

An investigation of the use of software
development environments in the industry

By

Ping An

Institute of Technology

Linköping University

Submitted to the Department of Computer and Information Science at

Linköping University in partial fulfillment of the requirements for the degree of

International Master of Science

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2004

��

��

��

$Q�LQYHVWLJDWLRQ�RI�WKH�XVH�RI�VRIWZDUH�
GHYHORSPHQW�HQYLURQPHQWV�LQ�WKH�LQGXVWU\�

by�

3LQJ�$Q�

��

��
/,7+�,'$�(;��������²6(�

�
�

Institute of Technology
Linköping University

2004-05-28�

6XSHUYLVRU��0DJQXV�%nQJ�

([DPLQDWRU��+HQULN�(ULNVVRQ

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2004

 2

 3

��

$EVWUDFW�

�
Software engineering tools are being used in the industry in order to improve the
productivity and the quality of the software development process. The properties of
those tools are being perceived to be unsatisfactory. For example, researchers have
found that some problems are due to deficient integration among the tools. Furthermore,
a continuing problem is that there is a gap between the IT education and real demand of
tool-skills from IT industry. Consequently, knowledge is needed of the properties of
software development tools as well an understanding of demanded tool-skill from the
industry.

The purpose of this study is to survey commercial software development environment
(SDEs) that are used today in professional software engineering and discuss their
advantages and disadvantages. A secondary goal of the study is to identify the actual
requirements from the industry on the IT-education.

A questionnaire was sent out to 90 software developers and IT managers of 30 IT
companies in Sweden. The results of the survey show that IT companies, for most part,
use SDEs from commercial software vendors. Respondents report that common
problems of the SDEs are the following: bad integration among the tools, problems to
trace software artifacts in the different phases of the programming cycle, and deficient
support for version control and system configuration. Furthermore, some tools are
difficult to use which results in a time-consuming development process.

We conclude that future software development environments need to provide better
support for integration, automation, and configuration management. Regarding the
required tool-skills, we believe that the IT education would gain from including
commercial tools that cover the whole software product lifecycle in the curriculum.
�

.H\ZRUGV�

Software development environments, Software life cycle, Survey, Software
development tools, CASE tools, Integration, Integrated software development
environment
�
�
�
�
�
�

 4

�
�

$FNQRZOHGJHPHQWV�

I would like to express my gratitude to supervisor Magnus Bang at the Department of
Computer and Information Science, Linköping University. I also want to acknowledge
my examiner Henrik Eriksson and Jalal Maleki, the coordinator of International M. Sc.
Program at the Department of Computer and Information Science at Linköping
University.

……………………………
Linköping, 2004-05-28

Ping An�
�

 5

&RQWHQWV�

1. INTRODUCTION ...7�

1.1 Purpose and aim ...9

1.2 Outline of the study..9

1.3 Delimitations ..10

2. BACKGROUND...11

2.1 The software development life cycle ...13

2.2 Software development environments...16

3. METHOD...19

3.1 Research Strategy...21

3.2 Data collection..21

4. RESULTS ..23�

4.1 Response rate and characteristics of respondents ..25

4.2 Today’s software development environments ...26

5. DISCUSSION ..33�

 6

5.1 Commercial software development tools used today35

5.2 Requirements on future tools ...36

5.3 Recommendations for the IT education ...39

5.4 Study limitations ..39

6. CONCLUSION...41�

6.1 Main findings ...43

6.2 Future work ..44

REFERENCES ..45�

APPENDIX 1. SURVEY QUESTIONNAIRE51�

APPENDIX 2. LIST OF TOOLS.....................................65�

 7

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��� ,QWURGXFWLRQ�
�

 8

 9

Various software development tools are being employed in the industry to improve the
productivity and quality of the software development process. Computer-aided software
engineering tools [Norman & Nunnamaker 1989] are considered to be a crucial
intermedium for promotion of software engineering technology transfer between
academia and industry. However, the adoption and actual industrial use of these tools
still appears to be low. It seems that the tools lack critical properties that may have an
impact on its widespread adoption. A possible consequence of this situation is that the
quality of the final software products may suffer, and that the software development
process becomes unproductive and unstructured. According to Reiss (1996) the most
common problems of SDEs are due to unsatisfactory integration among the
development tools. Consequently, we need to get a better understanding of problems
perceived by actual users of SDEs, to develop better tools. Needed are studies of actual
SDEs that are used today in commercial software development process as well as
inquiries into the properties of those tools. Additionally, we must to address the IT
education so that it better apply to the requirements of the IT industry.

���� 3XUSRVH�DQG�DLP�

The purpose of this study is to investigate what commercial SDEs and tools that are
used in commercial software engineering today and to discuss their advantages and
disadvantages of them. The study also aims to close the gap between university-level IT
education and actual requirements by the industry. The study will try to answer the
following five questions:

Q1. What are the current software development environments that are used by

professional software developers?

Q2. What are the advantages and disadvantages of the software development

environments?

Q3. Are professional software developers pleased with their software development

environments?

Q4. What kind of support is needed in future software development environments?

Q5. What needs to be addressed in the university-level IT curriculum to more

appropriately suit the needs of commercial software developers regarding SDEs?

���� 2XWOLQH�RI�WKH�VWXG\�

The theory and literature about software development engineering is reviewed in the

 10

first chapter such as the different phases of software engineering and software
development tools aimed to support that process. Second, the methodology and research
strategies are discussed. Third, the results of the study are presented. In the final part of
the thesis, we present a discussion on the properties of SDEs and the relationship to IT
education. Eventually, we conclude the thesis and provide some recommendations to
improve the IT curriculum.

���� 'HOLPLWDWLRQV� �

Only commercial software engineering tools have been studied. The scope is limited to
the tools that are used in the development and integration phases of the software
development life cycle.

 11

��� %DFNJURXQG�
�
�

 12

 13

In this chapter, we review the theory and literature of software development
engineering, and discuss the context of software development engineering in relation to
tool-usage in each software life cycle.

���� 7KH�VRIWZDUH�GHYHORSPHQW�OLIH�F\FOH�

Institute of Electrical and Electronics Engineers (IEEE) has developed a standard for
the software development process (IEEE 1074-1997). Their definition of the software
development process has been widely accepted in both industry and academia:
�

7KH�OLIH�F\FOH�RI�VRIWZDUH�V\VWHP�LV�QRUPDOO\�GHILQHG�DV�WKH�SHULRG�RI�WLPH�
WKDW� VWDUWV� ZKHQ� D� VRIWZDUH� SURGXFW� LV� FRQFHLYHG� DQG� HQGV� ZKHQ� WKH�
SURGXFW� LV� QR� ORQJHU�DYDLODEOH� IRU�XVH��7KLV� F\FOH� LV�EDVHG�RQ� ,(((�6WG�
������������DQG�FRQVLVWV�RI�D�FRQFHSW�SKDVH��UHTXLUHPHQWV�SKDVH��GHVLJQ�
SKDVH��LPSOHPHQWDWLRQ�SKDVH��WHVW�SKDVH��LQVWDOODWLRQ�DQG�FKHFNRXW�SKDVH��
RSHUDWLRQ� DQG� PDLQWHQDQFH� SKDVH�� DQG� UHWLUHPHQW� SKDVH� >,(((� 6WG�
���������@�
�

In this report, we follow parts of the IEEE 1074-1997 standard, and use the following
six stages of the development process in our discussion:

♦ Software requirement and analysis
♦ Software design
♦ Software construction
♦ Software testing
♦ Software configuration management
♦ Software documentation development

6RIWZDUH�UHTXLUHPHQW�DQG�DQDO\VLV�
In the software requirements phase engineering are concerned with the acquisition,
analysis, specification, validation, and management of software requirements.
Requirements analysis is the process of analyzing the requirements to detect and
resolve conflicts between requirements, discover the bounds of the system and how it
must interact with its environment, elaborate system requirements to software
requirements [IEEE Std 1074-1997].

6RIWZDUH�GHVLJQ�
Software design is the activity where software requirements are analyzed in order to
produce a description of the internal structure and organization of the system that will
serve as the basis for its construction. There are two basic activities: first, the overall
software architectural design is specified and the result is descriptions of the top-level

 14

organization of the system and its various components. That is, how the system is
organized into components as well as the interfaces between these components are
described. Second, each component is sufficiently described to allow for it’s coding
[IEEE Std 1074-1997].
�
Tools for software requirement and design help analysts to better express users
requirements, propose design solutions and analyze information for consistency,
completeness and integrity [Almstrum 2004]. The tools support analysts in the
following activities:

♦ Drawing, changing, and manipulation of diagrams
♦ Generating reports and documentation
♦ Develop prototypes for the purpose of requirement discovery or verification
♦ Model and describe a current information system
♦ Model and describe the requirements for a new information system
♦ Gather & structure requirements
♦ Generate stub-code

6RIWZDUH�FRQVWUXFWLRQ�
Software engineering: is the development of meaningful software through coding,
validation, and testing by a programmer. Software construction is, according to IEEE,
the following:

6RIWZDUH�FRQVWUXFWLRQ� LV�D� IXQGDPHQWDO�DFW�RI�VRIWZDUH�HQJLQHHULQJ��
WKH� FRQVWUXFWLRQ� RI� ZRUNLQJ� PHDQLQJIXO� VRIWZDUH� WKURXJK� D�
FRPELQDWLRQ� RI� FRGLQJ�� YDOLGDWLRQ�� DQG� WHVWLQJ� �XQLW� WHVWLQJ�� E\� D�
SURJUDPPHU�>,(((����������@��

Programming tools can help applications programmers and other system implements
improve their productivity and quality. These tools are intended for detailed design and
systems implementation and help programmers more quickly generate applications
software [Almstrum, 2004]. These tools help programmers to test and debug code.
Furthermore, they can be used to generate special parts of the system like the graphical
user interface and even generate complete applications.

