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Abstract | i

Abstract
Testing is an essential activity of software development, and despite the vast
use of testing by the industry, little formal reasoning can be found in the
scientific literature of the field. The project presents an extensively formal
approach to glass box testing from the underlying language to the graph model
of a program, its execution, and reasoning on preconditions for its paths. In
this paper, programs are modelled as executable Control Flow Graphs and test
requirements are paths of the graphs.

We study a logic to infer the weakest precondition of a given path of
the graph. Weakest preconditions let us reason on relations between test
requirements, which in turn let us optimise the test requirements set. The
model uses a minimal language with the integer data type and first-order logic.
This language can be extended as defined in this work to suit the need of the
reader.

Several metatheorems are proved for any language extending the
minimal language we provide, including soundness, completeness under the
restrictions to obtain a weakest precondition formula, and undecidability.

Keywords
Software testing, Glass box testing, Test requirement redundancy, Mathemat-
ical models, Proof systems, Control-flow graphs



ii | Abstract



Sammanfattning | iii

Sammanfattning
Testning är en viktig aktivitet inom programvaruutveckling, och trots
den omfattande användningen av testning inom industrin finns det få
formella resonemang i den vetenskapliga litteraturen inom området. Projektet
presenterar ett omfattande formellt tillvägagångssätt för glasbox-testning från
det underliggande språket till grafmodellen för ett program, dess exekvering
och resonemang om förutsättningar för dess vägar. I detta dokument
modelleras program som exekverbara kontrollflödesgrafer och testkrav är
banor i graferna.

Vi studerar en logik för att härleda det svagaste förhandsvillkoret för en
given väg i grafen. Svagaste förhandsvillkor låter oss resonera om relationer
mellan testkrav, vilket i sin tur låter oss optimera testkravsuppsättningen.
Modellen använder ett minimalt språk med datatypen heltal och första
ordningens logik. Detta språk kan utökas enligt definitionen i detta arbete för
att passa läsarens behov.

Flera metateorem bevisas för alla språk som utvidgar det minimala språk
vi tillhandahåller, inklusive sundhet, fullständighet under restriktionerna för
att få en svagaste förhandsvillkorformel och oavgörbarhet.

Nyckelord
Programvara testning, Glasbox-testning, Testkrav redundans, Matematiska
modeller, Bevissystem, Kontrollflödesdiagram
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Résumé
L’activité de test est essentielle au développement logiciel, et malgré la

vaste utilisation du test dans l’industrie, la littérature du domaine comporte
peu de raisonnement formel. Le projet présente une approche extensivement
formelle du test structurel, du langage sous-jacent au graphe modélisant
le programme, son exécution et le raisonnement sur les préconditions des
chemins dudit graphe. Dans ce document, les programmes sont modélisés
en graphes de flux de contrôle exécutables et les exigences de tests sont des
chemins desdits graphes.

Nous étudions une logique pour déduire la précondition minimale d’un
chemin donné du graphe. Les préconditions minimales nous permettent de
raisonner sur les relations entre exigences de tests. Le modèle utilise un
langage minimal incluant le type des entiers et les formules de premier ordre.
Plusieurs méta-théorèmes sont prouvés pour tout langage étendant le langage
minimal fourni, dont la cohérence, la complétude sous les restrictions pour
obtenir des préconditions minimales, et l’indécidabilité.

Mots-clés
Test logiciel, Test structurel, Redondance d’exigences de test, Modèles

mathématiques, Systèmes de preuve, Graphes de flux de contrôle
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Chapter 1

Introduction

1.1 Problem statement
Today software testing is an inescapable part of any IT project. Testing may
take place at several stages of a project, such as the development and pre-
production stages. Some stages are even fully dedicated to testing, such as the
user acceptance tests stage. The lack of testing can cause small to catastrophic
software failures, and the costs of said failures are both economic and social.
For example the economical cost of lack of software testing was estimated
between $22.2 and $59.5 billion for the year 2002, for the United States of
America alone [1]. A more recent review estimated the cost of poor quality
testing in the United States of America for the year 2020 to $2.08 trillion
[2]. With the ongoing trend of the digitalisation of the world systems, the
potential costs of lack of testing only increase. Another example of the cost of
lack of testing is the CrowdStrike Falcon failure on Microsoft Windows where
validation tests let problematic data that caused the failure be sent on release,
crashing affected computers [3]. Not only were companies affected by this
failure, but also hospitals, highlighting the social costs of software failures.
As such there is a need for a reliable, formal testing background to support the
testing activities, at an affordable price for industries.

The project originates from the analysis of Prof. Karl Meinke that the
field’s literature lacks formality, impacting the scientific results.

1.2 Motivations
Testing is a vast scientific field that encompasses largely different paradigms,
as may be observed from the numerous subfields of software testing: glass
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box testing, black-box testing, requirement testing and model-based testing
to name but a few. In this work we focus on glass box testing, also called
structural testing as it tests the structure of a given program. Curiously, glass
box testing lacks formality, a fact that can have major impacts on the validity of
the results of scientific papers. An example of the lack of formality is the key
concept of coverage: when is an element of the program covered? We have
not found a satisfying answer in the literature. As such one of the goals of this
work is to establish an extensively formal approach for glass box testing.

Although needed for quality, test suites are not free to execute, they notably
require hardware on which to run the tests, time and energy. As such many
methods can be found in the literature to reduce the size of a test suite. Most
of these methods attempt to solve the Test Redundancy Reduction (TRR)
problem, where test cases that redundantly cover requirements w.r.t. the rest
of the test suite are removed to form an optimised test suite. Another problem
w.r.t. test suite size reduction is the Test Requirement Optimisation (TRO)
problem, where the quality of the test requirements set is questioned. Some
test requirements can be covered by all test cases of some other requirements,
and may thus be safely removed from the test requirements set. Another goal
of this work is to be able to formally reason on the relations between test
requirements, attempting to solve the TRO problem.

Finally, writing test cases is a long and error-prone task. Automatic test
case generation is thus a valuable feature and our last goal for this work.

1.3 Methods and concepts
This section presents the main concepts and methods that will be formally
defined in Chapter 3.

The formality of our approach starts with the definition of the language for
the programs we may test, basing ourselves on the book of Ehrig and Mahr
[4]. We separate the syntax and semantics of the program’s language. The
syntactic aspect is defined by a first-order signature Σ containing the available
sorts∗, and the constant, operation and relation symbols upon which we build
terms and First-Order Logic (FOL) formulas. The semantic aspect is defined
through a first-order Σ-structure M which has one domain per sort of Σ and
associates a meaning to the symbols of Σ. Terms and formulas defined by the
symbols of Σ can be evaluated into the domains and propositional constants
of M respectively. Our model builds upon the ordered ring of integers with

∗e.g. integers, floating-point numbers, etc.
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integer division Zdiv, signature that can be extended to incorporate other sorts
and symbols to suit the needs of the reader.

Software errors such as the typical division by 0, that may be encountered
with the integer division of Zdiv, can be handled at several levels: the data-
type level, the language’s runtime level and the operating system level. Our
approach handles errors at the data type level, where errors are evaluated to a
certain value, possibly non-standard, in the domains of the chosen structure.

The glass box test requirements we will study are paths of a representative
graph of a given program. Such representative graphs in our work are Control
Flow Graphs (CFGs), directed graphs where nodes are labelled with either
assignment statements or conditional statements, modelled in our work by a
FOL formula. The control flows of the program are modelled by the edges of
the graph. To mirror program execution, we define how to execute a CFG. In
particular we are interested in the sequence of nodes that are executed during
an execution of the graph for a given input state, called the execution path.
A path, and by extension a test requirement, is covered if it is a subsequence
of the execution path, and exited in a particular state. We also require for
coverage that the next node to be executed is fixed, to define the control flow
after the path is exited. Coverage is also defined with FOL formulas instead
of states, and holds when all input states that satisfy the precondition formula
cover the path and the postcondition formula is satisfied by the state at the exit
of the path. The coverage relation with FOL formulas is denoted G, v, ϕ ⊨
(p1, . . . , pn, pn+1), χ where G is the graph model of the program, v the node
at which we start the execution, ϕ the precondition formula p = (p1, . . . , pn)

the path that is covered, pn+1 is the next node to be executed, and χ is the
postcondition formula.

Using the formal definition of coverage, we build a formal finitary
proof system which can prove inference sequents of the form G, v, ϕ `
(p1, . . . , pn, pn+1), χ. Through the soundness of the calculus, it is known
that G, v, ϕ ` (p1, . . . , pn, pn+1), χ being provable by our calculus implies
the analogous coverage truth G, v, ϕ ⊨ (p1, . . . , pn, pn+1), χ holds. In some
cases the calculus guarantees that ϕ is a weakest precondition formula for
(p1, . . . , pn, pn+1), that is the formula is satisfied by only and all the input
states that cover (p1, . . . , pn, pn+1) starting in v, exiting in a state satisfying
postcondition formula χ.

The set of input states that cover a path, captured by the weakest
precondition formula obtained by our calculus, let us infer relations between
paths and by extension between glass box test requirements. A test requirement
p strongly covers a test requirement q if the set of input states that cover p is
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a subset of the set of input states that cover q. Strong coverage implies that
all test cases of p, which are input states restricted to the input variables of
the graph, are also test cases of q and q can be safely removed from the test
requirement sets. Another relation is weak coverage, where p weakly covers q
if the intersection of the set of input states that cover p and q is not the empty
set. Weak coverage implies that some test cases of p are also test cases of q,
and one such common test case can be chosen to cover both requirements.
The calculus can be automated to obtain test cases for a given set of test
requirements.

1.4 Goals and hypothesis
In this section we refine the informal goals presented in Section 1.2 with the
concepts presented in Section 1.3. The high-level goal of this project is to
find a sound and finitary proof system to reason on glass box test requirement
weakest precondition and redundancy, and to establish its properties. This has
been divided into the following goals:

OB1. Establish a formal mathematical basis for glass box testing.

OB2. Find a sound finitary proof system for demonstrating redundancy
between test case requirements as paths of a representative graph of
a program and evaluate its properties.

OB3. Automate OB2’s logic for test case construction for a specific path
requirement.

We conjecture that the proof system of OB2 is incomplete in the general
case, but may be complete when loops are limited to have no impact on the
precondition formula obtained by the proof system. We hypothesise it is
undecidable whether the conditions on loops mentioned above are met or not
in the general case as there may be an infinite number of loops for which their
impact on the precondition formula must be checked.

1.5 Delimitations
Other subfields of software testing, such as the commonly used in industry
subfield of black-box testing, are not included in this project. Certain glass
box coverage models including logic coverage models are not included in
the project, as we define requirements as paths of a representative graph
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and not logical constraints. Logic coverage models include Modified
Condition/Decision Coverage (MC/DC), a strict coverage required for critical
systems in planes by the Federal Aviation Authority [5].

Our model of programs limits conditional statements to be side effect-free.
The model is meant to capture software errors at the data type level. Although
we present only the integer data type in this thesis, the model can be extended
as defined in the methodology to incorporate data types such as floating-point
numbers.

1.6 Structure of the thesis
Chapter 2 presents relevant background information about the mathematical
foundations of testing, general testing background and links to the method-
ology of testing to the field of software verification. Chapter 3 presents
the methodology of the project, including the mathematical definitions and
theorems which constitute our main results. Chapter 4 presents the limitations
of the project and addresses future work w.r.t. the project. Chapter 5 concludes
the project and assesses the ethical and sustainable impacts of the work.
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Chapter 2

Background and literature sur-
vey

This chapter provides an introduction to the mathematical concepts used in the
methods and the general testing background, including works on the TRO and
TRR problems. Finally, it presents links in methodology of testing to the field
of software verification.

2.1 Mathematical concepts
The field of testing relies on a broad mathematical background, that is
sometimes omitted in the testing literature. This section summarises the
different mathematical concepts used in the thesis and their relevance to the
problem.

2.1.1 Control flow graphs
A Control Flow Graph (CFG) is a graph representation of a program where the
control flows can be deduced from the statements associated with the nodes,
and the edges of the graph. In the field of glass box testing, test requirements
are paths of a graph model of the tested program. CFGs are the de facto
semi-standard graph representation of programs used in the literature and the
industry.

CFGs were first defined by Frances E. Allen in [6] and have largely
evolved since. Notably, we refine Ammann and Offut [7]’s approach∗ and

∗We notably let the reader refer to Figures 7.16 to 7.24 for short examples of the authors’
CFGs and Figures 7.12 and 7.13 for more complete examples.
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make the CFG executable. We present in Fig. 2.1 an arbitrary CFG to detail
our approach. Our CFGs allow for three types of nodes, nodes containing
an assignment statement such as v1, v2, v4, v6, v7 in Fig. 2.1, conditional
nodes containing a First-Order Logic (FOL) formula such as v0, v3, v5 and
the termination pseudo-node τ , in orange in Fig. 2.1. The edges exiting a
conditional node are labelled with true or false, corresponding to whether
the formula contained in the node evaluates to tt or ff at execution. The
definitions that let us formally define a CFG by our approach are found in
Chapter 3.

Figure 2.1: A simple and arbitrary CFG

We diverge from Ammann and Offut [7]’s approach in two major ways.
First, the graphs of [7] allow no statement to several statements per node, which
makes it unclear which statement(s) caused an error in a node; as such we
require a single statement per node. Secondly, the graphs of [7] have guards
on the edges, which may be boolean guards, control flow instructions such
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as ”break” and ”continue” and Java exceptions∗, but with this approach it is
possible to have non-determinism in the control flows, in the case these three
type of guards can be found for the exits of a single node. Instead, we label
the edges with true or false as described above, ensuring determinism in the
control flows.

2.1.2 Structures and data types
Data types and abstract data types have their foundation in the concept of
mathematical structures. This section will focus on the informal presentation
and motivation of the usage of these concepts, and we will formally introduce
concepts when not defined in the methodology. We base ourselves on the book
of Ehrig and Mahr [4].

As usual in computer science we should clearly separate syntax and
semantics. In this work we introduce signatures as syntactic elements and
structures as semantic elements. A first-order signature is a pair (S,Σ) where
S is called a set of sorts and Σ is a set of constant, operation and relation
symbols (respectively denoted by Σλ,s, Σw,s and Σw). Sorts in S are domains,
e.g. integers, floating-point numbers, etc. A constant symbol in Σλ,s has no
argument and is of sort s ∈ S. An operation symbol in Σw,s has argument
sorts w = s1 . . . sn ∈ S+ and is of sort s ∈ S. A relation symbol in
Σw has argument sorts w = s1 . . . sn ∈ S∗. For example addition and the
order relation ”less than” may be introduced respectively in Σint int,int and
Σint int. For constants, the notation is Σλ,s and for propositional constants
(notably true and false) the notation is Σλ. By abuse of notation we will
denote Σ a signature in the remaining of the section. As mentioned prior,
signatures are syntactic elements, they can be compared to interfaces of the
Java programming language as they define what is possible to do, but not what
they do.

Structures are semantic elements built round a signature, they provide the
semantics associated to the syntax provided by the signature. For each sort of a
first-order signature Σ, a first-order Σ-structure has carriers, concrete domains
with for example {. . . ,−2,−1, 0, 1, 2, . . . } for the int sort. We note cM the
interpretation of the constant c in the structure M . Similarly, all operation
symbols have their interpretation in the structure. While signatures are similar
to interfaces, structures are close to concrete classes in Java.

Terms are constructs of constant symbols, operation symbols and some
∗The graphs of Figures 7.12, 7.13, and 7.16 to 7.24 are for the Java programming

language.
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variables of adequate sorts with the operation symbols. The set of terms
T (Σ, X)s of sort s ∈ S for some S-sorted signature Σ and some S-sorted set
of variables X = {Xs|s ∈ S} is formed of constants, variables, and operations
of sort s for some adequate sub-terms.

Terms of a structure M can be evaluated to obtain a certain value in
the carriers of M . A family of evaluation functions for a variable mapping
α : X → M , denoted evalM,α : T (Σ, X) → M associates a term with its
interpretation in the carriers of M . The process is recursive, if a term has
sub-terms then the evaluation replaces the sub-terms by their interpretations.
The variables are replaced by their associated value in the variable mapping
α. Evaluation is necessary for us to learn the value to assign to a variable for
instance.

First-order formulas are constructs of relation symbols applied to well-
formed terms, logical connectives and quantifiers. Atomic formulas are a
subset of FOL formulas formed only by the relation symbols in Σ applied to
well-formed terms. Then for any formulasϕ, χ the conjunction and disjunction
of ϕ and χ are FOL formulas. Similarly, the negation or quantification of a
formula is itself a formula. We denote FOL(Σ, X) the set of FOL formulas.
The evaluation function for terms can be extended in a similar manner to
evaluate formulas. Formulas will be used to model conditional statements.

Only a fraction of the possible structures are of interest to testers. A notable
case of valid but uninteresting structure is one that maps the propositional
constant true to ff , that to our knowledge no modern language would use.
Restrictions to obtain interesting structures and a method to expand a signature
with additional sorts and symbols will be presented in the methodology.

Given a signature Σ, a Σ-structure M is a concrete data type of Σ.
However, there is an infinite number of Σ-structures M . As such we introduce
a set of equations E where equations are of the form L = R with L and R two
terms of the same sort. The equations of E are valid in M iff for all evaluation
functions the evaluation of L is equal to the evaluation of R; it is also said
that M satisfies E. An equational data type specification is a pair (Σ, E); it is
possible to obtain the set of Σ-structures for which the E is satisfied through a
factory. This set is the loose semantics of the equational data type specification
(Σ, E), and no structure outside of this set is relevant for a tester. The reader
may select one structure in the loose semantics of (Σ, E) as a structure for the
graphs of our approach.
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2.1.3 Proof systems
Considering whether logical statements about a structure (e.g. PA =
(N, 0,+1,+, ∗)) are correct or not is a problem of logic, that lets us find
interesting facts about a system. A proof system is an inference machine
that can decide such property. We base ourselves on the chapter ”General
Proof Systems: Syntax and Semantics” by Wasilewska [8]∗. Formally, a proof
system is a tuple

S = (L, E , LA,R)

where L = (A,F) is a formal language with an alphabet A and a set F of
well-formed formulas (e.g. of zeroth-order logic, FOL, etc.), E is a set of
expressions of S, LA ⊆ E is a non-empty set of logical axioms of the system,
and R is a set of rules of inference. Expressions in E are built from formulas
in F and additional symbols that are not part of the language L, extending the
language to suit the needs of the proof system. For example, expressions can
be sequences of formulas, which are notably used by Gentzen’s LK and LJ
sequent calculi [9, 10]. When there is no need for extensions of the language,
proof systems use E = F . The set of logical axioms is assumed to be finite.
The rules of inference in R are comprised of finite premises (the system is
finitary), with at least one premise per rule, and a conclusion. A rule r ∈ R
of premises P1, . . . , Pm and conclusion C is denoted as

r
P1 . . . Pm

C

When all the premises P1, . . . , Pm are provable then the conclusion C is
provable itself. C is called a direct consequence of P1, . . . , Pm by virtue of r.

A formal proof in a proof system S = (L, E , LA,R) is a sequence of
expressions E1, . . . , En with n ≥ 1 the length of the proof, such that E1 ∈ LA

and for each 1 < i ≤ n either Ei ∈ LA (axioms are always provable) or Ei is
a direct consequence of some expressions Ej, 1 ≤ j < i by virtue of a rule of
inference r ∈ R. We use `S En to denote that En has a formal proof in S.

