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Abstract | i

Abstract

Referee signals are crucial for understanding football games. While existing
tracking techniques provide accurate skeleton data for players and referees,
automatic recognition of referee actions remains largely unexplored. This
work aims to develop self-supervised and semi-supervised learning methods
for referee action recognition from skeleton data, leveraging abundant
unlabeled data, and addressing the challenge of labeled data scarcity.

We propose a pre-training and fine-tuning pipeline based on transformer-
based masked autoencoders for this task, with granularly differentiated
approaches for main referees and assistant referees. For assistant referees,
whose actions are more static, we introduce a frame-level model. The model is
initially pre-trained on unlabeled frames and subsequently fine-tuned on task-
specific data to perform action recognition. For main referees, we pre-train a
sequence-level model to capture more contextual information. A novel multi-
task pre-training objective is proposed, combining motion prediction and
data2vec, where the prediction target is latent contextualized representations
calculated by a teacher model. Furthermore, we fine-tune the model with a
sequence labeling task supervised by a binary classification model, eliminating
the need for frame-level annotations and utilizing the labels more efficiently.
Additionally, we implement strategies to integrate additional inputs during
fine-tuning, such as the ball position, to provide necessary details for action
recognition.

Experiments show that our proposed methods excel in both the evaluation
set and real-game scenarios. Our frame-level model achieves an accuracy of
99.46% on the test set and an F1 score of 0.92 on a real game. For the more
challenging task of main referee action recognition, our sequence-level model
achieves an accuracy of 91.88% on the test set and an F1 score of 0.79 on a
real game.

Keywords

Skeleton-based action recognition, Referee action recognition, Masked
autoencoders, Self-supervised learning, Semi-supervised learning
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Sammanfattning

Domarsignaler är avgörande för att förstå fotbollsmatcher. Befintliga spår-
ningstekniker ger exakt skelettdata för spelare och domare, men automatisk
igenkänning av domarens handlingar fortfarande till stor del outforskad.
Syftet med detta arbete är att utveckla självövervakade och semiövervakade
inlärningsmetoder för igenkänning av domarens handlingar från skelettdata,
utnyttja en stor mängd ej annoterad data och hantera utmaningen som uppstår
när annoteringar fattas.

Vi föreslår en förtränings och finjusteringspipeline baserad på trans-
formerbaserade maskerade autoencodernätverk med särskilda tillvägagångs-
sätt för huvuddomare och assisterande domare. För assisterande domare,
vars handlingar är mer statiska, introducerar vi en modell på bildnivån.
Modellen förtränas initialt på ej annoterade bilder och finjusteras därefter
på en uppgiftsspecifik datamängd för att utföra handlingsigenkänning. För
huvuddomare förtränar vi en modell på sekvensnivå för att fånga mer
kontextuell information. Ett nytt multitask-förträningsmål föreslås, som
kombinerar rörelseförutsägelse och data2vec där målen för förutsägelser
är latenta kontextualiserade representationer beräknade av en lärarmodell.
Utöver detta finjusterar vi modellen med ett sekvensannoteringsproblem
som övervakas av en binär klassificeringsmodell, vilket eliminerar behovet
av annoteringar av enstaka bilder och använder annoteringar mer effektivt.
Dessutom implementerar vi strategier för att integrera ytterligare indata
under finjustering, såsom bollpositionen, för att ge nödvändiga detaljer för
igenkänning av handlingar.

Experiment visar att våra föreslagna metoder utmärker sig både i ut-
värderingsuppsättningen och i verkliga matchsituationer. Vår bildnivåmodell
presterar utmärkt för assisterande domare, och uppnår en noggrannhet på
99,46% på testuppsättningen och en F1-poäng på 0,92 i en verklig match.
För den mer utmanande uppgiften att känna igen huvuddomarens handlingar
visar vår sekvensnivåmodell också tillfredsställande prestanda, och uppnår en
noggrannhet på 91,88% på testuppsättningen och en F1-poäng på 0,79 i en
verklig match.

Nyckelord

Skelettbaserad handlingsigenkänning, Igenkänning av domares handlingar,
Maskerad autoencoder, Självövervakad inlärning, Semiövervakad inlärning
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Chapter 1

Introduction

Human action recognition is one of the key tasks in video understanding.
Recent years have witnessed remarkable developments in this area, in both
tracks of RGB-based [1, 2] and skeleton-based methods [3, 4, 5, 6, 7, 8, 9,
10, 11, 12]. The rapid advancement led to transformative applications in
various domains, notably in sports analytics [13, 14, 15, 16, 17]. Especially
in the field of football, the adoption of action recognition technology has
successfully promoted the recognition of player actions such as shooting,
passing, and dribbling [18, 19, 20, 21, 22, 23, 24], thereby providing analysts
and professional football clubs with richer and more detailed data to formulate
strategies and improve sports performance.

However, the domain of referee action recognition has not kept pace with
these technological advances [25]. Despite the critical role referees play on
the field, their signals have not been as thoroughly explored or understood
by automated systems. Given the significant influence of referees’ decisions
on the game, their actions constitute a crucial component for computers to
fully understand football matches [26, 27]. This work aims to close this gap
by extending current advances in human action recognition to the field of
referee signals, thereby bridging an important link in the chain of analysis
and understanding of football matches.

Skeleton-based action recognition has attracted considerable attention
in the field due to its resistance to weather, lighting conditions, and other
background disturbances, as well as its lightweight nature. For daily life
actions, researchers have explored various methods, including approaches
based on Graph Convolutional Networks (GCNs) [3, 4, 28, 29, 9] and
transformers [30, 31, 32, 33], utilizing both supervised and unsupervised
learning strategies. These techniques have proven effective in interpreting
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actions from skeleton inputs, indicating promising prospects for developing
systems for referee action recognition. On the other hand, while extensive 3D
skeleton data for football matches is available from Tracab ∗, the analysis of
referee data remains relatively unexplored. This study seeks to explore the
application of advanced skeleton-based action recognition methods to referee
action analysis, aiming to deepen the understanding of referee behaviors with
state-of-the-art techniques.

1.1 Problem

The core problem in this work is to identify and classify the specific actions and
signals of football referees based on their skeletal inputs. These inputs include
the skeleton sequences of three referees: the main referee and two assistant
referees. The skeleton of the fourth official is excluded as they typically do not
perform critical signaling actions. Given the abundance of unlabeled referee
skeleton data and the scarcity of labeled data, a key focus is on how to utilize
self-supervised learning methods to learn general patterns of referee actions,
thereby enhancing recognition capabilities. Additionally, considering the
unique characteristics of referee actions, this work also aims to explore optimal
model designs that effectively integrate the knowledge of referee positioning,
orientation, and ball location to boost recognition performance.

1.1.1 Problem Definition

Referee skeleton sequences can be represented as x ∈ Rl×V×d, where l

denotes the number of frames, V is the number of joints, and d represents
the dimensions. Typically, l is calculated by multiplying the time span by
the frame rate. For instance, a 10-second sequence with a frame rate of 25
would have l = 250 frames. In this study, each skeleton comprises 21 joints
(V = 21), and the 3D positions of these joints are given (d = 3) in a coordinate
system centered at the center mark of the field.

∗https://tracab.com/

https://tracab.com/
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Prediction

(a) Referee Action Recognition as Skeleton Frame Classification

Prediction

T

(b) Referee Action Recognition as Skeleton Sequence Classification

Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction

T

(c) Referee Action Recognition as Skeleton Sequence Labeling

Figure 1.1: Problem definition

The problem of referee action recognition can be defined at either frame
level or sequence level:

• Referee Action Recognition as Skeleton Frame Classification: The
input for recognition is a single frame of skeleton xi ∈ RV×d, as shown
in Figure 1.1a, and a label is predicted for each skeleton frame.

This approach is straightforward and lightweight but may lack sufficient
contextual information. To address this, additional context can be incorporated
at the sequence level. For the sequence level, the problem can be formulated
in two ways: as a sequence classification or a sequence labeling task:

• Referee Action Recognition as Skeleton Sequence Classification:
The input is a fixed-length skeleton sequence x ∈ Rl×V×d, and a single
label is predicted for the entire sequence to indicate the presence of an
action, as shown in Figure 1.1b. Ideally, each skeleton sequence should
contain only one action to minimize confusion; thus, the sequence length
should not be too long.
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• Referee Action Recognition as Skeleton Sequence Labeling: A
longer sequence x ∈ Rl×V×d serves as the input to provide more
contextual information and a label is predicted for each frame within
the sequence, as shown in Figure 1.1c, indicating whether an action is
occurring at that particular frame.

1.1.2 Scientific and Engineering Challenges

Though previous studies have studied extensively on skeleton-based action
recognition, their focus is mainly on everyday actions [34, 35, 11]. There
remain both scientific and engineering challenges to extend existing skeleton-
based action recognition methods to referee actions.

1.1.2.1 Scientific Challenges

Complex Motion Patterns for Football Referees Referee actions differ
significantly from common daily activities in terms of dynamics and
complexity. Compared to common daily actions, the skeleton data for referees
often spans a larger area and involves more rapid movements, necessitating
specialized pre-processing techniques and model designs that are not typically
required for general action recognition.
Need for Granular Predictions Most existing action recognition systems
are tailored for sequence classification, which may not adequately meet the
needs of referee action recognition. For effective real-time applications,
such systems must be capable of frame-by-frame prediction, necessitating the
development of sequence labeling techniques. This requirement for detailed,
continuous output is less explored in academic research and poses a unique
challenge for this work.
Intergration of Additional Information Incorporating context information,
such as the position of the ball or the gesture of other referees, can provide
richer information to enhance the accuracy of action recognition systems.
However, this is not typically considered for recognizing everyday actions.
Therefore, it poses challenges to develop specific models that can integrate
and interpret multiple streams of contextual data effectively.

1.1.2.2 Engineering Challenges

Scarcity of Labeled Data The scarcity of labeled data for specific referee
actions is a significant obstacle in this project. While self-supervised learning
methods can facilitate the learning of general representations for referee
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actions, labeled data remains crucial for training a robust recognition model.
Therefore, the efficient collection, annotation, and validation of high-quality
datasets becomes a significant challenge and is critical to support successful
model training.
Gap between Model Prediction and Real-game Application For referee
action recognition systems to be practical, they must operate in real games.
However, models are trained with supervision on frames or short sequences,
which does not guarantee consistent performance in real-game scenarios.
Moreover, models trained in controlled environments may not account for the
variability and unpredictability of diverse referee behaviors in real games. This
necessitates the development of post-processing techniques to adapt model
predictions to real-game scenarios, ensuring reliability and accuracy in real-
game applications.

1.2 Purpose

This project aims to develop an effective recognition model for referee
actions, holding significant potential benefits across various aspects of
football. Referee actions influence the dynamics of the game, and accurately
predicting these actions can enhance event detection. For referee committees,
accurate recognition of referee signals can enhance the analysis of referees’
performances. This could help make more informed decisions regarding
referee arrangements and improve officiating. Additionally, a robust referee
action recognition system can serve as a valuable tool for audiences and
commentators, offering real-time interpretations of the referee’s signals during
games. Moreover, such a system could facilitate the realization of automatic
officiating technology. For example, it could assist in labeling data from
historical matches by pairing players’ actions with the referees’ decisions.

1.3 Research Content

In this work, we propose a pre-train and fine-tune approach for action
recognition of referees and assistant referees, employing a transformer-based
autoencoder. The model is initially pre-trained on large amounts of unlabeled
data to capture general patterns of referee movements, and then fine-tuned
on a dataset specifically collected for the recognition task. This pre-trained
model also enhances the data collection process by providing a base model for
automated annotations.
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We utilize models of different granularities for action recognition of
assistant referees and main referees:

For assistant referee action recognition, where actions tend to be more
static, we employ a frame-level model. This model is pre-trained on individual
frames through a joint position prediction task and is subsequently fine-
tuned for frame classification specific to assistant referees. Various strategies
are implemented for dataset collection, including rule-based methods and
model-driven annotations. The frame-level data collected also facilitates the
sequence-level data collection for the main referees.

For the main referee, whose actions are more dynamic and complex, we
adopt a sequence-level approach to capture broader contextual information.
The model is pre-trained on unlabeled referee skeleton sequences with a
multi-task objective, including motion prediction objective [33] and data2vec
objective [36], which predicts latent representations on a masked view of the
input in a self-distillation setup. During fine-tuning, we explore both sequence
classification and sequence labeling tasks for referee action recognition.
Specific strategies are also deployed for collecting the sequence classification
dataset. Additionally, inputs like the ball’s position, the referee’s absolute
location, and other referees’ actions are integrated during fine-tuning to boost
the model’s performance.

To validate the effectiveness of our models, we assess them not only on
the validation and test sets derived from the collected datasets but also in
real-game scenarios to evaluate their real-world performance, ensuring models
perform reliably and accurately in practical applications.

1.4 Delimitations

The scope of this project does not include the development of novel action
recognition algorithms that outperform existing methods. Instead, the focus is
on applying and possibly adapting existing methods to the context of referee
actions. Therefore, the evaluation of these methods will be specific to referee
data and is not expected to be evaluated on public benchmarks commonly
used in action recognition research. This limit is set to maintain the goals
and feasible scope of the project.
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1.5 Structure of the Thesis

In Chapter 2, we present the relevant background of skeleton-based action
recognition methods and discuss the relevant referee signals as specified by
the Laws of the Game [37]. Chapter 3 details the methodology and results
for frame-level action recognition for assistant referees, outlining the specific
techniques and strategies employed for frame-level pre-training, fine-tuning,
and data collecting. Chapter 4 describes sequence-level action recognition
for main referees, presenting detailed approaches for sequence-level pre-
training and fine-tuning. Chapter 5 concludes the project and outlines potential
directions for future improvements in the field of referee action recognition.
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Chapter 2

Background

2.1 Skeleton-based Action Recognition

Action Recognition is one of the most important video understanding tasks
and has significant applications in the real world. Skeleton-based action
recognition has attracted extensive attention in the area of action recognition
thanks to its advantage of being insensitive to weather, lighting conditions, and
other background interference and being lighter.

Skeleton-based Action Recognition takes a sequence of skeleton data
as the input, where the skeleton data consists of the 3D position of each
joint of the human body. The task is a classification task, so the model is
required to predict the action type based on the input skeleton sequence. For
better development in this field, multiple benchmarks have been established
and are widely used, such as Northwestern-UCLA [38], NTU-RGB+D [34],
NTU-RGB+D 120 [11], Kinetics [35], and PKUMMD [39]. The action
types in these benchmarks include both single-person actions and two-person
interactive actions. Nevertheless, the action types are mostly actions in
everyday life, which are different from the referee actions we want to classify
in this work.

Studies for skeleton-based action recognition can be generally categorized
into supervised learning methods and unsupervised learning methods. Graph
Convolutional Networks (GCNs) [3, 4, 28, 29, 9] are currently the mainstream
method for skeletal action recognition in supervised learning. GCNs are
proposed to effectively model skeletal data using the natural connection
graph of human joints. By defining partitions with an order for each joint’s
neighbors, GCNs successfully apply the convolution to a graph and improve
the modeling efficiency. Other methods in a supervised learning manner
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include RNNs [40, 41, 42, 43], CNNs [44, 45, 46], and Transformers [30,
31, 32, 33].

Unsupervised learning also plays a crucial role in skeleton-based action
recognition because of its ability to learn complex patterns and features
from unlabeled data, which are often abundant and easily available in real-
world scenarios. This approach doesn’t require extensive manual labeling,
significantly reducing the time and resources required for training advanced
deep models in real applications. Common unsupervised learning methods for
skeleton-based action recognition include contrastive learning-based methods
and autoencoder-based methods. Contrastive Learning is a powerful approach
in the field of unsupervised learning [47, 48, 49]. The main idea is to pull the
representations of positive pairs closer while pushing the representations of
negative pairs farther apart. Autoencoder is a classical method that provides
another way of utilizing unlabeled data. The core idea of an autoencoder is
to first use an encoder to map the input to a latent space, and then ask the
decoder to reconstruct the original input. A variant of autoencoder is Masked
Autoencoder (MAE), which holds out a part of the input and requires the
model to predict the missing part. MAE has been shown to work excellently on
NLP tasks [50, 51] and computer vision tasks [52]. Following the remarkable
success of Transformer-based MAE [52] in the field of computer vision,
numerous studies have started to explore the application of MAEs for skeleton-
based action recognition [53, 33].

In this study, we employ the Spatial-Temporal Graph Convolutional
Network (ST-GCN) [3] from the GCN family as a baseline for our system. To
achieve efficient pre-training, our approach leverages self-supervised learning
methodologies, notably the masked autoencoder techniques Masked Motion
Predictor (MAMP) [33] and data2vec [36, 54]. We will introduce them in the
following sections.

2.1.1 ST-GCN

Spatial-Temporal Graph Convolutional Network (ST-GCN) [3] is the opening
work of the GCN family and a widely used baseline. Convolutional neural
networks are widely used in image tasks where the neighbors of each pixel
and their order are well-defined. One challenge in applying the convolution
operation to the human joint graph is that the number of neighboring joints of
each joint is not fixed, and the neighboring joints have no clear order, which
adds to the difficulty of multiplying weights in a convolutional kernel to a
neighborhood of a joint. To address this challenge, ST-GCN proposed to define
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an ordered partition for the neighbors of each joint so that a convolution can
be applied. ST-GCN further proposed to apply a convolution along the time
dimension, enabling the model to learn from spatial and temporal information
at the same time.

Formally, We want to construct a representation for a spatial-temporal
skeleton sequence graph G = (V,E), where V is the node set and E is
the edge set. Assume this sequence has N joints and T frames. We use
vti(t = 1, · · · , T ; i = 1, · · · , N) to indicate the i-th joint at the t-th frame.

The convolution on the graph can be extended from a general convolution.
For a spatial location x, the output of a general convolution fout(x) in one
channel can be formulated as

fout(x) =
∑
n

fin(p(x, n)) ·w(n), (2.1)

where p(x, n) is a sampling function enumerating the neighbor position of the
location x; w(n) is the weight function that provides weights to conduct the
inner product with different neighbors of x; fin is the input feature map of the
channel.

For traditional convolution on images, p(x, n) enumerates a K × K

area around x, where K is the kernel size; w(n) iterates weights stored in
the c × K × K weight matrix. To extend convolution on the graph, ST-
GCN defines the sample function p(x, n) on the graph as the neighbor set
B(vti) = {vtj | d (vtj, vti) ≤ D} of a node vti, where d(vtj, vti) indicates the
minimum length of the path from vtj to vti. In their work, D = 1. So the
sampling function for a node vti is simply iterating all its neighbor vtj with
distance 1:

p(vti, vtj) = vtj

They define the weight function by partitioning the neighbor set B(vti)

into a fixed number of K subsets. So we have a mapping lti : B(tti) →
{0, · · · , K − 1}, mapping each node in the subset to a subset label. In this
way, the weight function can be expressed as:

w(vti, vtj) = w′(lti(vtj))

Combining the new definition of sample function and weight function on
the graph, ST-GCN is formulated as

fout (vti) =
∑

vtj∈B(vti)

1

Zti (vtj)
fin (vtj) ·w′ (lti (vtj)) , (2.2)
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where Zti (vtj) = ∥{vtk|lti(vtk) = lti(vtj)}∥ the normalization term, equaling
to the cardinality of the corresponding subset.

ST-GCN proposed several partitioning strategies, among which spatial
configuration partitioning is the most efficient. Spatial configuration
partitioning divides the neighboring nodes of each node into three subsets:

• root node itself

• centripetal nodes: the neighboring nodes that are closer to the skeleton
center than the root node

• centrifugal nodes: the neighboring nodes that are farther away from the
skeleton center than the root node

The skeleton center is defined as the gravity center in ST-GCN. As shown
in Figure 2.1, the two green nodes are the selected nodes. For each selected
node, the neighboring nodes and the node itself are divided into three groups
based on their distance to the skeleton center (black cross), as shown in three
different colors. Compared to the root node (green), Centripetal nodes (blue)
have shorter distances to the center, while centrifugal nodes (red) have longer
distances to the center. Formally, the mapping from neighboring nodes to the
subset label is

lti (vtj) =


0 if root
1 if centripetal
2 if centrifugal

(2.3)

Figure 2.1: Partitioning of ST-GCN. The black cross indicates the center of
the skeleton. Green nodes are root nodes; Blue nodes are centripetal nodes;
Red nodes are centrifugal nodes.
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ST-GCN also proposed applying convolution in the time dimension by
connecting the same joint across time to expand the graph. The convolution
in the time dimension is built similarly. With well-defined convolutions on
human skeleton graphs, ST-GCN successfully leverages the graph structure to
better model skeletal sequences, triggering a flourishing exploration of GCNs
for skeleton-based action recognition.

2.1.2 MAMP

Masked Motion Predictor (MAMP) [33] is a foundational technique employed
in this work to model referee skeletons. The MAMP framework is simple
yet effective, outperforming all contrastive learning-based methods without
multi-stream input. MAMP proposed a transformer-based MAE trained to
predict skeleton motions instead of joint positions, which is suggested by Wu
et al. in their SkeletonMAE [53], first introducing Transformer-based MAE
into skeleton-based action recognition.

MAMP consists of four parts: A motion-aware masking module, a Joint
Embedding module, a Transformer encoder, and a Transformer decoder. For
an input skeleton sequence, it is first converted to tokens by the embedding
module, then masked by the masking module. After that, the Transformer
encoder processes the tokens to generate feature tokens in the latent space,
and then the decoder is asked to reconstruct the motion of the masked joints
in the original input sequence.

MAMP proposed one token to denote several consecutive frames for one
joint since the position typically doesn’t change dramatically between adjacent
frames. By merging neighboring frames, MAMP reduces the number of total
tokens for one skeleton sequence, leading to less memory cost and allowing
longer sequences to be modeled. Formally, for the input skeleton sequence
S ∈ RTs×V×C (where Ts is the sequence length; V is the number of joints; C
is the number of channels, typically 3 for 3D position), it is divided temporally
into non-overlapping segments S ′ ∈ RTe×V×l×C , where l is the length of each
segment, also called time patch, and Te = Ts/l is the number of time patches.
Then for each joint in each time patch, they embed it into one token:

E = JointEmbed(S ′) ∈ RTe×V×Ce (2.4)

whereCe is the dimension of embedding features. The JointEmbed module
is composed of only one linear layer.

