysis of physical objects, while (ii) 
concerns mainly information objects. Both application areas rely on the basic concepts 
of OO where only the major concepts are presented here. 

Class/Object 

The concept of classes and objects is fundamental in humans’ way of thinking. Philoso-
phers like Plato worked a great deal with this concept. Quine is another philosopher 
who spent time on the class/object concept and the separation of physical and logical (or 
information) objects that is made here is partly based on [Quine, 1981]. The conceptual 
definitions of objects are: 

• physical object (a thing); it is unique and exists in a unique place in the four-
dimensional time-space 

• logical object; an object is an instance of a class (and needs a unique identifier)   

Now, definition of a class can be thought of somewhat differently within the two 
application domains. But the general class definition is “a collection of objects sharing 
common attributes”. In SysML the, “block” is used as the same concept as class in other 
languages, but it has the name block to emphasize the different intended usage. Quota-
tions in table 3 below show the definition of class/block from the references. 

Table 3. Quoted definition of the class concept 

Reference: Definition of Class/Block 
[Johansson 1996] “A class specifies a classification of object types within the domain 

that are important enough to have their own name, definition and pos-
sibly to be accessed as one unit” 

[Mellor 2002] “A class is an abstraction from a set of conceptual entities in a domain 
so that all the conceptual entities in the set have the same characteris-
tics, and they all are subject to and behave according to the same rules 
and policies.” 

[SysML] 
V 1.1 

“Blocks are modular units of system description. Each block defines a 
collection of features to describe a system or other element of interest. 
These may include both structural and behavioral features, such as 
properties and operations, to represent the state of the system and be-
havior that the system may exhibit.” 
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A comment on these definitions is that they differ slightly, and in the cases of Jo-
hansson and SysML it is significant that they are designed for their intended context or 
application area, Johansson for (ii) and SysML for (i). 
 

Several names for class in the class concept exist with slightly different semantic 
meanings depending on the context; 

• Category 
• Kind of 
• Type of 
• Sort of 
• Object group 
• Set of 

Even though several definitions of the class concept exists, the modeling activity is 
not dependent on these conceptual differences as long as there is a defined work-method 
for the specific modeling tool. The problems usually arise in the area of tool interopera-
bility when transferring data and/or connecting tools. 

Attribute 

An attribute defines the object’s characteristics or properties. It refers to the unique 
qualities of a specific object or to a class. What range and format an attribute value may 
have is restricted by its type specification. Examples of attributes of the Aircraft class 
are; Take_off_weight, Color, Maximum_speed, and so on. Typically, the value of 
an object’s attributes can change over time. For scale-up and long term consistency in 
the MBSE context, clear definition/specification of the attributes is necessary, including 
unambiguous description, units of continuous attributes and discrete values of enumer-
ated attributes. 

Abstraction 

Abstraction is about simplifying complex reality by making models appropriate to the 
problem, and working at the most useful abstraction level for a given aspect of the sys-
tem. In large systems, the concept of abstraction is essential in order to “zoom” in at the 
right level and be able to focus and communicate about a problem/solution with just 
enough information. It happens too often that details not relevant to the current problem 
disturb an engineering discussion.  
 

An example from software specification is implementation details about types and 
execution rate in a functional model description, as further described in Paper [IV]. Also 
“level of detail” is used as a similar mechanism, but this will not be further analyzed 
here. It should be noted that “abstract” could also be interpreted in the sense of “not 
enough insight” because of knowledge gaps in the specific engineering domain; what is 
abstract to me could be concrete to you. 
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Inheritance 

Inheritance is a mechanism that enables reuse of general concept descriptions in the 
modeling domain, or as in the case of object-oriented programming languages, allows 
reuse of functionality. This provides a means to minimize duplications of definitions. 
Sub-classes are more specialized versions of a class, which inherit attributes and behav-
iors from their parent classes. 
  

As a simple example from database design, the class Avionics_Equipment 
might have sub-classes called Computer, Sensor, and Recording_Unit. In this 
case, the specific Mission_Computer_1 would be an instance of the Computer 
subclass. Suppose now that the Avionics_Equipment (super-) class defines some 
attributes called Number_Of_Ports and Cooling_Air_Required. Each of its sub-
classes (Computer, Sensor, and Recording_Unit) will inherit those attributes, 
meaning that the database designer only needs to define them once.  
 

Multiple inheritances are inheritances from more than one super-class, neither of 
them being a super-class of the other. This can make (ii) EDM development efficient, 
but is not supported in all systems/programming languages, especially not those de-
signed for (i) aircraft subsystem/software functional development. 

Relationships 

A relationship is a semantic connection among model elements. There are three major 
types of relationships, part-of, association and generalization. In [UML] the relationship 
is defined “between two or more classifiers that specify connections among their in-
stances”. Thus, one UML relation may have more than two “relation ends”, which is not 
conceptually necessary and adds extra complexity to the UML meta-model. Achieving a 
ternary (three-fold) relationship can instead simply be solved by replacing the ternary 
relation with a class connected with tree binary relations with appropriate cardinality 
constraints. 

Example 

To illustrate the Class/Object concept to the reader, here is a very near example. Con-
sider a class, this thesis with its ISBN7 identifier. It represents the set of all copies (ob-
jects) of the thesis; what I am reading right now is a book belonging to the kind of thesis 
categorized by the ISBN code 978-91-7393-692-7. The ISBN is an identifier for the 
class of equal books. 
 
Physical object – each hardcopy of the thesis exist at only one place in the four-
dimensional time-space. To emphasize the meaning of individual and unique objects, 
the hardcopies are numbered, so this copy is identified by Physical Object No: .8   

                                                             
7 International Standard Book Number (ISBN); the unique 9-digit book identifier. 
8 Note: If you are reading an electronic copy of the thesis, the individual numbering is of course not 
available, and this illustrates the difference that also appears in production of software and hardware 
artifacts in industry. Software is manageable to copy, but not to uniquely identify, which gives implica-
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Logical object – electronic copies on computers or servers can be regarded as logical (or 
information) objects. These are not identifiable as physical objects. Information is easy 
to create, move, duplicate and destroy/delete. 

4.2.2 Signal flow models 
Signal flow modeling is well suited to be done in a graphical editor. In practice it is drag 
and drop editing from a library with predefined blocks and connections with arrows 
representing the signals, as illustrated in Figure 22. The library is structured by func-
tionality group: for example, all filters are grouped together. When using a specific 
block in the model, it is instantiated by choosing parameter values. Besides a signal 
name, every signal may also be assigned attributes such as unit and a description.  
 

 
Figure 22. Simple example of a signal flow model 

 
It is possible to define aggregate models with inputs and outputs and to reuse such com-
posite models in any number of hierarchical levels. Connections represent either scalar 
or vector signals with fixed causality. 

4.2.3 Discrete Event models 
The Discrete Event System (DES) technique is a large modeling area, with several re-
search groups and new tools emerging for large-scale (or industrial) usage. Here some 
main elements for DES modeling are defined, and modeling techniques with somewhat 
different semantics are described. 

Basic definitions 

Event: An occurrence without extension in time; it is instantaneous. Explicit events are 
named or predefined, while implicit events are those that occur but are not explicitly 
defined. An example of an implicit event is the time instant when a condition becomes 
fulfilled, see Figure 23. 
 

                                                                                                                                                     
tions to e.g. the differences in PDM (Product Data Management) and SCM (Software Configuration 
Management) systems. 
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Figure 23. Illustration of explicit and implicit events 

 
Entity: An object that passes through the system, such as messages on a data bus. Often 
an event (e.g. arrival) is associated with an entity (e.g. message).  

Invariant: A property of a system/model that always remains true throughout all opera-
tional modes. 

Mode: A particular operational condition of a system. Examples: operational phases of 
the aircraft (take off, cruise flight, landing) and system status (normal / degraded opera-
tion). 

Predicate: A function that returns true or false. 

State: A particular operational condition of a system. A common method of represent-
ing the operational functioning of a system is to enumerate all of the possible system 
states and transitions between them. Representation of the rules for changing states in a 
particular system can for example be made in statecharts, finite-state machines or Petri 
nets. Events typically change the state of the system. 

Queue: A queue can be a task list, a buffer of messages waiting to be sent, or any place 
where entities are waiting for something to happen for any reason.  

Scheduling: The act of assigning a new future event to an existing entity. 

State diagrams, State machines and Statecharts 

A state diagram is used to graphically represent the behavior of a system, which is com-
posed of a finite number of states. There are many forms of state diagrams, which differ 
slightly and have different semantics. A state diagram represents the formal underlying 
mechanism called finite state machine (FSM). Another possible representation is the 
state transition table. 
 

There are two kinds of state machines, Moore and Mealy machines, with an impor-
tant difference: 

 

   true 
Boolean  
Variable A 
   false 

E1 E2 time 

Explicit events Implicit events 
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Moore state machine:  The output is a function only of the state of the machine. Con-
sequence; the outputs are always valid except during transi-
tions. 

 
Mealy state machine:  The output is a function of the state of the machine and of the 

inputs. Consequence; the outputs are valid only immediately af-
ter a transition. 

 
A Harel statechart is an extension of the simple state diagrams, devised by David Harel. 
The extensions made are super-states, concurrent states, and activities as part of a state 
and the informal definition of statecharts is:  
 

Statecharts constitute a visual formalism for describing states and transitions 
in a modular fashion, enabling clustering, orthogonality (i.e., concurrency) and 
refinement, and encouraging ‘zoom’ capabilities for moving easily back and 
forth between levels of abstraction.  [Harel 1987] 

 

 
Figure 24. A state diagram of the fuel control model in 

Stateflow, from Paper [II]. 

 
In UML and SysML, the 

“State Machine Diagram” is 
used to model state oriented 
behavior, even thought the 
notation itself is not strictly 
formalized. 
 

In tools like [Simu-
link]/[Stateflow], [SCADE] 
or [SystemBuild], support 
for statecharts is fundamen-
tal, even though there are 
limitations and restrictions 
depending on the tool and 
how the model is intended 
to be used. For example, for 
code generation purposes 
the limitations enable the 
systems engineer to model 
relatively freely within the 
limits without bothering too 
much about the production 
code layout or 
safety/quality aspects. A 
state diagram of a fuel con-
trol model in Stateflow is 
shown in Figure 24. 
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Automata theory 

An automaton is the mathematical formulation of finite state machines. It is used to 
mathematically express, execute and analyze state machines, see chapter 2 of [Cassan-
dras 1999]. Given a set of events as input, it “jumps” through a series of states accord-
ing to a transition function, (which can also be expressed as a table).  
 
Mathematically a finite state automaton (M) is a quintuple (5-tuple) M=(S, E, T, s0, F) 
where: 

• S is a finite set of states 
• E is a finite set of (input) events 
• T is a transition function that assigns a state to each state/input pair 
• s0 is an element of S called the initial or start state (pump_from_aft in the ex-

ample above) 
• F is a subset of S called the final states (emptied in the example above) 
• M is the transition function (Machine) 

 
There are extensions and powerful model variants that build on the basic principles 

of automata, such as timed and hybrid automata and their “cousin” the Petri net. 

Petri net 

A Petri net, with reference to chapter 4 of [Cassandras 1999], consists of places, P, tran-
sitions, T, and arcs with a given direction. Marked Petri nets have tokens (graphically 
modeled as dots) assigned to places, as shown in the simple Petri net example in Figure 
25. A token is “put in a place” essentially to indicate that the condition described by that 
place is satisfied. Places may contain one or a set of tokens, and the number of tokens at 
a place is changed by “firing” the Petri net. The distribution of tokens over the places is 
called a marking. Arcs run only between places and transitions. The places from which 
an arc runs to a transition are called the input of the transition; the places to which arcs 
run from a transition are called the output of the transition. 
 