Three more properties of proof systems are of note, soundness,
completeness and decidability. To formally define them, we introduceM some
semantics which defines what is true for our system and notably impacts what
axioms we will choose, TM the set of true formulas in M , and PS the set of
provable expressions in S. Then, we define the satisfiability relation ⊨M E

with E ∈ E an expression, indicating that E is true in M . A proof system
S = (L, E , LA,R) is sound under semantics M if for any expression E ∈ E

∗Note this is the corrected version of the chapter, the original one can be found here.

https://doi.org/10.1007/978-3-319-92591-2_4
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then `S E =⇒ ⊨M E. This implies that the inference rules are correct,
and PS ⊆ TM . A proof system is complete if PS = TM , i.e. PS ⊆ TM and
PS ⊇ TM . As such there must be ⊨M E ⇔ `S E. PS ⊆ TM is given for
a sound proof system, PS ⊇ TM is notably harder to prove. Henkin’s proof
style [11] is one method to prove completeness. A proof system is decidable
if there is a procedure that can decide whether there is a proof or there is no
proof for any expression E ∈ E . If the proof system is decidable it can be fully
automated.

Many interesting formal theories (proof systems with specific axioms valid
in the universe we wish to describe) are incomplete, as shown by Gödel’s first
incompleteness theorem [12]. It implies that theories that can prove some
elementary theorems of arithmetic are incomplete. Since our signature for
the programming statements contained in our graphs incorporates the sort
of integers, it is likely that our model will be incomplete for any signature
extending the minimal one we define.

2.2 Testing

2.2.1 Test coverage
Testing is such a vast field it can be quite complicated to decide which sub-field
(glass box testing, black-box testing, requirement testing, model-based testing,
etc.) to choose to test a program. Even when restricting to glass box testing,
when should a tester stop to add test cases and how should they estimate the
quality of the test suite? As such an indicator of the quality of the tests and
an indicator to know when to stop testing is used: coverage. Coverage models
(also called coverage criteria by Ammann and Offut [7]) are rules or collections
of rules that define a set of test requirements to satisfy. In this section we will
use the definition of a test requirement by Ammann and Offut [7], “A test
requirement is a specific element of a software artifact that a test case must
satisfy or cover.”∗. In the context of glass box (or structural) testing, elements
of the graph corresponding to the program under test are the test requirements.
We do not address black-box testing, which concerns test constructed without
reference to the internal code structure of the program.

Coverage models can be divided into categories, notably control flow,
logic and data flow coverage models. Control flow coverage models require
that certain paths in the graph of the program are satisfied. Some examples

∗We formally define glass box test requirements in Definition 3.25.
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include Node Coverage (NC) where requirements are the set of paths
containing a single node and Edge Coverage (EC) where the edges of the graph
are the requirements. Logic coverage models exercise conditional branches
in a certain way. Predicate Coverage (PC) (also called Branch Coverage)
requires to reach all conditional statements, and for each statement a test case
must have it evaluate to false, and one to true. More elaborate logic coverage
models include MC/DC which is required for safety-critical plane software
by the Federal Aviation Authority [5]. Data flow coverage models require to
satisfy certain paths based on whether they write to or read some variables
from memory. For instance, All-uses Coverage requires one path that writes
to a variable in their first node and reads it in their last node without writing
to the variable in between to be satisfied, for some variable, first node and last
node triples. All-uses Coverage can be used by compilers to check for unused
variables in the program. The previously mentioned coverage models are
general, but more domain-specific models exist, such as the coverage models
for automatic security of web applications presented in Dao et al. [13], the
coverage models for graphical user interface testing by Memon et al. [14], or
the adapted control flow and state coverage models of Devroey et al. [15].

Quite often the coverage is not satisfied, as shown in the survey of Prause et
al. [16]. Even advanced projects, in the field of space software projects, do not
fulfil the coverage model. As such the notion of coverage level is introduced by
Ammann and Offut [7] as the ratio of the number of test requirements satisfied
by a test suite over the size of the test requirements set. Full coverage is not
often achieved, partly due to the cost of implementing the remaining test cases
to satisfy full coverage compared to their apparent capacity to reveal bugs, but
also due to infeasible requirements. The latter part prevents any test suite to
reach full coverage.

The informal model of Ammann and Offut [7] on which we base ourselves
and our model have differences due to the formality of our approach. The
first difference is how we build our CFGs. We discuss these differences in
Section 2.1.1. Secondly, Ammann and Offut [7] considers a test requirements
set to be satisfied by a test suite iff at least one complete execution of a test case
(referred to in [7] as a test path) contains the test requirement; this process is
referred to as touring∗. Whether a path is satisfied at the entry of the last
node or at the exit of the last node is thus unclear. Our model considers a path
satisfied after the last node of the path is exited. The authors also introduce the
concept of touring with sidetrips, when every edge of the test requirement is
contained in the test path in the same order as in the test requirement. Touring

∗We refer to a similar concept as path matching.
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with sidetrips is meant to overcome certain dead requirements, for example
when a loop body is guaranteed to be executed once before exiting the loop
(in opposition to not satisfying the loop guard in the first place); however we
consider this does not fit the goals of our work and we keep the strict notion
of matching. Our work can identify dead test requirements when the weakest
precondition formula obtained for the requirement implies false.

2.2.2 Redundancy reduction
Test case construction, whether manual or automatic, leads to redundancy
in the test suite. Redundancy of test cases occurs when at least 2 test cases
satisfy a common test requirement. Test case execution costs resources such
as computation time and memory, and as such the industry tries to reduce the
number of test cases in a test suite.

Ammann and Offut [7] defines a minimal test suite TS as one satisfying
all requirements of a set of test requirements TR such that removing any test
case in TS yields a test suite that does not satisfy all requirements of TR.
Furthermore, the authors define a minimum test suite TS satisfying a given
test requirements set TR as a set of test cases that satisfies all test requirements
of TR and so that all other test suites satisfying TR are of greater or equal
cardinality. Finding a minimal test suite is achievable with relative ease,
whereas finding a minimum test suite is much harder and most methods only
approximate a minimal test suite.

The literature contains two different approaches to reduce the size of
the test suite: Test Requirement Optimisation (TRO) and Test Redundancy
Reduction (TRR).

To our knowledge, few articles question the TRO problem. This is
supported by Chen et al.’s claim that “The test suites are always reduced
by analysing the satisfiability relation between testing requirements and test
cases.” [17]. Ammann and Offut [7] presents the simple approach of coverage
subsumption to redundancy. A coverage criterion C1 subsumes coverage
criterion C2 iff every set of test cases satisfying C1 also satisfies C2. It is
noted to be a very rough criterion by the authors. We leave to the reader
to prove that EC subsumes NC. Chen et al. [17] notes that “In some cases,
the relationship of testing requirements can be captured before the test case
generation by requirement engineering, semantic analysis, program analysis,
domain knowledge, testing history and etc.” and further proposes a method
for requirement optimisation by contraction. The authors introduce a bigraph
(T,R,E) where T = {t1, . . . , tn} is the set of test cases and R = {r1, . . . , rm}
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the set of test requirements where each ri is a subset of T . The authors propose
two possible relations on requirements: given r, r′ ∈ P(T ), r and r′ are
intersectant, noted r ▷◁ r′ iff r ∩ r′ 6= ∅, and r is subsumed by r′, noted
r � r′ iff r ⊆ r′. A test requirement r ∈ R is said to be 1-1 redundant in R

if r′ � r for some r′ ∈ R. The authors prove that removing the 1-1 redundant
test cases does not change the satisfiability of the resulting test suite for the test
requirements set, and the same property is proved by replacing intersectant test
cases r, r′ ∈ R by r ∩ r′. Our work in this thesis can determine the relations
between requirements for structural testing.

Most approaches in the literature attempt to solve the TRR problem. The
literature on TRR goes as far back as the 1990s and presents the problem as
follows from Harrold et al. [18]

Given: A test suite TS, a set of requirements r1, r2, . . . , rn that must be
satisfied to provide the desired testing coverage of the program, and
subsets of TS, T1, T2, . . . , Tn one associated with each of the ri’s such
that any one of the test cases tj belonging to Ti can be used to test ri.

Problem: Find a representative set of test cases from TS that satisfies all of
the ri’s.

Finding the optimal solution to this problem is NP-complete [19]. Various
approximations can be found in the literature and the methods to obtain them
can be divided in four categories: exact methods, heuristic-based methods,
metaheuristic-based methods and Artificial Intelligence (AI)-based methods.
We will thereafter present two articles on the TRR problem and list some other
papers without analysing them in-depth.

The heuristic method by Harrold et al. [18] approximates the optimal TRR
solution by selecting representative test cases to cover the requirements. It
only applies to structural coverage models. This method first considers the
Ti’s of cardinality one, i.e. containing a single test case, and adds each test
case to the set of representative test cases. All Ti’s containing the selected
test cases are marked. The method then proceeds to the unmarked Ti’s of
higher cardinality as follows: the test case ti appearing in the largest number of
unmarked Ti’s of current cardinality c is selected. If there is a tie, the algorithm
recursively examines the unmarked Ti’s of cardinality c′ > c until one test
case in the tie appears in strictly more Ti’s than the others, and adds it to the
representative set. Then all Ti’s containing ti are marked and the algorithm
repeats the process at cardinality c until all Ti’s of cardinality c are marked.
The previous steps are repeated with incremented cardinality, until all Ti’s



16 | Background and literature survey

are marked. The representative set of test cases is the minimised test suite.
The runtime complexity of this algorithm is O(n(n + nt)C) where C is the
maximal cardinality of the Ti’s, n the number of Ti’s and nt the number of test
cases ti. The method can be used when considering several coverage models
by computing the representative set for one coverage, and use it as the basis
of the second representative set for a new coverage, and so on. This method is
related to our concept of weak coverage as test cases are considered for their
capacity to satisfy several test requirements.

Fraser and Wotawa [20] base their exact approach to approximate the
optimal solution of the TRR problem on model checkers and Kripke structures.
A model checker takes as input a finite-state representation of a program and
a temporal logic property. The model checker will verify on the entire space
if the property is satisfied, if not it returns a sequence of states leading to the
invalid state not satisfying the property. Such a sequence is called a counter-
example or a trace. The authors’ method considers the test cases to be traces
generated by trap properties [21]. The behaviour of the system under test can
be represented by a Kripke structure. Formally, a Kripke structure is a tuple
K = (S, s0, T, L) with S the set of states, s0 ∈ S the initial state, T ⊆ S × S

the transition relation and L : S → 2AP the labelling function mapping each
state to a set of atomic propositions holding in this state, where AP is the
countable set of atomic propositions. Paths in a Kripke structure K are finite
or infinite sequences of states {s0, s1, . . . } such that ∀i > 0 : (si, si+1) ∈ T .
Test cases are defined as finite prefixes of a path p of a Kripke structure K.
Redundancy of test cases is defined as the existence of a common prefix of
at least two test cases of same initial state. As test case removal lowers the
test suite fault detection capability [22, 23, 24], their approach does not only
remove test cases but modifies them as follows: for each test case t of length
n (the number of transitions in t) in test suite TS, search for other test cases
t2 ∈ TS such that t2 has a common prefix with t of length n, and repeat for
n− 1, down to 1 until a prefix of length 1 ≤ n′ ≤ n is found. If such a prefix
of length n′ exists, and there exists t3 ∈ TS such that t3’s last state is equal to
the last state of the prefix sp, the postfix of t1 is appended to t3. Otherwise, a
non-deterministically chosen t4 ∈ TS is used as the basis to generate a path
from t4’s end to sp with the model checker, called a glue sequence. Then t4 is
appended the glue sequence and then the postfix.

Other methods to approximate the optimal solution of the TRR problem
include the exact approach by Chen, Zhang and Xu [25] that relaxes a
0-1 Integer Linear Programming (ILP) algorithm not suited for efficient
computations for large test suites to a Degraded Integer Linear Programming
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(DILP) algorithm. Given a set of test cases and a boolean matrix of the
satisfaction of requirements by test cases the DILP algorithm gives a vector
solution of values in [0; 1] where each index corresponds to a test case. Then
it computes a score for each test case, and set the test case with the highest
score to 1 in the output vector. The process is repeated until the output
vector contains only 0 or 1 as values, thus being a solution for a 0-1 ILP
algorithm. The test cases associated with 1 in the final output vector form the
optimised test suite. Bajaj and Sangwan [26] propose a Gravitational Search
Algorithm (GSA) inspired from the gravitational laws of physics, classified as
a metaheuristic algorithm. The GSA algorithm orders a set of test cases based
on their potential to reveal faults. The algorithm associates a mass to each
test case, in turn applying a force of attraction to the other test cases. After a
set number of iterations, the algorithm outputs as test suite the first set of test
cases of highest potential to satisfy the coverage model. The authors update
the gravitational constant and thus the force of attraction at each iteration to
avoid local minima. Their first approach updates the constant with a random-
generated value, and the second with a chaotic map. Hooda and Chhillar
[27] introduce an AI method using an Artificial Neural Network (ANN) to
reduce redundancy in a test suite. The authors parse UML 2.0 activity and
statechart diagrams to generate test cases. This initial test suite is used as input
for a Genetic Algorithm (GA) that generates new test cases. A trained back-
propagation ANN decides whether the GA-generated test cases are redundant
with the initial test suite, and the non-redundant test cases are added to the
initial test suite.

2.2.3 Weakest preconditions
Whereas the previously mentioned works describe how to choose and satisfy
test requirements, there remains the question of what output state may be
acceptable after the execution of the test, also called the oracle problem.
Dijkstra [28] introduced the concept of predicate transformers, logics that
given a program S and a postcondition R obtain a precondition P so that
executing S with any input state satisfying P yields an output state satisfying
R. P is the weakest precondition for S and R iff the input states p satisfying P

are the ones that guaranteeS will terminate and the output state r satisfiesR for
any p. Dijkstra proposes a set of axioms and rules for a weakest precondition
calculus, proved correct by Hoare in [29]. Later in the methodology, we will
compare our calculus to a weakest precondition calculus by Basu and Yeh [30]
inspired by Dijkstra’s axioms.
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The weakest preconditions in our work differ from that of Dijkstra’s in
[28] and Basu and Yeh’s in [30] in that they concern paths of a graph model
of a program. The weakest precondition to cover a path p when executing the
graph, noted WPp,v0 is the set of input states that execute p. Obtaining WPp,v0

let us infer the test cases for p. Our calculus, defined in Section 3.5, can obtain
weakest precondition formulas, FOL formulas that are satisfied by all and only
the states of WPp,v0 . It may be noted that a path of our approach fixes part of
the control flows that may be present in an execution of the graph that covers
the path∗. Instead in [28, 30] all terminating executions are considered, such as
if we considered all paths from the entry node of the graph to the termination
pseudo-node. Furthermore, our calculus is designed for test case construction
rather than to solve the oracle problem and as such we allow any postcondition.
We discuss in the future work the challenges we identified for a postcondition
calculus that may solve the oracle problem.

In the case of this work, weakest preconditions let us infer relations
between test requirements. If the weakest precondition to execute a path p,
WPp,v0 , is a subset of the weakest precondition to execute a path q, WPq,v0 ,
then all executions that cover p also cover q. As such q can be safely removed
from the test requirements set. Our definition of weakest preconditions does
not require termination. However it is possible to include the termination
pseudo-node τ as the last node of a path to require termination. In this case,
the halting problem becomes relevant, as discussed in Chapter 4.

2.3 Methodology and software verification
While verification is powerful, “proofs cannot substitute tests” [31] as
verification is usually not performed with every component of the program’s
environment that can impact its behaviour, such has the operating system,
compiler, hardware, etc. In contrast to verification, testing encompasses the
stack of the program. Yet several concepts and tools used in the field of
software program verification are also used for testing.

One such example is KeYTestGen, a program in the KeY project whose
associated book chapter by Ahrendt et al. [31] presents it. KeYTestGen is
an automatic test case generation software that is embedded in a program
logic for formal verification, a superset of FOL. First the program verifies the
Method Under Test (MUT), if verification failed then the program generates

∗In other words, a given path implies a sequence of branches taken during any execution
for the path.
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a small-size test suite with counter-examples∗ to help locate the problems in
conjunction with a debugger. If instead verification succeeded, the program
generates a large test suite with high coverage to further increase confidence
in the MUT. Test case generation by KeYTestGen starts by constructing a
proof tree where branches are symbolic executions of the program. Through
construction, conditions on the initial state of the program to reach a certain
branch are accumulated, which allow to generate restrictions for test cases.
By selecting one mapping of input variables to values that satisfy the above
constraints, a concrete test case is generated. KeyTestGen permits to generate
glass box test suites for logic coverage models, whereas this work focusses
on control flow and data flow coverage models. The authors point to the
assessment of Cadar et al. [32] for a survey of symbolic execution-based test
case generators.

Other uses of common verification tools for software testing include the
adoption of symbolic evaluation and theorem provers to detect infeasible paths,
as detailed in the work of Goldberg at al. [33]. The system under test is parsed
into an abstract syntax tree which will be given as input to the theorem prover.
With a set of paths r from a starting node s to an ending node e and a formula
φ, the theorem prover verifies if there exists a path in r such that formula φ

holds when e is reached. This is done by creating a FOL formula through
parsing the graph with symbolic evaluation. The possible answers are that
there exists such a path, that there is not, or that the search is inconclusive. At
the time of the work, such use was unpractical due to the length of the formulas
given to the theorem prover. The authors used simplification rules to keep the
formula manageable in acceptable time by the theorem prover. In their work,
the authors mention the problem of loops that modify variables inφ and cannot
be finitely inlined efficiently, as they could represent infinitely many paths. In
such case they consider the loop modifies the variables in an arbitrary way. A
similar problem is reported for complex functions. In the future work section,
the authors propose the use of high-order functions to resolve this problem.

Gladisch [34] proposes a different approach to the complex loops and
functions problem. The author’s method computes a precondition before
a loop or method is executed so that a certain path is executed after the
execution of the loop or method. The method is similar to the weakest
precondition computation introduced by Dijkstra [28]. The Full Disjunctive
Branch Precondition (F-DBPC) for a program p and a branch condition φ to
execute a certain branch in p is the conjunction of pre → 〈p〉post (similar
to the Hoare triple {pre}p{post} but also asserts that p terminates), and the

∗See Section 2.2.2’s description of Fraser and Wotawa’s work for details.
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DBPC pre → {M := Msk}(post → φ). In the DBPC function symbols in M

that can be modified by p are replaced by new symbols from Msk in post and
φ. F-DBPC is useful when instead of a branch condition φ its negation ¬φ
is used in the F-DBPC. In this case, if the F-DBPC is validated by a theorem
prover, then either the precondition or the path condition is unsatisfiable, so
the path is infeasible under the program’s contract.

2.4 Summary
Programs are constructs of structures and control flows, which in turn can be
used to model them as executable graphs. From this mathematical basis, proof
systems let us infer facts as expressions of the formal language we created with
control flows and structures. We aspire to check the program’s behaviour on
some inputs, and employ coverage models to obtain testing requirements. Test
suites for a given coverage are often not optimised. Two main approaches
to this problem are the optimisation of the test requirements such as in the
work of Chen et al. [17] and the optimisation of the test suite based on test
cases satisfying multiple test requirements. The latter approach can be solved
with multiple methods, be they exact, heuristic, metaheuristic or AI-based.
Weakest precondition calculi let us obtain the set of inputs that satisfy a given
postcondition for a given program, which in turn solves the oracle problem.
Our work proposes an approach to study the weakest preconditions as to infer
relations between structural testing requirements. Some concepts used in the
field of testing are taken from the field of software program verification, such
as the use of proof trees and symbolic evaluation for test case generation and
infeasible paths detection.
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Chapter 3

Methodology

This chapter provides an overview of the research methods used in this thesis.
Section 3.1 introduces the concept of software errors. Section 3.2 presents
the signatures and structures. Section 3.3 presents the CFGs. Section 3.4
presents the test requirements. Section 3.5 introduces the inference rules of
our calculus. Section 3.6 determines the weakest preconditions obtained by
our calculus. Finally, Section 3.7 compares our calculus to the literature.

