

Design and Implementation of a Module Generator
for Low Power Multipliers

Kaihong Sun

Reg nr: LiTH-ISY-EX-3315-2003

2003-09-25

Design and Implementation of a Module Generator
for Low Power Multipliers

Master’s Thesis

 Division of Electronics Systems
Department of Electrical Engineering

Linköping Institute of Technology
Linköping University, Sweden

By
Kaihong Sun

Reg nr: LiTH-ISY-EX-3315-2003

Supervisor: Weidong Li

Examiner: Prof. Mark Vesterbacka

Linköping, September 25, 2003

Avdelning, Institution
Division, Department

Division of Electronics Systems,
Department of Electrical Engineering,
581 83 LINKÖPING

Datum
Date

 2003-09-25

Språk
Language

 Rapporttyp
Report category

 ISBN

 Svenska/Swedish
X Engelska/English

 Licentiatavhandling
X Examensarbete

ISRN LiTH-ISY-EX-3315-2003

 C-uppsats
 D-uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/isy/2003/3315/

Titel
Title

Design and Implementation of a Module Generator for Low Power Multipliers

Författare
 Author

Kaihong Sun

Sammanfattning
Abstract

Multiplication is an important part of real-time system applications. Various hardware parallel multipliers
used in such applications have been proposed. However, when the operand sizes of the multipliers and the
process technology need to be changed, the existing multipliers have to be redesigned.

From the point of library cell reuse, this master thesis work aims at developing a module generator for
parallel multipliers with the help of software programs. This generator can be used to create the gate-level
schematic for fixed point two's complement number multipliers. Based on the generated schematic, the entire
multiplier can be implemented by small manual intervention. This feature can reduce the time of chip design.

The design phases consist of the logic, circuit and physical designs. The logic design includes gate-level
schematic generation with C and SKILL programs and structural VHDL-code descriptions as well as
validation. The circuit and physical design are custom in Cadence and the routing uses automatic place and
route tools.

To demonstrate the design method, an 18 by 18-bit modified Booth recoded multiplier was implemented in
0.18 µm CMOS process with a supply voltage of 1.2 V and simulated using simulator (Spectre). The number
of integrated transistors is 13000 and the active area is 85000 µm2. The postlayout simulation shows the
critical path with a delay of 17 ns.

Nyckelord
Keyword
Modified Booth Encoding, Low Power, Multipliers, Module Generator.

ABSTRACT

Multiplication is an important part of real-time system applications. Various
hardware parallel multipliers used in such applications have been proposed.
However, when the operand sizes of the multipliers and the process
technology need to be changed, the existing multipliers have to be
redesigned.

From the point of library cell reuse, this master thesis work aims at
developing a module generator for parallel multipliers with the help of
software programs. This generator can be used to create the gate-level
schematic for fixed point two’s complement number multipliers. Based on
the generated schematic, the entire multiplier can be implemented by
minimizing manual intervention. This feature can reduce the time of chip
design.

The design phases consist of the logic, circuit and physical designs. The
logic design includes gate-level schematic generation with C and SKILL
programs and structural VHDL-code descriptions as well as validation. The
circuit and physical design are custom in Cadence and the routing uses
automatic place and route tools.

To demonstrate the design method, an 18 by 18-bit modified Booth recoded
multiplier was implemented in 0.18 µm CMOS process with a supply
voltage of 1.2 V and simulated using simulator (Spectre). The number of
integrated transistors is 13000 and the active area is 85000 µm2. The post-
layout simulation shows the critical path with a delay of 17 ns.

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Weidong Li and examiner
Professor Mark Vesterbacka for giving me the opportunity of this
interesting work, especially Weidong Li for his support and guidance during
this master thesis work. I also would like to acknowledge Emil Hjalmarson
for his help and providing the useful material of Skill programmable
language. Thanks also to the staff, Electronics systems at Linkoping
University, for their support in many aspects.

I would sincerely grateful to my classmates, friends and many others for
their support and invaluable help, not only during this master thesis work,
but also during the past two years.

Finally, I would like to express my extreme gratitude to my wife Fengling
and my son Lei for their encouragement and endless support in every aspect
of my life.

Table of Contents

1. Introduction.…………………………………………….…………...1

1.1 Purpose……..………………………………………….…………. 1

1.2 Design Specifications…….………….………………………….... 1

1.3 Reading Guidelines…………………….……………….………... 2

2. Encoding Schemes…………….……………………….………..... 5

 2.1 Multiplication Process…..………………………………..……..... 5

 2.2 Non-Booth Encoding…….……………………………………….. 6

 2.3 Booth Encoding…………………………………………………… 7

 2.4 Modified Booth Encoding……….….……………………………...8

 2.5 Other Encoding.……..……………….……………………………11

 2.6 Sign Extension schemes…………………………………..……. 12

 2.6.1 Basic Concept of Sign Extension…………………………...12

 2.6.2 Conventional Sign Extension……………………………….14

 2.6.3 Sign Generate Sign Extension…………..………………..…14

 2.7 Summary.………………………………………………………….16

3. Power Reduction Techniques….….…………..……..…….…...17

 3.1 Sources of Power Dissipation....……………………………...….. 17

 3.2 Supply Voltage Scaling.………………………………………….. 18

 3.3 Reducing Effective Capacitance..….…………………………….. 20

 3.3.1 Physical Capacitance Reduction..………………..…………20

 Effects of Circuit Styles…..………………….………..……20

 i

Table of Contents

 Transistor sizing……..……………….…………..…………22

 3.3.2 Switching Activity Reduction ……………………………...22

 Minimizing Glitching Activity ..…….……………………..23

 3.4 Summary………………………………………………………….25

4. Multiplier Architecture………….……………………………27

 4.1 Modified Booth Encoder………….………………………………28

 4.2 Partial product Generator.…………………………………………30

 4.3 Wallace tree……………………………………………………….30

 4.4 4-2 Compressors……..……………..…………………..…….…...31

 4.5 Vector Merging Adders..………………………………………….33

 4.5.1 Carry Look Ahead Adder.....……………………….…….…33

 4.5.2 Carry Skip Adder…………..……………………….…….…35

 4.5.3 Carry Look Ahead with Bypass Adder………...……………37

 4.6 Partial Product Reduction Tree Topologies……..………………...37

 4.6.1 Regular Topologies…….…………………………………….38

 Array Structures………………...…………..………………..38

 Tree Structures...……………..……………..………………..41

 4.6.2 Irregular Topologies ……..………………………………….42

 4.7 Summary.………………………………………………………….44

5. Implementation…....……………….……………………………45

 5.1 Architecture Selection.…………………………………………….45

 5.2 Design Methodology………………………………………………46

 5.3 Design Flow………………………………………………………..46

 5.4 Logic Design.……..…………………………..……………………48

 ii

Table of Contents

 5.4.1 Cell Models ..………………………………………………..48

 5.4.2 Creating Schematic Generation Files.……………………….48

 5.4.3 Gate-level Schematic generation…………………………….49

 5.4.4 Structural VHDL Generation……………………………….. 50

 5.4.5 Structural VHDL-Code Validation.………………………. 50

 5.5 Circuit Design………………………………….…………………. 50

 5.5.1 Custom versus Automatic Designs.……..………………….. 51

 5.5.2 Logic Style Considerations.……………..…………………...51

 Static CMOS………………………………………………. 52

 Transmission Gate .….….………………………………….52

 Complementary Pass-Transistor Logic.....………………… 53

 5.5.3 Leaf Cell Design……….….………………………………….54

 Design Environment..………………………………………..55

 Transistor Sizing Criteria..………………………………….. 55

 Layout Requirements.……………………………………….56

 Implementing MBE Encoder.……..………………………...56

 Implementing One-Generator.….……………..…..………...60

 Implementing PP-Generator ..….…………………………...60

 Implementing Sign Generator.……………….……………...62

 Implementing Adder Cells…….…………….……………... 63

 Implementing 4-2 Compressors.……….…….……………...66

 Implementing the Vector-Merging Adders...…………….…68

 5.5.4 Cell-level Schematic…..….…………………………………. 71

 5.6 Routing…………………………………………………………….71

 5.7 Simulation Strategy………………………………………………..73

 5.8 Summary.………………………………………………………….74

 iii

Table of Contents

6. Conclusion..………………………..………………………………..77

 6.1 Conclusions……….………………………………………………..77

 6.2 Comments on the Project…..………………………………………78

 6.2 Future Improvements……..………………………………………..78

REFERENCES…………………………………………………………...80

 iv

List of Figures

List of Figures

Figure 2.1 Multiplication calculation by hand...…………….…………………5

Figure 2.2 Multiplication operation in hardware...………….…………………6

Figure 2.3 Booth encoding with negative multiplier………..………………8

Figure 2.4 Partial product selections by using MBE………………………10

Figure 2.5 An example for an 88× -bit MBE multiplier..…………………10

Figure 2.6 An 88× -bit multiplier based on smaller multipliers...………….12

Figure 2.7 Partial product diagram with the sign generate scheme..………16

Figure 3.1 Power consumption for a 4-bit CLA as a function of Vdd……...19

Figure 3.2 Propagation delay versus Vdd for a 4-bit CLA adder…………...19

Figure 3.3 Power-delay product versus delay for an 8-bit adder..…………21

Figure 3.4 Glitching behaviour for a 4-bit RCA…...………………………23

Figure 3.5 Tree versus chain structures…....………………………………24

Figure 4.1 Architecture of the parallel multiplier...……………..…………27

Figure 4.2 a) Glitch-free MB encoder, b) Partial Product Generator...……28

Figure 4.3 a) One generator, b) Truth table of the one generator.…………29

Figure 4.4 1616× -bit modified Booth encoding..…………………………29

Figure 4.5 Wallace tree with 3-2 counters…....……………………………31

Figure 4.6 4-2 compressor built with two 3-2 counters…....………………31

Figure 4.7 An improved structure of the 4-2 compressor.…………………33

Figure 4.8 Block diagram of the 4-bit CLA adder ...……………………....35

Figure 4.9 Block diagram of a 16-bit carry skip adder.……………………36

Figure 4.10 Propagation delay of the RCA versus CSKA.....……………..36

Figure 4.11 Block diagram of a 16-bit CLA with bypass adder.……..……37

Figure 4.12 44× ripple carry array multiplier……………………………..39

 v

List of Figures

Figure 4.13 Rectangular floorplan of carry save multiplier.…………39 44×

Figure 4.14 Array topology using 4-2 compressors.....……………………40

Figure 4.15 A binary tree topology with 4-2 compressors...………………42

Figure 4.16 A balanced delay tree topology using 3-2 counters……………….. 43

Figure 5.1 Design flow…...………..………………………………………47

Figure 5.2 Schematic for the 1818× -bit multiplier..………………………49

Figure 5.3 Pass-transistor XOR/XNOR circuits……………..……………………53

Figure 5.4 Typical complementary pass-transistor logic gates……………………54

Figure 5.5 Schematic of the MBE encoder.………………………………………58

Figure 5.6 Layout of the MBE encoder..…………………………………………59

Figure 5.7 Schematic of the partial product generator……………………………61

Figure 5.8 Layout of the partial product generator..………………………………61
Figure 5.9 Logic functions and truth tables for the adder cells....………………...64
Figure 5.10 Schematic of the full adder…..…...………….………………………65

Figure 5.11 Layout of the full adder.…………..….………………………………66

Figure 5.12 Schematic diagram of a 4-bit look-ahead adder...………….…69

Figure 5.13 Proposed schematic of the 4-bit CLA………...………………70

Figure 5.14 Layout of the 4-bit CLA..…………………….....…………….69

Figure 5.15 Final layout of the 1818× -bit multiplier..……..…..…………73

Figure 5.16 Critical path for the 1818× multiplier..…..……………..……74

 vi

List of Tables

List of Tables

Table 2.1 Modified Booth encoder truth table…………………………….. 9

Table 4.1 Truth table of the 4-2 compressor...…………………………….32

Table 5.1 Truth table of the modified Booth encoder…………...………...57

Table 5.2 Features for the adder cells………..…………………………….66

Table 5.3 Features of the vector merging adders…………………………..71

 vii

Abbreviations

Abbreviations

BE Booth Encoding

CLA Carry Look Ahead

CPL Complementary Pass-transistor Logic

LSB Least Significant Bit

MBA Modified Booth Algorithm

MBE Modified Booth Encoding

Mcand Multiplicand

MSB Most Significant Bit

PP Partial Product

PPG Partial Product Generator

PPCT Partial Product Compression Tree

PPRT Partial Product Reduction Tree

PPSB Partial Product Sign Bit

Prod Product
RCA Ripple Carry Adder

TG Transmission Gate

VMA Vector Merging Adder

viii

Chapter 1 Introduction

Low power high performance multipliers have become a basic building
block in computations especially in digital signal processing. For most of
the applications, multiplication operations take a significant part of time
delay, area cost, and power consumption. Therefore, many techniques and
design methodologies have been proposed to improve the speed and power
dissipation of the multipliers. Most of the designs are targeted at a specific
technology and require redesign for a new process technology. To speed up
the chip design, a module generator for implementation of parallel
multipliers with different sizes is presented in this thesis.