 
 

Figure 25. Petri net example 
 

Execution of Petri nets is nondeterministic: when multiple transitions are enabled at 
the same time, any one of them may fire. If a transition is enabled, it may fire, but it 
does not have to. Since firing is nondeterministic, and multiple tokens may be present 
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anywhere in the net (even in the same place), Petri nets are well suited for modeling the 
concurrent behavior of distributed systems.  

 
Many Petri net modeling tools exist but they are normally not well integrated to 

other modeling standards and tools used in avionics. [Modelica] has for example a Petri 
net extension that works, but is cumbersome to use; the number of input and/or output 
arcs of a place, P, is predefined and can not be changed in the model element, but the 
place element has to be replaced to one with the right number of predefined in/outputs. 

4.2.4 The differential equation 
For continuous oriented problems the differential equation has been a basic means of 
physical/mathematical modeling ever since the days of Isaac Newton.  
 

In many applications, it is common to use a set of ordinary differential equations 
(ODE), (1), for which there are several powerful solvers and analysis tools available.     
A special and simpler kind of representation is the set of linear differential equations, 
(2). An ODE, (1), may be linearized to form (2) in a specific point of operation, and this 
enables usage of a broad set of (linear) analysis and synthesis techniques.  
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In other problem areas, in particular in mechanics and electronics where constraints 
(physical laws) are drivers, one ends up with sets of differential-algebraic equations 
(DAE), (3), which are more general and more powerful for simulation models than 
ODEs. Reformulation of DAEs to ODEs is time-consuming, error-prone, and some-
times impossible, while using ODEs in a “DAE tool” is straightforward, because ODEs 
are just a subset of DAEs. 

 
Another kind of differential equations used in engineering modeling is the partial 

differential equation (PDE), in which the unknown function is a function of multiple 
independent variables and their partial derivatives. PDEs are used to solve, for example, 
heat distribution problems. As a reference to the elementary properties of differential 
equations and some application examples for physical problems, see [Andrews 1986]. 
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4.2.5 Transmission line 
One technique used in simulation aimed modeling of hardware components is transmis-
sion lines, a variant of power ports. It makes use of transmission line (bi-directional) 
data exchange where the nodes correspond to the physical connections. 
 

Using transmission lines and distributed solvers as presented in [Krus 2005], the 
models become even more “object-oriented” since the component class also encapsu-
lates a solver. Using distributed solvers with transmission lines as connection elements 
gives a physically motivated partitioning of the system. In this way component models 
can be numerically independently of each other, which provides highly robust numeri-
cal properties. This technique is useful for high speed simulation of systems, and has 
also been verified as robust for simulation-based optimization, where the system is 
simulated many times with different settings of model parameters. 

 
The use of transmission line elements for partitioning of systems is a non-exclusive 

approach. Conventional simulation techniques can still be used within the subsystems. 
This means that components built for transmission lines can be used to connect simula-
tion models developed in different simulation packages. Using distributed solvers also 
has the advantage that it allows a model to be assembled from precompiled modules. 
This can be valuable in collaborative system design, since it does not require disclosure 
of the source code or knowledge of exactly which solver technique is required, when 
providing a module to partners. 

 
The introduction of tools for model specification has increased the size of systems 

that can be modeled efficiently and the increase in hardware performance has also made 
it possible to simulate and analyze these large models. One problem when dealing with 
large complex systems, however, is that most simulation packages rely on centralized 
integration algorithms that scale rather poorly with respect to system size. For large-
scale systems it is an advantage if the system can be partitioned in such a way that the 
parts can be evaluated with only a minimum of interaction.  
 

With the introduction of multi-core desktop computers it is possible to achieve 
straightforward parallelization architectures. Components with included solvers simply 
map (are deployed) to cores in the most optimal way. 

4.2.6 Physical flow versus signal flow 
A good approach that is also attractive to the user when creating simulation models of 
physical oriented systems is to align the model with the system’s structure, or its “to-
pology”, as is depicted in the right diagram of Figure 26. It is attractive to connect the 
components using power ports, which also enables a descriptive specification of equa-
tions (DAE form). This means that it is used strictly/simply to define the system equa-
tions in a non-causal form and not on how they should be solved. This method is com-
monly called the “power port” modeling technique. 
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Figure 26. Left: signal flow model. Right: physical flow technique. 

 
The left part of Figure 26 shows the same system modeled with the signal flow tech-

nique and an explicit specification of equations (ODE form). When this is used for 
physically oriented parts of the systems, it easily becomes overcomplicated, with arrows 
representing information flow in the model rather than real flow paths in the system. 
For smaller systems this drawback may not be an issue. Further discussion on aspects of 
these modeling techniques, and on integration of the two, is found in Paper [II]. 

4.2.7 Object orientation versus signal flow 
For software intensive and embedded systems, there are two main approaches that can 
be viewed as common modeling techniques. One approach is based on the use of the 
object-oriented paradigm, which has more or less converged into UML and SysML as 
industry standard languages/notations. The other one is based on the signal flow para-
digm that is supported by signal diagrams or data flow diagrams (DFDs) as its main 
modeling language. Both approaches offer important views of the system at hand, but 
each of them focuses on certain aspects of the system.  
 

In order to gain understanding and to specify the objectives and capabilities of an 
application/system its functional requirements are extracted into an initial specification 
in a domain independent and platform independent manner. 

 
One method, during this functional specification activity, is to integrate and combine 

the object-oriented and data flow views for analysis and design. The method consists of 
specification of the system following a functional decomposition, but representing it 
using the benefits of both object-oriented and data flow views. The argumentation for 
the value of integrating both views is given in [Fernandes 2004], who states:  

 
Unfortunately, it exists a culture of rivalry in the software community with re-

spect to the two major paradigms. Nowadays, the convention is to use either a 
‘pure’ object-oriented approach or a ‘pure’ functional approach. We prefer to 
view them as complementary, each one with its own strengths and weaknesses. 
We think that a proper mixture of the approaches is possible, so that the best of 
both worlds can be achieved.  [Fernandes 2004] 
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In an avionics system with partitioned IMA-architecture it is possible to mix 
methods in the sense that different applications are developed based mainly on one 
of these paradigms according to certain properties, such as amount of data man-
agement, degree of time/event driven, and criticality level. 

4.3 Specification techniques 
A specification describes what the system should do, not how to do it. Specification of a 
system or product can be done in a more or less (semantically) formal9 way. Here, the 
traditional (not mathematically formal) method is first briefly described. Because for-
mal methods are more relevant for model based approaches, one example of an emerg-
ing specification technique (SPEEDS) is more thorough presented below. 

4.3.1 Traditional specifications 
The core information type in traditional specifications is requirement. The requirements 
are structured and evaluated e.g. for priority. In the information model, requirements are 
related to system elements and categorized into functional, performance or other groups 
of system characteristics. Without any advanced requirements management or object-
oriented documentation tool, the information is handled in plain documents or in 
spreadsheets. When the systems are large, this has in many cases led to difficulties 
when reviews, updates or distributed input of requirements and related information are 
performed. A lot of time is spent on manually comparing different versions and merging 
information from several people into the “master” file.  
 

But with a few strict rules, clearly defined responsibilities, and support from some 
(database) tools, it is possible to achieve cost-efficient specification even of large sys-
tems. At Saab Aerosystems, a requirement and specification process based on the in-
formation structure in [MIL-STD-498 1994], aligned with the descriptions in [Hull 
2002], and supported by the [DOORS] tool is implemented. 

4.3.2 Formal specifications 
A formal specification is recognized as a mathematical description of a system that can 
be used to develop an implementation. This enables formal verification techniques to be 
used to show (or prove) that a given design is correct with respect to the specification.  

Languages for formal specification 

Several languages and methods for formal specification have been developed and some 
are used in industry. Examples of formal specification languages/techniques are:  

• Eiffel Language and method supporting “design by contract”, stan-
dardized by ISO  

• Esterel A synchronous languages translatable into finite-state machines 
                                                             
9 The level of business/contract formality is another aspect that not is discussed here. 
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• Lustre A formally defined, declarative, and synchronous dataflow 
language, which is the core language of the [SCADE] tool. 

• Petri nets See the separate part on Petri nets in section 4.2.3 

• VDM Vienna Development Method is a formal semantics language, 
enabling proof of model properties. It has an executable subset, 
so that models also can be analyzed by testing 

• Z notation Specification language based on elementary set theory 
 
As semi-formal languages the following are included: 

• UML/SysML Unified Modeling Language and Systems Modeling Language, 
standardized by Object Management Group 

• AADL Architecture Analysis and Design Language is an architecture 
description language standardized by SAE.  

 
Even though the method of formal languages has been defined for several decades 

and shows promise for “automatically proving” that a given design fulfills a systems 
specification, it has not (yet) reached large scale usage within the aerospace industry. 
Semi-formal languages increase however more rapidly in use. 

SPEEDS 
Here, the component based specification technique SPEEDS10 will be further pene-
trated. For background and further documentation, see [Engel 2008] and [SPEEDS]. 
The SPEEDS methodology is built on a component-based modeling approach. A meta-
model, Heterogeneous Rich Component (HRC), has been developed to provide a se-
mantically founded base for the method. The HRC meta-model is extensive and defined 
to support representation of component models originating from languages and tools 
such as SysML, Simulink and SCADE. The semantics is defined such that any of these 
tools could be used as front-ends for creating HRC compliant models.  
 

The core element in HRC is a component. The HRC supports the definition of con-
tracts in a manner similar to the Eiffel method. A component in HRC can have any 
number of interfaces – each related to functional or non-functional properties of the 
component.  HRC is similar to other block oriented specification methods, e.g. SysML 
Internal Block Diagram or Simulink block models. Any number of assertions (assump-
tions or promises) may be associated with each interface, where: 
 

• An assumption is an interface statement on the expected properties (signals, 
physical or logical properties) fed from the environment through the interface, 
i.e. properties that are not controlled by the component. 

                                                             
10 This technique is developed by the SPEEDS consortium, financed through the European Union 
6th framework project in embedded systems development. SPEEDS stands for SPEculative and 
Exploratory Design in Systems Engineering, and the project is executed between 2006 and 2009. 
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• A promise is an interface statement of the properties guaranteed for a compo-

nent interface – given that assumptions made on other component interfaces 
are fulfilled by the environment. 

When viewed in isolation, an HRC component and its associated assertions can be 
presented as shown in Figure 27. 
 

System component

Assumption:
Signal latency
from sensor 
reading is at 
most 2 ms

Promise:
Input-output 
signal latency is 
at most 3 ms

Promise:
16-bit 
resolution, 
accurancy +- 3 
lsb

 
 

Figure 27. Component model with interfaces and Assumption - Promises 
 

The interfaces are presented as flow interfaces; however, interfaces may be created 
for any system property that is handled in the engineering process, e.g. component 
weight or cost.  

 
The next step is to link assumptions and promises from different components to each 

other to form contracts, indicating that the assumed characteristics of an input interface 
of a component are indeed satisfied by the output of the component providing the in-
formation. Figure 28 illustrates contracts captured between interfaces of two compo-
nents K1 and K2. The semantics is such that for Contract C1 the assumption A21 must 
be satisfied by P11.  
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Figure 28. System model; assumptions and promises combined to contracts 

Assertions can be specified in plain English, but there is also a formal language, 
Contract Specification Language (CSL), developed by the project, which allows formal 
definition of assertions. Specification with CSL enables formal analysis, so contract 
satisfaction could be established for C1 provided that K1 and K2 are unambiguously 
specified with CSL. Contracts group assertions and may be formulated between inter-
faces in: 

• components at the same level of decomposition 

• components in a parent–child relationship 

• components capturing the system at different abstraction level 
 

The SPEEDS technique, including tool support, is not yet sufficiently mature for in-
dustrial full-scale use, but it is currently being evaluated for scalability by for example 
Saab and Airbus. 