The definitions, propositions, lemmas, theorems and their proofs constitute
the results of this work. The chapter presents examples and graphs to simplify
the understanding of the results for the reader.

3.1 Software errors
There are as many definitions of software errors as persons using the term.

Definition 3.1. We define a software error on a program as an incorrect
behaviour of the program according to the program specifications of the person
interacting with the program. ■

The specifications of Definition 3.1 depend on the person interacting with
the program, e.g. developer, user, client. Program specifications may be
documented or not documented, precise or informal. In the case of informal
non-documented specifications, software errors are unclear and the task of
testing is convoluted. Some categorisations of software errors with regard to
the program specifications include:

• Incorrect termination behaviour (the program terminates when it
shouldn’t, or does not terminate when it should)
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• Operational errors, including the execution of incorrect expressions,
such as x/y when y = 0 and both x and y are integers, leading to
incoherent states∗

• Bound errors, such as integer overflow

• Requirement errors, that suppose the program terminated in a coherent
state, but the results or side effects do not correspond to the
specifications or oracle

• Environmental errors, when the environment of the program causes an
invalid behaviour, such as forced termination by the operating system,
or an external input that is not as expected

3.2 Signatures and structures
Data types form a founding concept of programs, they set syntax and semantics
on variables, defining what they are and what can be done with them, with
dedicated symbols and names. A formal definition of data types involves
signatures as their syntax, and structures as their semantics.

3.2.1 Languages foundations
To establish data types, we must first define a language to build upon.

A signature syntactically defines a language, by containing the available
types, certain values’ symbols such as 0 and operation and relation symbols
such as + and <.

Definition 3.2 (S-sorted first-order signature). An S-sorted first-order
signature is a pair (S,Σ) where:

(i) S is a non-empty set of sorts, S = {s1, . . . , sn}

(ii) Σ is a set of constant, operation and relation symbols, formed by the
union of pairwise disjoint subsets:

(a) Σλ,s, the set of constant symbols of sort s ∈ S

(b) Σw,s, the set of operation symbols of sort s ∈ S with argument
sorts w = s1 . . . sn ∈ S+

∗Certain programming languages prefer to crash when such an error is reached, but others
consider a value such as not-a-number (NaN), or Infinity.
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(c) Σw, the set of relation symbols of argument sorts w = s1 . . . sn ∈
S∗, in particular if w ∈ S0 the symbol is a propositional constant
symbol and we denoteΣλ the set of propositional constant symbols

■
It is immediate that Σλ ⊆ Σw. By abuse of notation, in the sequel we let

Σ an S-sorted signature.
Structures are the semantics of the language defined syntactically by a

signature. In terms of usual programming languages, a structure is the
implementation of a language. For example most languages associate the value
0 for integers to the constant symbol 0 of the same type.

Definition 3.3 (Σ-structure). A many-sorted first-order Σ-structure M is a
triple (SM ,ΣM

w,s,Σ
M
w ) where:

(i) SM is an S-indexed family 〈Ms|s ∈ S〉 of non-empty sets, where for
each s ∈ S, Ms is called the carrier or domain of M of sort s

(ii) For any w = s1 . . . sn ∈ S∗, s ∈ S, ΣM
w,s is an S∗ × S-indexed family of

sets of constants and sets of functions. For each sort s ∈ S

ΣM
λ,s = {cM |c ∈ Σλ,s}

where cM ∈ Ms is a constant of sort s ∈ S which interprets the constant
symbol c ∈ Σλ,s in the structure M . For each w ∈ S+ and each sort
s ∈ S

ΣM
w,s = {fM |f ∈ Σw,s}

where fM : Mw → Ms is termed an operation or function with domain

Mw = Ms1 × . . .×Msn

codomain Ms and of arity n which interprets the function symbol f in
the structure M .

(iii) For any w = s1 . . . sn ∈ S∗, n ≥ 0, ΣM
w is a S∗-indexed family of

propositional constants and predicates. For each w ∈ S∗

ΣM
w = {rM |r ∈ Σw}

where rM ⊆ Mw = Ms1 × . . . × Msn is termed a predicate of arity n

which interprets the relation symbol r in the structure M . In particular
we term predicates of arity 0 propositional constants.
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We denote Mod(Σ) the set of all many-sorted first-order Σ-structures. ■

3.2.2 Assignments
In addition to signatures and structures, usual programming languages contain
variables, and provide a form of memory accessible through the variables. We
hereafter define assignments as the ”memory” of the program for a defined
language, mapping variables to values.

Definition 3.4 (Variables and assignments). Let X = 〈Xs|s ∈ S〉 be an S-
indexed family of sets Xs = {x1, x2, . . .} of variable symbols of sort s. Let
M ∈ Mod(Σ) be a many-sorted first-order Σ-structure. An assignment or
variable binding∗ is an S-indexed family

α = 〈αs : Xs → Ms|s ∈ S〉

We let [X → M ] denote the set of all assignments. ■

The family of variable symbols can contain more than the variables of a
program, for example the family can contain a symbol error of the integer
sort int which may be assigned 0 if no error has occurred, and 1 if an error
did occur (such as a division by 0).

Substitution in an assignment is a mechanism to update the assignment,
which will be required by our assignment statements in the next section.

Definition 3.5 (Substitution in an assignment). Let M ∈ Mod(Σ) be any
many-sorted first-order Σ-structure. Let a ∈ Ms a value of the carrier of M of
sort s ∈ S. Let X = 〈Xs|s ∈ S〉 be a family of sets of variable symbols and let
x ∈ Xs a variable symbol of sort s. Let [X → M ] the set of all assignments
w.r.t. M and X and let α = 〈αs : Xs → Ms|s ∈ S〉 ∈ [X → M ] be an
assignment. The substitution of the mapping of variable x in assignment α by
the value a, denoted α[x/a] is the assignment α′ ∈ [X → M ] such that

(i) for all s′ ∈ S and all y ∈ Xs′ such that y 6= x or s′ 6= s, α′
s′(y) = αs′(y)

(ii) α′
s(x) = a

■
∗Later in the context of CFGs we may refer to assignments as states.
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3.2.3 Terms, formulas and evaluations
Signatures and structures define operations, but they yet lack how to define
syntactically valid expressions.

Terms are the first valid expressions we will define. They are combinations
of constant symbols (such as the 0 symbol) and operation symbols. Terms are
of a certain sort.

Definition 3.6 (Terms). Let X = 〈Xs|s ∈ S〉 be an S-indexed family of sets
Xs = {x1, x2, . . .} of variable symbols of sort s. The set T (Σ, X)s of all terms
over Σ and X of sort s for any s ∈ S is defined inductively as follows

(i) if c ∈ Σλ,s then c ∈ T (Σ, X)s

(ii) if x ∈ Xs then x ∈ T (Σ, X)s

(iii) if ti ∈ T (Σ, X)si for i = 1, . . . , n and f ∈ Σs1...sn,s then

f(t1, . . . , tn) ∈ T (Σ, X)s

(iv) there are no other terms in T (Σ, X)s

■

Terms are syntactical. Evaluating them in a structure and with an
assignment lets us obtain a value in the corresponding carrier of the structure.

Definition 3.7 (Evaluation of terms). Let M ∈ Mod(Σ) be any many-sorted
first-order Σ-structure. Let X = 〈Xs|s ∈ S〉 be a family of sets of variable
symbols. Let α = 〈αs : Xs → Ms|s ∈ S〉 be an assignment. The evaluation
function of terms evalsM,α : T (Σ, X)s → Ms is defined inductively as follows

(i) evalsM,α(c) = cM for any c ∈ Σλ,s

(ii) evalsM,α(x) = α(x) for any x ∈ Xs

(iii) evalsM,α(f(t1, . . . , tn)) = fM(evals1M,α(t1), . . . , eval
sn
M,α(tn)) for all f ∈

Σw,s, all non-empty words w = s1 . . . sn, all terms ti ∈ T (Σ, X)si and
1 ≤ i ≤ n

The family of evaluation mappings for terms w.r.t. M and α is evalM,α =
〈evalsM,α|s ∈ S〉. ■
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Evaluation is side effect-free.
Other valid expressions are First-Order Logic (FOL) formulas, differing

from terms as they contain relation symbols.

Definition 3.8 (First-order logic formulas). Let X = 〈Xs|s ∈ S〉 be a family
of sets of variable symbols. The set of First-Order Logic (FOL) formulas over
Σ and X , denoted FOL(Σ, X) is defined inductively as follows

(i) if r(t1, . . . , tn) ∈ Σw for w ∈ S∗ and ti ∈ T (Σ, X)si for i = 1, . . . , n,
then r(t1, . . . , tn) ∈ FOL(Σ, X)

(ii) if ϕ ∈ FOL(Σ, X) then (¬ϕ) ∈ FOL(Σ, X)

(iii) if ϕ, χ ∈ FOL(Σ, X), then (ϕ ∧ χ) ∈ FOL(Σ, X) and (ϕ ∨ χ) ∈
FOL(Σ, X)

(iv) if r(t1, . . . , tn) ∈ FOL(Σ, X) then for any x ∈ X then
(∃x. r(t1, . . . , tn)) ∈ FOL(Σ, X) and (∀x. r(t1, . . . , tn)) ∈ FOL(Σ, X)

The formulas of (i) are termed the atomic formulas. The formulas closed
under (i), (ii) and (iii) are termed the quantifier-free formulas. We denote
QFFOL(Σ, X) the set of quantifier-free formulas.

All occurrences of all variables of any quantifier-free formula are said to
be free. In a FOL formula of the form (∃x. ϕ) ∈ FOL(Σ, X) or (∀x. ϕ) ∈
FOL(Σ, X), all free occurrences of x in ϕ are now bound. The free variables
of a formula ϕ ∈ FOL(Σ, X) are the variables of ϕ which occur free at least
once in ϕ. ■

It is immediate that QFFOL(Σ, X) ⊆ FOL(Σ, X). Furthermore the
variables in a quantifier-free formula ϕ are the free variables of ϕ, and all their
occurrences are free in ϕ.

Substitution in a FOL formula is motivated by the need to syntactically
express the effect of assignment statements on the formulas of our calculus.

Definition 3.9 (Substitution in a first-order logic formula). Let X = 〈Xs|s ∈
S〉 be a family of sets of variable symbols. Let ϕ ∈ FOL(Σ, X) a FOL
formula. Let x ∈ Xs a variable symbol of sort s ∈ S. Let t ∈ T (Σ, X)s a
term of sort s. The substitution of the variable x in formula ϕ by t, denoted
ϕ[x/t] is a FOL formula χ ∈ FOL(Σ, X) such that all free occurrences of x
in ϕ are replaced by t. ■
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Although the syntactic aspect of formulas has been mentioned prior in
this section, evaluation of formulas is required for the semantic aspect dual
to the syntactic aspect, notably to determine the assignments that satisfy the
formula∗. FOL formulas are evaluated to boolean values.

Definition 3.10 (Evaluation of a formula). Let Σ = (S,OP ) a signature such
that Σλ = {true, false}. Let X = 〈Xs|s ∈ S〉 be a family of sets of variable
symbols. Let M ∈ Mod(Σ) a Σ-structure such that trueM = tt and falseM =
ff . Letα ∈ [X → M ] be an assignment. The evaluation function of a formula
evalM,α : FOL(Σ, X) → {tt, ff} is defined inductively as followed

(i) evalM,α(ϕ) = ϕM for any ϕ ∈ Σλ

(ii) evalM,α(r(t1, . . . , tn)) = rM(evals1M,α(t1), . . . , eval
sn
M,α(tn)) for all r ∈

Σw, all non-empty words w = s1...sn, all terms ti ∈ T (Σ, X)si and
i = 1, . . . , n

(iii) For all ϕ, χ ∈ FOL(Σ, X) and any x ∈ Xs, s ∈ S

(a) evalM,α(¬ϕ) =

{
tt if evalM,α(ϕ) = ff,

ff otherwise.

(b) evalM,α(ϕ ∧ χ) =


tt if evalM,α(ϕ) = tt and
evalM,α(χ) = tt,

ff otherwise.

(c) evalM,α(ϕ ∨ χ) =


tt if evalM,α(ϕ) = tt or
evalM,α(χ) = tt,

ff otherwise.

(d) evalM,α(∃x.ϕ) =

{
tt if ∃a ∈ Σλ,s, evalM,α(ϕ[x/a]) = tt

ff otherwise.

(e) evalM,α(∀x.ϕ) =

{
tt if ∀a ∈ Σλ,s, evalM,α(ϕ[x/a]) = tt

ff otherwise.

We denote evalM,α the family of evaluation functions for terms and FOL
formulas. ■

∗Assignments for which the formula is true. We formally define satisfiability of formulas
by assignments later in the work.
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3.2.4 Required signature for graphs
Prior to the introduction of graphs in the next section, we hereafter set a
minimal signature for the graphs to build on. Note that all sorts must be able
to express equality, achieved for the int sort with ≤.

Definition 3.11 (Zdiv). The ordered ring of integers with integer division Zdiv

is an extension of the ring of integers:
Zdiv =

S = {int}
Σλ = {true, false}
Σλ,int = {0}
Σint,int = {SUCC,−}
Σint int,int = {+, ∗, div}
Σint int = {≤}

■

Example 3.2.1. The following structure M is an example of Zdiv-structure:

Mint = {. . . ,−2,−1, 0, 1, 2, . . . }
−M (x) = −x

SUCCM(x) = x + 1

+M (x, y) = x + y

∗M (x, y) = x · y
divM(x, y) = x/y

trueM = tt

falseM = ff

≤M (x, y) =

{
tt if x ≤ y,

ff otherwise.

Note that x/y is the quotient of the Euclidean division which we assume is
defined on y = 0. ■

In this work we introduce the concept of software errors through the
generic division by 0 error, in our case div(x, t) such that evalM,α(t) = 0M .
There are 3 levels that may deal with the error, in order:
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(i) The data type level: in this case evalM,α(div(x, t)) = κ with κ some
value in the carrier of M for the int sort. This is the design choice of the
IEEE 754-2019 standard [35] which by default proposes the ±infinity

value, although for floating-point division. Another possibility is to use
an error value in the carrier, by extending the signature with an error
symbol in the int sort.

(ii) The language’s runtime: for instance the Java programming language
throws the ArithmeticException when division by 0 is encountered with
integer division. Depending on the context (for example if the exception
was thrown in a try-catch block) the runtime will decide the next step,
possibly crashing the program.

(iii) The operating system: for instance, the Linux operating system will
generate a SIGFPE signal and send it to the process that caused the
error. The process may handle the signal using a trap, a similar concept
to Java’s catch blocks, or let the default action to terminate the process
occur [36].

If one level does not handle the error, the responsibility of handling the error
falls down to the next level. Our work models error handling at the data type
level. Modifications of the inference rules and possibly of the graph structure
will be necessary to adapt the logic to handle errors at the language’s runtime
or operating system levels. Conjectures for the modifications will be presented
in the discussions.∗

Definition 3.12 (Expansion of a signature). Let Σ1 = (S1,Σ1) and Σ2 =
(S2,Σ2). Σ2 is an expansion of Σ1, noted Σ1 ⊆ Σ2, iff

(i) S1 ⊆ S2

(ii) for each s ∈ S1 and each w ∈ S∗
1 , Σ1

w,s ⊆ Σ2
w,s

(iii) for each w ∈ S∗
1 , Σ1

w ⊆ Σ2
w

■

The expansion of a signature permits to extend another signature with
additional sorts, operation symbols and relation symbols. We thereafter

∗One other approach we have not discussed here is to set special error variables that
are different from all program variables. This method also requires modifications to the
inference rules, although we conjecture the modifications are less complex to set up than the
modifications for the other levels.
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require that any graph builds on an expansion of the minimal signature Zdiv

and has an equality relation symbol for all sorts. It is left to the reader to
realise the expansion with any additional sort, constant, operation and relation
symbol as they deem fit.

Definition 3.13 (Signatures with integer data type and first-order logic). A
signature with integer data type and FOL formulas is an expansion

Σ ⊇ Zdiv

such that for all s ∈ S, there exists the relation symbol = ∈ Σs s or ≤ ∈
Σs s. ■

In the sequel, we let:

(i) Σ ⊇ Zdiv a signature with integer data type and FOL formulas.

(ii) X = 〈Xs|s ∈ S〉 a family of sets of variable symbols

(iii) M ∈ Mod(Σ) a many-sorted first-order Σ-structure such that trueM =
tt and falseM = ff

(iv) [X → M ] the set of all assignments w.r.t. M and X

(v) evalM,α the family of evaluation mappings for terms and FOL formulas
for α ∈ [X → M ]

3.3 Control Flow Graphs
Programs can be modelled as graphs upon the basis of the previous section.
In this section, we define the basic blocks constituting graphs, precise their
structure and elements, as well as define how to execute the graph.

3.3.1 Well-formed graphs
While modern languages have large number of statements, they can be
simplified to the assignment and the conditional statements. More complex
statements, such as the while-loop, can be expressed by the combination of
conditional statements and control flows in the graph.

Definition 3.14 (Statements). The set of (programming) statementsStmt(Σ, X)

over Σ and X is the union of the set Assign(Σ, X) of assignment statements
and the set Cond(Σ, X) of conditional statements defined as follows
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(i) Assign(Σ, X) = {Assign(Σ, X)s|s ∈ S} with Assign(Σ, X)s =
{x := t|x ∈ Xs, t ∈ T (Σ, X)s} for any s ∈ S

(ii) Cond(Σ, X) = {cond|cond ∈ QFFOL(Σ, X)}

where all terms t and all first-order formulas cond are finite. ■

Definition 3.15 (Control flow graph). A Control Flow Graph (CFG) over
signature Σ and the variables in X is a labelled directed graph defined as
follows:

G =< V, E ⊆ V × V, LV : V → Stmt(Σ, X),

LE : E → {true, false}, v0 ∈ V >

where:

(i) V is the set of the vertices in G

(ii) E is the set of the edges in G

(iii) LV is a mapping of vertices to statements in Stmt(Σ, X)

(iv) LE is a mapping of edges to two possible types of exit

(v) v0 is the entry vertex in G

■

Example 3.3.1. Fig. 3.1 presents an example of CFG over a signature with
integer data type and FOL formulas. Program myPoly from [37] is meant to
compute 2∗x0 ∗y0, with x0, y0 the binding of x and y in the initial assignment
α0 ∈ [X → M ], [X → M ] the set of all assignments w.r.t. M and X∗.
Testing the graph may unravel an error in node v10, where w is not bound to 0

as the correct program would. We will use the graph of Fig. 3.1 as a running
example throughout this work. ■

Example 3.3.2. You may note that in Fig. 3.1 we provide program myPoly as
pseudocode, in the style of the C programming language. Our formal language
defined in Section 3.2 translates into programming statements as defined in
Definition 3.14. Thus, there is no standard way of writing pseudocode for our
programs. We present in the following an example of a Backus-Naur form
notation for programs in our language:

∗The result is only considered if x0, y0 ≥ 0.
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Figure 3.1: Program myPoly and its CFG
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<program> ::= (<assignment>
| <conditional>)
[”;” <program>]

<assignment> ::= <variable> ”:=” <term>

<conditional> ::= <FOL> ”{”
<program>
[”|” <program>]

”}”

■

Definition 3.15 lacks structure constraints for CFGs. For example
assignment statements could have more than one exit, and conditional
statements more than two. Therefore we define well-formed graphs, and we
will only work on them for the remaining of the work.

