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Abstract

This thesis investigates architectures for multiplying elements in Galois rings of the
size 4™, where m is an integer.

The main question is whether known architectures for multiplying in Galois
fields can be used for Galois rings also, with small modifications, and the answer
to that question is that they can.

Different representations for elements in Galois rings are also explored, and the
performance of multipliers for the different representations is investigated.
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Chapter 1

Introduction

1.1 Background

In coding theory results and structures from abstract algebra are used extensively.
Many of the most popular coding methods draw advantage of the use of finite, or
Galois, fields for their descriptions, since they are linear in this context. These
codes include cyclic codes, Reed-Solomon codes and BCH codes. For a description
of these codes, see for example [13]. Such codes may be used for error detection
and correction in for example telecommunications and CD players, and are often
implemented in hardware. Since they all use the finite field structure there exists
much research on how to implement elementary finite field operations in hardware,
most notably VLSI.

Not so long ago (in [7] and [3]) it was shown that some codes that were pre-
viously known not to be linear over Galois fields actually were linear, cyclic codes
over Galois rings. These codes include the Kerdock and Preparata codes (see [11]).
The Galois rings have much in common with the Galois fields, but there are also
differences. For example division is not generally possible in Galois rings. Nonethe-
less, their similarities imply that it could be possible to take the implementations
of operations in Galois fields, make small adjustments to them and use for Galois
rings, without having to do all the research over again for rings instead of fields.
That is precisely what we will strive to do in this thesis.

1.2 Problem definition

For Galois fields the two important operations are multiplication and inversion,
since these are more complex than addition and subtraction. Since it is not possible
to divide elements in Galois rings, we only have to think about multiplication.
When multiplying in Galois fields we may represent the elements in a number of
different ways. All these representations are not thoroughly investigated, or even
formalized, yet for Galois rings, and therefore we will try to define and explore
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equivalent representations for Galois rings. We will also look at the performance
of our architectures, both regarding the chip area needed and the speed.
This gives us the following goals for this thesis:

e Investigate if the architectures for multiplying in Galois Fields may easily be
adjusted to Galois Rings.

e Investigate if the different types of representations of elements in Galois fields
have equivalents in Galois rings.

e Compare the different possible architectures for multiplication with respect
to performance and needed chip area.

1.3 Outline and reading instructions

In chapter 2 we describe the mathematical background to the thesis. This is in-
tended as a brief introduction to the concepts used later. The chapter may be useful
even to the reader that has knowledge of abstract algebra, because some concepts
(i.e. the ones concerning Galois rings) are normally not treated in undergraduate
courses or textbooks on the subject.

In chapter 3 we introduce some elementary operations that will be needed for
the architectures in later chapters (for example addition and multipliction in the
ring formed by the integers 0, 1, 2 and 3), and show how these can be implemented
efficiently with logical gates.

In chapter 4 to 6 we present three different representations of the elements in
Galois rings, and how multiplication can be implemented in these representations.
The representations are polynomial bases (chapter 4), dual bases (chapter 5) and
normal bases (chapter 6). Here we will also discuss the performance of the different
implementations. The results are then summarized in chapter 7, conclusions.

For the reader who only wants to know how to implement multiplication in a
Galois Ring in the best way for a certain application, it is advisable first to take a
look at the conclusions chapter. From there it should be possible to see which kind
of architecture is advisable, and where the details concerning it can be found, in
chapter 3, 4 or 5. In these chapters the serial, parallel and systolic multipliers are
presented separately and the different architectures are easy to compare between
the chapters. After the architecture has been chosen, chapter 3 gives the details of
implementing it with logical gates.



Chapter 2

Mathematical background

In this chapter the mathematics which are utilized throughout the thesis will be
described. The presentation will be brief and proofs are not provided. For proofs
and a more detailed description the interested reader is referred to [4] or [11]. In
[4] the basic theory of groups, rings and fields is treated, while Galois rings are
treated more in depth in [11].

2.1 Groups, rings and fields

In this section definitions of the basic mathematical structures that will be used are
provided. First we will define some sets that will be used throughout this thesis.

Definition 2.1 We define the following sets:
e 7 is the set of all integers, positive as well as negative.
e 7., is the set of all integers modulo the integer m.
e () is the set of all rational numbers.
Now we turn to the definition of the first of our structures, the group structure.

Definition 2.2 (Group) A group (G,o) is a set G together with an operation o
that works in the following way:

e The group is closed under o, that is for a,b € G

aobed.

e The operation o is associative, that is for a,b,c € G

(aob)oc=ao(boc).
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o There exists an element e € G, such that for any element a € G

€oa=aoe=a.

o For each element a € G, there exists an inverse element, denoted by a™?,

such that

aocat=aloa=e.

A group is called commutative if the relation a o b = boa holds for all a,b € G.

For an element @ in a group G we define a” = a o a” !, where a® = e.

Definition 2.3 (Order) The order of a element a in a group G is the smallest
n > 0 such that a" = e.

Example 1. The set Z is a commutative group under the operation of addition,
with 0 as the element e in definition 2.2. O

Definition 2.4 (Ring) A ring (R,+,-) is a commutative group (R,+), with a
second binary operation - that satisfies the following conditions.

e The ring is closed under -, that is for all a,b € R

a-beR.

e The operation - is associative, that is for a,b,c € R
(a-b)-c=a-(b-c).

o The operation - is distributive over +, that is for all elements a,b,c € R

a-(b+c¢) = a-bt+a-c
(a+b)-¢c = a-c+b-ec

Normally we will write ab instead of a - b, omitting the -. If we, for all elements
a,b € R have ab = ba, R is said to be a commutative ring. If there exists an element
1 € R, such that al = 1la = a for all a € R, we denominate R a ring with identity.
These definitions can be combined to commutative rings with identity, the name
being self-explanatory.

Example 2. The set Zg with the operations addition and multiplication, per-
formed modulo 8, is a commutative ring with identity. O

For any ring R, and an element r € R we denote r + ...+ (n r:s) by nr.

Definition 2.5 (Characteristic) The characteristic of a ring R is the smallest
positive integer n such that for all r € R we have that nr = 0.
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Definition 2.6 (Subring) A subring S of R is a subset S of R, for which we
have

o SH#
e rse S forallr,seS
er+seS forallr,seS

We may also say that S is a subring of R if and only if S is closed under all
operations of the ring.

Example 3. The set Z is a commutative ring, with identity 1, under the normal
operations of addition and multiplication. The set S = {2n : n € Z} is the subring
consisting of all even integers. |

Definition 2.7 (Field) A field F is a commutative ring with identity, in which
there, for each a #0 € F exists b € F such that

ab=ba=1

Another way to put it is that each non-zero element has a multiplicative inverse.
A field with a finite number of elements is called a finite field or a Galois field.
Subfields are defined in analogy with the definition of subrings.

Example 4. The set Z7 together with addition and multiplication performed
modulo 7 is easily verified to be a Galois field. The set Z4 on the other hand is not
a Galois field, since 2 does not have a multiplicative inverse. O

We will need a theorem from number theory by Fermat. The theorem is actually
a special case of a more general theorem for groups.

Theorem 2.1 (Fermats little theorem) Let p be any prime number, and sup-
pose that p does not divide a. Then

a?'=1 (mod p).

2.2 Polynomials

If we have a ring (or a field) R we can form the polynomial ring R[x] by considering
all polynomials of the form

n
flz) = Zaixi =ag + a1z + asz’® + ... + apa” (2.1)
i=0

where a; € R, a,, # 0 and n may be any positive integer. A polynomial is called
monic if a, = 1. The polynomial in equation 2.1 is merely a formal expression, and
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we may therefore not assume that it is possible to evaluate the expression by giving
x a value, like we are used to with polynomials. We say that two polynomials are
equal if all their coefficients a; are identical, and we may add and multiply the
formal polynomials just like we are used to with polynomials, bearing in mind that
all operations on the coefficients are to be performed in R. If any of the coefficients
a; = 0 we usually omit this term from the polynomial.

Theorem 2.2 Let R be a commutative ring with identity. Then R[x] also is a
commutative ring with identity.

A polynomial ring F[z] over a field F' is not necessarily a field, due to the fact
that all polynomials need not have an inverse. F[z] is however of course always a
commutative ring with identity.

We also have polynomial rings that are formed by equivalence classes modulo
a polynomial p(z). Let R[z]/(p(z)) denote such a polynomial ring. If R is a ring,
R[z]/(p(z)) will also be a ring. We call p(z) the generator polynomial.

Example 5. Let R = Z, and p(z) = > 4+ 2z + 3. We can perform multiplication
between 322 + 2z + 1 and 2% + 3z in R/(p(z)) as follows.

(322 + 224+ 1)(2* +3z) = 3az* +32°+ 3z
= 3x(—2x—-3)+3(—2x—3)+ 3z
= 22°+32+22+3+3
= 2243

The second row is due to the fact that 2° = —2z — 3 (mod p(z)), and in the third
row we use the fact that all coefficients should be in Z4. O

2.2.1 Irreducible polynomials over fields

A polynomial f(z) € F[z] is said to be irreducible if it cannot be expressed as a
product of two other polynomials in F'[x].

Example 6. The polynomial #? + 1 is irreducible in Q[x], but it is not irreducible
in Z,[z], since we there have

(z+Dz+1) = +2r+1=2+1

On the other hand, 22 + = + 1 is irreducible in both of the fields mentioned. O

If an irreducible polynomial p(z) of degree n has a root £ of order ¢ — 1, where
¢ is the number of elements in F, we say that p(z) is a primitive polynomial.
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2.2.2 Basic irreducible polynomials over rings

We will need analogy for rings to the concepts of irreducible and primitive polyno-
mials. Define the map « by

« Z4—>Z2
0,20
1,31

We will denote this map by just “”, that is 0 =2 = 0 and 1 = 3 = 1. The map
can naturally be extended to polynomials by mapping the coefficients.

Example 7. If we have p(z) = 322 + 22+ 1 € Z4[x], we also have p(z) = 2% +1 €
Z2 [J,‘] O

Now we can define a basic irreducible (primitive) polynomial as a monic poly-
nomial p(z) over Z, with p(x) irreducible (primitive) over Z.

Example 8. The polynomial in example 7 is not basic irreducible, whereas the
monic polynomial x2 + 3z + 3 is a basic irreducible polynomial in Z4[z], since
z? 4+ z + 1 is irreducible in Zs[z]. O

2.3 Extensions of rings and fields

If we have a ring R (or field E) with a subring S (or subfield F), the ring R (or
field F) is called an extension ring (or extension field) of the base ring S (or base
field F).

Theorem 2.3 Assume that p(x) € F[z], where F is a field, is an irreducible poly-
nomial over F. In that case the extension ring E = F[z]/(p(z)) is actually a field
extension of F'. Assume further that p(z) is of degree m, and that F' has p (dis-
tinct) elements. Then the number of distinct elements, or the cardinality, of F is

P
We are now ready to give the full characterization of all Galois fields.

Theorem 2.4 All Galois fields of the same size are actually the same'. The car-
dinality of a Galois field is either a prime p, or a power of a prime, p™, where

me 7.

1To be rigid we should say that they are identical up to isomorphism.
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Since the characteristics of a Galois field only depends on its size we introduce
the notation GF (p) for a Galois field with p elements. Combining the theorems
2.3 and 2.4 we see that we can form the field GF (p™), where m € Z, by using an
irreducible polynomial p(z) of degree m. We have GF (p™)=GF (p)[z]/(p(z)).

Example 9. The field GF (4) may be described as Zz[z]/(p(z)), where p(z) =
22 4+ z + 1 (note that this polynomial is irreducible over Zs). Let p(a) = 0. Then
the elements in GF (4) may be written

04+0a = 0
140a = 1
O+l = «
1+41la = 1+«

Note that higher powers of « are not possible, since for example

=a’+a’P+a+l=a+1

Below are two tables showing addition and multiplication in GF (4).