1.1 Purpose

The aim with this thesis work is to develop a module generator for fixed-
point parallel multipliers. The delay, area and power have also been taken
into considerations. The multiplier should be able to multiply two n-bit
two’s complement numbers and produce a 2n-bit product. Using such a
method, the basic library cells can be reused, which results in a less time of
the chip designs. To demonstrate the design method, an 18 by 18 bit parallel
multipliers is designed.

1.2 Design Specifications

The design specifications for the parallel multiplier include the general
requirements for designing the parallel multipliers and special requirements
for implementing the 18 by 18 bit multiplier. Both of them are described as
follows.

1

Chapter 1

General Requirements

Multiplicand: n-bit two’s complement number.
Multiplier: n-bit two’s complement number.
Product: 2n-bit two’s complement number.
Supply voltage: 1.2 V.
Rise/fall time: 500 ps.
Target performance: Minimum area and power consumption under the
 required delay.

Special Requirements

Multiplicand: 18-bit two’s complement number.
Multiplier: 18-bit two’s complement number.
Product: 36-bit two’s complement number.
Supply voltage: 1.2 V.
Rise/fall time: 500 ps.
Target performance: Minimum area and power consumption under the
 operating frequency of 25.6 MHz.

In addition, the design and implementation should also satisfy the following
further requirements.

1. The logic design and functional validation shall be performed in
UNIX C and the Modelsim from Mentor Graphics for VHDL
simulation.

2. The gate-level schematic shall be generated according to the
required word-length.

3. All the transistor sizes shall be parameteriable.
4. The library for all the transistors in schematic view shall be

analogLib and the DK_hcmos8d for the layout.
5. The design and implementation shall be carried out in 0.18 µm

CMOS process technology.

1.3 Reading guidelines

This thesis consists of six chapters. The rest of the chapters are organized as
follows.

 2

Introduction

Chapter 2 gives an overview of the theoretical algorithms on parallel
multipliers, such as encoding and sign extension schemes.

Chapter 3 briefly presents the power reduction techniques that are related to
the design and implementation of parallel multipliers.

Chapter 4 contains the description of the overall architecture as well as the
major functional units of the parallel multiplier. In addition, the partial
product reduction tree topologies are also described in this section.

Chapter 5 focuses on the design of the module generator and the
implementation of the 18 by 18 bit MBE multiplier. Three design phases,
that is, logic, circuit and physical designs, have been represented in details.

Chapter 6 summarizes the results and comes to the conclusions from the
master thesis work. Moreover, some suggestions on the future possible
improvements are discussed in this chapter.

 3

Chapter 1

This page is left blank on purpose.

 4

Chapter 2 Encoding Schemes

This chapter briefly describes the methods for generating partial products.
The major encoding schemes used for multipliers will be introduced, and
their advantages and disadvantages will also be discussed. In order to
introduce the concept of the encoding for the multiplication operation, let us
start with an overview of the multiplication process.

2.1 Multiplication Process

The simplest multiplication operation is to directly calculate the product of
two numbers by hand. This procedure can be divided into three steps: partial
product generation, partial product reduction and the final addition.

To further specify the operation process, let us calculate the product of two
two’s complement numbers, for example, 1101two(−3ten) and 0101two(5ten),
when computing the product by hand, which can be described according to
figure 2.1.

 1 1 0 1 Multiplicand
 × 0 1 0 1 Multiplier

 1 1 1 1 1 1 0 1 PP1
 0 0 0 0 0 0 0 PP2
 1 1 1 1 0 1 PP3
 + 0 0 0 0 0 PP4

 1 1 1 1 1 0 0 0 1 = −15 Product

 discard this bit

Figure 2.1 Multiplication calculation by hand

The bold italic digits are the sign extension bits of the partial products. The
first operand is called the multiplicand and the second the multiplier. The

5

Chapter 2

intermediate products are called partial products and the final result is called
the product. However, the multiplication process, when this method is
directly mapped to hardware, is shown in figure 2.2.

 1 1 0 1 Multiplicand
 × 0 1 0 1 Multiplier PP generation

 1 1 1 1 1 1 0 1 PP1
 0 0 0 0 0 0 0 PP2
 1 1 1 1 0 1 PP3 PP reduction
 + 0 0 0 0 0 PP4
 0 0 0 0 1 0 0 1 Sum bit
 1 1 1 1 0 1 0 0 0 Carry bit final addition
 1 1 1 1 0 0 0 1 = −15 Product
discard this bit

Figure 2.2 Multiplication operation in hardware

As can been seen in the figures, the multiplication operation in hardware
consists of PP generation, PP reduction and final addition steps. The two
rows before the product are called sum and carry bits. The operation of this
method is to take one of the multiplier bits at a time from right to left,
multiplying the multiplicand by the single bit of the multiplier and shifting
the intermediate product one position to the left of the earlier intermediate
products. All the bits of the partial products in each column are added to
obtain two bits: sum and carry. Finally, the sum and carry bits in each
column have to be summed.

Similarly, for the multiplication of an n-bit multiplicand and an m-bit
multiplier, a product with n + m bits long and m partial products can be
generated.

The method shown in figure 2.2 is also called a non-Booth encoding
scheme. Its advantages and drawbacks will be discussed in next section.

2.2 Non-Booth encoding

Using the non-Booth encoding method for partial product generation, the
multiplier bits are examined sequentially starting from LSB to MSB. If the

 6

Encoding Schemes

multiplier bit is one, the partial product is simply the multiplicand.
Otherwise, the partial product is zero. Each new partial product is shifted
one bit position to the left. Each partial product can be produced by just
using a row of two-input AND gates. The number of partial products
generated equals the size of the multiplier bits.

The advantage of this method is that the partial product circuit is simple and
easy to implement. Therefore, this scheme is suitable for the implementation
of small multipliers.

The drawback is that the method is not able to efficiently handle the sign
extension and it generates a number of partial products as many as the
number of bits of the multiplier, which results in many adders needed so
that the area and power consumption increase. This method is not applicable
for large multipliers.

2.3 Booth Encoding

The Booth encoding, or Booth algorithm, was proposed by Andrew D.
Booth in 1951 [1]. This method can be used to multiply two two’s
complement number without the sign bit extension.

The operation of Booth encoding consists of two major steps [2]: the first
one is to take one bit of the multiplier, and then to decide whether to add the
multiplicand according to the current and previous bits of the multiplier.
This encoding scheme is serial, which means that the different value of the 2
bits (current and previous bits) corresponds to the different operations. The
serial encoding scheme is usually applied in serial multipliers. The operation
procedure can be described with the following table.

 00: no arithmetic operation.
 01: adding the multiplicand to the left half of the product.
 10: subtracting the multiplicand from the left half of the product.
 11: no arithmetic operation.

The second step is to shift the product right one bit.

 7

Chapter 2

For example, let us consider the multiplication of two two’s complement
number 0110two(6ten) and 1011two(−5ten) = 11100010two(−30ten). The
operation is illustrated in Figure 2.3.

Itera-
 Tion

Multi-
plicand

 Step

 Product

 0 0110 Initial values 0000 1011 0
 0110 10 => Prod = Prod − Mcand 1010 1011 0

 1 0110 Shift right product 1101 0101 1
 0110 11 => no operation 1101 0101 1

 2 0110 Shift right product 1110 1010 1
 0110 01 => Prod = Prod + Mcand 0100 1010 1

 3 0110 Shift right product 0010 0101 0
 0110 10 => Prod = Prod − Mcand 1100 0101 0

 4 0110 Shift right product 1110 0010 1
 Note: The circled bits are used to determine the operation for the next step.

Figure 2.3 Booth encoding with negative multiplier

2.4 Modified Booth Encoding

The modified Booth encoding (MBE), or modified Booth’s algorithm
(MBA), was proposed by O. L. Macsorley in 1961 [3]. The encoding
method is widely used to generate the partial products for implementation of
large parallel multipliers, which adopts the parallel encoding scheme. The
basic principle for the modified Booth encoding can be described as
follows.

Let us consider the multiplication of two fixed-point two’s complement
numbers, X and Y, where X is the multiplier and Y is the multiplicand, both
of them have n bits, and the X can be expressed by

 1
12 −
−−= n

nXX + , ∑
−=

=

2

0
2

ni

i

i
iX

 , i
iii

ni

i
XXX 2

12212

12/

0
2)2(⋅++−= −+

−=

=
∑

 8

Encoding Schemes

 , i
ni

i
id 2

12/

0
2⋅= ∑

−=

=

 (2-1) i
ni

i
id 4

12/

0
⋅= ∑

−=

=

Using this notation, the multiplication of X and Y is given by

 , YdYX i
n

i
i ⋅⋅= ∑

−

=

4
1)2/(

0

 (2-2) i
n

i
iP 4

1)2/(

0
⋅= ∑

−

=

In this way, the bits of the multiplier are partitioned into sub-strings by the 3
adjacent bits and each sub-string group () corresponds to one
of the value in the set {−2, −1, 0, +1, +2}[30]. This means that the each
three adjacent bits of the multiplier can generate a single encoding digit,
which is called the modified Booth recoding digit (d

12212 ,, −+ iii XXX

i) [5], as shown in table
2.1. Each MBE blocks can work in parallel, therefore, all the partial product
bits are generated simultaneously. The parallel encoding scheme is suitable
for parallel multipliers.

 Table 2.1 Modified Booth encoder truth table

 X2i+1 X2i
 X2i-1 di

 0 0 0 0
 0 0 1 +1
 0 1 0 +1
 0 1 1 +2
 1 0 0 −2
 1 0 1 −1
 1 1 0 −1
 1 1 1 0

The number of bits for the multiplier, X, must be even. Otherwise, the sign
bit of X should be extended. For the mn× multiplication, using the
modified Booth encoding partial products are produced or
partial products if m is odd. Obviously, from the equation (2-2), the partial
product, , should be shifted two positions to the left of the partial
product, , due to the is multiplied by .