The idea of motion-aware masking is to mask the joint which has a larger
motion. To compute the intensity of motion, they first extract motion with
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stride m: Mi = Si − Si−m. To be consistent with joint embedding, they set
m = l and reshape the motion into the same shape as S ′: M ′ ∈ RTe×V×l×Ci .
Thus, the motion intensity can be expressed as

I =
l∑

i=0

Ci∑
j=0

∣∣M ′
:,:,i,j

∣∣ ∈ RTe×V (2.5)

This motion intensity is further converted into probability distribution with a
temperature γ:

π = Softmax(
I

γ
) (2.6)

Then, positions to mask are sampled by index sampling with Gumbel max:

g = − log(− log ϵ), ϵ ∈ U [0, 1]Te×V ,

idxmask = Index-of-Top-K(log π + g),
(2.7)

where U [0, 1] is a uniform distribution between 0 and 1, and idxmask indicated
the indice of joints that are masked.

In the Transformer Encoder, the masked tokens are removed, and the rest
of the sequence is served as input. So the input length is Nu = Te × V × (1−
mask_ratio). Assume there are Le layers in the encoder, then the latent
representation is given by

H0 = Flatten(E),

H ′
l = MultiHead-SelfAttention (LayerNorm (Hl−1)) +Hl−1, l ∈ 1, · · · , Le

Hl = MLP (LayerNorm (H ′
l)) +H ′

l , l ∈ 1, · · · , Le

Hu
e = LayerNorm (HLe)

(2.8)
In the decoder, learnable mask tokens are inserted back into the positions
where the joints are masked according to idxmask. The recovered sequence
He is hence back into shape He ∈ RTe×V×Ce . Then He is sent to the decoder,
which has the same architecture as the encoder. Therefore, the output feature
from the decoder can be denoted as

Zd = Decoder(He) (2.9)

For motion prediction, a fully connected layer is added on top of the
decoder. For the decoded feature Zd ∈ RTe×V×Cd , the predicted motion is

Mpred = Linear(Zd) (2.10)
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Then an MSE loss is computed between Mpred and reconstruction target
motion Mtarget to update the whole model:

L =
1

|idxmask |
∑

(i,j)∈idxmask

∥∥∥(M pred
i,j,: −M target

i,j,:

)∥∥∥2

2
(2.11)

2.1.3 data2vec

data2vec [36] is a general self-supervised learning framework proposed for
multiple modalities such as language, speech, and vision. This idea is adopted
by Skeleton2vec [54] later for skeleton-based action recognition.

The core idea of data2vec is to predict latent representations of the
complete input data from a masked view of the input within a self-distillation
framework using a standard Transformer architecture [55]. This approach
allows the model to predict a contextualized training target computed from
the entire sequence rather than from a local token, thereby encouraging the
model to learn more meaningful and integrated representations.

Specifically, data2vec only predicts representations for masked tokens.
The representations to predict are contextualized representations derived
from the encoding of the particular token and other information from the
sample using self-attention in the Transformer network. A teacher model
is maintained to provide the target representations. The teacher model
is parameterized by an exponential moving average (EMA) of the model
parameters θ.

θteacher = τθteacher + (1− τ)θ (2.12)

where τ is the decay factor to control the sensitivity of the EMA to recent
changes. Typical τ values are close to 0.999 or 0.9999, sometimes with linearly
increasing.

Training targets are constructed based on the output of the top K

Transformer blocks of the teacher network. Specifically, the output of the FFN
layer before the residual connection is used. The output is normalized before
averaging over K blocks to get the training target. Denote the output of the
Transformer block l at time step t as alt, the training target is given by

yt =
L∑

l=L−K+1

Normalize(alt) (2.13)

where L is the number of total Transformer blocks. A common normalization
method is instance normalization.
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The training objective used in data2vec is a Smooth L1 loss:

L(yt, ft(x)) =

{
1
2
(yt − ft(x))

2/β |yt − ft(x)| ≤ β

|yt − ft(x)| − 1
2
β otherwise

(2.14)

where β controls the transition from a squared loss to an L1 loss, depending
on the size of the gap between the target yt and the model prediction ft(x) at
time-step t. This smoothed loss is less sensitive to outliers. In their work, the
β value is set between 1 and 4, depending on the task type.

2.1.4 Other Methods

2.1.4.1 Supervised Learning Methods

GCN-based Methods Following ST-GCN [3], many works are proposed to
improve the GCNs in different ways, such as graph connections, modeling
efficiency, learning objectives, and long-range dependencies. 2s-AGCN [4]
proposed to use two-stream input and allow the model to learn adaptive
joint connections from data. DGNN [56] builds GCN on directed acyclic
skeleton graphs. AS-GCN [57] extended the skeleton graph by adding
extra links inference from body actions and body structures. DynamicGCN
[58] introduced a lighter Context-encoding Network to learn the skeleton
topology for GCNs, yielding a more lightweight model. MS-G3D [28]
unified spatial modeling and temporal modeling, capturing long-range cross-
spacetime correlations by introducing new edges across spacetime and
disentangling them for smooth convolution. Shift-GCN [59] introduced
shift convolution operation on the graph for GCNs and achieved 10x less
computational complexity. DC-GCN [60] split channels in GCNs into several
decoupling groups with a trainable adjacent matrix each, increasing the
model’s expressiveness. DDGCN [61] proposed to compute action-dependent
dynamic neighboring sets for different nodes and utilized directional graphs in
computing. SGN [5] incorporated semantics of joint types and frame indices
for GCNs. MST-GCN [62] devised a multi-scale graph convolution module
to enlarge the receptive field of each node for better modeling long-range and
non-local relations. CTR-GCN [63] proposed to refine skeleton topology in
a channel-wise way, leading to flexible and effective correlation modeling.
EfficientGCN [64] constructed GCNs with more efficient Convolution blocks
and a joint attention mechanism. InfoGCN [65] proposed to train GCNs
based on information bottleneck objectives. STF [66] utilized gradient
information to let GCNs focus on relevant spatial-temporal features. HD-GCN
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[9] proposed a hierarchically decomposed graph combined with an attention-
based aggregation module to learn meaningful edges for GCNs. STC-Net
[8] introduced Spatial-Temporal Curves and Dilated Kernels for modeling
spatiotemporal dependencies. GAP [67] introduced a text encoder powered by
GPT-3 to guide the representation learning of GCNs with the encoded natural-
language action description from the text encoder.

RNN-based Methods Recurrent Neural Networks (RNNs) are a common
method for sequence modeling. Since the recognition is based on skeleton
sequences, it is naturally suitable for RNN-based methods. RNN methods
usually take the coordinates of a human joint at each frame as the input
at each time step. In the pre-GCN era, the RNN-based method is one of
the mainstream methods for skeleton-based action recognition. HBRNN
[40] divided the human skeleton into five parts and utilized a hierarchical
bidirectional RNN to model the skeleton sequence. PA-LSTM [34] was
the baseline method provided for the NTU-RGB+D dataset. PA-LSTM
incorporated a part-aware module into the LSTM, which enables the model
to learn patterns of different human parts flexibly. ST-LSTM [41] proposed
to traverse the skeleton data in a tree structure and used a trust gate to
better control the information flow in LSTM. VA-LSTM [42] integrated a
novel view-adaption scheme to LSTM to automatically determine the most
suitable viewpoint for recognition. STA-LSTM [68] incorporated the attention
mechanism into LSTM and trained the model in an end-to-end manner. Ind-
RNN [69] proposed a new type of RNN where neurons are independent of
each other in the same layer but connected across layers, which worked well
for skeleton-based action recognition. AGC-LSTM [70] introduced graph
convolution to replace the inner product in the LSTM cell and applied attention
to enhance feature integration. ARRN-LSTM [43] proposed a Recurrent
Relational Network followed by attention to extract features for LSTM. BGC-
LSTM [71] leveraged Bayesian inference to a graph convolution and LSTM-
based model to better capture the stochasticity and variation in the skeleton
data. However, RNN-based methods are no longer the mainstream method
since the existence of GCNs and some unsupervised methods later.

CNN-based Methods Convolutional neural networks (CNN) have proven
to be highly effective in image processing. However, skeleton data consists
of joint 3D coordinates, which are different from image pixels. Only a few
earlier works tried to regard skeletons as pseudo-images and applied CNNs.
Ke et al. [44] proposed to transform skeleton sequences into three clips with
deep models, then used CNNs and Multi-Task Learning Networks to jointly
process generated clips for action recognition. HCN [45] employed a CNN
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model to hierarchically learn from point-level features to global co-occurrence
skeleton features. PoseC3D [46] proposed to use 3D heatmap volume instead
of graph sequence as the input and applied a 3D-CNN for action recognition.
Though CNN-based methods are not preferred for skeleton-based action
recognition, PoseC3D’s experiment results outperform many advanced GCN-
based methods, such as Shift-GCN and MS-G3D, indicating that 3D-CNN-
based methods might have huge potential and deserve more investigation.

Transformer-based Methods Transformer [55] is a pure attention-based
network proposed originally for Neural Machine Translation. It was then
proven to be highly effective in language modeling [50, 51, 72] for various
NLP tasks, and eventually leads to the extraordinary large language models
[73] today. Nevertheless, Transformer is also in the process of replacing
CNNs in image processing. Recent Transformer-based works [74, 75,
52] have shown its power in vision tasks. Since Transformer networks
have generally good learning abilities for all modalities, many works have
attempted to apply Transformer networks to skeleton-based action recognition.
DSTA-Net [76] was the first attempt to model skeleton sequences solely
based on attention modules for skeleton-based action recognition, where it
decoupled the sequence into several streams for attention computation. ST-
TR [30] devised a Spatial Self-Attention and a Temporal Self-Attention to
learn the dynamics of skeleton sequences. STTFormer [31] proposed to
capture relations between different joints over frames by using Transformer
to explicitly model flattened frames within a tube, and then used a feature
aggregation module to integrate tube features. SkeleTR [32] first modeled
intra-person skeleton dynamics with GCNs, and then utilized Transformer
to capture person interactions for in-the-wild action recognition. While the
Transformer network has strong learning ability, it requires a huge amount of
data to train in order to learn a capable model, which is not easy in the area
of skeleton-based action recognition. However, in the setting of unsupervised
learning, more data is available. Hence, more Transformer-based works focus
on unsupervised learning for skeleton-based action recognition.

2.1.4.2 Unsupervised Learning Methods

Contrastive Learning-based Methods In the field of skeleton-based action
recognition, skeletons can be collected through pose estimation tools from
videos, while annotating action labels could be time and resource-consuming.
Hence, many works explore the application of contrastive learning frameworks
to learn better representations of skeleton sequences for action recognition.
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CrosSCLR [77] proposed a cross-view contrastive-learning framework, which
attempts to preserve cross-view consistency. MCC [78] built positive pairs by
constructing speed-changed and motion-broken clips of skeleton sequences,
aiming for maintaining motion consistency and continuity. ISC [79] proposed
inter-skeleton contrastive learning, encouraging the representation of different
frames in the same sequence to be close together while far away from other
sequences. AimCLR [80] applied Abundant Information Mining on extremely
augmented samples to improve the effect of contrastive learning. CPM
[81] identified non-self-positive samples in a contextual queue to boost the
effect of contrastive learning. CMD [82] introduced Cross-modal Mutual
Distillation for positive mining. Moliner et al. [83] applied BYOL [49]
on skeleton-based action recognition, aligning representation of aggressively
augmented samples from a student model to that of conservatively augmented
samples from a teacher model, where the parameter of the teacher model
is an exponential moving average of the student model. RVTCLR+ [10]
proposed to use skeleton sequences with different visual tempos as positive
pairs in contrastive learning. ActCLR [12] extracted motion regions in the
skeleton as actionlets to better guide contrastive learning. SkeAttnCLR
[84] integrated local similarity and global features by attention for better
contrastive pair building. PSTL [85] partially masked input streams in
both spatial and temporal information to build positive pairs. HaLP [86]
proposed to hallucinate new positive samples in the latent space to boost
contrastive learning. HiCo [87] represented skeleton sequences into multiple-
level features and performed contrastive learning on fusion features. Although
contrastive learning methods have shown significant efficacy in skeleton-based
action recognition, existing methods mainly rely on limited datasets curated
for supervised learning tasks, which leads to questions about the potential
for further enhancement by integrating more unlabeled data. Furthermore,
the performance of contrastive learning methods strongly depends on the
method adopted to construct positive or negative pairs, especially through
data augmentation techniques, which is not a straightforward way to utilize
unlabeled data.

Autoencoder-based Methods In addition to MAMP [33] and Skele-
ton2vec [54], many other works investigated autoencoder-based methods for
skeleton-based action recognition. SeBiReNet [88] proposed to disentangle
pose-dependent features and view-dependent features and train a denoising
autoencoder to reconstruct the original input. Colorization [89] designed
skeleton cloud colorization tech- unique, in which the skeleton sequences are
first represented as 3D skeleton clouds, and each point in the cloud is colorized
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according to its spatial-temporal order. Then an autoencoder-based framework
is applied to reconstruct the cloud. Hi-TRS [90] incorporated hierarchical
Transformer-based multi-task feature learner, which includes frame-level,
temporal-level and context-level prediction tasks. GL-Transformer [91]
devised a global and local attention mechanism and proposed a new pertaining
task on predicting multi-interval pose displacement to encourage the model to
learn both global and local relations. SkeletonMAE (Yan et al.) [92] used
GCNs as backbone models to build an encoder-decoder-based MAE.

2.1.4.3 Few-shot Learning Methods

Given the high cost of labeling data, annotating a small portion of the data
in new classes is often more realistic, leading to the problem of obtaining
good classification performance for unseen classes based on only a few
samples. Existing general few-shot methods such as ProtoNet [93], NGM
[94], PairNorm [95], and DropEdge [96] have been established as baselines
of the few-shot learning for action recognition, yet their performances are
not satisfactory, indicating that task-specific design is needed. DASTM
[97] proposed a rank maximization constraint on skeleton representations
to achieve spatial disentanglement and then used an attention-based spatial
activation module to incorporate disentangled representations for matching.
JEANIE [98] performed joint alignment of temporal blocks and selected
viewpoint indexes between the support sample and query sample, choosing
the smoothest path to avoid sudden jumps in matching temporal positions
and view indexes. PAINet [99] introduced a spatial self-attention module and
a spatial cross-attention module to mitigate the challenge of similar spatial
appearances and inconsistent temporal dependencies during matching. Yang
et al. [100] performed multi-scale spatial-temporal feature matching for
both skeleton position sequence and motion sequence for one-shot action
recognition. ALCA-GCN [101] proposed a new metric that models an action
as a matrix of local comparable units on both spatial and temporal dimensions
and devises a selective sum to determine the sample similarity.

2.2 Data Available

Tracab has extensive tracking data of referees and assistant referees from
numerous games, which forms the foundation of this work. The skeleton data
for referees utilized in this work consists of a time series of 3D coordinates
of various body joints, with frame rates ranging from 25 Hz to 50 Hz. These
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3D coordinates are based on a pitch coordinate system, where the origin is
at the center mark, the x-axis runs along the line connecting the two goals,
the y-axis runs along the halfway line, and the z-axis extends vertically. The
skeleton sequences for referee activities cover the entire duration of each
game, providing a substantial amount of available data, which forms a strong
foundation for unsupervised representation learning.

However, the referee skeleton sequences lack labels, meaning they do not
include information about the specific signals given by referees. Existing
labels are annotated for game events, which do not correspond with the timing
of the referee’s signals. For instance, a label for a goal kick or a free kick is
marked at the time the ball is kicked, which typically does not align with the
time when the referee shows the signal. Some useful labels like ’whistle’ and
’ball dead’ could provide some coarse information, but they are insufficient
for directly training models for referee action recognition.

Therefore, this work began with almost entirely unlabeled data. Not only is
labeled data lacking, but the referee action classes are also undefined. The first
challenge is to define the task by identifying the specific referee action classes
of interest, ensuring they are both representative for application and practical
for data collection. Subsequently, a significant challenge is to collect labeled
data for the defined tasks, which is essential for the final model’s performance.

2.3 Football Referee Actions

The objective of this project is to recognize referees’ actions based on their
skeletal data, including the referee and two assistant referees. According to
the Laws of the Game [37], some of the referee signs are standardized, while
some signs may vary according to different referees’ habits.
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Figure 2.2: Referee signals defined by the Laws of the Game 2023/24 [37]

2.3.1 Standardized Referee Actions

For referees, the Laws of the Game provides standardized signals in Chapter 5
for direct free kicks, indirect free kicks, penalty kicks, advantages, goal kicks,
corner kicks, disciplinary sanctions, VAR checks, and VAR reviews, as shown
in Figure 2.2.

For assistant referees, Chapter 6 of the Laws of the Game provides
their standardized signals, including throw-ins, corner kicks, goal kicks,
substitutions, free kicks, and offsides on the near, middle, or far side of the
field, as shown in Figure 2.3.
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Figure 2.3: Assistant Referee signals defined by the Laws of the Game 2023/24
[37]

2.3.2 Non-standardized Referee Actions

Despite the aforementioned standardized referee actions, different referees
typically have various habits of giving signals for some other decisions. For
example, when it comes to indicating there is no foul, some referees might
swiftly swing their hands back and forth in a ’no’ gesture, whereas others may
choose to point directly at the ball, indicating the touch is on the ball but not
the player. Non-standardized actions are common for the referee, including
decisions like no foul, substitution, interruption, calling a doctor, etc. Despite
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the variation in gestures for the same decision among different referees, these
actions remain clear to both players and audiences. Consequently, deep
learning-based methods are still expected to understand these actions with
sufficient training data.

2.4 Deep Learning for Action Understanding in
Football

To the best of our knowledge, there have been no attempts to classify football
referees’ actions using either skeleton data or video data. However, attempts
are made to understand football through video data [21, 102, 103]. To
facilitate football video understanding, Giancola et al. proposed SoccerNet
[26], a scalable dataset for football action spotting. Jiang et al. proposed
SoccerDB [104], introducing more tasks including object detection, action
recognition, temporal action localization and replay segmentation. SoccerNet-
v2 [27] further expanded the task to also include camera shot segmentation and
replay grounding. Following these prior works, numerous studies continued
building on the advancements in football video understanding and analysis
[105, 106, 16, 107, 108, 109], addressing various challenges and introducing
innovative techniques. Nevertheless, existing works focus on RGB-based
video understanding; recognizing football-related actions using skeleton data
remains a challenging task.

2.5 Summary

Skeleton-based action recognition has been a popular research topic, including
supervised and unsupervised methods. Graph Convolutional Networks
(GCNs) are the predominant approach for supervised learning, with Spatial-
Temporal Graph Convolutional Networks (ST-GCN) serving as an important
baseline for our methods. Pre-training techniques based on masked
autoencoders, such as Masked Motion Predictor (MAMP) and data2vec, are
the basis of this work. These techniques allow the model to learn from
large amounts of unlabeled data we have, enhancing its ability to understand
complex patterns. However, since these methods primarily focus on everyday
actions, adapting them to recognize the specific actions of football referees is
still a challenging task.

To the best of our knowledge, although numerous studies have utilized deep
learning methods to understand football, they primarily rely on video data. No
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prior research has focused on classifying referee actions based on skeletal data.
This study aims to bridge this gap by leveraging the advanced methodologies
mentioned before. Therefore, this endeavor requires building all necessary
components from scratch, including the collection of training datasets, the
establishment of benchmarks, and the implementation and adaption of models
specifically for recognizing football referee actions.
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Chapter 3

Frame-level Assistant Referee Ac-
tion Recognition

3.1 Overview

Assistant referees play a crucial role in supporting the main referee by
monitoring the sidelines, primarily focusing on offsides and other boundary-
related decisions like throw-ins, goal kicks, and corner kicks during a football
match. They also assist in showing substitutions, helping to enforce throw-
in positions, and signaling fouls and other infringements that occur out of
the main referee’s line of sight [37]. The typical actions of assistant referees
are standardized, as shown in Figure 2.3. Except for the signal of free kicks,
the other actions of assistant referees are static, often maintained for longer
than one second. Consequently, there is minimal need to model these actions
dynamically, as data from single frames is likely sufficient for interpreting
their actions. Therefore, we propose a pipeline utilizing a frame-level model
specifically designed for recognizing the actions of assistant referees. This
pipeline is structured into two steps:

• Pre-training: Learn representations from unlabelled skeleton frames
with transformer-based masked autoencoder in a self-supervised
approach.

• Task-specific Fine-tuning: Fine-tune the pre-trained model on a
labeled dataset specific to referee action recognition to adapt it for the
task of classification.

However, a significant challenge in this pipeline is the scarcity of data.
While there is plenty of unlabelled data available for pre-training, specifically



28 | Frame-level Assistant Referee Action Recognition

labeled data is limited, which could prevent the fine-tuning stage from being
successful and result in an ineffective model. To address this issue, we
have implemented several data collection strategies, notably utilizing the pre-
trained model. These methods include:

• Manually annotating data

• Finding data based on specific arm angles

• Using cosine similarity matching within the feature space of the pre-
trained model

• Fine-tuning a binary classification model with the pre-trained model and
using it to help with annotation

Another challenge in the fine-tuning stage is the presence of minor classes
that are easily confused with more common ones, potentially leading to
ineffective learning. For instance, specific actions like far side offside, middle
side offside, and near side offside occur only when an offside is called, which
is infrequent, and these actions are easily mistaken for goal kicks or raising
flag actions. To mitigate such confusion, we propose a two-stage recognition
scheme for assistant referees. In the first stage, we classify seven common
actions, including goal kicks, corner kicks, throw-ins, and a general raising flag
action. If a raising flag action is identified, we then proceed to a more detailed
nine-way classification to accurately recognize the specific action following
the raised flag.

In the following sections of this chapter, we will provide detailed
descriptions of the methodologies and strategies implemented to address the
challenges outlined. These include thorough explanations of the pre-training
techniques in Section 3.2.1, specifics of the two-stage classification system in
Section 3.2.2, techniques for post-processing in Section 3.2.3, and additional
details on the technical aspects of the proposed pipeline. We will discuss
the data collection methods in Section 3.3.1 and the results of the proposed
methods in the rest of Section 3.3.
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3.2 Method

We denote our model as F-SPTAR (Frame-level Skeleton Pre-trained
Transformer for Assistant Referees) in the following part in this chapter.