L - o] t [ o [14+ef[ + [ O [ T [ a [Ita]
0 0 0 0 0 0 0 1 « 1+«
1 0 1 14+« 1 1 0 1+« «
«Q 0 « 14+« 1 « « 1+« 0 1

l1+4a||0| 1+« 1 « l+a||l+a « 1 0

O

We now turn our attention back to the rings. For this purpose we need to
remember our definition of a basic irreducible polynomial as described in section
2.2.2. We will limit ourselves to the case of rings with cardinality 4™, m € Z. First
we state the equivalence of theorem 2.3.

Definition 2.8 Assume that p(z) € Z4[z] is a basic irreducible polynomial of de-
gree m. Then the extension ring Zs[z]/(p(x)) is called a Galois ring with 4™ ele-
ments.

For Galois rings we have the following theorem.

Theorem 2.5 All Galois rings of size 4™ and characteristic 4, where m € Z,

m > 0, are actually the same?.

20r identical up to isomorphism, more correctly.
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In analogy with Galois fields we introduce the notation GR (4™) for the Galois
ring with 4™ elements and characteristic 4.

Example 10. The ring GR(16) may be described as Z[z]/(p(x)), where
p(r) = 2% + 2 + 3 (note that h(z) = 2? + 2 + 1, irreducible over Z3). Let p(¢) = 0.
Then the elements in GR (16) may be written

04+06 = 0 0+26 = 2
1406 = 1 1+2 = 142¢
2406 = 2 2492 = 242
3406 = 3 3492 = 342
0+16 = ¢ 0+3¢ = 3¢

1+16 = 146 1436 = 1+3¢
2416 = 24& 2436 = 2+3¢
3416 = 3+E& 3436 = 3+3¢

Note that higher powers of ¢ are not possible, because for example
= 43p(6) = +32+3¢+1=36+1

It is possible to write down tables for multiplying and adding the elements, but
since the tables would be very large, we omit them here. O

2.4 Representation of Galois rings and fields

In this section we will focus on different ways to represent the elements of fields
and rings in a way suitable for later use. We start with the fields.

2.4.1 Galois fields as vector spaces

A finite field extension GF (p™) is a vector space over GF (p). If {1, o, ..., um}
is a basis for GF (p™), then every element o € GF (p™) may be written as

a=a101 + ass + ...+ Qm Qi

where a; € GF (p) for i = 1,...,m. There exists a variety of different bases for a
Galois field, but we will limit ourselves to a few ones with desired characteristics.

The most natural basis might be the polynomial basis. If p(x) is the generator
polynomial to GF (p™), and «a is a root of p(z), the set {a®,a, ..., a™ 1} is a basis
of GF (p™). An example of how the elements can be described in a polynomial
basis is given in example 9. The elements may also be described as vectors, which
is shown in example 11.
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Example 11. The table below shows the connection between the polynomial basis
and the description as vectors.

|| Polynomial | Vector ||

0 (00)
1 (01)
e (10)
a+1 (11)

2.4.2 Galois rings

Elements in Galois rings may, as an analogy to the polynomial basis for fields, be
described as polynomials in a root £ to the generator polynomial, as in example 10.
The elements may also be described as vectors, even though the Galois rings are
not vector spaces. Instead they are modules. A module is a more general structure
than a vector space, but for all our needs they will have the same characteristics,
and we will use the terms vector and vector space also when we mean vector (in a
module) and module. An example of the representation is shown in example 12.

Example 12. The table below shows the connection between the polynomial
description and the description as vectors.

|| Polynomial | Vector ||

0 (00)
1 (01)
2 (02)
3 (03)
¢ (10)
£+1 (11)
£+2 (12)
£+3 (13)
2¢ (20)
26+ 1 (21)
26 + 2 (22)
2 + 3 (23)
3¢ (30)
3¢+ 1 (31)
3¢+ 2 (32)
3¢+ 3 (33)
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2-adic representation

We will now explore a representation of the elements in GR (4™) which will serve
us for theoretical rather than computational purposes, the 2-adic representation.
We will need the definition of a basic primitive polynomial p(x), which means that
p(x) is primitive, and p(z) is monic. It can be shown that there exists at least one
basic primitive polynomial with degree m for every positive integer m. We now
have the following theorem.

Theorem 2.6 (2-adic representation) In the Galois ring GR (4™) there exists
a nonzero element £ of order 2™ — 1 which is a root of a basic primitive polynomial.

o Let T ={0,1,&,...,62" 2}, Now any element ¢ € GR (4™) may be written
uniquely as ¢ = a + 2b where a,b € T.

o An element c is invertible if and only if a # 0.
o An element c is a multiple of 2 if and only if a = 0.
o The order of ¢ is a divisor of 2™ — 1 if and only if a # 0 and b= 0.

We define a function that will be useful for us further on.

Definition 2.9 (Frobenius map) Write ¢ = a + 2b in 2-adic representation.
Define the function f as

f:GRMA™) — Z,
c=a+20 — c =a®+ 2

The function is called the Frobenius map.

Example 13. Let R = Zy[z]/(p(z)), where p(x) = 23 + 222 + x + 3. Let further
p(€) = 0. Now & is an element of order 23 — 1 = 7. Hence we can use £ to represent
all elements in the 2-adic form. We have for the different powers of &:

¢ =1
& = ¢
§2 —_ §2
€ = 2243¢+1
& = 3243¢+2
€8 = 243¢+3
¢ = £4+2u+1

& = 1.
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Hence for this example we have
T = {01,662 +3¢+1,
32 +36+2,62+36+3,82 + 26+ 1}

and all elements ¢ € R may be written as ¢ = a + 2b, where a,b € 7. As an
example of this we see that the element o = &2 + 3¢ + 2 may be described as
a=E 4262 =362 436+ 14262 = €2+ 36+ 2. We calculate o :

af = () +2(8)? =& +2¢t =¢+2¢". (2.2)
O

Theorem 2.7 For the Frobenius map we have

(cd)f = Jdf
(c+d)f = o +d
Cfm = C
nf = n

where ¢,d € GR (4™) and n € Zy.
We will also need the definition of the so called trace function T.

Definition 2.10 (Trace function) Suppose that ¢ = a+ 2b in 2-adic representa-
tion. Define the trace function from GR (4™) to Zy as

T() = c+¢ +el
= (a+20)+ (a®+20%) + (¥ +26%)+ ... + (¥ +202" )
The trace function has some useful characteristics that will be valuable later.
Theorem 2.8 For the trace function T the following properties hold
e T(c+d)=T(c)+T(c) for all ¢, € GR(4™)
e T'(ac) =aTl(c) for alla € Zy and c € GR (4™)
o T is surjective.

We see from the first two properties that the trace function is linear over Zy

Example 14. We continue from example 13, and calculate T'(«r). We know that
T(a)=a+al + of’, and that of = £+ 2¢*. We now also have
of = (7 +2(6")? =& + 2. (2.3)
This gives us
T () EH3t+2+E+280 + 2 +2 =
= 324422 26+ 126 =42 +84+2=2.



Chapter 3

Binary representation of
elements

In this chapter we will deal with the two-bit binary representation of the elements
of Z4, namely 0, 1, 2 and 3. We will investigate how the choice of representa-
tion controls the performance of the basic operations needed when multiplying in
GR (4™).

3.1 Ciriterias for choosing representation

To decide which binary representation is the best, we need to establish criterias for
what we mean by “best”. First of all we need to define the operations which we
wish to implement. We will study the operations

e multiplication between two elements in Z4
e addition between two elements in Z4
e subtraction of one element from another in Z,.

These are the basic binary operations that exist in Zy4, since division is not defined
for the ring. Later we will also see that all these operations will be needed when
implementing our architectures. Note that multiplication and addition are commu-
tative operations, whereas subtraction is not. Apart from these general operations
we will need a few more special operations. We will at times need to multiply with
a constant element, known while constructing the circuit. If this constant is 0 or
1 the implementation is of course trivial, but if it is 2 or 3 logical gates may be
needed for the implementation. Note that a multiplication by 3 in Z4 is equal to a
negation. This gives us five different operations of interest, the last two being

e multiplication of elements in Z; by the constant 2

13
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e negation of elements in Z4, which also can be viewed as multiplication by the
constant 3.

We also need to consider what the objective of the optimization is. Here we
have two choices, namely

e minimize number of gates needed

e minimize depth of net, i.e. minimize the largest number of gates in any path
from input signal to output signal.

The reason for choosing these two objectives is that they will give nice proper-
ties when implemented in VLSI. Minimizing the number of gates will demand the
smallest chip area, and minimizing the depth will give the opportunity to use the
highest possible clock frequency. Which is most important, a small chip area or a
fast circuit will of course differ from time to time. We will treat both the case of
minimizing the depth, and the case of minimizing the number of gates.

To simplify our search for the best implementation we will limit ourselves in
some ways. First of all, we will only allow gates with one or two inputs. This means
that for example 3-input and gates will not be allowed. This is a simplification we
do to make it easier to compare the different representations. We will also assume
that all gates delay the signal equally much, and need the same area on a chip.

Note that these simplifications make it impossible to state that the logical
circuits we say are the best will always be the best when implemented in VLSI.
All types of gates do not need the same number of transistors (and hence not the
same chip area), and do not cause equal delay to the signal. It is also possible that
allowing gates with more than two inputs would make the implementations faster
or smaller. For a discussion of VLSI considerations see for example [9].

3.2 Method of optimizing representations

To find the best possible representation, we have to look at all possible representa-
tions and see which representation gives us the best performance for the operations
we have chosen. Simple combinatorics tells us that we have 24 possible represen-
tations of the numbers. However, 12 of these are equivalent to the 12 other. This
can easily be realized if we take in mind that the order of the two bits is not sig-
nificant. Switching the bit-order of a representation will generate the same output
(with the bit-order reversed, of course). From now on, whenever we talk about the
properties of a representation, the same properties are valid for the representation
with reversed bit-order.

Before going into the different representations and the results they will bring
us we will look at what results we might expect, in the best case. For multipli-
cation and addition we must take a few things into account when considering the
least possible depth and number of gates for the implementation. First of all, the
operations are commutative, which means for the implementations that they are
symmetric. Hence, if for example the calculation of an output signal needs x, also
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12 is needed. Furthermore, all input signals are needed to calculate the total out-
put, and no output signal is independent of the inputs (since both multiplication
and addition are surjective). Nor is it possible that each bit depends on only one of
the input bits (of both operands). This last claim is not as obvious as the others,
and we will only briefly explain he reason for it here. Assume that one bit states if
the number is odd or even. Then the other must indicate to which pair of one odd
and one even number it belongs. The information of odd-even of the input signals
is used to decide if the output is odd or even, but the pairs the inputs belong to
are not sufficient to say which pair the output will belong to, here we also need the
odd-even information. For example, if we know that both inputs are either 1 or 2,
this is not sufficient to tell if the product of them is 0, 1 or 2. This implies that
for at least one of the outputs we need all four inputs to calculate this, and for the
other we need at least two input signals. It can be shown that the same is true
even if no bit has the odd-even significance, but rather divides Z; into two other
pairs. It is easily understood that four input signals means at least three gates, and
two inputs necessitates one gate. Now consider subtraction. It is obvious in the
same way as for multiplication and addition that all input signals are significant,
and therefore needed for one of the output signals. The other can not be indepen-
dent of the input signals, and since it’s never possible that only one input signal
determines an output signal at least two input signals will be needed for the other
output signal. In total this means that we need at least 1 respective 3 gates for the
outputs, just as with addition and multiplication. In the ideal case no gates at all
are needed for negation (the operation is “free”). This might sound surprising, but
when 3 and 1 are represented with one 0 and one 1, and 0 and 2 with two 0:s or
two 1:s, we easily see that switching the bitorder is equal to negation. In the same
way we see that if we for example represent 0 with 00 and 2 with 10 the second
output bit when multiplying by 2 will always be 0, and the first output bit will be
equal to the second input bit (which is 1 for 1 and 3. Therefore both negation and
multiplication by 2 is possible to implement without any gates at all.