2/m 2/)1(+m

1+iP

iP iP i4

 9

Chapter 2

The operation for Y times X can be summarized in figure 2.4.

 di Operation on mcand (Y)
 0 0*Y: 0 => Prod
 +1 +1*Y: mcand => Prod
 +2 +2*Y: one shift to the left for macnd = > Prod
 −1 −1*Y: inverted mcand & added 1 to the LSB
 −2 −2*Y: one shift to the left for macnd, then

 inverted mcand & added 1 to the LSB

Figure 2.4 Partial product selections by using MBE

This operation can also be illustrated graphically. For example, an bit
MBE multiplier with X =10011101

88×
two(−99ten),Y =01101101two(109ten), n = 8,

is shown in figure 2.5. The binary numbers in parentheses are the generated
sign bits of the partial products.
 Added zero
1 0 0 1 1 1 0 1 0

+2 +2 −1 +1 these coefficients are from the table 2.1

 (1) 0 1 1 0 1 1 0 1 +1Y
 0
 (0) 1 0 0 1 0 0 1 0 −1Y
 1
 (1) 1 1 0 1 1 0 1 0 +2Y
 0
 (0) 0 0 1 0 0 1 0 1 −2Y
 1
 1 0 1 0 1 0 1 1 constant

 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 1 = − 10791

 Figure 2.5 An example for an 88× bit MBE multiplier

The advantage of using MBE is that it can reduce the number of partial
products by 50%, which results in about half of the adders reduced
compared to the non-Booth encoding, and the consumed power is also
decreased. This encoding method is applicable for parallel multipliers with
the input operands of equal to or greater than 16-bit.

 10

Encoding Schemes

However, the modified Booth encoding is not suitable for implementing
smaller multipliers due to the extra hardware overhead for MBE encoder
and the complex circuit of the partial product generator.

2.5 Other Encoding

Besides the non-Booth and Modified Booth encoding, higher radix Booth
encoding such as radix-8 can be also used to generate partial products.
Radix-8 Booth encoding method is also called the Booth 3 scheme [32].
Using the Booth 3 encoding scheme, the multiplier is divided into
overlapping groups of 4 bits in parallel. Each partial product can be selected
from the set of the multiplicand Y {0, ±Y, ±2Y, ±3Y, ±4Y} [32].

The advantage of this encoding method is that it can further reduce the
partial products to (n + 1)/3. But the drawback is obviously the complexity
of the partial product selection logic and the Booth encoders as well as the
generation of the ±3Y multiple. In this thesis work, this method will not be
discussed in detail.

Another encoding scheme for generation of partial products is to use smaller
multipliers. For instance, an 88× bit multiplier can be constructed with four

 bit multipliers and two adders [4], as shown in Figure 2.6. 44×

The non-Booth encoding scheme can be used to partition and distribute the
two 8-bit numbers to the four 44× multipliers. The four 44× smaller
multipliers could be implemented by non-Booth encoding method, and their
partial product generator is simply two-input AND gates. The four 8-bit
products produced can be added by using two adders.

In general, this encoding is not efficient compared to other encoding
schemes implemented in current process technology [32].

 11

Chapter 2

4 x4 m u ltip lie r D 4 x4 m u ltip lie r A

4 x4 m u ltip lie r C 4 x4 m u ltip lie r B

A d de r-II A d d e r-I

X 7 ~ 4 Y 7 ~ 4 X 7 ~ 4 Y 3 ~ 0 X 3~ 0 Y 7 ~ 4 X 3 ~ 0 Y 3 ~ 0

S 1 5 ~ S 1 2 S 3 ~ S 0S 1 1 S 1 0 S 9 S 8 S 7 S 6 S 5 S 4

Figure 2.6 An 88× bit multiplier based on smaller multipliers

2.6 Sign Extension Schemes

The multiplication and addition operations for two’s complement numbers
have to handle the sign bits, as shown in figure 2.2. The addition of the
extended sign bits for each partial product results in additional cost. To
reduce the cost of the sign extension, several extension schemes have been
proposed, as described in [28].

In the following section, the basic principle of sign extension and one
method used for sign extension in this thesis will be introduced.

2.6.1 Basic Concept of Sign Extension

The two’s complement is a special case of radix complement for binary
numbers in which the radix equals to two. For instance, a 1+k bit number A
can be represented in two’s complement as

 A = (2-3) ∑
−

=

⋅+⋅−
1

0
22

k

i

i
i

k
k aa

 12

Encoding Schemes

where the is the sign bit. A is positive when equals to zero, while A is
negative when is 1.

ka ka
ka

If the sign bit of a two’s complement number A is extended by S bits, then A
should include three parts [29], the original MSB, the extension of the sign
bit by S bits and the number’s value. In this case, the A is rewritten by

 A = (2-4) ∑ ∑
−+

=

−

=

+ ⋅+⋅+⋅−
1 1

0
222

Sk

ki

k

i

i
i

i
k

Sk
k aaa

When defining as the sign bit plus the S extended bits, the can also
be presented using two’s complement format with a length of and bit
significances from to . The can be expressed as

extA extA
1+S

k2 Sk+2 extA

 = extA ∑
−+

=

+ ⋅+⋅−
1

22
Sk

ki

i
k

Sk
k aa

 = ∑
−+

=

+ ⋅+⋅−
1

22
Sk

ki

i
k

Sk
k aa

 =)222(kSkSk

ka −+− ++

 = , with . (2-5) k
ka 2− kn

n

ki

i 222
1

−=∑
−

=

From the above derivation, it is clear that the sign for the number with sign
extension is the same as the original one. Therefore, the positive two’s
complement numbers actually have an infinite number of 0s on the left,
whereas the negative ones have an infinite number of 1s. In order to fit the
width of the hardware, sign extension can be used to restore some of the
hidden sign bits.

 13

Chapter 2

2.6.2 Conventional Sign Extension

Conventional sign extension is similar to the method used to calculate the
multiplication by hand [28]. This method can be used to add the partial
products sequentially. This means that the first row of partial products is
summed to second row and the result is added to third row and so on. In this
way, sign extension is only performed from one row to the next.
Furthermore, the sign is encoded into the carry and sum of the MSB of the
intermediate addition results. Therefore, the carry and sum of MSB should
be extended to the next row.

This method is not efficient for low power design since the full adder on the
most significant position in each row has one more fan-out than the rest of
the adders. Another efficient method that is called sign generate is described
in the following section.

2.6.3 Sign Generate Sign Extension

The sign generate scheme [5] is an efficient method to reduce the length of
each partial product. This sign extension scheme assumes that all the partial
products are negative. Based on such an assumption, for an n by m
multiplier, the sum of all sign extensions can be precalculated as

 , ∑
−

=

−=
1)2/(

0
4)2)1((

m

i

inSigns

)
3

12)(1(2 −
−=

m
n . (2-6)

The equation (2-6) shows the relationship that can be interpreted as a fixed
number, []3/)12()1(−− m , which should be added to the Nth binary position
of the partial product leftwards. This number expressed in binary form is
equal to 1010101…01011, where there are exactly 12/ −m zeros. If the
partial product generated is positive, its sign bit should be simply replace by
a one to suppress the effect of the previous assumption. This technique can
be summarized as follows.

 14

Encoding Schemes

1. Inverting the sign bit of each partial product, and placing it into the Nth
binary position.

2. Adding one to the left of each partial product.
3. Adding one in Nth bit column.

The operation of the one addition can be implemented by using increment
adders. Therefore, no extra adders for adding these constant 1s are required
using this method. The advantage of the sign generate method is that it does
not only reduce the area, power consumption, but also speed up the
multiplication. The following example illustrates an 8 by 8 multiplier using
this method together with the modified Booth encoding [28]. In this case,
the sign of the final result can be expressed as

 (2-7) ∑∑∑∑
====

+++=
9

8

6
3

4
11

8
2

2
13

8
1

15

8
0 2)2(2)2(2)2(2

i

i

i

i

i

i

i

i SSSSS

where is the sign bit of the partial product in the row. By using the
following two equations

iS thi

 (2-8) jn
n

ji

i 222
1

−=∑
−

=

 (2-9) ii SS −= 1

then S becomes

 . (2-10) 8151311914

3
12

2
10

1
8

0 222222222 ++++++++= SSSSS

Equation 2-10 indicates that the sign of the final result can be calculated
directly according to the partial products. Figure 2-7 shows the partial
product diagram with the sign generate method, in which T is the one’s
complement of the sign and C is the correction constant for the negative
partial products. Another example is shown in figure 2.5.

 15

Chapter 2

 1
 1 T ● ● ● ● ● ● ● ●
 1 T ● ● ● ● ● ● ● ● C
 1 T ● ● ● ● ● ● ● ● C
 1 T ● ● ● ● ● ● ● ● C
 Final product

Figure 2.7 Partial product diagram with the sign generate scheme

2.7 Summary

The aim of this chapter was to give an overview of the methods for
generating the partial products. It started with the introduction of the
multiplication process. Several encoding schemes have been described and
their advantages and drawbacks have also been discussed.

The Non-Booth encoding method generates the same number of partial
products as the number of bits of the multiplier. It is suitable for
implementing the smaller multipliers due to the simple realization of the
partial product generator and no need to use an encoding circuit.

The original Booth encoding performs the encoding serially. The serial
encoding scheme is usually employed in bit-serial multipliers.

The modified Booth encoding performs the encoding in parallel, which is
widely used to generate the partial products of the large parallel multipliers.
In general, this method is not applied to implement the multipliers with a
word length less than 16 bits.

Higher radix Booth encoding also performs the encoding in parallel, which
can further reduce the number of partial products, but it uses a more
complex circuit for the Booth encoder.

A small multiplier can also be used to construct large multipliers. However,
it is not an efficient method compared to other encoding schemes in current
implementation technology.

 16

Chapter 3 Power Reduction Techniques

Reducing power consumption has become an important issue in digital
circuit design, especially for high performance portable devices. Many
power reduction techniques have also been proposed from the system level
down to the circuit level. In this section, some of these techniques, which
are related to the design for parallel multiplier, will be presented.

3.1 Sources of power Dissipation

The sources of power dissipation in digital CMOS circuits are composed of
the following parts: switching power, short-circuit power, and leakage
power, which are expressed in the following equation

 Dynamic Power Static Power

Ptotal = 10−α ٠C ٠
L V dd

2
٠ + f clk I SC ٠V +

dd I leakage ٠V (3-1)
dd

 Switching power Short-circuit power Leakage Power

The first term stands for the switching power, which is the power required
to charge/discharge the circuit nodes. 10−α is the node switching activity
factor of the circuit, which is the average number of the node making a
power consuming transition per clock cycle. CL is the load capacitance, Vdd
is the supply voltage, and fclk is the clock frequency. The switching power
consumption is the dominating component in digital circuits, and it can be
reduced by minimizing any one or several of 10−α , CL, Vdd, and fclk under the
required performance.

 17

Chapter 3

The second term in equation (3-1) represents the short-circuit power
consumption due to short-circuit current. The short-circuit current in
complementary CMOS circuit arises when both the pull-up network and the
pull-down network are turned on at the same time during the transitions.
The amount of Isc is proportional to the rising and falling time of the input
signals, transistor sizes and the output load capacitance [6]. Hence, the
longer the transition time for the input signals, the larger the short-circuit
current which results in more power consumed. The short-circuit power
consumption can be lowered by optimal transistor sizing and input
reordering transistors [7].