4.4 Design techniques 
A design technique (or method) helps the engineering team to understand, break down, 
analyze and document the engineering problem and the explored solutions. Of all 
documented design techniques, a small set relevant for avionics design is described 
here. 

4.4.1 Design matrices  
Matrices are a powerful means of systematically analyzing and documenting relations 
in the design activity. There may be any kind of information on each axis of a matrix, 
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and two defined matrix types are described here: Axiomatic Design and Dependency 
Structure Matrix. 

Axiomatic Design 

Axiomatic Design is a design method based on two rules/axioms, using a matrix visu-
alization to analyze the transformation of customer needs into functional requirements, 
design parameters, and process variables. The name method is from its use of design 
principles or design Axioms (i.e. given without proof) governing the analysis and deci-
sion making process in developing high quality product or system designs. The method 
was developed by Dr. N. P. Suh [Suh 2001].  
 

The basis for the theory consists of the two principles - axioms: 
The Independence Axiom: Maintain the independence of the functional requirements 

The Information Axiom: Minimize the information content in a design 
 

Customer
domain

Functional 
domain

Physical 
domain

Process
domain

 {CAs} 
       • 
       • 
       •

{FRs) 
       • 
       • 
       •

 {DP} 
       • 
       • 
       •

 {PVs) 
       • 
       • 
       •

mapping mapping mapping

 
 

Figure 29. The four domains of the design world. {x} are characteristic vectors of 
each domain. 

 
There are four domains defined according to Figure 29. The customer domain is 

characterized by customer needs or the attributes the customer is looking for.  In the 
functional domain, the needs are specified in terms of functional requirements {FR} and 
constraints {C}.  In order to satisfy the specified {FR}, design parameters {DP}, in the 
physical domain, are used.  Finally, to produce the system specified in terms of {DP}, 
in the process domain one has to develop a process that is characterized by process 
variables, {PV}. Mapping of i.e. {FR} to {DP} is done linearly by the design matrix 
[A]. When analyzing [A], and in particular the sparsity of [A], one can determine how 
much coupling exists in a given design.  
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If [A] is triangular, the design is said to be decoupled and if it is diagonal, the design 
is uncoupled. Otherwise it is coupled. The Independence Axiom states that a design 
should preferably be uncoupled, and if that is impossible to achieve, it should at least be 
triangular. The Information Axiom says that the information (complexity) should be 
kept to a minimum. 

Dependency Structure Matrix 

A Dependency Structure Matrix (DSM), see Figure 30, is a compact, matrix representa-
tion of a system that lists all constituent subsystems or design parameters with a focus 
on interdependencies and information flow within and between them. DSM analysis 
provides insights into how to manage complex systems or projects, highlighting infor-
mation flows, task sequences and iteration. It can help a design team optimize the flow 
of information between different interdependent components. 

 
Figure 30. Example of a Dependency Structure Matrix 

 
DSM analysis can also be used to manage the effects of change. For example, if the 

specification for a component had to be changed, it would be possible to quickly iden-
tify all dependencies on that specification, reducing the risk of missing interface 
changes. 

 
Another similar technique is the House of Quality (HoQ) method which combines the 

analysis of function-to-component mapping with component-to-component dependen-
cies. For a more thorough description and a summary of these and other matrix-based 
methods in aircraft design, see [Gavel 2007]. 

4.4.2 Function/Means tree 
In large, sparse sets of data, matrices become cumbersome and here a function/means 
tree (or F/M tree) is more appropriate, as described in [Johansson 2006]. This is a 
method for functional decomposition, allocation to means (components to fulfill the 
requirements) and concept generation. It supports elaborative development of concepts 
and enables engineering with large sets of data in a structured way. For a modular avi-
onics system (i.e. IMA) with many software applications, these allocation-based design 
techniques are valuable for dependency analysis and engineering support. 

Name 1 7 3 4 8 9 5 6 2
Geometry 1 1
Cooling 7 7
Size 3 x 3 
Performance 4 x 4 x x
Availability 8 8 x
Maintenance 9 x 9
Engine 5 x 5
Electric supply 6 x x 6
Weight 2 x x x x x x 2

Series block

Coupled block 
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Function/Means tree modeling 

By facilitating reuse of conceptual models of previously well studied products, more 
time can be spent on developing the parts that contain the edge of a new product genera-
tion. Function/Means tree modeling is a method for decomposing a main function into 
sub-functions with alternative solution elements that can be arranged in a hierarchical 
structure, see Figure 31. In this way a solution space is specified from which different 
concepts are generated. 
 

 
Figure 31. Function/Means tree 

 
In a detailed function-means tree, the same functions re-appear in many places, par-

ticularly at lower levels. There is a need to reuse existing sub-trees to avoid information 
duplication, inconsistency, and extensive maintenance. One way to solve this is to en-
able an object in the tree, for example a function, to inherit all its information including 
a sub-tree from another function. Examples of function-means models are found in Pa-
per [III]. 

Object inheritance technique for large F/M models 
Conceptual design for complex products requires a considerable effort since the product 
models become very large if they are to cover the important aspects. To cope with this 
overall effort, designers have to rely on legacy designs and reuse, and improve the 
product concepts incrementally between product generations and variants. In Paper [III] 
a generalized inheritance mechanism called generic object inheritance that enables 
quick reuse and modification of conceptual product models at any level in their hierar-
chical break down structures is described. This enables the modified concepts to be kept 
in the context of a complete analyzable product model where the impact of changes can 
be studied without having to maintain multiple copies of the same object structures. The 

Means Means 

Means Means 

Means 

Function 1 

Function Function Function 

Means 

Means 

Means 

Function 2 

Main Function 

Means (product) 



Modeling and analysis techniques  61 

 
 

paper describes how generic object inheritance is used for developing the next genera-
tion of a conceptual product model of a small business jet. A new version of the model 
is created while reusing the essential parts of the previous version with minor modifica-
tions to design parameters and substructures.  

4.5 Analysis techniques 
Models represent different aspects of the system, and those aspects can (partly) be veri-
fied by analyzing the model. The analysis activities are thus, performed in order to 
check or verify the system design. When large or complex models are used to specify 
the system, some analysis (e.g. static model checks) of the model itself is appropriate, 
such as checking consistency, semantics or syntax. 
 

An important (and often expensive) activity for analysis/verification at system level 
is simulation. At component or sub-system levels, desktop simulations in the modeling 
tool or in specific (mid-scale) simulation software/environments add understanding and 
confidence to the system’s design. For a whole aircraft system, this activity is character-
ized as large-scale-simulation with specific prerequisites as described in chapter 5. 

4.5.1 Fault Tree Analysis 
Fault Tree Analysis (FTA) is a top-down analysis technique that is used to identify con-
tributing elements (errors / faults / failures) that could precipitate the system level haz-
ards identified. FTA is a feed-back technique in that one starts with the system level 
hazards and works backward by identifying all possible causes of the hazards. For ref-
erence to FTA, see [ARP 4754 1996] and [Herrmann 1999]. 

4.5.2 Mid-scale simulation 
Tests are run in software-based simulators and in hardware based system simulators 
(rigs) with product-equivalent computers and other equipment in the loop. There are 
different types of simulation facilities for mid- to large-scale simulations: 

• Desktop simulation tools, cheap and easy to access. 

• Handling qualities, software based, simulator with or without pilot in-the-loop. 

• Presentation and maneuvering simulator with Human-Machine-Interaction in focus. 

• System simulator (rig) with a large amount of target hardware and other product-
equivalent equipment present. This type of simulation is defined as large-scale. 
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A picture of a simpler kind of simulator for mid-scale pilot in-the-loop simulations is 
shown in Figure 32. 
 

 
 

Figure 32. Simple pilot in-the-loop simulator 
 

A software-based simulation model is easy to execute with a range of different user 
scenarios, and this can also be done in “batch mode”, preferably distributed during 
“non-work-hours”, to maximize the usage of the company’s computational recourses. A 
set of scenarios are created with selected values of inputs (e.g. load configuration, fuel 
content, speed, and altitude). Out of several thousand simulated scenarios/maneuvers, 
including degraded modes, there is a selection of critical maneuvers to further verify. 
For each payload combination, a set of the most severe and critical maneuvers are se-
lected for pilot in the loop simulations and maybe flight tests. More details about these 
kinds of “mid-scale” simulations can be found in Papers [I] and [II]. 
 

One drawback of the model based way, relying on simulation tools, is that some as-
pects are difficult to cover, so a test rig with the system’s real components has to be 
built anyway. For example, when verifying multi-channel systems, the inter-channel 
behavior such as redundancy policy, timing, and performance aspects has to be sepa-
rately tested, in a hardware based rig with target software, in parallel with the model-
based functional verification. 

Fault injection 

Models are needed for different kinds of fault conditions that need to be simulated and 
analyzed, and for which pilot training should be performed. What faults to model is, of 
course, dependent on the system concerned, but a rule of thumb is that sensors in a sys-
tem are error-prone. How to model faulty conditions of a sensor is important and there 
are many different ways to do it; a few examples are listed below: 
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• Intermittent fault is a fault that repeatedly occurs and disappears. Example: 
loose connectors. 

• Incipient fault is a fault that gradually develops from no fault to a larger and 
larger one. Example: A slow degradation of a component. 

• Abrupt change is a fault that appears as a very quick change of a variable. Ex-
ample: Sudden breakdown of a component. 

 
For general handling of faults in a sensor or in its connection, it is convenient to 

build a fault injection feature into the modeling framework. Every sensor model is then 
enhanced with extra output settings, see Figure 33. 

 
Figure 33. Sensor model enhanced with general fault injection feature 

 
Here is an example of general fault injection settings of sensor signals;  

Type Name Meaning 
0 no fault Y2 = Y1; 
1 zero Y2 = 0; 
2 + hard over Y2 = + BigNumber; 
3 - hard over Y2 = - BigNumber; 
4 bias Y2 = Y1 + FaultValue; 
5 gain Y2 = Y1 * FaultValue; 
6 user input Y2 = FaultValue; 

 
This kind of general functionality has in Saab Aerosystems’ experience proven to be 
useful in mid-scale and large-scale modeling and simulation, as it is easy to implement 
and use. Specific sensor faults are of course needed for certain kinds of analysis or pilot 
training, and these are preferably built into the sensor model provided by the equip-
ment/sensor supplier. 

Sensor 
Model 

General  
Fault injection 

Receiving 
system 

FaultType FaultValue

Enhanced Sensor model 

Y2Y1Y 





 

5 
Development 
Environment 

AN ENGINEERING ENVIRONMENT, especially useful in avionics development, 
comprises a suite of engineering tools designed to work together (i.e. integrated). Well-
integrated tools will reduce the time wasted on user-interaction with separate tools and 
manually moving data between different engineering tools, or, in a worse case, between 
tools/applications running on different operating systems (Solaris, Windows, Linux etc). 
The environment also includes process/method descriptions, training and support re-
sources. For scalability reasons the administrative support for handling user accounts, 
groups, permissions and other security related issues is also important. Flexible access 
to computational resources for heavy analysis and desktop simulations is mandatory for 
a modern and efficient environment. 

5.1 Basic requirements for efficient team-work 
A set of needs and requirements exist for a development environment that will enable 
efficient team-work. Stating explicit requirements on specific tools or the complete tool 
chain is difficult, e.g. because engineers are individuals with somewhat different needs, 
skills, and preferences. Some of them/us prefer text-based user interfaces whereas oth-
ers favor graphical user interfaces for communication and work with the engineering 
tools. Table 4 below is a list of “System Requirements” elicited as part of the SPEEDS 
project, mainly from Saab Aerosystems, but with important input also from Airbus and 
IAI. The list is not by any means exhaustive, but indicates what kind of requirements 
actual aerospace projects and companies are concerned with. 
 