3.3 Minimizing the depth and area

For the rest of the chapter, let mmso denote the binary result of multiplying the
binary numbers z1z2 and y1y2, ajas the result when adding them, and s;so the
result when subtracting y1ys from x1x2. Let also nins denote the result of negating
r1T2, and dids the result of multiplying z1x2 by 2.

In appendix A the 12 different representations (remember that shifting the bit-
order doesn’t change anything) are listed, together with the minimal functions for
the operations we are interested in. These have been obtained from the Karnaugh
diagrams for the different representations and operations and then simplified as
much as possible, using all possible gate types.

Looking at the functions in appendix A we see that there exists only one rep-
resentation with both multiplication and addition optimal (a depth of 2), and that
is the natural representation, where 0 = 00, 1 = 01, 2 = 10 and 3 = 11. It is
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however not theoretically optimal when it comes to subtraction, one input signal
needs to be inverted, for a total depth of 3, but as we can see from the table no
other representation is better. The natural representation needs one gate depth for
negation, but all representations for which negation is free needs gates for multiply-
ing by 2 and need far more gates for addition and subtraction, and hence we draw
the conclusion that the natural representation is the best one. The only exception
is when we need to perform a large number of negations, and not so many other
operations. The natural representation and the representation with the bit-order
shifted are shown in table 3.1.

Below we show how the minimal functions can be obtained from the minimal
polynomials extracted from the Karnaugh diagrams.

mp = $1y/1y2 + xlx/zyz + $;$2y1 + $2y1y;
w1y2(y + y1) + way1 (€1 + ya)
= $1y2($2y1)/ + $2y1($1y2)/
= (21y2) ® (2291)
mz = X2Y2
a1 = Ty TIToYy + T DYt + T 1Y + T T2y Y2 + T1T201Y2
219, (% + Yo) + 2151 (22 + Ys) + Dava(1y; + 2131)
= (21 ®y)(v2y2) + Toya(a1 B 1)
(z1 @ y1) & (22y2)

az = 22DY2

s1 = fﬂlylyz + »”61%22/1 + xlwzylyz + wlfclzywz + fcllwzm + x1y1y2
211 (Y2 + @2) + @191 (22 + Y5) + Toya(21y) + 2151)
(@)y1 + 7191) (T0y2) + Topa()y) + 7191
(21 @ Y1) (@oy2) + woya(e1 S 11)
(21 ® Y1) @ (2902)

S2 = xzy; + xlzy2 =22 D Y2

ny = 1 DT

ne = g

di = 2o

do, = 0

In figures 3.1-3.5 the implementation of the above equations are shown imple-
mented with logical gates. We can see that 4 gates are needed for multiplication, 4
for addition, 5 for subtraction, 1 for negation and no gates are needed for multipli-
cation by 2. We see that for all operations except negation this is the least number
of gates needed by any of the representations.

We can also see from the equations above that since it is the negation of x5 that
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|| Element | Representation 1 | Representation 2 ||

0 00 00
1 01 10
2 10 01
3 11 11

Table 3.1. Representations for minimum depth except for negation.

makes the depth of subtraction grow to 3 this will not necessarily mean that the
subtraction will contribute with depth 3 to the critical path. Since the depth for the
second bit in addition and multiplication is only 1 we can input an extra inverter
after this without increasing the depth of the total operation. Hence, whenever a
subtraction is directly preceded by an addition or multiplication, the addition to
the length of the critical path is 2 for the subtraction.
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Figure 3.1. Implementation of multiplication for representation in 3.1.
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Figure 3.2. Implementation of addition for representation in table 3.1.
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Figure 3.3. Implementation of subtraction for representation in table 3.1.

Figure 3.4. Implementation of negation for representation in table 3.1 .

0 do

Figure 3.5. Implementation of multiplication by 2 for representation in table 3.1 .
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The only downside to the natural representation is, as we have seen, that it
needs one gate for negation. Hence, another representation that doesn’t need any
gates for negation could be better when many negations are to be performed. Of
the representations in appendix A there are two that doesn’t need any gates for
negation the first representation in table 3.2 is obviously the better one, since it
doesn’t need any input signals to be inverted for the other operations. Also in the
table we see the representation with reversed bit-order.

|| Element | Representation 1 | Representation 2 ||

0 00 00
1 01 10
2 11 11
3 10 01

Table 3.2. Representations for minimum depth of negation.

Below are the minimal functions for this representation.

mi = (v1y2) ® (T2y1)

my = (22y2) ® (T1y1)

ar = (z1®y1)® (1 ®z2)(v1 B y2))
az = (228Y2)) @ (21D 22)(y1 D y2)
s1. = (z10y2) ® (21 © 22) (41 D y2))
s2 = (228y1))® (1 B x2)(1 D Y2)
n o= o

d = 191

d2 = 11D

The underlines indicate that the same gates are used more than once. In the
figures 3.6-3.10 the implementations for this representation are shown.
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Figure 3.6. Implementation of multiplication for representation in table 3.2.
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Figure 3.7. Implementation of addition for representation in table 3.2.
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Figure 3.8. Implementation of subtraction for representation in table 3.2.
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Figure 3.9. Implementation of negation for representation in table 3.2.
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Figure 3.10. Implementation of multiplication by 2 for representation in table 3.2 .
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3.4 Summary of performance

We end this chapter by giving the performances of the representations discussed.
This is done in the table below. Remember that the same performances may be
obtained by switching the bit-order of the representations.

Representation
0=00,1=01,2=10,3=111]0=00,1=01,2=11,3=10
Depth Gates Depth Gates
Ty 2 4 2 6
T+y 2 4 3 7
x—y 3 5 3 7
—x 1 1 0 0
2z 0 0 1 2

Table 3.3. Performance of the two representations.
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Chapter 4

Polynomial basis
representation

In this chapter structures for performing multiplication in GR (4™) using the poly-
nomial basis representation will be described. The polynomial basis representation
has been presented in section 2.4.2. We will explore three types of implementations,
serial multipliers, parallel multipliers and systolic multipliers. The implementations
will be described in terms of operations in Z,. How the different operations can be
implemented in gates has been discussed in chapter 3. When studying the perfor-
mances, regarding speed and needed chip area, of our implementations we will use
the results from chapter 3.

4.1 Implementation of serial multipliers

For the rest of this section, we will assume that we have a ring generated by the
(basic irreducible) polynomial

pl@) =Y pir' =po+pa+...+am (4.1)
=0

in which we wish to multiply the two polynomials a(x) and b(z):

m—1
a(x) = g a;xt =ag+ a1z + ...+ apm_1z™ !
i=0

m—1

b(x) = Z bix' = by + b1z + ...+ by_1z™ L
i=0

25
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The result of the multiplication a(x)b(z) (mod p(z)) is denoted ¢(z), and writ-

ten
m—1

x) = E gt =cy+ciz+...+emo1z™T
i=0

1

4.1.1 SSR multiplier

The SSR (Standard Shift-Register) multiplier is the perhaps most intuitive, and
oldest, serial multiplier for Galois fields. Here we will transform the multiplier
presented in [6] into a multiplier for the Galois ring GR (4™). We have

c(x) = a(x)b(x) mod p(x)
= a(x)(bo + b1z 4 ... +bp_12™ ") mod p(z)
= boa(z) + briza(x) + ...+ by 1a:m Ya(x) mod p( ) (4.2)
= (boa(x) mod p(z)) + (blm( ) mod p(z)) +
(b 12™alr) mod p())
= 3 (biwtale) mod p(a),
i=0

where the terms b;x'a(x) mod p(x) may be computed recursively by multiplying
by one x at a time, and calculating the result modulo p(z). An example of how
this is done for b3 is shown below.

bszPa(z) = (bsz?a(z) mod p(x))z mod p(x)
= (((bsa(x) mod p(x))x mod p(z))x mod p(z))z mod p(x).
Figure 4.1 shows the implementation of the SSR multiplier. The polynomials a(x)
and b(x) are loaded serially into the r; registers. During the first clock cycle
bm—1a(x) is calculated and the result is stored in the z registers. The registers

containing b(x) and z(x) are then shifted left one step, corresponding to a multi-
plication by x. This gives us, after shifting z(x):

-1
2(x) = zmx™ + Zmo12™ T + .o+ 212 + 20,

where zp = 0. To reduce this modulo p(z) we subtract z,p(z) from z(x):

z2(x) — zmp(xz) = zpma™ 4+ 21 ™ 420+
+(—zma™ — ZmPm_1x™ T — = ZmPo)
= (Zm-1— ZmPm-1)™ 4+ ...+ (20 — Zmpo)
m—1
= > (25— 2mpi)’
i=0

After this reduction modulo p(x) we add b,,—2a(z), with the reduction and
addition performed in the FE; cells of figure 4.1. In the z registers we now have
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bm—1za(z) + bym—2a(z) and we see that after repeating the same procedure as
above for all b; we will have our result in the z registers. The result is thereafter
returned serially using the upper r; registers.

Cm—1.--C

rm—1" I"m —2| 0
A / A

m—1 m—2| . 20 0
A / A

\ \ \
z.
m Zm Zm,
L > —
. b;
bj> Em— bj > B2 —»J — Eo
A / A
m—1 m—2 agp
A / A
Pm-1 Pm-—2 Po
_ Am—1..-00

Tm—1 I"'m—2| . To

bm—1---bo

o — 11 N B - -

m m e To

Zi—1

.
7l

/ Zm
b.:

S
vy
o

a; Di

Figure 4.1. Implementation of the SSR multiplier for GR (4™).
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4.1.2 MSR multiplier

In [6] a minor modification of the SSR multiplier is proposed. The new multiplier
for fields is called the Modified Shift-Register (or MSR) multiplier. This can also
be used for Galois rings. Remembering equation 4.2 we have

c(z) = boa(z) +biza(z) + ...+ by_12™ ta(z) mod p(x)

Now we can define polynomials Z_ ;(x) as

Z_ (z) = i: 22" = 2l a(x) mod p(z). (4.3)
=0

This gives us
m—1
clw) =) bjZ- ().
j=0

In matrix notation we can write

co 20,0 201 .- Z0,m—1 bo
C1 21,0 21,1 e Z1,m—1 by
Cm—1 Zm—1,0 Zm-1,1 --- Zm—lm—1 bm—1

From equation 4.3 we can see that the columns in the matrix are formed by
merely multiplying the former column by z (and reducing modulo p(z)). This is
equal to that Z_ 1 is formed by shifting Z_ ¢ and reducing modulo p(z). Therefore
we need to first calculate Z_ obg, then calculate Z_ 1b; and add to the former result,
and repeat this for all columns in Z. The implementation of the MSR multiplier
is shown in figure 4.2. In the figure the upper part is responsible for the shifting
and reducing modulo p(x), while the lower part sums up the terms for the different
¢;:s, through a feedback of the temporary sum. After m clockcycles the result will
be given in parallel form (it can, of course, be put in registers and serially shifted
out, as in the SSR case, to provide the result in serial form).

4.1.3 Performance of serial multipliers

From the figures 4.1 and 4.2 we can easily determine the performance of the archi-
tectures in terms of speed and area. We will use the natural representation from
chapter 3, since it’s been shown to be the best except for the case where we have an
abundance of negations, which is not the case here. For the SSR multiplier we see
that the longest path a signal has to travel through during one clockcycle contains
one multiplication, one subtraction and one addition. Since, according to chapter
3, these operations has a depth of 2, 3 and 2, the critical path should contain 7
gates. But, as noted in section 3.3, when a subtraction is preceded by a multipli-
cation, it only adds a depth of 2 gates to the critical path. Therefore the critical
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Figure 4.2. Implementation of the MSR multiplier for GR (4™).
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path consists of 6 gates for the SSR multiplier. We see also that the delay, i.e. the
time from the input reaches the circuit until the output begins leaving it, is 2m
clock cycles. Of these, m cycles are needed for the actual calculations, and m for
the serial input and output of the data. The throughput is decided by how often
we may introduce new data into the circuit, and since the actual calculations need
m clock cycles, we may input new data each m clock cycles, and new output will
be given just as often. This means the throughput is 1/m results per clock cycle.
We see further that the SSR multiplier is comprised by m cells, all performing 2
multiplications, 1 subtraction and 1 addition. Since multiplication needs 4 gates,
subtraction 5 and addition 4, this gives a total of 17m gates. Adding to this, we
also need 5m registers, as can be seen in the figure.