Masked joints
Unmasked joints

Encoder Decoder Linear

L2 loss

Mask token
Unmasked joint token

predicted joint positions

referee skeleton frames

(a) Overview of the pre-training process of F-SPTAR

referee skeleton frames

Encoder

MLP

label of referee action
for the frame

cross entropy loss

Residual (Linear)

+ LayerNorm

(b) Overview of the fine-tuning process of F-SPTAR

Figure 3.1: Overview of the frame-level model
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3.2.1 Pre-training

3.2.1.1 Model Architecture

The transformer model has demonstrated its effectiveness in learning
representations across various data types, including text [50, 51, 72], images
[74, 75, 52], and skeleton data [31, 32, 33]. Therefore, we propose utilizing a
transformer-based masked autoencoder to pre-train our model on the skeleton
frame data. We follow the setting in MAMP [33], as described in Section
2.1.4.2; both the encoder and decoder incorporate a bidirectional attention
mechanism, enabling a thorough integration of contextual information. As
shown in Figure 3.1a, several joints are randomly chosen to be masked
from the referee skeleton frames (grey ones). Then the encoder processes
the masked frame with only unmasked tokens to produce a representation,
which the decoder then uses to reconstruct the masked portions of the input
frames. This methodology is designed to enable the model to acquire a
general understanding of the relationships between joint positions and the
overall skeleton structure. We anticipate that this model will not only enhance
the effectiveness of subsequent fine-tuning stages but also facilitate data
collection.

3.2.1.2 Joint Embedding

As each frame consists of 3D coordinates of 21 joints, we transform these into
21 dense tokens to serve as inputs for our model. This is achieved by applying
a linear layer to map the 3D positions into a dense space, along with a joint-
specific embedding for each joint. The final input representation for each joint
is the sum of the linear layer output and its corresponding joint embedding.
This combined representation is then normalized using a layer normalization
layer to ensure training stability.

Formally, the input frame x ∈ Rm×d, where m = 21 is the number
of joints and d = 3 indicates the 3D coordinates. The input frame is first
centralized before the conversion since the absolute position of the referee is
not so important for learning general knowledge of referee gestures, and the
normalization could help reduce potential numerical issues.

µc =
1

m

m∑
i=1

xi

xc = x− µc

(3.1)
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To ensure that the tokens contain both spatial and joint-type information,
we employ a space encoder to transform 3D coordinates into dense vectors,
complemented by learnable joint-specific embeddings that represent different
joint types. We anticipate that incorporating joint type awareness into the
model could enhance the effectiveness of attention modules in modeling
dependencies between joints. The space encoder is a linear layer projecting
vectors from R3 to Rh, and the joint embedding J ∈ Rm×h is a mapping from
joint types to learnable dense vectors, where h is the dimension of hidden
space. In this work, h is set to 256. The eventual embedding for each joint can
be represented by

Ei = LayerNorm(Linear(xc
i) + Ji). (3.2)

Eventually, each frame is converted into a sequence of 21 tokens representing
21 different joints and their positions.

3.2.1.3 Mask Strategy

We randomly mask 50% of the joints from the input frames. In MAMP [33],
the mask ratio is set to 90%. However, MAMP is designed for frame sequences
with significant temporal redundancy. In the case of a single frame, masking
a joint results in insufficient information to infer its position. Therefore,
we reduce the mask ratio to 50% to ensure the pre-training task remains
manageable. The tokens corresponding to the selected masked joints are
removed from the input frames. To reconstruct from modeled representations,
learnable mask tokens are inserted back into the output of the encoder, as
shown in Figure 3.1. The decoder is then asked to reconstruct the masked
joints. It is crucial to note that since only the encoder is utilized during the
fine-tuning stage, this approach ensures that the encoder does not encounter
any mask tokens. Consequently, this eliminates the discrepancies between the
training and testing data distributions.

Formally, for the embeddings of an input frame E ∈ Rm×h, the indices of
the joints to be masked idxmask are given by

p = η ∼ U [0, 1]m

idxmask = Index-of-Top-K(p)
(3.3)

where η is random noise drawn from a uniform distribution from 0 to 1; K
is the rounded number corresponding to 50% of all joints, which is 10. The
input to the encoder is then the extracted unmasked part Eu ∈ RK×h from the
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embeddings E according to idxmask .

3.2.1.4 Pre-training Task

We adopt joint position prediction as the pre-training task. Specifically, a
linear layer is added on top of the decoder to predict the position of the
masked joints. The model is then trained using an L2 loss, which compares
the predicted positions to the actual positions of the masked joints.

Formally, the unmasked embeddings Eu are fed into the encoder to get the
representation in the hidden space.

Hu = Encoder(Eu) (3.4)

The learnable mask tokens are inserted back into the positions according to
idxmask . The representation with mask tokens He ∈ Rm×h is then sent to the
decoder.

Zd = Decoder(He) (3.5)

A linear layer is then applied to predict the positions of masked joints.

P pred = Linear(Zd) (3.6)

An L2 loss is computed between predicted positions P pred and the ground truth
positions of masked joints P target:

L =
1

|idxmask |
∑

i∈idxmask

∥∥∥(P pred
i − P target

i

)∥∥∥2

2
(3.7)

3.2.2 Fine-tuning for Two-stage Recognition

3.2.2.1 Two-stage Recognition

We propose a two-stage recognition process for assistant referee actions.
Stage 1 is a 7-way classification for common actions, as listed in Figure
3.2. Once a RAISE_FLAG_VERTICALLY action is identified in Stage 1,
Stage 2 is activated to determine the specific action that follows the flag
raise, with nine potential actions also listed in Figure 3.2. Different models
are trained for different stages. We refer to the model for Stage 1 as
F-SPTAR-S1, and the model for Stage 2 as F-SPTAR-S2. Note that we do
not include the action of showing a goal scored in our recognition model,
as the signal of an assistant referee to show a goal scored is simply running
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towards the halfway line, which is difficult to distinguish from normal running
actions. This two-stage approach helps to minimize confusion between some
rare and common classes. For example, a GOAL_KICK might be mistaken
for a MIDDLE_SIDE_OFFSIDE, and a RAISE_FLAG_VERTICALLY could
be confused with a FAR_SIDE_OFFSIDE. With the two-stage design, these
confusions are largely eliminated. In addition, labeled data for rare classes like
offside is usually limited, as offsides are infrequent in football matches. The
two-stage design restricts the label imbalance problem to Stage 2, lessening
its impact on the classification of common actions.

NO_DECISION

THROW_IN_LEFT

THROW_IN_RIGHT

GOAL_KICK

CORNER_KICK

SUBSTITUTION

RAISE_FLAG_VERTICALLY

NO_DECISION

RAISE_FLAG_VERTICALLY

FAR_SIDE_OFFSIDE

MIDDLE_SIDE_OFFSIDE

NEAR_SIDE_OFFSIDE

THROW_IN_LEFT

THROW_IN_RIGHT

GOAL_KICK

CORNER_KICK

Stage 1

Y

N

Is output
RAISE_FLAG_VERTICALLY?

Stage 2
Output

prediction

Output
prediction

Figure 3.2: Two-stage recognition of assistant referee action frames

3.2.2.2 Fine-tunining Method

In the fine-tuning phase, we adapt our pre-trained model for the classification
task by adding a linear layer on top of the pre-trained encoder while the decoder
is not used, as shown in Figure 3.1b. We train two different models for
the two stages using the same approach with collected data. All parameters
of the encoder and the newly added linear layer are learnable, and we use
cross-entropy loss to update these parameters. To address the issue of label
imbalance in our dataset, we utilize weighted resampling to ensure that
all classes have an equal probability of occurrence during the fine-tuning
process. Furthermore, to make the model aware of the absolute position
of the assistant referee, which is critical for distinguishing between similar
actions, we incorporate a residual module. For instance, a GOAL_KICK and
a MIDDLE_SIDE_OFFSIDE may appear similar in gestures, but GOAL_KICK
occurs only near the goal area, whereas MIDDLE_SIDE_OFFSIDE can occur
along any part of the touchline.

Residual Module The residual module consists of a straightforward linear
layer that processes the original input frames before they are converted into
embeddings. The residual layer maps the input frame x ∈ Rm×d into a
high-dimensional space, matching the dimension of the encoder output. The
encoder’s output is then updated by adding the residual output to it, and this
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combined output is normalized using a layer normalization step to ensure
training stability. Formally, the representationH before the classification layer
with a residual module is given by

oresidual = Linear(x)
H = LayerNorm(Encoder(Eu) + oresidual)

(3.8)

3.2.3 Post-processing

With two fine-tuned models for Stage 1 and Stage 2, we could obtain
frame-level predictions for assistant referee actions in real-game scenarios.
However, for actual games, our focus shifts from frame-level to action-level
predictions. Therefore, we need to implement post-processing techniques
to identify actions based on frame predictions. Since referee actions are
continuous, an action typically involves several consecutive frames indicating
the same action, whereas isolated frame predictions are more likely to
represent noise than true actions. Leveraging this, we propose implementing
three different thresholding techniques to accurately identify assistant referee
actions, effectively reducing false positives.

Duration Threshold We confirm an action prediction only if all frames
within the duration consistently indicate the same action. Otherwise,
NO_DECISION is the prediction by default. We set the duration threshold as
0.5s in all our experiments.

Confidence Threshold We established a threshold for the softmax
probability. Normally, using an argmax function is equivalent to selecting the
class with the highest predicted probability, regardless of the actual probability
values. However, when the classification probability is not dominant, it
indicates a lack of confidence in the model’s prediction. Our observations
indicate that predictions made with low confidence are more likely to be
incorrect. Leveraging this, we set a confidence threshold of 0.9 for all our
experiments. Any predictions with a probability below this threshold are
categorized as NO_DECISION.

Model-switching Threshold Once a RAISE_FLAG_VERTICALLY action
is confirmed in Stage 1, we activate the Stage 2 model to identify the
subsequent action. However, there are scenarios where the Stage 2 model
might only detect NO_DECISION or the initial RAISE_FLAG_VERTICALLY
action may have been incorrectly identified, resulting in no subsequent action.
In such cases, returning to the Stage 1 model is necessary. To manage
this transition, we introduce a model-switching threshold of 10 seconds.
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Specifically, if an action is recognized in Stage 2, we switch back to Stage 1
immediately after the action ends. If no action is detected within 10 seconds,
we automatically go back to Stage 1.

3.3 Experiments and Results

3.3.1 Data Preparation

3.3.1.1 Pre-training Data

Substantial data are available at Tracab for self-supervised representation
learning of skeleton frames. As we focus specifically on learning patterns
of referee gestures, we only use skeleton frames from referees for our pre-
training data, including the main referee and two assistant referees. We load
skeleton frames from 223 games. To avoid pre-training on data used for
future testing, we designated 28 games specifically for validation and testing.
Consequently, all validation and test datasets are derived from these 28 games,
and we ensure that the pre-training data exclude any frames from them. This
separation guarantees that the pre-training phase remains uninformed about
the evaluation sets so that the evaluation sets are fair measures of the model’s
generalization capabilities. To enhance the quality of the pre-training data, we
propose several data cleaning strategies, including removing corrupted frames,
as well as noisy frames in both spread and motion. Refer to Appendix A.1 for
details of the pre-training data cleaning.

Eventually, after filtering out corrupted and noisy frames, we collected a
large-scale dataset for frame-level pre-training, as shown in Table 3.1. From
the 28 games designated for evaluation, we selected three games for the
validation set.

# Frames

Training set 78,559,500
Validation set 1,606,500

Table 3.1: Statistics of frame-level pre-training data

3.3.1.2 Classification Dataset for Stage 1

We propose several strategies for collecting datasets for Stage 1. These
strategies can be applied in any sequence and may be repeated as necessary
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since the primary objective is to create a high-quality frame-level assistant
referee classification dataset for Stage 1. The strategies are as follows:

Manual Annotation Manual annotation is straightforward and reliable
but inefficient for data collecting. Nevertheless, it can serve as a valuable
starting point for implementing the automatic and semi-automatic
strategies outlined below.

Cosine Similarity Matching We use cosine similarity within the latent
space of the pre-trained model to automatically annotate new data. By
applying two specific thresholds, frames with a low cosine distance to
known class data are annotated as belonging to the same class.

Auto-annotation with Binary Classification Models For each class of
interest, we fine-tune the pre-trained model on a specifically designed
binary classification task to determine whether a frame belongs to the
action class or not. The fine-tuned model is then used to automatically
annotate unlabeled data. This strategy enables more complex decision
boundaries, which are more expressive than the simple spherical
boundaries used in cosine similarity matching.

Throw-in Direction Division To achieve a more fine-grained classi-
fication, we further split the class THROW_IN into THROW_IN_LEFT
and THROW_IN_RIGHT, as this provides richer information for future
applications, such as event detection.

Data Cleaning Conditioned on Arm Angles and Joint Distances
Some errors are observed in the auto-annotated data using the
aforementioned strategies. To enhance the dataset quality, action-
specific denoising strategies based on arm angle and joint distance
conditions are implemented.

Data Supplementation We enhance model robustness by supple-
menting the NO_DECISION data with frames of the assistant ref-
eree scratching or wiping sweat. Additionally, we enrich the
RAISE_FLAG_VERTICALLY dataset according to specific rules to make
it more expressive.

Please refer to Appendix A.2 for details of these data-collecting strategies.
With all the above strategies, we collected a frame-level classification dataset
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for Stage 1, ensuring that both the validation set and the test set are label-
balanced to provide a fair assessment of model performance, as shown in Table
3.2.

Train Valid Test

NO_DECISION 5897 80 80
THROW_IN_LEFT 2690 80 80
THROW_IN_RIGHT 1707 80 80
GOAL_KICK 2745 80 80
CORNER_KICK 1326 80 80
SUBSTITUTION 838 80 80
RAISE_FLAG_VERTICALLY 937 80 80

Table 3.2: Final frame-level classification dataset for assistant referee action
recognition Stage 1

3.3.1.3 Classification Dataset for Stage 2

A large portion of data collected for Stage 1 can be reused in Stage 2. However,
Stage 2 introduces several new classes regarding offsides, requiring tailored
data collection strategies. The new offsides classes are FAR_SIDE_OFFSIDE,
MIDDLE_SIDE_OFFSIDE, and NEAR_SIDE_OFFSIDE, according to the Laws
of the Game 2023/24 [37]. We employ the following strategies to collect data
for offside frames:

Cosine similarity matching We apply the same cosine similarity
matching strategy for the offside actions.

Binary classification model Similar to data collection in Stage 1, binary
classification models for each offside class are trained for data annotation.
However, the quality of auto-annotated data is not satisfactory. The strategy
of training a binary classification model is less effective with insufficient data.

By-product of the goal kick binary model MIDDLE_SIDE_OFFSIDE can
be annotated as a by-product of the binary classification model for GOAL_KICK
in Stage 1 when a GOAL_KICK is predicted far away from the goal area.

Manual annotation from raising flags Offside frames often follow
RAISE_FLAG_VERTICALLY actions. We manually annotate these subsequent
frames to obtain high-quality labeled data.

Please refer to Appendix A.3 for more details. The final classification
dataset collected for Stage 2 is shown in Table 3.3, ensuring label balance
in the validation and test sets.



38 | Frame-level Assistant Referee Action Recognition

Train Valid Test

NO_DECISION 5897 10 10
THROW_IN_LEFT 2690 10 10
THROW_IN_RIGHT 1707 10 10
GOAL_KICK 2745 10 10
CORNER_KICK 1326 10 10
RAISE_FLAG_VERTICALLY 937 10 10
FAR_SIDE_OFFSIDE 292 10 10
MIDDLE_SIDE_OFFSIDE 340 10 10
NEAR_SIDE_OFFSIDE 144 10 10

Table 3.3: Final frame-level classification dataset for assistant referee action
recognition Stage 2

3.3.2 Pre-training

3.3.2.1 Network Architecture

We employ a Transformer-based masked autoencoder for pre-training, as
outlined in Section 3.2.1. We set the number of encoder layers to 6 and the
number of the decoder layers to 2 since only the encoder will be used in the
fine-tuning stage. We set the hidden size to 256 and the dimension of the feed-
forward network to 1024. The head number of the multi-head self-attention
module is 8. The mask ratio of joints is set to 0.5.

3.3.2.2 Pre-training Details

During the pre-training phase, we utilize the AdamW Optimizer with a weight
decay of 5e-4 and betas set at (0.9, 0.999). The model is trained for 700k steps.
The learning rate starts at 0 and increases linearly to 3e-4 over the first 10,000
steps, followed by an inverse square root decay. We train the model on a single
Nvidia RTX 3060, with the batch size set to 1024. The dropout rates applied
to the attention matrix and hidden layers are both set at 0.1.

3.3.3 Fine-tuning

3.3.3.1 Fine-tuning Details

During the fine-tuning phase, we attach an MLP head to the encoder of the
pre-trained model and discard the decoder. This MLP head is composed of
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two layers, with a hidden layer dimension of 256 and a ReLU function for
non-linear activation. Both Stage 1 and Stage 2 utilize the same fine-tuning
configuration. The entire model is fine-tuned for 5 epochs. We use an AdamW
optimizer, with betas set at (0.9, 0.999) and a weight decay of 5e-4. The
learning rate schedule follows that of the pre-training phase, starting with a
linear warmup for the first 100 steps to 5e-5 and then transitioning to inverse
square root decay. The batch size is set to 32. A dropout rate of 0.5 is applied
to the encoder output to prevent overfitting. The entire fine-tuning process is
performed on a single Nvidia RTX 3060.

3.3.3.2 Experiment Results

Baseline We adopt a simple Multi-Layer Perceptron (MLP) as the baseline for
both 7-way and 9-way tasks. The MLP consists of three layers with a hidden
size of 256. We use the same optimization hyperparameters as in the fine-
tuning, except that we train the MLP for 10 epochs.

The Stage 1 model, devised for a 7-way general action classification, is
fine-tuned on the dataset shown in Table 3.2. The performance of the fine-
tuned model is listed in Table 3.4. As shown in the table, the simple MLP
achieves high accuracy on this task, suggesting that the 7-way classification
is relatively easy. In addition, we compare the performance of our fine-
tuned model to a vanilla transformer encoder without pre-training, as shown
in the second line of the table. When trained from scratch, the vanilla
transformer also achieves satisfactory performance comparable to that of the
MLP, again suggesting that the classification task itself is not difficult. When
fine-tuned from the pre-trained model, as shown in the last line of the table,
the model demonstrates further improvement to an accuracy of 99.46% on
both validation and test sets. It is important to note that during the data
collection phase, we utilized the same pre-trained model for data annotation.
As a result, the collected data are naturally distinguishable within the pre-
trained model’s latent space. This eases the difficulty of fine-tuning the model
to develop a classification model. To conclude, although the task itself may
not be challenging, the data collection process contributes a lot to the excellent
classification performance.
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#Params Stage 1, 7-way Classification
Valid. Acc. Test Acc.

MLP 0.08M 97.32 99.11

F-SPTAR w/o pre-training 6.1M 98.75 98.93
F-SPTAR-S1 6.1M 99.46 99.46

Table 3.4: Performance of fine-tuned model for Stage 1, 7-way classification
task.

For the 9-way classification of raising flag events in Stage 2, we fine-tuned
the pre-trained model with the same configuration on the dataset shown in
Table 3.3. The performance of the fine-tuned model for Stage 2 is listed
in Table 3.5. As shown in the first line, the MLP model behaves less
competitively and only achieves an accuracy of 67.78% on the validation
set and 66.67% on the test set. Similar to the model for Stage 1, we also
compare the fine-tuned model to the model trained from scratch without the
pre-training, as listed in the second line in the Table. For the Stage 2 task, a
vanilla Transformer doesn’t perform satisfactorily as well, though it is slightly
better than the MLP, the fine-tuned model demonstrates significantly better
performance (line 3), achieving an accuracy of 96.67% on both the validation
and test sets, thanks to the general knowledge learned in the pre-trained phase.
The classification task in Stage 2 is notably more challenging due to sparse
data availability, particularly for offside actions, highlighting the critical role
of the pre-trained phase in achieving satisfactory performances.

#Params Stage 2, 9-way Classification
Valid. Acc. Test Acc.

MLP 0.08M 67.78 66.67

F-SPTAR w/o pre-training 6.1M 75.56 75.56
F-SPTAR-S2 6.1M 96.67 96.67

Table 3.5: Performance of fine-tuned model for Stage 2, 9-way classification
task.
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3.3.4 Evaluation on a Real Game

Although the fine-tuned models achieve excellent accuracy on both the
validation and test sets for both stages, the data collection process heavily relies
on model auto-annotation, which does not ensure that the dataset’s distribution
accurately reflects real-game scenarios. The most robust evaluation criterion
is to assess the models’ predictions directly in a real-game environment. To
this end, we have developed the post-processing technique outlined in Section
3.2.3, which allows for integrated predictions from the two-stage models.
The evaluation was conducted on an MLS (Major League Soccer, men’s
professional soccer league sanctioned by the United States Soccer Federation)
game between Inter Miami CF and CF Montreal, played on February 26, 2023.
We assessed the integrated prediction of the two models throughout the entire
game. The ground truth for action types in the game was annotated entirely by
hand. As shown in Table 3.6, the integrated prediction of the two-stage models
achieves 0.9242 in both precision and recall on overall evaluation, resulting
in an F1 score of 0.9242. Considering that the proportion of NO_DECISION
frames in actual games is significantly higher than in the fine-tuning phase,
we set tight thresholds as described in Section 3.2.3, effectively reducing false
positives. False positives tend to occur on single frames but are generally
unstable; therefore, the duration and confidence thresholds are effective in
eliminating them. For specific action types such as CORNER_KICK and
SUBSTITUTION, our model achieves 100% precision and recall, indicating
flawless performance.

# In Game Precision Recall F1-Score

THROW_IN_LEFT 15 0.9333 0.9333 0.9333
THROW_IN_RIGHT 20 1.0000 0.9000 0.9474
GOAL_KICK 9 0.7500 0.8889 0.8136
CORNER_KICK 10 1.0000 1.0000 1.0000
SUBSTITUTION 5 1.0000 1.0000 1.0000
RAISE_FLAG_VERTICALLY 4 1.0000 1.0000 1.0000
FAR_SIDE_OFFSIDE 2 1.0000 1.0000 1.0000
MIDDLE_SIDE_OFFSIDE 1 - 0.0000 -
NEAR_SIDE_OFFSIDE 0 - - -

Overall 66 0.9242 0.9242 0.9242

Table 3.6: Performance of the two-stage action recognition model on a real
game
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The model missed five actions: two THROW_IN_RIGHT, one THROW_IN_LEFT,
one GOAL_KICK, and one MIDDLE_SIDE_OFFSIDE. These misses were
generally due to either insufficiently high confidence or the actions not
maintaining a long enough duration for confirmation, illustrating the tradeoff
in setting tight thresholds. Loosening these thresholds could potentially
enhance the recognition of these actions but would likely increase the number
of false positives. Specifically, the miss of MIDDLE_SIDE_OFFSIDE was
influenced by the visual similarity between the MIDDLE_SIDE_OFFSIDE
and FAR_SIDE_OFFSIDE, leading to insufficient confidence for a definitive
classification in either category.