Definition 3.16 (Well-formed CFG). A CFG G is well-formed iff

(i) A node v containing an assignment (i.e. LV (v) ∈ Assign(Σ, X)) has
at most one exit edge to a node v′ so that (v, v′) ∈ E. If there is no v′

so that (v, v′) ∈ E, then v is called an exit node;

(ii) A node v containing a conditional (i.e. LV (v) ∈ Cond(Σ, X)) has at
most one exit edge to a node v′ (i.e. (v, v′) ∈ E) such that LE(v, v

′) =
true and at most one exit edge to node a v′′ (i.e. (v, v′′) ∈ E) such that
LE(v, v

′′) = false, and has at least one of the two exits. If v has 1 exit
edge, it is an exit node.

(a) LE(v, v
′) = true is called the true exit

(b) LE(v, v
′′) = false called the false exit

We denote CFG(Σ, X) the set of all well-formed CFGs over Σ and X . ■

Note that Definition 3.16 allows goto-like control flows as there is no
restriction to which node the exit points to.

Definition 3.17 (Termination pseudo-node). The termination pseudo-node or
termination virtual node τ is such that when τ is reached by executing the
program, the program has terminated. ■

τ does not specify how the program terminated.
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3.3.2 Paths and matching
Glass box testing is about executing all paths of a given set. We thereafter
define paths in our model, as well as how a path matches a sequence, notably
the sequence of nodes that results from the execution of a graph.

Definition 3.18 (Path). Let G ∈ CFG(Σ, X) a well-formed CFG. A path p

in G is a finite list of at least two nodes in V or ending in τ

p = (p1, . . . , pn)

such that p is connected, i.e. ∀n ∈ {1, . . . , n− 1}, (pn, pn+1) ∈ E.
A path is elementary if its first node p1 is v0.
We denote Path(G) the set of paths of G. ■

Our definition of paths differs from the literature by allowing program
termination as a part of it.

Example 3.3.3. In the graph of Fig. 3.1, the following is a non-exhaustive list
of paths:

(i) p1 = (v0, v1, v2, v3)

(ii) p2 = (v3, v4, v5, v8, v9, v10, v3) (a loop, beginning and ending by the
same node)

(iii) p3 = (v5, v6, v7, v5, v6) (implying that (v5, v6, v7) is taken at least twice
when executing the graph)

(iv) p4 = (v2, v3, v4, v5, v6, v7, v5, v8)

■

Definition 3.19 (Loop). Let G ∈ CFG(Σ, X) a well-formed CFG. A loop in
G is a path p = (p1, . . . , pn) ∈ Path(G) such that p1 = pn. ■

Definition 3.20 (Path Concatenation). Let p = (p1, . . . , pn) and q =
(q1, . . . , qm) two paths on G such that (pn, q1) ∈ E. The concatenation of
p and q, denoted p · q, is the path

p · q = (p1, . . . , pn, q1, . . . , qm)

■
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Note that the definition implies pn ∈ V so pn 6= τ and thus only qm may
be τ .

The goal of a glass box test case is to execute a certain path in the program,
modelled as a graph in this work. We introduce path matching to assert that
the path concerned by the test case is part of the execution sequence of nodes
of the test case.

Definition 3.21 (Path matching). Let G ∈ CFG(Σ, X) a well-formed CFG.
Let p = (p1, . . . , pn) a path in G. p matches in an infinite N-indexed sequence
z ∈ (V ∪ {τ})w at k ∈ N iff

zk = p1, . . . , zk+n−1 = pn

We say that p matches z if there exists some k ∈ N such that p matches z at k,
and that p does not match z if there is no such k. ■

To our knowledge, the literature does not specify whether a path is covered
when entering or exiting its last node. Ammann and Offut [7], upon whose
informal model we base ourselves, does not answer this question. Instead,
the authors consider a test case satisfies a test requirement if the execution
sequence (referred to in their work as a test path) from v0 to an exit node by
the test case contains the test requirement, i.e. the test requirement is a sub-
path of the test path.

Example 3.3.4. Suppose we have the sequence

z = v0, v1, v2, v3, v4, v5, v6, v7, v5, v6, v7, v5, v8, v9, v10, v3, τ, τ, . . .

With v0 at 0, and only τ in the part that is omitted. Then path p1 =
(v0, v1, v2, v3) from Example 3.3.3 matches z exactly once at 0, p2 =
(v3, v4, v5, v8, v9, v10, v3) and p4 = (v2, v3, v4, v5, v6, v7, v5, v8) do not match
z, but p3 = (v5, v6, v7, v5, v6) matches z once at 5 and another path p5 =
(v5, v6, v7) matches z twice, at 5 and 8. ■

3.3.3 Graph execution
With all the above we can now define the execution of a program. This is first
defined as an execution step with Definition 3.22.

Definition 3.22 (State transition function δG). The state transition function on
a graph G ∈ CFG(Σ, X), denoted δG

δG : V ∪ {τ} × [X → M ] → V ∪ {τ} × [X → M ]
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is defined by

(i) δG(τ, α) = (τ, α) [Convergence]

(ii) if LV (v) = x := t for x ∈ Xs, t ∈ T (Σ, X)s and s ∈ S

(a) if there exists v′ ∈ V such that (v, v′) ∈ E, then δG(v, α) =
(v′, α[x/evalsM,α(t)]) [Assign]

(b) otherwise v is an exit node and δG(v, α) = (τ, α[x/evalsM,α(t)])

[Assign-exit]

(iii) if LV (v) = cond for cond ∈ QFFOL(Σ, X)

(a) if evalM,α(cond) = tt then
(1) if there exists v′ ∈ V such that (v, v′) ∈ E and LE(v, v

′) =
true, then δG(v, α) = (v′, α) [Cond-true]

(2) otherwise v is an exit node and δG(v, α) = (τ, α) [Cond-true-
exit]

(b) if evalM,α(cond) = ff then
(1) if there exists v′′ ∈ V such that (v, v′′) ∈ E and LE(v, v

′′) =
false, then δG(v, α) = (v′′, α) [Cond-false]

(2) otherwise v is an exit node and δG(v, α) = (τ, α) [Cond-false-
exit]

We denote δGnode
(v, α) = δG(v, α)1 and δGstate(v, α) = δG(v, α)2 respectively

the resulting node and state of applying δG to some node v ∈ V and some state
α ∈ [X → M ]. ■

With Definition 3.22 we precise the program’s behaviour at some node and
for some assignment (referred to as a state in this context), resulting in a new
node-state pair. We also define when and how the program terminates.

Note that the resulting node is not executed after a step, but it will be the
next to be executed.

The small step semantics of a CFG is a succession of execution of steps as
defined in Definition 3.22.

Definition 3.23 (Small step semantics of CFGs). Let G ∈ CFG(Σ, X). The
small step semantics of G, denoted δ∗G, is an infinite sequence

δ∗G : V ∪ {τ} × [X → M ] → [N → V ∪ {τ}]× [N → [X → M ]]

defined inductively for any v ∈ V ∪ {τ} and any α ∈ [X → M ] as follows
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(i) δ∗G(v, α)(0) = (v, α) [SSSEM: Induction base]

(ii) δ∗G(v, α)(n + 1) = δG(δ
∗
G(v, α)(n)) [SSSEM: Induction step]

δ∗Gnode
(v, α) = δ∗G(v, α)1 is the execution path of G starting in node v and state

α and δ∗Gstate
(v, α) = δ∗G(v, α)2 is the execution state sequence of G starting in

node v and state α. ■

Intuitively the small step semantics ofG is the sequence of node-state pairs
generated by executing G with δG, starting with node v and state α. It is in
δ∗Gnode

(v0, α) that we will search for a match of the path the test case must exert.
It will now be shown that once τ is reached for any assignment, there is no

possibility to reach another node in the graph.

Proposition 3.1 (Program convergence). Let v ∈ V be a node and α ∈
[X → M ] an assignment. If δ∗Gnode

(v, α)(n) = τ for some n ∈ N then
δ∗Gnode

(v, α)(m) = τ for all m ≥ n and any α ∈ [X → M ]. ■

Proof. By induction on m−n. Let v ∈ V ∪{τ} and α ∈ [X → M ]. Suppose
that for some n ∈ N,

δ∗Gnode
(v, α)(n) = τ (3.1)

Induction base The case m−n = 0 ⇐⇒ m = n, δ∗Gnode
(v, α)(m) = τ holds

by hypothesis (3.1).

Induction hypothesis Assume for x = n + 1, n + 2, . . . ,m − 1,
δ∗Gnode

(v, α)(x) = τ holds.

Induction step Suppose m − n > 0 ⇐⇒ m > n. By the
induction hypothesis δ∗Gnode

(v, α)(m − 1) = τ holds. We must show
δ∗Gnode

(v, α)(m) = τ holds. SSSEM: Induction step of Definition 3.23
gives us

δ∗G(v, α)(m) = δG(δ
∗
G(v, α)(m− 1))

We know that for some α′ ∈ [X → M ], δ∗G(v, α)(m − 1) = (τ, α′).
Then by Convergence of Definition 3.22

δ∗G(v, α)(m) = δG(δ
∗
G(v, α)(m− 1)) = δG(τ, α

′) = (τ, α′)

Thus finally δ∗Gnode
(v, α)(m) = τ .
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The use of Convergence of Definition 3.22 also implies that the state does
not change, i.e. If δ∗G(v, α)(n) = (τ, α′) for some n ∈ N then δ∗G(v, α)(m) =
(τ, α′) for all m ≥ n, some α′ ∈ [X → M ] and any α ∈ [X → M ].

The variable symbols in X = 〈Xs|s ∈ S〉 are infinite, yet a test is only
concerned by a finite number of variables, notably the program’s variables.

Definition 3.24 (Program variables). Let G ∈ CFG(Σ, X) a well-formed
CFG. We denote V ars(G) the set of variables contained in the statements of
G, also referred to as the variables of G.

We denote [V ars(G) → M ] the set of assignments restricted to the
variables contained in the statements of G.

For any ϕ ∈ QFFOL(Σ, X) first-order formula of free variables
x1, . . . , xn, we may further denote ϕ[x1, . . . , xn] if x1, . . . , xn ∈ V ars(G) ■

3.3.4 Remark on graph creation
In the example of Fig. 3.1, program myPoly does not contain any procedure of
function call. If it did, there would be two possible methods to translate it into
parts of the graph.

The first approach requires the function to be inlined and then modelled as
a set of nodes in the graph. However, if the program contains several calls to
the same procedure or function, we must answer the question of how to model
the calls in the graph. A tentative approach would model these multiple calls
as a single set of nodes, and then connect an edge from all calls to some node
considered the entry of the procedure or function. This has two issues: first it
might create loops in the graph when there is none in the program, and then
the node modelling the exit of the procedure or function should have multiple
exit edges, exceeding the limits defined in Definition 3.16. As such this naive
approach cannot be used. Instead, each call should correspond to identical,
but distinct sets of nodes.

The second approach is to encapsulate all functions and procedures into
the signature and the structure. Thus a call corresponds to a single assignment
statement.

The choice of the approach to use is ultimately left to the reader. The first
tests transitive function calls and may change the test requirements as defined
by common glass box coverage models. The second encapsulates the calls,
but may not always be achievable, depending on the context (e.g. if the code
of the function or procedure is not available).

In the sequel, we let:
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(i) G ∈ CFG(Σ, X) a well-formed CFG over Σ and X

(ii) V ars(G) ⊂ X the set of variables of G

(iii) [V ars(G) → M ] the set of assignments restricted to the variables
contained in the statements of G

3.4 Testing requirements
In this section we define the components of tests and motivate the previous
definitions in the context of testing.

3.4.1 Requirements and path satisfiability
Definition 3.25 (Glass box test requirement). A glass box or structural test
requirement is a path in G. ■

Notice that since glass box test requirements are paths, we can verify
that a certain execution of the program satisfies them, in which case the test
requirement matches the execution node sequence, and after exiting the path
a certain state is reached.

Definition 3.26 (Path satisfiability by assignments). Let α, β ∈ [X → M ] two
assignments. Let p = (p1, . . . , pn) ∈ Path(G) and let pn+1 ∈ V ∪ {τ} such
that (p1, . . . , pn, pn+1) ∈ Path(G). The satisfiability or coverage relation ⊨
is a 5-place relation between G, a node v ∈ V , α, (p1, . . . , pn, pn+1) and β, in
symbols:

G, v, α ⊨ (p1, . . . , pn, pn+1), β

iff

(i) there exists some m ∈ N such that (p1, . . . , pn, pn+1) matches
δ∗Gnode

(v, α) at m (see Definition 3.21) [Satisfiability: Matching]

(ii) for k = µ(m) such that p matches δ∗Gnode
(v, α) at k, δ∗Gstate

(v, α)(k+n) =
β [Satisfiability: Postcondition]

We say that G covers p, starting from v and state α, such that the next node to
be executed is pn+1, leaving in state β.

A path p is not covered by G, starting from v and state α, denoted by

G, v, α ⊨ ¬p, β ⇐⇒ G, v, α ⊭ p, β

iff G, v, α ⊨ (p1, . . . , pn, pn+1), β does not hold. ■
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Requiring pn+1 is the synchronicity or ”look ahead” problem. We need to
know which node we will take next when we restrict which state β we can take.

It is cumbersome to treat satisfiability assignment per assignment, thus we
will generalise the concept to formulas. In this endeavour we first introduce the
satisfaction of a formula by an assignment, that is, when the formula evaluates
to tt for the assignment.

Definition 3.27 (Satisfaction of a first-order logic formula). Let α ∈ [X →
M ] an assignment. Let ϕ ∈ FOL(Σ, X) a FOL formula over Σ and X with
free variables x1, . . . , xn. The satisfiability relation ⊨ between M and α and
ϕ with free variables x1, . . . , xn is a 3-place relation denoted

M,α ⊨ ϕ(x1, . . . , xn)

which is true iff evalM,α(ϕ) = tt. We denote M,α ⊭ ϕ iff evalM,α(ϕ) =
ff . ■

It may be noted that M,α ⊭ ϕ ⇐⇒ M,α ⊨ ¬ϕ.
The groundwork is now laid to introduce satisfiability of a path by a

formula, which holds if for every assignment satisfying the formula, the
satisfaction of the path by the assignment holds.

Definition 3.28 (Path satisfiability by formulas). Let ϕ, χ ∈ FOL(Σ, X) be
FOL formulas over Σ and X . Let x1, . . . , xm the free variables of ϕ and let
y1, . . . , yl the free variables of χ. Let p = (p1, . . . , pn) ∈ Path(G) and let
pn+1 ∈ V ∪ {τ} such that (p1, . . . , pn, pn+1) ∈ Path(G). The satisfiability
or coverage relation ⊨ is a 5-place relation between G, a node v ∈ V , ϕ,
(p1, . . . , pn, pn+1) and χ, in symbols:

G, v, ϕ(x1, . . . , xm) ⊨ (p1, . . . , pn, pn+1), χ[y1, . . . , yl]

iff for all α ∈ [X → M ] such that M,α ⊨ ϕ(x1, . . . , xm) there exists β ∈
[V ars(G) → M ] such that

G, v, α ⊨ (p1, . . . , pn, pn+1), β

and M,β ⊨ χ[y1, . . . , yl].
We say that G covers p, starting from v with precondition formula ∗ ϕ,

such that the next node to be executed is pn+1 and such that postcondition χ is
satisfied.

∗Defined in Definition 3.39.
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A path p is not covered by G, starting from v with precondition ϕ ∈
FOL(Σ, X), denoted by

G, v, ϕ ⊨ ¬(p1, . . . , pn, pn+1), χ ⇐⇒ G, v, ϕ ⊭ (p1, . . . , pn, pn+1), χ

iff there is no α ∈ [X → M ] and β ∈ [V ars(G) → M ] such that G, v, α ⊨
(p1, . . . , pn, pn+1), β with M,α ⊨ ϕ(x1, . . . , xm) and M,β ⊨ χ[y1, . . . , yl].

■

β is unique for a given α, as δ∗G(v, α) is deterministic.
Together, the match of (p1, . . . , pn, pn+1) with Satisfiability: Matching and

Satisfiability: Postcondition assure us of the next step to be taken. Suppose
G, v, ϕ ⊨ p, χ, then for any α ∈ [X → M ] such that M,α ⊨ ϕ, δ∗G(v, α) is of
the following pattern:

δ∗G(v, α) = (v, α), . . . , (p1, . . . ), . . . , (pn, . . . ), (pn+1, β), . . .

with β ∈ [V ars(G) → M ] and M,β ⊨ χ. Thus we ”lock” what will happen
after we cover p.

Example 3.4.1. We have seen before that a path may match an infinite se-
quence more than once, thus it is possible for test cases to match a path several
times, e.g. in Fig. 3.1 any initial assignment α0 with x 7→ 2, y 7→ 1 will have
δ∗Gnode

(v0, α0) = v0, v1, v2, v3, v4, v5, v6, v7, v5, v6, v7, v5, v8, v9, v10, v3, τ, . . . ,
which matches path p = (v5, v6, v7) twice.

By Definition 3.26, a path p is covered by v ∈ V with precondition
ϕ ∈ FOL(Σ, X) such that postcondition ϕ ∈ FOL(Σ, X) is satisfied for
the state after the first match of (p1, . . . , pn, pn+1) in δ∗Gnode

(v, α) (Satisfiability:
Postcondition). Thus there is no ambiguity in the coverage relation as to which
match we describe. ■

In the case the postcondition formula is true, it is not simply (p1, . . . , pn)

that is covered, but (p1, . . . , pn, pn+1). This is notably relevant for the
precondition calculus we will introduce in Section 3.5.

Proposition 3.2. Let v ∈ V a node of G, p = (p1, . . . , pn, pn+1) ∈ Path(G)

such that pn+1 ∈ V a path in G and ϕ ∈ QFFOL(Σ, X) a FOL formula,
if G, v, ϕ ⊨ (p1, . . . , pn, pn+1), true then G covers (p1, . . . , pn, pn+1), starting
from v and any state α ∈ [X → M ] such that M,α ⊨ ϕ, leaving in any
state. ■
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Proof. From G, v, ϕ ⊨ (p1, . . . , pn, pn+1), true there is that for any α ∈ [X →
M ] such that M,α ⊨ ϕ and for any β ∈ [X → M ] (corresponding to the true
postcondition formula)

G, v, α ⊨ (p1, . . . , pn, pn+1), β

Then for each α and for any γ ∈ [X → M ] there is some v′ ∈ V ∪ {τ} such
that G, v, α ⊨ (p1, . . . , pn, pn+1, v

′), γ.
Thus G covers (p1, . . . , pn, pn+1) starting in v for any α that satisfies the

precondition formula ϕ under M , leaving in any state.

Since the small step semantics is defined for any node-state pair (v, α) and
yields a node-state pairs list, the value at any index k can be used as argument
for the small step semantics and δ∗G(δ

∗
G(v, α)(k)) is a sub-list of δ∗G(v, α).