The total average short-circuit current can be minimized by designing with
equal input and output edge times [8]. In this way, the power consumed by
the short-circuit currents is less than 10% of the total dynamic power. In
particular, when the supply voltage is lowered to be below the sum of the
thresholds of the transistors, the short-circuit currents can be eliminated.

The third term in equation (3-1) refers to the leakage power dissipation due
to the leakage current. Though one and only one of the pull-up and pull-
down networks in a static CMOS circuit is conducting in steady state, there
still is a small leakage current which flows through the reverse-biased diode
junctions of the transistors between the diffusion regions and the substrate
[9]. Another source of the leakage current is potentially the subthreshold
current of the transistors. Both sources of leakage caused the static power
dissipation which constitutes a small fraction of the overall power
dissipation in current technologies. However, with the progress of the
technology scaling, the subthreshold leakage currents will become a larger
component in total power dissipation. The leakage current depends strongly
on the technology, and it can be reduced by applying some techniques such
as multithreshold voltage CMOS technology [10] etc.

3.2 Supply Voltage Scaling

The most effective method to reduce the power consumption is scaling the
supply voltage, as indicated by equation (3-1). Reducing the supply voltage
can significantly reduce the power dissipation that is a quadratic function of
the operating voltage. This is illustrated in figure 3.1, which shows the

 18

Power Reduction Techniques

power consumption as a function of for a 4-bit carry look-ahead adder
in 0.18 µm process technology. The power consumption dependence on
supply voltage for various logic functions and logic styles has been
described in [11].

ddV

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.04

0.06
0.08
0.1

0.2

0.4

0.6
0.8

1

2

Po
w

er
 (m

W
)

VDD(V)

 0.18um process

Figure 3.1 Power consumption for a 4-bit CLA as a function of Vdd

However, reducing the supply voltage also increases the delay. The
relationship between Vdd and the delay, Td, can be expressed [8] by

()()2
2 / tdd
C

ddLddL
d VVLW

VC
I
VC

T
ox −

×
=

×
=

µ
 (3-2)

From the equation (3-2), when Vdd approaches the threshold voltage, Vt, the
delay increases drastically, as shown in figure 3.2.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
el

ay
 (n

s)

VDD(V)

 0.18um process

Figure 3.2 Propagation delay versus Vdd for a 4-bit CLA adder

 19

Chapter 3

Obviously, using this method causes the performance loss on the speed. In
order to compensate for the loss in throughput at low supply voltages,
several techniques can be applied such as parallel and pipelined
architectures as well as modifying the threshold voltage of the devices [8].

3.3 Reducing Effective Capacitance

When the performance loss in throughput due to lowering the supply
voltage is not acceptable, reducing the effective capacitance can also obtain
low power consumption in CMOS circuits. The effective capacitance is
defined by the product of the physical capacitance and the switching
activity, which is shown as

 Leffective CC 10−= α

where 10−α is the node transition activity factor, and is the load
capacitance which refers to physical capacitance. The switching power
consumption can be rewritten as

LC

 clkddeffectiveswitching fVCP 2=

From the above equation, reducing the switching power consumption can be
achieved by minimizing both of the physical capacitance and the switching
activity.

3.3.1 Physical Capacitance Reduction

The physical capacitance can be reduced through selecting the appropriate
circuit style and optimizing the transistor sizes.

Effects of Circuit Styles

The different circuit and logic styles result in different gate and diffusion
capacitance of the transistors in a combinational logic circuit. Some of the

 20

Power Reduction Techniques

circuit styles can substantially reduced the physical capacitance and is good
for low-power operation. Figure 3.3 shows the relationship between the
power-delay products of an 8-bit adder that was implemented in 2 µm
CMOS technology with different circuit styles and the corresponding
propagation delays [9].

Figure 3.3 Power-delay product versus delay for an 8-bit adder

As shown in Figure 3.3, the adder that was implemented by using
complementary pass transistor logic (CPL) is about twice as fast as the
conventional static CMOS. This is due to that CPL improves the
performance of the circuit with a lower input capacitance and reduced
voltage swing. Moreover, a CPL logic circuit consumes less power than a
static CMOS one, for instance, the power saving for a CPL adder is about
30% compared to a conventional static CMOS adder [12]. This
improvement is mainly due to the reduction in capacitance.

The performance of a full adder implemented with different circuit styles,
such as conventional CMOS, transmission gate CMOS, CPL without output
swing restoration, CPL with minimum size PMOS restoration transistors
(LCPL2), CPL and TG combination (CPL-TG), has been compared in [13].
This comparison reveals that the circuit styles impact dramatically on the
delay and power dissipation of the circuit. The compared results indicate
that the CPL-TG provides the lowest power delay product, and the LCPL2

 21

Chapter 3

has the second lowest power delay product. Both of them are the best suited
for low-power high-performance applications such as adders and
multipliers.

Transistor Sizing

The capacitive load that originates from transistor capacitance and
interconnect wiring can be reduced by optimizing transistor sizes whenever
possible and reasonable. In general, increasing the transistor sizes results in
a large (dis)charging current and simultaneously increases the parasitic
capacitance. On the other hand, reducing the transistor sizes will result in
decreasing input capacitance that may be the load capacitance for other
gates and lowering the speed of the circuit. Thus, the objective of transistor
sizing is to obtain the minimum power dissipation under given performance
requirements.

In order to explain how to make transistor sizing, let us consider a static
inverter driving a load capacitance being composed of an intrinsic
(diffusion) and an extrinsic (wiring and fan out) capacitances. When the
total load capacitance to the gate output is dominated by the diffusion
capacitance, the smallest possible sizes of the transistors should be used for
obtaining the lowest power consumption. Otherwise, if the load capacitance
is dominated by the extrinsic component, the power consumption first
begins to decrease with increasing transistor sizes and then starts to
increase. An optimal sizing factor that corresponds to the minimum power
consumption can be found [8].

3.3.2 Switching Activity Reduction

The dynamic power consumption of a circuit is strongly related to the
switching activity of the circuit. The node switching activity in the circuit is
predominantly determined by the architectural and register transfer level
[14]. At the circuit level, one main consideration for low-power designs is
the choice of the static or dynamic logic styles. The dynamic logic gates are
clocked, and undergo the precharge and evaluation phases, which are

 22

Power Reduction Techniques

suitable for high-speed applications at the expense of high power dissipation
[14]. Whereas the static CMOS is the best choice for low-power high-speed
implementation of dedicated circuit applications like multipliers [14].

The switching activity can be reduced by many means such as reordering
input signals, no bus-sharing technique, and minimizing the glitching
activity of the static circuits etc.

Minimizing Glitching Activity

Glitches, or dynamic hazards, are unwanted signal transitions which occur
before the signal settles to its intended value. Glitches can be generated and
propagated in both data path and control parts of the circuits. Figure 3.4
illustrates the glitching behaviour for a 4-bit ripple carry adder which was
implemented in static CMOS.

Figure 3.4 Glitching behaviour for a 4-bit RCA

 23

Chapter 3

The simulation result from the circuit simulator (Spectre) was obtained
under the following conditions. All input bits of Ai and Cin go up from zero
to one, and all the input bits of Bi are set to zero. As shown in the figure,
spurious transitions appear at the sum bits of Si due to the finite propagation
delays of the intermediate carry signals. The spurious transitions consume
extra power compared to the glitch-free scenarios. The number of spurious
transitions in a circuit depends on the logic depth, input patterns, and
intermediate carry signal states etc.

In some arithmetic circuits such as adders and multipliers, the glitches may
result in a large portion of the switching power dissipation. For example, in
a non-pipelined 16 by 16 bit array multiplier, 75% of the switching power
consumption is due to glitches [15].

The glitching activity in static circuit designs can be minimized by selecting
structures with balanced signal paths and reduced logic depth. The tree
structures can be applied to implement a circuit with both of the balanced
signal paths and less logic depth, while the chain structures are quite the
contrary. A good example in figure 3.5 illustrates the choice of the tree or
chain structures. In the chained implementation shown in figure 3.5(a), the
second adder computes twice and the third adder computes three times per
cycle due to the finite propagation delay through the previous adders. By
contrast, the logic depth in the tree case has been reduced from three to two
and the signal paths are more balanced. Thus, the switched capacitance
(effective capacitance) for the chained case is a factor of 1.5 larger than in
the tree [8].
 A B
 A B C D
 C

 D

 S S

 (a) (b)

 Figure 3.5 Tree versus chain structures

 24

Power Reduction Techniques

Another possible approach to eliminate the spurious transitions is to use
dynamic logic circuits instead of static logic, since any node in dynamic
logic circuits can only undergo at most one transition per clock cycle.

3.4 Summary

This chapter briefly described some of the power reduction techniques that
are related to the arithmetic circuit designs such as the adder and multiplier.
In some arithmetic circuits, the major portion of the switching power
consumption is due to glitches. The glitching activity can be minimized by
selecting structures with balanced signal paths and reduced logic depth.
Furthermore, both supply voltage scaling and reduction of effective
capacitance are the important means to lower the power consumption.

 25

Chapter 3

This page is left blank on purpose.

 26

Chapter 4 Multiplier Architecture

To meet the various demands of multiplication-based arithmetic operations,
many classes of multipliers such as bit-serial multipliers, digit-serial
multipliers, and parallel multipliers have been developed. However, for
high-speed applications, the parallel multiplier is one of the best solutions.

In general, the architecture of a parallel multiplier consists of the following
parts: partial product generator (PPG), partial product reduction tree
(PPRT), and final addition. Each part can be implemented by using various
architectural choices. Figure 4.1 shows the architecture of the parallel
multiplier that has been widely applied for the large multiplier.

R e g is te r (m u lt ip l ie r) R e g is te r (m u l t ip l ic a n d)

M o d if ie d B o o th E n c o d e r P a r t ia l P r o d u c t G e n e r a to r

W a lla c e T r e e

V e c to r M e r g in g A d d e r

X Y

P r o d u c t

Figure 4.1 Architecture of the parallel multiplier

This architecture consists of modified Booth encoder, partial product
generator, Wallace tree that is also called partial product reduction tree, and
vector merging adder (VMA).

27

Chapter 4

4.1 Modified Booth Encoder

When calculating fixed-point two-operand multiplication, the modified
Booth (MB) encoding is often employed to produce the partial products.
Usually, this method is more suitable for input operands of equal to or
greater than 16-bit. Using MB encoding to generate partial products, the
hardware for this section can be divided into the following three
components: modified Booth encoder, partial product and sign bit
generators, each component performs different logic functions.

Assuming the multiplier X has n bits wide and the multiplicand Y has m bits,
for this case, n/2 or (n + 1)/2 three-input MB encoders are required. The n
bit multiplier can be partitioned into overlapping groups of three bits in
parallel. Each group acts as the input of one of the MB encoders. Each MB
encoder generates several control signals to select one of the multiples of
the multiplicand Y {0, ±Y, ±2Y}, the MB encoding scheme can reduce the
number of partial product by 50% compared to the non-Booth encoding.
The MB encoder can be implemented by using various fashions. A glitch-
free MB encoder [16] at gate level is shown in Figure 4.2a.

X 2i+1

X 2i

X 2i-1

N EG

Z P

X 1
X 2P

X 1

X j

X j-1

N E G ZP X 2P

PP j

(a) (b)

 Figure 4.2: a) Glitch-free MB encoder, b) Partial product generator

The partial product generation circuit by using MB encoding is composed of
complex gates, as shown in Figure 4.2b [16]. Moreover, corresponding to
the operations of the negative partial products { YY 2,1 −− }, one generator
should be implemented. The one generator can be controlled by the adjacent

 28

Multiplier Architecture

29

three bits of the multiplier, the circuit at gate level and the truth table are
illustrated in Figure 4.3.