Turning our attention to the MSR multiplier we see that the critical path here
contains 1 multiplication and 1 subtraction. Since the subtraction here is preceded
by another subtraction, we must count 3 gates as its addition to the critical path,
for a total of 5 gates in the critical path. In the same way as for the SSR case we see
that the delay is 2m clock cycles, and the throughput 1/m results per clock cycle.
For the area, we see that the upper part of the curcuit needs m multiplications,
m — 1 subtractions and 1 negation (multiplication by 3). The lower part needs m
multiplications and additions, for a total of 2m multiplications, m additions, m —1
subtractions and 1 negation. This sums up to a total of 17m—4 gates. Furthermore
a total of 5m registers are needed. This is not shown in the figure, but considering
that we need the same registers for input and output of the data serially as in the
SSR case we get this number.

From the calculations above we see that the MSR multiplier is slightly better
than the SSR. They need approximately the same chip area, have the same delay
and throughput but the critical path is one sixth shorter, which can be used for
clocking the circuit faster.

4.2 Implementation of parallel multipliers

The standard polynomial parallel multipliers for fields are normally more compli-
cated to construct than their serial counterparts. This is primarily due to that their
implementation is dependent upon the generator polynomial p(z), which means
that there is the additional problem of choosing the most suitable polynomial.
For Galois rings the parallel multiplier may be constructed similarily as for Galois
fields. We will begin by describing the general procedure when constructing a par-
allel multiplier. After that the role of the generator polynomial for the construction
procedure and final architecture will be treated briefly.

4.2.1 Construction of a parallel multiplier

Assume that we wish to multiply two elements in the Galois ring generated by the
(basic irreducible) polynomial p(x) = z*+z+1, GR (44). Denote the multiplicands
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as
_ 2 3
a(z) = ag + a1z + agx” + asx

b(z) = bg + b1z + box® + bya®.

First we note that we have

2 = 3x+3
2 = 322+ 32
2% = 32% + 322

We now perform the laborious task of multiplying a(z) and b(x) by hand.

c(x) = a(z)b(z) = (ag+ a1z + axe + axz)(bo + b1z + bax? + bya®)

= apbo + [aoby + arbolx + [agbs + arby + asbolz? +
+[agbs + aiby + azby + azbola® + [a1bs + asbs 4 asby|z?
+lazbs + a352]335 + azbza®

= aopbg + [agb1 + arbo]z + [aobs + a1b1 + a250]$2 +
+[agbs + a1by + agby + azbolz® +
+[a1bs + agby + asbi](3z 4 3) + [azbs + azbs] (32 + 3z) +
+agbz (32> + 327%)

= Jaobo + 3asby + 3azbs + 3a1bs] +
+[a1bo + (ap + 3as)b1 + (3az + 3as)bs + (3a1 + 3az)bslz +
+[azbo + a1b1 + (ag + 3asz)bs + (3az + 3a3)bg]x2 +
+lazbo + azb1 + a1z + (3az + ag)bs|z”.

The result of the multiplication may be expressed with matrices. Let

ag 3as 3ao 3a1
7 a1 aop+3az 3as +3asz 3ai + 3as (4.4)
as ay ag + 3az  3as + 3ag
as as ay 3daz + ao
Then we have

Co b()
C1 o b1
Co =Z b2
C3 b3

Now that we know an expression for the multiplier, the question is how to
implement it. We choose to use the same architecture as is used for a Galois
field multiplier in section 4.2 in [6]. This multiplier is often referenced to as the
Mastrovito multiplier, and is possible to translate almost entirely to work for Galois
rings.
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First we note that the Z matrix is a function of the a;:s, and therefore we let

Z = (fi7j(a0,...,a3)) (45)

where 0 < 4,7 < 3. This gives us
3
C; = Z f@j (ao, c. ,a3)bj (46)
j=0

and we now see that all ¢; are computed as inner products between the functions
fi,; and the b;:s. Hence we can divide the multiplication into two parts, one that
computes the values of the functions f; ; using the a;:s, and one that implements
the inner products. Looking at the matrix Z we see that some elements are equal,
which means that some of the functions are actually the same. To benefit from
this we introduce a third part into our implementation, a bus used to connect
the part computing the functions and the inner products. All together we see the
implementation in figure 4.3, where we, from left to right, calculate the functions
in Z, transmit them via the bus and calculate the inner products. We see that
the rightmost part, calculating the inner products, only depends on the size of the
Galois Ring, not on the generator polynomial, while the two other parts depends
on the polynomial itself. This incurs the drawback of having to reconstruct the
network for each new generator polynomial we want to use. It also means that
some polynomials will be more suitable as generator polynomials than others, since
the complexity of the implementation to some degree depends on the generator
polynomial. This inconvenience of having to reconstruct the network for a new
generator polynomial is the reason for not using subtractions in figure 4.3. Where
we have a multiplication by 3 (or negation), followed by a multiplication and then
by an addition, we could have instead used just the multplication followed by a
subtraction. This would have shortened the critical path. The down-side, however,
would have been that the rightmost part of the figure would now also be dependent
on the generator polynomial, making the contruction procedure a little less straight-
forward. For this reason we have chosen not to do this optimization here, but if
speed is really important, it should of course be done.

4.2.2 Eliminating multiplications by constants

In this section we will discuss a detail regarding the generating polynomial that can
be observed when studying section 4.2.1. As we can see from the description of the
Z array in 4.4, an implementation of the parallel multiplier in the ring GR (44),
generated by the polynomial 2* + x + 1 needs to perform several different multipli-
cations by coefficients with the constant 3. As can be seen from the calculations,
all these 3:s originates from the fact that z* = 3z + 3. If we instead had chosen
the polynomial z* + 32 + 3, we would have had 2* = z + 1, and all multiplications
by 3 would have disappeared. We see that the same thing goes for all polynomials
of the form ™ + ax + b. If possible, a and b should be chosen to 3 if a trinomial
of the form above is to be used.
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Figure 4.3. Implementation of parallel polynomial multiplier for GR (44)7 with
P(x)=a"+x+1.
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4.2.3 Performance of the parallel multiplier

It is hard, to not say impossible, to explicitly state the number of gates needed and
the critical path length for a parallel multiplier, given the generator polynomial.
We will state upper bounds on the complexity, bounds that can often be beaten
by quite a lot. Therefore we will also discuss some specific classes of generator
polynomials that will show better performances.

First we look at the right part of figure 4.3. We see that this only depends on
the size of the Galois ring, and not on the generator polynomial. The depth is 1
multiplication, and [log, m| additions. This gives a total depth of 2 + 2[log, m|
gates for the right part of the circuit. The number of gates in each cell is m
multipliers, and m—1 adders, totaling to 8m—4 gates per cell, which gives 8m?—4m
gates for the whole right part, since we have m cells.

The left part is a bit more tricky, since it depends on the generator polynomial
used. However, we know that it consists of constant multiplications followed by
additions. Since all constant multiplications except negations are free in terms of
gates, we assume that negation is needed for any of the coefficients, which will
add 1 gate to the length of the critical path. Furthermore, the largest possible
depth of the additions is the same as for the right part of the circuit, 2[log, m].
Summing up the depths we get a critical path of at most 3 + 4[log, m] gates for
the parallel multiplier. In [6] an upper limit of the number of gates needed for
the left part when multiplying in fields is given. The result is valid for rings also,
but we must adjust it, bearing in mind that we work in Z4 instead of Z5 and that
we may have to negate elements, which costs us an extra gate. Therefore, from
corollary 4.8 in [6] with adjustments, we get an upper bound of 5(m — 1)(w, — 2),
where w, is the number of non-zero coeflicients in the generator polynomial. We
see that when w, = m + 1, its maximum, we get an upper bound of 5(m — 1)?
gates. For the whole circuit, this means that the number of gates needed is less
than 8m? — 4m + 5(m — 1)(w, — 2) < 8m? —4m + 5(m — 1)2 = 13m? — 14m + 5.
As far as the throughput and delay is concerned, since there are no registers, we
will get one result each clock cycle, and when applying input data we will get the
output the next clock cycle.

Performance for specific polynomials

In [6] the performance for different classes of generator polynomials for field multi-
pliers is explored. Above we have used a formula for the number of gates needed,
depending on the number of coefficients in the generator polynomial. Now we will
take a look at the results regarding the critical path length of the left part of the
multiplier in figure 4.3. In [6] results for a few different classes of polynomials are
shown, and the proofs for their respective critical paths hold in rings also. We
must, however, still keep in mind that we need more gates for the operations of
addition and multiplication than in the case of a Galois field GF (2’“), and that
we also might have negations of all coefficients. This said, we see that using the
results from [6] we get the following results for the left part of the multiplier.
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Figure 4.4. Shift register used for calculating Z.

e If the generator polynomial is ™ + ax + b, a,b # 0, the critical path will be
at most 3 gates. We note that in section 4.2.2 we have seen that no negations
are needed if the polynomial is ™ + 3z + 3, so if this is the case the critical
path will become at most 2 gates.

e If the generator polynomial is of the form 2™ + az® + b, a,b # 0 and
0 < k < m/2, the critical path will be at most 5 gates. Also here the
best is if a = b = 3, because then no negations are needed so the critical path
will become 4 gates.

e If the generator polynomial is a polynomial of the form
R R I
for any integer s, the critical path will be at most 3 gates.

For the right part of the multiplier we have already seen that the critical path
is 2+ 2[log, m] gates, so to get the full critical path we only have to add this to the
results above. As we have stated these results are proven in [6], but we will show an
alternate way of justifying them here. This method is used in the first of the cases
in [6], but here we will extend it to be used for all cases, even though we only prove
the third statement, the one with 2™ +z™ ' +...+xz+1. First we remember from
section 4.1.2 that the columns in the multiplication matrix Z can be calculated by
rotating the columns and reducing modulo the generator polynomial. Bearing in
mind that the left-most column contains ag, a1, ...,anm_1, we see that we can use
the shift-register in figure 4.4 to calculate the columns one after another, by loading
it with ag, a1, ...,am—1, and then shifting the data in the registers m — 1 times.
Each shift will give us a new column in Z. We note that this figure is equivalent
to the upper part of the MSR multiplier, as shown in figure 4.2.

We now wish to compute the columns of the matrix for the polynomial
2™+ 2™ 4. +2+1. Obviously, we can not perform this computation entirely,
because we don’t know the size of m, but the first few columns are calculated in
the table 4.1 (the columns of Z are shown as rows in the table).
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Ry R4 R . Ry_1
ao ai as . Ap—1
3m—1 ap + 3@, 1 a1 +3am—-1 ... Q2+ 3Am—1
Am—1 + 3Am—_2 3Am_2 ap+3am_—2 ... Gm_3~+ 3Qm_o
Am—2+3am-3 Am—1+ 30m_3 3am—3 cor Qg+ 30,3
as + 3aq as + 3a1 aq + 3a1 - ap + 3a1
Table 4.1. The columns in the Z matrix for the generator polynomial

2+ 4+ 1.

After the first few lines we discover a pattern and may thus conclude how
all columns in Z will look. We see that no element in Z will need more than
one addition and one negation (or one subtraction instead of both), and thus the
maximum depth will be 3 gates, just as we have stated. In the same way we may
make tables for the other polynomials for which we have stated good critial path
lengths and see that it’s correct. Or, as we have said earlier, we may rely on the
proofs in [6].