Additionally, the model generated 5 false positives, with four misclassified
as GOAL_KICK and one as THROW_IN_LEFT. These false positives typically
occur when the assistant referee waves their arm without a flag, looking like an
authentic action since we cannot see the flag through skeletons. Filtering these
out based solely on skeletal data can be challenging. These false positives
should be, to a greater extent, considered as a limitation of relying only on
skeleton input, and should be regarded as an acceptable shortcoming within
the context of the current technological constraints.

Inference Time We evaluated the inference time of our model, as shown
in Table 3.7. The inference time is measured for the entire prediction process
per frame, including two models for the two stages, sequentially processing the
skeletons of two assistants and outputting the prediction. We run the inference
for 10,000 frames and report the average inference time per frame. As shown in
the table, with a batch size of 1, the inference time per frame is approximately
9 ms, allowing the system to operate smoothly at up to 100 Hz in real-time
applications. Increasing the batch size further reduces the inference time per
frame. In conclusion, our recognition model for assistant referee frames is
efficient enough to support real-time recognition tasks.

Batch Size GPU Memory Usage Inference Time (ms/frame)

F-SPTAR

1 322M 8.56
4 322M 2.52
16 322M 0.54
64 322M 0.21
256 408M 0.07
1024 728M 0.04

Table 3.7: Inference time of F-SPTAR on the real game. Evaluations are
performed on an Nvidia RTX 3060 GPU.
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3.3.5 Case Study

We conduct case studies to observe the variation in probabilities for predicted
actions, in order to assess the stability of the model’s predictions. We observe
five cases for THROW_IN, GOAL_KICK, CORNER_KICK, SUBSTITUTION, and
RAISE_FLAG_VERTICALLY, respectively. Note that we omit classes with
probabilities consistently below 0.05 from the plot during our observations.
In the skeletons depicted in the following figures, the left side of the body is
shown in red, while the right side is shown in green.

THROW_IN As shown in Figure 3.3, the orange line represents the
probabilities over frames during a throw-in signal. The probability is almost
one when the assistant referee gives the signal and remains very stable. There
are predictions of CORNER_KICK during the transition from NO_DECISION
to THROW_IN; however, these predictions are short in duration and are easily
filtered out by our duration threshold.
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Figure 3.3: Output probabilities for a THROW_IN

GOAL_KICK As shown in Figure 3.4, the probability of the action being
a GOAL_KICK rises to one as soon as the assistant referee raises the flag and
remain extremely stable until the signal ends.
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Figure 3.4: Output probabilities for a GOAL_KICK

CORNER_KICK Figure 3.5 shows the predicted probability over frames for
a CORNER_KICK. Similar to the GOAL_KICK, the prediction response is quick,
accurate, and stable.



44 | Frame-level Assistant Referee Action Recognition

0 20 40 60 80 100
Frame number

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

y

Action Probability
NO_DECISION
CORNER_KICK

Figure 3.5: Output probabilities for a CORNER_KICK

SUBSTITUTION Figure 3.6 shows the predicted probabilities over frames
for a SUBSTITUTION. The probability remains stable at one when the referee
is showing the signal. During the transition, the model predicted a small
probability for RAISE_FLAG_VERTICALLY, but this is insufficient to affect
the overall prediction.
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Figure 3.6: Output probabilities for a SUBSTITUTION

RAISE_FLAG_VERTICALLY In Figure 3.7, we show the probability of a
RAISE_FLAG_VERTICALLY and the subsequent action. The figure illustrates
that the duration is divided into five periods, each with a dominant prediction.
The model provides stable predictions, transitioning from NO_DECISION
to RAISE_FLAG_VERTICALLY, then back to NO_DECISION, followed by
THROW_IN_LEFT, and finally returning to NO_DECISION.
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Figure 3.7: Output probabilities for a RAISE_FLAG_VERTICALLY and the
subsequence THROW_IN_LEFT

Through case studies, we demonstrate that our model achieves not only
high accuracy but also provides consistent and stable predictions, which are
crucial for reliable action recognition in real-game scenarios.
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3.3.6 Summary

Through experiments, we verify that single-frame predictions are sufficient
for achieving good performance. Our proposed model performs well on the
collected dataset and excels in real-game scenarios, highlighting its great
value for practical applications. Our findings indicate that the pre-trained
model contributes to final performance more from data collection than from
providing general knowledge for fine-tuning. The carefully curated high-
quality dataset is crucial for good model performance and is also beneficial
for data collection of main referee action recognition, as will be discussed in
the next chapter. Additionally, case studies further demonstrate that our model
provides stable predictions, which is essential for real-time applications.
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Chapter 4

Sequence-level Referee Action
Recognition

4.1 Overview

Each football match is controlled by a referee with full authority to enforce
the Laws of the Game in connection with the match [37]. The referee makes
critical decisions on the field, such as awarding free kicks and penalties,
determining fouls, as well as showing throw-ins, goal kicks, and corner
kicks. They also manage the overall conduct of the game, including starting
and stopping play, keeping track of the match time, and issuing yellow and
red cards for disciplinary infractions. The decisions made by the referee
are final and significantly influence the flow of the match. Therefore,
accurately understanding the referee’s signals through skeleton data is crucial
for understanding the dynamics of the game.

Compared to assistant referees, referees’ actions are dynamic due to their
need to make quick, decisive moves across the entire pitch. The referee’s
actions are usually in constant motion, and their signals often involve a
combination of different gestures. For example, signaling a free kick involves
blowing the whistle followed by an arm pointing in the attacking direction.
To model this complex nature, sequence-level modeling of skeleton data is
essential to provide the model with a broader context. Therefore, we propose
a pipeline that utilizes a sequence-level model for action recognition of the
main referee. Similar to our approach for assistant referees, this pipeline is
designed in two stages but adapted to the more complex and specific nature of
referee actions:

• Pre-training We propose pre-training a transformer-based masked
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autoencoder that employs a multi-task pre-training objective, which
combines motion prediction [33] and data2vec [36] strategies to learn
representations from unlabeled skeleton sequences.

• Task-specific Fine-tuning The pre-trained model is fine-tuned for
action recognition, incorporating additional information such as the ball
position and the actions of assistant referees. We developed specialized
schemes to integrate this extra information more effectively with the
pre-trained model. In addition, we introduce a binary action-non-action
classification model to provide token-level supervision, enhancing the
effectiveness of the fine-tuning process.

Similar to the challenges faced with assistant referees, the scarcity
of labeled data presents a significant challenge in developing effective
classification models for main referees. To collect sufficient data that
accurately represents the features of each action class, we have employed
several strategies, including:

• Manual annotation

• Converting from frame-level data

• Identifying no-action sequences with the pre-training loss of the pre-
trained model

• Fine-tuning a whistle-detecting model for data finding

• Using a set of rules conditioned on ball positions and arm angles

Evaluating the quality of the pre-trained model presents another significant
challenge. While the model can be pre-trained on a large amount of
unlabeled data, using pre-training loss on the validation set as a direct quality
measure is problematic, as this metric can have different values with changes
in preprocessing methods or pre-training tasks. Nevertheless, a reliable
assessment of the pre-trained model is essential for comparing different pre-
training techniques and ensuring continuous improvement. To address this, we
propose employing linear evaluation on a sequence-level classification dataset
as a robust metric to assess the effectiveness of the pre-training model.

Sequence-level skeleton-based action recognition is a topic extensively
explored in academic research. Studies typically focus on recognizing actions
in daily life, with widely used benchmarks such as NTU-RGB+D [34], NTU-
RGB+D 120 [11], Kinetics [35], and PKUMMD [39]. In academic research,
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a single prediction per skeleton sequence suffices. However, in the dynamic
environment of football games, applying a sequence-level classification model
to a live stream requires the use of a sliding window to provide contextual
information, which can introduce significant delays. Ideally, to reduce this
delay, the model should predict a label for each frame in the sequence,
not just at the sequence’s end. For instance, the model should generate a
prediction for an action on the frame where the action is actively occurring,
and it should predict NO_DECISION after the action concludes, even if the
action is still present within the context window. However, collecting a
sequence-level dataset where each frame is individually labeled is nearly
impractical. To address this challenge, we propose using a binary action-non-
action classification model to supervise the fine-tuning process, automatically
generating labels for each token and training with a token-level classification
objective.

In the subsequent sections of this chapter, we will delve into the method-
ologies, implementation, and experiments for referee action recognition. We
will provide a detailed introduction to our multi-task pre-training technique
in Section 4.2.1, discuss the linear evaluation of pre-trained models in
Section 4.2.2, and illustrate the specific designs for incorporating additional
information and supervision during fine-tuning in Section 4.2.3. We will
describe the post-processing techniques for real-world scenarios in Section
4.2.4. The strategies for data collection will be outlined in Section 4.3.1.
Finally, we will present and analyze the results of the models trained using
our proposed methods in the rest of Section 4.3.
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4.2 Method

For simplicity, we denote our model as S-SPTR (Sequence-level Skeleton Pre-
trained Transformer for Referees) in the following sections.

4.2.1 Pre-training

4.2.1.1 Model Architecture
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Figure 4.1: Overview of the multi-task pre-training pipeline of S-SPTR. The
two different losses are combined by a weighted sum for pre-training.

Similar to our strategy for assistant referees, we propose pre-training a
transformer-based masked autoencoder based on the MAMP architecture [33],
as outlined in Section 2.1.4.2. An overview of the pre-training process is
shown in Figure 4.1. Initially, the sequence of skeleton frames is pre-processed
and converted into a sequence of joint embeddings. The sequence is then
partially masked according to specific strategies before being input into the
encoder (Student Encoder in the figure), which generates a representation
of the skeleton sequence based on solely unmasked tokens. Subsequently,
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the decoder receives the representation with the mask token restored and
reconstructs the original skeleton sequence with a multi-task pre-training
objective. This objective includes two reconstructing targets: one is the motion
of masked joints, and the other is a dense contextualized target calculated by
a teacher model.

Unlike frame-level pre-training in the last chapter, which uses bidirectional
attention, we propose using unidirectional attention to enhance frame-level
prediction accuracy. To this end, we employ a causal mask on the attention
mechanism, similar to those used in language models [51]. This mask prevents
the token of the current frame from accessing future frames in the sequence
during attention calculation, ensuring that each token is a representation solely
based on preceding information. Without this causal mask, each token on
the top layer would represent a composite of all input frames, complicating
the distinction between them. Additionally, the causal mask ensures that
the attention matrix is a triangular, full-rank matrix, thus fully utilizing the
representation space.

By pre-training with sufficient unlabeled skeleton sequences, we aim for
the model to capture the nature of human movement, particularly that of
football referees, providing a robust foundation for subsequent fine-tuning.

4.2.1.2 Data Pre-processing

The original joint coordinates in skeleton sequences are measured in meters
and centered around the pitch’s midpoint, typically ranging from -50 to 50,
depending on the pitch’s size. To facilitate more stable and efficient neural
network training, we preprocess these input values into a more restricted range.
With specific normalization strategies, we scale most values to fall between
-1 and 1. This preprocessing module is integrated directly into the model
architecture, enabling the model to handle any input seamlessly in real-world
scenarios. To prevent an excessive number of tokens within a single sequence,
we segment the skeleton data into 10-second sequences for pre-training. The
preprocessing strategies we employ for these sequences are outlined as follows:

Scaled When the referee is running fast, a 10-second skeleton sequence
often spans tens of meters, with larger values observed near the pitch
boundaries. To normalize these values into the range of -1 to 1 while
preserving the relative ratio across different axes, we initially translate the
entire skeleton sequence so that the first frame is centered at the origin.
Subsequently, we scale the entire sequence by a factor that is determined
by the axis with the largest variance. Formally, assume the original input is
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x ∈ Rl×V×d, where l is the number of frames in s sequence; V is the number
of joints in a frame; d is the dimension of the input which is 3. The sequence
is first centered by translating the center point of the first frame to origin:

x0 = (mean(x0,:,0),mean(x0,:,1),mean(x0,:,2)) ∈ Rd

xcentered = x− x0

(4.1)

Then the variance along each axis is computed and the centered input is scaled
by the largest variance:
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:,:,0 )
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xscaled = xcentered/σmax

(4.2)

With scaled pre-processing, each sequence is guaranteed to be transformed
to the range -1 to 1 and preserve the information of motion. However,
this approach can lead to inconsistencies in the size of the skeleton within
individual frames. For instance, the skeleton’s size in a sequence where
the referee covers a long distance will appear much smaller compared to a
sequence where the referee is nearly stationary. This inconsistency may pose
challenges to the representation learning process.

Pelvis-centered To focus on relative motions and preserve the consistent
size of skeletons, we propose preprocessing each frame in the sequence to be
pelvis-centered. The pelvis is one of the most stable parts of the body during
movement and is located centrally within the human body, making it an ideal
anchor point for representing relative motions. Formally, with the original
input x ∈ Rl×V×d, assuming the index of pelvis joint is idxpelvis, the pelvis-
centered input is given by

xpelvis = x:,idxpelvis,: ∈ Rl×d

xpelvis_centered = x− xpelvis
(4.3)

In pelvis-centered preprocessing, we do not employ scaling operations,
thereby avoiding confusion about skeleton sizes for the pre-training. However,
this approach results in the loss of global movement information, which could
pose a challenge for the pre-trained model in comprehensively understanding
the movement dynamics.
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4.2.1.3 Data Augmentation

We implement two data augmentation techniques to enhance the robustness
of our pre-trained model. To maintain the quality of the pre-training data, we
select augmentation methods that don’t distort the skeletons. These methods
include:

Random Length: For each input skeleton sequence, we randomly crop it
to a shorter sequence for pre-training. The length of the cropped sequence is
determined by sampling from a uniform distribution U [lmin, lseq], where lseq is
the original sequence length and lmin is the minimum allowable length. lmin

is set to 25 in this work.
Random Rotation: The input sequence is rotated by a random angle

around the z-axis. The rotation angle is chosen by sampling from a uniform
distributionU [−180◦, 180◦]. We apply rotation exclusively along the z-axis, as
this orientation is semantically reasonable while rotating along the x or y-axis
could result in an unrealistic skeletal motion direction.

4.2.1.4 Joint Embedding

In most prior studies utilizing transformers for action recognition [110, 31,
76], each joint in each frame is converted into a single token, leading to a
substantial total number of input tokens, which limits the ability to model long
contexts. However, these tokens often exhibit significant temporal redundancy,
with tokens that are temporally close together displaying high similarity. To
reduce the number of tokens within a sequence for more efficient training, we
followed the approach used in MAMP [33], where one token represents several
consecutive frames for a single joint.

For the pre-processed input xp ∈ Rl×V×d, we define a time patch size
lt and segment the input into le = l/lt non-overlapping segments x′ ∈
Rle×V×lt×d. In each segment, each joint is converted into a token. A linear
layer is then applied to increase the dimensionality of the input features.
Additionally, a trainable joint embedding Je ∈ R1×V×h is incorporated to
represent information specific to each joint type, and a learnable positional
encoding Pe ∈ Rle×1×h is added to provide temporal context. Finally, a
layer normalization is applied to ensure stable training. The Embedding
E ∈ Rle×V×h (h is the dimension of embedding space) is given by

E = LayerNorm(Linear(x′) + Je + Pe) (4.4)
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4.2.1.5 Motion-aware Tube Masking

Skeleton sequences feature high spatiotemporal correlation. Following
Skeleton2vec [54], we utilize a motion-aware tube masking strategy to address
this issue.

Tube Masking VideoMAE [111] initially proposed tube masking to
address spatiotemporal issues in videos by treating the entire video as a single
tube and applying a uniform masking map across all frames. This approach
effectively minimizes information leakage between adjacent frames. In video
contexts, this fixed masking is not problematic as objects typically move
across pixels, aiding in the modeling of long-term dependencies. However,
for skeleton sequences, where the coordinates of body parts remain in a fixed
position within the representation, applying a fixed mask map can result in
a body part being masked throughout the entire sequence. This makes it
extremely challenging for the model to infer the masked joint from no available
data. To address this, Xu et al. [54] propose using multiple tubes for tube
masking. The mask map remains consistent within each tube but varies
across different tubes, ensuring that no joint is completely masked out. With
the number of tubes denoted as ntube, the tube division can be described as
E ′ ∈ Rntube×ltube×V×h, where ltube = le/ntube is the tube length.

Motion-aware Masking Empirically, joints with larger motion contain
richer semantic information. To leverage this, we adopt the concept of motion-
aware masking as detailed in Section 2.1.4.2. This approach is further refined
by integrating tube masking, where we calculate the average motion within
each tube and subsequently perform sampling based on the motion. Formally,
for each tube, we first calculate the motion M tube ∈ R((ltube−1)·lt)×V×d with its
corresponding original input xtube ∈ R(ltube·lt)×V×d:

M tube = xtube
i − xtube

i−lt (4.5)

where lt is the time patch size. Then the joint-wise motion intensity within the
tube I tube ∈ RV is calculated:

I tubei = mean(M tube
:,i,: ) (4.6)

Similar to the approach in MAMP [33], we sample from the intensity values,
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applying a temperature parameter τ to regulate the sampling rate.

π = softmax(I tube/τ)

η ∼ U [0, 1]V

idxmask = Index-of-Top-K(log π − log(log η))

(4.7)

where η is random noise drawn from a uniform distribution from 0 to 1;
K represents the rounded number corresponding to the mask ratio αmask

applied across all joints: K = round(αmask · V ). We set αmask as 0.9,
following the best practice from prior works [33, 54]. The unmasked part
Etube

u ∈ Rltube×K×h from the embeddings Etube is extracted as the input to the
encoder according to idxmask . This process is repeated for each tube. Within
the same tube, we apply the same sampled mask map.

4.2.1.6 Multi-task Pre-training

We propose pre-training the masked autoencoder with a multi-task pre-
training objective comprising a motion prediction task [33] and a data2vec
task [36] . In this setup, the motion prediction task aims to reconstruct
the original motion of the masked joints, while the data2vec task utilizes a
teacher model, which is an exponentially moving averaged version of the pre-
trained model, to provide the prediction target for the masked joints in the
latent space. data2vec is a general pre-training strategy, not dependent on
specifically designed prediction targets or data-augmentation methods, and
has demonstrated effectiveness in both vision and language modeling [36].
Xu et al. [54] have further demonstrated its applicability and effectiveness in
skeleton-based action recognition.

However, the data2vec objective solely involves self-learning, which
poses challenges in the early stages of training. Since the prediction
targets are generated by the teacher model, they may not contain meaningful
information when the model is not yet well-trained. Training with the
data2vec loss typically progresses more slowly and requires more training
epochs. Additionally, the self-learning teacher-student design carries the risk
of converging to a collapsed representation. To address these challenges, we
propose integrating these two pre-training objectives. The motion prediction
task enables the pre-trained model to quickly learn meaningful representations
with minimal risk of collapse. Simultaneously, the data2vec objective
enhances these representations by providing a context-based prediction
target in the latent space. The integration of these objectives and their
implementation details will be further discussed in the paragraphs that follow.
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Motion Prediction An additional linear layer is added to the decoder to
predict the original motion of the masked joints, as shown in Figure ??. For
the output of the decoder Zd ∈ Rle×V×h, the predicted motion is given by

Mpred = Linear(Zd) ∈ Rl×V×d (4.8)

The prediction target motion M target ∈ Rl×V×d is calculated from the original
input x using a stride lt, the same value as the time patch size used in the pre-
trained model. The first lt steps of the motion target are padded with zeros.

M target
i =

{
0 if i < lt

xi − xi−lt otherwise
(4.9)

Following MAMP [33], the motion prediction loss for pre-training is defined
as an L2 loss between Mpred and M target on masked joints:

Lmotion =
1

|idxmask |
∑

(i,j)∈idxmask

∥∥∥(M pred
i,j,: −M target

i,j,:

)∥∥∥2

2
(4.10)

data2vec The data2vec pre-training objective involves using a teacher
model to calculate a contextualized representation as the prediction target.
This teacher model is updated through an exponential moving average of the
pre-trained model (student model). Specifically, the teacher shares the same
architecture as the student model and is initialized with the same parameters as
the student model. At each updating step, the parameters of the student model
are updated by gradient descent, while the parameters of the teacher model are
updated through an exponential moving average controlled by a factor τ .

θteacher = τθteacher + (1− τ)θstudent (4.11)

We set the factor τ as 0.9999 in our experiments. As only the encoder part
is used for fine-tuning in action recognition, we exclusively utilize a teacher
encoder model working with a student encoder model, as shown in Figure ??.

Following data2vec [36] and Skeleton2Vec [54], we extract the output
of the FFN block before residual in each transformer layer from the
teacher encoder and compute an average over them to form our training
target. The features extracted from each layer are processed by instance
normalization before averaging. A layer normalization is applied after
averaging. Normalization helps prevent the model from learning trivial
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representations.

R′ =
1

ne

ne∑
l=1

InstanceNorm(Zl)

Rtarget = LayerNorm(R′)

(4.12)

where ne is the number of encoder layers, Zl is the output of the FFN block
before residual from the l-th transformer layer.

Similar to motion prediction, we add an additional linear layer for data2vec
target prediction. For the decoder output Zd,

Rpred = Linear(Zd) (4.13)

The pre-training objective for the data2vec target is an L2 loss, calculated
between Rpred and Rtarget, also applied solely to the masked joints.

Ldata2vec =
1

|idxmask |
∑

(i,j)∈idxmask

∥∥(Rpred −Rtarget )∥∥2

2
(4.14)

Combination of two objectives The final learning objective for the multi-
task pre-training is formulated as a weighted sum of the two pre-training
losses:

L = αLmotion + βLdata2vec (4.15)

where α and β are hyperparameters that control the contribution of each loss
component. In this work, the weights are set as α = 0.95, β = 0.05.

4.2.2 Linear Evaluation

To evaluate the quality of the pre-trained model and provide a metric for
continuously refining pre-training methods, we employ linear evaluation as
a measure of pre-trained model performance. In this method, a single linear
layer is added on top of the pre-trained encoder for a sequence classification
task, while the decoder is not utilized. Specifically, we apply the linear layer
to conduct an 8-way sequence classification task. The task data is converted
from frame-level assistant referee data, as detailed in Section 4.3.1.2. A batch
normalization layer is added between the encoder output and the linear layer.
The prediction probability is then computed as follows:

p = softmax(Linear(BatchNorm(Z(−1)
e ))) (4.16)
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where Ze ∈ Rle×V×h represents the output of the pre-trained encoder, and
Z

(−1)
e ∈ RV×h represents the output corresponding to the last time step.

The model is trained with a cross-entropy loss. In linear evaluation, the pre-
trained model remains fixed, with only the linear layer being learnable. This
restriction limits the model’s learning capabilities, making its performance
heavily dependent on the quality of the sequence representation produced by
the fixed pre-trained encoder. We use the SGD optimizer for linear evaluation.
The learning rate follows a cosine decay schedule, decreasing from 0.1 to 0
over 10 training epochs. The batch size is set to 16.