6RIWZDUH�WHVWLQJ�
Testing conducted in an operational environment is used to determine whether a system
satisfies its acceptance criteria (i.e., initial requirements and current needs of its user)
and to enable the customer to determine whether to accept the system [IEEE Std
1012-1998]. There are two main tasks that are conducted in this phase:

♦ Validation

 15

Validation is the demonstration that the software implements
each of the software requirements correctly and completely. In
other words, the "right product was built" [IEEE Std
1012-1998].
�

♦ Verification
Verification is the activity that ensures the work products of a
given phase fully implement the inputs to that phase, or "the
product was built right" [IEEE Std 1012-1998].

�
Examples of testing tools are test generators; test execution frameworks, test evaluation
tools, test management tools, and performance analysis tools [Aaby, 2004].

6RIWZDUH�FRQILJXUDWLRQ�PDQDJHPHQW�
System configuration management (SCM) is used to handle the different components of
a system and in the final phase assemble it to a functional product. SCM is concerned
with the identification, organization and control of the software components known as
configurable items in a software system under a parallel development environment
[Chan & Hung 1997].
SCM tools can support configuration manager to defect, enhancement, issue and
problem tracking; version management; release and build [Aaby, 2004].

6RIWZDUH�GRFXPHQWDWLRQ�GHYHORSPHQW�
IEEE classified the documentation activities into two categories:

1. Implement documentation:

This activity includes the design, preparation, and maintenance of documentation.
Those documents that are identified in the documentation-planned information shall
be formulated in terms of audience, approach, content, structure, and graphics.

2. Produce and distribute documentation:
This activity shall provide the intended audience with the needed information that is
collected in the document, as specified in the documentation planned Information.
Document production and distribution can involve electronic file management,
paper document reproduction and distribution, or other media handling techniques.

�
�
�
�
�
�
�

 16

7DEOH����$FWLYLWLHV�LQ�WKH�VRIWZDUH�GHYHORSPHQW�SURFHVV��

�
Define and Develop Software Requirements
Define Interface Requirements

Requirement

Prioritize and Integrate Software
Requirements
Perform Architectural Design
Design Data Base (If Applicable)
Design Interfaces
Select or Develop Algorithms (If Applicable)

Design

Perform Detailed Design
Create Executable Code
Create Operating Documentation

Development
process

Construction

Perform Integration

Plan Verification and Validation
Execute Verification and validation Tasks
Collect and Analyze Metric Data
Plan Testing
Develop Test Requirements

Verification and
Validation
(testing)

Execute Tests
Plan Configuration Management
Develop Configuration Identification
Perform Configuration Control

Software
Configuration
Management

Perform Status Accounting
Plan Documentation
Implement Documentation

Document
Development

Produce and Distribute Documentation
Plan the Training Program
Develop Training Materials
Validate the Training Programs

Integration
Processes

Training

Implement the Training Program

�

���� 6RIWZDUH�GHYHORSPHQW�HQYLURQPHQWV�

Software development environments (SDEs) can be defined as D� VXLWH� RI�
FRPSXWHU�DLGHG�WRROV�GHVLJQHG�WR�VLPSOLI\�VRIWZDUH�GHYHORSPHQW�DQG�HQKDQFH�VRIWZDUH�
GHYHORSHUV¶� SURGXFWLYLW\. These tools are designed to support different development
phases. A key idea of SDEs is that every tool in the environment can communicate,
even thought they are developed to support different phases of the software

 17

development life cycle. IEEE has defined software engineering environments as:

7KH� KDUGZDUH�� VRIWZDUH�� DQG� ILUPZDUH� XVHG� WR� SHUIRUP� D� VRIWZDUH�
HQJLQHHULQJ� HIIRUW�� 7\SLFDO� HOHPHQWV� LQFOXGH� FRPSXWHU� HTXLSPHQW��
FRPSLOHUV�� DVVHPEOHUV�� RSHUDWLQJ� V\VWHPV�� GHEXJJHUV�� VLPXODWRUV��
HPXODWRUV�� WHVW� WRROV�� GRFXPHQWDWLRQ� WRROV�� DQG� GDWDEDVH� PDQDJHPHQW�
V\VWHPV�>,(((�6WG����������@�� �

Supporting the development process also means supporting the development and
maintenance of all kinds of documents such as requirements specifications, software
architecture descriptions, code listings, manuals, and technical documentations. The
ultimate goal of such a tool set is to improve the quality of the final product, to support
reuse in and across software projects, and, last but not least, to free developers from
routine work [Engels et al. 1992].

&$6(�WRROV�
Starting with the construction of syntax-directed editors for programming languages in
the 70’s, a technology has emerged that enables building not only editors supporting
particular kinds of graphical and textual input, but all sorts of document tools, including
static analyzers, incremental compilers, browsers, debuggers, and so on [Engels et al.
1992].

Computer-aided software engineering tools (CASE tools) are used to support the
software engineering process. This class of tools includes support activities such as
software design, requirements specification, code tracing, code production, testing,
document generation [IEEE Std 1348-1995].

González (2004) has stated that the real power of CASE can only be achieved through
integration. Ideally, CASE tools should:

♦ Provide a way to share information between the tools in the environment
♦ Allow detecting changes in the information elements related
♦ Provide the control to different versions
♦ Allow direct access to any of the tools
♦ Allow integration of procedures and tools in a structure for decomposition
♦ Keep consistency in the look and interaction with the interface
♦ Support communication among software engineers
♦ Keep tools and techniques together to improve the process and product.

 18

,QWHJUDWHG�VRIWZDUH�GHYHORSPHQW�HQYLURQPHQWV�
Integrated software development environments (ISDE) are a suite of CASE tools,
which aim to support the tasks of each software development phase. In Figure 1, we see
part of the waterfall model [Pfleeger 2001, Sommerville 2001], and visualize how
different CASE tools support each development process in the waterfall.

�
�
�
�
�
�
�
�
�
�
�
�
�

)LJXUH����,QWHJUDWHG�VRIWZDUH�GHYHORSPHQW�HQYLURQPHQWV�

�
Integration means that tools can communicate and collaborate with other tools used
within different development phases. What is most important is that the tools can
support at least two consecutive phases of software development, and communicate
with the tools that are involved in these consecutive phases. Data generated from a tool
in an early phase should be re-used in the following phase by another development tool.
For example, an analysis tool could generate data from the requirements phase and the
results from that activity could be used as input to the design tools in a later phase.
Similarly, documents generated by the tools from each phase, should be available to
tools used in the consecutive development phases.

5HTXLUHPHQWV�

'HVLJQ�

6SHFLILFDWLRQV�

&RGLQJ�

7HVWLQJ�

'RFXPHQWDWLRQ�

$QDO\VLV�WRROV�

'HVLJQ�WRROV�

&RGH�WRROV�

7HVW�WRROV�

'RFXPHQW�

WRROV�

6RIWZDUH�

&RQILJXUDWLRQ�
&0�WRROV�

 19

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��� 0HWKRG�
�

 20

 21

In this chapter, we explain the main research strategies and methods used in this work.

���� 5HVHDUFK�6WUDWHJ\�

4XDOLWDWLYH�UHVHDUFK�PHWKRGV� �
Qualitative research was developed in the social sciences to enable researchers to
understand social and cultural phenomena. Examples of qualitative methods are action
research, case study research, and ethnography. Qualitative data sources include
observation and participant observation (fieldwork), interviews and questionnaires
together with the researcher’s impressions and reactions. [MISQ Discovery, Dec. 1998].
Qualitative methods are often used when it is not meaningful to express the collected
data in numbers [Lekvall & Wahlbin, 1993].

6XUYH\V�
Surveys can be divided into two broad categories: the questionnaire and the interview
[Trochim, 2003]. Questionnaires are paper-and-pencil instruments that the respondent
completes. Interviews can be said to be data collected and completed by the interviewer
based on what the respondent says. It is difficult to draw a firm line between a
questionnaire and an interview. For instance, some people think that questionnaires
always ask short closed-ended questions while interviews always ask broad open-ended
ones. However, questionnaires can also have with open-ended questions (although they
do tend to be shorter than in interviews) [Trochim 2003].

�

���� 'DWD�FROOHFWLRQ�

3ULPDU\�DQG�VHFRQGDU\�GDWD�VRXUFHV�
Data can be classified into two broad types -primary and secondary data. Primary data
is information collected directly from the source. Secondary data, on the other hand, is
collected through indirect sources (and possible interpreted by others) [Lekvall &
Wahlbin 1993]. Primary data can be collected through interviews, experiments, or
observations from real social interactions [ibid.]. Secondary data is collected and
compiled for other purposes. Examples of secondary data sources are Internet, books,
articles and annual reports. Regardless what kind of source is used it is very important
to consider precision, validity, reliability and relevance of the data in relation to the
purpose and problem statements of the research [Lundahl & Skärvad, 1999].

In this study, we have used a survey to understand the use of software engineering
technology used in the development process. The collected data from the survey is
considered to be primary data.

 22

4XHVWLRQQDLUH�GHVLJQ�
The questionnaire was divided into two parts. The first part (Section A) included
general questions such as the characteristics of individuals and their organizations. The
second part (Section B) intended to cover specific topics related to the respondents tools
use.

6XUYH\�LPSOHPHQWDWLRQ�
The survey is limited in companies in Sweden. The respondents’ organizations are
commercial IT companies that works in the IT and telecom sectors, primarily. We sent
out 90 copies of the questionnaire form. Data collection started in December 2003, and
was ended in January 2004.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

 23

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���5HVXOWV�

 24

 25

In this chapter, we will present the survey results. The chapter is divided into two parts.
Part one discusses the background data of the study such as response rate and
characteristics of respondents and organizations. Part two covers software development
environments that are used today.