4.3 Implementation of systolic multipliers

Another class of architectures for multiplying in Galois fields are systolic architec-
tures. Their advantages include highly regular structures and that they are quite
fast. The systolic multiplier for Galois fields, as described in [10] can easily be
adapted to Galois rings.

4.3.1 General principles of systolic architectures

The principle behind systolic architectures appears to be quite simple and easy to
understand. A systolic array comprise an array of identical cells, performing some
kind of operation. The cells are put together in such a way that each cell only uses
signals from the cells next to it. By introducing flip-flops at well chosen points
(for example at all points where signals go from one cell to another) we can now
get very short signal paths. This means that the architecture may be clocked very
fast. The data which to process is normally introduced at the top and left side of
the array. The systolic arrays we will look at would without flip-flops be strictly
parallel architectures, but the adding of flip-flops gives them a certain serial flavour.
Since data only flows from a cell to it’s neighbours, and no feedback circuits are
allowed, after a few clock cycles we will normally have cells that are no longer used
in the computations. They can be used for beginning the next computation. This
means that with a good design of the systolic array all cells may be in work all the
time, thus maximizing the throughput.
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The downside of systolic arrays are that they will soon become very large. The
number of cells is normally (as it will be in our case) in the order of m?2. This
demands a very large chip area. Another negative thing about systolic multipliers
is that they often require a larger number of clockcycles before they are done than
the serial architectures.

4.3.2 Implementation for GR (4™)

We have seen in section 4.1.2 that
c(z) = boa(x) + brza(x) + ...+ bp_12™ ta(x) mod p(z).

Interchanging a(x) and b(z), which is possible since multiplication is commutative,
we might just as well write

c(z) = apb(z) + arxb(x) + ... + ap_ 1™ b(z) mod p(z),

which may be described as adding up the different terms, and then reducing modulo
p(z). In equation 4.3 it is shown that the different terms may be computed by
succesively adding the terms without multiplying by z, and after each new term
left-shift one step, which is equivalent to multiplying by z. This can be done
recursively, and we may reduce modulo p(x) in each step, instead of at the end like
in the equation. This gives us an algoritm for computing ¢(x), as is shown below.

fori=1tom
dRm@g:uw4me+%%w@D(mﬂP@»

c(x) = R (x).

To transform this into an algorithm working on the coefficients instead of the
full polynomial b(x) we observe that we may write

—1

3
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i—1 i—1
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as long as we let rgfl) =0.
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Now we may rewrite our algorithm above as follows:

RO(z)=0; rﬂ? =0 Vk;
fori=1tom
RO (@) = Y75 5 = 020 by + amiby)a?
end
c(x) = R (x).

Now we can let the sum in the for loop be represented by a row in the systolic
array, and each cell in a row corresponds to one term in the sum.
Using another description of R()(x), namely

m—1 )
R (z) = Z rg-z)a:j,
§=0

we easily see that

i—1 i—1
(o =y by).

r = 03 = 1y +

-
This shows that r§-i) depends on rﬁ,i;ll). This is the most significant coefficient of
the upper row, and because of this we calculate the most significant coefficients
first (i.e. higher and to the left of the less significant). Each cell in our array will

therefore depend on the leftmost cell on the row above. We also see that each cell

will depend on the cell to it’s upper right (r§i_11)), and on the cell to it’s left and the
cell above it (since the b and a coefficients are introduced at the top respectively
at the left). This, together with the equation 4.3.2 gives us the cells in figure 4.5.
To interconnect the cells we use the systolic array in figure 4.6. We haven’t yet
discussed how many flip-flops should be introduced. Between all cells we need at
least one flip-flop, but this is not enough. Since every cell depends both on the cell
above it and on the cell on its upper right, we need two flip-flops between the cells
vertically. This is because to calculate r§l) we need 7“](-1:11). Since this needs data
from the cell to the left of it we need a two clock-cycles gap between each cell and
the cell above it.

We also see that to make sure that all coefficients meet each other in the right
cells at the right times we must delay the inputs. Since it takes the b coefficients
two clock cycles to “fall down” one row in our matrix, the inputs at the left must
be delayed two clock cycles in the second row, four in the third row and so on.
Since we only have one flip-flop between each column in our matrix, we only need
to delay the data at the upper row one clock cycle in the second column, two in the
third column and so on. This delay of the inputs at the top also means that we will
have the same delays of (t%le second, third and so on coefficient at the bottom. In
J

figure 4.6 the notation a,”’ signifies that the coeflicient a; is delayed j clock cycles.

4.3.3 Performance of the systolic multiplier

The systolic multiplier contains m? equal cells. The longest path a signal has to go
through in such a cell contains one multiplication, one subtraction and one addition.
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Chapter 3 tells us that this translates into 6 gates in the critical path (remember
that a subtraction preceded by a multiplication only contributes with two gates to
the critical path). We may apply new data each clock cycle at the inputs, and for
each clockcycle we will get a new calculated result, thus giving a throughput of 1
result per clock cycle. The delay will be 3m — 1 clock cycles, of which 2m is the
delay between the cells, and m — 1 is the extra delay for not applying all inputs
at the same time, but delaying some before they can enter the array. The total
number of operations in one cell is two multiplications, one subtraction and one
addition for a total of 13 gates. The whole array then contains 13m? gates, plus
6m? registers, or flip-flops.
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pj bj i1
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Figure 4.5. A cell in the systolic multiplier.
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b b(l) (1) b(2) (2) b(3) (3)
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Figure 4.6. Implementation of a systolic multiplier for the GR (44). The filled circles
between the cells are flip-flop registers.
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4.4 Summary of performances

In the tables below we summarize the speed and the area needed for the four
architectures explored in this chapter. For the parallel multiplier a few comments
are necessary. First, when computing the area w, equals the number of non-
zero coeflicients in the generator polynomial. For the critical path we give several
different values. One is an upper limit for any generator polynomial, and the others

are values for specific generator polynomials, as shown in 4.2.3.

|| Architecture | Area (in gates) | Registers |
SSR serial 17m 5m
MSR serial 1Tm —4 5m
Parallel < 8m? —4m +5(m —1)(w, — 2) 0
Systolic 13m? 6m?

Table 4.2. Area of polynomial basis architectures.

|| Architecture | Critical path | Delay | Throughput ||
SSR serial 6 2m 1/m
MSR serial 5 2m 1/m
Parallel < 3+ 4[logy m] 1 1
Parallel, 2™ + ax + b 5+ 2[log, m | 1 1
Parallel, z°" +2°»= D + ..+ 1 | 5+ 2[log, m] 1 1
Parallel, ™ 4+ ax® + b,k <m/2 | 7+ 2[log, m] 1 1
Systolic 6 3m—1 1

Table 4.3. Speed of polynomial basis architectures.




Chapter 5

Dual basis representation

In this chapter we will explore a representation called the dual basis representation
for multiplying elements in GR (4™). We begin by defining what we mean by a dual
basis, and proove the existence of such a basis for all Galois Rings. This theory is
much inspired by [5] and [11].

5.1 Definition and existence

We start by defining what we mean when we say that two bases are dual.

Definition 5.1 (Dual basis) A pair of bases {co, ..., am—1} and {Bo, ..., Bm—-1}
are called dual bases if and only if

T(aiﬂj)—{ (1)’ z;j ,0<i,j<m—1

where T is the trace function from definition 2.10.

It is important to notice that a basis by itself never can be a dual basis, it must
be dual with respect to another basis. At times we will, however, state that a basis
is a dual basis, omitting to which basis it is dual. This is only done when the other
basis is obvious from the context, and this other basis will normally be a standard
polynomial basis. Now we will state a theorem that guarantees a dual basis for
any basis in the Galois Ring GR (4™).

Theorem 5.1 (Existence of unique dual basis) Every basis of GR (4™) has a
unique dual basis.

When proving this theorem we will need the following lemma.

Lemma 5.1 All linear transformations from GR(4™) to Zs may be written
uniquely as L, (o) = T (ya) for different values of v € GR (4™).

43
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Proof. Since the trace function 7' is linear (according to theorem 2.8), L, is a linear
transformation from GR (4™) to Z4. For v # 72 we have that L., (o) — L, (a) =
T((y1 — v2)a). Write 1 — 2 = a + 2b in 2-adic representation. If a # 0 we know
that a + 2b is invertible according to theorem 2.6. Therefore we may choose an «
such that (y; — 72)a obtains any value in GR (4™). Since T is surjective onto Zy
we can choose « such that T'((y1 —y2)e) # 0. If, on the other hand, a = 0 we have
T((y1 — y2)e) = 2T (bar) # 0 for some « since b is invertible. From this we may
conclude that all transformations L. are different, and if their number equals the
total number of linear functions from GR (4™) to Z, they actually form the set of
all such functions.

The number of linear functions from GR (4™) can be obtained by considering
that a linear function is formed by assigning a value in Z, to every basis element
of a certain basis in GR (4™). Since we have m elements in any basis, and each
may map to 4 different values in Z4, there are 4™ possible linear functions from
GR (4™) to Z4. Since we also have 4™ different linear functions L. («), one for
each element v € GR (4™), the lemma is proven.

O

Now we turn to the proof of theorem 5.1.
Proof (Existence of unique dual basis) Assume that we have a basis for
GR(4™), {ao,...,am—1}, and that £ is a root of a primitive polynomial of degree
m, with the order of £ being 2™ — 1. Let further, for any element o € GR (4™),

—

m—

a= Z ci(a)a; (5.1)

=0

be the unique representation of « in the basis, where the ¢;(«):s are m linear
functions from GR (4™) to Z,. We wish to show that we can write ¢;(a) = T(5;«),
for all these functions, and that {0, ..., Bm—1} forms a basis for GR (4™).

All ¢; in equation 5.1 are linear transformations from GR (4™) to Zy. Now
lemma 5.1 tells us that for each ¢; there exists a ; such that we have ¢;(«) = T'(8;c),
for all a.

To prove our assumption we must also show that the set {8p,...,0m—1} is a
basis of GR (4™), dual to {ao,...,am—_1}. Since we have

m—1 m—1 m—1
aj =y clagai =Y T(Biaj)a; =Y Lg, (o),
i=0 i=0 i=0

we know that T'(B;a;) = 0if i # j and 1if ¢ = j. Since we know how the Lg,:s work
on all basis elements of the original basis they are fully determined, and from lemma
5.1 we draw the conclusion that the §;:s are uniquely determined. Furthermore,
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if Y=, diffi = 0, where d; € Z4, we have

d;j =0

forall j =0,...,m—1. Therefore the (;:s are linearly independent and we conclude
that {Bo, ..., Bm-1} is a basis for GR (4™), and also the only basis dual to the basis

{ao, e ,Oémfl}.
O

We give a few examples of dual bases.

Example 1. Let R = Zy[z]/(z*+z+1), and let a*+a+1 = 0, so that {1, o, a?, o}
is the standard polynomial basis of R. The dual basis is {a® + 1,02, «,1}. This
also means that if the coeffecients in the first basis for an element are (ag, a1, az, as)
they will be (as,as, a1, a0 — az) in the second basis.

Let also S = Z4[z]/(z* 4+ 32 +3), and $* + 33+ 3 = 0. Now we have the pair of
dual bases {1, 3,32, 3%} and {3833 + 1,332,33,3}. Also we have for an element in
the first basis with coefficients (b, b1, ba, bg) the coefficients (3bs, 3az, 3a1, 3ao+as)
in the second basis.

As a third example, let T = Zy[z]/ (23 + 222+ 2 +3), and 7> +292 + v+ 3 = 0.
Now the basis and dual basis are {1,7,v%} and {292 + 2y + 3,292 + 37y + 1,272 +
v+ 2}. If the coefficients for an element are (co, c1,c2) in the first basis, they are
(3co + 2¢1 4 2¢2,2¢9 + 2¢1 + ¢2,2¢0 + ¢1 + 2¢2) in the second basis.