 X2i-1
 X2i C
 X2i+1

 (a) (b)

 Figure 4.3: a) One generator, b) Truth table of the one generator

The sign bits of the partial products can be obtained by using sign extension
or sign generate methods. A 1616× bit multiplier by using MB encoding
scheme and sign generate is illustrated in Figure 4.4.

 Added zero
Msb mltiplier Lsb
◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ ◘ 0

 Partial products
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● c
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● c
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● c
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● c
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● c
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● c
 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● c
 + 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 c
 ○

X2i+1 X2i X2i−1 C
 0 0 0 0
 0 0 1 0
 0 1 0 0
 0 1 1 0
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 0

Figure 4.4 1616× bit modified Booth encoding

Chapter 4

4.2 Partial Product Generator

The partial products in a parallel multiplier can be generated using several
encoding methods, such as non-Booth encoding, modified Booth encoding
(Radix 4), higher radix Booth encoding (Radix 8), and smaller multipliers
methods etc. A glitch-free partial product generator with modified Booth
encoding at the gate level is shown in figure 4.2(b).

Actually, the partial products can be generated in two stages. During first
stage, the modified Booth encoders generate the Booth codes for encoding
the multiplicand into partial products. After that, the partial product
generators read in Booth code signals and encode multiplicand producing
the partial products.

4.3 Wallace Tree

The Wallace tree was proposed by C. S. Wallace in 1964 [17]. This method
can be used to sum up all the bits of the partial product in each column. The
summation is independent and simultaneous due to each modified Booth
encoder works in parallel. It results in all bits of partial products arrive at the
adder tree at the same time. Thus, the Wallace tree structure increases the
speed of the multiplication by introducing parallelism.

The Wallace tree was first constructed by using 3-2 counters (carry save
adders). A 3-2 counter is also called a 3-2 compressor, which has three
inputs and two outputs. This counter has a maximum of two XOR delays.
The Wallace tree uses 3-2 counters to sum up all the partial products with
the same weight, and produce two bits, one is the carry bit with the weight
of n + 1 and the other is the sum bit with the weight of n.

In order to sum up N partial products to two bits, this operation requires
about log3/2(N/2) levels of the 3-2 counters [31]. For example, if the
maximal number of the partial product in a column is 7 bits, three levels are
required, yielding the Wallace tree with 3-2 counters in Figure 4.5.

The Wallace tree with 3-2 counters is irregular in structure and is difficult to
layout due to the irregular interconnections.

 30

Multiplier Architecture

3 -2 C o u n te r

3 -2 C o u n te r

3 -2 C o u n te r

C o u t1

C o u t2

C a rry S u m

 Figure 4.5 Wallace tree with 3-2 counters

4.4 4-2 Compressors

A more regular partial product reduction tree based on a binary tree can be
obtained with 4-2 compressors. 4-2 compressors can be used to reduce the
number of partial products by one half. This method was first proposed by
A. Weinberger, and improved by V. G. Oklobdzija and D. Villeger [18]. A
4-2 compressor can be built by using two 3-2 counters (full adder based) in
cascade, as described in Figure 4.6.

 A B C in

C o S

C o u t

 A B C in

C o S

C a r r y S u m

C in

A B C D

Figure 4.6 4-2 compressor built with two 3-2 counters

 31

Chapter 4

As described in Fig. 4.6, a 4-2 compressor has five inputs and three outputs.
The five inputs and sum output have the same weight, whereas the outputs
of Cout and Carry have one greater binary bit weight. In addition, the output
of the Cout does not have to be a function of the Cin input, so that the carry
propagation is avoided. By this implementation, the sum, intermediate carry
and carry output signals can be expressed with

 [][] CinDCBASum ⊕⊕⊕⊕=)(

 CBCABACout ⋅+⋅+⋅=

 [] CinDCinDCBACarry ⋅++⋅⊕⊕=)()(

The 4-2 compressor was constructed as described above and denoted the
conventional approach. It has a critical path which contains a maximum of
four XOR delays [19]. But this 4-2 compressor has more regular structure
and suitable to layout than the 3-2 compressors. The truth table of the 4-2
compressor is shown in Table 4.1.

 Table 4.1 Truth table of the 4-2 compressor

 Cin = 0 Cin = 1
 A

 B

 C

 D Cout Carry Sum Cout Carry Sum

 0 0 0 0 0 0 0 0 0 1
 0 0 0 1 0 0 1 0 1 0
 0 0 1 0 0 0 1 0 1 0
 0 0 1 1 0 1 0 0 1 1
 0 1 0 0 0 0 1 0 1 0
 0 1 0 1 0 1 0 0 1 1
 0 1 1 0 1 0 0 1 0 1
 0 1 1 1 1 0 1 1 1 0
 1 0 0 0 0 0 1 0 1 0
 1 0 0 1 0 1 0 0 1 1
 1 0 1 0 1 0 0 1 0 1
 1 0 1 1 1 0 1 1 1 0
 1 1 0 0 1 0 0 1 0 1
 1 1 0 1 1 0 1 1 1 0
 1 1 1 0 1 0 1 1 1 0
 1 1 1 1 1 1 0 1 1 1

An improved approach to build a 4-2 compressor by using pass-transistor
multiplexer [20] is shown in Figure 4.7. This structure of the 4-2
compressors includes a critical path with the maximal delay of three XORs.
Thus, it has higher performance than that of the full adder based design.

 32

Multiplier Architecture

X O R

X O R

X O R

X O R

M U X

M U X

A B C D

C o u t

C in

S u m C a r r y

Figure 4.7 An improved structure of the 4-2 compressor

A 4-2 compressor can further reduce the logic depth. For N partial products
with the same weight, the summation tree built with 4-2 compressors has
about log 2N levels.

4.5 Vector Merging Adders

The final unit in a parallel multiplier is a fast adder, which performs fast
addition for the sum and carry bit vectors from the outputs of the PPRT.
There are many different fast adders that suit parallel multipliers, such as
carry look ahead, carry skip adder and carry select adder etc. In the
following section, the carry look ahead adder and carry skip adder as well as
the combination of them will be introduced.

4.5.1 Carry Look Ahead Adder

Carry Look Ahead (CLA) can produce carries faster due to the carry bits
generated in parallel whenever inputs change. This technique uses carry
bypass logic to speed up the carry propagation. In order to explain carry
look ahead, two important signals, traditionally called carry generate (Gi)
and carry propagate (Pi), are defined as follows.

 iii BAG ⋅=

 33

Chapter 4

 iii BAP ⊕=

The concept of the carry generation and propagation can be explained as
follow. For a given stage, a carry signal is generated if Gi is true, and it
propagates an input carry to its output if Pi is true.

The carry output signal can be derived from the carry generate, carry
propagate and the carry-in signals, as expressed by

 iiii CPGC ⋅+=+1
To avoid carry ripple, the carry output Ci+1 should be expressed by using the
Ci for each stage.

Let us use this technique for the carries of a 4-bit CLA adder

 0001 CPGC ⋅+=

)(000112 CPGPGC ⋅+⋅+=

 00120121223 CPPPGPPGPGC ⋅⋅⋅+⋅⋅+⋅+=

 0012301231232334 CPPPPGPPPGPPGPGC ⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+=

The each above equation, there is a corresponding multi-input circuit.
Figure 4.8 shows the block diagram of the 4-bit CLA adder.

From the figure, the CLA circuit generates the carry signals C1, C2, C3, and
C4 by using the carry-in C0 simultaneously. The adder circuits generate the
sums, which is expressed by

 iiii BACS ⊕+= −1

 ii PC += −1

In general, 4-bit look ahead block is used to implement an n-bit CLA adder
with a single level. To go faster, an n-bit CLA adder can be implemented at

 34

Multiplier Architecture

a high level. The number of look ahead levels is log r n , where r is the
maximum number of inputs per gate.

 A3 B3 A2 B2 A1 B1 A0 B0 C0

 Adder Adder Adder Adder

 G3 P3 S3 G2 P2 S2 G1 P1 S1 G0 P0 S0

 CLA circuit

 C4 C3 C2 C1

 Figure 4.8 Block diagram of the 4-bit CLA adder

The delay of the CLA adder increases as the logarithm of the word size,
whereas the delay of the ripple carry adder increases linearly with the word
size. Thus, the addition performed by a multi-level CLA for a large word
size is much faster than a ripple carry adder. For example, when we
compare the number of gate delays for the critical path of two 16-bit adders,
one using ripple carry and the other using two-level carry look ahead. As a
result, for the 16-bit addition, carry look ahead adder is six times faster than
ripple carry [2]. On the other hand, due to high complexity of carry look
ahead circuit, it consumes more power than ripple carry adder.

4.5.2 Carry Skip Adder

The carry skip adder is also called a carry bypass adder. In general, a carry
skip adder should be built using n-bit ripple-carry adders as basic blocks and
multiplexers. Figure 4.9 shows that the block diagram of a 16-bit carry skip
adder. Each basic group can be constructed using 4-bit ripple-carry adder.

 35

Chapter 4

Each group also generates a group propagate signal which is used as the
select signals. can be defined as

iP

iP

 321 +++ ⋅⋅⋅= jjjji ppppP (;2,1=i j = 0,1,2,…. 15)

If = 1, the carry out signal from the first 4-bit RCA will propagate
to the incoming carry of the next 4-bit RCA. In this way, it is possible to
bypass the carry out to the carry in of the third or fourth 4-bit RCA.
While = 0, the whole carry skip adder becomes a ripple carry adder.

1P 0outC

0outC

iP

4-bit RCA4-bit RCA4-bit RCA4-bit RCA
Cin

S3 S2 S1 S0
S7 … S4S11 …S8S15 S14 S13 S12

P11…P8 P7…P4

a15…a12

0

1

0

1

a11…a8 a7…a4 a3…a0b15…b12 b11…b8 b7…b4 b3…b0

C16 Cout2 Cout1

Cout0

Figure 4-9 Block diagram of a 16-bit carry skip adder

The total propagate delay is linear in the number of bits N. Figure 4.10
shows the relationship of the propagate delay between carry skip and ripple
carry adders [9]. As can be seen in the figure, for a larger adder the carry
skip adder is quite faster than a ripple carry adder, while for a smaller adder
the ripple carry adder should be chosen. The crossover point depends on the
technology, it is normally between 4 and 8 bits.
 Ripple carry adder pt

 Carry skip adder

 N
 4…8

Figure 4.10 Propagation delay of the RCA versus CSKA

 36

Multiplier Architecture

4.5.3 Carry Look ahead with Bypass Adder

The carry look ahead with bypass adder has the advantages of both carry
look ahead and carry skip adders. The block diagram of a 16-bit carry look
ahead with bypass adder is shown in figure 4.11. In this case, the bypass
circuit can be implemented by using multiplexer which can be inserted
between each CLA adder. The carry bypass signals is the function of
the propagate signal, , for each CLA. If a 4-bit carry look ahead adder
used as a basic block constructs the 16-bit, the can be defined as

iBP

jP

iBP

 = iBP 321 +++ ⋅⋅⋅ jjjj pppp (;3,2,1=i j = 0,1,2,…. 15)

The critical path for the CLA with bypass adder could be the first CLA
block, three multiplexers and the final CLA block. This method is more
suitable for larger adders.