���� 5HVSRQVH�UDWH�DQG�FKDUDFWHULVWLFV�RI�UHVSRQGHQWV�

The questionnaire was sent out to 90 software developers and IT managers of 30 IT
companies in Sweden. The response rate was 60 percent; we got 51 questionnaires back
from 22 companies. The Figure 2 shows the response rate.

sent out

f eedback Number s of
company

Number s of
par t i ci pant

0

10

20

30

40

50

60

70

80

90

Figure 2. The response rate of the survey

Most respondents were programmers. Figure 3 indicates that more than half of the
respondents are programmer. On the other hand, too few people are work as analyst,
designer, tester, and technical writer. Most of the respondents have 5 to 10 years of
software development experience, and work in the telecom industry.

 26

0 5 10 15 20 25

Programmer

Analyst

Designer

Tester

Technical writer

Figure 3. Job title of respondents

���� 7RGD\¶V�VRIWZDUH�GHYHORSPHQW�HQYLURQPHQWV� �

We found that the respondents used 57 different tools-suites. Out of these tools, 36
were commercially developed tool-suites, and 21 tools-suites were developed as part of
an open source effort. For a description of these tools, see Appendix 2.

3RSXODU�SODWIRUPV�IRU�VRIWZDUH�GHYHORSPHQW�
The respondents state that the Microsoft is the most popular brand, which could
indicate that the Microsoft Windows is the leading platform in the software
development industry. Additionally, more and more developers appear to use open
source software such as GNU, which are mainly based on Unix or Linux platform.

8VHG�SURJUDPPLQJ�ODQJXDJHV�
We found that C and C++ are most widely used programming languages today.
Figure 4 shows the distribution of the programming languages. As we can see, Java is
also a popular language, however, still not as common as the C family. Although not
present in the figure, we also found that programmers use other languages such as
Cobol, Fortran, JAVA Script, HTML/XML, squeak, Ada, PHP (scripting), ANTLR,
and Python, etc.

 27

0

2

4

6

8

10

12

14

16

18

C / C++ C-sharp JAVA Delphi Perl Visual
Basic

Erlang PL/SQL

Figure 4. Programming languages used by respondents

�

�

5HTXLUHPHQW�DQDO\VLV�DQG�GHVLJQ�WRROV�
Regarding tools for requirement analysis and design, we found that our respondents
generally find these tools to be very supportive. As shown in Figure 5-1, the
requirement analysis and design tools aid developers to define the project scope and
system boundaries. They also state that the tool have excellent capability to model and
describe a current/new information system. RADT are lack of the functions of
developing prototypes for the purpose of requirement discovery and verification, as
well as many defects in groupware &collaboration. Figure 5-2 shows that the
developers find the tools easy to use. The distance between the two points in two lines
respectively, the larger the better

 28

0

1

2

3

4

5

6

7

8

9

D/C/M/D G/R/D DPORV DPSSB MDCIS MDNIS GSR GSC

Sum of P&F Sum of G&V&E

Figure 5-1. The perceived capabilities of requirement analysis
and design tools

0

2

4

6

8

10

12

Reliability Ease of use Traceability GCS

Sum of P&F Sum of G&V&E

Figure 5-2. The perceived capabilities of requirement analysis
and design tools

SUM of G&V&E: very

good and excellent levels

SUM of P&F: Poor and

Fair levels

SUM of G&V&E: very

good and excellent levels

SUM of P&F: Poor and

Fair levels

GCS: Groupware

&collaboration support

D/C/M/D: Drawing, changing, and manipulation of diagrams

G/R/D: Generating reports and documentation

DPORV: Develop prototypes for the purpose of requirement discovery or verification

DPSSB: Define project scope and system boundaries

MDCIS: Model and describe a current information system

MDNIS: Model and describe the requirements for a new information system

GSR: Gather & structure requirement

GSC: Generate stub-code

 29

�

7HVW�WRROV� �
Developers are generally displeased with their test tools, in particular, tools for system
testing. However, as Figure 6 show, the respondents are pleased with their tools for unit
testing, module testing, and integration testing. The test tools are easy to use, but
traceability capability is a significant lack. The distance between the two points in two
lines respectively, the larger the better

0

1

2

3

4

5

6

7

8

Unit
 te

sti
ng

M
od

ule
 te

sti
ng

In
te

gr
at

ion
 te

st

Sys
te

m
 te

sti
ng

W
hit

e/
bla

ck
-b

ox
 te

sti
ng

Gen
er

at
ion

 o
f t

es
t d

at
a

Deb
ug

gin
g

Sim
ula

tio
n

Reli
ab

ilit
y

Eas
e

of
 u

se

Tra
ce

ab
ilit

y

Doc
um

en
ta

tio
n

Gro
up

war
e

&co
lla

bo
ra

tio
n

su
pp

or
t

Sum of P&F Sum of G&V&E

Figure 6. The perceived capabilities of the test tools

'RFXPHQWDWLRQ�WRROV�
There are few specially designed tools for documentation of software projects. Figure 7
shows that the documentation tools are ease of use, but they lack basic functions to
visualize the software project and means to trace between software artifacts. The tools
do not support appropriately links between code and the related documentation. The
tools are insufficient for editing and browsing complex and large documents. The
distance between the two points in two lines respectively, the larger the better.

SUM of G&V&E:

very good and

excellent levels

SUM of P&F:

Poor and Fair

levels

 30

0

1

2

3

4

5

6

7

8

9

Cre
at

e
do

cu
m

en
ts

Doc
um

en
t e

dit
ing

Doc
um

en
t b

ro
wsin

g

Gra
ph

ic
su

pp
or

t

Reli
ab

ilit
y

Tra
ce

ab
ilit

y

Eas
e

of
 u

se
GCS

Sum of P&F Sum of G&V&E

Figure 7. The perceived capabilities of the documentation tools

�

1HHGHG�VXSSRUW�DQG�XVHU�VDWLVIDFWLRQ�
We asked what support the developers needed in the future. Figure 9 indicates that
version control is a highly needed feature of future SDEs. Needed are also program
analysis tools, traceability tools, and code/module visualization tools. Moreover, we
found that the respondents seem not to be aware of the importance of groupware and
collaboration support, which is surprising. Furthermore, several respondents state that
they need some special features such as model-based development, code generation,
performance measurements, and more speedy environments.
In the figure, the distance between the two points in two lines respectively, the larger
the better.

SUM of G&V&E:

very good and

excellent levels

SUM of P&F:

Poor and Fair

levels

 31

0

10

20

30

40

50

60

C
od

e/
m

od
ul

e
vi

su
al

iz
at

io
n

to
ol

s

G
ro

up
w

ar
e

&
co

lla
bo

ra
tio

n
su

pp
or

t
(I

nt
eg

ra
tio

n)

P
ro

ce
ss

 to
ol

s
fo

r
m

an
ag

em
en

t

V
er

si
on

co
nt

ro
l

P
ro

gr
am

A
na

ly
si

s
T

oo
ls

T
ra

ce
ab

ili
ty

to
ol

s

SUM E&V&I SUM UI&NA

Figure 9. Tools needed in the future

The developer are generally pleased with their tools but not fully content. Figure 9
shows the distribution of the user satisfaction.

0

5

10

15

20

25

Poor 1p Fair 2p Good 3p Very good 4p Excellent 5p

Figure 10. Degree of user satisfaction for software development environments

�

�

�
�
�

�

SUM of E&V&I:

Perceived by the

respondents as

being extremely

important, very

important and

important.

SUM of UI&NA:

Unimportant and

NA

 32

 33

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��� 'LVFXVVLRQ�

 34

 35

This chapter discusses what SDEs that are used today, and their advantages and
disadvantages as it were perceived by respondents. We also discuss requirements on
future the SDEs as well as pondering issues of university-level IT education to better
suit the needs of the IT industry.

���� &RPPHUFLDO�VRIWZDUH�GHYHORSPHQW�WRROV�XVHG�WRGD\� �

5HTXLUHPHQW�DQDO\VLV�DQG�GHVLJQ�WRROV�
Most commercial requirement analysis and design (RAD) tools are well known to the
respondents, such as tool-suits, IBM Rational Rose. The designers think that current
RAD tools provide first-rate support to go from requirements to actual code, and the
tools also aid the traceability process sufficiently. For most part, these tools also
provide several ways to visualize the software project, which make it easier for the
developers to focus on architecture and design. They have comprehensive packages for
requirement analysis; however, they lack specific functionality for gathering
requirements. Additionally, code and stub generation as well as simulation functionality
are limited, and SDEs are complex and powerful systems, which makes them difficult
for new users to learn.

&RQVWUXFWLRQ�WRROV� �
Tools for code construction (CC) tools, naturally, are aimed at programming and coding.
Examples of such tool are IBM WebSphere Studio Application Developer and
Microsoft Visual Studio. Most of the respondents report that today’s CC tools are quite
good, such as editors, compilers, and debuggers. They endow sufficient functionality
for different programming tasks. They are flexible and intuitive to use, and this means
that programmers can work efficiently with different projects simultaneously. Some
tools provide rich features for rapid GUI development, code generation and swift
navigation. However, the users report that such advanced features are difficult to use.

7HVW�WRROV�
The study surveyed the properties of tools that support the testing phase. Examples of
such tools are IBM Rational Team Unifying Platform, IBM Rational TestManager, and
Borland Optimizeit Enterprise Suite. Many testers state that their testing tools are
inadequate, and that there is significant demand to improve the test tools. Current test
tools are easy to integrate and to use with other tools from different vendors. However,
using these tools is very time-consuming. For example, it takes a lot of effort to perform
a full test iteration of a system and to fit it to the environment to the right conditions.
This problem makes these kinds of test systems expensive to adapt.