We note that conversion between the dual bases may be very simple, as in the
first example, or more complicated, as in the third. In the first example we only
have to change the order of the elements, and add or subtract a constant 1 to one
of them, while as for the last example it is much more difficult. O

Now we will use this result to construct multipliers that multiplies two elements,
one represented in a polynomial basis and the other in its dual basis. The multiplier
we present first is similar to the serial dual-basis multiplier in [6].

5.2 Implementation of serial multipliers

Assume that {1,a!,...,a™ 1} and {0, 81, .., Bm_1} are dual bases for GR (4™),
and that « is a root of the basic irreducible polynomial

p(a‘) = DPm +pm—1xm_1 +...+p1x+po
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. The first basis is hence a standard polynomial basis. We know that
Tl =1 b =7 (5.2)
PI= 0, it
Assume further that we wish to multiply the two elements A and B, where

m—1

A = i:aiai
i=0
m—1

B = > bfi,
i=0

and a;,b; € Z4. We denote the result

m—1

C=AB= Z Ciﬂiv
=0

where ¢; € Z4. Note that A is in polynomial basis representation while B and C
are in dual basis representation. We have

m—1 m—1
T(o’B)=T <o/ > mm) = > bT(Bia) = by, (5.3)
=0 =0

due to the linearity of the trace function, and equation 5.2. Let Y = aB. Then
equation 5.3 gives us

; ; b; ) =0,1,...,m—2
- ivV) — J+lpy — j+1s J TR
y=Tly)=rp = { AT 64
Since p(a) = 0, and p(z) is monic, we know that
a™ = —(poa® + pra+ ...+ pm_1a™ ") (5.5)
and, combining this with 5.3, we get
T(a™B) = T(—[poa® +pia+...+pm_1a™ B)
= —[poT(B) +piT(aB) + ...+ pm_1T(a™ *B)]
= —(pobo+pibr+ ...+ pm_1bm_1)
= _(p07p17---7pm—1) . (bO)bla"'ybm—l) (56)

where - is the scalar product between vectors. We see from equations 5.4 and 5.6
that we can implement a multiplication by « in the dual basis by a shift of coeffi-
cients, letting each coefficient take the value of the former next higher coefficient.
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The exception to this is that the new highest coefficient will take the value of the
equation 5.6. Let

m—1
/B =Y b ;B
=0

Obviously this is valid for j = 0, since we then have
m—1 )
OéOB = Z biJrOﬂz.
i=0
This gives us the following recursive formula for o/ ! B:
. m—2 ‘ m—1
ajJrlB = Z bi+j+151 - <Z biJrjpi) 5m71. (57)
i=0 i=0

The calculation of aB is shown in the upper part of figure 5.1.
Now we can compute the coefficients in C.

¢ =T('C)=T('AB), j=0,1,...,m—1

We compute the first coefficients as examples.

co = T(AB)=T(apB)+T(a1aB)+ ...+ T(am-1a™ ' B)
= agbg+a1bi +...+ am_1bm-1 (58)
= (ao,al,...,am,l) . (bo,bl,...,bmfl), (59)

where - still denotes the scalar product of vectors. Now ¢; may be computed as
the scalar multiplication of A and aB, ¢2 = A - (a®?B) and so on. Hence the
multiplication may be divided in two parts, one recursively calculating a(a’~! B),
and the other performing a scalar product with A.

c1 = T(aAB)=T(apaB) + T(a1a23) +...+T(am-1a™B)
= abi+arba+ ...+ am—2bm—1 — am—1(bopo + b1p1 + ... + b—1Pm—1)

Note that C' is given in dual basis representation.

These calculations gives us a implementation of the dual basis serial multiplier
as shown in figure 5.1. In this figure we can see that the upper part is used
to calculate aB as described in equations 5.4 and 5.6, while in the lower part we
perform the scalar product from equation 5.8. The output is given serially, starting
with Co-

5.2.1 Alternative serial multiplier

Looking at figure 5.1 we see that the critical path is very long, and depends on
m, which is not a very good property of the multiplier. Inspired by [9], more
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ag ay a2 m—1

Figure 5.1. Implementation of the serial dual basis multiplier for GR (4™).

specifically the transformation of figure 4.2 into figure 4.7 in that thesis, we see
that by moving around some of the registers we could instead use the architecture
in figure 5.2 as our serial multiplier. Some explanations about how the input of
data is done is needed. As wee see from the figure the registers in the middle are
not sufficient to store all b;, but only half of them. Therefore we introduce our b;:s
serially the first m clock cycles, and after this we turn the switch in the figure and
close the feedback circuit, which has now calculated the very first result that is to
be fed back. This is immediately used by the lower part that has added all but the
last term to obtain ¢g. Thereafter we continue operation for m — 1 clock cycles,
calculating the rest of the ¢;:s.

5.2.2 Performance of the serial multipliers

We see from figure 5.1 that the critical path depends on the size of the Galois ring,
as opposed to the serial architecture for the polynomial basis. The addition net-
works in the figure are not optimal, we should of course use addition trees for adding
m values. The critical path will then contain one multiplication, [log,(m —1)] ad-
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Figure 5.2. Implementation of the alternative serial dual basis multiplier for GR (4™).

ditions and one negation, bringing the total length to 34 [log,(m —1)] gates, which
is horrible compared to the 5 gates needed for the MSR multiplier in section 4.1.2.
The total number of operations needed is 2m multiplications, 2m — 2 additions and
1 negation, which gives an area of 16m — 7 gates. Furthermore 4m registers are
needed (2m registers are necessary to be able to load the b; and a; registers in a
parallel fashion). We see that we can perform one multiplication each m clock cy-
cles, for a throughput of 1/m. The delay is 2m, just as in the standard polynomial
basis case.

The alternative multiplier in figure 5.2 has much better performance in some
ways. First we see that the critical path contains just one multiplication, and two
additions, for a total of 6 gates. The number of gates needed is the same as above,
16m — 7. Apart from the registers in the figure we need m registers to serially
input the a;:s, and m/2 registers to input the b;:s (since they can also use the m/2
registers in the middle of the figure). This totals to 4m registers. We can here only
perform one multiplication every 2m clock cycles, due to the fact that we cannot
start applying new data until we’re completely done with the previous ones, so
therefore the throughput is only 1/2m results per clock cycle. The delay is still 2m
clock cycles.
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5.3 Implementation of systolic multipliers

In this section we will look at how a systolic dual basis multiplier may be con-
structed. For a brief introduction into systolic array architectures the reader is
referred to section 4.3.1.

In [2] a parallel, systolic, dual basis multiplier is proposed for the Galois field
GF (2™). We will show that a similar multiplier for the Galois ring GR (4™) can
be constructed. Bearing in mind the dual basis multiplier in section 5.2, and using
the same denotation for the multiplicands, we know that

¢cj=T(a’AB) = A- (’B),

according to the discussion after equation 5.8. We have also shown a recursive
formula for calculating o’ B in the equation 5.7. We see now that we can write the
multiplication in the following matrix form.

Co bo b1 ce bm,1 ap
C1 b1 bg e bm a1
= . (5.10)
Cm—1 bmfl bm e b2m72 Gm—1

This can be used to implement the multiplication with a systolic array. Let us
input the A coefficients at the left, and the B coefficients at the top, and expect
the C coeflicients to turn out as the result at the bottom of the array. We see from
the array above that the B coefficients must go from one cell to the left lower cell,
and that we need to input the negative cross product with the P coefficients in the
right-most cell of each column. Therefore we need to calculate this cross-product
at each row, to be able to input it at the row below. This is done by letting the P
coefficients be inputted in the same way as the A coefficients, at the left. The full
systolic array is shown in figures 5.3 and 5.4.

As we see two flip-flops are used between the cells vertically, but only one flip-
flop is used horizontally. This is because horizontally the cells only depends directly
on the cell to the left of them, while as vertically they depend on the cell to their
upper right, and on the cell above them. Since their upper right cell also depends
on the cell above them, it takes two clock cycles from the moment the above cell
has its correct value until it can be used. Alternatively we might say that the data
from the upper cell first has to travel to the right, and then down to the left, thus
needing two clock cycles. This also den?a;nds the input coefficients to be delayed in
J

time, which is shown by the notation a;”’, meaning coefficient a; should be delayed

7 clock cycles.

5.3.1 Performance of systolic multiplier

As we see in figure 5.4 the critical path of the dual basis systolic multiplier consists
of one multiplication and one subtraction. Since the subtraction isn’t preceded by
multiplications, it needs a depth of 3 gates, and the multiplication needs 2 gates,
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Figure 5.3. Implementation of a systolic dual basis multiplier for the GR (44). The
filled circles between the cells are flip-flop registers.
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Figure 5.4. A cell in the systolic dual basis multiplier.

which means the depth of the critical path is 5 gates. The delay and throughput
are the same as for the standard polynomial basis multiplier, 3m — 1 clock cycles
and 1 result per clock cycle. The total number of operations in a cell is two
multiplications, one subtraction and one addition, for a total number of 17. For
the whole array this implies that 17m? gates are necessary. Also, we will need 6m?
flip-flops.
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5.4 Summary of performances

Here we summarize the performances of the architectures presented. In the tables
below their speed and area are shown. Note that the numbers given do not include
the structures for performing basis conversions, rather it is assumed that all data
exist in the needed bases. For some choices of basis this could be a significant
part of the circuit, and therefore must be taken into account when comparing

performances.
| Architecture | Area (in gates) | Registers |
Serial 16m —7 4m
Alternative serial 16m —7 4m
Systolic 13m? 6m?
Table 5.1. Area of dual basis architectures.
|| Architecture | Critical path | Delay | Throughput ||
Serial 3+ [logy(m — 1)] 2m 1/m
Alternative serial 6 2m 1/2m
Systolic 5 3m —1 1

Table 5.2. Speed of dual basis architectures.
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Chapter 6

Normal basis multipliers

In this chapter we will discuss another possible basis for a Galois Ring, which we
will call a normal basis. The definition (and many of the results) is analogue to the
definition of a normal basis for a Galois Field, as described in for example [1], [6]
and [9]. The theoretical discussions here owes most to chapter 5 in [1], while the
presentation of the implementation is inspired by [6]. We begin by defining and
justifying the concept of the normal basis.

6.1 Definition of normal basis

Definition 6.1 (Normal basis) A normal basis over GR (4™) is a basis of the
form {oz,ozf,ozfz,...,af"Hl} where o € GR(4™), and f 1is the Frobenius map
defined in definition 2.9.

It is not obvious that any normal bases exist, but they do. One example of a
class of normal bases will be given in theorem 6.2.

Since f is a linear function that maps the elements of Z; on themselves, and
/™ = ¢ according to 2.8, we have the following.

m—2

(apax + arad + ... xam,lafm_l)f = am_10 + apal + alaf2 +. it am_sat

This means that applying the Frobenius map on an element expressed in a
normal basis is a simple cyclic right-shift of the coefficients. Furthermore, we know
that if ¢ = ab then, according to theorem 2.7, ¢/ = (ab)! = a/b/, which means that
if we have a function g(a,b) for computing the coefficient ¢,,—1, we can apply the
same function on the elements af, b/ to obtain the coefficient ¢,,_o. This can be
widened, so that all coefficients of ¢ can be calculated using the same function g,
by just shifting the inputs. This function can be expressed as a matrix, and instead
of shifting the inputs, we may of course rotate this matrix in two dimensions, so
that we get m different matrices (all containing the same elements, but not at the
same positions), one for each output coefficient.
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Definition 6.2 We define the multiplication matrix for coefficient k as the matriz
My, satisfying
bo
Cr = ( ag ... Qm-—1 )Mk (61)
bm—l

The number of non-zero elements in the matrix is called the complexity of the
normal basis, and denoted cy, if the normal basis is denoted N. In fact this is
a bit off-target, since the actual complexity of the multiplier will depend also on
what values the non-zero elements will take, since a value that is not 1 will force a
multiplication by a constant. However, for simplicity of the theoretical reasoning
we have chosen not to bother about the actual values of the non-zero elements. In
the next section we will give a limit for the complexity, as well as discuss a class of
low-complexity normal bases.