4.2.3 Fine-tuning for Referee Action Recognition

Encoder

referee skeleton sequences

T

T T

label of referee action

for the sequence
cross entropy loss

Ball position

Main referee's

pelvis position

Other referees

Residual (Linear)

Residual (Linear)

+ LayerNorm

MLPAssistant referee 1

Assistant referee 2

Figure 4.2: Overview of the fine-tuning process of S-SPTR. The student
encoder in the pre-training phase is used for fine-tuning.

4.2.3.1 Targeting Action Types

As discussed in Section 2.3, referee actions include both standardized signals,
such as goal kicks and corner kicks, and non-standardized signals, such as
no foul and substitution. The latter is less likely to disrupt the flow of the
game and is more difficult to collect data in practice. Given the scale of our
eventually collected dataset, as detailed in Table 4.5, we propose to merge
these less frequent categories into a single class, OTHER_DECISION. This
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approach helps to differentiate these actions from the NO_DECISION action
and mitigates the issue of insufficient labeled data. Consequently, we employ
a 9-way classification system in our referee action recognition. The specific
action types targeted are listed in Table 4.1.

Targeting Referee Actions

NO_DECISION
DIRECT_FREE_KICK
INDIRECT_FREE_KICK
THROW_IN_HOME
THROW_IN_AWAY
GOAL_KICK
CORNER_KICK
GOAL
OTHER_DECISION

Table 4.1: Referee action types in our classification task

4.2.3.2 Integration of Additional Information

Referee actions are more diverse and complex compared to assistant referees.
Referee signals conveying different meanings could look similar in terms of
skeleton sequences, with only minor differences depending on the context.
For example, a referee’s arm pointing in a particular direction could indicate
a throw-in, a direct free kick, or something entirely different. To enhance the
model’s ability to accurately differentiate between different actions, additional
information is crucial. For instance, if the ball is out of play and the assistant
referee signals for a throw-in, it is more likely that the main referee’s gesture
is also a throw-in. Conversely, in the absence of such contextual clues,
the referee’s arm pointing to a direction might more likely indicate a direct
free kick. To improve referee action recognition, we propose integrating the
following additional information:

• Absolute Position of the Referee The input for the pre-trained model
is preprocessed to be either first-frame-centered or pelvis-centered,
making the model unaware of the referee’s absolute position on the pitch.
However, the referee’s position is critical for accurate action recognition.
For instance, the likelihood of a referee signaling a goal kick or corner
kick while positioned in the center area of the pitch is extremely low. To
address this, we incorporate the sequence of absolute pelvis positions,
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represented as xpelvis ∈ Rl×d, as an additional input to represent the
referee’s absolute position.

• Ball Position The position of the ball is crucial for helping identify
different referee signals. For instance, when the ball goes out of the
pitch, it is more likely to be a throw-in, goal kick, or corner kick. To
integrate ball position information for better decision, we represent the
ball’s position as its 3D coordinates in each frame, denoted by xball ∈
Rl×d.

• Other Referees The actions of the two assistant referees could also
enhance the action recognition of the main referee. By including the
skeleton sequences of all three referees as inputs, our model may better
recognize actions through the interactions observed among the referees.
The actions of the assistant referees could provide valuable context for
interpreting the main referee’s actions. We represent the additional input
for the two assistant referees as their skeleton sequences, denoted by
xar ∈ R2×l×V×d.

The method of integrating information from the assistant referees is
straightforward. Given that the skeleton data for each referee is structured
the same, we employ the same pre-trained encoder module to process the
input skeletons. The final representation is achieved by concatenating the
representations of all three referees.

Zr
e = Encoder(xr)

Zar1
e = Encoder(xar1)

Zar2
e = Encoder(xar2)

Ze = concat(Zr
e , Z

ar1
e , Zar2

e )

(4.17)

where xr, xar1, xar2 represent the input skeleton for the referee, the first
assistant referee, and the second assistant referee, respectively. The weights
of the encoder are shared for all three referees.

The additional inputs of the ball positions and pelvis positions, due to their
lower dimensionality compared to the encoder’s output representation space,
cannot be directly processed by the encoder or straightforwardly added to the
encoded representation. To integrate this information for action recognition,
we propose two strategies:

• Residual Module A straightforward method for integrating the
additional input into the encoded representation is to map it to the same
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dimension as the encoder output with a linear layer. After summing
up the representation, a layer normalization is applied to ensure stable
training.

Zres
e = LayerNorm(Linear(xpelvis) + Linear(xball) + Ze) (4.18)

• Extra token in attention A residual module works well for building
representations with fused information. However, it falls short in
interactively modeling the relationship between the ball, the referee’s
absolute position, and their actions. To better capture the interactions
between referee gestures and the additional information, we propose
creating specific tokens for these additional inputs. These tokens are
then fed into the pre-trained encoder along with the skeleton sequence,
allowing the attention mechanism within the transformer layers to model
the interactions. To create tokens for the additional inputs, we follow the
same strategy as that in joint embedding, using a linear layer followed
by a layer normalization. The expanded input embedding is given by

E = JointEmbedding(x)
Epelvis = LayerNorm(Linear(xpelvis))

Eball = LayerNorm(Linear(xball))

Eextra = concat(E,Epelvis, Eball)

(4.19)

Note that these two strategies are not mutually exclusive. They can be applied
simultaneously or individually. We show an overview of the fine-tuning
process leveraging both strategies in Figure 4.2. We conducted extensive
experiments to evaluate these approaches, as detailed in Section 4.3.3.2. The
results indicate that using only the residual module for integrating additional
information yields optimal performance.

4.2.3.3 Fine-tuning with Sequence Classification Task

A common strategy to adapt a pre-trained model for a specific recognition task
is by fine-tuning it through a sequence classification task. In this setup, the
model is required to predict a single label for each input sequence. To achieve
this, we add a Multi-Layer Perceptron (MLP) on top of the student encoder
output to compute the classification probabilities. The model is fine-tuned on
the sequence classification dataset collected for referees, as will be described in
Section 4.3.1.3. Due to the use of the causal mask in the attention mechanism,
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only the representation from the last time step, denoted as Z
(−1)
e ∈ RV×h,

represents the entire sequence. The classification probability is calculated as
follows:

HMLP = ReLU(Linear(Z(−1)
e ))

p = softmax(Linear(HMLP ))
(4.20)

The hidden layer’s dimension matches the hidden size h of the pre-trained
model. When inputs from all three referees are processed, the input dimension
for the MLP, Z(−1)

e , expands to V × 3h, and the MLP’s hidden size is adjusted
to 3h accordingly. A cross-entropy loss is used for fine-tuning.

During fine-tuning, the entire model remains trainable, providing
maximum flexibility to adapt the pre-trained model to the recognition task.
Unless otherwise specified, we fine-tune the model using the AdamW
optimizer for 10 epochs. The learning rate increases linearly from 0 to 5e-
5 over the first 1000 steps and then follows a cosine schedule to decay to zero.
The batch size is set at 16.

4.2.3.4 Fine-tuning with Sequence Labeling Task

A significant limitation of the model fine-tuned with the sequence classifica-
tion task is its delayed response in real-time scenarios. This delay comes from
the requirement of a sliding context window to generate predictions. As long
as an action remains within this window, predictions continue, often even after
the action has ended. This delay affects the model’s real-time performance and
does not align with human intuition.

To address this challenge, we propose fine-tuning the model with the
sequence labeling task, where each token in the time dimension gives its
own prediction. This approach ensures that predictions correspond to the
action type of each specific time step rather than the entire context sequence,
effectively addressing the issue of delays. Additionally, fine-tuning with a
sequence labeling task allows for more effective use of training data and the
incorporation of longer contexts during training, enhancing overall model
performance.

However, collecting a labeled dataset for the sequence-labeling task is
extremely challenging because it requires multiple labels for each sequence.
Instead of creating a new dataset for sequence labeling, we propose using
the existing dataset designed for sequence classification, employing a binary
classification model to offer frame-level supervision. Specifically, the binary
classification model provides a prediction on each frame whether there is an
action ongoing or not. This prediction is then combined with the original label
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of the sequence to provide supervision for each frame, as shown in Figure 4.3.

Additional inputs

action/non-action binary
classifier

label of referee action

for the sequence

T

T

cross entropy loss

referee skeleton sequences

Figure 4.3: Fine-tuning the model with the sequence labeling task under
supervision from a binary classification model

Training binary classification model An accurate binary classification
model is essential for providing high-quality supervision. To train this model,
we collected a sequence classification dataset where each sequence is one
second long. The dataset collected is shown in Table 4.2. We employ
the fine-tuning strategy outlined in Section 4.2.3.3 to fine-tune the binary
classification model. For additional information, only absolute pelvis data is
utilized, and integration of this data is achieved exclusively through the use
of a residual module. The batch size for training is set at 64. The trained
binary classification model achieves an accuracy of 98.66% on the validation
set and 98.54% on the test set. Based on these results, we assert that this
model is sufficiently accurate to provide frame-level supervision for training
in sequence labeling.

Train Valid Test

NO_DECISION 33,770 3,077 3,086
HAS_DECISION 28,222 2,385 2,376

Total 61,992 5,462 5,462

Table 4.2: Dataset collected for training binary classification model to provide
token-level supervision. Each data point is a one-second-long referee skeleton
sequence.

Supervision from binary classification model For each frame, we use
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the binary classification model to predict pbinary based on the preceding one-
second sequence. This pbinary represents the likelihood that the frame is part
of an ongoing action. To generate a label for each frame, there are two methods
for combining the pbinary predictions with the original sequence labels:

• Hard labels Discrete labels are generated for each frame based on the
predictions. Specifically, if pbinary exceeds 0.5, it indicates that an action
is occurring, and the original sequence label is assigned to that frame.
Otherwise, the frame is considered to have no action, and the label
NO_DECISION is assigned.

• Soft labels Instead of a discrete label, the label is represented as
a probability distribution. Specifically, the probability that a frame
is labeled as NO_DECISION is calculated as (1 − pbinary), and the
probability for the original sequence label is given by pbinary. The
probabilities of all other classes are set to zero.

Pre-sequence random-length masking Since the sequence labeling task
involves predicting a label at each timestep and is less sensitive to context
length, we propose implementing data augmentation through random-length
masking at the beginning of the sequence. This strategy can introduce more
varied contexts during fine-tuning, contributing to a more robust model.
Specifically, for each skeleton sequence, we randomly determine a masking
length, lpremask, by sampling from a uniform distribution: lpremask ∼
U [0, lmax

premask], where lmax
premask represents the maximum feasible length to mask.

In this work, lmax
premask is set to 50, which corresponds to a 2-second span of the

sequence, with the frame rate set at 25 Hz. The initial lpremask frames are then
masked from the inputs for the subsequent computation.

A Cross-entropy loss is used for fine-tuning with the sequence labeling
task. At the beginning of each sequence, the context may not be sufficient
for the binary classification model or the target model to make accurate
classifications. As a result, we do not calculate cross-entropy loss for all
tokens. Instead, we define a starting point within the sequence and only
compute the loss for tokens that occur after this point. In our experiments,
this starting point is consistently set at the 2-second mark of each sequence.

4.2.4 Post-processing

We employ similar post-processing techniques as described in Section 3.2.3
for frame-level action recognition to improve accuracy and minimize false
positives in real-time scenarios. Unlike the method used for assistant referees,
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which involves a two-stage prediction model, our approach for referee action
recognition utilizes just one model. Consequently, we apply only the duration
threshold and the confidence threshold. To predict a frame, a fixed-length
sliding window is used to provide context for action recognition. The duration
threshold is set at 0.5 seconds, and the confidence threshold is established
at 0.8. These thresholds are chosen for a balance between responsiveness and
accuracy, ensuring that the model reliably identifies significant actions without
being overly sensitive to minor movements.

4.3 Experiments and Results

4.3.1 Data Preparation

4.3.1.1 Pre-training Data

We collected a large-scale dataset for sequence-level pre-training, using the
same data source as the frame-level pre-training data. The pre-training
skeletons are from 223 games, with 28 of these games designated solely
for validation and testing. The division remains the same as that in the
frame-level pre-training. We only load skeletons for referees and assistant
referees, omitting player skeletons, to focus on learning the movement patterns
of referee actions. The skeleton data is segmented into sequences, each
10 seconds long. Since skeleton sequences from different games may vary
in frame rate, leading to different input shapes, we standardize the frame
rate to 25Hz. This is achieved through linear interpolation, which not only
normalizes the frame rate but also helps reduce the occasional occurrence of
NaN values in the data. The choice of the sequence length is a balance between
providing rich context and maintaining practicality within computational
resource constraints. Since our frame rate is 25 Hz and the pre-trained model is
trained with a time patch size of 5, every five consecutive frames are converted
into a single token for each joint. With the number of joints being 21, this
process results in a total of 1,050 tokens per sequence.

To enhance the quality of the pre-training data, we propose implementing
denoising techniques to address three specific types of noise, namely spread-
noisy sequences, motion-noisy sequences, and pelvis-centered motion-noisy
sequences. Refer to Appendix B.1 for details of the pre-training data cleaning.

After filtering out noisy skeleton sequences using the aforementioned
criteria, we have collected a high-quality, large-scale dataset for sequence-
level pre-training. The statistics of this dataset are shown in Table 4.3. The
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training set includes approximately 1,000 hours of referee movements. Of the
28 evaluation games, three have been selected for the validation set, consistent
with the selections made for frame-level pre-training.

# 10s Sequences

Training set 350,289
Validation set 6,489

Table 4.3: Statistics of sequence-level pre-training data

4.3.1.2 Dataset for Linear Evaluation

To facilitate the development of pre-training techniques, we established an
evaluation criterion based on linear evaluation using a sequence classification
dataset. For rapid implementation, we converted the frame-level classification
dataset to sequence-level, maintaining both data quality and scale. For each
labeled frame, we extract 3-second skeleton sequences for all three referees,
centering the sequence on this frame. The frame’s label is then applied
to the sequence. Additionally, we have refined the labels to provide more
detailed classifications based on the directions of subsequent attacks, thereby
increasing the task’s complexity. These labels are determined according to
rules based on the positions of the referees. The frame rate is set to 25 Hz,
resulting in a sequence of 75 frames per input, capturing the movements of
all three referees. To ensure a fair evaluation, we have balanced the labels in
both the validation set and the test set. Detailed information about the dataset
is provided in Table 4.4.

Train Valid Test

THROW_IN_HOME 2220 43 43
THROW_IN_AWAY 2178 43 43
GOAL_KICK_HOME 1083 43 43
GOAL_KICK_AWAY 1665 43 43
CORNER_KICK_HOME 529 43 43
CORNER_KICK_AWAY 871 43 43
SUBSTITUTION 833 43 43
NO_DECISION 6183 43 43

Table 4.4: Sequence classification dataset for linear evaluation. Each sequence
is 3 seconds long.
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4.3.1.3 Sequence Classification Dataset for Fine-tuning

The quality of the dataset used for fine-tuning is crucial for the optimal
performance of the final recognition model. To achieve the best results, various
strategies are employed during the data collection process. These strategies
aim to enhance the richness and diversity of the dataset, ensuring that the
samples in each class are adequately representative. By implementing specific
methodologies for gathering data, we can significantly enhance the model’s
capabilities. The strategies employed include:

Manual Annotation Manual annotation is more essential for sequence
classification tasks, especially for classes like DIRECT_FREE_KICK and
OTHER_DECISION, due to the challenge of designing reliable automatic
rules. Therefore, we use a semi-automated approach, combining
automated detection with manual verification to balance efficiency and
ensure data quality.

Converting from Frame-level Data Frame-level data for assistant
referees can be reused and converted to sequence-level data for
referees, as they often react simultaneously to events. This provides
a large amount of labeled data for THROW_IN, GOAL_KICK, and
CORNER_KICK. Additionally, for collecting INDIRECT_FREE_KICK
sequences, we first collect frames for RAISE_HAND_VERTICALLY and
then convert them into sequences.

Inlier Detection with Pre-training Loss To annotate NO_DECISION
sequences, we detect inliers using the pre-training loss with the pre-
trained model. The idea is to mask all the arms throughout the sequence
and calculate the pre-training loss of masked arm joints with the pre-
trained model. Since most data during pre-training is without referee
signals, sequences that don’t contain referee signals are likely to have
a lower pre-training loss. Thresholds on this loss are set to annotate
NODECISIONsequences.

Binary Whistle Classification Model We fine-tune a binary clas-
sification model based on the pre-trained model to detect whether
the referee blows the whistle. This model is used to help annotate
DIRECT_FREE_KICK sequences.

Combination of Rules We leverage football-specific knowledge and
establish a set of rules to identify GOAL sequences. The rules involve
first detecting a kickoff, then tracing back to the nearest instance where
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the referee raises their arm at a certain angle and the ball is near the goal
area.

Collecting OTHER_DECISION In addition to the collected action types,
various referee signals exist. Due to sparse data, creating separate
classes is impractical. We propose merging these signals into a single
class, OTHER_DECISION, to distinguish them from main actions and
NO_DECISION.

Expansion for the Sequence-labeling Task Context can be longer
when the model is trained with the sequence-labeling task, as discussed
in Section 4.2.3.4. We expand the existing 4-second sequences to 8
seconds to provide richer contextual information.

Please Refer to Appendix B.2 for the details. With all the aforementioned
strategies, we have collected a sequence classification dataset for 9-way referee
action recognition, as shown in Table 4.5. Each sequence in the dataset is 4
seconds long. We split the dataset into a training set, validation set, and test set,
with the latter two derived from games specifically designated for evaluation.

Train Valid Test

NO_DECISION 1815 200 195
DIRECT_FREE_KICK 109 57 64
INDIRECT_FREE_KICK 1865 117 128
THROW_IN_HOME 916 72 93
THROW_IN_AWAY 1005 78 86
GOAL_KICK 1435 118 129
CORNER_KICK 844 65 36
GOAL 355 55 54
OTHER_DECISION 180 36 39

Table 4.5: Final sequence-level classification dataset collected for referee
action recognition. Each sequence is 4 seconds long.

4.3.2 Pre-training

4.3.2.1 Network Architecture

The network to pre-train on is a transformer-based autoencoder, as introduced
in Section 4.2.1. It includes 8 encoder layers and 1 decoder layer. The model
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features a hidden size of 512 with 8 attention heads. The dimension of the feed-
forward layer is set to 2048. The time patch size is set at 5. We use a mask
ratio of 0.9, with the number of masking tubes set to 10 and the temperature
τ set to 0.75.

4.3.2.2 Pre-training Details

During pre-training, we use the AdamW optimizer with betas set at (0.9, 0.95)
and a weight decay of 0.01. The model is pre-trained for 700,000 steps. We
utilize a cosine annealing learning rate schedule with a linear warmup, where
the peak learning rate is set at 5e-5, and the number of warmup steps is set at
10,000. The batch size is 32. We train the model on a single Nvidia A4000.
Dropout rates of 0.1 are applied to both the attention matrix and the hidden
layers.

4.3.2.3 Main Results

We evaluate the pre-trained model with the linear evaluation protocol, as
described in Section 4.2.2. In this setup, the backbone of the pre-trained
encoder remains fixed, and only the newly added linear layer is trained on
the dataset gathered for linear evaluation, as detailed in Section 4.3.1.2. For
the pre-trained model, we employ the pelvis-centered pre-processing method
using the multi-task pre-training objective with coefficient α = 0.95, β =

0.05. The linear layer is trained for only 10 epochs. We use a learning rate
of 0.1 and a batch size of 16. The learning rate follows a cosine annealing
schedule to 0 without warmup stages. An SGD optimizer with momentum is
employed. No dropout or weight decay is implemented during this phase. We
evaluate the model on the validation set every 100 steps, and the performance
on the test set is based on the best-performing model on the validation set.

As shown in Table 4.6, with appropriate preprocessing methods and pre-
training tasks, the pre-trained model achieves an accuracy of 90.38% on
the validation set and 90.12% on the test set. For comparison, we also
conducted a linear evaluation on a model with the same network architecture
but without pre-training, as shown in the first line of the table. The results
demonstrate that the pre-trained model significantly outperforms the non-pre-
trained model. This suggests that the pre-trained model has learned a more
effective representation of referee skeleton sequences, reducing the difficulty
of the classification task with only one linear layer.
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#Params Valid Accuracy Test Accuracy

S-SPTR w/o pre-training 28.9M 73.18 70.93
S-SPTR 28.9M 90.38 90.12

Table 4.6: Performance of the pre-trained model with the linear evaluation
protocol.

4.3.2.4 Ablation Study

We conduct ablation studies to evaluate the impact of various components and
configurations on the performance of pre-training. All the ablation studies
utilize the linear evaluation protocol, maintaining the same setup as previously
employed.

Impact of Pre-processing Methods and Pre-training Tasks We evaluate
the techniques we propose in Section 4.2.1 by trying different combinations
of these pre-processing methods and pre-training tasks with the same linear
evaluation settings. The results are presented in Table 4.7. As we can see
from the table, pre-training with only motion prediction loss (line 3) or only
data2vec loss (line 2) yields suboptimal performance compared to a multi-
task pre-training approach. Regarding pre-processing methods, when all other
settings are consistent, scaled pre-processing (line 4) does not perform as well
as pelvis-centered pre-processing (line 3). This suggests that pelvis-centered
pre-processing offers a more effective input for pre-training.

Pre-processing Method Pre-training Task Valid Acc. Test Acc.Scaled Pelvis-centered Motion data2vec

✓ ✓ ✓ 90.38 90.12
✓ ✓ 86.01 84.59
✓ ✓ 79.88 77.62

✓ ✓ 74.64 75.87

Table 4.7: Ablation study on pre-processing method and pre-training tasks.

Impact of Loss Coefficient We also assess the impact of the coefficients
used in the multi-task pre-training loss. As introduced in Section 4.2.1.6,
the multi-task pre-training loss is defined as L = αLmotion + βLdata2vec. We
adjust the values of the coefficients α and β and use the linear evaluation to
determine the most effective combination of these two pre-training losses. The
findings are shown in Table 4.8. The results demonstrate that the balance
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between pre-training loss components significantly influences the model’s
learning effectiveness. When the coefficient for motion prediction is too low
(line 1), the data2vec task becomes dominant, leading to suboptimal results.
Conversely, when the motion prediction loss dominates with α = 0.99 (line
4), performance also declines. An optimal combination of the two pre-training
losses with α = 0.95, β = 0.05 yields the best pre-training performance.

Coeff. α for Lmotion Coeff. β for Ldata2vec Valid Acc. Test Acc.