�

 36

'RFXPHQWDWLRQ�WRROV�
Software engineers use well-known tools like Microsoft Word or Adobe Acrobat to
document their efforts. Since these tools are developed for general writing, they are not
suitable for professional software documentation. For example, they lack basic
functions to visualize the software project and means to trace and browse between
software artifacts. That is, the tools do not support links between code, the related
documentation, and the design diagrams. Furthermore, the tools they use are
insufficient when it comes to edit and browse complex and large documents. To
conclude, most technical writers think that there are very few good tools for integrated
documentation.

$�QRWH�RQ�RSHQ�VRXUFH�VRIWZDUH�GHYHORSPHQW�WRROV�
Currently, free software development tools are being developed and distributed. For
example, the Eclipse project at IBM has generated a widely acclaimed suit of tools.
More and more developers have started to use open source software development tools.
Our study substantiates this claim. We found that respondents use open source tools, at
least partially. The reason why they adapt open source software is that the source code
is available but the tools are also free. However, the open source tools have many
disadvantages such as bugs. Additionally, such tools are often immature and do not
support industry-standards like the rational unified process (RUP). Furthermore, they
are poor at visualizing code, and provide limited support for modeling, version control,
and refactoring.
To conclude, open source development tools seem to be immature and, at present, not
sufficiently good for commercial adapt in the software industry. Nonetheless, the
respondents regard open source software development tools as important software
development tools in the future.

���� 5HTXLUHPHQWV�RQ�IXWXUH�WRROV�

General problems of today’s SDEs are largely due to integration problems, issues of
automation, and configuration management. Let us discuss these issues in detail, and
how we might improve the tools.

������7RRO�LQWHJUDWLRQ�DQG�LQWHJUDWHG�GHYHORSPHQW�HQYLURQPHQWV�
Figure 8 shows that developer consider integration between tools to be a very important
property as well as means to support collaboration between group members.
Interestingly, although they say that they have problems with their integration processes
and tools, they seem to be unaware that today’s IDEs can solve many of such problems.
Thus, it can be assumed that respondents have limited knowledge on current IDEs and
their capabilities, and also software development processes such as the rational unified

 37

process [Kruchten 2000].

0

10

20

30

40

50

60
C

od
e/

m
od

ul
e

vi
su

al
iz

at
io

n
to

ol
s

G
ro

up
w

ar
e

&
co

lla
bo

ra
tio

n
su

pp
or

t
(I

nt
eg

ra
tio

n)

P
ro

ce
ss

 to
ol

s
fo

r
m

an
ag

em
en

t

V
er

si
on

co
nt

ro
l

P
ro

gr
am

A
na

ly
si

s
T

oo
ls

T
ra

ce
ab

ili
ty

to
ol

s

SUM E&V&I SUM UI&NA

Figure 8. Tools needed in the future

When we asked what tools they need in the future, the majority of participants state that
their ultimate goal is a complete, integrated, and automated “all-in-one” tool-suite that
supports the whole software development lifecycle. For example, this requirement is
shown in the questionnaire in two ways: First, respondents report on communication
and collaboration problems between project personnel. From the developers’ point of
view, they feel that few developers use the same professional functions in the tools in
the same stage. It is difficult to share information with others during development, e.g.
to communicate views and visualization possibilities. Second, interoperability
difficulties exist among the tools, which results in problems of version control and
modeling, and hampers the requirements analysis process.

From our point of view, future tools, in order to work effectively, need to address the
whole software life cycle and should provide better means to integrate different
software artifacts, and must also support collaboration between project members.
Additionally, we need better integration among the tools so that they can communicate
and share files (that is, share common project resources such as code and documents
across tools and environments). This is also an important requirement to support
collaboration between different personnel. This problem can be solved if the vendors
adopt common standards like XML to let tools easily share files and information in the
different stages of the development process. Regarding collaboration, a solution could
be to integrate groupware like Lotus Notes into the development environments, to
facilitate communication about the software artifacts in the team.

SUM of E&V&I:

Perceived by the

respondents as

being extremely

important, very

important and

important.

SUM of UI&NA:

Unimportant and

NA

 38

������$XWRPDWLRQ�VXSSRUW�DQG�WKH�&$6(�WRROV�
Many tools seem to lack automation support such as automatic workflow management
and generation of manuals. On the other hand, advanced features can be too
sophisticated. For instance, some tools are provide too much automation and this can
result in that users looses control the processes. For example, automatic code generators
can create code that is difficult to understand. Consequently, such tools are not always
easy to use. Also, such advance features can have a steep learning curve.

Several companies, in our study, used a number of CASE tools to aid them in their
work. For example, automated analysis and design tools, automated testing tools, and
automated configuration tools. We found that the project members believed that the
CASE tools were critical to their projects’ success. Generally, they believe that the
CASE tools could be improved, easier to use, and also customizable to suit different
projects.

������6\VWHP�FRQILJXUDWLRQ�PDQDJHPHQW�
System configuration management tools (SCM) are used to administrate all
configurable software items of which could be description of items, linkages among
them, and to track interdependencies.

In our study, most of the project personnel consider SCM as an essential technology in
the construction phase. Furthermore, the respondents state that they need better support
for version control (VC tools) that are part of the SCM environments. Version control is
the ability to store multiple versions of the same file under controlled, restricted-access
conditions [Buckley 1994]. In our study, the respondents think that a major deficiency
of today’s VC tools is due to bad integration, which results in poor interoperability
among the different components and modules. That is, they need one tool for managing
the version control of all software artifacts of a project. As we have mentioned earlier,
configuration manager think that it is important that the different SCMs could
communicate. Moreover, version control and system configuration become a more and
more important task because the developed systems are getting more complex. Finally,
we found that many software developers seem to be unaware of the many possibilities
of modern SCM tools. They know that SCM tools can be used for version control, but
seem to be uninformed of that these tools can provide transaction management, change
request tracking, system modeling, derived object pools, and problem reporting.

To conclude, most project personnel found that current tools for version control (VC)
and SCM are clumsy and inefficient. Full-blown version control systems and mature
SCM tools are considered to be highly needed in the near future.

Concerning today’s SDEs, needed are more mature tools that approach the integration
problems and provide better automation and configuration management.

 39

���� 5HFRPPHQGDWLRQV�IRU�WKH�,7�HGXFDWLRQ�

To properly motivate the student, it is necessary to provide meaningful real-world tasks
and tools. However, it is often difficult to create such natural tasks within a university
environment [Linders & vanCleemput 1974].

Many respondents in our study recommended typical software and tools-suits and also
design methodology that they think should be part of the IT education. Technically,
designers recommended improvements to the education on the pre-coding phase, such
as modeling and design tasks. For example, a widely used design methodology in the
industry is the Rational Unified Process (RUP) [Jacobson 1994]. They think that the
curriculum should include courses on RUP. On the practical side, they also
recommended ways to think and deal with reasoning, branches and labels on files in big
software projects. Regarding tools, they think that tools for code browsing, code
documentation, refactoring, and configuration management such as intelliJ IDEA,
Eclipse, VCS and others should be included in the courses as a natural part.
Additionally, many respondents think that some courses should approach and cover all
aspects of the software development lifecycle (from initial design to maintenance tasks)
and also include tools that can support such complex development activities.

To conclude, developers seem to have deficient knowledge on commercially-used
methodologies and development processes such as RUP when they graduate.
Furthermore, to achieve the skills and methodology of it, we do need to improve our
education and IT Course. Moreover, the IT education would gain from putting more
emphasis on early phases such as modeling and design (for large software projects).
This requirement particularly applies to the non civil engineer courses (that is, not only
the advanced computer science curriculum). Moreover, to improve the students’
technical skills of configuration management and version control system one could
include some lessons and tools on that in the education.

���� 6WXG\�OLPLWDWLRQV�

Every study has its limitations. The data set could potentially be misleading because
many respondents work within the telecom area. This could result in that special
demands where proposed in the questionnaire. These companies have to manage large
software projects and this fact could appear in the answers. Additionally, the survey
was conducted in Sweden, which could have some effects on the final result.

The study was focusing on commercial tools exclusively. However, many respondents
discussed also open source software development tools. We omitted these tools in our
analysis. The primary investigator needs a better understanding of the qualitative
research paradigm. Such knowledge could be used to improve the study to include

 40

additional interviews in order to understand the respondents’ problems more deeply.

 41

��� &RQFOXVLRQ�

 42

 43

This study surveyed the use of commercial software development tools in the IT
industry. This chapter concludes the study, provides a set of requirements on future
development tools, and gives suggestions to improve the university-level education on
software engineering tools.

���� 0DLQ�ILQGLQJV�

At present, according to our questionnaire, the most used integrated commercial
environments are generally from vendors like IBM, Microsoft, Borland, and Sun
Microsystems. For instance, IBM Rational Rose is the most accepted integrated
development environment. Popular tools that support parts of the software development
cycle are IBM WebSphere Studio Application Developer, IBM TestManager, and IBM
Rational SCM solutions (includes IBM Rational ClearCase and IBM Rational
ClearQuest). Documentation tools are mainly provided by Microsoft (e.g., the Office
environment). Other tools that are used for documentation are Adobe and Visio.
Moreover, respondents report that they are using open source tools for different tasks of
the development phase. Open source communities like GNU org, Erlang org, Squeak
org, Eclipse org, Junit org, CVS org, Apache org, and Mozilla org mainly provide open
source software.

Professional software developers are not fully satisfied with their current software
development environments although their systems provide good support in many
respects. Generally, the programming and coding tools are perceived to be very good.
The apparent disadvantages are related to bad integration among different tools, which
results in difficulties in using different tools for a project. Additionally, respondents
believe that documentation tools are insufficient in many respects, in particular, they
lack support for visualizing, and relating documents to the actual software artifacts (i.e.,
a traceability problem).