Conversely, if we compute the small step semantics for (v′, β) and we reach a
pair (v, α) for which the small step semantics is known, we can glue the latter
sequence to that of (v′, β). This is the essence of the following proposition.

Proposition 3.3 (Semantic continuation). LetG ∈ CFG(Σ, X) a well-formed
CFG. Let α, β ∈ [X → M ] be assignments and let v, v′ ∈ V nodes of G. If
for some index k ∈ N, δ∗G(v, α)(k) = (v′, β), then for all l ∈ N

δ∗G(v, α)(k + l) = δ∗G(v
′, β)(l)

■

Proof. By induction on l. Let α, β ∈ [X → M ] be assignments and let
v, v′ ∈ V nodes of G. Suppose for some k ∈ N

δ∗G(v, α)(k) = (v′, β) (3.2)

Induction Base We know that δ∗G(v, α)(k + 0) = (v′, β) by Eq. (3.2). By
Definition 3.23, δ∗G(v′, β)(0) = (v′, β).

Induction hypothesis Let n ∈ N. Assume for x = 1, . . . , n, δ∗G(v, α)(k+x) =
δ∗G(v

′, β)(x).

Induction step We know by the induction hypothesis that δ∗G(v, α)(k + n) =
δ∗G(v

′, β)(n), we must show δ∗G(v, α)(k + n + 1) = δ∗G(v
′, β)(n + 1).

By SSSEM: Induction step δ∗G(v, α)(k + n + 1) = δG(δ
∗
G(v, α)(k + n))

and δ∗G(v
′, β)(n + 1) = δG(δ

∗
G(v

′, β)(n)). Since δ∗G(v, α)(k + n) =
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δ∗G(v
′, β)(n) and δG is deterministic over all node-assignment pairs by

Definition 3.22 then

δ∗G(v, α)(k + n + 1) = δ∗G(v
′, β)(n + 1)

3.4.2 Testing concepts
For the remaining of the section, we introduce common concepts of testing in
the model we have developed in the work.

Definition 3.29 (Test case). A test case tc on G is an initial assignment α0 ∈
[X → M ] at the entry of G, v0, restricted to the input variables of G. ■

There may be several assignments at the entry of G (node v0) that can be
restricted to a single test case. Other variables are assumed to be rebound by
the program, and global variables are part of the input variables of G.

Assignments are mappings of all variables to values in the respective
carriers of the structure, but test cases constrain only some variables. Thus
there are several assignments that satisfy a certain test case.

Definition 3.30 (Initial assignments for tc). Let tc a test case on G. An initial
assignment α0 ∈ [X → M ] for tc, denoted tc ⊆ α0 is such that for all
variables x ∈ tc, tc(x) = α0(x). ■

This definition prevents the problem of uninitialised variables. The
mapping of the variables not in tc can be non-deterministically chosen.

Definition 3.31 (Infeasible path). Let p ∈ Path(G) a path inG. p is infeasible
or dead iff

G, v0, true ⊭ p, true

■

Intuitively, there is no initial assignment that goes down to execute p, as
for any initial assignment α0 ∈ [X → M ], we have that M,α0 ⊨ true holds.
A path that is not infeasible is called feasible or alive.

Example 3.4.2. One such example can be found in Fig. 3.2. Program isEven
is supposed to answer 1 if input variable x is even, 0 otherwise. A mistake in
node v1 maps y to x instead of 2, so for any x, x mod y is equal to x mod x, that
is, to 0. The condition in v2 which checks whether x modulo y is 0 (remember
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Figure 3.2: Program isEven and its CFG
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that / is the integer division) will always evaluate to tt, and thus edge (v2, v4)
will never be taken for any initial assignment, (v2, v4) is dead. ■

Definition 3.32 (Reachable node). Let v ∈ V a node. v is reachable if there
exists a feasible path p on G such that v ∈ p. ■

Conversely, if there is no feasible path containing v, v is unreachable.

Definition 3.33 (Operative edge). Let (v, v′) ∈ E. (v, v′) is operative if there
exists at least one feasible path p such that v, v′ ∈ p and v and v′ are adjacent
in p, in the same order. ■

Definition 3.34 (Satisfiability of path conjunction). Let v ∈ V a node and
let ϕ ∈ FOL(Σ, X) a FOL formula. Let p = (p1, . . . , pn, pn+1) and q =
(q1, . . . , qm, qm+1) two paths in G. The conjunction of p and q is satisfied by
G starting from v with precondition formula ϕ, denoted by

G, v, ϕ ⊨ p & q

iff G, v, ϕ ⊨ p, true and G, v, ϕ ⊨ q, true. ■

From negation and conjunction all other Boolean connectives on paths can
be defined. In particular, we can define the implication relation:

G, v, ϕ ⊨ p → q ⇐⇒ G, v, ϕ ⊭ p, true ∨G, v, ϕ ⊨ q, true.

Later in the work we will redefine implication as strong coverage.

Definition 3.35 (Test suite). Let TR a glass box test requirements set on G.
A test suite TS on G for TR is a set of test cases on G, such that all test
requirements tr ∈ TR are covered by all initial assignments α0 for at least
one test case tc ∈ TS, α0 ⊇ tc. ■

There may be more than one test case that satisfies a given test requirement
and a dead path may never be covered.

3.5 Inference rules
In this section we introduce the inference rules of our precondition calculus,
and demonstrate some of its properties.

The components of our calculus are inference rules, which under some
constraints, the side-conditions, and other provable statements let us infer a
proof of another statement.
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Definition 3.36 (Inference rule). An inference rule is a construct consisting of
premises S1, . . . , Sn, n ∈ N, a conclusion S and side conditions C1, . . . , Cm,
m ∈ N where S1, . . . , Sn, S are sequent schemes of the form G, v, ϕ ` p, χ or
first-order schemes (e.g. T ` ϕ → χ), denoted

Name
S1 . . . Sn

S

C1

. . .

Cm

An application of an inference rule is a rule where the premises and the
conclusion are replaced by instances of the scheme.

If n = 0, the rule is an axiom.
A proof system is a set of inference rules. ■

In our system the side-conditions are written above the rule, for space
concerns.

3.5.1 Precondition calculus
With the groundwork on signatures, graphs and inference rules established,
we can now introduce our calculus. It consists of axioms for paths containing
only two nodes, and conditional rules to extend a path backwards in the graph,
i.e. to a node v that has an edge (v, p1) to the first node p1 of the previous path.
The Consequence rule (Eq. (3.12)) is used to infer stronger preconditions.

The calculus does not introduce postconditions, contrarily to other calculi
in the literature. This is apparent by the use of true on the right-hand side
of the sequents. The motivation for this design choice lies in the need for
structural testing to generate all preconditions of a path. The postcondition
may instead be computed for a specific precondition, and should be treated as
an oracle to decide on the test’s outcome. We will discuss on postcondition
calculi in the future work section.

For each v ∈ V such that LV (v) = x := t we have two schema

(i) If ∃v′ ∈ V such that (v, v′) ∈ E then

Axiom-Assign
G, v, true ` (v, v′), true

(3.3)

(ii) If ∄v′ ∈ V such that (v, v′) ∈ E then

Axiom-Assign-Exit
G, v, true ` (v, τ), true

(3.4)
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For each v ∈ V such that LV (v) = cond, we have four schema
(i) (a) If ∃v′ ∈ V such that (v, v′) ∈ E and LE(v, v

′) = true then

Axiom-Cond-True
G, v, cond ` (v, v′), true

(3.5)

(b) If ∄v′ ∈ V such that (v, v′) ∈ E and LE(v, v
′) = true then

Axiom-Cond-True-Exit
G, v, cond ` (v, τ), true

(3.6)

(ii) (a) If ∃v′ ∈ V such that (v, v′) ∈ E and LE(v, v
′) = false then

Axiom-Cond-False
G, v, (¬cond) ` (v, v′), true

(3.7)

(b) If ∄v′ ∈ V such that (v, v′) ∈ E and LE(v, v
′) = false then

Axiom-Cond-False-Exit
G, v, (¬cond) ` (v, τ), true

(3.8)

For each v ∈ V , each p = (p1, . . . , pn, pn+1) ∈ Path(G) a path in G such that
(v, p1, . . . , pn, pn+1) ∈ Path(G)

(i) If LV (v) = cond and LE(v, p1) = true, then

Cond-True
G, p1, ϕ ` (p1, . . . , pn, pn+1), true

G, v, (ϕ ∧ cond) ` (v, p1, . . . , pn, pn+1), true
(3.9)

(ii) If LV (v) = cond and LE(v, p1) = false, then

Cond-False
G, p1, ϕ ` (p1, . . . , pn, pn+1), true

G, v, (ϕ ∧ (¬cond)) ` (v, p1, . . . , pn, pn+1), true
(3.10)

(iii) If LV (v) = x := t, then

Assign
G, p1, ϕ ` (p1, . . . , pn, pn+1), true

G, v, ϕ[x/t] ` (v, p1, . . . , pn, pn+1), true
(3.11)

Let T a first-order axiomatic theory of the data types of Σ. Let ϕ1 ∈
QFFOL(Σ, X) a finite FOL formula. Then

Consequence
T ` ϕ1 → ϕ G, p1, ϕ ` (p1, . . . , pn, pn+1), true

G, p1, ϕ1 ` (p1, . . . , pn, pn+1), true
(3.12)
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It may be noted that the precondition calculus maintains the well-
formedness of formulas, i.e. allϕ of sequentsG, p1, ϕ ` (p1, . . . , pn, pn+1), true

proved by the precondition calculus are finite FOL formulas. The proof by
induction on the build-up of the proof tree is left to the reader.

3.5.2 Proof trees and provable statements
Definition 3.37 (Proof tree and provability). Let ϕ, χ ∈ QFFOL(Σ, X) be
FOL formulas. Let v ∈ V a node and let p = (p1, . . . , pn, pn+1) ∈ Path(G)

a path in G. A proof tree is a labelled tree where each node is labelled by an
instance of the scheme

G, v, ϕ ` p, χ

also referred to as a sequent or sequent inference, or by an instance of a first-
order inference, iff for each node its immediate successors’ labels are instances
satisfying the premises of an inference rule and the node’s label satisfies the
same inference rule’s conclusion, and all the inference rule’s side-conditions
hold.

A sequent is provable if it is the root node of a proof tree formed by rules
for the precondition calculus, i.e. Eqs. (3.3) to (3.12). ■

In essence, a provable sequent is one obtained by recursive proof of its
premises, proceeding ”backwards” in the tree. An axiom is always provable
if its side-conditions hold. As such all proof trees must contain at least one
occurrence of an axiom.

Example 3.5.1. We present several derivations of proof trees for the
precondition calculus, with paths from Fig. 3.1. Note that for space reasons
we simplify the conditions when obvious (e.g. 1 ≤ 1 is simplified to true and
(true∧ϕ) is simplified to ϕ). We may also show only some nodes in the path,
again for space reasons.

Derivation for path (v0, v1, v2, v3, v4, v5, v6, v7):



Methodology | 49

Axiom-Assign
G, v6, true ` (v6, v7), true Cond-True

G, v5, ((1 ≤ j) ∧ (j ≤ x)) ` (v5, v6, v7), true Assign
G, v4, ((1 ≤ 1) ∧ (1 ≤ x)) ` (v4, v5, v6, v7), true Cond-True

G, v3, (((1 ≤ i) ∧ (i ≤ y)) ∧ (1 ≤ x)) ` (v3, v4, v5, v6, v7), true Assign
G, v2, (((1 ≤ 1) ∧ (1 ≤ y)) ∧ (1 ≤ x)) ` (v2, v3, v4, v5, v6, v7), true Assign

G, v1, ((1 ≤ y) ∧ (1 ≤ x)) ` (v1, v2, v3, v4, v5, v6, v7), true Assign
G, v0, ((1 ≤ y) ∧ (1 ≤ x)) ` (v0, v1, v2, v3, v4, v5, v6, v7), true

Derivation for path (v0, v1, v2, v3, v4, v5, v8):

Axiom-Cond-False
G, v5, (¬((1 ≤ j) ∧ (j ≤ x))) ` (v5, v8), true Assign

G, v4, (¬((1 ≤ 1) ∧ (1 ≤ x))) ` (v4, v5, v8), true Cond-True
G, v3, (((1 ≤ i) ∧ (i ≤ y)) ∧ (¬(1 ≤ x))) ` (v3, . . . v8), true Assign
G, v2, (((1 ≤ 1) ∧ (1 ≤ y)) ∧ (¬(1 ≤ x))) ` (v2, . . . v8), true Assign
G, v1, ((1 ≤ y) ∧ (¬(1 ≤ x))) ` (v1, v2, v3, v4, v5, v8), true Assign

G, v0, ((1 ≤ y) ∧ (¬(1 ≤ x))) ` (v0, v1, v2, v3, v4, v5, v8), true

Derivation for path (v0, v1, v2, v3, τ):

Axiom-Cond-False-Exit
G, v3, (¬((1 ≤ i) ∧ (i ≤ y))) ` (v3, τ), true Assign

G, v2, (¬((1 ≤ 1) ∧ (1 ≤ y))) ` (v2, v3, τ), true Assign
G, v1, (¬(1 ≤ y)) ` (v1, v2, v3, τ), true Assign

G, v0, (¬(1 ≤ y)) ` (v0, v1, v2, v3, τ), true

Derivation for path (v3, v4, v5, v6, v7, v5, v8) where:

(i) ϕ1 = (¬((1 ≤ j + 1) ∧ (j + 1 ≤ x)))

(ii) ϕ2 = (ϕ1∧((1 ≤ j)∧(j ≤ x))) = ((¬((1 ≤ j+1)∧(j+1 ≤ x)))∧((1 ≤
j) ∧ (j ≤ x)))

(iii) ϕ3 = ϕ2[j/1] = ((¬((1 ≤ 2) ∧ (2 ≤ x))) ∧ ((1 ≤ 1) ∧ (1 ≤ x))) ≡
((¬(2 ≤ x)) ∧ (1 ≤ x))
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Axiom-Cond-False
G, v5, (¬((1 ≤ j) ∧ (j ≤ x))) ` (v5, v8), true Assign

G, v7, (¬((1 ≤ j + 1) ∧ (j + 1 ≤ x))) ` (v7, v5, v8), true Assign
G, v6, (¬((1 ≤ j + 1) ∧ (j + 1 ≤ x))) ` (v6, . . . , v8), true Cond-True
G, v5, (ϕ1 ∧ ((1 ≤ j) ∧ (j ≤ x))) ` (v5, . . . , v8), true Assign

G, v4, ϕ2[j/1] ` (v4, . . . v8), true Cond-True
G, v3, (ϕ3 ∧ ((1 ≤ i) ∧ (i ≤ y))) ` (v3, . . . , v8), true

and so the final inference is G, v3, ((¬(2 ≤ x)) ∧ (1 ≤ x)) ∧ ((1 ≤ i) ∧ (i ≤
y))) ` (v3, v4, v5, v6, v7, v5, v8), true

■

3.5.3 Soundness
In this section we show that our proof system is sound. The soundness
property requires that all provable statements are true, i.e. that for any
provable statement G, v, ϕ ` p, χ then G, v, ϕ ⊨ p, χ is true. Note that as
corollary, no false statement may be generated by the logic, and as such nor
can contradictions.

A notable property of our calculus is that for any provable sequent
G, p1, ϕ ` (p1, . . . , pn, pn+1), true it guarantees any execution starting in p1
with any assignment α ∈ [X → M ] such that M,α ⊨ ϕ instantly executes
(p1, . . . , pn, pn+1). The proof is obtained by induction on the build-up of the
proof tree. We show that the property holds for the axioms of our calculus.
Then we show that if the property holds for a path (p1, . . . , pn, pn+1) and the
non-axiom rules guarantee the property holds for their resulting path, then
the property is guaranteed for all paths with our calculus. With the proof of
immediate execution, we obtain that the path matches the execution sequence
at 0, and so in general at some k ∈ N. Thus, the proof of soundness for the
calculus becomes trivial.

Lemma 3.1 (Immediate matching with the precondition calculus). The proof
system for precondition calculus formed by rules Eqs. (3.3) to (3.12) is such
that for any provable sequent G, p1, ϕ ` (p1, . . . , pn, pn+1), true if M,α ⊨ ϕ

then (p1, . . . , pn, pn+1) matches δ∗Gnode
(p1, α) at 0. ■

Proof. By induction on the build-up of the proof tree.
Base case We treat the axioms of the proof system.

(i) Axiom-Assign (Eq. (3.3): Take G, v, true ` (v, v′), true with v′ ∈
V . Let α ∈ [X → M ] an assignment. As LV (v) = x :=
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t by the side conditions of Eq. (3.3), Assign gives us δG(v, α) =
(v′, α[x/evalM,α(t)]). Thus (v, v′) matches δ∗Gnode

(v, α) at 0.

(ii) Axiom-Assign-Exit (Eq. (3.4)): Take G, v, true ` (v, τ), true. Let
α ∈ [X → M ] an assignment. As LV (v) = x := t and v is
an exit node by the side conditions of Eq. (3.4), Assign-exit gives us
δG(v, α) = (τ, α[x/evalM,α(t)]). Thus (v, τ) matches δ∗Gnode

(v, α) at 0.

(iii) Axiom-Cond-True (Eq. (3.5): Take G, v, cond ` (v, v′), true. Let α ∈
[X → M ] an assignment such that M,α ⊨ cond. As LV (v) = cond and
LE(v, v

′) = true by the side conditions of Eq. (3.5), Cond-true gives us
δG(v, α) = (v′, α). Thus (v, v′) matches δ∗Gnode

(v, α) at 0.

(iv) Axiom-Cond-True-Exit (Eq. (3.6): Take G, v, cond ` (v, τ), true. Let
α ∈ [X → M ] an assignment such that M,α ⊨ cond. As LV (v) =
cond and ∄v′ ∈ V such that LE(v, v

′) = true by the side conditions
of Eq. (3.6), Cond-true-exit gives us δG(v, α) = (τ, α). Thus (v, τ)

matches δ∗Gnode
(v, α) at 0.

(v) Axiom-Cond-False (Eq. (3.7): Take G, v, (¬cond) ` (v, v′), true. Let
α ∈ [X → M ] an assignment such that M,α ⊨ (¬cond). As LV (v) =
cond and LE(v, v

′) = false by the side conditions of Eq. (3.7), Cond-
false gives us δG(v, α) = (v′, α). Thus (v, v′) matches δ∗Gnode

(v, α) at
0.

(vi) Axiom-Cond-False-Exit (Eq. (3.8): Take G, v, (¬cond) ` (v, τ), true.
Let α ∈ [X → M ] an assignment such that M,α ⊨ (¬cond). As
LV (v) = cond and ∄v′ ∈ V such that LE(v, v

′) = false by the side
conditions of Eq. (3.8), Cond-false-exit gives us δG(v, α) = (τ, α). Thus
(v, τ) matches δ∗Gnode

(v, α) at 0.