0.5 0.5 82.22 80.23
0.9 0.1 89.80 89.24
0.95 0.05 90.38 90.12
0.99 0.01 88.34 88.08

Table 4.8: Ablation study on the coefficient of multi-task pre-training
components. The multi-task loss is defined as L = αLmotion + βLdata2vec.

4.3.3 Fine-tuning for Referee Action Recognition

4.3.3.1 Fine-tuning Details

We adapt our pre-trained model for referee action recognition through fine-
tuning, as detailed in Section 4.2.3. During this process, a two-layer MLP with
an intermediate dimension of 512 is added on top of the pre-trained encoder.
For fine-tuning, we utilize an AdamW optimizer with a weight decay of 5e-4.
The betas for the AdamW optimizer are set at (0.9, 0.999). The model is fine-
tuned over 20 epochs, starting with a 1000-step linear warmup to a learning
rate of 5e-5, followed by a cosine annealing decay to zero. The batch size is
set at 16. A dropout layer with a probability of 0.5 is applied to the encoder
output to prevent overfitting.

4.3.3.2 Results with Sequence Classification Task

In line with standard practices in skeleton-based action recognition, we fine-
tune the pre-trained model with the sequence classification task, as described
in Section 4.2.3.3. In this task, each skeleton sequence is assigned a label.

Baselines In addition to comparing the performance of the fine-tuned
model to a model trained from scratch, we also adopt the following baselines:

• MLP We train a 3-layer MLP as a simple baseline. The intermediate
layer dimension is set to 512. The first layer of the MLP maps the
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flattened input x ∈ Rl×V×d into a hidden space with a dimension of
512. Each referee in the input shares the same linear encoder. The final
layer takes the flattened output from the previous layers, which includes
dimensions corresponding to the number of referees, and maps it into a
9-way classification space. The MLP undergoes training for 20 epochs
using an AdamW optimizer with a weight decay of 5e-4. The learning
rate is set at 3e-4, and the batch size is set at 16. The learning rate follows
an inverse square root decay after a 2,000-step linear warmup.

• ST-GCN [3] ST-GCN utilizes graph convolutional networks to leverage
the connectivity information of human joints through graphs. It is a
widely used and strong baseline for skeleton-based action recognition.
We train a 9-layer ST-GCN with hidden sizes (128, 128, 128, 256, 256,
256, 512, 512, 512). The model is trained for 20 epochs with a learning
rate of 3e-4. An AdamW optimizer is used with weight decay 5e-4. The
batch size is set to 16. The learning rate schedule follows an inverse
square root decay with a 2,000-step linear warmup.

To better adapt the pre-trained model for the referee action recognition task
through fine-tuning, we incorporate additional inputs alongside the skeleton
sequences. As detailed in Section 4.2.3, this includes the absolute position
of the referee, the position of the ball, and the skeletons of the two assistant
referees. To integrate this additional information, we employ only the residual
module. The performance of the extra token design is discussed in the ablation
study. The model is fine-tuned on a dataset specifically collected for the referee
action recognition task, as described in Table 4.5.

The results are presented in Table 4.9. As shown in the table, for the
9-way referee skeleton sequence classification task, a simple MLP achieves
an accuracy of 85.85% on the validation set and 84.15% on the test set,
which gives an assessment of the task’s complexity. The ST-GCN model,
which provides a more appropriate framework for modeling spatiotemporal
information, outperforms the MLP by a considerable margin. Our fine-
tuned model (line 4) achieves an accuracy of 93.90% on the validation set
and 93.59% on the test set, significantly outperforming the model trained
from scratch with the same architecture (line 3) and the baseline methods.
This underscores the benefits of the pre-training phase in transferring general
knowledge and improving the final model performance.
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Method #Params Valid Acc. Test Acc.

MLP 3.5M 85.85 84.15
ST-GCN [3] 12.4M 88.05 89.51

S-SPTR w/o pre-training 30.8M 90.12 91.26
S-SPTR 30.8M 93.90 93.59

Table 4.9: Performance comparison on referee action recognition on the
sequence classification task.

Ablation Study We conducted an ablation study to evaluate the
effectiveness of incorporating additional inputs and their integration methods
into our model. The results, presented in Table 4.10, show that utilizing all
additional inputs with only the residual module as the integration method
yields the best results. Conversely, applying both integration methods
simultaneously performs slightly worse, and using only the extra token method
is the least effective. This suggests that incorporating additional information
directly into the attention mechanism does not necessarily lead to a better
understanding of these inputs. A potential explanation is that the new token
for additional inputs, not seen during the pre-training phase, poses challenges
for training new weights in the transformer layer to interpret them.

In the second set of experiments (lines 4 to 7), we systematically removed
each additional input—pelvis position, ball position, and actions of other
referees—while maintaining the residual module as the only integration
method. The findings indicate that each input contributes to the recognition
performance. Notably, removing the actions of other referees results in the
most significant performance drop, underscoring the critical role of other
referees’ actions in understanding the main referee’s actions due to frequent
interactions between them.

Furthermore, we experimented with removing both pelvis and ball
positions from the additional inputs (the last two lines), eliminating the need
for an integration method, to specifically assess the impact of other referees’
actions. The results show only a minimal drop in performance when the
actions of other referees are included but a significant decline when they are
excluded. This again highlights the importance of including other referees’
actions in the input to maintain robust model performance.
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Additional Input Integration Method Valid Acc. Test Acc.Pelvis pos. Ball pos. Other referees Residual Extra token

✓ ✓ ✓ ✓ 93.90 93.59
✓ ✓ ✓ ✓ ✓ 93.41 92.89
✓ ✓ ✓ ✓ 91.83 92.68

✓ ✓ ✓ 90.93 89.56
✓ ✓ ✓ 93.66 93.01

✓ ✓ ✓ 92.56 91.26

✓ 92.56 92.77
83.09 84.93

Table 4.10: Ablation study on additional inputs and their integration methods
for the sequence classification task.

4.3.3.3 Results with Sequence Labeling Task

As discussed in Section 4.2.3.4, one limitation of the model trained with
the sequence classification task is that it causes significant delays when
implemented in real-game scenarios. To mitigate this issue, we explore fine-
tuning the model with a sequence-labeling task. Under this setting, the
model is trained under the supervision of a binary classification model that
provides action vs. non-action predictions. We use an expanded version of the
sequence classification dataset (Table 4.5), detailed in Section B.2.7, where
each sequence is extended to 8 seconds to offer additional context. Given
that the MLP and ST-GCN models are not designed to generate frame-level
predictions, we only compare our fine-tuned model to the model trained from
scratch. Further comparisons of model performance will be conducted during
the evaluation of the model in real-game scenarios.

The fine-tuning details follow that used in the sequence labeling task. We
predict one label for each token within the sequence. With the time patch size
set to 5 and a frame rate of 25 Hz, each token corresponds to an action spanning
0.2 seconds in the original sequence. The fine-tuning loss is computed on the
tokens from the 2-second mark to the end of each sequence.

We adopt best practices from the sequence classification task concerning
the choice and integration of additional inputs. This includes incorporating
all available inputs, i.e., ball position, absolute referee location, and actions of
other referees, and using a residual module to integrate these into the latent
space.
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Method #Params Pre-masking Label Valid Acc. Test Acc.
Hard Soft

S-SPTR w/o pre-training 30.8M 75.71 76.33

S-SPTR 30.8M

✓ ✓ 92.17 91.01
✓ ✓ 92.29 91.51

✓ 92.31 91.13
✓ 92.75 91.88

Table 4.11: Performance comparison on referee action recognition on the
sequence labeling task. Pre-masking means pre-sequence random-length
masking as introduced in Section 4.2.3.4.

For settings specific to sequence labeling, we experiment with both hard
and soft labels, and with and without pre-sequence random length masking.
The results are shown in Table 4.11. A model with the same architecture
trained from scratch is set as a baseline for this experiment, as shown in
the first line in the table. In the sequence labeling setting, we face the
challenge of lacking frame-level ground truth labels. To overcome this,
we utilize hard labels as proxies for ground truth. As shown in the table,
the fine-tuned models consistently outperform the one trained without pre-
training, demonstrating the crucial role of the pre-training phase in enhancing
the model’s effectiveness. The best-performing model with the sequence
labeling task achieves an accuracy of 92.75% on the validation set and 91.88%
on the test set, highlighting the model’s proficiency in giving frame-level
prediction based on sequence inputs. However, regarding the impact of the
proposed settings, although the model trained with hard labels without pre-
sequence random-length masking achieves the best results, the performance
differences among the various settings are marginal. Considering that the
ground truth labels used for evaluation in this experiment are generated by the
binary classification model that is not perfectly reliable, we conclude that the
different combinations of settings yield comparable performance. Therefore,
a comprehensive evaluation in a real-game scenario is necessary to determine
the optimal setting.

4.3.4 Evaluation on Real Games

Similar to our frame-level model, we evaluate our sequence-level model
in real-world scenarios, using the same game as in the frame-level
evaluation—the game between Miami CF and CF Montreal played on
February 26, 2023, referred to as MIA-MTL. Additionally, we evaluate
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our models on another game, played between Seattle Sounders FC and
Los Angeles FC on March 18, 2023, referred to as SEA-LAF. Evaluating
models in real-game scenarios is considered the gold standard for assessing
model performance, while comparing model performance using our collected
dataset’s evaluation set can be biased because the dataset itself may not
accurately reflect the distribution of actions in real games nor cover all
potential real-world actions. Thus, a higher accuracy on the test set does
not necessarily guarantee better real-world performance. Evaluating in real
games is crucial for accurately assessing model capabilities, identifying model
shortcomings, and proposing improvements. It also enables a fair comparison
between our models that have been fine-tuned with the sequence classification
and sequence labeling tasks, ensuring a more rigorous selection of the optimal
model.

4.3.4.1 Model Fine-tuned with Sequence Classification Task

We evaluate the best-performing model fine-tuned with sequence classification
task on real games, which corresponds to the model shown in Table 4.9.
To apply the model to the real-game scenario, post-processing techniques
introduced in Section 4.2.4 are needed. We use a fixed context length of 4
seconds to provide context information since the model is fine-tuned on a
dataset with all sequences being 4 seconds long. That is, the prediction for
each frame in the game is based on the previous 4-second referee skeleton
sequence. The duration threshold is set at 0.5s, and the confidence threshold
is set at 0.8 to effectively filter out potential false positives. The evaluation
depends on human decision for an action being correctly recognized or not.
The results are shown in Table 4.12.
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# In Game Precision Recall F1-Score

DIRECT_FREE_KICK 24 0.2396 0.9583 0.3833
INDIRECT_FREE_KICK 6 0.2500 1.0000 0.4000
THROW_IN_HOME 18 0.8095 0.9444 0.8718
THROW_IN_AWAY 18 0.8095 0.9444 0.8718
GOAL_KICK 15 0.6364 0.9333 0.7568
CORNER_KICK 8 0.6667 1.0000 0.8000
GOAL 3 0.2727 1.0000 0.4286
OTHER_DECISION 110 0.5037 0.6296 0.5597

Overall 202 0.4985 0.7630 0.6030

(a) Evaluation results on game MIA-MTL.

# In Game Precision Recall F1-Score

DIRECT_FREE_KICK 26 0.5526 0.8077 0.6563
INDIRECT_FREE_KICK 3 0.2143 1.0000 0.3529
THROW_IN_HOME 20 0.8000 1.0000 0.8889
THROW_IN_AWAY 15 0.8235 0.9333 0.8750
GOAL_KICK 20 0.6296 0.8500 0.7234
CORNER_KICK 13 0.7333 0.8462 0.7857
GOAL 0 0.0000 - -
OTHER_DECISION 86 0.5431 0.7326 0.6238

Overall 183 0.6383 0.8152 0.7160

(b) Evaluation results on game SEA-LAF.

Table 4.12: Performance of the model trained with sequence classification task
on real games.

As shown in the tables, for game MIA-MTL in Table 4.12a, the recall
for most classes, except for the class OTHER_DECISION, is high, indicating
that the model generally does not miss or misclassify true referee signals.
Specifically, for GOAL, CORNER_KICK, and INDIRECT_FREE_KICK, the
recall reaches 1.0, meaning that every referee signal in these categories
is correctly predicted. However, the precision for some classes is
unsatisfactory. For instance, the precision for DIRECT_FREE_KICK,
INDIRECT_FREE_KICK, and GOAL does not exceed 0.3, indicating a large
number of false positives. Although the precision is higher for other
classes, the model remains overly sensitive to noise, resulting in false
positives. The recall for OTHER_DECISION is lower compared to other
classes, and the precision is also unsatisfactory, likely due to insufficient
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training data. For game SEA-LAF, we observe similar patterns. The recall
for INDIRECT_FREE_KICK, THROW_IN, GOAL_KICK, and CORNER_KICK is
high, indicating these actions can be recognized well from the game. However,
the precisions are not satisfactory, especially for DIRECT_FREE_KICK,
INDIRECT_FREE_KICK and GOAL_KICK, where the precision is relatively
lower, suggesting many false positives. There are no goals in this game, but
the model still outputs false positive GOAL predictions, resulting in a precision
of zero for this action. Overall, the model achieves an F1 score of 0.6030 for
game MIA-MTL and 0.7160 for game SEA-LAF. With the overall precisions
not exceeding 0.7, the indicated prevalence of false positives limits the model’s
practical applicability.

4.3.4.2 Model Fine-tuned with Sequence Labeling Task

For the model fine-tuned with the sequence labeling task, we evaluate models
trained with different combinations of supervision label types and the use
of pre-sequence random-length masking, as shown in Table 4.11. We use a
context length of 6 seconds for this evaluation, as the model was fine-tuned
with a history length varying from 0 to 8 seconds. A 6-second context provides
both relatively long context information and is commonly encountered during
training. The duration threshold is set to 0.5s, and the confidence threshold is
set to 0.8, consistent with the evaluation of the model trained with the sequence
classification task in the previous section. The results are presented in Table
4.13.

First, compared to the evaluation results of the model trained with the
sequence classification task, the model trained with the sequence labeling
task achieves a best F1 score of 0.7121 and 0.7863, respectively, on the two
games. This significantly outperforms the model trained with the sequence
classification task, whose F1 score is 0.6030 and 0.7160, as shown in Table
4.12. While maintaining high recall for most classes, the model trained
with the sequence labeling task achieves much higher precision, indicating
significantly fewer false positives.

For OTHER_DECISION, the model trained with the sequence labeling
task achieves a higher F1 score with significantly higher precision but
some sacrifice in recall. This improvement is likely due to the sequence
labeling task providing supervision signals on each frame rather than each
sequence, thereby significantly enhancing the efficacy of leveraging labeled
data. However, the supervision provided by a trained model could introduce
errors. This might explain why the model tends to classify some actions with
limited motion range as NO_DECISION, leading to a decrease in recall.
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# In Game Hard w/o pre-masking Hard w/ pre-masking

Precision Recall F1-Score Precision Recall F1-Score

DIRECT_FREE_KICK 24 0.5946 0.9167 0.7213 0.5263 0.8333 0.6452
INDIRECT_FREE_KICK 6 0.3158 1.0000 0.4800 0.3750 1.0000 0.5455
THROW_IN_HOME 18 0.9444 0.9444 0.9444 0.7500 1.0000 0.8571
THROW_IN_AWAY 18 0.8182 1.0000 0.9000 0.8182 1.0000 0.9000
GOAL_KICK 15 1.0000 0.9333 0.9655 0.8333 1.0000 0.9000
CORNER_KICK 8 0.6667 1.0000 0.8000 0.5000 1.0000 0.6667
GOAL 3 0.7500 1.0000 0.8571 0.3750 1.0000 0.5455
OTHER_DECISION 110 0.7600 0.3455 0.4750 0.6173 0.4425 0.5155

Overall 202 0.7879 0.6161 0.6914 0.6796 0.6667 0.6731

# In Game Soft w/o pre-masking Soft w/ pre-masking

Precision Recall F1-Score Precision Recall F1-Score

DIRECT_FREE_KICK 24 0.5000 0.6667 0.5714 0.6129 0.7917 0.6909
INDIRECT_FREE_KICK 6 0.4615 1.0000 0.6316 0.3750 1.0000 0.5455
THROW_IN_HOME 18 0.8095 0.9444 0.8718 0.8947 0.9444 0.9189
THROW_IN_AWAY 18 0.6429 1.0000 0.7826 0.6667 1.0000 0.8000
GOAL_KICK 15 0.9375 1.0000 0.9677 0.7778 0.9333 0.8485
CORNER_KICK 8 0.5714 1.0000 0.7272 0.6667 1.0000 0.8000
GOAL 3 0.5000 1.0000 0.6667 0.5000 1.0000 0.6667
OTHER_DECISION 110 0.7385 0.4364 0.5486 0.7879 0.4771 0.5943

Overall 202 0.7598 0.6445 0.6974 0.7581 0.6714 0.7121

(a) Evaluation results on game MIA-MTL.

# In Game Hard w/o pre-masking Hard w/ pre-masking

Precision Recall F1-Score Precision Recall F1-Score

DIRECT_FREE_KICK 26 0.7619 0.6154 0.6809 0.6667 0.6154 0.6400
INDIRECT_FREE_KICK 3 0.3750 1.0000 0.5455 0.3333 1.0000 0.5000
THROW_IN_HOME 20 0.9091 1.0000 0.9524 0.8333 1.0000 0.9091
THROW_IN_AWAY 15 1.0000 0.9333 0.9655 1.0000 0.9333 0.9655
GOAL_KICK 20 0.9048 0.9500 0.9268 0.9048 0.9500 0.9268
CORNER_KICK 13 0.8000 0.9231 0.8571 0.6500 1.0000 0.7879
GOAL 0 0.0000 - - 0.0000 - -
OTHER_DECISION 86 0.7164 0.5517 0.6234 0.6265 0.5977 0.6118

Overall 183 0.8571 0.7097 0.7765 0.7874 0.7366 0.7611

# In Game Soft w/o pre-masking Soft w/ pre-masking

Precision Recall F1-Score Precision Recall F1-Score

DIRECT_FREE_KICK 26 0.8333 0.5769 0.6818 0.6957 0.6154 0.6531
INDIRECT_FREE_KICK 3 0.4286 1.0000 0.6000 0.4286 1.0000 0.6000
THROW_IN_HOME 20 0.9524 1.0000 0.9756 0.9091 1.0000 0.9524
THROW_IN_AWAY 15 0.9231 0.8000 0.8571 0.9333 0.9333 0.9333
GOAL_KICK 20 0.9000 0.9000 0.9000 0.9500 0.9500 0.9500
CORNER_KICK 13 0.8125 1.0000 0.8966 0.8000 0.9231 0.8571
GOAL 0 0.0000 - - 0.0000 - -
OTHER_DECISION 86 0.6548 0.6322 0.6433 0.6667 0.6207 0.6429

Overall 183 0.8293 0.7312 0.7771 0.8364 0.7419 0.7863

(b) Evaluation results on game SEA-LAF.

Table 4.13: Performance of the model trained with sequence labeling task
on real games. ’Hard w/o pre-masking’ means the model is fine-tuned
with hard labels without pre-sequence random-length masking; ’Hard w pre-
masking’ means the model is fine-tuned with hard labels and pre-sequence
random-length masking; ’Soft w/o pre-masking’ means the model is fine-
tuned with soft labels without pre-sequence random-length masking; ’Soft w/
pre-masking’ means the model is fine-tuned with soft labels and pre-sequence
random-length masking;
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When comparing different fine-tuning settings for the model trained with
the sequence labeling task, the best-performing model in the real-game
evaluation is the model trained with soft labels and pre-sequence random-
length masking, consistent across both games. This result doesn’t align
perfectly with the evaluation on the validation and test set in Table 4.11.
The difference might be due to the collected evaluation set being biased and
not accurately reflecting the real-world data distribution. We consider the
real-game evaluation to be more reliable since it is closer to the practical
application of the model. Therefore, the model trained with soft labels and
pre-sequence random-length masking is considered the best model for referee
action recognition in this study.

We can observe from the table that models trained with soft labels
consistently outperform those trained with hard labels, particularly due to
improved performance on the OTHER_DECISION class. The likely reason
is that with soft labels, more frames are assigned a probability for the
OTHER_DECISION label, which is originally zero in the hard label setting.
Consequently, the model trained with soft labels is exposed to more frames
with a probability of being OTHER_DECISION, resulting in more robust
performance. When trained with soft labels, as shown in the lower part
of each table, pre-sequence random-length masking further enhances model
performance. This technique varies the history length for a particular token
during training across different epochs, preventing potential overfitting and
leading to better results.

In view of practicality, although the performance for the OTHER_DECISION
class is not entirely satisfactory, referee actions in this class do not have as
significant an impact on the game as other well-defined actions. Applications
of the model might rely more on well-defined actions rather than those
categorized under OTHER_DECISION. In such cases, our model demonstrates
greater capability. For example, a potential application of the referee action
recognition system is to assist in recognizing key events on the pitch, such as
throw-ins, goal kicks, and corner kicks. Since our model consistently achieves
an F1 score above 0.9 for the THROW_IN and GOAL_KICK, and above 0.8 for
CORNER_KICK signals, the predictions for these labels are relatively reliable
and can effectively contribute to real-time event recognition during a game.

4.3.4.3 Inference Time

To evaluate if our model is capable of real-time recognition, we assessed the
inference time of our S-SPTR on real games. An Nvidia RTX 3060 GPU is
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used for the evaluation. The evaluation is performed frame by frame, with
the context sequence length of each frame being 6 seconds long. We run the
inference for 1,000 frames and report the average inference time per frame.
As shown in Table 4.14, the inference time per frame is no more than 6 ms,
indicating that our model can provide real-time referee action recognition at
a frequency of at least 150 Hz. While increasing the batch size generally
improves inference time, a batch size of 32 causes a longer inference time.
This may be due to the bottleneck shifting away from GPU computation.
Nevertheless, the inference time remains sufficiently low to support real-time
referee action recognition.

Batch Size GPU Memory Usage Inference Time (ms/frame)

S-SPTR

1 752M 5.4
4 1154M 2.3
16 2640M 2.1
32 4664M 3.0

Table 4.14: Inference time of S-SPTR on real games. Evaluations are
performed on an Nvidia RTX 3060 GPU. Context sequences are 6 seconds
long.