A general problem of today’s programming practice is that different tools are used in
different phases of the programming life cycle. For most part, these tools cannot
communicate with each other, which makes it difficult to integrate various software
artifacts into a functional system. Thus, we conclude that the future software
development environments need to better support integration, automation, and
configuration management. It would gain from more mature tools and standards to
facilitate the integration process.

Regarding the required IT education, we saw that developers need more knowledge of
professional software development process per se. The different phases and how it is
done in practice. For example, respondents would like to have courses on industry
standards and methods like the Rational Unified Process. Furthermore, IT curriculum
would gain from including also commercial tools in the courses, not only the open
source tools so frequently used in the education today. Additionally, the view is that

 44

courses should focus on the entire product life cycle, not only single development
phases but also have commercial tools that cover the whole software product lifecycle.
Moreover, we should put more emphasis on the early phases of the product life cycle,
that is, modeling and design. Additionally, courses on techniques and methodologies
for configuration management and version control should be beneficial to the industry.
An overall conclusion is that integrated software development environment that use
established development processes used in the industry (e.g., RUP) should be included
in the curriculum.

����)XWXUH�ZRUN� �

This study did not focus on open source software development tools. However, our
view is that studies of such tools would be beneficial. The IT industry is very interested
into adopting open source software into their software development processes. This is
probably due to that these tools are inexpensive. However, this study has shown that
these are many problems with open source tools, in particular, related to the integration
among the tools. Consequently, knowledge is needed on new methods and technologies
for integrating the open source tools and software artifacts. Therefore, open source is
also my main avenue for further research.

 45

5HIHUHQFHV�

 46

 47

Buckley F.J., ,PSOHPHQWLQJ�D�VRIWZDUH�FRQILJXUDWLRQ�PDQDJHPHQW�HQYLURQPHQW��
IEEE Computer, Volume: 27, Issue: 2, Feb. 1994.

Bell D., 6RIWZDUH� (QJLQHHULQJ�� $� SURJUDPPLQJ� DSSURDFK� Pearson Addison
Wesley, 3rd edition, 2000.

Chikofsky E.J.; Rubenstein B.L., &$6(��UHOLDELOLW\�HQJLQHHULQJ�IRU�LQIRUPDWLRQ�
V\VWHPV� IEEE Software, Volume: 5, Issue: 2, March 1988.

Chan A.K.F, Hung S-I, 6RIWZDUH� FRQILJXUDWLRQ� PDQDJHPHQW� WRROV�� 6RIWZDUH�
7HFKQRORJ\� DQG� (QJLQHHULQJ� 3UDFWLFH� 1997. Proceedings. Eighth IEEE
International Workshop on incorporating Computer Aided Software
Engineering, 14-18 July 1997.

Conner WM, De Jong KA, 7KH� DFDGHPLF�LQGXVWU\� JDS� LQ� V\VWHPV�
SURJUDPPLQJ� DQG� RSHUDWLQJ� V\VWHPV� Proceedings of the 10th SIGCSE
technical symposium on Computer science education, ACM SIGCSE Bulletin,
Volume 11 Issue 1. January 1979.

Dart SA, 7KH� 3DVW�� 3UHVHQW�� DQG�)XWXUH� RI� &RQILJXUDWLRQ� 0DQDJHPHQW�
published in the Proceedings of the IFIP World Congress, Madrid Spain,
September 1992.

Engels G, Lewerentz C, Nagl M, Schäfer W, Schürr A, %XLOGLQJ� LQWHJUDWHG�
VRIWZDUH� GHYHORSPHQW� HQYLURQPHQWV�� 3DUW� ,�� WRRO� VSHFLILFDWLRQ� ACM
Transactions on Software Engineering and Methodology (TOSEM), Volume 1
Issue 2, April 1992.

Granger MJ, Pick RA, 7KH�LPSDFW�RI�FRPSXWHU�DLGHG�VRIWZDUH�HQJLQHHULQJ�RQ�
VWXGHQW� SHUIRUPDQFH, Proceedings of the 22nd SIGCSE technical symposium
on Computer science education, ACM SIGCSE Bulletin, Volume 23, Issue 1
March 1991.

Hapke M, Jaszkiewicz A, Kowalczykiewicz A, Weiss D, Zielniewicz P,
23+(/,$� 6RIWZDUH� 'HYHORSPHQW� 7RROV� ,QWHJUDWLRQ� 7HFKQRORJ\, Poznan
University of Technology, 2000

Kurt C. Wallnau, Peter H. Feiler, 7RRO� ,QWHJUDWLRQ� DQG� (QYLURQPHQW�
$UFKLWHFWXUHV� SEI/CUM press, May 1991.

Kruchten P, 7KH�5DWLRQDO�8QLILHG�3URFHVV��$Q�,QWURGXFWLRQ� Addison-Wesley,
2000.

Linders JG, van Cleemput W.M., 'HVLJQ�$XWRPDWLRQ� LQ�D�&RPSXWHU�6FLHQFH�

 48

&XUULFXOXP� ����³7KH�1HHG�IRU�,QWHUDFWLRQ�%HWZHHQ�,QGXVWU\�DQG�8QLYHUVLWLHV´�
ACM press, January 1974

Lawrence Pfleeger S, 6RIWZDUH� (QJLQHHULQJ�� 7KHRU\� DQG� SUDFWLFH� Prentice
Hall, 2nd Edition, 2001

Myers MD, 4XDOLWDWLYH�5HVHDUFK�LQ�,QIRUPDWLRQ�6\VWHPV, published in MISQ
Discovery, June 1997

Norman, R.J., and Nunamaker, J.F. ,QWHJUDWHG� 'HYHORSPHQW� (QYLURQPHQWV��
7HFKQRORJLFDO�DQG�%HKDYLRUDO�3URGXFWLYLW\�3HUFHSWLRQV� Hawaii International
Conference on Systems Sciences 1989. ACM press.

Sommerville I, 6RIWZDUH�(QJLQHHULQJ��Addison-Wesley, 2000.

Wallnau KC, ,VVXHV�DQG�7HFKQLTXHV�RI�&$6(�,QWHJUDWLRQ�ZLWK�&RQILJXUDWLRQ�
0DQDJHPHQW� CMU/SEI press, 1992.

 49

,(((�6WDQGDUGV�

IEEE Std 1074-1997 IEEE Standard for Developing Software Life Cycle
Processes

IEEE Std 610.12-1990 IEEE Standard Glossary of Software Engineering
Terminology

IEEE Std 830-1998 IEEE Recommended Practice for Software
Requirements Documentation

IEEE Std 1012-1998 IEEE Standard for Software Verification and
Validation

IEEE Std 1348-1995 IEEE Recommended Practice for the Adoption of
Computer-Aided Software Engineering (CASE)
Tools

IEEE Std 828-1998 IEEE Standard for Software Configuration
Management Plans

IEEE Std 830-1998 IEEE Recommended Practice for Software
Requirements Specifications

IEEE Std 1016-1998 IEEE Recommended Practice for Software Design
Descriptions

IEEE Std 1063-2001 IEEE Standard for Software User Documentation
IEEE Std 1219-1998 IEEE Standard for Software Maintenance

�

(OHFWURQLF�6RXUFHV�

http://cs.wwc.edu/~aabyan/ (Anthony Aaby, Professor of Computer Science, Walla
Walla College class home page)
http://www.cs.utexas.edu/users/almstrum/cs370/tlee/r4.htm (Dr. Vicki L. Almstrum,
professor at the University of Texas at Austin, class home page)
http://user.it.uu.se/~almstrum
http://www.cse.psu.edu/~lambert/420/big/node92.html
http://pathbridge.net/chikofsky
http://www.andrew.cmu.edu/user/conzalez/Teaching/ISW2/caseintro.html
(Cleotilde (Coty) González, Assistant Professor, Department of Social and
Decision Sciences, Carnegie Mellon University, class home page)
http://www.apa.org/
http://www.refactoring.com
http://www.isworld.org/surveyinstruments/surveyinstruments.htm
http://trochim.human.cornell.edu/kb/ (William M. Trochim, Cornell University)
http://www.ibm.com
http://www-306.ibm.com/software/rational/
http://www.microsoft.com/office/prodinfo.mspx

 50

http://www.telelogic.com/
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vbasic/
http://msdn.microsoft.com/vcsharp
http://www.borland.com
http://www.borland.com/starteam/
http://developers.sun.com/prodtech/javatools/index.html
http://otn.oracle.com/tech/pl_sql/index.html
http://www.borland.com/optimizeit
http://www.adobe.com/products/main.html
http://java.sun.com/j2se/javadoc/index.jsp
http://www.gnu.org/
http://www.xemacs.org
http://www.erlang.org
http://www.squeak.org
http://www.eclipse.org
http://www.junit.org/index.htm
http://www.cvshome.org
http://www.apache.org
http://www.php.net/
http://www.mozilla.org
http://www.ultraedit.com
http://www.doxygen.org
http://docpp.sourceforge.net

 51

$SSHQGL[� ��� 6XUYH\� 4XHVWLRQQDLUH�

 52

 53

6HFWLRQ�$��*HQHUDO�4XHVWLRQV�

Participant
Name:

Organization:

Address:

Email
Address:

Business
phone:

��� :KDW�LV�\RXU�MRE�WLWOH"�
� � �

Programmer � Trainer � Product manager �

Analyst � Technical writer � Manager �

Designer � Consultant � Project leader �

Tester � Other (specify):

� �

��� +RZ�PDQ\�\HDUV�RI�VRIWZDUH�GHYHORSPHQW�H[SHULHQFH�GR�\RX�KDYH"�
�

1-2years 2-5 years 5-10years 10-15 years over 15 years NA �

��� :KDW�W\SH�RI�DSSOLFDWLRQV�GR�\RX�GHYHORS"�
�

Telecom Chemical/health Scientific

Transportation Electronic Aerospace

Finance/bank Other (specify):