Induction hypothesis Consider the final inference in a proof tree to be a
sequent inference of the formG, p1, ϕ ` (p1, . . . , pn, pn+1), true. Then assume
the sequent inferences G, q1, χ ` (q1, . . . , qm, qm+1), true in the premises of
the final inference are such that for any α ∈ [X → M ], if M,α ⊨ χ then
(q1, . . . , qm, qm+1) matches δ∗Gnode

(q1, α) at 0.
Induction step

(i) Cond-True (Eq. (3.9)): SupposeG, v, (ϕ∧cond) ` (v, p1, . . . , pn, pn+1),

true is provable. By the side-conditions of Eq. (3.9) we have that
LV (v) = cond and LE(v, p1) = true. Thus for all α ∈ [X → M ]

such that M,α ⊨ (ϕ ∧ cond) , by Cond-true δG(v, α) = (p1, α). By
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the premise of Eq. (3.9) and the induction hypothesis, we have that
(p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, β) at 0 for any β ∈ [X → M ] such
that M,β ⊨ ϕ. Since M ⊨ (ϕ ∧ cond) → ϕ and M,α ⊨ (ϕ ∧ cond),
we have that M,α ⊨ ϕ. Thus, (p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, α)

at 0. Finally with δG(v, α) = (p1, α) and Proposition 3.3 we have that
(v, p1, . . . , pn, pn+1) matches δ∗Gstate

(v, α) at 0.

(ii) Cond-False (Eq. (3.10)): Suppose G, v, (ϕ∧(¬cond)) ` (v, p1, . . . , pn,

pn+1), true is provable. By the side-conditions of Eq. (3.10) we have
that LV (v) = cond and LE(v, p1) = false. Thus for all α ∈ [X → M ]

such that M,α ⊨ (ϕ ∧ (¬cond)) , by Cond-false δG(v, α) = (p1, α).
By the premise of Eq. (3.10) and the induction hypothesis, we have that
(p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, β) at 0 for any β ∈ [X → M ]

such that M,β ⊨ ϕ. Since M ⊨ (ϕ ∧ (¬cond)) → ϕ and M,α ⊨
(ϕ∧(¬cond)), we have that M,α ⊨ ϕ. Thus, (p1, . . . , pn, pn+1) matches
δ∗Gnode

(p1, α) at 0. Finally with δG(v, α) = (p1, α) and Proposition 3.3
we have that (v, p1, . . . , pn, pn+1) matches δ∗Gnode

(v, α) at 0.

(iii) Assign (Eq. (3.11)): Suppose G, v, ϕ[x/t] ` (v, p1, . . . , pn, pn+1), true

is provable. By the side-conditions of Eq. (3.11) we have that LV (v) =
x := t and (v, p1) ∈ E. Thus for all α ∈ [X → M ] such that
M,α ⊨ ϕ[x/t], by Assign δG(v, α) = (p1, α[x/evalM,α(t)]). By
the premise of Eq. (3.11) and the induction hypothesis, we have that
(p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, β) at 0 for any β ∈ [X → M ]

such that M,β ⊨ ϕ. Since M,α ⊨ ϕ[x/t] then M,α[x/evalM,α(t)] ⊨
ϕ. Thus, (p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, α[x/evalM,α(t)]) at 0.
Finally with δG(v, α) = (p1, α[x/evalM,α(t)]) and Proposition 3.3 we
have that (v, p1, . . . , pn, pn+1) matches δ∗Gnode

(v, α) at 0.

(iv) Consequence (Eq. (3.12)): Suppose G, p1, ϕ1 ` (p1, . . . , pn, pn+1), true

is provable. By the premises of Eq. (3.12) and the induction hypothesis,
we have that (p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, β) at 0 for any β ∈
[X → M ] such that M,β ⊨ ϕ and T ` ϕ1 → ϕ. Let α ∈ [X → M ] an
assignment such that M,α ⊨ ϕ1. Since T ` ϕ1 → ϕ then M ⊨ ϕ1 → ϕ

and since M,α ⊨ ϕ1 we have that M,α ⊨ ϕ. Thus (p1, . . . , pn, pn+1)

matches δ∗Gnode
(p1, α) at 0.

As a consequence of Lemma 3.1, any provable sequent is such that
(p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, α) for any α ∈ [X → M ] such that
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M,α ⊨ ϕ holds as required by Satisfiability: Matching. There is only left
to prove that the postcondition holds, which is trivial.

Theorem 3.1 (Soundness of the precondition calculus). Let ϕ ∈ FOL(Σ, X)

be a FOL formula. Let p = (p1, . . . , pn, pn+1) ∈ Path(G) a path in G. The
proof system for the precondition calculus formed by rules Eqs. (3.3) to (3.12)
is sound, i.e. for all provable sequents G, p1, ϕ ` (p1, . . . , pn, pn+1), true we
have

G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true

■

Proof. By Lemma 3.1 we have that for any provable sequent G, p1, ϕ `
(p1, . . . , pn, pn+1), true and any α ∈ [X → M ] such that M,α ⊨ ϕ,
(p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, α) at 0. Its result can be weakened to
(p1, . . . , pn, pn+1) matches δ∗Gnode

(p1, α) at k ∈ N. Thus the matching is
satisfied.

It is left to prove that the postcondition holds, which is trivial as for any β ∈
[X → M ], there is M,β ⊨ true. Thus M, δ∗Gstate

(p1, α)(k + n) ⊨ true.

3.5.4 Completeness
We have previously described soundness as proof implies truth. Completeness
is achieved when the opposite holds, when truth implies proof, so if G, v, ϕ ⊨
p, χ is true thenG, v, ϕ ` p, χ is provable. It is not the case for our precondition
calculus.

Theorem 3.2 (Incompleteness of the precondition calculus). The proof system
for the precondition calculus formed by rules Eqs. (3.3) to (3.12) is incomplete,
i.e. there exists some node v ∈ V , some path p = (p1, . . . , pn, pn+1) ∈
Path(G) and some first-order formulas ϕ, χ ∈ QFFOL(Σ, X) such that

G, v, ϕ ⊨ (p1, . . . , pn, pn+1), χ

but
G, v, ϕ ` (p1, . . . , pn, pn+1), χ

is not provable. ■

Proof. By counter-example. By Theorem 3.1 for some sequent G, p1, ϕ `
(p1, . . . , pn, pn+1), true we have G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true.

But then G, p1, ϕ ⊨ (p2, . . . , pn, pn+1), true is also true, while the
precondition calculus rules do not permit to prove any sequence G, v, ϕ ⊨
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(p1, . . . , pn, pn+1) where v 6= p1, thus we cannot prove G, p1, ϕ `
(p2, . . . , pn, pn+1), true.

Later in the work, we will demonstrate the precondition calculus is
complete w.r.t. certain truths under constraints on the form of the graph. The
proof requires definitions and theorems that have yet to be introduced.

3.6 Weakest precondition, coverage and cal-
culus properties

In this section we define weakest preconditions and weakest precondition
formulas, as well as notably prove our calculus can obtain a weakest
precondition formula for a path under some restrictions.

3.6.1 Coverage and relations
Definition 3.38 (Weakest preconditions). Let p ∈ Path(G) a path. Let v ∈ V

a node of G. The weakest precondition for p starting in v, denoted WPp,v is:

WPp,v = {α ∈ [X → M ]|∃β ∈ [X → M ]. G, v, α ⊨ p, β}

Conversely, an assignment γ ∈ [X → M ] such that γ /∈ WPp,v implies
that for any β ∈ [X → M ], G, v, γ ⊭ p, β.

A set of assignments Γ is a precondition of p starting in v iff Γ ⊆ WPp,v.
■

In particular, WPp,v0 is the set of all initial assignments for all test cases
of p.

We now define weakest precondition formulas as formulas that are satisfied
by all and only the assignments in the corresponding weakest precondition.
The weakest precondition formulas and precondition formulas can be used
with our calculus.

Definition 3.39 (Weakest precondition formulas). Let ϕ ∈ QFFOL(Σ, X) a
formula. Let p ∈ Path(G) a path in G. Let v ∈ V a node of G. ϕ is a weakest
precondition formula for p starting in v iff the set Γ of all assignments α ∈ Γ

such that M,α ⊨ ϕ is WPp,v, i.e. Γ = WPp,v.
A formula χ ∈ QFFOL(Σ, X) is a precondition formula for p starting in

v iff for all β ∈ [X → M ] such that M,β ⊨ χ then β ∈ WPp,v. ■
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Figure 3.3: Graphical representation of weakest preconditions

It may be noted that χ being a precondition formula for p starting in v is
equivalent to

G, v, χ ⊨ p, true

The weakest precondition for a path p starting in a node v is a superset of
all preconditions for p starting in v. This implies that precondition formulas
for p starting in v are stricter than the weakest precondition formulas for p
starting in v, as expressed by the following proposition.

Proposition 3.4. Let p ∈ Path(G) a path. Let v ∈ V a node of G. If there
exists a weakest precondition formula ϕ ∈ QFFOL(Σ, X) for p starting in v

then for any precondition formula χ for p starting in v then M ⊨ χ → ϕ, i.e.
for any α ∈ [X → M ]

M,α ⊨ χ =⇒ M,α ⊨ ϕ

■

Proof. Suppose ϕ is a weakest precondition formula for p starting in v and χ

any precondition formula for p starting in v. Then for all α ∈ [X → M ] such
that M,α ⊨ χ, as α ∈ WPp,v we also have M,α ⊨ ϕ.

Example 3.6.1. Fig. 3.3 presents a graphical representation of weakest
preconditions for paths p, q, r, s starting in v ∈ V and their relations. WPp,v ⊆
WPq,v, so any initial assignment in WPp,v will satisfy both p and q starting in
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v so all test cases of p are test cases of q. WPr,v ∩WPs,v 6= ∅, so some test
cases for r also cover s starting in v. Finally, WPp,v ∩WPr,v = ∅ thus no test
case for p can cover r starting in v. ■

We now introduce relations on the weakest preconditions for different
paths starting in v0.

Definition 3.40 (Strong requirement coverage). Let p and q reachable paths in
G. Let WPp,v0 the weakest precondition for p starting in v0 and let WPq,v0 the
weakest precondition for q starting in v0. p strongly covers q, noted p ⇒ q iff
WPp,v0 ⊆ WPq,v0 . ■

From the preceding definition, if p ⇒ q then any test case for p is a test
case for q, and q may be safely removed from the requirements set. This in
turn reduces the number of test cases in a test suite.

Definition 3.41 (Weak requirement coverage). Let p and q reachable paths in
G. Let WPp,v0 the weakest precondition for p starting in v0 and let WPq,v0 the
weakest precondition for q starting in v0. p weakly covers q, noted p → q iff
WPp,v0 ∩WPq,v0 6= ∅. Weak coverage is commutative. ■

From the preceding definition, if p → q then some test cases for p are test
cases for q, and one such common test case can be selected to satisfy both
paths.

Definition 3.42 (Requirement independence). Let p and q reachable paths in
G. Let WPp,v0 the weakest precondition for p starting in v0 and let WPq,v0 the
weakest precondition for q starting in v0. p is independent of q, noted p ≁ q

iff WPp,v0 ∩WPq,v0 = ∅. Independence is commutative. ■

From the preceding definition, if p ≁ q then there is no test case for p that
is also a test case for q, and at least two test cases are required to satisfy both
paths.

Proposition 3.5 (Strong requirement coverage with formulas). Let ϕ, χ ∈
QFFOL(Σ, X) be formulas. Let p, q ∈ Path(G) paths in G. Let v ∈ V

a node of G. If ϕ is a weakest precondition formula for p starting in v and χ is
a weakest precondition formula for q starting in v and WPp,v ⊆ WPq,v, then

M ⊨ ϕ → χ

■
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Proof. Suppose:

(i) ϕ is a weakest precondition formula for p starting in v

(ii) χ is a weakest precondition formula for q starting in v

(iii) WPp,v ⊆ WPq,v

This implies that for all α ∈ [X → M ] such that M,α ⊨ ϕ there is that
α ∈ WPp,v =⇒ α ∈ WPq,v. Thus M,α ⊨ χ, and M ⊨ ϕ → χ.

3.6.2 Precondition calculus and weakest precondi-
tions

We can deduce from soundness that the formulas obtained by our calculus for
a path p = (p1, . . . , pn) are precondition formulas for p starting in p1.

Corollary 3.1. Theorem 3.1 implies that for any provable sequent G, p1, ϕ `
(p1, . . . , pn, pn+1), true there is that ϕ is a precondition formula for
(pi, . . . , pj), 1 ≤ i < j ≤ n + 1 starting in p1. ■

Proof. Because the system is sound, G, p1, ϕ ` (p1, . . . , pn, pn+1) being
provable implies that

G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true

which fits the definition of a precondition formula for (p1, . . . , pn, pn+1)

starting in p1.
Since G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true, for any α ∈ [X → M ] such

that M,α ⊨ ϕ we have that (p1, . . . , pn, pn+1) matches δ∗Gnode
(p1, α) at some

k ∈ N. Thus (pi, . . . , pj) matches δ∗Gnode
(p1, α) at k + i − 1. Finally

M, δ∗Gstate
(p1, α)(k + j − 1) ⊨ true, so

G, p1, ϕ ⊨ (pi, . . . , pj), true

and thus ϕ is a precondition formula for (pi, . . . , pj), 1 ≤ i < j ≤ n + 1

starting in p1.

Note this only establishes ϕ is a precondition formula for (pi, . . . , pj), not
a weakest precondition formula.

A notable property of our calculus is that the precondition formulas
obtained must be satisfied at some point in any execution sequence for the



58 | Methodology

path to be taken, i.e. for a precondition formula ϕ for (p1, . . . , pn, pn+1) a
pair (p1, α) with α ∈ [X → M ] such that M,α ⊨ ϕ must be reached to
execute (p1, . . . , pn, pn+1). Furthermore, when taking into account the result of
Lemma 3.1 the path is executed immediately when this condition is satisfied.

Lemma 3.2 (Necessary precondition by the precondition calculus). The proof
system for the precondition calculus formed by rules Eqs. (3.3) to (3.12)
yields necessary preconditions for paths without using Eq. (3.12), i.e. for a
provable sequent G, p1, ϕ ` (p1, . . . , pn, pn+1), true where the proof tree does
not contain the Consequence rule (Eq. (3.12)), ϕ is such that:

(i) ϕ is a precondition formula for (p1, . . . , pn, pn+1) starting in p1

(ii) if for any α ∈ [X → M ] such that M,α ⊭ ϕ then (p1, . . . , pn, pn+1)

does not match δ∗Gnode
(p1, α) at 0.

■

Proof. ϕ being a precondition formula for (p1, . . . , pn, pn+1) starting in
p1 is given by Corollary 3.1 for any provable sequent G, p1, ϕ `
(p1, . . . , pn, pn+1), true.

There is left to prove that for any α ∈ [X → M ] if M,α ⊭ ϕ then
(p1, . . . , pn, pn+1) does not match δ∗Gnode

(p1, α) at 0. We prove so by induction
on the build-up of the proof tree, that does not contain the Consequence rule
(Eq. (3.12)).

Induction Base We treat the axioms of the proof system.

(i) Axiom-Assign (Eq. (3.3)): Take G, v, true ` (v, v′), true with v′ ∈ V .
As M,β ⊨ true for any β ∈ [X → M ], there is no α ∈ [X → M ] such
that M,α ⊭ true. Thus the case is closed.

(ii) Axiom-Assign-Exit (Eq. (3.4)): Take G, v, true ` (v, τ), true. As
M,β ⊨ true for any β ∈ [X → M ], there is no α ∈ [X → M ]

such that M,α ⊭ true. Thus the case is closed.

(iii) Axiom-Cond-True (Eq. (3.5)): Take G, v, cond ` (v, v′), true. Let
α ∈ [X → M ] an assignment such thatM,α ⊭ cond. AsLV (v) = cond

and LE(v, v
′) = true by the side conditions of Eq. (3.5), then by

Definition 3.22 either δG(v, α) = (v′′, α) with LE(v, v
′′) = false or

δG(v, α) = (τ, α) if there exists no such v′′. Thus (v, v′) does not match
δ∗Gnode

(v, α) at 0.
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(iv) Axiom-Cond-True-Exit (Eq. (3.6)): Take G, v, cond ` (v, τ), true.
Let α ∈ [X → M ] an assignment such that M,α ⊭ cond. As
LV (v) = cond and ∄v′ ∈ V such that LE(v, v

′) = true by the side
conditions of Eq. (3.6), and there must be an exit edge (v, v′′) ∈ E

such that LE(v, v
′′) = false by Definition 3.16, then by Cond-false

δG(v, α) = (v′′, α). Thus (v, τ) does not match δ∗Gnode
(v, α) at 0.

(v) Axiom-Cond-False (Eq. (3.7)): Take G, v, (¬cond) ` (v, v′), true. Let
α ∈ [X → M ] an assignment such that M,α ⊭ (¬cond). As LV (v) =
cond and LE(v, v

′) = false by the side conditions of Eq. (3.7), then
by Definition 3.22 either δG(v, α) = (v′′, α) with LE(v, v

′′) = true or
δG(v, α) = (τ, α) if there exists no such v′′. Thus (v, v′) does not match
δ∗Gnode

(v, α) at 0.

(vi) Axiom-Cond-False-Exit (Eq. (3.8)): Take G, v, (¬cond) ` (v, τ), true.
Let α ∈ [X → M ] an assignment such that M,α ⊭ (¬cond). As
LV (v) = cond and ∄v′ ∈ V such that LE(v, v

′) = false by the side
conditions of Eq. (3.8), and there must be an exit edge (v, v′′) ∈ E such
that LE(v, v

′′) = true by Definition 3.16, then by Cond-true δG(v, α) =
(v′′, α). Thus (v, τ) does not match δ∗Gnode

(v, α) at 0.

Induction hypothesis Consider the final inference in a proof tree that does
not contain the Consequence rule (Eq. (3.12)) to be a sequent inference of the
form G, p1, ϕ ` (p1, . . . , pn, pn+1), true. Then assume the sequent inferences
G, q1, χ ` (q1, . . . , qm, qm+1), true in the premises of the final inference are
such that for any α ∈ [X → M ], if M,α ⊭ χ then (q1, . . . , qm, qm+1) does not
match δ∗Gnode

(q1, α) at 0.
Induction step

(i) Cond-True (Eq. (3.9)): SupposeG, v, (ϕ∧cond) ` (v, p1, . . . , pn, pn+1),

true is provable without using Eq. (3.12). Let α ∈ [X → M ] such that
M,α ⊭ (ϕ ∧ cond). By the side-conditions of Eq. (3.9) we have that
LV (v) = cond and LE(v, p1) = true. From M,α ⊭ (ϕ∧cond), we have
that M,α ⊨ (¬(ϕ ∧ cond)) ⇐⇒ M,α ⊨ ((¬ϕ) ∨ (¬cond))).
Case M,α ⊭ cond: by Definition 3.22 either δG(v, α) = (v′, α) with
LE(v, v

′) = false or δG(v, α) = (τ, α) if there is no such v′. Thus
(v, p1, . . . , pn, pn+1) does not match δ∗Gnode

(v, α) at 0.
Case M,α ⊨ (cond ∧ (¬ϕ)): by Cond-true δG(v, α) = (p1, α).
M,α ⊨ (cond ∧ (¬ϕ)) =⇒ M,α ⊭ ϕ. By the induction
hypothesis (p1, . . . , pn, pn+1) does not match δ∗Gnode

(p1, α) at 0. Finally,
by Proposition 3.3 (v, p1, . . . , pn, pn+1) does not match δ∗Gnode

(v, α) at 0.
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(ii) Cond-False (Eq. (3.10)): Suppose G, v, (ϕ∧(¬cond)) ` (v, p1, . . . , pn,

pn+1), true is provable without using Eq. (3.12). Let α ∈ [X → M ]

such that M,α ⊭ (ϕ ∧ (¬cond)). By the side-conditions of Eq. (3.10)
we have that LV (v) = cond and LE(v, p1) = false. Since M,α ⊭
(ϕ ∧ (¬cond)) we have that M,α ⊨ (¬(ϕ ∧ (¬cond))) ⇐⇒ M,α ⊨
((¬ϕ) ∨ cond).