Abbreviations used in the list are; 
SM – Systems Model 
SMIDE – Systems Modeling Integrated Development Environment 
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Table 4. List of system requirements regarding the development environment 
 
Requirement Rational / Additional information 

Design/modeling related requirements 

D1. Each property shall get a set of pre-
defined attributes when it is created. It 
shall be possible to add user defined 
meta information to each component. 

To support project management it is beneficial 
if the user can add for example 
- estimated time (min, likely, max) to develop a 
certain object 
- information about risks 
This information can then be extracted and ana-
lyzed by means of analysis tools. 

D2. Interface specification should pro-
vide for: 
- Specification of Input and Output 
links and data as present in the system 
model, and 
- Auxiliary interfaces by which addi-
tional links and data needed for analysis 
of other project aspects. 

It should be emphasized that the term “inter-
face” in this context refers just to data items 
definition and does not include the description 
of their behaviors. The intended behaviors 
should be specified by the views. 

D3. Input/Output specification should 
support the following types of data: 
- Hardware connections (physical flow) 
- Information flow 

Information flow may be of different kinds: 
- Continuous information flow  
- Discrete information flow 

D4. SMIDE should provide for specifi-
cation of closed as well as open SMs. 

Closed Systems are those that “include” their 
environment. 

D5. In open systems, it shall be possible 
to denote signals and properties as envi-
ronment related. 

 

Simulation related requirements 

S1. It shall be possible to, at any time, 
store the current state and input of a 
simulation. 

When performing extensive simulation/analysis 
it is important to be able to initialize the simula-
tion to a specific state. This is useful for batch 
simulations of extensive flight envelopes. 

S2. It shall be possible to initiate a 
simulation from a specific state inde-
pendently of which tool stored the state. 

A possible scenario is to start a simulation, run 
the simulation to a specific point, store the cur-
rent state and then from this point continue to 
simulate the system in another tool. 

S3. It shall be possible to inject faults 
(single and multiple) into the model to 
simulate failures. 

One difficulty with the implementation of built-
in test (BIT) is to define the correct threshold 
levels for setting an alarm. One way to 
avoid/minimize this is to simulate and determine 
the correct threshold using models. 
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Requirement Rational / Additional information 

S4. SMIDE shall provide capabilities to 
force steady state solutions. 

It is useful to force steady state solutions (for 
inherently stable models) where the time to get 
the solution using dynamic simulations would 
be too long. This is known in aerospace as 
model “trimming”. 

Analysis related requirements 

A1. When finally saving an SM, 
SMIDE must perform a syntactic 
check, and report whether the SM is 
syntactically valid or not. 

An SM is valid if it contains only data allowed 
to be stored in a SM. Temporary saving of an 
incorrect SM should be allowed. 

A2. SMIDE shall provide fault analysis 
capability. 

Needed to enable safety and reliability analysis. 

A3. Tools in SMIDE shall have at least 
two roles: Modeling Tool or Analysis 
Tool.  

One tool could play several different roles, i.e. 
modeling and simulation. 

Configuration related requirements 

C1. It shall be possible to store a 
model, that is model structure and static 
parameters, and restore it at any time. 

If several users share the same model and 
changes are made to the model's various pa-
rameters, one must be able to restore the model. 

C2. SMIDE shall support parameter-
ized models. 

This can be used to introduce faults during 
simulation and support failure mode analysis. 
Example: During simulation of an electronic 
circuit, the resistance of a resistor can be set to 
zero to simulate a short circuit. Examples of 
parameters are: 
  - offset in a sensor signal 
  - arbitrary gains 

C3. SMIDE shall support: 
- Alternative concepts 
- Different product variants 

The basic means for handling concepts and 
variants may be the same, but handling of con-
cepts should be less formal than handling of 
variants. 

Library and scale-up related requirements 

L1. It shall be possible to store and 
maintain the following meta informa-
tion for each object/component: 
- Owner 
- Date/time created 
- Date/time last modified 
- Modified by 
- Verified (yes/no, when, by whom) 

When working with models in a large scale 
environment, it is important to verify the model 
before using it. Each update requires that the 
model is re-verified. By including meta infor-
mation regarding changes and verification in the 
library, the users can easily see the status of the 
component. 
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5.2 Examples of tools for industrial use 
In this work, a set of tools for modeling, analysis and simulation purposes have been 
listed for evaluation. Here are some tools with their potential contributions to an indus-
trial development environment listed by functionality. 

5.2.1 Requirements handling 
Besides the basic management of textual written requirements (that could be handled in 
any text editor), a modern requirements tool has, for example, capabilities for: 

• Versioning 
• Base lining 
• History 
• Traceability 
• Prioritizing 

Added to this there are basic database functions, such as back-up and logging. 

DOORS 

The Requirements Management tool [DOORS] from IBM/Telelogic is one of the lead-
ing tools for advanced requirements handling within product, systems, and software 
development. Compared to document based handling, it offers features for large team 
requirements communication and collaboration. In DOORS the information is struc-
tured in “modules” which gives a “document-oriented” look and feel for the end user. It 
also has filtering and sorting functions for creating views of the modules, enabling a 
flexible way of presenting and extracting the information, even though it is not as flexi-
ble as a true object-oriented or relational-database based tool. The combination of 
DOORS relative flexibility and the document-oriented meta-model is probably one rea-
son for its popularity.  

Focal Point 

IBM/Telelogic [Focal Point] is a configurable web-based decision support platform for 
requirements management, product management and project portfolio management. The 
key feature is “pair-wise comparison” with underlying algorithms for efficient prioriti-
zation of large sets of requirements. It is possible to integrate Focal Point with a 
DOORS database to more easily retain consistent information in the requirements man-
agement process. 

5.2.2 Modelica and related tools 
[Modelica] is a descriptive, object-oriented modeling language suited to physical based 
simulations and analysis of behavior and performance. There are model libraries, both 
open source and commercial ones, typically supporting mechanical, electrical, elec-
tronic, hydraulic, thermal, electric power or process-oriented components. An example 
of an ideal capacitor component is presented in the textual model definition below. 
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model Capacitor  
  Pin p; 
  Pin n; 
  Real v; 
  Real i; 
  parameter Real C "Capacitance"; 
equation  
  0 = C * der(v) - i; 
  0 = p.v - n.v - v; 
  0 = p.i + n.i; 
  0 = p.i - i; 
end Capacitor; 
 
In this model the parameter (C) is used to instantiate the model with different values 

of its capacitance. This kind of parameter sized component is well suited for reuse and 
sharing between users through a model library. As reference to modeling with Mode-
lica, see [Fritzson 2004]. 

Dymola 

Dynamic Modeling Laboratory, [Dymola], is the most mature environment for Mode-
lica modeling and simulation. In Figure 34, a Dymola model is shown, using an instance 
of the capacitor model defined above, with a capacitance of 2200 μF. 
 
 

R=330

Resistor

C=0.0022

Capacitor

R=68

Resistor2

 
 
 

Figure 34. Small Modelica example from the Dymola tool  
 
Dymola is considered, in Saab Aerosystems’ experience to have reached the maturity 
level required for mid-scale modeling and simulation in the industrial engineering envi-
ronment. 

5.2.3 Mathematics based tools 

Matlab 

Matrix Laboratory, [Matlab], is a tool with the high-level Matlab language and interac-
tive environment that enables computational prototyping in an interpreting fashion. For 
several years Matlab has been chosen by engineers and scientists for its data handling 
capabilities i.e. transformation and visualization/plotting of data. In the field of control 
theory there are several toolboxes for specific design and analysis techniques. 
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5.2.4 Signal flow modeling tools 
These tools expands their functionality successively, with e.g. discrete states diagrams, 
and support for physical components and power port technique. 

SCADE 
[SCADE] stands for Safety Critical Application Development Environment and is a 
commercial product from Esterel Technologies. It is based upon the formal, synchro-
nous and data-flow oriented Lustre programming language. The toolset may generate C 
or Ada and it is, according to its vendor, [Esterel], qualified as a development tool for 
DO-178B up to level A. As a result, its main application fields are aerospace and avion-
ics, but it is used also in other industries (e.g. automotive, rail transportation and nuclear 
power plants). 

Simulink 

[Simulink] is a platform built on Matlab for multi-domain simulation and Model Based 
Design for dynamic systems. It is time domain based and provides an interactive 
graphical environment and a customizable set of block libraries that can be designed for 
specialized applications. Simulink has block-sets containing blocks for both continuous 
and discrete models. In Figure 35, two different Simulink representations of the same 
model as in Figure 22 is shown, a time-continuous and a time-discrete model. 

 
Figure 35. Simulink example models 

 
The Simulink simulation engine includes a set of integration algorithms, or solvers, 

which are based on ordinary differential equations (ODE). A sophisticated ODE solver 
uses variable time-steps that adaptively select a time-step tuned to the smallest time 
constant of the system, and also back-tracks whenever the truncation error exceeds a 
limit set by the user. From release R2008b the Simulink team has implemented a model-
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ing language based on Matlab (a Matlab dialect), called [Simscape], for multiphysics 
non-causal modeling and simulation, similar to Modelica.  

SystemBuild 

[SystemBuild] is part of the MATRIXx product family and is a graphical environment 
for model development and simulation suited for management of large models. With the 
hierarchical organization, the models may be segmented at different levels. Reuse 
or/and share of models is simplified with its structuring principles. It has simulation and 
analysis capabilities for system verification and model validation. 
 

SystemBuild is very similar to Simulink, but it has not as large market share and is, 
in resent years, not as heavily developed with new features and toolboxes, as Simulink. 
Further description of SystemBuild is found in Paper [I] and comparison to Simulink is 
found in Paper [IV]. 

5.2.5 Tools for UML and SysML 
The standardization organization Object Management Group (OMG) has released speci-
fications for Unified Modeling Language [UML 2007], and Systems Modeling Lan-
guage [SysML 2008]. Both are general-purpose object-oriented graphical modeling 
languages for specifying, analyzing, designing, and verifying complex systems.  
 

UML provides graphical notation with a semantic foundation for modeling behavior 
and structure. SysML represents a subset of UML with extensions for requirements and 
parametrics (basic mathematical support) needed for Systems Engineering. Both have 
weak support for building simulation models, but most tools have code generation en-
gines, enabling compilation and execution. The defined SysML diagram types are 
shown in Figure 36. 
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Figure 36. Diagram types defined in SysML 1.1 

 
 It is convenient for a specific project to reduce the set of UML/SysML diagrams 

used, as there is some overlap between the diagram types. A limited set also simplifies 
the introduction of UML/SysML modeling including guidelines, training and tool set-
up. As described in Paper [V], an appropriate set of diagrams to start with in avionics 
system development is: 

• Use Case and Activity Diagrams for analysis. 

• Class/Block Definition, Sequence, State Machine, and Deployment Diagrams 
for design, implementation, and test. 

 
SysML also has built-in definitions of dimensions and SI-units (e.g. “dimension; 

Frequency, unit; Hertz” or “dimension; Power, unit; Watt”). It is possible 
to add “user-defined” units, which is necessary in avionics/aviation specification and 
design. Handling of, for example, flight speed and altitude is, in the aviation commu-
nity, done in the non-SI-units Knot and Foot. 

 
For further details on the SysML language, see for example [Herzog 2005], 

[Friedenthal 2008], and [Weilkiens 2008]. Here follow some examples of commercial 
tools capable of both UML and SysML modeling. In addition there exist a range of 
freeware tools, in particular for UML.  
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Magic Draw 

[Magic Draw] is a newly developed tool with a modern look and feel and is profiled as 
the UML tool with best alignment to the XMI storage format. There is an add-on for the 
SysML version of Magic Draw, connecting parametrics in SysML with math-
ematic/analysis tools, called “Paramagic”. The rationale and concepts behind this inte-
gration can be found in [Peak 2007]. 

Rhapsody 

IBM/Telelogic [Rhapsody] is an environment for model-driven development of soft-
ware intensive systems and is used for specification, design, and for test. Rhapsody 
specifies systems and software design graphically using the UML and SysML notations 
and enables systems engineers and software developers to simulate and verify software. 
 