����

��� :KDW�W\SH�RI�RUJDQL]DWLRQ�GR�\RX�ZRUN�ZLWKLQ"�
�

Commercial Government Academic Other (specify):_________

 54

�
��� 'R�\RX�XVH"��%UDQG�RI�WKH�VRIWZDUH�GHYHORSPHQW�WRROV��

)UHTXHQWO\� 2IWHQ� 6RPHWLPH� 6HOGRP� 1HYHU�

Microsoft

IBM

Intel

Macromedia

Borland

SUN

Apple

Oracle

Others:

�
�
��� :KDW�VXSSRUWV�GR�\RX�ORRNLQJ�IRU�LQ�WKH�IXWXUH"� �
�

� ([WUHPHO\�

,PSRUWDQW� �

9HU\�

,PSRUWDQW�

,PSRUWDQW� 8QLPSRUWDQW� 1$�

Code/module visualization

tools

Groupware &collaboration

support (Integration)

Process tools for

management

Version control

Program Analysis Tools

Traceability tools

Others:________________

��� 'HVFULEH� WKH� PDLQ� SUREOHPV� WKDW� \RX� H[SHULHQFH� ZLWK� \RXU� VRIWZDUH� GHYHORSPHQW�

WRROV"�
�

Problem1:

Problem 2:

Problem 3:

 55

�
�
�

�
��� 2YHUDOO��KRZ�GR�\RX�UDWH�WKH�SURJUDPPLQJ�HQYLURQPHQWV�WRROV�WKDW�\RX�DUH�XVLQJ�LQ�

\RXU�ZRUN"� �
�

3RRU�
�

)DLU�
�

*RRG�
�

9HU\�JRRG�
�

([FHOOHQW�
�

� � � � �
�
�

��� :KDW� VRIWZDUH� WRROV� DQG�PHWKRGRORJLHV�NQRZOHGJH�DUH�PLVVLQJ�� LQ� \RXU�YLHZ�� LQ� WKH�
XQLYHUVLW\�OHYHO�,7�FRXUVHV"��)UHH�WH[W��

�
BBB�
�
BBB�

 56

6HFWLRQ�%��6RIWZDUH�'HYHORSPHQW�(QYLURQPHQWV�LQ�VRIWZDUH�GHYHORSPHQW�SURFHVV�

,QVWUXFWLRQ�� �

,QGLFDWH�\RXU�UROH�LQ�WKH�VRIWZDUH�GHYHORSPHQW�WHDP�� �

/HDYH�RXW�WKH�SDUWV�WKDW�GR�QRW�DSSO\�WR�\RXU�UROH��

)RU�H[DPSOH��LI �\RX�DUH�D�SURJUDPPHU��\RX�FDQ�GLUHFWO\�JR�WR�3DUW����3DJH����

$QDO\VW�	�'HVLJQHU«��

�

�

� 3DUW���7RROV�IRU�5HTXLUHPHQW�$QDO\VLV�'HVLJQ���� � 3DJH���

3URJUDPPHU«««««�

�

�

� 3DUW����7RROV�IRU�,PSOHPHQWDWLRQ�	�&RGLQJ�««� 3DJH���

7HVWHU«««««««�

�

�

� 3DUW����7RROV�IRU�7HVWLQJ««««««««««�� 3DJH���

7HFKQLFDO�:ULWHU«««��

�

� 3DUW����7RROV�IRU�6RIWZDUH�'RFXPHQWDWLRQ«««� 3DJH����

 57

��� 7RROV�IRU�5HTXLUHPHQW�$QDO\VLV�	�'HVLJQ�

���� /LVW�WKH�PDLQ�WRRO�XVHG�LQ�WKH�UHTXLUHPHQWV�DQDO\VLV�SKDVH�� �

1DPH %UDQG� 9HUVLRQ 3ODWIRUP� �

���� 5DWH�WKH�OHYHO�RI�VXSSRUW�WKLV�WRRO�SURYLGHV��
� � � �

� 3RRU�)DLU� *RRG� 9HU\�JRRG� ([FHOOHQW� 1$�

Drawing, changing, and

manipulation of diagrams�

Generating reports and

documentation�

Develop prototypes for the

purpose of requirement

discovery or verification�

Define project scope and

system boundaries�

Model and describe a current

information system

Model and describe the

requirements for a new

information system

Gather & structure

requirements

Generate stub-code

Reliability�

Ease of use�

Traceability

Groupware &collaboration

support

Others (specify):

_______________�

 58

���� :KDW�DUH�WKH�PDLQ�DGYDQWDJHV�DQG�GLVDGYDQWDJHV�RI�WKLV�WRRO��OLVWHG�DERYH�"�
�

$GYDQWDJHV� BB�

__

�

'LVDGYDQWDJHV�BB�

�

�

BBB�

�

�

�
�

���� +DYH�\RX�EHHQ�XVLQJ�RWKHU�WRROV�IRU�UHTXLUHPHQWV�DQDO\VLV�	�GHVLJQ"�,I�VR��ZKDW�
WRROV"�

�
�
� � �
BBB�

7KDQN�\RX�YHU\�PXFK�IRU�\RXU�

SDUWLFLSDWLRQ�

 59

��� 7RROV�IRU�,PSOHPHQWDWLRQ�	�&RGLQJ�

�
���� � 'R�\RX�XVH"� � �3URJUDPPLQJ�ODQJXDJH��

�
)UHTXHQWO\� 2IWHQ� 6RPHWLPH� 6HOGRP� 1HYHU�

C / C++

C-sharp

JAVA

Delphi

Perl

Visual Basic

Erlang

Cobol

Fortran

Other (specify)

���� � :KDW�WRROV�GR�\RX�XVH�IRU�WKH�IROORZLQJ�DFWLYLWLHV"�
�

� 1DPH�RI�PDLQ�WRRO� 1$�

Editing code

�

Compiling/linking

�

Profiling

�

�

Static code analysis

�

�

Debugging

�

�

Other tools used in the

programming phase

�

 60

���� :KDW� DUH� WKH� PDLQ� DGYDQWDJHV� DQG� GLVDGYDQWDJHV� RI� \RXU� SURJUDPPLQJ�
HQYLURQPHQW��OLVWHG�DERYH�"�

�

�

$GYDQWDJHV� BB�

__

�

'LVDGYDQWDJHV�BB�

�

�

BBB�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

7KDQN�\RX�YHU\�PXFK�IRU�\RXU�

SDUWLFLSDWLRQ�

 61

�

��� 7RROV�IRU�7HVWLQJ�

���� /LVW�WKH�PDLQ�WRRO�XVHG�LQ�WKH�WHVWLQJ�SKDVH�� �

1DPH %UDQG� 9HUVLRQ 3ODWIRUP� �

���� 5DWH�WKH�OHYHO�RI�VXSSRUW�WKLV�WRRO�SURYLGHV��
� � � �

� 3RRU�

�

)DLU� *RRG� 9HU\�

JRRG�

([FHOOHQW� 1$�

Unit testing

Module testing

Integration test

System testing

White/black-box testing

Generation of test data�

Debugging�

Simulation�

Reliability

Ease of use

Traceability

Documentation

Groupware &collaboration

support

�
���� :KDW�DUH�WKH�PDLQ�DGYDQWDJHV�DQG�GLVDGYDQWDJHV�RI�WKLV�WRRO��OLVWHG�DERYH�"�
�

$GYDQWDJHV� BBB�

�

'LVDGYDQWDJHV�� � BBB�

�

BBB�

�

�

 62

�
���� +DYH�\RX�EHHQ�XVLQJ�RWKHU�WRROV�IRU�WHVWLQJ"�,I�VR��ZKDW�WRROV"�

BB

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

7KDQN�\RX�YHU\�PXFK�IRU�\RXU�

SDUWLFLSDWLRQ�

 63

�

��� 7RROV�IRU�6RIWZDUH�'RFXPHQWDWLRQ�

 �
���� /LVW�WKH�PDLQ�WRRO�XVHG�LQ�WKH�GRFXPHQWDWLRQ�SKDVH�� �

1DPH %UDQG� 9HUVLRQ 3ODWIRUP� �

�
���� 5DWH�WKH�OHYHO�RI�VXSSRUW�WKLV�WRRO�SURYLGHV��
� � � �

� 3RRU�)DLU� *RRG� 9HU\�

JRRG�

([FHOOHQW� 1$�

Create documents

Document editing

Document browsing

Graphic support

Reliability

Traceability

Ease of use

Groupware &collaboration

support

�
�

���� :KDW�DUH�WKH�PDLQ�DGYDQWDJHV�DQG�GLVDGYDQWDJHV�RI�WKH�PDLQ�WRRO"�
�

�

$GYDQWDJHV��BBB�

�

'LVDGYDQWDJHV�� � BB�

�

BBB�

�
�
�
�

 64

�
�
���� :KDW�RWKHU�GRFXPHQWDWLRQ�WRROV�GR�\RX�SUHIHU�WR�FUHDWH���HGLW���EURZVH���JHQHUDWH�

��VRIWZDUH�GRFXPHQWV"��0XOWL�FKRLFH��
�

Ms word � ROBODoc � C-DOC

Professional

� ISA’s Panorama

C/C++

�

Adobe

Acrobat

 Doc++ � DocJet � Object Outline �

AutoDuck � ProgDoc � Author-IT � TwinText LXR �
Frame

Maker

� Javadoc � Ada Browse Cocoon �

Visio � Doxygen � Others:

� �

 � � � � � �
�
�
�
�
�
�
�

7KDQN�\RX�YHU\�PXFK�IRU�\RXU�

SDUWLFLSDWLRQ�

 65

$SSHQGL[� ��� /LVW� RI� WRROV�

 66

 67

This list is collected from the answer of the questionnaire. The specifications of each product
are directly reference from the product official websites.