4.3.5 Case Study

Similar to the frame-level model, we observe predicted probabilities over
frames to assess prediction stability. Moreover, we aim to observe the
differences in delay caused by different models. We analyze 3 cases: a
DIRECT_FREE_KICK, an INDIRECT_FREE_KICK, and a GOAL. The outputs
of two models are plotted: one trained with the sequence classification task, as
introduced in Table 4.9, and the other trained with the sequence labeling task,
utilizing soft labels and pre-sequence random-length masking, as shown in the
second line of Table 4.11. Following the settings used for frame-level models,
we set the frame rate at 25 Hz and omit classes with probabilities consistently
below 0.05 from the plot during our observations. The left side of the body is
shown in red, and the right side is shown in green.
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(a) Probabilities from the model trained with the sequence classification task
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(b) Probabilities from the model trained with the sequence labeling task

Figure 4.4: Output probabilities for a DIRECT_FREE_KICK

DIRECT_FREE_KICK We plot the output probabilities for a DI-
RECT_FREE_KICK in Figure 4.4. The upper subfigure (4.4a) shows the output
probabilities from the model trained with the sequence classification task,
while the lower subfigure (4.4b) presents the predictions from the model
trained with the sequence labeling task. As illustrated in the figures, the
predictions from the model trained with the sequence classification task are
more chaotic, with a false positive OTHER_DECISION around frame 25. In
contrast, the prediction probabilities from the model trained with the sequence
labeling task for irrelevant labels are never high enough to dominate. This
suggests that the model trained with the sequence labeling task offers better
prediction accuracy and stability.

Moreover, there is a significant delay in the prediction in the upper
subfigure. The actual action ends around frame 100, but the prediction for
DIRECT_FREE_KICK remains positive for another 80 to 100 frames for the
model trained with the sequence classification task. This delay is due to
the prediction at each frame being based on the previous 4-second sequence,
which is equivalent to 100 frames. In contrast, the model trained with
the sequence labeling task stops predicting DIRECT_FREE_KICK labels just
around one second after the action terminates, indicating that it effectively
solves the problem of delay.
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(a) Probabilities from the model trained with the sequence classification task
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Figure 4.5: Output probabilities for an INDIRECT_FREE_KICK

INDIRECT_FREE_KICK Figure 4.5 shows the action probabilities
predicted by the two models for an INDIRECT_FREE_KICK. In this case, the
ball went into the net, and the referee initially signaled a GOAL (arm pointing
to the center mark). However, the referee later realized that the assistant
referee signaled for offside, so the referee disallowed the goal and signaled
an INDIRECT_FREE_KICK (raising the hand vertically).

For the model trained with the sequence classification task, the prediction
of each frame is based on the previous 4-second sequence. This
sequence might include two different actions in this case, GOAL and
INDIRECT_FREE_KICK, leading to confusion and suboptimal predictions.
From the plot, we observe that the model experiences confusion around frame
50 and eventually predicts GOAL from frame 60 to frame 90, even though the
referee is already signaling an INDIRECT_FREE_KICK. Due to this confusion
and delay, the model doesn’t identify the INDIRECT_FREE_KICK until around
frame 100, almost 2 seconds after the action begins.

In contrast, the model trained with the sequence labeling task predicts
INDIRECT_FREE_KICK around frame 70, almost immediately after the
referee gives the signal. Although there is some confusion between frames
40 and 60, it does not affect the later prediction, as the prediction in this
model is only responsible for the current frame rather than the previous 4-
second sequence. This suggests that training with the sequence labeling task
reduces interference between different actions and results in better real-game
performance.

GOAL In Figure 4.6 and Figure 4.7, we show the variation of classification
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probabilities predicted by the two models for a GOAL. In this case, both models
perform well in predicting the GOAL. Figure 4.6 shows the beginning stage of
the GOAL signal. We can see from the plot that the model trained with the
sequence labeling task (lower subfigure 4.6b) responds earlier than the model
trained with the sequence classification task (upper subfigure 4.6a). Figure
4.7 shows the probabilities during the entire GOAL signal. This demonstrates
that the model trained with the sequence labeling task also responds more
quickly to the termination of the action. This indicates that the model trained
with the sequence labeling task has a shorter latency in responding to referee
signals, with a quicker response not only at the end of the signal but also at the
beginning.
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(a) Probabilities from the model trained with the sequence classification task
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Figure 4.6: Output probabilities for a GOAL in the beginning
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Figure 4.7: Output probabilities for the entire process of the GOAL signal

To summarize, our case studies confirm that the model trained with the
sequence labeling task outperforms the model trained with the sequence
classification task in several aspects. First, it solves the problem of delay after
an action ends. Moreover, It demonstrates quicker responses to referee actions
and is less influenced by the confusion between different actions within the
same sequence, resulting in more accurate and timely predictions in real-game
scenarios.

4.3.6 Summary

Due to the more complex nature of the main referee’s actions, the incorporation
of sequence-level context is essential. Our research confirms that pre-
training is a fundamental step for this purpose. Specifically, our proposed
multi-task pre-training objective proves effective in learning general patterns
for referee movements. To further enhance the performance of action
recognition, we integrate additional information, such as ball position and
the actions of other referees, into the input. Experimental results indicate the
efficacy of this approach. More importantly, We propose a novel fine-tuning
strategy using a sequence-labeling task instead of the conventional sequence-
classification task. Evaluations conducted on real-game scenarios, along with
detailed case studies, demonstrate that this strategy effectively solves delays,
significantly enhances the utilization of labeled data, and consequently results
in satisfactory performance in real-game scenarios.
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Chapter 5

Conclusions and Future work

5.1 Conclusions

In this work, we propose a pre-training and fine-tuning pipeline to develop
skeleton-based action recognition models for football referees. We employ
different strategies tailored for different types of referees, training a frame-
level model for assistant referees and a sequence-level model for main referees.
Various strategies are implemented to collect data that support robust pre-
training and fine-tuning.

For the frame-level model, we design a simple yet effective pre-training
method with Transformer-based autoencoders. The model, fine-tuned on
an elaborately collected dataset, demonstrates excellent performance for
assistant referee action recognition on both the evaluation set and in real-game
scenarios, thereby proving its practical applicability in live sports events.

For the sequence-level model, we propose a novel multi-task pre-training
approach that integrates two advanced pre-training techniques: Masked
Motion Predictor (MAMP) [33] and data2vec [36]. Experimental results
verify the effectiveness of this approach. Furthermore, in the fine-tuning stage,
we fine-tune the model with a novel sequence-labeling task, which addresses
the challenge of delay inherent in sequence-level models and utilizes labeled
data more efficiently. Additionally, we implement strategies to incorporate
additional inputs, thereby improving the model’s comprehension of referee
actions. Experimental results on the evaluation set and real game data show
that these methods surpass baseline systems such as ST-GCN and produce
satisfactory results.

Our results demonstrate the effectiveness of the pre-training stage in
learning general knowledge of referee actions, significantly enhancing the



88 | Conclusions and Future work

accuracy and performance of the models during the fine-tuning stage for the
specific task. This approach ensures that both frame-level and sequence-level
actions are accurately recognized, providing a robust solution for skeleton-
based action recognition in football referees. It is worth noting that significant
efforts were made to collect the dataset, and the experiments also suggest
that the quality of the dataset is crucial for the final performance. Collecting
more high-quality data remains the most efficient way to improve model
performance.

5.2 Limitations

Despite the promising results, there are several limitations to this work:

• The target classes are not highly fine-grained, which limits the
model’s ability to predict specific classes. For example, referee
signals for advantage are not a separate class but are included in
the OTHER_DECISION class in this work, preventing the model from
accurately predicting referees showing advantage signals.

• Although most assistant referee actions are static, some are dynamic.
The frame-level model design restricts the ability to identify dynamic
actions. For example, an assistant referee waving the flag to signal
a foul might be incorrectly interpreted by our frame-level model as
RAISE_FLAG_VERTICALLY.

• The performance of the fine-tuned model heavily depends on the
availability of high-quality labeled data. Insufficient data can result
in inadequate training and suboptimal performance. For instance, the
amount of DIRECT_FREE_KICK and OTHER_DECISION data may not
be sufficient for the model to train effectively.

• It is sometimes impossible to determine the meaning of referee signals
solely by relying on skeleton data. Humans actually rely on all available
information on the pitch, including the actions of all players and the
position of the ball, to understand what is happening. Thus, depending
solely on referee skeletons does not inherently guarantee the recognition
of all referee actions.
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5.3 Future work

Future research could address the limitations and extend the findings of this
work in several ways:

• Implementing a more systematic strategy for collecting classification
datasets, which includes human annotations by experts such as
professional referees, to create a larger and higher-quality dataset.
A more representative dataset is expected to lead to significant
improvements.

• Leveraging few-shot learning methods to recognize rare classes, thereby
improving recognition accuracy for classes that naturally lack sufficient
training data.

• Developing strategies to combine assistant referee action predictions
from the frame-level model and referee action predictions from the
sequence-level model, which is crucial for applications such as event
detection.

• Introducing finer-grained class divisions to perform more detailed
classifications and provide more specific predictions about referee
actions. For example, actions such as ADVANTAGE, NO_FOUL, and
SANCTION should be classified into individual classes, provided there
is sufficient data.

• Applying the sequence-level approaches designed for main referee
actions to assistant referee action recognition, which could potentially
yield better performance.

• Including additional contextual information to improve the understand-
ing of events. For instance, the actions of players could be beneficial for
identifying free kicks, as players typically slow down and prepare for
the kick when it is called.

• Ensuring the models are free from bias, performing equally well for
different games and different referees.

5.4 Reflections

With accurate recognition of referee actions from this work, there can be a
significant reduction in the need for extensive human resources to manually
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analyze and label referee actions in football games. This optimization can
lead to cost savings associated with human trainers and manual annotation.
It also results in a more efficient use of resources, contributing to operational
efficiency. Although specific environmental benefits, such as reduced carbon
footprints, are not directly addressed in the thesis, the reduction in resource
use indirectly supports environmental sustainability.

The automated referee recognition system could also promote community
engagement by enhancing transparent officiating. Referee actions are not as
easy to understand as player actions by the community, including fans, players,
and stakeholders. By providing clear and accurate interpretations of referee
signals from the model, we could improve the real-time understanding of these
referee decisions, thereby reducing controversies and making football more
united for everyone.

One concern is ensuring that the models do not exhibit bias and that
they perform equally well across different scenarios and for different referees.
Ensuring fairness in the algorithm’s decisions is essential to maintain the
integrity of the sport. This aspect is not addressed in this thesis and should
be a critical part of future work. This includes regular updating of algorithms
to maintain fairness and accuracy, thereby maintaining the ethical standards of
the technology and ensuring its widespread acceptance and credibility within
the football community.
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Appendix A

Details of Frame-level Data Prepa-
ration

A.1 Data Cleaning for Pre-training Data

Data cleaning is necessary to enhance the quality of the pre-training data. This
process includes removing corrupted frames, as well as noisy frames in both
spread and motion.

Removal of corrupted frames Missing frames and missing joints are not
rare in skeleton sequences, often resulting in values being recorded as NaN
(Not a Number). To ensure these NaN values do not adversely affect the pre-
training process, we remove any frames that contain NaN values.

Removal of spread-noisy frames When a joint’s position deviates
significantly from its normal location, the frame is likely to contain noisy data.
To address this, we calculate the spread of a frame in both the x and y directions
and filter out noisy frames by setting a threshold on the ratio of the x-direction
spread to the y-direction spread. Formally, the ratio r is derived by

sx = max(x:,0)− min(x:,0)

sy = max(x:,1)− min(x:,1)

r = min(sx/sy, sy/sx)
(A.1)

The threshold is set to 0.15. Namely, we filter out frames with r < 0.15.
Removal of motion-noisy frames There is a physiological upper limit

for human joint movement speed. Therefore, joints that move excessively
fast are likely to be noisy data. Although our training only involves single
frames, which don’t involve joint movement, frames with noisy joint motion
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often have structural inaccuracies. To filter out motion-noisy frames, we
calculate the instantaneous speed of each joint within a frame. Frames in
which any joint moves faster than 10 times the z-direction spread per second
are excluded. Given that referees typically stand or run, the z-direction
spread, approximately equal to the referee’s height, is usually more than 1.5
meters. Thus, the threshold normally exceeds 15 meters per second—a speed
unreachable by humans.

sz = max(xt
:,2)− min(xt

:,2)

v = xt+1 − xt

vmax = maxi(∥vi∥)
(A.2)

We filter out frames with vmax > 10 · sz.

A.2 Classification Dataset for Stage 1

A.2.1 Manual Annotation

Manually annotating data is the most straightforward and reliable way to get
labeled data, yet it is also inefficient. Acquiring a large-scale dataset through
manual annotation alone is impractical. However, manual annotations can
serve as valuable starting points for implementing the automatic and semi-
automatic strategies outlined below.

A.2.2 Cosine Similarity Matching

Frames within the same class should exhibit similar characteristics in the latent
space of the pre-trained model. Therefore, we propose to leverage cosine
similarity within this latent space to automatically derive more labeled data
from unlabeled datasets, leveraging a few manually annotated examples as
a reference. To determine the similarity between an unlabeled frame and a
known class, we calculate the minimum cosine distance between the unlabeled
frame and all labeled frames within that class. We then apply two specific
thresholds to this calculated similarity to label new frames:

• Similarity threshold ts: A frame is only labeled if its minimum cosine
distance to the class is less than ts.

• Duration threshold td: A frame is only labeled if it consistently meets
the similarity criterion across td consecutive frames.
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To prevent duplication and maintain diversity within the dataset, only the
center frame of a ten-second sequence is labeled if it satisfies both thresholds.
The optimal values for these thresholds vary depending on the type of action
being analyzed. Empirically, we find that the values listed in Table A.1 are
effective for the target classes for both Stage 1 and Stage 2.

Similarity Threshold Duration Threshold

THROW_IN 0.01 5
GOAL_KICK 0.01 10
CORNER_KICK 0.03 10
SUBSTITUTION 0.02 20
RAISE_FLAG_VERTICALLY 0.02 10
FAR_SIDE_OFFSIDE 0.03 10
NEAR_SIDE_OFFSIDE 0.05 10

Table A.1: Empirical optimal values for cosine similarity matching for
different action types. The frame rate is 25Hz.

Frames annotated using this strategy typically exhibit an error rate of
approximately 5% to 20%, depending on the action type. Therefore, in
practice, we employ a semi-automatic approach: initially, frames are annotated
using the two thresholds, and then the auto-annotated frames are manually
verified to ensure the dataset’s quality.

A.2.3 Auto-annotation with Binary Classification Models

Another approach to utilizing the pre-trained model involves specifically
training a model based on it for automatic annotation. For each action
class, we fine-tune the pre-trained model to get a binary classification model
that can determine whether a frame belongs to the selected action type or
not. The main advantage of using specialized models for annotation is that
it allows more complex decision boundaries for action recognition, which
are more expressive than simple spherical boundaries in cosine similarity
matching. The detailed steps to annotate data for each action class with binary
classification models are outlined below:

(1) Create a binary classification dataset for the selected action
For each class, we create a separate binary classification dataset.
All existing labeled frames are categorized into positive and negative
categories. Frames that belong to the selected class are labeled as
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positive, while all those that do not are assigned a negative label.
Typically, the number of negative samples substantially exceeds the
number of positive samples. To balance this, we randomly select a
subset of the negative samples to ensure a fixed positive-to-negative
ratio. This ratio is maintained at 1/4 for all classes in our experiments,
except for RAISE_FLAG_VERTICALLY, where it is set to 1/8. We
construct the binary dataset after cosine similarity matching. So, the
dataset produced by this process usually contains hundreds of frames,
which is sufficient to train decent models.

(2) Fine-tune the pre-trained model on the collected dataset To get
a capable binary classification model for data annotation, we fine-tuned
the pre-trained model using the datasets specifically collected for binary
classification for each class. As a result, a model is trained for each
class to annotate frames. We follow the fine-tuning methods described
in Section 3.2.2, without residual module and weighted resampling.
The pre-trained model and the additional linear layer are trained for 10
epochs. We set the batch size to 32 and used a learning rate of 5e-4.
We use the pre-trained model trained on unlabelled data, which will be
detailed in Section 3.3.2.

(3) Annotate unlabeled frames using the fine-tuned model with
thresholding We utilize the fine-tuned model to predict the probability
of each unlabeled frame being a positive example for each class. The
thresholding strategy is similar to that described in Cosine Similarity
Matching, with the modification that we now threshold based on
classification probability. The thresholds used for annotation are:

– Probability threshold tp: A frame is only annotated if the softmax
probability predicted by the model exceeds tp.

– Duration threshold td: A frame is only annotated if it consistently
exceeds the probability threshold over td consecutive frames.

The duration threshold (td) is set at 20 for all classes. The probability
threshold (tp) is consistently set at 0.99 across all classes, with
the exception of the SUBSTITUTION class, which has a probability
threshold of 0.95.

Based on the above three steps, we collected a large-scale labeled frame-
level classification dataset. As indicated in Table A.2, we trained five models
corresponding to five action types. These fine-tuned models demonstrated
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high accuracy on both the validation and test sets. The number of frames
ultimately annotated was 1 to 5 times greater than the data initially used for
training, showcasing the effectiveness of this approach.

Class Binary Dataset Fine-tuned Model # Frames AnnotatedTrain/Valid/Test Valid/Test Acc.

THROW_IN 685+2740/59+239/60+238 100.00/99.66 4415
GOAL_KICK 831+3324/67+241/56+252 100.00/99.35 2247
CORNER_KICK 429+1716/27+125/34+118 100.00/99.34 1119
SUBSTITUTION 311+1244/24+106/28+102 100.00/100.00 635
RAISE_FLAG_VERTICALLY 456+3648/34+322/45+311 100.00/99.44 353

Table A.2: Frames annotated automatically by binary classification models
(the last column). The number before the ’+’ sign represents the count of
positive samples, while the number after the ’+’ sign indicates the count of
negative samples.

For NO_DECISION actions, we developed a sequence-level binary
classification model using the ST-GCN architecture, as detailed in Section
2.1.1. We utilized existing event labels such as ’whistle’ and ’ball dead’,
labeling 25,592 sequences, each 10 seconds in length. Sequences with event
labels are labeled HAS_DECISION, while sequences without event labels
are labeled NO_DECISION. These sequences were then split into training,
validation, and test sets in an 8/1/1 ratio. A 9-layer ST-GCN with a hidden
size of 64 was trained on this binary classification dataset using a learning
rate of 3e-4 over 20 epochs. As shown in Table A.3, the performance of the
ST-GCN model reached 95.4% on the validation set and 94.8% on the test
set. This model was subsequently applied to predict 20,285 unlabeled 10-
second long sequences, of which 18,889 were predicted as NO_DECISION
sequences. We then randomly picked one frame from each sequence to be
labeled as NO_DECISION.

Class Binary Dataset Fine-tuned Model # Frames AnnotatedTrain/Valid/Test Valid/Test Acc.

NO_DECISION 20,474/2,559/2,559 95.4/94.8 18,889

Table A.3: Frames annotated by the sequence-level binary ST-GCN model for
NO_DECISION.
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A.2.4 Throw-in Direction Division

To achieve a more fine-grained classification, we further divide the class
THROW_IN into THROW_IN_LEFT and THROW_IN_RIGHT, as it can provide
richer information for future applications, such as event detection. We employ
similar strategies as previously described. Initially, we manually annotate
a small set of samples for both THROW_IN_LEFT and THROW_IN_RIGHT.
Subsequently, we utilize cosine similarity matching to expand our labeled
dataset slightly. Following this, we train a binary classification model using
the gathered data and then use this model to annotate all THROW_IN frames.

A.2.5 Data Cleaning Conditioned on Arm Angles and
Joint Distances

To further improve the quality of the dataset, we implement a denoising
process based on arm angle conditions and joint distance conditions. This
strategy stems from observing that the initial versions of fine-tuned models
sometimes performed poorly, particularly when the assistant referee was
scratching or swiping sweat, and some no-action frames were misclassified as
corner kicks and goal kicks. We tailor the denoising conditions to suit different
types of actions, as follows:

THROW_IN We calculate the distance between the shoulder and the
wrist for both limbs and establish a threshold of 0.4 meters to filter out
noisy frames since actions with the wrist close to the shoulder are likely
to be scratching. For THROW_IN_LEFT, the condition applies only to the
left limbs, and for THROW_IN_RIGHT, it applies only to the right limbs.
Frames where the wrist-to-shoulder distance is less than 0.4 meters are
labeled as noisy.

GOAL_KICK To denoise goal kick frames, we compute two cosine
values: cosZ, which measures the cosine value of the angle between
the right elbow-wrist vector and the z-axis, and cosY , which measures
the cosine value of the angle between the right elbow-wrist vector
and the y-axis. Ideally, during a goal kick signal, the arm should be
horizontally oriented toward the goal area, aligning parallel with the
goal line. Therefore, we set the threshold at 0.5 for | cosZ| and 0.7 for
| cosY |. Frames with the absolute value of these cosine values below
these thresholds are excluded as noisy data.
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CORNER_KICK The model occasionally confuses the signal of a corner
kick with no-action frames. To address this, we calculate the cosine
value between the right elbow-wrist vector and the z-axis, setting a
threshold at -0.8. Frames where the cosine value falls below this
threshold are considered no-action, indicating that the arm is not
sufficiently raised.

RAISE_FLAG_VERTICALLY Similarly, we calculate the cosine value
between the elbow-wrist vector and the z-axis for both forearms, setting
a threshold of 0.95. Frames with the cosine values of both arms smaller
than 0.95 are considered not sufficiently raised vertically and are thus
labeled as noisy.

Note that arm angles and joint distances are not golden criteria for
identifying actions. Therefore, in practice we performed the aforementioned
thresholding in a semi-automatic manner, meaning we manually review frames
labeled as noisy and remove them upon manual confirmation. Eventually, 14
THROW_IN frames, 14 GOAL_KICK frames, 79 CORNER_KICK frames and 257
RAISE_FLAG_VERTICALLY frames are removed.

A.2.6 Data Supplementation

In addition to removing noisy frames such as scratching and wiping sweat,
it is also crucial to categorize these frames under the NO_DECISION class
to enhance model robustness. Therefore, we measure the distance from each
wrist to the nose and the neck, setting a threshold of 0.2 meters. Frames, where
the minimum distance from either the wrist to the nose or the neck is less than
0.2 meters, are regarded as scratching actions and annotated as NO_DECISION.
We supplement the NO_DECISION data with an additional 1929 frames.

For the RAISE_FLAG_VERTICALLY class, we identify additional data
by thresholding the angle of the forearms. Similar to our data cleaning
process, we confirm frames where the cosine value exceeds 0.97. We
specifically review frames within a 10-second window surrounding existing
RAISE_FLAG_VERTICALLY frames, proceeding in 1-second increments.
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Manual Cosine Model Supplement Total

NO_DECISION 5 6695 1929 8722*
THROW_IN_LEFT 6 500 2628 3134
THROW_IN_RIGHT 9 277 935 2022
GOAL_KICK 15 935 2236 3186
CORNER_KICK 10 475 1044 1529
SUBSTITUTION 4 359 635 998
RAISE_FLAG_VERTICALLY 3 225 353 547 1128

Table A.4: Statistics of final collected data for assistant referee action
recognition Stage 1. *NO_DECISION frames includes 93 frames labeled noisy
from other classes in data cleaning.