Case M,α ⊨ cond: by Definition 3.22 either δG(v, α) = (v′, α) with
LE(v, v

′) = true or δG(v, α) = (τ, α) if there is no such v′. Thus
(v, p1, . . . , pn, pn+1) does not match δ∗Gnode

(v, α) at 0.

Case M,α ⊨ ((¬cond) ∧ (¬ϕ)): by Cond-false δG(v, α) = (p1, α).
M,α ⊨ ((¬cond) ∧ (¬ϕ)) =⇒ M,α ⊭ ϕ. By the induction
hypothesis (p1, . . . , pn, pn+1) does not match δ∗Gnode

(p1, α) at 0. Finally,
by Proposition 3.3 (v, p1, . . . , pn, pn+1) does not match δ∗Gnode

(v, α) at 0.

(iii) Assign (Eq. (3.11)): Suppose G, v, ϕ[x/t] ` (v, p1, . . . , pn, pn+1), true

is provable without using Eq. (3.12). By the side-conditions of
Eq. (3.11) we have that LV (v) = x := t and (v, p1) ∈ E. Thus for
any α ∈ [X → M ], by Assign δG(v, α) = (p1, α[x/evalM,α(t)]). By
the premise of Eq. (3.11) and the induction hypothesis, we have that
(p1, . . . , pn, pn+1) does not match δ∗Gnode

(p1, β) at 0 for any β ∈ [X →
M ] such that M,β ⊭ ϕ. Let us take γ ∈ [X → M ] such that M,γ ⊭
ϕ[x/t]. Since M,γ ⊭ ϕ[x/t], we have that M,γ[x/evalM,γ(t)] ⊭ ϕ.
Thus, (p1, . . . , pn, pn+1) does not match δ∗Gnode

(p1, γ[x/evalM,α(t)]) at
0. Finally with δG(v, γ) = (p1, γ[x/evalM,γ(t)]) and Proposition 3.3 we
have that (v, p1, . . . , pn, pn+1) does not match δ∗Gnode

(v, γ) at 0.

Lemma 3.2 implies that to take the path we have constructed with the
precondition calculus, we must satisfy the precondition at the first node of
the path, somewhere in the small step semantics δ∗G(v, α) for any v ∈ V and
any α ∈ [X → M ]. Conversely, if ϕ is the precondition for path p obtained
by our precondition calculus and if there is never δ∗G(v, α)(k) = (p1, β) with
β ∈ [X → M ] such that M,β ⊨ ϕ for any k ∈ N then G, v, α ⊭ p, γ, for any
γ ∈ [X → M ].

Corollary 3.2. Lemma 3.2 implies that for any provable sequent G, p1, ϕ `
(p1, . . . , pn, pn+1), true if ` ϕ → false then (p1, . . . , pn, pn+1) is infeasible.

■
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Figure 3.4: Loop impact on the weakest precondition

Proof. By Lemma 3.2 ϕ is necessary, and with Proposition 3.3 if for any
k ∈ N, δ∗G(v0, α)(k) = (p1, β) with β ∈ [X → M ] and M,β ⊭ ϕ

then p = (p1, . . . , pn, pn+1) does not match δ∗Gnode
(v0, α) at k. Since p =

(p1, . . . , pn, pn+1) can only match an infinite sequence of nodes at an index
k′ if the node at index k′ is p1, if there is no k such that δ∗G(v0, α)(k) = (p1, γ)

with γ ∈ [X → M ] and M,γ ⊨ ϕ, then p does not match δ∗Gnode
(v0, α).

Finally, since ` ϕ → false there is no α ∈ [X → M ] such that M,α ⊨ ϕ

and so
G, v0, true ⊭ (p1, . . . , pn, pn+1), true

The necessary precondition is not yet a weakest precondition, as there may
be loops from (p1, . . . , p1) that change the weakest precondition, as presented
in the following example.

Example 3.6.2. Fig. 3.4 presents a concise example of the impact of loops
on the weakest precondition of paths. With our precondition calculus, we can
obtain G, v0, x = 0 ` (v0, v1), true. x = 0 is indeed a precondition formula
for (v0, v1), but not the weakest precondition for it. Suppose we execute the
graph starting in v0 with a state α ∈ [X → M ] such that α(x) 6= 0. We will
take the edge (v0, v2) and in v2 we update x to be 0. As we now satisfy the
necessary precondition x = 0 we will take path (v0, v1) after exiting v2. As
such the weakest precondition formula for (v0, v1), obtained semantically is
true. While this loop is trivial there may be much more complex loops that
affect the weakest precondition. ■
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From the previous example it can be seen that our precondition calculus
can achieve the weakest precondition of paths starting in their first node, with
some caution on loops. This is the essence of the following theorem.

Theorem 3.3 (Weakest preconditions obtained by the precondition calculus).
If G, p1, ϕ ` (p1, . . . , pn, pn+1), true is a provable sequent by the rules of the
precondition calculus formed by Eqs. (3.3) to (3.12) without using Eq. (3.12)
with x1, . . . , xm ∈ V ars(G) the free variables of ϕ and there exists no loop
l = (p1, . . . , v, . . . , p1) such that for some xi ∈ {x1, . . . , xm}, LV (v) = xi := t

and such that (p1, . . . , pn, pn+1) is not a sub-path of l, then ϕ is a weakest
precondition for (p1, . . . , pn, pn+1) starting in p1. ■

Proof. Suppose G, p1, ϕ ` (p1, . . . , pn, pn+1), true is provable without using
Eq. (3.12). Let v ∈ V a node of G and α ∈ [X → M ] an assignment. Let
x1, . . . , xm the free variables of ϕ.

By Lemma 3.2 ϕ is necessary, and with Proposition 3.3 if for any
k ∈ N, δ∗G(v, α)(k) = (p1, β) with β ∈ [X → M ] and M,β ⊭ ϕ

then p = (p1, . . . , pn, pn+1) does not match δ∗Gnode
(v, α) at k. Since p =

(p1, . . . , pn, pn+1) can only match an infinite sequence of nodes at an index
k′ if the node at index k′ is p1, if there is no k such that δ∗G(v, α)(k) = (p1, γ)

with γ ∈ [X → M ] and M,γ ⊨ ϕ, then p does not match δ∗Gnode
(v, α), which

in turn implies α /∈ WPp,v.
Suppose there is no loop l = (p1, . . . , v, . . . , p1) such that for some

xi ∈ {x1, . . . , xm}, LV (v) = xi := t and such that (p1, . . . , pn, pn+1) is not
a sub-path of l. Thus taking any other loop does not change the value of
the evaluation of ϕ before and after the loop. This implies that there is no
α ∈ [X → M ] such that M,α ⊭ ϕ and for some k ∈ N, δ∗G(p1, α) = (p1, β)

with β ∈ [X → M ] such that M,β ⊨ ϕ. Thus α /∈ WPp,p1 , and only the
assignments β such that M,β ⊨ ϕ have the property β ∈ WPp,p1 .

Since ϕ is a precondition for p starting in p1, all β ∈ [X → M ] such that
M,β ⊨ ϕ have the property β ∈ WPp,p1 . Finally, since we proved above
for all α ∈ [X → M ] such that M,α ⊭ ϕ have the property α /∈ WPp,p1 ,
WPp,p1 is the set of all β ∈ [X → M ] such that M,β ⊨ ϕ and ϕ is a weakest
precondition formula for p = (p1, . . . , pn, pn+1) starting in p1.

In particular, for an elementary path p where p1 = v0, we obtain a weakest
precondition formula for p if there is no loop from v0 to v0 updating the free
variables of the precondition formula obtained by our precondition calculus.
Thus we obtain the set of all initial assignments for all test cases of p.



Methodology | 63

Example 3.6.3. In Example 3.5.1 we derive several proof trees. For path
(v0, v1, v2, v3, v4, v5, v6, v7) we obtain precondition formula ((1 ≤ y) ∧ (1 ≤
x)). Since there is no loop (v0, . . . , v0), this is a weakest precondition formula
for (v0, v1, v2, v3, v4, v5, v6, v7). By the same argument (¬(1 ≤ y)) is a
weakest precondition formula for path (v0, v1, v2, v3, τ).

However if we derive the proof for path (v5, v8, v9, v10) we obtain
precondition formula (¬((1 ≤ j) ∧ (j ≤ x))) for (v5, v8, v9, v10) starting
in v5. This is not guaranteed to be a weakest precondition formula since
loop (v5, v6, v7, v5) updates the free variable j of (¬((1 ≤ j) ∧ (j ≤ x))).
Semantically, we may obtain that the weakest precondition for (v5, v8, v9, v10)
starting in v5 is [X → M ], as taking loop (v5, v6, v7, v5) a finite number of
times will guarantee that the false exit is taken afterwards. ■

Example 3.6.4. In Example 3.5.1 we derive several proof trees. For path
(v0, v1, v2, v3, v4, v5, v6, v7) we obtain weakest precondition formula ((1 ≤
y)∧(1 ≤ x)), and for (v0, v1, v2, v3, v4, v5, v8) we obtain precondition formula
((1 ≤ y)∧ (¬(1 ≤ x))) which is also a weakest precondition formula as there
is no loop (v0, . . . , v0). It can be remarked that the weakest precondition they
represent are distinct from one another (additionally, ` (((1 ≤ y) ∧ (1 ≤
x)) ∧ ((1 ≤ y) ∧ (¬(1 ≤ x)))) → false). So (v0, v1, v2, v3, v4, v5, v6, v7) ≁
(v0, v1, v2, v3, v4, v5, v8).

Take the following derivation:

Axiom-Assign
G, v2, true ` (v2, v3), true Assign

G, v1, true ` (v1, v2, v3), true Assign
G, v0, true ` (v0, v1, v2, v3), true

Observe that for any reachable path p ∈ Path(G) (which impliesWPp,v0 6= ∅,
the proof of which we leave to the reader), since the weakest precondition
formula for (v0, v1, v2, v3) is true then p =⇒ (v0, v1, v2, v3) and
(v0, v1, v2, v3) can be safely removed from any test suite that contains any other
reachable path. ■

In some simple cases, such as when the program does not contain loops,
it is possible to tell whether the precondition formula obtained is a weakest
precondition formula or not. However, it is not true in the general case, as
there may be an infinite number of paths to check. This includes when a human
reader may assert the conditions to obtain a weakest precondition formula are
fulfilled.
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Theorem 3.4 (Undecidability of weakest precondition formulas). LetG, p1, ϕ `
(p1, . . . , pn, pn+1), true be a provable statement. It is undecidable whether ϕ
is a weakest precondition calculus or not in the general case. ■

Proof. By counter-example.
G may be such that there are an infinite number of loops to be verified

whether they update the free variables of ϕ or not, thus there is no effective
method to decide whether ϕ is a weakest precondition formula or not.

3.6.3 Achieved completeness
While our precondition calculus is incomplete in general (see Theorem 3.2),
it is complete with regard to truths G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true when
there is no loop (p1, . . . , p1) that updates the free variables of ϕ and that does
not contain (p1, . . . , pn, pn+1). The proof requires the previous theorems.

Theorem 3.5 (Achieved completeness by the precondition calculus). The
proof system for the precondition calculus formed by rules Eqs. (3.3) to (3.12)
is complete with regards to truths G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true for which
we can obtain a weakest precondition formula of (p1, . . . , pn, pn+1) starting in
p1, i.e. for all paths (p1, . . . , pn, pn+1), all finite formulas ϕ ∈ QFFOL(Σ, X)

with x1, . . . , xm ∈ V ars(G) the free variables of ϕ and there exists no loop
l = (p1, . . . , v, . . . , p1) such that for some xi ∈ {x1, . . . , xm}, LV (v) = xi := t

and such that (p1, . . . , pn, pn+1) is not a sub-path of l, if

G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true

then
G, p1, ϕ ` (p1, . . . , pn, pn+1), true

is provable. ■

Proof. Suppose G, p1, ϕ ⊨ (p1, . . . , pn, pn+1), true. We thus know
that ϕ is a precondition formula for (p1, . . . , pn, pn+1) starting in p1.
Then by the precondition calculus we can prove a sequent G, p1, χ `
(p1, . . . , pn, pn+1), true without using the Consequence rule (Eq. (3.12)),
where χ ∈ QFFOL(Σ, X) is a precondition formula for (p1, . . . , pn, pn+1)

starting in p1 with free variables x1, . . . , xm ∈ V ars(G).
Moreover, suppose there exists no loop l = (p1, . . . , v, . . . , p1) such that

for some xi ∈ {x1, . . . , xm}, LV (v) = xi := t and (p1, . . . , pn, pn+1) is not
a sub-path of l, then by Theorem 3.3 χ is a weakest precondition formula for
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(p1, . . . , pn, pn+1) starting in p1. Let T be a first-order axiomatic theory formed
by the weakest precondition formulas for all paths (q1, . . . , ql, ql+1) ∈ Path(G)

of G starting in q1 computable by our calculus. Then, since χ is one such
weakest precondition formula, T ` ϕ → χ holds.

Finally, by the Consequence rule (Eq. (3.12)), we obtain

G, p1, ϕ ` (p1, . . . , pn, pn+1), true

3.7 Calculus comparison
In this section we compare our precondition calculus to that of Basu and
Yeh [30]. The authors base themselves on Dijkstra’s predicate transformer
calculus [28], with a form closer to our own calculus. It is to note that the
authors observe only programs as complete graphs whereas our approach is
based on paths in a graph representation of programs. Furthermore, Basu and
Yeh study ”nondeterminable” programs. Understand the usage of the term
”nondeterminable” in [28, 30] as an implication that the program is analysed
as a black box whose execution path for a given input state is unknown.
This in turn implies that the termination behaviour of the program, i.e. for
which input states the program terminates, is unknown. In opposition, our
calculus fixes a certain part of the execution path as required of a glass box
model. We can furthermore require termination by selection of a path ending
in τ . Finally, Basu and Yeh always consider a postcondition predicate Q∗

whereas our precondition calculus accepts any postcondition, symbolised by
the postcondition formula true. It is in this sense more general and is fitting
for test case generation. The oracle problem to decide whether the output
state will satisfy a certain postcondition may be treated with a postcondition
calculus.

We now compare the authors’ rules to our calculus. Let P,Q be predicates
of FOL, S, S1 and S2 be programs and WP (S,Q) the weakest precondition
(as a set of states) of S after the program’s execution satisfying predicate Q

and guaranteeing termination of S.

(i) axiom of assignment: WP (”x := E”, Q) ≡ QEx where QEx is the
predicate obtained by the substitution of the free occurrences of x by E

∗This is also the case for Dijkstra’s work, but we retain the notations of Basu and Yeh in
this paper.
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in Q.
This is similar to our Assign rule (Eq. (3.11)) w.r.t. the substitution and
is equivalent to Axiom-Assign (Eq. (3.3)) if Q ≡ true.

(ii) axiom of selection: WP (”if B then S1 else S2”, Q) ≡ [B ∧
WP (S1, Q)] ∨ [¬B ∧WP (S2, Q)].
The observation of a single branch of a conditional is a major difference
between our calculus and those similar to Dijkstra’s. While the
latter considers all branches at once in the calculus, our calculus only
considers one exit. This is because there is no path that can take both
exits simultaneously.
By independent analysis of the components of the weakest precondition
obtained by Basu and Yeh’s axiom of selection, we find similarities with
our calculus. [B ∧WP (S1, Q)] is similar to (cond ∧ ϕ) (note (cond ∧
ϕ) ≡ (ϕ∧cond)) as obtained by Cond-True (Eq. (3.9)) and equivalent if
Q ≡ true. It may be noted that in the case that S1 is an empty program
then Axiom-Cond-True-Exit (Eq. (3.6)) holds. [¬B ∧ WP (S2, Q)] is
similar to ((¬cond) ∧ ϕ) as obtained by Cond-False (Eq. (3.10)) and
equivalent if Q ≡ true. It may be noted that in the case that S2 is an
empty program then Axiom-Cond-False-Exit (Eq. (3.8)) holds.

(iii) axiom of composition WP (”S1;S2”, Q) = WP (S1,WP (S2, Q))

where ”;” is the concatenation operator.
There is no concatenation rule in our calculus. Rather, our conditional
rules Cond-True, Cond-False and Assign (Eqs. (3.9) to (3.11)) contain
this concatenation as they re-use the precondition formula ϕ computed
for the equivalent of S2. Furthermore, under the conditions of
Theorem 3.3 the theorem guarantees that we obtain the weakest
precondition formula by the conditional rules.

(iv) axiom of iteration WP (”while B do S1”, Q) ≡ [¬B ∧ Q] ∨ [B ∧
WP (S1,WP (”while B do S1”, Q))].
Well-structured ”while” loops must be modelled in our graph represen-
tation as a loop lB, lS11 , . . . , lS1n , lB where lB contains a conditional,
LE(lB, lS11) = true and lS11 , . . . , lS1n is the graph representation of
one branch of S1 (if S1 contains conditionals or other loops, we cannot
represent it with a single path). Then by our calculus we can obtain a
precondition for lS11 , . . . , lS1n , lB which we denote ϕ. Then by Cond-
True (Eq. (3.9)) we obtain precondition formula (cond ∧ ϕ), similar to
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[B ∧WP (S1,WP (”while B do S1”, Q))]. In the case where ¬B (or
(¬cond) in our calculus) holds, then the case is similar to the axiom of
selection’s second case with an empty program.

More specifically, the constraints of Theorem 3.3 may not hold, in which
case we do not necessarily obtain a weakest precondition formula. We
would only obtain a weakest precondition formula if the free variables of
(cond∧ϕ) are not updated in lB, lS11 , . . . , lS1n , lB, but this implies there
is no possibility to take the false exit and terminate, in contradiction with
Basu and Yeh’s requirement for a weakest precondition. The authors
also propose a fixpoint interpretation of the weakest precondition that
we do not treat here.

3.8 Summary
Software errors are widely different in their origin and symptoms. In this
work we use the division by 0 as a standard error and introduce the different
levels that can handle an error. Our model’s formalisation begins with the
formal definition of a minimal, extendable signature. The extensions to
the minimal signature and the corresponding structure are for the reader to
provide. From our formal language, we define CFGs to model tested programs.
The CFGs are executable, and we introduce the pseudo-node τ to model the
termination of the execution. We formally define the notion of coverage, first
with assignments, and then with FOL formulas. We then define common
testing concepts such as infeasible paths in our approach. The rules of our
precondition calculus let us obtain a precondition formula for a given path,
and soundness guarantees that the obtained formula covers the path. The
proof system is also proved incomplete in the general case. A weakest
precondition for a path starting in a given node is the set of assignments that
cover the path, starting from the aforementioned node. We define a weakest
precondition formula for a path as a FOL formula that is satisfied by only and
all the assignments of the weakest precondition for the path. Through the
analysis of weakest preconditions, we can reason on the relations between
paths, and by extension between test requirements. Notably, when a test
requirement p strongly covers a test requirement q, all test cases of p are also
test cases of q, and q can be safely removed from the test requirements set.
Our precondition calculus guarantees that the precondition formulas it obtains
are weakest precondition formulas when there exists no loop that updates the
obtained formula’s free variables and it does not contain the studied path. It is
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undecidable in the general case whether these conditions hold or not.
Finally, we present in Table 3.1 a summary of the notation used in this

chapter.