4-bit CLA4-bit CLA4-bit CLA

S7 … S4S11 …S8

P11…P8 P7…P4

a15…a12

0

1

0

1

a11…a8 a7…a4b15…b12 b11…b8 b7…b4

C16 Cout2 Cout1 4-bit CLA

S3 … S0

0

1

a3…a0 b3…b0

Cout0
Cin

P3…P0

S15 S14 S13 S12

Figure 4-11 Block diagram of a 16-bit CLA with bypass adder

4.6 Partial Product Reduction Tree Topologies

After the partial products are generated, the partial product matrix must be
summed up in each column to obtain the final product. To solve this
problem, several techniques have been proposed such as the Wallace tree,
Carry-save tree, and the Wallace tree based on 4-2 compressors. These
approaches are generally called partial product reduction tree (PPRT) [21]
or partial product compression tree (PPCT). The PPRT performs the multi-

 37

Chapter 4

operand addition for all the generated partial products and produces the two
vectors, the carry and sum.

The summation in the PPRT usually adopts counters and compressors. The
counters and compressors can be connected in several different ways. This
is a major consideration in the design of parallel multiplier due to different
interconnection among these components, leading to different critical path
delay. A special terminology, which is called multiplier topology, has been
used to describe how to configure the PPRT. That is, the multiplier topology
refers to the way of interconnection among bit positions in PPRT.

The multiplier topology has two important points to keep in mind, one is the
minimum number of wires needed to interconnect the counters or
compressors, and the other is the number of counter or compressor delays.
The topologies for configuring the PPRT can be roughly classified into
regular and irregular structures.

4.6.1 Regular Topologies

Use of regular topology is a common method in custom digital circuit
design, especially for the design of parallel multipliers. Regular topology
takes into account a trade-off between performance optimisation and design
effort. Regularity makes the generation of the structure possible to program.
Regular topology can be realized in array and tree structures.

4.6.1.1 Array Structures

To introduce array structures in a PPRT, let us consider the multiple of two
unsigned 4-bit binary numbers. If we apply manual computational method
and directly map the operations into hardware, the resulting structure is
called an array multiplier. In this case, there is a one-to-one correspondence
between the partial products in the multiplier and the ones in the manual
method. The adder tree with an array structure is shown in Figure 4.12.

The array topology in figure 4.12 is implemented as ripple carry structure.
This array method is also called linear or simple array. There are more than
two almost identical critical paths in this array.

 38

Multiplier Architecture

H A F A F A H A

F AF A F A F A

F AF A F A F A

Figure 4.12 44× ripple carry array multiplier

The optimization of the performance can only be achieved with careful
transistor sizing, which is time-consuming. Another more efficient array
structure can be obtained by using carry save adders. The PPRT without the
final adder is presented in figure 4.13.

H A H A H A

F A F A F A

F A F A F A

C S C S C S

C S C S C S

C S C S C S

 Figure 4.13 Rectangular floorplan of 44× carry save multiplier

In this way, the array just includes only one worst-case critical path. The
number of counter delays is two full adder plus one half adder, while the
number of wiring tracks per bit channel is 3.

Obviously, the addition of partial products can be performed with (m, n)
counters and 4-2 compressors in an array topology. For example, a 54×54-

 39

Chapter 4

bit full parallel multiplier [22] adopted 4-2 compressors to construct the
PPRT, as shown in Figure 4.14.

Partial Products

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

Partial Products

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

X1 X2 X3 X4
Co Cin
4-2 Compressor
Cout Sum

 Figure 4.14 Array topology using 4-2 compressors

For this special case, the 4-2 compressors in four levels are needed to add 27
partial products. The compressors can sum up the partial products
concurrently. Though the carry out Co signal is connected to next 4-2
compressor’s carry-in signal, Cin, as can be seen in the figure, the Co is
never produced by Cin. Moreover, the 4-2 compressors have 3 XOR gate
propagations at the critical path, while two 3-2 counters in carry-save adder
tree have 4 XOR gate propagations. Hence, the array topology used 4-2
compressors can speed up the summing computation compared to an
ordinary carry save array structure.

In summary, the principle of array topology is to minimize the width of
wiring channel per bit position at the expense of counter delays.
Comparatively, array topologies have poor speed performance and power
wastage due to spurious transitions. But this method has a regular structure
and is easy to layout, therefore it still is a common approach to partial
product reduction.

 40

Multiplier Architecture

4.6.1.2 Tree Structures

Trees, similar to the array mentioned above, are also constructed using
counters and compressors, but the tree structure is substantially faster than
the array topology due to the optimized depth at the expense of the width of
a tree [31]. The width of a tree also refers to the number of wires per bit
position in the tree.

Trees are either regular ones or irregular. The width of regular tree is a
known function of the number of partial products, while the width of
irregular tree is determined by design layout. The regular trees contain
binary tree, balanced-delay tree, and overturned staircase tree etc. In this
section, a brief overview of the binary and balanced-delay trees will be
given.

Binary Tree

The binary tree [23] has a regular structure. This tree is implemented using
4-2 compressors. 4-2 compressors are also called (5,3) counters due to the
components with 5 inputs and 3 outputs. The 4-2 compressors can be
combined using two (3,2) counters serially or implemented using the
method shown in figure 4.7. The latter has three XORs delay in the critical
path, whereas the former with four XORs delay.

The binary tree topology with 4-2 compressors is similar to the complete
binary tree with n nodes. When the n nodes in the complete binary tree are
replaced using 4-2 compressors, the resulting structure becomes the binary
tree topology that can reduce n partial products to two bits. The bit slice of a
16-bit binary tree is shown in figure 4.15 [31] on the next page.

The 4-2 compressors can reduce the partial products in the 2-to-1
compression ratios. Therefore, to reduce n partial products to two, the
log2(n/2) levels of 4-2 compressors are needed [32].

 41

Chapter 4

4-2 Compressor

4-2 Compressor 4-2 Compressor

4-2 Compressor 4-2 Compressor 4-2 Compressor

4-2 Compressor

Partial Products

Figure 4.15 A binary tree topology with 4-2 compressors

Balanced Delay Tree

The balanced delay tree was proposed by D.Zuras and W.McAllister (ZM)
[24] in 1986. This tree has regular tree structure. It can be recursively
defined by a tree body and a chain. The tree body and chain consist of 3-2
counters, the delay in each chain is the same as one of the tree. Figure 4.16
illustrates a balanced delay tree [31], which reduces 18 partial products to
two. As can be seen in the figure, the series 3-2 counters increase in the
lateral direction as 1, 1, 3, 5,.. . The tree constructed in this way is called a
balanced delay tree of type 1. This tree can reduce the N partial products in

)2(NO 3-2 counters levels [31].

4.6.2 Irregular Topologies

The first tree for partial product reduction was the Wallace tree [17], which
was an irregular tree originally built using 3-2 counters. This topology can
speed up the multiplication time for large multipliers compared to the carry
save structure. On the other hand, it is hard to design and layout due to the
irregularity and complexity. Thus, the Wallace tree is only applied to the

 42

Multiplier Architecture

designs whose performance is critical and design effort is of secondary
consideration.

3-2 C ounter 3-2 C ounter 3-2 C ounter 3-2 C ounter

3-2 C ounter 3-2 C ounter 3-2 C ounter

3-2 C ounter 3-2 C ounter 3-2 C ounter

3-2 C ounter 3-2 C ounter

3-2 C ounter 3-2 C ounter

3-2 C ounter

3-2 C ounter

Figure 4.16 A balanced delay tree topology using 3-2 counters

 43

Chapter 4

4.7 Summary

In this chapter, the most commonly used architecture for implementation of
a parallel multiplier was presented, and the partial product reduction tree
topologies were also described. The topologies can be divided into either
regular or irregular. The regular topology can be realized in array and tree
structures, which takes into account a trade-off between performance
optimization and design effort. The irregular topology is applied to the
designs whose performance is critical and the design effort is of secondary
consideration.

 44

Chapter 5 Implementation

Various design and implementation techniques for parallel multipliers have
been proposed. However, most of these techniques can only be applied for
that of fixed word-length multipliers. This means that when the word-length
of the multipliers or the process technology is changed, the whole circuits
need to be redesigned. To solve this problem, this chapter describes the
design procedure of the parallel multipliers with variable sizes through the
implementation of an 1818× bit multiplier. This design consists of the logic,
circuit and physical stages. The meet-in-the-middle design methodology
will be used in this thesis. For this custom design, the speed, area and power
trade-off of the multipliers should be taken into account. Furthermore, some
choices for the design from the architecture to the circuit styles will be made
later in the following sections.

5.1 Architecture Selection

Selecting the architecture is very important before starting the detailed
design, since the performance such as speed, area, and power dissipation
strongly depends on the architecture of the multiplier. The architecture
should be low-power, high-performance, and easy to implement. The choice
of the architecture should include the encoding scheme, sign extension
method, partial product reduction structure and the final addition. The
chosen architecture is shown in figure 4.1.

For the selected architecture, the modified Booth encoding is used for this
design due to MBE can reduce the number of the partial products by a factor
of 50%, which results in a higher speed and a lower power dissipation than a
non-Booth encoding scheme. Also, the glitch-free partial product generator
is employed, whose gate-level circuit is shown in figure 4.2(b). In addition,
the Wallace tree with 4-2 compressors is applied to the partial product
reduction tree. The tree structure in the static style can reduce the spurious

45

Chapter 5

transitions as mentioned in section 3.3.2 and increase the speed of summing
by means of increased parallelism as well as result in a much more regular
structure. Furthermore, the carry look-ahead adders that uses block of 4 bits
are made use of the final addition. These are the most common choice and
more suitable for the cell-based design of the multiplier with different
operand sizes.

5.2 Design Methodology

For a custom ASIC design, several design methodologies such as bottom-
up, top-down and meet-in-the-middle have been proposed. These methods
can be applied to deal with the design complexities and reduce the design
time. Which methodology to select depends on the system requirements, the
complexity, the cost and the available time. In this thesis, the meet-in-the-
middle design method will be used to develop the module generator for
parallel multipliers. By using this method, the logic and circuit designs
could be started independently and simultaneously, but the results for the
logic and circuit designs should be exactly same. The basic principle of this
method is that the specification process is essentially a top-down method to
validate the functional correctness, while the design of the building blocks
for the circuits starts from the bottom level. Thus, the advantages of this
methodology are that the library cells can be reused, and the circuit design
phase can be shorted through using program creating the structural
schematic. Because the cell-based design of a large parallel multiplier could
include hundreds of building blocks and the interconnections among these
blocks could be up to thousands. In such a case, the structural schematic of a
manually generated multiplier is hard to ensure correctness for.

5.3 Design Flow

The previous section presents the architecture and the design methodology
employed in the multiplier. In this section, the design flow used to realize
the above architecture is presented, as shown in figure 5.1.

The design process based on the design flow starts from the specification
that defines the functionality and performance targets according to the
user’s requirements. Based on the specification, the architecture, including
the encoding scheme, the PPRT structure, and the vector merging adder

 46

Implementation

should be chosen. The modified Booth encoding method and its application
in multiplier have been proved in [25, 30]. In general, the design is
partitioned into more basic blocks so that each block can be reused and
analysed individually. After this, each cell symbol is created in Cadence,
however, the cell symbols at this moment are combined by using only
empty rectangles with the input and output pin names, the circuit inside is
going to be designed in circuit design stage. Also, the preliminary floorplan
should be created through estimating the size and complexity of the each
block. Based on the above design steps, the logic and circuit design can be
started. When logic and circuit designs are complete, the physical design
may begin. In the subsequent subsections, these three design stages will be
presented in more detail.