3DUW����&RPPHUFLDO�WRROV�

$GREH�

Ex. Acrobat / Frame Maker

%RUODQG�(QWHUSULVH�6WXGLR�IRU�&��� �

Accelerate your C++ development for mobile devices

%RUODQG�(QWHUSULVH�6WXGLR�)RU�-DYD�

Complete e-business implementation platform

%RUODQG�(QWHUSULVH�6WXGLR�)RU�0RELOH�

Accelerate your mobile application lifecycle

%RUODQG�-%XLOGHU� �

JBuilder X speeds EJB, ™ Web, Web Services, XML, mobile, and database application
development with two-way visual designers and rapid deployment to leading J2EE™
application servers, including BEA Web Logic, IBM® WebSphere, Sun ONE, Oracle9i, ™
Sybase EAServer, JBoss, and the integrated Borland® Enterprise Server. Power productivity
with innovative Struts and Web Services designers, UML™ code visualization, refactoring,
enterprise unit testing, and support for multiple version control systems. Build in quality with
integrated Borland® Optimizeit™ Suite performance tools. Leverage unparalleled flexibility
afforded by the Open Tools architecture.

%RUODQG�6WDU7HDP� �

Borland® StarTeam® is an automated configuration and change management system that puts
control of the development process in the hands of project teams. By providing users with
access to all project assets through a central repository supported by customizable workflow
and process management, StarTeam facilitates team communication and collaboration. A true
enterprise solution, StarTeam delivers more than file version control: with StarTeam, project
teams can benefit from a customized solution offering an integrated environment for managing
requirements and changes, tracking defects and threaded discussions, and managing the tasks
required by effective project management.

%RUODQG�2SWLPL]HLW�(QWHUSULVH�6XLWH� �

Optimizeit Enterprise Suite includes all components of Optimizeit Suite plus Optimizeit
Request Analyzer. Optimizeit™ Request Analyzer provides advanced profiling techniques that
allow developers to analyze the performance behavior of code across J2EE application tiers.
Using Optimizeit™ Request Analyzer developers can efficiently prioritize the performance of

 68

JDBC, JMS, JNDI, JSP™ RMI, and EJB™ web requests so that trouble spots can be
proactively isolated earlier in the development lifecycle. Precise drill-down capabilities
accelerate the time-to-resolution of performance problems, diagnosing and locating the root
cause right down to the offending line of source code. It’s available only as part of Borland
Optimizeit Enterprise Suite. Uncovers and corrects production-environment performance
problems in the test lab, before deployment.

,%0�5DWLRQDO�5HTXLVLWH3UR�

A powerful, easy-to-use, and integrated product for requirements and use case management
that promotes better communication, enhances teamwork and reduces project risk.

,%0�5DWLRQDO�5RVH�'DWD�0RGHOOHU�

A visual modeling tool that makes it possible for database designers, analysts, architects,
developers and anyone else on your development team to work together, capturing and sharing
business requirements, and tracking them as they change throughout the process.

,%0�5DWLRQDO�5RVH�;'(�0RGHOOHU�

It enables architects and designers to practice model-driven development with the Unified
Modeling Language (UML). Users can produce platform independent models of software
architecture, business needs, reusable assets and management-level communication.

,%0�5DWLRQDO�5DSLG�'HYHORSHU�

Combines architect RAD modeling and design with automatic code construction across all tiers.
Offers a highly productive development environment with broad applicability to developers of
varying backgrounds and skills targeting a wide range of deployment technologies.

,%0�5DWLRQDO�$GD�'HYHORSHU�

Part of our traditional languages solution, it provides support for applying modern software
practices with Ada-based development projects throughout the software lifecycle.

,%0�5DWLRQDO�3XULI\3OXV�

A complete set of runtime analysis tools designed for improving application reliability and
performance.

,%0�5DWLRQDO�5RVH�7HFKQLFDO�'HYHORSHU�

Supports the most advanced modeling constructs, including model execution and fully
executable code generation, resulting in the highest levels of productivity.
�

,%0�5DWLRQDO�5RVH�;'(�'HYHORSHU�

 69

Offers software designers and developers a rich set of model-driven development and runtime
analysis capabilities for building quality software applications.

,%0�:HE6SKHUH�6WXGLR�$SSOLFDWLRQ�'HYHORSHU��:6$'�� �

WSAD is an open comprehensive development environment for building, testing and
deploying on demand e-business applications.

,%0�5DWLRQDO�7HVW�5HDO7LPH�

Across-platform solution for component testing and runtime analysis, it was designed
specifically for those who write code for embedded, real-time, and other types of
cross-platform software products.

,%0�5DWLRQDO�3XULI\3OXV�

A complete set of runtime analysis tools designed for improving application reliability and
performance.

,%0�5DWLRQDO�5RVH�;'(�'HYHORSHU�3OXV�

It offers software designers and developers a rich set of model-driven development and runtime
analysis capabilities for building quality software applications. It offers complete visual design
and development environments that address the needs of organizations targeting both
J2EE-based and. NET-based systems.

,%0�5DWLRQDO�)XQFWLRQDO�7HVWHU�IRU�-DYD�DQG�:HE�

It virtually eliminates script maintenance by creating resilient, reusable test scripts — in Java
— with ScriptAssure™.

,%0�5DWLRQDO�5RERW�

It automates functional, regression and configuration testing for a wide range of application
types, including .NET.

,%0�5DWLRQDO�3HUIRUPDQFH�7HVWHU�

Uncovers and corrects production-environment performance problems in the test lab, before
deployment.

,%0�5DWLRQDO�7HDP�8QLI\LQJ�3ODWIRUP�

Integrates all the testing activities for one application with centralized test management, defect
tracking, and version control.

 70

,%0�5DWLRQDO�7HVW0DQDJHU�

It is used to manage all testing activities for an application: manual, regression, functional,
performance, and runtime analysis. Rational TestManager can be accessed by all members of a
project team, and make it easy to share test coverage information, details of defects, and
reports. Rational TestManager ships with IBM Rational Functional Tester for Java and Web,
Rational Robot, and Rational Performance Tester. Because of its value to development teams, it
is also included in the IBM Rational Team Unifying Platform.

,%0�5DWLRQDO�6&0�VROXWLRQV�

Solutions for simplifying and managing change including version control, software asset
management, and defect and change tracking. SCM enables development teams to capture,
control and securely manage software changes and assets. Rational SCM solutions integrate
with industry-leading integrated development environments (IDEs), including IBM
WebSphere® Studio, the open source Eclipse platform and Microsoft .NET, providing
developers with instant access to change information and code anytime, anywhere.

,%0�5DWLRQDO�&OHDU&DVH� �

Change Management Solution: Integrated software configuration management for medium to
large development projects.

,%0�5DWLRQDO�&OHDU4XHVW�

It can flexible defect and change tracking across the project lifecycle.

-DYD�6XQ���-DYD'RF� �

JavaDoc is a tool for generating API documentation in HTML format from doc comments in
source code.

-DYD�6WXGLR�6WDQGDUG�

It is an integrated development environment (IDE) for Java technology. Java Studio Standard is
also the recommended upgrade for Sun ONE Studio 4, Enterprise Edition for Java and
Community Edition users.

0LFURVRIW�2IILFH�

Ex. Word, Visio, Excel, FrontPage

0LFURVRIW��9LVXDO�&���1(7�

Microsoft Visual C# .NET 2003 is the comprehensive toolset for creating XML Web services
and Microsoft .NET—connected applications for Microsoft Windows® and the Web.
This robust development package, which uses the component-oriented C# development

 71

language, offers beginning and intermediate developers with C++ or Java experience a modern
language and environment for creating next-generation software. Visual C# .NET 2003
delivers superior functionality for streamlining business processes, including: Rapid design,
development, and deployment support for creating and consuming Web services.
Form designers and visual controls for creating rich Windows-based applications.
Authoring tools and services for building powerful Microsoft .NET server-based solutions.
Migration tools for converting Java-based projects to the Microsoft .NET development
environment.
With Visual C# .NET 2003, developers can build solutions for the broadest range of clients,
including Windows, the Web, and mobile or embedded devices. Using this elegant
programming language and tool, developers can leverage their existing C++ and Java-language
skills and knowledge to be successful in the .NET environment.

3/�64/�

PL/SQL is Oracle’s procedural extension to industry-standard SQL. PL/SQL naturally,
efficiently, and safely extends SQL. Its primary strength is in providing a server-side, stored
procedural language that is easy-to-use, seamless with SQL, robust, portable, and secure. Thus,
it offers a platform for robust, high-performing enterprise applications, not only for our Fortune
500 customers, but also for Oracle Applications, which have over 4 million lines of code.
�

7HOHORJLF�'2256�(56�

The world’s leading requirements management tool, is a multi-platform, enterprise-wide
system designed to capture, link, trace, analyze and manage changes to information to ensure a
project’s compliance to specified requirements and standards.

7HOHORJLF�7$8�

It is an integrated family of software development and testing tools that provides a unique
visual development environment. This simplifies, automates and accelerates the production of
real-time and other advanced software.

9LVXDO�6WXGLR��1(7�

Visual Studio .NET 2003 is the comprehensive tool for rapidly building Microsoft .NET–connected

applications for Microsoft Windows® and the Web, dramatically increasing developer productivity, and

enabling new business and enterprise opportunities. Explore the features in each of the three Visual

Studio .NET 2003 editions: Enterprise Architect, Enterprise Developer, and Professional. Developers can

use Visual Studio .NET to: Build the next-generation Internet; Create powerful applications quickly and

effectively; Span any platform or device. Visual Studio .NET is the only development environment
built from the ground up to enable integration through XML Web services. By allowing
applications to share data over the Internet, XML Web services enable developers to assemble
applications from new and existing code, regardless of platform, programming language, or
object model.