Even though Rhapsody has its background and main field of application in software 
development, and traditionally weaker support for systems engineering, the SysML add-
on is beginning to mature. An example from Rhapsody of visualization of the user-
defined units Knot and Foot is shown in Figure 37. 

 

Velocity
«Dimension»

Knot
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Length
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Foot
«Unit»

dimension:Dimension=Length

 
 

Figure 37. User-defined units in Rhapsody 
 
In Paper [V] an application example using UML/SysML from Saab Aerosystems 

and the Skeldar project is described. 
 

5.2.6 State oriented modeling tools 
State oriented modeling with the Statechart formalism gained an industrial breakthrough 
with the introduction of diagram hierarchy [Harel 1987] and implementation in the tool 
“StateMate”. 

Stateflow 

[Stateflow] is an add-on tool to Matlab/Simulink and the essential difference from 
Statecharts in the StateMate implementation, is in the action language. The Stateflow 
action language has been extended primarily to reference Matlab functions and Matlab 
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workspace variables. Further, the concept of condition action has been added to the 
transition expression. 

BridgePoint 

In [BridgePoint], the UML subset “executable UML” (xUML) is used as modeling no-
tation. This technique has its roots in the Shlaer-Mellor method, see [Starr 1996], and 
makes usage of the MDA principles as described at the end of section 3.3.3. To generate 
code from a BridgePoint system/software model, the rules and mappings are defined by 
a meta-model in the same fashion as the system/software model. This makes it possible 
to create user-tunable structure and code layout in a more flexible way than many other 
tools. In, for example, Simulink/Stateflow or Rhapsody, a language different from the 
system modeling language is used to control the code layout, requiring one a further 
competence.  

5.2.7 Tools for event based simulation and analysis 
For event based simulations of large models or systems, the tool needs a number of ba-
sic functionality or modeling entities such as clocks, events lists, random-number gen-
erator, and statistics reporting. 

SimEvents 

As a block-set for Simulink/Stateflow, the [SimEvents] add-on has capabilities to simu-
late and create graphical models of event based systems. SimEvents works with 
Stateflow to represent systems containing detailed state-transition charts that may pro-
duce or be controlled by discrete events. It is simulation oriented with statistics measure 
capabilities and has no actual analysis engine based on formal methods.  

UPPAAL 

UPPAAL is a university developed tool created in cooperation between Uppsala and 
Aalborg universities and is made for modeling, simulation, and verification of real-time 
systems, see [UPPAAL 2008] and [Behrmann 2006]. It is useful for systems appropri-
ately modeled as collections of non-deterministic processes with finite control structure 
and real-valued clocks (i.e. timed automata), communicating through channels or shared 
data structures. Typical applications include real-time controllers, communication pro-
tocols, and other systems where timing aspects are critical. 
 

The UPPAAL tool has both a graphical user interface for modeling and a command 
line interface for e.g. batch verifications. Studies in large scale usage are reported by for 
example [Braspenning 2008], but UPPAAL is nonetheless a research oriented tool. 
Even if the algorithms for analysis of larger models have been improved, the problem of 
state explosion is still an issue for further research. 
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5.2.8 Tools summary 
Table 5 summarizes some tools, listed by modeling domains and divided into the speci-
fication and analysis classification according to section 3.4.2. 
 
Table 5. Examples of tools used for specification or analysis, listed by modeling domain 
 

Specification Analysis   

Method Tool example Aspect/Method Tool example 

Structure Spatial & Solid 
modeling (CAD) 
Assembly, produc-
tion (CAM) 

CATIA 
Delmia 

Stress, FEA 
Flow, CFD 

Nastran, Abacus 
StarCD, Edge, En-
sight, Matlab, WIND 

Physical 
systems 

Architecture: 
• What compo-

nents? 
Dimensioning: 
• Size and number 

of components 

SysML 
Power-Port tools 
Modelica/Dymola 
CATIA 

Simulation 
FTA, FMEA 
System safety 
Availability 
Optimization 

Easy5 
Dymola 
Fault Tree Plus 
(FT+) 

Electronics/ 
Optronics 

Architecture: 
• What compo-

nents? 
Dimensioning: 
• Size and number 

of components 

SysML 
pSpice 

Simulation 
FTA, FMEA 
System safety 
Availability 
Heat & cooling 

 Rodon 

Control (Synthesis) 
Filter-design 
Control loops 
LQ 

SystemBuild 
Simulink 
SCADE 

Robustness 
Simulation 
Analyze in freq. 
domain 

MatrixX, Matlab 
Ares, Styrsim 

Logic/ 
Data 

Object-Oriented  
Design 
Information flow 
State Machines 
Mode Logic 

SysML/UML 
Stateflow 
SCADE 
StateMate 
 

Object-Oriented 
Analysis 
Req. traceability 

NP Tools 
PolySpace 
UPPAAL 
SimEvents 

MMI/ 
Virtual 
surrounding 

Environment, 
Graphical layout 

VAPS 
Qt 

 Usability   

 
This section and the table exemplify tools related to the defined modeling domains. 
There are, however, other important engineering methods/tools for avionics design and 
aircraft simulation not listed in this thesis. 
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5.3 Integration  
Advances in domain specific modeling have created powerful tools for their main pur-
pose, as exemplified in Table 5. Many tools have, in the big view, a limited area of 
modeling or analysis, which has highlighted the need to integrate information/models 
from the different modeling domains. For the purpose of analysis or simulation of a 
larger scope (e.g. aircraft level), models and tools based on different modeling tech-
niques needs to be integrated. An example of a desirable condition would be a system 
model integrated from these three kinds of (sub) models: 

• models of hardware (such as resistors and capacitors in electricity, or pipes and 
nozzles for fluids) for performance evaluation and dimensioning 

• models of the embedded software for control and monitoring of the hardware 

• models of the environment of the system, e.g. other subsystems 
 
Currently, text documents and spreadsheets in proprietary data formats predominate 

for information exchange in the systems engineering activities, but standards for data 
exchange are emerging, such as: 

• AP233  - ISO 10303, Standard for exchanging systems engineering data, see 
[AP233] 

• XMI  - XML Metadata Interchange defined for the UML framework, see 
[XMI 2002] 

• RIF  - Requirements Interchange Format, see [RIF 2008] 
 
In the remaining part of this section, some integration strategies are described and an 

example from the Gripen avionics demonstrator is provided. 

5.3.1 Integration strategy  
Because of the hierarchical building-block based product structure, information and 
models from different integration levels but also from different modeling domains often 
have to be integrated to be part of analysis and/or verification activities. [Carloni] ar-
gues that a single environment cannot offer a complete solution to the needs of design-
ers who use hybrid/integrated models to represent the system under development. One 
example is simulation of a physical system together with the control and monitoring 
algorithms implemented as software. The Hosted Simulation technique for this integra-
tion purpose is described in Paper [II].  
 

In Saab Aerosystems’ experiences a “loose integration” strategy should be chosen in 
order to avoid lock-in effects and costly long-term maintenance of the tool integrations 
(the “tool glue”). This requires formats and interfaces to be clearly defined or standard-
ized in order to integrate the tools, and maintain this integration. Tight integration, on 
the other hand, relies on the tools being connected and running in parallel with ex-
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change of data when performing an analysis or a simulation. The loose integration con-
cept reduces the dependency of two or several tools available simultaneously.  
 

 
 

Figure 38. Integration of modeling domains and examples of tools. 
 
There are several interfaces between modeling domains that need to be integrated. In 

Figure 38 the main pattern of integration needs is shown, going from a “heavy” hard-
ware/structure to the left, through equipment, electronics, control, and information, to a 
“soft” graphical layout to the right. When analyzing features of development tools it is 
interesting to notice that many tool vendors try to cover larger and larger parts of this 
domain map by adding features and functions to their tools. Three examples, with refer-
ence to Figure 38, are; 

• Modelica is announced to be integrated into a coming release of CATIA, 
extending its capabilities for dynamic simulation (extension of CATIA to 
the right in the figure), see [Dassault 2006]. 

• In the Modelica language, libraries have been developed for Petri nets and 
statecharts to extend Modelica (to the right in the figure), see [Modelica]. 

• Simulink is integrated with Stateflow (extension to the right in the figure) 
and enhanced with Simscape (extension to the left in the figure), see [Simu-
link], [Stateflow], and [Simscape]. 

 
Tools with functionality that support multiple modeling domains are of course good; 

it gives the engineers and the team a possibility to choose among several tools for a spe-
cific engineering task. In large scale projects, however, with several teams established 
over a period of time, focusing each one on specific engineering tasks, and with some 
freedom of choice within the teams regarding the tool chain, it might give an overall 
diversity of tools and the way they are used. This may lead to a sub-optimized imple-
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mentation of methods/tools and inefficiency in the long term, especially regarding 
specification modeling.  

 
Concerning modeling for simulation, connection or integration of the modeling do-

mains is done at different levels. At component and subsystem levels, integrated simula-
tion can be done using co-simulation or hosted simulation techniques, performed in 
desktop tools. At higher levels of integration more execution efficient techniques appro-
priate for large-scale simulation have to be used. 

5.3.2 Behavioral modeling for software design 
Behavior modeling in early stages is done in a conceptual way, focusing on system 
functions with related driving requirements and usually by simplified views, using for 
example basic activity or sequence diagrams. This will not be further discussed here. 
For later stages, a component approach is preferable, where the architecture is set, com-
ponents are defined, and detailed behavior of each component is modeled using UML, 
Simulink or some similar technique. With reference to Papers [I] and [IV], some aspects 
of behavior modeling for software design are discussed below.  
 

In Paper [IV] three different approaches of Simulink usage for detailed software de-
sign are presented: 
 

1) A functional oriented systems modeling and simulation approach where the func-
tion is in focus; complete enough to be simulatable, but abstract from an imple-
mentation point of view. 

2) An implementation oriented specification approach that is based on a modeling 
framework with predefined system architecture, scheduling, data types and rules 
for discretization. The resulting embedded software is hand coded using the 
model as specification. 

3) Similar to approach two, but here the embedded software is automatically gener-
ated using a high quality code generator. 

 
Mapping of the different approaches to the development process is shown in Figure 39.  
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Figure 39. Mapping of modeling approach to development process activities 

 
Further details and a small example of models according to the three approaches 

made with Simulink can be found in Paper [IV]. In Paper [I], which describes model 
based development of the Gripen flight control system, the modeling tool is System-
Build and the approach used is the intermediate one (number two) described above. 

5.3.3 Integrated simulation techniques 
Several commercial and in-house developed tools exist for connecting different simula-
tion models. It is a growing challenge to use and integrate simulation models from dif-
ferent domains, as an increasing part of the end system verification relies on results 
from simulation models rather than expensive testing in flight tests. The development of 
computer performance and modeling-and-simulation tools enables simulation on larger 
and larger scales. Consequently, the need for integrated models, and their validation is 
growing. It is then a challenge when models are based on different modeling tech-
niques/tools. Simulation (sub)-models for aircraft systems can be organized into the 
following major categories: 

• Equipment models (e.g. resistors and capacitors in electricity, pipes and noz-
zles in hydraulics) for performance evaluation and dimensioning; 

• Models of the embedded software for control of system functions and for 
monitoring of functions and of the equipment/hardware; 

• Models of the environment of the system. 
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There are different ways of performing integrated simulation. Here, two methods for 

desk-top simulation (up to mid-scale size) are described.  

Co-simulation 

The concept of co-simulation is to integrate models combined from the different simula-
tion engines and execute them concurrently. This approach is supported by several tool 
vendors, who provide add-ons or packages for connecting tools together for simulation 
set-up. Co-simulation is very suitable for a system of ECUs connected by a data bus, but 
less useful when connected models have physical interactions, requiring power port 
modeling techniques and a central equation solver. 