S p e c if ic a t io n

E n c o d in g C h o ic e P P R T S t ru c tu re V M A c h o ic e

A rc h i te c tu re S e le c t io n

P a r t i t io n in g

C e l l S y m b o l G e n e ra t io n

F lo o rp la n n in g

L o g ic D e s ig n C ir c u i t D e s ig n

L a y o u t

P la c e & R o u te

P o s t la y o u t S im u la t io n

M e e t S p e c ?

F in is h

N o

Y e s

Figure 5.1 Design flow

 47

Chapter 5

5.4 Logic Design

As shown in figure 5.1, the logic design begins with creating the VHDL-
code for each basic block when the design partition is finished. For the logic
design, there are several tasks to be performed, which will be described in
the following sections.

5.4.1 Cell Models

Each cell model is created in VHDL, these functional models are then
validated by using a corresponding testbench. The design environment is the
Modelsim from Mentor Graphics for VHDL simulation, the text editor that
used for VHDL editing, Vcom for VHDL compiling, and Vsim for VHDL
simulation.

5.4.2 Creating schematic generation files

In order to create the structural schematic, three files used to define the
necessary information need to be created by using a dedicated C program
that is written in UNIX C.

The first file named BKins.txt is used to define the cell names and instance
names as well as their coordinates.

The second file called BKpin.txt is created to describe the input/output pin
definition and connection to the corresponding cells. This file includes the
input/output pin names that will be connected to the bus, instance names and
the pin names on the instance. The relationship among them is that the
input/output pins from a bus connect to the pins on the instances.

The third file called BKnet.txt defines the interconnections between
different logic blocks. This file consists of instance names and their pin
names. There are two instance names and two corresponding pin names on
each row in this file, and the two pins are interconnected.

 48

Implementation

5.4.3 Gate-Level Schematic Generation

When the three files are created and the cell models written in VHDL are
validated, the gate-level schematic for the entire multiplier is ready to be
generated by using another existing program that was written in the SKILL
programmable language. This method has been proved to be feasible for
generating some part of the multiplier. However, to create the entire
schematic of the multiplier also needs manual intervention due to the
complexity. Since this project includes a lot of design tasks, there was one
part of the C program that was not completed during this thesis work. This
means that the C program still needs to be modified in the future work. Of
course, this schematic can also be generated manually. The schematic for
the -bit parallel multiplier is shown in figure 5.2. 1818×

Figure 5.2 Schematic for the 1818× -bit multiplier

 49

Chapter 5

5.4.4 Structural VHDL Generation

Once the gate-level schematic of the whole multiplier is generated, the
structural VHDL of the multiplier can be created using another existing
program that was also written in SKILL. This structural VHDL-code
describes the hierarchical design that reduces the size and complexity of the
schematic. This structural VHDL-code for the 18x18-bit multiplier is more
than 1400 lines, which would be very hard to generate manually. Moreover,
this hierarchical structure includes 31 basic blocks whose VHDL code has
been created manually and each cell has been validated through simulation
using an individual test bench.

5.4.5 Structural VHDL-Code Validation

After the structural VHDL-code is automatically generated, the VHDL-code
is validated using a test bench. The test bench has been created during this
thesis work and works well. It can be reused after specifying the word
length. A random test method has been used for this validation. 20000 test
vectors have been generated randomly. These test vectors are used to drive
the model under test and the responses have been compared to the expected
responses that have been generated using the conventional multiplication
method.

5.5 Circuit Design

When the functionality of the multiplier is validated through the structural
VHDL simulation, the circuit design can be started. Actually, the circuit
design can be also started together with the logic design if there are more
designers. The circuit design of a multiplier can be accomplished manually
or automatically, which one to be used depends on the required
specification. In this thesis, the design for each building block at the low-
level is performed by the custom method.

 50

Implementation

5.5.1 Custom versus Automatic Designs

There are two styles of circuit design at the low-level: custom and
automatic.

The automatic circuit design uses synthesis tools to select circuit topologies
and gate sizes. It takes much less time than custom design in which both the
schematic is drawn and the paths are optimised manually. On the other
hand, the drawback is that the results in this way strongly depend on the
synthesis tools, and it is usually restricted to a fixed library of static CMOS
cells and generates slower circuits compared to the designs by a skilled
engineer.

The custom design gives the designers more flexibility to generate building
blocks at transistor level or select the predefined cells from a given library.
The design effort is to obtain the better performance. In a custom design,
many design decisions such as logic styles and circuit topology choices
should be made before starting the design. The custom design is a good
method to understand the basic principle of the ASIC design. Therefore, the
custom design approach is adopted in this thesis.

5.5.2 Logic Style Considerations

Implementation for the partitioned blocks at circuit level can be done in
static logic or dynamic logic circuits. Both of them have advantages and
disadvantages. The one to be used depends on the primary requirement such
as ease of design, robustness, area, delay, or power consumption etc. As
opposed to dynamic logic gates, static logic gates have the advantages of
being robust and they are more amenable to supply voltage scaling. Thus,
for low-power design, the static approach is attractive for the
implementation of the arithmetic circuits such as adders and multipliers. In
this design, several static logic styles, e.g. static CMOS, transmission gate
(TG), and complementary pass-transistor logic (CPL) are considered.

 51

Chapter 5

Static CMOS

A static CMOS gate is composed of two complementary networks. One is
the pull-up (PUN) and the other is the pull-down (PDN). The PUN consists
of PMOS devices, whereas the PDN is constructed using NMOS transistors.
This choice is due to the strong one generated by the PMOS and the strong
zero produced by the NMOS. In steady state, one and only one of the
networks turns on. This implies the output node is always a low-impedance
node and hence there is no static power consumption. The static CMOS has
high noise margins due to its and equal to and GND,
respectively. Its robustness against transistor sizing and voltage scaling
allows the operation at low voltages. Therefore, it is the best choice for
implementation of a low-power, low voltage combinational circuits due to
its single-rail property that saves the routing resources, and its robustness
which is an important issue in submicron VLSI design [14].

OHV OLV ddV

The partial product generator and one generator are implemented by using
static CMOS gates.

Transmission Gate

The transmission gate (TG) based on pass-transistors is composed of an
NMOS and a PMOS device in parallel. It acts as a bidirectional switch
controlled by the gate signals that are a pair of complementary signals. The
TG logic is one of the ratioless logic gates. Therefore, if the external load
capacitance is not the dominating factor in the devices, the minimum
transistor sizes should be used as mentioned in section 3.3.1, which results
in less area and power dissipation. The TG is characterized by no threshold
loss and an almost constant resistance (RC-equivalent network) that implies
that long cascades of the TG should be avoided. The drawback of this
circuit is that the control signal and its complement have to be generated,
and a static buffer at the output needs to be used to improve the switching
speed for the gates with large load capacitance.

The TG can be applied to efficiently build some complex gates such as
XOR/XNOR, which is shown in figure 5.3. The implementation of such a
gate requires a less number of transistors when compared to other logic
styles implementing this gate. For instance, a new CMOS XOR circuit

 52

Implementation

based on pass-transistors uses only six transistors to produce both an XOR
and its complementary XNOR functions with full voltage-swing and
negligible static power dissipation [26], which is shown in figure 5.3(b).
The conventional implementation of an XOR gate using CMOS would
require about 12 transistors.

•• • •• • •

•

•

A B A B⊕

(a)

••

•

• •

•

•

•

•

•
A B

A B⊕

A B⊕
(b)

Figure 5.3 Pass-transistor XOR/XNOR circuits

Since the logic functions for modified Booth encoder, and one-bit adders
using propagate and carry in signals for CLA, are simple XOR and XNOR
operations, it is an efficient method to implement these blocks with
minimum area and power using TG.

Complementary Pass-Transistor Logic

The typical CPL gate is constructed by using two NMOS logic networks for
dual-rail, two small pull-up PMOS transistors for swing restoration, and two
output static CMOS inverters for the complementary output signals. A
number of CPL gates, such as AND/NAND, OR/NOR, and XOR/XNOR,
can be implemented using a small number of transistors, as shown in figure
5.4 [9].

 53

Chapter 5

B B

A

B

B

A

F=AB

F=A B

BB

A

B

B

A

F=A+B

F=A +B

BB

A

A

F=A B

F=A B

A

A

⊕

⊕

AN D /N AN D O R /N O R XO R /N X O R

Figure 5.4 Typical complementary pass-transistor logic gates

The advantages of the CPL are the small input capacitance that results in
lower power and faster operation, and the intermediate low-swing node
which contributes to lowering the power dissipation as well as the fast
differential stage due to the cross-coupled PMOS pull-up transistors. The
differential characteristic means that complementary input and output
signals are always available which eliminate the need for extra inverters.

The drawbacks are a larger short-circuit current due to the differential stage
which consumes extra power, and high wiring overhead due to the dual-rail
signals. However, the CPL gates still are good choices for low-power high
performance digital circuit applications [14] in the current process
technology.

The 4-2 compressors, full adders, half adders and increment adders in the
partial product reduction tree are implemented by using CPL gates with the
logic functions AND, OR, XOR and their inversions.

5.5.3 Leaf Cell Design

This section describes the design of the leaf cells for the multiplier. The
design is done with bottom-up method. Each block is built based on the
partition as described in section 5.3 and the chosen logic styles described in
section 5.5.2.

The design procedure for each cell includes the description, the design, the
implementation, the layout and the simulation, and so forth.

 54

Implementation

The partitioned basic blocks for the multiplier contain the modified Booth
encoder, one-generator, partial product generator, 4-2 compressor, full
adder, half adder, increment adder, 3-bit and 4-bit carry look ahead adders
etc. The design and implementation for each leaf cells will be presented in
subsequent subsection.

5.5.3.1 Design Environment

The design and implementation for the multiplier will be performed using
Cadence electronic design package. The process technology used is 0.18 µm
CMOS that is a modern technology. This process has some special features,
such as six metal layers available, thinner wire, minimum area requirement,
smaller transistor length with minimal value of 0.18 µm and the minimum
width with the value of 0.28 µm, and so on.

5.5.3.2 Transistor Sizing Criteria

To satisfy the performance constraints, the transistor sizing is very
important for a custom design. This is a tedious and subtle process due to
the choice of the transistor dimensions having a major impact on the area,
performance, and power dissipation of a circuit. For this reason, some
transistor sizing strategies have been proposed as shown in section 3.3.1.
During the implementation of each cell, the transistor sizing, and the
transistor resizing after the postlayout simulation, if necessary, can be
accomplished according to the criteria below, if not otherwise specified.

1. The minimum length with the value of 0.18 µm for both NMOS and
PMOS is used.

2. The rise and fall time of a gate is less than 1 ns.
3. The width of NMOS is determined according to the load capacitance

to be driven. Since the transistor size increases with the increase in
the load driven by it for a given transition time at the output signal of
a gate, the actual capacitance can only be back annotated after the
layout. Therefore, the trial and error method is used.

4. The ratio between NMOS and PMOS is taken by a factor of 2.

 55

Chapter 5

5. N cascaded transistors need N times of the width of the only one
transistor.

5.5.3.3 Layout Requirements

When implementing a cell layout in Cadence, in addition to following the
given design rules, several constraints also need to be specified as follows.

1. To simplify the routing, all building blocks have to be adjusted to
have the same height between Vdd and GND.

2. The “align” layer should be used as a boundary for each layout
block. The “align” rectangle is very suitable as a reference when
aligning a number of blocks during the routing.