 72

9LVXDO�%DVLF��1(7������

Visual Basic .NET 2003 provides the easiest, most productive language and tool for rapidly
building applications for Microsoft Windows® and the Web. Ideal for existing Visual Basic
developers as well as new developers in the Microsoft .NET development environment, Visual
Basic .NET 2003 delivers enhanced visual designers, increased application performance, and a
powerful integrated development environment (IDE) to get you on the fast track to application
development.

3DUW����2SHQ�VRXUFH�VRIWZDUH�

����*18� �

*18�6PDOOWDON�/DQJXDJH�

GNU Smalltalk is a free (or Open Source) implementation that closely follows the
Smalltalk-80 language as described in the book Smalltalk-80: the Language and its
Implementation by Adele Goldberg and David Robson. GNUS mall talk runs on most versions
of Unix or Unix like systems (GNU/Linux, Free BSD, etc). There is even a version for
commercial operating systems like MS-NT.

(PDFV���([WHQVLEOH��UHDO�WLPH�HGLWRU�

Extraordinarily powerful text editor with additional features including content sensitive major
modes, complete online documentation, highly extensible through Lisp, support for many
languages and their scripts through its multilingual extension, and a large number of other
extensions available either separately or with the GNU Emacs distribution. Runs on many
different operating systems regardless of machine.

;(PDFV�

It is a highly customizable open source text editor and application development system. It is
protected under the GNU Public License and related to other versions of Emacs, in particular
GNU Emacs. Its emphasis is on modern graphical user interface support and an open software
development model, similar to Linux. XEmacs has an active development community
numbering in the hundreds, and runs on Windows 95 and NT, Linux and nearly every other
version of Unix in existence.

 73

*FF���*18�&RPSLOHU�&ROOHFWLRQ�

The GNU Compiler Collection is a full-featured ANSI C compiler with support for K&R C, as
well as C++, Objective C, Java, and Fortran. GCC provides many levels of source code error
checking traditionally provided by other tools (such as lint), produces debugging information,
and can perform many different optimizations to the resulting object code.

*�����&���FRPSLOHU�

G++ is the traditional nickname of GNU C++, a freely redistributable C++ compiler. It is part
of gcc, the GNU compiler suite, and is currently part of that distribution.

*18�3DVFDO���3DVFDO�FRPSLOHU�RI�WKH�*18�3URMHFW�

GNU Pascal is the Pascal language compiler of Project GNU. It is a 32/64-bit compiler that is
linked against the GCC backend and will be integrated in to GCC in the long run. It runs on all
operating systems compatible with GCC, and can act as a native or a cross compiler between
those systems. It implements ISO Pascal, Borland Pascal 7.0, and parts of other Pascal
standards or de-facto standards.

0DNH���*HQHUDWHV�H[HFXWDEOHV�DQG�RWKHU�QRQ�VRXUFH�SURJUDPV�

Make examines a set of related files, determines which of them are out of date, and runs just
the commands necessary to bring them back up to date. Make is typically used to compile and
link programs, but it can be useful in many other situations as well.

*SURI� �

The GNU Profiler

'EJ���&���GHEXJJLQJ�XWLOLWLHV�

The dbg library is a set of C++ utilities to facilitate modern debugging idioms. It has been
designed to support defensive programming techniques in modern C++ code. It integrates well
with standard library usage and has been carefully designed to be easy to write, easy to read
and very easy to use.

'GG���*UDSKLFDO�IURQW�HQG�IRU�FRPPDQG�OLQH�GHEXJJHUV�

Works with command-line debuggers such as GDB, DBX, WDB, Ladebug, JDB, XDB, the
Perl debugger, or the Python debugger. In addition to the usual front-end features such as
viewing source text, DDD has an interactive graphical display, where data structures are
displayed as graphs
�

 74

*GE���*18�'HEXJJHU�

GDB lets you to see what is going on ‘inside’ another program while it executes--or what
another program was doing at the moment it crashed.
�

6WUDFH���'HEXJJLQJ�WRRO�

Strace is a system call tracer: it traces all system calls made by another process or program.
Since the program to be traced does not need to be recompiled before tracing, strace is useful
for programs for which the source is not readily available.

9DOJULQG���0HPRU\�GHEXJJHU�

Valgrind finds memory-management problems by checking all reads and writes of memory are
checked, and intercepting all calls to malloc/new/free/delete. As a result, Valgrind can detect
problems like the use of uninitialised memory, reading/writing memory after it has been free’d,
reading/writing off the end of malloc’d blocks, reading/writing inappropriate areas on the stack,
memory leaks, and passing of uninitialised and/or unaddressible memory to system
callsValgrind - Memory debugger

����(UODQJ�
Erlang is a programming language designed at the Ericsson Computer Science Laboratory.
Open-source Erlang is being released to help encourage the spread of Erlang outside Ericsson.
Erlang/OTP is a development environment for building distributed real-time high availability
systems with short time to market requirements. Erlang/OTP is available in two versions: a
licensed one with full support and an Open Source version with the entire source code free of
charge.

����6TXHDN�
Squeak is a full-featured implementation of the Smalltalk programming language and
environment based on (and largely compatible with) the original Smalltalk-80 system. Squeak
has very powerful 2- and 3-D graphics, sound, video, MIDI, animation and other multimedia
capabilities -- and one of the most impressive development environments ever created. It also
includes a customizable framework for creating dynamic HTTP servers and interactively
extensible Web sites. The entire Squeak system is open source software, distributed freely with
a liberal license.

����(FOLSVH�
Eclipse is a kind of universal tool platform - an open extensible IDE for anything and nothing
in particular.

����-XQLW�
JUnit is a regression-testing framework written by Erich Gamma and Kent Beck. The
developer who implements unit-tests in Java uses it. CppUnit is a C++ unit-testing framework.
It’s started its life as a port of JUnit to C++ done by Michael Feathers

 75

����&96�
CVS is the Concurrent Versions System, the dominant open-source network-transparent
version control system. CVS is useful for everyone from individual developers to large,
distributed teams: Its client-server access method lets developers access the latest code from
anywhere there’s an Internet connection. Its unreserved checkout model to version control
avoids artificial conflicts common with the exclusive checkout model. Its client tools are
available on most platforms.

����$SDFKH�
The Apache Software Foundation provides support for the Apache community of open-source
software projects. The Apache projects are characterized by a collaborative, consensus based
development process, an open and pragmatic software license, and a desire to create high
quality software that leads the way in its field. We consider ourselves not simply a group of
projects sharing a server, but rather a community of developers and users.

����3+3�2SHQ�VRXUFH�
PHP is a widely used general-purpose scripting language that is especially suited for Web
development and can be embedded into HTML.

����0R]LOOD�
Mozilla was the original code name for the product that came to be known as Netscape Navigator, and later,

Netscape Communicator. Later, it came to be the name of Netscape Communications Corporation’s

dinosaur-like mascot. Now, we intend to use the name Mozilla as the generic term referring to Internet client

software developed through our open source project. Netscape Communications Corporation holds

trademarks on the names Netscape, Navigator, and Communicator; it has not yet been decided what, if any,

restrictions Netscape will place on the use of those names. However, a generic term for browsers is still

needed, and ‘‘Mozilla’’ is as good a name as any. So, Mozilla is a set of technologies, but not a specific (in

biologic terms, Mozilla is a genus; a particular product is a species). And mozilla.org (pronounced Mozilla

Dot Org or The Mozilla Organization) is the group of people who coordinate the project.

 76

Avdelning, Institution
Division, Department

Institutionen för datavetenskap
581 83 LINKÖPING

Datum
Date
2004-05-28

Språk
Language

Rapporttyp
Report category

ISBN

 Svenska/Swedish
X Engelska/English

 Licentiatavhandling
X Examensarbete

ISRN LITH-IDA-EX--04/085--SE

 C-uppsats
 D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/ida/2004/dt-d/085/

Titel

An investigation of the use of software development environments in the industry

Författare
 Author

Ping An

Sammanfattning
Abstract
Software engineering tools are being used in the industry in order to improve the productivity and
the quality of the software development process. The properties of those tools are being perceived
to be unsatisfactory. For example, researchers have found that some problems are due to deficient
integration among the tools. Furthermore, a continuing problem is that there is a gap between the
IT education and real demand of tool-skills from IT industry. Consequently, knowledge is needed
of the properties of software development tools as well an understanding of demanded tool-skill
from the industry.
The purpose of this study is to survey commercial software development environment (SDEs) that
are used today in professional software engineering and discuss their advantages and
disadvantages. A secondary goal of the study is to identify the actual requirements from the
industry on the IT-education.
A questionnaire was sent out to 90 software developers and IT managers of 30 IT companies in
Sweden. The results of the survey show that IT companies, for most part, use SDEs from
commercial software vendors. Respondents report that common problems of the SDEs are the
following: bad integration among the tools, problems to trace software artifacts in the different
phases of the programming cycle, and deficient support for version control and system
configuration. Furthermore, some tools are difficult to use which results in a time-consuming
development process.
We conclude that future software development environments need to provide better support for
integration, automation, and configuration management. Regarding the required tool-skills, we
believe that the IT education would gain from including commercial tools that cover the whole
software product lifecycle in the curriculum.

Nyckelord
Keyword
Software development environments, Software life cycle, Survey, Software development tools,
CASE tools, Integration, Integrated software development environment

Upphovsrätt
Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan be-
skrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form
eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller
konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se för-
lagets hemsida http://www.ep.liu.se/

Copyright
The publishers will keep this document online on the Internet – or its possible
replacement – for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its www home page: http://www.ep.liu.se/

© Author(s)

http://www.ep.liu.se/
http://www.ep.liu.se/

	copyright_thesis.pdf
	Upphovsrätt
	Copyright