6.2 Optimal normal bases

A trivial upper bound for the complexity of a normal basis is obtained by con-
sidering a m x m matrix containing no zeros. This matrix of course contains m?
non-zero elements, which we will take as an upper bound for the complexity. A
lower bound is given in the following theorem.

Theorem 6.1 For any normal basis of the Galois Ring GR (4™) we have a lower
bound on the complexity, cny > 2m — 1.

Proof. Let {ag,a1,...,am—_1} be a normal basis for the Galois Ring GR (4™).
Let further

-1
Qo = Z Sij 0 (62)
7=0

where 0 <¢ < m —1 and s;; € Z4. Sum the left and right sides of the m equations
6.2 respectively. The left side of the equation turns out as follows.

m—1
aplag+ a1+ ...+ am-1) :ao(ao—f—ag—f—...—f—ag ) = T (ap) (6.3)

Since T'(ap) € Zy we now know that

m—1
. T(aO)a j:O
228”{0, 1<j<n-1 (6.4)

Now let Sy, = (sif)) denote the multiplication matrix of definition 6.2 for cal-
culating the kth coefficient of the product, and let also S = (s;;). This gives
us

—1 m—1
_ § : _ } : J
apQ; = SijQj = S0 Qg (65)
7=0 7=0
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where 0 < ¢ < m—1. As we let 7 assume all values from 0 to m — 1 we will therefore
use all elements from the row with index zero in matrix S;. We will now show that
this is the same as using all elements from each row in Sy. We know that if Sy
gives us the (m — 1)th coefficient of the result, we can get the (m — 2)th coefficient
by rotating the multiplicand vectors to the right. This is the same as rotating the
rows in the matrix upwards, and the columns to the left, and keeping the same
multiplicands. Therefore, to get all coeffecients in the result we may successively
rotate the matrix left and upwards, thereby letting the elements of one row at a
time from Sy form the upper row of the matrices. Therefore, using all elements
from the first row of all matrices is the same as using all elements from the matrix
So (or any other Si). Hence the matrix S contains the same elements as any of
the Sy:s.

Since the first column in S sums to a number between 0 and 3 the least number
of non-zero elements in the column is of course 1. For the other columns, we know
that they sum up to 0. Since ag # 0 and {apa; : 0 < ¢ < m — 1} is also a basis
for GR(4™), S is invertible. This means each column must contain at least one
non-zero element. Since the columns sum to 0, they must contain at least two
elements. All together this means that the matrix S has at least 2m — 1 non-zero
elements, and therefore this is also the least possible complexity of the basis. O

For easier reading, we give a name to such a basis.

Definition 6.3 (Optimal normal basis) A normal basis {a, a7, ..., af""fl}
with complexity 2m — 1 is called an optimal normal basis.

Observe that we have not shown that every Galois Ring has such a basis. In
fact we haven’t even shown that there exists such a basis for any Galois ring! For
that reason, we will show the existence of a class of optimal normal bases, and how
to construct them.

Theorem 6.2 (Type-I Optimal Normal Bases) Let m + 1 be a prime larger
than 2 and assume that 2 is primitive in Zyy41, t.e. 2™ =1 (mod m + 1) and
2% £ 1 (mod m + 1) for integers 0 < k < m. Then we have the following:

(i) The m nonunit (m+ 1)th roots of unity are linearly indepedent and form an
optimal normal basis of GR (4™).

(ii) The optimal normal basis is {a,a?, ... «
polynomial ™ + 2™ 4+ ...+ + 1.

m—1 .
"), where « is a root of the

Proof. Let a # 1 be a (m + 1)th root of 1, i.e. o™ =1 where m + 1 is a prime
larger than 2, in accordance to the theorem. We have

O=a™t —1=(a—1)(a™+a™ +...+1). (6.6)

According to theorem 2.6 all elements that aren’t multiples of 2 are invertible, and
hence all zero divisors are multiples of 2.  Therefore either (o« — 1) or
(@™ +a™ ! 4+ ... + 1) must be zero, both must be divisible by 2, or else their
product can’t be zero.
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Assume that o — 1 is divisible by 2. Then, according to the same theorem, its
2-adic representation is & — 1 = 2b. This means we can write a = 1 + 2b, which is
a 2-adic representation since 1,b € 7. But this would mean that o? = (1 + 2b)% =
1+ 4b + 4b® = 1, and this is not possible since the order of « is m + 1 which is
larger than 2.

Since o — 1 isn’t a multiple of 2, and not zero (because o # 1) we must have
(@™ +am 1+ ...+ 1) = 0. Therefore o has to be a root of the polynomial
™+ 2™+ ...+ 2+ 1, as is pointed out in part (ii) of the theorem.

Let the 2-adic representation of & be a+2b. According to Fermats little theorem,
theorem 2.1 in this thesis,

2™ =1mod (m + 1),
since m + 1 is prime. Another way to put it is that
2™ —1=mn(m+1),

for some integer n. Therefore (m+1) is a divisor of 2™ —1. Since m+1 is the order
of o theorem 2.6 now tells us that b = 0, which in turn guarantees that of = a?.

Since « is of order m + 1, the m elements {a, a2, ..., a™} will all be (m + 1)th
roots of unity, because we can’t possibly raise any of the elements to a smaller
number than m+1 and get the result 1, since (m+1) is prime and hence relatively
prime to 2,...,m. Furthermore, 2 generates Z,,11 — {0}, and therefore we have
(defining N)

N = {a,a?, oz22, ol oz2m*1} ={a,a?,a%,...,a™}, (6.7)
if we don’t take the order of the basis elements into account. Since we have seen
that a? = af, this is a normal basis if the elements in N are linearly independent.
In [1] it is stated that 2™ + 2™~ 1 + ... 4+ z + 1 is irreducible over Zs when m + 1
is prime and 2 is primitive in Z,,4+1. It is then also basic irreducible over Z4, and
since « is a root to this polynomial {1,q,...,a™ 1} is a basis of the Galois ring
the polyomial generates. Since ™ = —(a™™! + ...+ a + 1) we must have that
{a,a?,...,a™} are also linearly independent, and hence N is a normal basis.
We see that
adt =aTMe N, 1<i<m (6.8)

and also, according to 6.7 and the definition of the trace function

am =1=—-a—-a?—...—a™=-T(a). (6.9)

This guarantees that the first m — 1 rows of the multiplication matrix contains
only one non-zero element, while in the last row all elements are non-zero, and
therefore we have 2m — 1 non-zero elements in the matrix, and therefore the basis
is optimal.

O

In the next section we will use our knowledge of the normal basis so far to
implement a serial normal basis multiplier.
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6.3 Implementation of serial multipliers

We will show the implementation of a multiplier using the polynomial p(z) =
14z + 2% + 22 + 2* as generator polynomial for GR (44), and « is a root to this
polynomial. As we see this polynomial satisfies the conditions in theorem 6.2, and
therefore we expect the number of non-zero elements in our multiplication matrix
to2m—-1="17.

We wish to calculate C = AB, where we have

We begin by calculating a transformation matrices between the standard poly-
nomial basis and the normal basis. We have

! 01 00 1
o? 0010 o
a* | 7| 33 3 3 a? (6.10)
a8 0 0 0 1 a’
and this also gives us polynomial basis and the normal basis. We have
1 3 3 3 3 o
o 1 0 0 O a?
a2 ][ o100 at |- (6.11)
% 0001 o

Multiplying AB, in normal basis, but with the result as a polynomial without
reducing modulo p(x) we find that

3 3 3
ab = Zaiagi . Z bja? = ZZ aibja2i+2j. (6.12)

o+ =37 \(i, j)a? (6.13)
for some functions A;. Since c3 is the coefficient for a2 in the result we see that

3 3
F(A,B) =c3 = (i, f)ab;. (6.14)

i=0 j=0
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In the table below we have written down the A function values for the different
i:s and j:s.

i j 2242 a o® ot of
0 0 2 0 1 0 0
0 1 3 o 0 0 1
0 2 5 3 3 3 3
0 3 9 0O 0 1 O
1 0 3 0o 0 O 1
1 1 4 0 0 1 0
1 2 6 1 0 0 0
1 3 10 3 3 3 3
2 0 5 3 3 3 3
2 1 6 1 0 0 O
2 2 8 0o 0 O 1
2 3 12 0 1 0 0
3 0 9 0O 0 1 0
3 1 10 3 3 3 3
3 2 12 0o 1 0 0
3 3 16 1 0 0 O

Now we see that
c3 = f(A, B) = agby + 3agbs + a1bg + 3a1bs + 3asby + asbs + 3azb;. (6.15)

Hence the multiplication matrix contains 7 non-zero terms, as foreseen. We now
turn to the implementation of this normal basis multiplier. We know that we only
have to implement the above function once, and then we will get the different
coefficients in the result by shifting the inputs. We therefore implement the mul-
tiplication network and connect it to 4 registers, in which we will rotate our input
values. This is shown in figure 6.1.

6.3.1 Performance of the serial multiplier

The critical path of the multiplier will, as we have seen, depend on the normal
basis chosen. For an optimal normal basis we have shown that we first need 2m — 1
multiplicaitons, that are parallel and therefore contributing to the depth with one
multiplication. After this we need a network of depth [log,(2m —1)] with additions
and subtractions. In the worst case, we have one subtraction for each value that
comes from a multiplication, and these are spread amongst the different levels of
the network, so that the full depth is composed of subtractions. Since in this case
(when we have to subtract from a negated value) we need negations in front of
the subtractions, we can’t use the fact that they ar preceded by multiplicaitons to
optimize, but the depth of each subtraction will be three. Hence the total depth
will be 2+ [logy 3(2m —1)] < 5+ [logy, m|. We can, as for the serial multipliers in
preivous chapters, introduce data every mth clock cycle, for a throughput of 1/m
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Figure 6.1. Implementation of normal basis serial multiplier for GR (44), with P(z) =
et 42t + 1.

results per clock cycle. The delay is 2m clock cycles, whereof m cycles are used
for the actual calculations. The number of gates are 2m — 1 for multiplication,
and another 2m — 2 additions or subtractions. This will incur a need of at least
16m — 12 gates. Furthermore, we need 4m registers (of which half is not shown in
the figure, but needed to take care of the serialized input).

6.4 A simple parallel multiplier

We can easily construct a parallel multiplier from the serial one described. In the
serial case we compute the different output coefficients succesively by rotating the
inputs. We can of course choose to, instead of having one circuit and rotating the
inputs, use m circuits, with the inputs hard-wired as “rotated”. This would give
us a parallel multiplier. It is easy to imagine how it would look, just m cells of
the gate network in figure 6.1 stacked in a parallel fashion, each giving a different
output coefficient.
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6.4.1 Performance of the parallel multiplier

The performance of the parallel multiplier is very easy to calculate from the per-
formance of the serial multiplier, described in section 6.3.1. The critical path is
the same, i.e. approximately at least 5[log, m], and the number of gates will be
m times the number needed for the serial multiplier, i.e. 16m? — 12m gates. Since
the multiplier doesn’t contain any registers we have a throughput of 1 result each
clock cycle, and a delay of just 1 clock cycle.

6.5 Summary of performances
In the tables below the performance of the normal basis multipliers we have dis-

cussed are shown. Note that all values are approximations of the performances for
optimal bases, which do not exist for more than a small part of all Galois rings.

|| Architecture | Number of gates | Number of registers ||

Serial 16m — 12 4m
Parallel 16m2 — 12m 0

Table 6.1. Chip area of normal basis architectures.

|| Architecture | Critical path | Delay | Throughput ||
Serial 5+ [log, m] 2m 1/m
Parallel 5+ [logy m] 1 1

Table 6.2. Speed of normal basis architectures.