Table 3.1: Summary of important notation

Σ S-sorted first-order signature
M Many-sorted first-order Σ-structure

Mod(Σ) Set of Σ-structures
X S-indexed family of variable symbols

[X → M ] Set of all assignments

α[x/a]
Substitution of variable x by the value a in the

assignment α ∈ [X → M ]

T (Σ, X)s Set of terms of sort s ∈ S over Σ and X

evalM,α
Family of evaluation mappings for terms w.r.t.

M and α ∈ [X → M ]

FOL(Σ, X)
Set of First-Order Logic (FOL) formulas over Σ

and X

QFFOL(Σ, X)
Set of quantifier-free FOL formulas over Σ and

X

ϕ[x/t]
Substitution of the free occurrences of variable

x by term t in ϕ ∈ FOL(Σ, X)

Zdiv Ordered ring of integers with integer division
CFG(Σ, X) Set of well-formed CFGs over Σ and X

G A well-formed CFG
v0 Entry node of G

LV
Mapping of vertices of G to programming

statements

LE
Mapping of edges G to two possible types of

exits (true and false)
δG State transition function on G

δ∗G Small step semantics of G

δ∗Gnode
(v, α)

Execution path of G starting in v with state α
(δ∗Gnode

(v, α) = δ∗G(v, α)1)

Symbol(s) Explanation / definition

Continued on next page
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Table 3.1: Summary of important notation (Continued)

δ∗Gstate
(v, α)

Execution state sequence of G starting in v with
state α (δ∗Gnode

(v, α) = δ∗G(v, α)2)
V ars(G) Set of variables of G

tc Test case on G

α0 Initial assignment at the entry of G

M,α ⊨ ϕ
α ∈ [X → M ] satisfies ϕ ∈ FOL(Σ, X) under

M

G, v, α ⊨
(p1, . . . , pn, pn+1), β

Coverage relation with assignments

G, v, ϕ ⊨
(p1, . . . , pn, pn+1), χ

Coverage relation with FOL formulas

G, v, ϕ `
(p1, . . . , pn, pn+1), χ

Inference sequent

WPp,v
Weakest precondition for path p starting in node

v

p ⇒ q p strongly covers q
p → q p weakly covers q
p ≁ q p is independent of q

Symbol(s) Explanation / definition



70 | Methodology



Discussions and future work | 71

Chapter 4

Discussions and future work

This chapter addresses our work’s limitations and future work to improve our
model. It also discusses relations between our work and common problems in
computer science.

4.1 Limitations
Due to the breadth of the problem, only some of the initial goals have been
satisfactorily met. In this section we will focus on some of the remaining
issues that should be addressed to improve the model.

4.1.1 Incompleteness
The main limitation of this work is the inability of the calculus to prove
sequents of the form G, v, ϕ ` (p1, . . . , pn, pn+1), true where v 6= p1.

Taking the example of Fig. 3.1, the weakest precondition obtained
semantically for the path (v5, v8, v9, v10) starting in v0 is the set {α|α ∈
[X → M ], α(y) ≥ 1}. Our precondition calculus cannot obtain a weakest
precondition formula for (v5, v8, v9, v10) starting in v0. We may obtain a
precondition formula for (v5, v8, v9, v10) starting in v5 with our calculus which
is (¬((1 ≤ j) ∧ (j ≤ x))) as shown by the derivation:

Axiom-Assign
G, v9, true ` (v9, v10), true Assign

G, v8, true ` (v8, v9, v10), true Cond-False
G, v5, (¬((1 ≤ j) ∧ (j ≤ x))) ` (v5, v8, v9, v10), true

Two problems may be observed. The first is the absence of variable y in
the formula, as the calculus needs to go through node v3 to incorporate it
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into the formula. The second is that the formula contains x whereas the
assignments in the weakest precondition for (v5, v8, v9, v10) starting in v0
are not restricted by the value of x. The reason for the second problem is
that the precondition formula is a necessary precondition as defined in the
methodology, but not a weakest precondition formula. We may attempt to
obtain a weakest precondition formula for path (v0, v1, v2, v3, v4, v5, v8, v9, v10)
starting in v0, which is ((1 ≤ y) ∧ (¬(1 ≤ x))). However, with this
construction we prevent taking path (v5, v6, v7, v5), whereas for any x ≥ 1

and a fixed y ≥ 1 the (v5, v6, v7, v5) loop will be taken x times and then path
(v5, v8, v9, v10) will be executed. An attempt to prove the prior statement with
the precondition calculus would require to obtain the proofs of all sequents
G, v5, ϕ ` (v5, v6, v7, . . . v5, v8, v9, v10) for all x ≥ 1 iterations of (v5, v6, v7)
in the path, that is we need an infinite number of proofs.

4.1.2 Weakest preconditions
The calculus may obtain a weakest precondition formula corresponding to
the semantic weakest precondition without proof that it is indeed a weakest
precondition formula. Take for example the trivial path (v5, v6, v7) from
Fig. 3.1. The derivation of the proof is:

Axiom-Assign
G, v6, true ` (v6, v7), true Cond-True

G, v5, ((1 ≤ j) ∧ (j ≤ x)) ` (v5, v6, v7), true

The obtained precondition formula ((1 ≤ j) ∧ (j ≤ x)) for (v5, v6, v7)
starting in v5 corresponds to the correct semantically-obtained weakest
precondition. But since there exists the loop (v5, v8, v9, v10, v3, v4, v5) that
modifies the free variable j in v4 we are not guaranteed to obtain a weakest
precondition formula for (v5, v6, v7) starting in v5. Since v4 is on all paths
from v0 to v5, it is possible to circumvent the issue by extending the proof to
the path (v4, v5, v6, v7) for which the proof derivation is:

Axiom-Assign
G, v6, true ` (v6, v7), true Cond-True

G, v5, ((1 ≤ j) ∧ (j ≤ x)) ` (v5, v6, v7), true Assign
G, v4, ((1 ≤ 1) ∧ (1 ≤ x)) ` (v4, v5, v6, v7), true

Here, since the free variable j is not present any more in the obtained
precondition formula and there is no loop ofG that updates x, the precondition
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formula for (v4, v5, v6, v7) starting in v4, is guaranteed to be a weakest
precondition formula for (v4, v5, v6, v7) starting in v4.

However some issues cannot be circumvented this way. The example
of path (v5, v8, v9, v10) above shows that our calculus can’t obtain a weakest
precondition formula for this path.

One last limitation of the model with regard to weakest preconditions is the
case of programs whose graph models contain loops of the form (v0, . . . , v0).
In such case it is probable that the conditions to obtain a weakest precondition
formula are rarely met. One such program can be a server which continuously
listens to incoming requests and replies to them on loop.

4.1.3 Error handling
In the methodology, we mentioned the inadequacy of the logic to model
error handling at the language’s runtime and operating system levels without
modifications to the calculus and the modelling of the graph. We conjecture
such modifications may include:

(i) Meta-jumps between different graphs: for example the try-catch block
of a (Java-like) program P may be a graph on its own, and termination
is replaced by a jump to the graph of P , whether the termination is
normal or error-based. Similarly, meta-jumps could be used to access
the operating system’s graph, at the cost of a large complexity addition.

(ii) Additional exits: instead of meta-jumps, one other possibility is to allow
more exits for each type of node, depending on the context. To reuse the
try-catch example, all nodes in the try block could have an additional exit
to the entry of the catch block. Similarly the runtime or operating system
could be modelled as a disjoint set of nodes to that of the program, and
exits to and from this disjoint set let us model the interactions between
the runtime or operating system and the program.

We also noted in the methodology that error handling at the data type level
may be achieved through specific error variables. This may be achieved by
updating the rules of inference alone, however the exact design (e.g. one error
variable for all kinds of errors, one per sort, etc.) will substantially change the
updates to be performed, and as such we do not explore this point further.
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4.2 Future work

4.2.1 Postcondition calculus
Our work introduces a precondition calculus yet lacks a postcondition
calculus to automatically generate possible test oracles. We have considered
the possibility of modifying the precondition calculus to incorporate any
postcondition instead of true similarly to the work of Dijkstra [28], but this
approach would not meet the needs of testers. The precondition calculus
computes the precondition by executing the graph backwards, in contrast a
tester would want a forward execution and by giving a precondition would
want to obtain a postcondition. As such we consider the best approach is to
compute a precondition ϕ for a certain path with the precondition calculus,
and take a stronger precondition χ such that for some axiomatic theory of
the data types T , there is that T ` χ → ϕ. Then the postcondition calculus
would let us obtain a strongest postcondition formula for the path, starting with
precondition formula χ.

The main problem with forward execution of a graph is the updates of
variables, including updates based on their previous value, to a (syntactic)
formula. For example, suppose we obtain postcondition x ≤ 1 for a path p and
we next treat a node v such thatLV (v) = x := x+1. The resulting postcondition
should be x ≤ 1 + 1, or equivalent formulas such as x − 1 ≤ 1. However we
cannot find a general modification of the formula that captures this behaviour.
To our knowledge the literature presents only syntactic effects for backward
execution (see [28, 30]) and forward effects are presented semantically, such
as in Floyd [38]. At first the application of the update to the other terms in the
relation was envisioned, e.g. for x ≤ c with c an integer constant then after
treating node v with LV (v) = x := x + 1, the postcondition would become
x ≤ c + 1. Now suppose a more complex relation such as I ∈ Σint string

∗

whose solutions are the set of integers x and strings s such that the character
of index x in s is the character a. Suppose we have postcondition I(x, s) for a
certain path and we go through node v withLV (v) = x := x+1. The envisioned
update to the other terms would lead to the new postcondition I(x, s + 1), but
the + ∈ Σint int,int operation is not defined for strings and integers. Another
envisioned method was to replace the variable by the term where all operations
are replaced by their inverse. Employing again the postcondition x ≤ 1 for a
path p and node v with LV (v) = x := x + 1, the resulting postcondition after

∗We do not define the string sort in this example, but assume it is an indexed list of
characters.
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treating v would be x − 1 ≤ 1. The limitation to this approach is that an
operation may not have an inverse (e.g. for a surjective operation), in which
case the postcondition calculus could not be constructed.

A last issue with regard to postcondition calculi to be addressed is whether
to add constraints to variables when they are assigned a constant if they are
not free variables of the precondition. For example the program of Fig. 3.1
returns variable result, whose value after the execution of the program and its
graph is relevant for testers. For example any execution of (v0, v1, v2, v3, τ) of
Fig. 3.1 should guarantee that result is 0 after the execution of the program.
No precondition obtained by our precondition calculus contains the result

variable as it is not part of any conditional node’s formula. It is possible
to use a stricter precondition that has some variables such as result as free
variables, but we conjecture this approach will not be precise enough to be
formalised. For example if we have precondition formula (ϕ∧(result ≤ −1))

for (v0, v1, v2, v3, τ) starting at v0 such that result is not a free variable
of ϕ, should the postcondition after executing v0 that maps result to 0 be
(ϕ ∧ (0 ≤ −1))? Or (ϕ ∧ (result ≤ 0))? We instead propose that
the postcondition calculus should overwrite the atomic formulas concerning
variable x∗, resulting in a formula χ and use formula (χ ∧ (x = c)) as the
updated postcondition formula, when a node v with LV (v) = x := c is treated,
with c a constant symbol.

4.2.2 Stricter structure flow graphs
Our model is close to that of flowcharts†, with loosely structured control flows.
Notably, our work allows to model goto-like control flows. Many modern
programming languages only allow structured control flows and either restrict
or ban the use of goto statements. A possible improvement for our work is thus
to restrict the control flows that a well-formed CFG should allow. For example
we conjecture that while loops should be defined as loops in the graph such
that they contain at least one conditional node v, termed the loop entry, and
all loops (v, v′, . . . , v) are such that LE(v, v

′) = true and there is no path
(v0, . . . , vl) with vl a node of the while loop that does not contain the entry
node v. Similarly, all paths from vl to any node that is not in the subgraph of
the while loop must contain the edge (v, v′′) with LE(v, v

′′) = false.
∗Which would require a formal definition that handles how to process the formulas of the

form (r(x, . . . ) ∧ χ), (¬(r(x, . . . ))), etc.
†We let the reader refer to Loeckx and Sieber [39] for a reference w.r.t. flowcharts.
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4.2.3 Automation of test case generation
Due to time constraints we have not been able to automate the precondition
calculus for test case generation. However this can be done given elementary
paths by first automating the derivation of a proof tree to obtain a precondition
formula for each elementary path, and then obtaining the assignments that
satisfy each precondition formula. Automating the derivation is possible
through a custom-made algorithm matching the premises and side-conditions
of our inference rules (the first inference is always an axiom and no other
sequent inferences should be axioms of our calculus). Once the precondition
is obtained, a theorem prover such as Z3 [40] can be used to obtain the
assignments that satisfy the path’s precondition formula. A tester only needs
to select one such assignment to obtain a test case for the path.

4.3 Relation to other problems
Our work can model termination through the pseudo-node τ . This opens a
relation to the halting problem. We may alter a program so that all exit nodes
point towards a new node vexit and then the halting problem is equivalent
to obtaining WP(vexit,τ),v0 (note that we can only consider paths of at least
two nodes with our calculus). It is well-known that the halting problem is
undecidable in the general case. This implies that for any CFG, no calculus
(ours included) can determine a weakest precondition formula for (vexit, τ).

In the limitations we highlight the issue of loops that prevent us to obtain
a weakest precondition formula. Loops have invariants, formulas that hold
before and after each iteration of a loop. In the case of loop (v5, v6, v7, v5)

from Fig. 3.1, the reader may ascertain that the value of x is not updated by
the loop, so x = c with c an integer constant is an invariant for the loop. Since
the loop increments the value of j, at some point j’s value will be superior
to x’s value, and we exit the loop to node v8. Thus it can be semantically
ascertained that path (v5, v6, v7, v5) will be taken a finite number of times, and
path (v5, v8) will always follow. Thus loop (v5, v6, v7, v5) (and path (v5, v6, v7)

as the only exit of v7 is to v5) strongly covers path (v5, v8), although the model
being syntactic cannot ascertain it. However, it is undecidable whether a
formula is a loop invariant in the general case. This implies that no calculus
for any signature, structure and graph can rely entirely on invariants to solve
the weakest precondition limitations. We let the reader refer to the work of
Kovács and Varonka [41] for more properties of loops.

Our choice of allowing a single statement per node leads to large graphs.
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This could lead to path explosion, a phenomenon where the number of control
flows grows exponentially with the size of a program, and so the size of its
graph. However, the most commonly used glass-box coverage models (e.g.
NC, EC) study short paths, with few control flows. Thus, path explosion is not
a concern for our model.

4.4 Summary
Our work is not without limitations. The main issue is the inability of our
calculus to prove a sequent when we start in a node v, different from the first
node of the studied path p1. It is also possible that we do obtain a weakest
precondition formula but without the guarantee it is one. This can happen
when the conditions to obtain a weakest precondition formula are not met.
We also discuss how to adapt our model to handle errors at the language’s
runtime and operating system levels. We present several leads of future work
to improve our model. First, we highlight the challenges of a postcondition
calculus, notably the syntactic impacts of forward execution and whether to
add constraints on a variable when it is assigned. Then we discuss stricter
structures for our graphs, followed by the means to automate the logic for test
case generation. Finally, we relate our work to common problems of computer
science: the halting problem, loop invariants and path explosion.
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Chapter 5

Conclusion

5.1 Conclusions
In this paper we have defined and studied a finitary formal model to reason
on programs as well-formed CFGs to reason on test requirement redundancy,
which is proven sound. The model can obtain a weakest precondition formula
for paths under certain conditions on loops, in which case we can reason
on test requirement redundancy. The precondition calculus has been proven
incomplete in the general case, and is also proved undecidable. However
it is complete w.r.t. preconditions for paths (p1, . . . , pn, pn+1) starting in
p1 when there is no loop (p1, . . . , p1) of the graph G that does not contain
(p1, . . . , pn, pn+1) and updates the free variables of the obtained precondition.
Due to lack of time we have not been able to automate the model for test case
generation but we present the steps to perform the automation in the future
work. In turn, automation can lead to the adoption of more powerful coverage
models for test suites and the program is thus more reliable.

The model can be extended as we have defined, to use any new sorts and
adequate structures that the reader must provide. The precondition calculus’
properties are proved for all signatures and structures that extend the minimal
signature of the ordered ring of integers with integer division Zdiv.

Software errors can be captured at the data type level with our model,
notably by non-standard values. We present in the limitations conjectures
for the modifications of the model to capture software errors at the language
runtime and operating system levels. We also present in the future work
the challenges of a postcondition calculus to solve the oracle problem. We
conjecture there are properties and improvements yet to be found on the model
we have developed, as presented in the future work section.
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The project was more challenging than expected, despite the minimal
signature studied that only includes integers and first-order formulas. This is
in part due to the complexity of programs and the underlying mathematical
concepts and properties, such as the undecidability of loop invariants as
discussed in the limitations. It is our hope that the extensively formal
definitions presented in this work compared to the literature in software testing
allow other projects to envision formal models of testing and save them time
for more testing-relevant problems.

5.2 Ethics and sustainability
Ethically, testing is a necessary quality assurance process as it encompasses
the stack of the program. With the large amount of personal data processed
and stored in companies’ servers, testing can reduce the risk of a security
vulnerability and the loss of said personal data. Risks incurred by software
do not only affect data, but also the physical well-being of users, notably in
the case of programs for medical equipment, where a particularly stringent
quality process including extensive testing must take place. Finally, testing
can also reduce the risks for the psychological well-being of users, as may be
understood from the example of bots that delete adult or inappropriate content
from a forum that can be accessed by children. Glass box testing, as it tests the
structure of a given program, can expose inappropriate behaviours of the code
under some inputs. For example, suppose a program for banks that computes
the risk for a person not to reimburse a loan they wish to obtain. The program
should not have a different behaviour (and so take different paths or have a
different postcondition) for different persons who share the same revenue and
other relevant parameters but have different skin colours, religions, political
opinions, etc. Although inputs are under the subfield of black-box testing,
glass box testing cannot entirely abstract them away as shown by the study
of weakest preconditions by our calculus. As such glass box testing can
also unravel unethical inputs, with for example the skin colour, religion and
political opinion parameters of the above example. Our work has no direct
ethical impact that is not inherited from software testing and glass box testing
as mentioned above. We hope a more formal approach to glass box testing
can improve the quality of the software under test and prevents the hurdles
presented in this section.

With regard to sustainability, the thesis does not contribute directly to any
Sustainable Development Goals (SDGs) of the United Nations (UN). Instead,
in the midst of the digitalisation trend of the world’s systems, the improvements
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to testing by this work can impact the categories of sustainable development
in the following way:

• Economy: the cost of lack of testing is a major concern for information
technology companies, as the sums reach billions of dollars [1].
Automated test case generation and test requirement redundancy
identification can limit the cost of testing, or allow more extensive
testing for the same budget.

• Social impact: improved testing can lead to fewer risks for users,
whether risks for their data or risks for their well-being induced by the
software product. Errors in software for medical uses can notably be
fatal to the user.

• Ecology: the execution of test cases consumes resources, including
hardware to test on and energy to run the tests. This work can reduce
the number of test cases for a given set of test requirements and thus the
resources spent on testing. In opposition, automated test case generation
may cause an increase of the size of the test suite and thus an increase
of the energy spent to execute it. Caution must be advised on this latter
point for ecological impacts.
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