Hosted simulation 
Another method for combining simulation models is Hosted Simulation (HS), where the 
simulation engine from one of the modeling and simulation tools is used to “host” other 
models during simulation. Naturally, models are developed with different tools relying 
on different modeling techniques – each focused on supporting a specific engineering 
discipline. When the models are combined for simulation purposes, the scope of the 
integrated model might be too broad for any of the modeling tools. The method of 
hosted simulation is enabled through code generation. A model created in one tool is 
simply generated to executable code and imported (hosted) in another tool to perform 
the simulation.  
 

The principle and definitions are brought from the [SPEEDS] project. With hosted 
simulation, the engineering team can combine several types of systems such as me-
chanical, hydraulic, or electrical with systems such as sensor, control, and software. The 
resulting model structure is a heterogeneous engineering system and an example of how 
to cope with the complexity of aircraft system development.  

Evaluation of integrated simulation techniques 

Within the work done for Paper [II], two different approaches for hosted simulation 
were evaluated: one with a power port tool (Dymola) as hosting tool, and one with a 
signal flow tool (Simulink/Stateflow) as host. The main conclusion was that Dymola is 
preferred as host if the system to be analyzed is equipment (hardware) intensive and 
vice versa. For systems with considerable content of both software and hardware, a 
process relying on both approaches is recommended, because the combination of analy-
sis results then will contribute substantially as a basis for system validation and verifica-
tion.  
 

It was further noted that the hosted simulation technique has the following advan-
tages compared with co-simulation: 

• The user is not required to have all the tools to execute the simulation. Only the 
simulation tool is needed. 

• All the simulation results are available in a single tool. 
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• It gives better performance: no overhead in using a message bus and coordina-
tion between different simulators. 

• It has the ability to simulate interaction with a component even if the design 
tool has no simulation capabilities, which is the case with many UML tools. 

 
The main drawback is that one cannot view the internal behavior of hosted models - 

only monitor their interactions. Application of hosted simulation is mainly restricted to 
desktop and software based simulation systems and is considered to be of mid-scale 
size. More details of hosted simulation can be found in Paper [II]. 

5.4 Examples 
The appended papers provide some examples on application of MBSE/MBD and devel-
opment environments/tools used: 

• Design and development through modeling, and analysis by extensive batch 
simulations of Gripen flight control laws with the “phase compensated rate 
limiter”, in Paper [I]. 

• Design of “Extended Kalman filter” for the “Synthetic Attitude and Heading 
Reference System (SAHRS)” function in the Gripen product, in Paper [I]. 

• An UAV (unmanned aerial vehicle) fuel system model, modeled in both the 
power port tool Dymola and the signal flow tool Simulink, and then analyzed 
through hosted simulation. See Paper [II]. 

• A conceptual design model of the fictitious small business jet RAVEN, 
through function/means modeling with the FMDesign tool, in Paper [III]. 

• Systems modeling and specification with UML/SysML and the Rhapsody tool 
during development of SKELDAR V150 – a short to medium range mobile 
UAV system, in Paper [V]. 

 

One further example is taken from the Gripen-Avionics-Demo project at Saab Aero-
systems, and shows how the new emergency mode implementation for Gripen was de-
veloped. Function prototyping, including architecture, signal flow and display layout, as 
shown in Figure 40, was performed in a model consisting of the following parts: 

• An architecture model in SysML 
• A display layout model in VAPS XT 
• A Simulink model with scaling, filtering and logical functions 
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Figure 40. Gripen emergency mode model(s) for presentation of critical flight data 
 

When the preliminary design was reviewed and agreed it moved from prototype or con-
cept phase into development phase. It is important here to change the view of the 
model(s) itself. In the concept phase it should be easy to change, test new variants, 
simulate without all details, and so on.  
 

In the transition from concept to development, the model undergoes a formalization 
conversion. All parts not following the modeling rules and guidelines are replaced, for 
example, computation rate is specified and time-continuous blocks are replaced with 
their dime-discrete equivalents. Additional model annotations and documentation are 
reviewed to enable efficient updates and maintenance of the function in the long-term.  
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6 
Model 

management 

THIS SECTION OUTLINES how the presented model based methods and tools may 
fit into an existing typical development environment for aircraft or avionics embedded 
systems. Models, modeling techniques and the supporting tools have to be managed 
during the product’s whole life-cycle. Every update of a model has to be validated for 
wider use. Configuration support is somewhat different for models than for the end 
product because one model may, and often does, represent several variants of the end 
product. Evaluation of existing and new methodology concepts, installation of tool up-
dates and education is also included in management of the modeling framework.  

6.1 Model management strategy 
For a complex product, when shifting from a traditional document centric methodology 
to a model based, strategies for how to manage and scale-up the set of models have to 
be elaborated and planned. Strategies for formalism, configuration management, and 
if/how to get a specific model accredited in the certification process are included. This 
includes, for example, how to:  

• Distinguish between a system model and models of respective components in 
the system 

• Differentiate management of software models versus models of hardware  
• Reuse functions/parts and store reusable ones in a library    
• Use different levels of formalism; which models are formal and require valida-

tion and a more stringent lifecycle control 
• Manage specification models versus models for analysis purposes  

A deeper discussion of the aspects of separation, reuse and validation can be found 
in the remaining part of this section.  
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6.1.1 Separation of system levels 
To be able to work in parallel in teams, the model partition and the size of model’s 
components sets the boundary. In Figure 41 one way of separation applicable for sys-
tem/software development is shown, with examples of tools to use for the different 
models. At the top, a system model is kept relatively independent of other models. In 
the system model, component names, interfaces, and common definitions are defined.  
 

 
 

Figure 41. Separation of system model from component models. 
 

Below the line, the components are developed as separate models, each with differ-
ent methodology: Simulink-based, document-centric and xUML-based methods. The 
rule is to allow dependencies from component models to the system model, but make 
the system model independent of all component models. This implies that all libraries of 
reusable entities (for example type definitions, definition of units and filter function 
blocks) belong to the system model. When a component model is developed in the same 
(UML/SysML) tool as the system model, the reference mechanism is used to get access 
to the definitions from the component model, so they need not to be duplicated. For 
each component there is also a top level framework model for the component architec-
ture and “local” definitions. 
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6.1.2 Library support 
Another important scale-up and management issue is support or libraries for reuse of 
engineering components, containing “legacy” information such as specification, design 
or implementation. In the concept phase information of available technology and 
equipment (datasheets) is needed, and later on the needs are more for design patterns or 
verified algorithms/functions. Support for large-scale engineering data management 
(EDM) for conceptual development is described in Paper [III]. 
 

For aerospace systems the verification aspect is important and should be handled 
within libraries for those reusable components employed during detailed design. In de-
sign environments for system design and analysis like Simulink or Modelica, block li-
braries for reusable blocks are fundamental. These two kinds of user-defined and in-
house developed component (block) libraries need to be available and easily accessible 
in the engineering environment when building behavioral models: 

� Models of physical components/equipment mainly for desktop simulation, e.g. 
pumps, valves & turbines (“Component models”) 

� Reusable complex functions for usage in the real-time embedded software, e.g. 
filters, latches & coordinate transformations, (“Model components”) 

 
For “component models”, the Modelica language is appropriate as the modeling 

means. “Model components” may be implemented in Simulink in several ways: as S-
functions, model references, or as Embedded Matlab blocks. To create/modify and as-
sure the quality of the block libraries a simple process is defined, see Figure 42. 
  

 
 

Figure 42. Process for creation/modification and “publication” of library blocks 
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The same basic process is used to develop both kinds of components. 
 

There are many ways to hierarchically organize a design library so that the reusable 
components are easy to find during the creative interactive work. Usually there is no 
single hierarchical structure that is suitable for all types of interactive search tasks. Re-
usable objects can be categorized according to different aspects and made reachable 
through many parallel categorization trees. A description in Paper [III] shows one tech-
nique for building multiple parallel categorization trees. 

6.1.3 Model validation 
Similar to validation of the system, model validation should answer the question “Did 
we build the right model?” Adopted from [Sargent 2007], Figure 43 describes verifica-
tion and validation in the modeling process. 
 

 
Figure 43. Verification and validation in the modeling process 

 
The problem entity is the system subject to be modeled. The conceptual model is a 
mathematical/logical representation of the system, written in a model specification. The 
computerized model is the conceptual model implemented in a computer. The definition 
of activities in Figure 43 is according to [Sargent 2007]:  
 
“Conceptual model validation is defined as determining that the theories and assumptions 
underlying the conceptual model are correct and that the model representation of the prob-
lem entity is “reasonable” for the intended purpose of the model. 
 
Computerized model verification is defined as assuring that the computer programming and 
implementation of the conceptual model is correct. 
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Operational validation is defined as determining that the model’s output behavior has suffi-
cient accuracy for the model’s intended purpose over the domain of the model’s intended 
applicability.” 
 

With modeling and simulation tools, such as Dymola or Simulink, (for example ref-
erence, see further Paper [II]), the number of programming and implementation errors 
may be reduced. The activity computerized model verification then primarily ensures that 
an error-free simulation tool has been used, that the simulation language has been prop-
erly implemented on the computer, and that the model has been programmed correctly 
in the simulation language. The activity operational validation can not be fully per-
formed in early development phases such as the concept phase due to the need for 
measured data from the real system. A sensitivity analysis can still be done, however, in 
order to point out model component parameters that have strong influence on the overall 
simulation results.  

6.2 Simulators and simulation models 
The main objective for simulation in aerospace is to reduce risk and cost. In the early 
stages, risk and cost are reduced by gaining a better understanding of how to specify the 
system/product and what the tough constraints are. In later stages, simulation generates 
“flight-hours” providing both engineers and pilots with knowledge about the system for 
verification and usage. In this section some aspects of simulation related to the model-
ing/development environment are discussed. 

6.2.1 System verification 
Verification answers the question; “Does the system fulfill the specified requirements?” 
or to put it briefly “Did we build the thing right?” and can be performed using multiple 
verification methods including test, inspection, demonstration, and analysis, even 
thought test usually becomes the main activity for system verification. When a model of 
the system is available (and has been validated), the model serves as a substitute for the 
real system during the verification activity.  
 

Verification activities are performed at different levels according to the V-model: 
� Functional verification 
� Software test/verification 
� System test/verification 

6.2.2 Large scale simulation 
When integrating several ECUs, data buses, displays, and controls, simulation has in 
Saab Aerosystems’ long-term experience, proven to be an efficient method and is the 
most used means of system verification of large, safety-critical avionics systems. A 
simulation system consists of both hardware and software, but the trend is to rely more 
on software models of equipment that was earlier either a prototype of the production 
set or a simplified (hardware) equivalent. The introduction of software based simulation 

Model management
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systems enables more flexible and versatile usage, such as analysis through batch simu-
lations. But new challenges in terms of for example configuration management also 
appear, as described below.  

Batch mode simulation 

Batch analyses are performed by running the simulation in a specified set of operating 
points (automatically by scripts). A set of scenarios are created in the same way as de-
scribed for mid-scale simulations. It is also possible to introduce failures in the steady 
state, or during the dynamic simulation. The efficiency depends on the time taken to get 
the stationary operating point in advance of each simulation. One way of increasing the 
efficiency is to calculate and save steady-state solutions to a library in advance and use 
these to initiate the simulation model during the batch run. For efficient batch mode 
simulation, requirements S1, S2 and S4 in Table 4 are the drivers. 

Scale up issues 
Development programs generally try to minimize the number of models of a system due 
to the significant administration effort that is needed and the risk of needing to handle 
mistakes following from multi-model handling. The challenge is to reuse and combine 
component models in a system-of-systems context, without requiring too many parame-
ter settings and consequently too long execution times. So on the one hand there should 
be reusable and configurable (detailed) models, appropriate for both small and large 
scale usage, and on the other a sufficiently detailed, or dedicated model that makes it 
easier for the user to set up and execute the simulation at a certain level. 
 