With all the above strategies, the data we collected is presented in Table
A.4. Note that the numbers are not exactly the same as those in Table A.2 due
to data cleaning.

A.3 Classification Dataset for Stage 2

A.3.1 Cosine similarity matching

As shown in Table A.1, we employ the same collection strategy as in Stage 1 for
the FAR_SIDE_OFFSIDE and NEAR_SIDE_OFFSIDE frames. This process is
semi-automatic, as we manually verify the annotated results. Note that we did
not apply similar matching for MIDDLE_SIDE_OFFSIDE, because the signal is
identical to that of GOAL_KICK, except for the location of the assistant referee
raising the flag.

A.3.2 Binary classification model

Since offside events occur less frequently than other events like goal kicks or
corner kicks in football games, the collection of offside frames is relatively
small. Training a model on such limited data is generally not ideal. However,
in an effort to expand the dataset, particularly for the class with the fewest
frames, NEAR_SIDE_OFFSIDE, we attempted to annotate frames using a fine-
tuned binary classification model, following the strategy described in Section
A.2.3. As shown in Table A.5, the binary classification dataset comprises
89 positive training frames and 712 negative frames, which is significantly
smaller than the datasets listed in Table A.2. The validation set includes
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17 positive samples and 51 negative samples, while the test set contains 13
positive samples and 55 negative samples. Despite achieving a classification
accuracy of 100% on both the validation and test sets, the model lacks
sufficient generalization for reliable auto-annotation. We set a probability
threshold of 0.99 and a duration threshold of 20. Nevertheless, the quality
of auto-annotated data remained not ideal, with most annotated frames being
rejected in manual verification. In conclusion, the strategy of training a binary
classification model is less effective with insufficient data.

Train Valid Test

NEAR_SIDE_OFFSIDE 89 17 13
Non-NEAR_SIDE_OFFSIDE 712 51 55

Total 801 68 68

Table A.5: Dataset collected for training binary classification model for
NEAR_SIDE_OFFSIDE

A.3.3 By-product of the goal kick binary model

MIDDLE_SIDE_OFFSIDE can be annotated as a by-product of the binary clas-
sification model for goal kicks in Stage 1. This is feasible because GOAL_KICK
and MIDDLE_SIDE_OFFSIDE share identical gestures; however, GOAL_KICK
only occurs around the goal area, whereas MIDDLE_SIDE_OFFSIDE can occur
anywhere along the touchline. Therefore, if a GOAL_KICK is annotated far
from the goal area, it is likely a MIDDLE_SIDE_OFFSIDE. We establish a
distance threshold of 40 meters between the referee and the halfway line. If
a GOAL_KICK is predicted by the binary classification model (meeting two
thresholds) and the distance between the assistant referee and the halfway line
is less than 40 meters, we label the frame as MIDDLE_SIDE_OFFSIDE.

A.3.4 Manual annotation from raising flags

Offside frames frequently occur immediately after a RAISE_FLAG_VERTICALLY
action. Given that all automated annotation methods require manual verifica-
tion, directly annotating frames following RAISE_FLAG_VERTICALLY is not
only more efficient but also ensures higher data quality.
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Manual Cosine Model Total

FAR_SIDE_OFFSIDE 268 64 332
MIDDLE_SIDE_OFFSIDE 261 164 425
NEAR_SIDE_OFFSIDE 88 16 60 164

Table A.6: Statistics of three extra classes for assistant referee action
recognition Stage 2.

The final collected data for three extra offside classes are shown in Table
A.6, with a significant portion of the data derived from manual annotations.
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Appendix B

Details of Sequence-level Data
Preparation

B.1 Data Cleaning for Pre-training Data

The quality of data is essential for effective pre-training. To enhance
the quality of the pre-training data, we propose implementing denoising
techniques to address three specific types of noise:

Spread-noisy We follow the definition of a frame being noisy in terms of
spread as specified in Section 3.3.1.1, using the same threshold of 0.15. To
determine if a skeleton sequence is noisy based on spread, we calculate the
proportion of spread-noisy frames within the sequence and set a threshold of
0.2. If more than 20% of the frames in a sequence are spread-noisy, we exclude
that sequence from our dataset.

Motion-noisy Similarly, we follow the motion-noisy definition as outlined
in Section 3.3.1.1. Since motion is one of our prediction targets, noisy motions
could significantly affect the training process. Therefore, we implement a
strict rule, excluding any sequences from the dataset that contain even a single
motion-noisy frame.

Pelvis-centered motion noisy Even when the motion of a skeleton
sequence remains within the threshold, the relative motion of joints can still
be excessively large, which may affect training stability. Given that our pre-
training involves pelvis-centered preprocessing, we specifically calculate the
motion relative to the pelvis and filter out noisy skeleton sequences. Following
the calculation of joint motions, we calculate the pelvis-centered motion based
on the pelvis-centered input sequence. Formally, for the frame at time step t
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in the skeleton sequence, we compute the maximum pelvis-centered velocity:

spelvisz = max(xpelvis
t,:,2 )− min(xpelvis

t,:,2 )

vpelvis = xpelvis
t+1 − xpelvis

t

vpelvismax = maxi(∥vpelvis
i ∥)

(B.1)

As in the pelvis-centered space, the maximum speed achievable by humans
should be lower, we establish a noise criterion defined as vpelvismax > 6 · spelvisz .
Sequences containing any frame that exceeds this threshold are filtered out.

B.2 Sequence Classification Dataset for Fine-
tuning

B.2.1 Manual Annotation

Compared to frame-level assistant referee recognition, we rely more heavily
on manual annotation to collect the dataset for the sequence classification
task, particularly for specific classes such as DIRECT_FREE_KICK and
OTHER_DECISION. Designing a reliable automatic annotation rule for these
classes is extremely challenging. Even with the animation of the skeleton
sequence, determining the action type can be challenging for humans and
often requires viewing match videos for accurate identification. So, although
manual annotation is less efficient, it provides a reliable way of collecting high-
quality data. Therefore, in most of our subsequent strategies, we implement a
semi-automated approach to data collection, combining automated detection
methods with manual verification to balance efficiency and maintain the data
quality.

B.2.2 Converting from Frame-level Data

Considering that for some certain classes, specifically THROW_IN, GOAL_KICK,
and CORNER_KICK, the referee and the assistant referee often react to events
almost simultaneously, we can leverage existing labeled data from the last
chapter to annotate skeleton sequences. Since we already have labeled
frames for assistant referees from these actions, as detailed in Section 3.3.1.2,
we propose extracting skeleton sequences for referees around these labeled
frames. This approach will allow us to efficiently gather a substantial amount
of labeled referee skeleton sequences for these classes.
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Specifically, for each frame labeled as THROW_IN, GOAL_KICK, or
CORNER_KICK for assistant referees, we extract a 4-second sequence centered
on the frame. Preliminary observations indicate that referees typically signal
the same action type within this 4-second window, supporting the choice of
the window length.

Collecting Data for RAISE_HAND_VERTICALLY In addition to THROW_IN,
GOAL_KICK, and CORNER_KICK, we also collect INDIRECT_FREE_KICK
sequences with a similar approach. The signal for an INDIRECT_FREE_KICK
involves the referee raising one hand vertically. Unlike other signals,
INDIRECT_FREE_KICK typically does not require a specific response from
assistant referees. However, most INDIRECT_FREE_KICK calls are due to
offsides, during which the assistant referee raises the flag, and we have
existing data for these instances. Therefore, we design a strategy to initially
collect frame-level data for main referees signaling with a raised hand and
subsequently extracting sequence-level data using a similar methodology as
for THROW_IN, GOAL_KICK, and CORNER_KICK.

To collect frame-level data for the main referee raising their hand,
we use the same methodology used for collecting the frame-level dataset
as described in Section 3.3.1.2. Initially, we manually annotate referee
frames within a 10-second window following a RAISE_FLAG_VERTICALLY
signal from assistant referees, resulting in 887 frames newly labeled as
RAISE_HAND_VERTICALLY. We then use cosine similarity matching to
identify an additional 159 labeled frames. Subsequently, we fine-tuned a
binary classification model based on the frame-level pre-trained model. This
model was used to annotate 3,317 more frames, with a confidence threshold
of 0.99 and a duration threshold of 25 frames. In total, we collected 4,363
frames labeled RAISE_HAND_VERTICALLY for the main referee. Finally, we
converted these collected frames into sequence data by extracting 4-second
sequences centered on these frames.

Label Translation for Throw-ins There is a minor difference between
the action types for assistant referees and the main referees concerning throw-
ins. For assistant referees, the classifications are direction-based, labeled as
THROW_IN_LEFT and THROW_IN_RIGHT, ensuring consistent predictions for
both assistants. In contrast, for the main referee, we use THROW_IN_HOME and
THROW_IN_AWAY to differentiate the subsequent attacking directions because
the main referee may use either hand to signal the direction, and there are only
two possible attacking directions.

In our pitch coordinate system, the origin is located at the center of
the pitch, the x-axis runs along the line connecting the two goals, and the
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y-axis runs along the halfway line. We define THROW_IN_HOME as the
situation where the team attacking towards the positive x-direction possesses
the ball and earns a throw-in, while THROW_IN_AWAY corresponds to the
team attacking towards the negative x-direction earning a throw-in. To
translate labels from assistant referees to the main referee, we consider the
position of the assistant referee. Specifically, the first assistant referee,
positioned with a y-coordinate less than 0, has their THROW_IN_RIGHT
labeled as THROW_IN_HOME and THROW_IN_LEFT as THROW_IN_AWAY for
the main referee. Conversely, the second assistant referee, positioned
with a y-coordinate greater than 0, has their THROW_IN_LEFT labeled as
THROW_IN_HOME and THROW_IN_RIGHT as THROW_IN_AWAY for the main
referee.

Using Conditioning to Exclude Non-Action Sequences Another chal-
lenge is that, unlike assistant referees, the main referee does not necessarily
respond to every throw-in. At times, for clear throw-ins, the referee may not
show any signal. To avoid including these instances in our data, we use rules
conditioned on arm angles to filter out sequences where the referee does not
signal anything. The rules are based on the following indicators:

• Minimum Absolute Cosine Angle of the Forearmmin(| cos θforearm|)
The forearm vector is defined as the vector extending from the elbow to
the wrist. We compute the absolute cosine value between the forearm
vector and the unit z vector, determining the minimum value for both
forearms throughout the sequence. If the arms remain downward, they
are almost parallel to the z-axis, resulting in an absolute cosine value
close to 1. Conversely, if the forearm is raised horizontally at any point,
this indicator will approach zero.

• Minimum Absolute Cosine Angle of the Upper Armmin(| cos θupperarm|)
The upper arm vector connects the shoulder to the elbow. Similarly,
we compute the absolute cosine value between the upper arm vector
and the unit z vector and calculate the minimum value for both upper
arms throughout the sequence. This indicator functions similarly to
the forearm indicator, offering us more precise control to filter out non-
action sequences.

• Maximum Elbow-shoulder Difference along z-directionmax(delbowz −
dshoulderz ) We calculate the difference in the z-direction between the
elbow and the shoulder and then determine the maximum z-direction
difference for both arms throughout the sequence. This indicator
represents the highest position reached by the arms in the sequence.
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We implement specific conditions for different action types to exclude
non-action sequences based on the characteristics of each action type. The
conditions for each action type are detailed as follows:

THROW_IN For both THROW_IN_HOME and THROW_IN_AWAY se-
quences, we filter out sequences with the arm never raised horizontally,
implemented with conditions

– min(| cos θforearm|) > 0.2

– min(| cos θupperarm|) > 0.2

GOAL_KICK For GOAL_KICK we filter out sequences with the arm
never raised up as well as the arm raising too high, implemented with
conditions

– min(| cos θforearm|) > 0.2

– min(| cos θupperarm|) > 0.5

– max(delbowz − dshoulderz ) > 0.1

CORNER_KICK For CORNER_KICK we filter out inappropriate se-
quences with the arm not raised over the shoulder, given by the condition

– max(delbowz − dshoulderz ) < 0

INDIRECT_FREE_KICK For the INDIRECT_FREE_KICK we filter
out unqualified sequences with the arm not raising high enough, given
by the condition

– max(delbowz − dshoulderz ) < 0.2

After implementing all the aforementioned collecting and cleaning
strategies, we converted frame data into a substantial number of 4-second
referee skeleton sequences. The statistics for these sequences are shown in
Table B.1.

# 4s Sequences

THROW_IN_HOME 1062
THROW_IN_AWAY 1116
GOAL_KICK 1676
CORNER_KICK 937
INDIRECT_FREE_KICK 2058

Table B.1: Labeled skeleton sequences collected by converting frame data
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B.2.3 Inlier Detection with Pre-training Loss

Collecting skeleton sequences for NO_DECISION poses a unique challenge.
Simply extracting sequences around NO_DECISION frames from assistant
referees is suboptimal, as it does not necessarily mean the main referee
is inactive. Relying on arm angles to ensure they are not raised could
also misrepresent NO_DECISION instances since referees often swing their
arms while running. To more effectively collect representative skeleton
sequences for NO_DECISION, we suggest utilizing the pre-training loss from
our sequence-level pre-trained model to identify inlier sequences, which are
likely to be NO_DECISION actions.

As our pre-trained model calculates pre-training loss only on masked
joints, we propose masking all arm joints—namely both elbows and both
wrists—from the input skeleton sequence, and then calculating the pre-
training loss specifically for these masked arm joints. Given that most referee
signals are conveyed through arm movements and such signals are relatively
rare compared to non-signal sequences in football games, the pre-trained
model should be more likely to predict the arm joints at positions where there
are no signals. Consequently, sequences that contain referee signals are likely
to have a higher pre-training loss, whereas sequences with a smaller pre-
training loss are more common sequences, known as inliers, and thus more
likely to represent NO_DECISION. We utilize the model pre-trained with a
multi-task pre-training objective as introduced in Section 4.2.1.6 and employ
the data2vec loss as the metric for detecting inliers. We also experimented
with motion prediction loss, but found that data2vec loss yields more reliable
results.

Based on initial observations, we established a threshold of 0.022 for
the data2vec loss on masked arm joints. To maintain consistency with the
sequences collected previously, we segment unlabeled data into 4-second
sequences and use the pre-trained model to compute the pre-training loss.
Sequences with a loss below the threshold are identified as inliers and
labeled as NO_DECISION. These labeled sequences undergo further manual
verification to ensure data quality. Eventually, we collected 2,097 4-second
NO_DECISION sequences.

B.2.4 Binary Whistle Classification Model

Another significant challenge is collecting skeleton sequences with label
DIRECT_FREE_KICK. Given that DIRECT_FREE_KICK actions are typically
preceded by a whistle-blow, identifying whistles could be beneficial for finding
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these actions. Fortunately, our data source already includes annotations for
whistle events, which allows us to train a binary classification model to
identify sequences with whistle blows from unlabeled data. After gathering
potential whistle events, we apply some rules to filter out improbable
sequences and manually verify them to confirm whether they correspond to
a DIRECT_FREE_KICK.

Training a Binary Classification Model for Whistle vs. Non-Whistle
Detection To train a binary classification model for detecting whistle events,
we first collected a sequence classification dataset, shown in Table B.2. We
utilized an ST-GCN model for this binary whistle classification, equipped with
9 hidden layers with hidden sizes (128, 128, 128, 256, 256, 256, 512, 512,
512). The model was trained for 20 epochs using an AdamW optimizer with
a weight decay of 5e-4. The learning rate follows an inverse square root decay
after a 2,000-step linear warmup to 3e-4. The batch size is set at 64. The
trained binary whistle model achieves an accuracy of 95.62% on the validation
set and 96.87% on the test set.

Train Valid Test

WHISTLE 607 114 122
NON_WHISTLE 2448 479 453

Total 3055 593 575

Table B.2: Dataset collected for training binary classification model for
whistle events

However, in football games, referees blow the whistle for various reasons,
but only a fraction of these instances are DIRECT_FREE_KICK signals. Given
that we already have plenty of data for actions that involve assistant referee
actions such as THROW_IN, GOAL_KICK, or CORNER_KICK, we aim to exclude
these from our current focus. To this end, we plan to use the frame-level
assistant referee recognition model derived in Section 3.3.3.1 to identify
sequences where a whistle is blown but no assistant referee action is recorded.
By eliminating sequences in these action types, we enhance the likelihood that
the remaining sequences belong to DIRECT_FREE_KICK.

Specifically, because the whistle model doesn’t work perfectly - and
sometimes misinterprets actions like scratching or wiping sweat as the whistle
blows — we set a very high confidence threshold of 0.9999 to ensure the
data quality. We segment all available unlabeled data into multiple 2-
second sequences and use the whistle model to assess the likelihood of each
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involving a whistle blow. Only sequences with a probability exceeding 0.9999
are retained. Subsequently, we examine a 10-second window around each
sequence and employ the frame-level assistant referee model to predict actions
for both assistant referees. With a frame rate of 25 Hz, this generates 500
labels. If fewer than 20 frames of the 500 are labeled anything other than
NO_DECISION, we confirm the 2-second sequence as an action involving
a whistle blow without assistant referee actions. To be consistent with the
previously collected data, we extend each 2-second sequence by one second
on both ends to make it 4 seconds.

Note that this strategy only identifies sequences with a higher likelihood of
being a DIRECT_FREE_KICK. To definitively include these sequences in the
classification dataset, we extract corresponding video clips for manual review
to confirm or reject each sequence. Ultimately, this process resulted in the
collection of 156 DIRECT_FREE_KICK sequences.

B.2.5 Combination of Rules

Since our assistant referee action recognition does not cover signals for GOAL,
it is crucial to include them for the main referee to ensure that referees’ goal
signals are not overlooked. The signal for a goal by the main referee involves
pointing an arm towards the center mark. However, identifying these signals
poses a challenge because the action can be easily confused with a throw-in or
direct free kick. To address this, we propose using a set of rules grounded in
common football knowledge to detect referee actions for GOAL.

In football games, when a goal is scored, the conceding team is going
to kick off. Leveraging this, we first detect all kick-offs by checking for a
stationary ball at the center mark. We then trace back to locate the main
referee’s signals preceding the kick-off. Using the arm angle indicators
described in Section B.2.2, we set conditions to identify the nearest instance
of the referee’s action when the arm is raised.

Formally, the strategy to find GOAL actions involves the following steps:

1 Find kick-offs by identifying a stationary ball at the center mark:

– The ball’s speed is less than 0.5 m/s for over one second, and it
stays within a 0.5m radius of the center mark

2 Trace back the 2 minutes referee sequences prior to the kick-off,
segmenting into 4-second sequences

3 Retaining only those sequences where the ball is near the goal area:
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– The absolute x value of the ball position is greater than 36

4 Applying the arm angle and distance indicators as introduced in Section
B.2.2 to only keep sequences that the arm is raised:

– min(| cos θforearm|) < 0.2

– min(| cos θupperarm|) < 0.7

– max(delbowz − dshoulderz ) > −0.15

5 Manually reviewing and confirming the filtered sequences

Eventually, using this rule-based strategy, we collected 513 GOAL
sequences, each 4 seconds in length.

B.2.6 Collecting OTHER_DECISION

In addition to the action types for which we have already collected data, there
are more various referee signals on the pitch. Some of these actions are
standardized and outlined in the Laws of the Game, such as issuing yellow/red
cards and signaling advantage. However, due to the sparsity of data, it is
impractical to allocate a separate class for each of these actions. Other actions,
more similar to body language and not standardized, such as signaling no
foul, asking to hold on, or calling the doctor, should be distinguished from
NO_DECISION. Sometimes, the referee’s actions are not clearly interpretable,
yet it is evident they signify more than nothing. For practicality and simplicity,
we propose merging all these into a single class, OTHER_DECISION. Clearly,
there is no fixed pattern associated with the OTHER_DECISION class. The
purpose of establishing this class is to differentiate these signals from the main
action types we are focused on without categorizing them as NO_DECISION.

Specifically, the OTHER_DECISION class includes following action types:
SANCTION, ADVANTAGE, NO_FOUL, HOLD_ON, CALL_DOCTOR, HURRY_UP,
SET_PIECE_ALLOWED, SET_PIECE_MISPLACED, SUBSTITUTION, VAR_REVIEW,
DROP_BALL, INTERRUPT. Some skeleton sequences are labeled directly as
OTHER_DECISION when the referee’s actions do not fit into any of the
previously defined classes.

To collect skeleton sequences for OTHER_DECISION, we utilize prelim-
inarily fine-tuned models for sequence action recognition, trained with a
partially collected dataset. Given the lack of OTHER_DECISION data within
the dataset, these actions frequently feature confusion among several classes.
Leveraging this, we use the model to predict classification probabilities
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for segmented 4-second unlabeled sequences and select those that exhibit
uncertainty between classes. Specifically, we retain sequences where the
probability of NO_DECISION ranges from 0.1 to 0.9. These sequences are then
proceeded to manual confirmation. This approach not only aids in gathering
OTHER_DECISION data but also helps the data collection for previous classes.
Eventually, we have collected 271 4-second sequences for OTHER_DECISION,
as detailed in Table B.3.

# 4s Sequence

OTHER_DECISION 112
SANCTION 21
ADVANTAGE 17
NO_FOUL 12
HOLD_ON 13
CALL_DOCTOR 5
HURRY_UP 8
SET_PIECE_ALLOWED 35
SET_PIECE_MISPLACED 17
SUBSTITUTION 22
VAR_REVIEW 1
DROP_BALL 1
INTERRUPT 7

Total 271

Table B.3: Composition of OTHER_DECISION class

B.2.7 Expansion for the Sequence-labeling Task

When trained with the sequence-labeling task, as discussed in Section 4.2.3.4,
the model becomes less sensitive to the sequence length. This allows
more contextual information to be incorporated to enhance performance.
We propose extending the existing 4-second sequences to 8 seconds for
this purpose. Given the supervision from the action non-action binary
classification model, the risk of introducing noisy data through this expansion
is minimal because the frames before the action starts or after the action
ends will be labeled NO_DECISION automatically by the model supervision.
For all sequence types except DIRECT_FREE_KICK, we extend the sequence
by adding 4 seconds before the existing sequence, resulting in 8-second
sequences. For DIRECT_FREE_KICK sequences, we extend 2 seconds on both
sides of the sequence, also resulting in 8-second sequences. The reason for
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this difference is that extending sequences after it could introduce noise when
there is an extra action different from the sequence’s label, whereas it is less
probable that other signals will immediately follow a DIRECT_FREE_KICK
signal.
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