Chapter 7

Conclusions

In the thesis we have discussed a number of architectures for multiplying in Galois
rings. Mainly we have modified similar architectures used for Galois fields to also
work for Galois rings.

7.1 Similarities with field multipliers

One of the goals of this thesis was to investigate if it was possible to transform the
architectures for multiplying in Galois fields into multipliers in Galois rings. For
every architecture we have explored, we have found it possible to construct a similar
architecture for multiplying in a ring, with just small modifications. We have also
found that for the different types of bases used for multiplications in Galois fields
there exist analogies for Galois rings, which make possible similar architectures.
Our review of architectures has been exhaustive, though not complete, and we may
therefore not state that there always will exist an implmentation of multiplication in
Galois rings similar to one for Galois fields. We may state, however, that generally it
will be worth a try transforming an architecture for fields with desirable properties,
since it will often be very similar for a Galois ring. The architectural similarities
of the implementations translate into similarities in the performances.

Even though the over-all architecture of the multipliers for rings and fields may
be similar, the detailed implementation will differ quite a bit. We have seen the
following differences:

e Multiplication and addition in Z4 is not as easily implemented as it is in
Z3. Most existent architectures for multiplying in Galois fields are used for
GF (2*), whereas we want architectures for GR (4™). For Z; multiplication
of two elements is equivalent to a binary and-operation, and addition to a
binary xor. For Z; we need to use the implementations presented in chapter 3.

e When we reduce modulo the generator polynomial we must use subtraction.
Subtraction is actually needed for Galois fields also, but since subtraction
and addition is the same in Z3, addition can be used there.

63
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e In the architectures where the generator polynomial is needed to construct
the circuit, i.e. the polynomial basis parallel multiplier and the normal basis
multipliers, we get multiplications by constants from Z4, which we don’t have
in the field case. Or rather, we have them for fields also, but the constants
will always be from Z5, i.e. 0 or 1.

Observing the differences above we see that none of them stem from the fact
that we work with Galois rings instead of fields. Rather they are implications of
the use of extensions over Z, instead of Z5. If we would have tried to implement
multipliers in extension fields over larger primes than 2 they would behave very
much like the multipliers for the Galois rings. This is not very surprising, since the
main difference between fields and rings does not lie in multiplication, but in the
fact that we can’t divide in rings, which we can in fields.

7.2 Performance aspects

We have given the performance of the multipliers in terms of two measures, the
area needed for an implementation and the speed. Depending on the application,
in some cases a small chip area may be desired, while in other cases speed is of
higher importance.

7.2.1 Minimizing the chip area needed

From the summaries in the end of chapters 4, 5 and 6 we see that the architecture
needing the least number of gates is the normal basis serial architecture for an
optimal basis, which needs 16m — 12 gates, 5 less than the two dual basis serial
architectures. The dual basis multipliers need, however, also a circuit for perform-
ing basis conversion, which may need some extra gates. This is not needed by the
standard polynomial basis multipliers, but these need m + 7 gates and m regis-
ters more than the dual dasis multipliers. Therefore our choices for choosing an
architecture that minimizes the area of the circuit are the following.

e If we can choose an optimal normal basis, the normal basis serial multiplier
is the best choice.

e If we can perform basis conversion with few gates a dual basis serial multiplier
should be used, if not the above criteria is met.

e If none of the above criterias are met, the standard polynomial basis MSR
multiplier is the best.

In the second case, with the dual basis multipliers we have not stated which one
to use. This is because the alternative serial dual basis multiplier has shorter critical
path, which allows for a higher clock frequency, but it also has less throughput each
clock cycle. Therefore, we should use the alternative multiplier if we can choose
the clock frequency, but not if the frequency is fixed (low) by other parts of the
circuit.
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7.2.2 Maximizing the speed

When it comes to speed mainly two things are of importance, how fast we can
perform calculations, and what the delay of the results will be. For the speed of
calculations we want high throughput and short critical path.

For the speed of calculations we see that the systolic multipliers are outstanding.
They produce one result each clock cycle, just as the parallel multipliers, but
their critical paths are of constant lengths, while the critical paths for the parallel
multipliers have a length of at least [log, m], allowing a lower clock frequency. Of
the systolic multipliers the dual basis multiplier has a shorter critical path, and is
hence the better if the basis conversion does not require to large a circuit.

If, on the other hand, it is vital that we have a low delay, the parallel archi-
tectures are better since they only will delay the signal one clock cycle. Of these
we see that the critical path is shortest for an optimal normal basis, or for the
standard polynomial basis of a ring generated by one of the polynomials in table
4.3. If it is not possible to use one of these polynomials as generator polynomial
we can’t beforehand say if the standard polynomial or the normal basis multiplier
will be the best, it has to be checked for the specific case.

Hence, the following should be our choices for maximizing speed.

e If the delay is not of vital importance, and we can perform basis conversion
easily, the dual basis systolic multiplier is the best.

e If the delay is not of vital importance, but basis conversion for the dual basis
multiplier would be to complicated, the standard polynomial basis systolic
multiplier is the best.

e If a short delay is important one of the parallel multipliers should be chosen.
Which one (the standard polynomial basis or the normal basis) depends on
how we can choose the generator polynomial, and must be decided for each
specific case.

7.3 Possible future research

Some questions have been left unanswered, and some have never been stated in
this thesis. The following is a list of possible subjects for future research. Apart
from these, just about everything that has been done on Galois field multipliers
could also be investigated for Galois rings.

e Tower fields: In for example [9] tower field implementations for Galois fields
are described. The basic idea is that instead of extending from Zs directly
to GF (2") the extension is made in steps. If this is possible, and how the
multipliers would look for Galois rings could be interesting.

e More research on generator polynomials: Both for the standard basis polyno-
mial basis parallel multiplier and for the normal basis multipliers the choice
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of generator polynomial affects the implementation. More research on the
performance for different polynomials should be interesting.

Dual basis conversion: To be fully able to analyze the performance of the
dual basis multipliers it would be good to know how complex the dual ba-
sis conversion is for different generator polynomials, and how to choose the
generator polynomial in the best way.

Multiplication by constant: Sometimes one of the multiplicands is known
beforehand. A question that seeks an answer is how the different implemen-
tations could be simplified when this is the case.

All our research in this essay has been inspired by results for fields. Perhaps
some things could be discovered for rings, that is not possible for fields. For
example, other types of generator polynomials could be interesting for the
normal basis or standard basis parallel multipliers.
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Appendix A

Minimal functions for binary

representations

In this Appendix we will give all the minimal functions for different binary repre-

sentations of the integers 0-3.

Representation: 00=0,01=1, 11=3, 10=2

-y | mi = (71y2) @ (v2y1)
Mo = T2Y2
r4+y | a1 = (1 Dy1) D (w2y2)
az =22 DY
r—y | s1= (1 DY) D (T992)
So = X2 D Y2
—x ny =1 D x2
Nno = X9
2z d1 = X2
do =0

Representation: 00=0,01 =1, 11 =2, 10=3

-y | 1= (21y2) O (T2y1)
my = (z2y2) © (z1y1)
T+y ml@yl) (1 @ z2) (11 D 12
T2 B ya2) D (w1 D z2) (Y1 D Yo
T—y 71 ®y2) ® (21 © 22)(y1 © ¥2
Sg = (332 Dy1) D ((z1 @ x2)(y1 ® Yo
—X ny = T
N9 = I1
2x di1 = x1 D 22
dy =121 @ T2
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Representation: 00=0,01 =3, 11 =1, 10=2

-y | mi = ((z2y2) © (T1y2)) @ (T2y1)
Mo = XTaY2

x4y | a1 = (21 Dy1) D (z2y2)

a2 = T2 B Yo

-y | s1= (21 @) S (whye)

S2 =22 D Y2

—x ny =x1 D a2

No = X9
2x di = x2
do=0

Representation: 00=3,01=1,11=0, 10=2

Ty | M1 =21+

ma = (22 + Y1) ® (z1 + o)
TF+Yy |l aa=21DY

ag = (r2 D yy) ® (x1 + 22)
T—y | s1i=21DY,

s2 = (3 @ y2) ® (T1Y1)
—X ny = I

ng = 1 D T2

2z d1:1

dy = 11

Representation: 00=2,01=1,11=3,10=0

oy | mi = ((T192) © (2231)) @ (T2 + y2)

My = T2Y2
4y | a1 = (v Dy1) ® (w212)
az = (2 ® y2)

r—y | s1=(z; Dy1) D (T9y2)
So = X2 D Y2

—x ny =, @ 2

Nno = To

2z dlzx;
da =0




71

Representation: 00=1,01=0, 11 =3, 10=2

vy | mi=(z1ys) @ (3pu1)
ma = (71y1) @© (22 + y2)
T4y = (22 @ yp) & (21 B 22) (11 D ¥2))
=@ @) ® (1D x2)(y1 B y2))
T —y = (22 @D y1) O (71 @ 22) (11 D y2))
= (218 y2) ® (21 B 22) (1 D y2))
—z | ni=ux,
Ng = T
2z dy = (1 @ azg)l
dy = x1 @ 22

Representation: 00=3,01=1,11=2,10=0

Ty | M1 =21+
ma = ((z2y1) © (71y2)) ® (T1 + 1)
r+y | m= 93/1 DY
az = (22 @ y2) @ (w1 +y1)
r—y | s1=(x; Dy1)
53 = (22 D Y2) D (T1yy)
—X ny = I
ny = (1 ® x2)
2z d1 =1
dg =T

Representation: 00=3,01 =0, 11 =1, 10 =2

oy | mi=(v1y1) @ (v2 + y2)
me = (22 +41) © (71%5)
r+y | a1 = (22 DY) @ ((z1 D 72)(y1 D Y2))
az = (1 @ y1) ® (71 © 22)(y1 D y2))
r—y | s1=(z2®y1) ® (21 ® 22) (11 Dy2))
s2= (27 Dy2) ® ((x1 ®x2)(11 D Y2))
—x | =Ty
Ng = Ty
2x dy = (.131 (&) .1?2)/
d2 =1 D X2
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Representation: 00=2,01=1, 11=0, 10=3

rT-y | = ($2+y2)’@($1 + 1)
mo = (1 + y2) & (x2 + y1)
c4y | a1 =y, ®x1) ® (x1 ®z2)(y1 D 1))
az = (yo B 2) & (21 ® 22) (1 B ¥2))
z—y | s1=(2; Py2) ® (z1 B x2)(y1 @ y2))
s2=(2D1y;) ® (1 ® 22) (1 © ¥2))
—X ny = I
ng2 = I
2z dy = (1 @ azg)l
dy = (x1 @ x2)

Representation: 00=1,01=3, 11 =0, 10=2

Ty | M1 =21+

ma = (21y1) + ((#291)  (2195))
r+ty|la=2DYNn

as = (x5 ® y2) ® (x1 +y1)
r—y | s1=(z, D)

52 = (73 D y2) @ (1Y)

—x | N1 =T,

nQle
2x d1:1
dy = 11

Representation: 00=2,01=3,11=1,10=0

oy | mi= (71 +Ys) O (T2y1)
Mo = T2Y2

rty | a1 =(z, Oy1) D (z2y2)
az = T2 DY

r—y | s1=(z, ®y1) O (z192)
So = T2 D Y2

—x ny =, @ T2

N9 = To

2z dlzm;
da =0
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Representation: 00=1,01 =0, 11 =2, 10=3

zoy | my = (z2y) O (21y5)
mg = T2 + Y2
r+y | a1 = (210 y1) D (2 + y2)
as = (x2 + y2)
z—y | s1=(z1 ®y) D (229
s = (2 + y2)
—z | ni=(x1® xg)l
Ng = T2
2x dy = x4
dy =1
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