One way to avoid several different models is to use the Multi Level Approach re-
ported in [Kuhn 2008]. With the Multi Level Approach, switching between model levels 
can be done, from example:  

• a simple and fast model for energy consumption design 
• a detailed model for fast network stability analysis  
• a detailed model for network quality assessment by increasing of the equation 

complexity in the model components 
 

There are of course constraints to using the Multi Level Approach: for instance, the 
interfaces definitions for a model must be the same at all levels of detail (viewed as a 
black box). 

Configuration principles 

Challenges concerning configuration management are somewhat different and in some 
ways more difficult for a simulation system than for the product the simulation model 
represents. This is due to the possibilities to let every sub-model be configurable to rep-
resent several variants of the real component. Example: In the Gripen case, a module for 
calculation of weight, center of gravity and inertia has to manage data for both the one-
seater and two-seater versions, as well as all possible payload configurations.  
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Configuration is managed in several stages and there are typically some mechanisms 
for (variants) configuration in large-scale simulation environment of models and simula-
tor platforms. Both hardware and software components are part of the simulator con-
figuration activity and predefined rules must exist to support variant handling and on-
board configuration of the system software according to the type of equipment installed.  

 
The need is resolved by switching techniques; model-time switch, compile-time 

switch or run-time switches. Switching during model-time creates different source code 
variants, and switching during compile-time creates different object codes. Run-time 
switching is the most flexible alternative and enables the simulation engineer to change 
configuration “during flight”. Which type of switching technique to use for a particular 
selection case depends, for example, on safety, security, and maintainability factors. For 
all those techniques, structured configuration tables similar to those described in IMA 
section improve the efficiency and quality of scalability in the simulation/development 
process. 

6.3 Tool management strategy 
There is a trade-off between, on the one hand, tightly integrated method-tool-chains, 
and on the other separate tools that each provide state-of-the-art engineering support in 
its discipline. The integrations may be of the peer-to-peer kind, connecting one tool to 
another for one or two-way information transfer. Or it may be more of a platform type 
where several tools are plugged in to a predefined framework, such as the open devel-
opment platform [Eclipse]. In this section some strategic choices are discussed; how 
tight to integrate, in what way, and what technology to use, because this sets the possi-
bilities, limitations and cost levels for long time ahead. One solution is to rely on mature 
standardized interfaces rather than tool vendor specific interfaces and add-ons which are 
more likely to change over time. 

6.3.1 Tool selection criteria 
The following parameters form a basis for the decision on selecting a method for model 
based systems engineering. Ideally, the modeling method shall: 

� Have a wide market penetration and be standards-based. 
� Provide capabilities for seamless transition from systems engineering to spe-

cialty engineering.  
� Have multiple commercial tools supporting the language/notation. 

 
In [Friedenthal 2008] there is a list of selection criteria for a SysML tool containing for 
example: 

� Conformance to SysML specification 
� Document generation and export capability 
� Conformance to XMI and AP233 
� Integration with other engineering tools (including legacy tools within an exist-

ing system development environment) 

Model management
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o Requirements and Configuration Managements tools 
o Engineering analysis and performance simulation tools 
o Software, electrical modeling and mechanical CAD tools 
o Testing and verification tool 
o Project management tool 

• Performance (number of users, model size) 
• Model checking 
• Training, online help, and support 
• Availability of model libraries (e.g. SI units) 
• Life-cycle cost (acquisition, training, support) 
• Vendor viability 

 
Similar criteria from Saab and the Skeldar project are described in Paper [V]. 

IBM/Telelogic Rhapsody was the selected tool for the Skeldar project a decision that 
was partly based on experienc from an earlier avionics program at Saab Aerosystems 
with software design and documentation using Rhapsody and UML. The introduction of 
UML/SysML and selection of Rhapsody in the Skeldar project was based on an analysis 
of: 

• Need for systems engineering support in the product/project (e.g. modularity, 
variants handling) 

• Existing best practice and tool providers/vendors relations in previous projects 
• Benchmark of existing state-of-the-art systems engineering support tools and 

methods 
• Provision of systems engineering support in a longer term, throughout the sys-

tem life-cycle 
• The strategy for future partners and consultants 

 
The tool selection criteria should not be based too much on technical aspects (e.g. 

export capability or model checking) because these functions/features may be built into 
the tool in future releases. More important is that it has a sound underlying structure and 
open interfaces that conform to standards. 

6.3.2 Long term considerations 
A fighter aircraft may be operational for 30-40 years with sufficient upgrades and civil 
aviation programs plan for an even longer lifetime. In a product with such a long life-
time the tools may add unwanted extra costs to the system’s overall life-cycle costs due 
to support and extra integration work. For example, updating a specification tool to a 
new version may lead to different (not exactly the same) models or reports being gener-
ated. If the tool is used for development of safety-critical airborne systems, the tool up-
date will require extra review, verification, and perhaps also system test. In large sys-
tems, these activities can lead to considerable costs.  
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Not updating the tools as new versions are released will also add cost in the long 

term. Examples are when an operating system (OS) (or a version thereof) is obsolete 
and needs to be upgraded, but some tool does not work in the new OS version. One way 
to solve such an incompatibly problem is to emulate (to run virtually) the old OS in a 
modern OS. An old VAX computer with a VMS operating system can, for example, be 
emulated, which solves the problem technically but adds extra cost for procurement, 
maintenance, and competence for yet another software component. 
 

Paper [IV] contains a study of three different approaches for model based software 
development with Simulink. The study indicates that a strategy with Simulink models 
detailed enough to generate high quality software is costly in the long term. This is valid 
if the tool is updated in the engineering environment with every release from the ven-
dor. Consequently, a method that relies on a tool for generating code is vulnerable to 
tool changes. 

6.4 Organization & responsibilities 
As an aircraft integrator or OEM (Original Equipment Manufacturer) it is always convenient 
to have tier-one suppliers capable of supplying models with sufficient level of detail at the 
right time for usage in the project. When this is not the case, a company-internal or third 
party modeling and simulation team has to provide mock-ups, environment models, simula-
tors, and test rigs with models developed “in-house”, but with knowledge from the supplier, 
through specifications/design documents and preferably also through close cooperation.  
 

In a specific project there are a number of choices to make regarding the formalism 
to be achieved in the different engineering phases. These include; 

� Baselines and change control 

� Review level of interfaces, models and documents. 

� Review format; how much of the model information is to be exported to documents 
 

Explicitly appointed roles/responsibilities needed within simulation model development, 
integration and management are the following, with reference to Figure 44: 

� Model specification; a role that specifies the requirements, interfaces, and behavior 
of a simulation model based on the simulation needs and the system specification.  

� Model implementation; this role is responsible for implementation of a specified 
model into a specific simulation platform 

� Simulator platform management; for every simulator, the simulation facilities and 
functions, model configuration, and related documentation are baselined, verified, 
and released for wide usage in the development project. 

Model management
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• Simulators general manager; responsible for planning of updates as well as verifi-
cation and release procedures for the set of simulator platforms (Systems Engineer-
ing activities for the Enabling Products simulators). One way to gain control of this 
rather large area is to head the planning and control meetings with the other roles 
present. 

For smaller models and simulators it is convenient to combine the model specification 
and model implementation roles as deemed practical. 

 
Figure 44. Simulation models and simulator platform responsibilities 

 
This way of organizing the work supports reuse of models between simulator plat-

forms and increases the possibilities of consistent model specifications and models with 
good quality.  

 
Where possible, every simulation model should be developed to fulfill requirements 

from all the simulation platforms where the model is implemented. There are, however, 
situations where the platform’s specific requirements are very different, so different 
models of the same system component have to be managed. Variants and revisions of 
all models for each simulator platform have to be kept under control in a Product Life-
cycle Management (PLM) system, as an enabling product, in alignment with the end 
product.  
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7 
Discussion and 

Conclusions  

IN THE ACADEMIC world there are a vast number of different modeling methods 
with supporting tools which are evaluated by using comparably small examples. These 
are usually applied to real engineering problems in order to evaluate their practical use, 
but are normally demonstrated by relatively small or well suited examples (compared to 
the industrial cases) and they are not included in a context or environment of several 
methods and means. In industry, the terms tool set, tool chain, and methods chain are 
nowadays frequently used to define an engineering environment with some methodol-
ogy, integrated tools supported by usage descriptions. The discussion includes scalabil-
ity of some of the studied modeling techniques and how far it is reasonable, in the com-
ing decade, to plan for MBSE and MBD implementation in an aircraft and avionics 
development company.  

7.1 Discussion 
For an industrial Systems Engineering focus on MBD, domain specific modeling tech-
niques and means as such are not central, but the overall workflow, as indicated by this 
quotation: 
 

Typically, there is no single tool that addresses all these issues, and, therefore, a 
suite of tools is used throughout the design process. Because these tools hardly 
ever are compatible, the sharing and coordinating of information flow between 
project teams inevitably leads to a lot of overhead in terms of collaboration, and 
is very error prone, inefficient, and expensive. Moreover, similar tasks may be 
carried out multiple times and even simultaneously.  [Vangheluwe 2000] 

 
It is the integration, collaboration and scale-up aspects of MBD that add most value 

to aircraft and avionics development projects, and these are also discussed below.  
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7.1.1 Reuse and libraries 
To reuse things between products or teams is obviously efficient and valuable for reduc-
ing uncertainty/risk and cost. Reuse of software is a growing trend with all kinds of 
open source communities, but also reuse of embedded functions or parts of code (leg-
acy) in the aerospace and automotive industries is in focus. Even more important here is 
to reuse the designs: the design is needed to enable the engineers to understand func-
tionality and maintain systems in the long run. This is a strong driver for model based 
design/development which forces the design to be captured in a structured and main-
tainable way. For efficient reuse the process must encourage storage of the good, well-
verified, and documented (reusable) components in a functioning, well-known storage 
place; the design library. A shift of focus, from libraries of implementations, to libraries 
of designs is therefore recommended. 

 
One drawback with reuse is that a reused component may not fit the purpose exactly. 

It usually has extra/more functionality built in, but which is not needed in the specific 
instantiation. One may say it adds “dead functionality”, which necessitates extra verifi-
cation activities. For reuse there is generally thus a trade-off between savings in terms 
of reuse and cost in terms of verification. 

7.1.2 Hardware and software in MBSE 
The Hosted Simulation technique was evaluated and is generally a very promising ap-
proach, as shown in Paper [II]. For specifying an ordinary aircraft subsystem model 
containing the hardware – sensor – software – actuator loop, SysML is an appropriate 
language. Experience, however, shows that there is lack of support for physical flows. 
In many situations it is not visually clear in a SysML diagram if a flow is an actual 
physical flow (e.g. fuel flow) or information in the system about the flow.  
 

 
 

Figure 45. Connectors for physical flows (to the left) and information flow (to the right) 
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Distinction between physical and information flow connectors such as those in Mode-
lica or Simscape based diagrams, for example, as shown in Figure 45, is on the wish list 
for future SysML extension. 

 
One proposal to integrate SysML with simulation oriented modeling in Modelica, in-

cluding equation and simulation diagrams, called ModelicaML is reported in [Akhvle-
diani 2006]. From an industrial large scale MBD perspective, the value of integrating 
these two views is tempting. In practice it might evolve tools that support both SysML 
and Modelica, which is good, but will probably be hard to scale up, because it does not 
support the separation of concerns gained with the layered approach and building block 
structure. It looks tempting to use only one model capable of handling requirements, use 
cases and system structure as well as equations, variables and simulation set-up, as 
shown in Figure 46. 

 

ThermalConductor
«ConstraintBlock»

Lumped thermal element transporting heat without 
storing it
G: Constant thermal conductance of material (W/K)
Q_dot: Heat flow (W)
Ta: Temperature of end a (K)
Tb: Temperature of end b (K)

HeatPort_A:<Implicit>
HeatPort_B:<Implicit>

Q:double=1.0
G:double=1.0
Ta:double=300.0
Tb:double=330.0

 0 = Q_dot - G * (Ta - Tb);

HeatCapacitor
«ConstraintBlock»

Lumped 1-dim. thermal element storing heat
C: Heat capacity of part (= cp*m) (J/K)
T: Temperature of part (K)
Q_dot: Heat flow rate, positive if flowing from 
outside into the component (W)

HeatPort_A:<Implici t>

C:double=1.0
T:double=300.0
Q_dot:double=0.0

 0 = C*der(T) - Q_dot

«allocate»

SM requirements diagram.Initiate
«Requirement»

ID = 012

It shall be possible to initialize/restore 
every stored set of input/state

«allocate»«allocate»

SM requirements diagram.Store
«Requirement»

ID = 011

It shall be possible to, at any time, 
store the current set of input/state

«allocate»

 
 

Figure 46. A SysML Block Definition Diagram example of two reusable simulation 
components with allocated requirements. 

 
The figure shows requirements and two blocks defining simulation components in 

SysML. Lessons learned from software development show that a separation strategy is 
preferable when the system and complexity scales up. Storing the requirements in a 
model/tool appropriate for requirements and behavior models in an execu-
tion/simulation oriented tool is to be preferred in the long run, to support all phases of 
the product family lifecycle. Traceability between the model objects and the require-
ments needs also tool support and a way of implementing the traceability links, for ex-
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ample, storing the unique requirement identifiers in trace/reference (alternatively in 
comment or annotation) attributes of related model components.  

 
One stage where an integrated approach might be of interest is in the early concept 

evaluation phase, where the number of advanced tools should be minimized, and it 
could be a complement to the normal “spread-sheet technology” used today. 

7.1.3 Long term effects 
Advanced engineering environments are threatened by tool (or vendor) Lock-in, i.e. 
situations where tool vendors provide few or no means for information exchange with 
tools not provided by the vendor. Although, for example, MDA was conceived as an 
approach for achieving (technical) platform independence, current MDA vendors have 
been reluctant to engineer their MDA toolsets to be interoperable. Such an outcome 
could result in vendor lock-in for those pursuing an MDA approach. The same applies 
for other modeling domains such as multiphysics modeling and simulation, where de-
velopment of the Modelica language is a driver for openness and tool interoperability.  
Vendors with a considerable market share in its segment, however, choose a proprietary 
policy such as The MathWorks with its Simscape language, which is not Modelica 
compatible. 

 
Based on some of the trade-off problems/relations within development of complex 

products, as described in this thesis, the “paradox of model based development” may be 
defined as: 

 
1. To solve the problem of complexity, introduce a model to be able to (by 

analyzing the model) better understand the needs, constraints, and design ef-
fects. 

2. One model is not enough, because different aspects need to be analyzed. 
This requires different analysis methods, based on different modeling tech-
niques (or meta-models) and also supported by powerful tools. 

3. For each kind of tool, a method, a support team, user guidelines, and educa-
tion (and maybe a process) are needed. 

4. The introduced set of methods, tools, and required skills add more complex-
ity to the development work. 

 
This paradox clearly shows that there is (in general terms) an optimal level of MBD. 

For some modeling domains the modeling paradigm is more mature (e.g. CAx or con-
trol engineering) and it is natural to choose a method that relies to a high degree on 
models. Nevertheless, the lock-in effects and complicated integrations are still a long 
term issue, and should be carefully considered in every project’s start-up phase. 

7.1.4 Large scale modeling and simulation 
When scaling up an advanced work method with connected tools and engineering sys-
tems the total process quickly becomes complicated, and it has to be thoroughly ana-
lyzed, understood, and communicated. The model based approach has been in focus as a 
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development means for an aircraft with its components, but not (in this thesis or in in-
dustry) to develop the engineering systems (the enabling products). But there is also a 
great potential in modeling of the (modeling) process, for obtaining common nomencla-
ture, clarifying roles, responsibilities, hand-over between disciplines and sequences in 
the process. The modeling should focus on the change, so that the current (“as is”) proc-
ess may be analyzed and improved to a future one (“to be”).  A small example of a 
process model is shown in Figure 47. This kind of modeling may be referred to as Busi-
ness Process Modeling (BPM) and has its own community, notation, and tools as sum-
marized in [Hommes 2004]. Using SysML for process modeling in an engineering envi-
ronment is considered to give value in terms of both process analysis and insight, but 
also in the fact that engineers and managers get practice in the concepts of modeling and 
the UML/SysML notations at the same time. 

 

Quality Assurance
«all ocate»

is OK
[YES]

Thermal analys is

Review

Thermal Engineer
«all ocate»

Prepare data
[NO]

Create model

Simulate

Analyse

Report

Model data 

Simulation model

Simulation results

Conclusion

 
 

Figure 47. An example of a process model in a SysML Activity Diagram, showing a 
simulation and analysis task with activities, artifacts and actors involved. 

 
Other aspects and emerging techniques requiring thorough analysis and preferably 

business process models are:  
• Modularization (e.g. IMA and ARINC-653) and configuration of the prod-

uct family approach. 
• Distributed development including distribution of simulation models and 

modeling guidelines to suppliers and partners. 
• Software based simulators, enabling large-scale batch runs during nights, 

requiring evaluation techniques and tools for large sets of data. 
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• Multi-core techniques for increased performance of simulation execution, 
eventually affecting the modeling activity for simulation models and/or de-
ployment of simulation threads/processes on computational resources. 

 
An interesting technique not yet evaluated for large-scale modeling and simulation is 

the bi-directional transmission line data exchange described in section 4.2.5. With this 
approach relaying on local solvers, requirements regarding both modularization and 
increased performance via a simplified multi-core deployment task could be supported.   

7.1.5 Human factors 
There are several human or social factors not covered in this thesis, but these are most 
relevant for an industrial scale MBSE and MBD introduction. They include organization 
of projects and of the competences in the company, and also the (built-in) resistance to 
organizational change efforts. At a personal level, different engineers have different 
relations to, for example, abstract/concrete types of development methods. The object-
oriented way of thinking appeals some individuals, but far from all. Some prefer graphi-
cal representations and other prefer a textual description. In a large-scale environment 
the chosen methods should not be too “extreme” in any aspect, in order to be under-
standable and accepted by a majority of engineers.  
 

The question is how to gain acceptance for introducing a different way of working in 
a (changing) environment which is already complex enough through all the different 
support systems, databases, operating systems, and log-in/access rights. The overload 
and stress level for engineers may become unnecessarily high, but with the right level of 
abstraction and adequate, mature tools supported by a stepwise introduction strategy, I 
am convinced that the model based approach is the way of the future; because through 
models, one gains knowledge and a sense of having control of the complexity. 

7.2 Conclusion 
In this thesis a survey of methods, tools and emerging modeling techniques is described. 
Some experiences made when introducing MBSE/MBD to support systems develop-
ment at Saab Aerosystems is also given through the appended papers.  

 
For coming complex products, such as fighter aircraft, civil aviation, or UAV sys-

tems, major parts of the development effort will be made in systems and software. Sys-
tems Engineering has become increasingly complex, with need to support diverse appli-
cation fields, different markets and engineering disciplines. For avionics projects the 
usage of the SysML language has just begun and so far looks promising. But there are 
several areas where method and tool support must be improved, such as language and 
tool complexity as well as configuration management support before MBSE with 
SysML will be the natural method to select in a project developing a complex system.  

 
As engineering to a great extent is the act of balancing (or making trade-offs) be-

tween conflicting goals, the design of an engineering methods/tool chain is also a bal-
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ancing act with many dimensions. One central tool will not solve all needs, but too 
many tools tend to add complexity to the development challenge. The trade-off shows 
that a balanced choice is to restrict the design to one method/tool for specification per 
modeling domain. For analysis activities there are reasons to provide the engineering 
teams with powerful analysis means for the specific purpose, but avoiding a too “hard-
wired” process integration to prevent lock-in effects.  

 
In summary, the conclusion is that: 

• Emerging modularization standards/techniques for avionics systems enables 
differentiation in design assurance level, development methods, and in-
creased overall flexibility. 

• Both method/tools and standards have overlap, which gives freedom in the 
design of an engineering environment. 

• To avoid lock-in effects, integration should rely on standardized interfaces 
and formats, not on vendor-dependent peer-to-peer tool connections. 

• Increased computer performance, matured meta-modeling and database 
techniques, enables large set of data to be modeled, simulated, and analyzed. 

• There are standards for many aspects of avionics development, but there is 
need for improvements in the area of large-scale simulations. One need is 
the framework for configuration support from both software configuration 
management (SCM) and product data management (PDM).  

• The semantics of UML and SysML lack the means to clearly differentiate 
physical objects/flows from information objects/flows. 

• Human factors have to be considered both in the design of a method-tool-
chain and in the organizational changes. Also, different people/engineers 
have different relations to, for example, graphical/textual and ab-
stract/concrete types of development methods.  

• Process modeling is not in such focus as product modeling, even though the 
“engineering system” is complex enough to be the subject of MBSE.   

7.3 Future work 
In the broad area covered in this thesis there are several questions that could be the sub-
ject of further research. The natural extension would be to further develop the methods 
(and standards) for “integrated” design of applications based on modeling approaches, 
where the term integrated refers to models that can be used to generate models for large-
scale simulation purposes as well as for implementation in the real avionics system.  
 

The primary focal areas for future work are outlined below. 
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7.3.1 Standardization 
Examples of needs related to avionics design are definition and standardization of appli-
cation components. A recently developed framework with definitions and patterns for 
component development is the automotive standard [AUTOSAR], where parts also ap-
ply to avionics. In the area of standards AUTOSAR provides for example; 

• Different application interfaces (API) to separate different software layers 
• Definition of software data types to be AUTOSAR compliant 
• Identify basic software modules with standardized interfaces 

Another area where standardization is needed is the fault injection pattern for simu-
latable sensor components as shown in Figure 33, and in this area there is clearly further 
work to do within the aerospace and avionics community. SysML, Modelica, and Simu-
link are equally suited for implementation of fault injection patters. 

 
Definition of other parts of a simulation framework including clear definitions, us-

age scenarios, predefined patterns and interfaces is planned within the research project 
CRESCENDO11. One aim of the project is to develop the foundations of the Behavioral 
Digital Aircraft (BDA) paradigm. BDA is expected to become a platform of the simula-
tion domain, covering the entire design lifecycle, from the conceptual design phase to 
test and verification. From the work in this thesis it is planned to continue in the area of 
large scale simulation and it is plausible to contribute to the BDA in the area of: 

• The Multi Level Approach reported in [Kuhn 2008]. 
• Interfaces and tool support for the hosted simulation technique. 

7.3.2 Configuration management 
Current modeling and simulation tools typically provide interfaces for integration with 
standard software configuration management tools. Such tools are inherently strong in 
version management, but lack the integrated support found in product data management 
tools and standards needed for the evolution and maintenance of a set of realized prod-
ucts and systems. Configuration management principles need to be specified for large-
scale simulation set-ups within a product family, aligned with principles and concepts 
from both the software configuration management (SCM) and product data management 
(PDM) disciplines. 

7.3.3 Distinction of information and physical flows 
Experiences show lack of support for explicit and clear specification of both informa-
tion and physical flows in the same diagram. Simulation oriented tools as Dymola and 
Simulink/Simscape with power port connectors has this support, but in a system-level 
specification diagram in SysML it is not visually clear if a flow is an actual physical 
flow or information in the system about the flow. SysML needs, clearly in my view, to 
be complemented with the semantics and graphical power of power ports. 
                                                             
11 CRESCENDO is a research project within the European Commission 7th Framework Program 
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