3. The layout styles for each cell should be as similar as possible.
4. The pin name for each cell should be defined by using the “dot”

shape.

5.5.3.4 Implementing the Modified Booth Encoder

Description

The modified Booth encoding (MBE) technique has been widely applied for
partial product reduction in parallel multiplier implementations. The MBE
using the Radix-4 encoding scheme can reduce the number of partial
products by half. The MBE can also be defined and implemented in many
ways.

The conventional implementations for the MBE have a large fan out which
results in a slow implementation and extra power consumption. Some
techniques used to improve the MBE in both speed and power aspects have
been proposed. One of them is a glitch-free MBE recoding scheme at gate
level [27] which was implemented by using XOR/XNOR gates at transistor
level [16]. It used a 6-transistor CMOS XOR circuit with complementary
outputs. This MBE encoder works well in 0.35 µm process at a supply
voltage of 3 V. However, the same structure did not work in the same
process at 1.5 V. For this reason, a new glitch-free MBE encoder based on
the principle proposed in [27], which is also implemented by using TG XOR

 56

Implementation

structure, has been proposed in this thesis. This new MBE encoder works
well in both 0.35 µm and 0.18 µm process at a supply voltage of 1.5 V and
1.2 V, respectively. The truth table for the new MBE encoder is the same as
the one presented in [27], which is given in table 5.1.

 Table 5.1 Truth table of the modified Booth encoder

B2i+1 B2i B2i−1
id Inv_

COMP

SHIFT

Inv_
SHIFT

 ZP ONE PPG PPn

0 0 0 0 0 1 0 1 0 0 1
0 0 1 +1 0 0 1 1 0 A1 A1

0 1 0 +1 0 0 1 0 0 A1 A1

0 1 1 +2 0 1 0 0 0 A0 A0

1 0 0 −2 1 1 0 0 1 A0 A0

1 0 1 −1 1 0 1 0 1 A1 A1

1 1 0 −1 1 0 1 1 1 A1 A1

1 1 1 0 1 1 0 1 0 0 1

From the table 5.1, the modified Booth encoder functions, inv_COMP,
SHIFT, inv_SHIFT, ZP, ONE, PPG, and PPn, are derived as follow.

 inv_COMP = B2i+1

 SHIFT = B2i ⊕ B2i −1

 inv_SHIFT = SHIFT

 ZP= B2i ⊕ B2i+1

 ONE = B2i+1·(B2i ·B2i −1)

 PPG = SHIFT·(A1 ⊕ inv_COMP) · SHIFT·((A0 ⊕ inv_COMP)+ZP)

 PPn = PPGN −1

where B2i+1, B2i , B2i −1 represent the adjacent 3 bits of the multiplier, B, and
SHIFT denotes whether a shift is required, inv_COMP indicates whether the
partial product is negative or positive, ONE is the correction constant
required to generate a negative partial product, PPG is the partial product,
PPn is the one’s complement of the sign, is the recoding digit and Aid 1, A0
indicate the adjacent 2 bits of the multiplicand.

 57

Chapter 5

This new MBE encoder can be used to achieve the possible equal path for
all output signals, which also is very compact due to just two more
transistors used compared to the implementation in [16].

The Implementation

The transistor level schematic for the MBE encoder, including the one-
generator, is shown in figure 5.5.

BX2 BX3 BX1
SHIFT

Inv_SHIFT

ZP

ONE

Inv_COMP

W=3.6 u

W=1.68 u

W=1.68 u

W=1.8 u

W=1.8 u

W=1.68 u
W=1.68 u

W=1.68 u

W=1.8 u W=1.8 u

W=1.8 u

W=1.68 u

W=1.68 u

W=1.68 u

W=3.6 u

W=3.6 u

W=3.6 u

W=3.6 u

W=3.6 u

W=1.68 u

W=1.68 u

W=1.68 u

W=1.68 u

W=1.8 u

W=0.84 u

W=1.68 u

W=1.68 u

W=1.8 uW=1.8 uW=1.8 uW=1.8 u

W=1.68 u

W=1.68 u

Figure 5.5 Schematic of the MBE encoder

The Layout

Figure 5.6 shows the layout for the MBE encoder and the one-generator
with buffers. For the layout, two metal layers, mental1 and metal2, have
been used for local interconnections in the cell. This block integrates 34

 58

Implementation

transistors which contains the MBE encoder, output buffers, input inverter
and one-generator. It has the area of 222 µm2.

Figure 5.6 Layout of the MBE encoder

When the cell layout is created and has passed the DRC (design rule check)
check, the extracted view has to be generated, which translates the layout
into a netlist with the parasitics. Afterwards, the LVS (layout versus
schematic) can be done. If no discrepancy could be found between the
extracted netlist and the schematic netlist, the analog extracted view can be
created, which is similar to the extracted view, however, it is more suitable
for the simulation.

The Simulation

When the analog extracted view is produced, it is possible to start the
simulation for the cell by using the simulation tool that is called “Affirma
Analog Circuit Design Environment”. Before running the simulation, a
cellview called configuration has to be built, which includes all the
cellviews needed for creating the netlist. After this, the simulation with
parasitics can be started.

 59

Chapter 5

The MBE encoder and one-generator were validated to be correct after
many simulations. The resulting transistor sizes have been determined
according to the simulation results and the transistor sizing criteria
described in section 5.5.3.2, which is also shown in figure 5.5. Since this
cell has been simulated together with the PP generator, their combined
propagation delay and power dissipation will be given in the following
subsection 5.5.3.6.

5.5.3.5 Implementing One-Generator

The one-generator is used to create a binary one during the operation of the
MBE encoding. When the operation is –Y or –2Y, a binary one has to be
added to the LSB of the partial product. The gate level schematic and the
truth table have been described in figure 4.3. The transistor level schematic
and the layout have been combined in the MBE encoder as shown in figure
5.5 and 5.6.

5.5.3.6 Implementing PP Generator

Description

A glitch-free partial product generator based on a glitch-free MBE encoder
proposed in [27] can be used to reduce the energy dissipation by about 30%
due to eliminating the spurious transitions. Such a structure has been
implemented at transistor level by using 0.35 µm process at 3.3 V supply
voltage [16]. This partial product generator consists of three stages, where
the first stage is the XNOR operation, which was implemented using
XOR/XNOR gates [26]. To make sure that this logic circuit is working
correctly in the 0.18 µm process at a lower supply voltage of 1.2 V, another
alternative using TG XNOR gates is employed to replace this stage, whose
transistor level schematic is illustrated in figure 5.7 on the next page.

The truth table has been given in table 5.1. In this table, PPG represents the
partial product, and PPn stands for the generated sign bit.

 60

Implementation

Inv_COMP A1

PPG

W=3.6 u

W=1.68 u

W=1.68 u

W=1.8 u

W=1.8 u

W=1.68 u

W=3.6 u

W=1.68 u

W=3.36 u

W=3.36 u

W=3.6 uA0

W=1.68 u

W=1.8 u

W=1.8 u

W=1.68 u W=1.68 u

W=1.68 u

W=1.8 u

W=1.68 u

W=1.68 u

W=1.8 u

W=1.68 u

W=1.68 u

W=3.6 u

W=3.6 u

Inv_SHIFT

SHIFT

ZP

W=3.6 u

Figure 5.7 Schematic of the partial product generator

The Layout

The layout of the partial product generator is illustrated in figure 5.8. For
this block, the number of transistors, including the inverters, is 30, and the
area is 210 µm2.

 Figure 5.8 Layout of the partial product generator

 61

Chapter 5

The Simulation

When the configuration view is available, the simulation of the extracted net
list with parasitic capacitance can be done. The simulation results indicate
that the logic function is correct. After simulating several times, the
transistors have been sized as shown in figure 5.7. The maximum
propagation delay and the average power dissipation, including the modified
Booth encoder, for the input patterns of 111~000,, 12212 =−+ iii BBB and

 are 1.5 ns and 0.16 mW. ,11,1 =+ jj AA

5.5.3.7 Implementing Sign Generator

Description

Sign-extension is an important aspect to implement a high speed and low
power parallel multiplier, since the sign extension has a direct impact on the
power consumption and the performance for the multiplier. Several sign
extension techniques have been proposed as discussed in section 2.6. In this
thesis, the sign-generate scheme has been chosen for generating partial
products. This scheme can not only simplify the sign bit implementation,
but also reduce the power dissipation due to that the extra “one” can be
merged into the adder tree by using an increment adder that will be
described later in this chapter.

The sign-generate scheme can be realized by using a block called sign
generator. The truth table has been given in table 5.1. From the point of the
simplification, this block can be implemented based on the partial product
generator in which the signal can be replaced by using and adds an
extra inverter at the output. In this way, the layout can almost reuse the
layout of the partial product generator completely, and the block delay and
power dissipation only have a slight increase due to the extra inverter. For
this reason, this cell will not be presented in detail.

1−iA iA

 62

Implementation

5.5.3.8 Implementing Adder Cells

Description

The adder cells consist of a full adder, half adder and increment adder. They
are used to construct the partial product reduction tree together with 4-2
compressors that will be described later. These adders are implemented by
using CPL. In general, a CPL gate is composed of an NMOS pass transistor
logic network, a CMOS output inverter, two small pull-up PMOS transistor,
and either single rail or dual rail inputs/outputs.

When the inputs for the adder cells and compressors come from the partial
product generators, the single rail for the adder cells or compressors in the
first level of the PPRT has to be used. In the second and further levels, the
dual rail for the adder cells or compressors should be used. On the other
hand, when the outputs from adder cells and the compressors feed into the
final adder, the single rail has to be used.

The pull-up PMOS transistors are used for swing restoration, which can
decrease the static power consumption. As long as the pull-up function can
be realized, the width for the PMOS transistors can be taken to be as small
as possible.

The Notation

The adder cells or compressors used for constructing the partial product
reduction tree (PPRT) will be implemented by CPL. The differential
characteristic of CPL leads to that the adder cells or compressors on the
different positions in the PPRT could have different input and output styles
(single rail or dual rail). For this reason, the adder cells and compressors are
identified by defining a group of characters, such a special group of
characters consists of the adder name, input and output styles which is used
to specify whether single rail or dual rail is to be used. This group of
characters is divided into three fields by the underscore “_”. These fields
can be explained as follows.

1. The first field represents the adder name that comprises one of the
following three kinds of adders.

 63

Chapter 5

 FA: full adder, HA: half adder, and IA: increment adder.
2. After an underscore, “_”, the second field tells that the inputs are

either single rail or dual rail. “s” stands for single rail, while “d”
refers to dual rail.

3. There is another underscore, “_”, after the second field. The third
field indicates that the outputs are either single rail or dual rail.

For example:
FA_sss_dd, represents a full adder with three single rail inputs and two dual
rail outputs where one is sum and the other is carry out.

The Logic Functions

The logic functions and the corresponding truth tables for the adder cells are
illustrated in figure 5.9.

Full Adder A B C S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

 A B C
 S = A ⊕ B ⊕ C
 FA
 Cout = AB + AC + BC

 Cout S

 Half Adder
 A B

 HA S = A ⊕ B

 Cout = AB
 Cout S

 Increment Adder
 A B 1
 S= A ⊕ B
 IA
 Cout = A+B

 Cout S

A B S Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

A B S Cout
0 0 1 0
0 1 0 1
1 0 0 1
1 1 1 1

Figure 5.9 Logic functions and truth tables for the adder cells

 64

Implementation

The Implementation

The full adder, half adder and increment adder, have been implemented
using CPL. Figure 5.10 shows the schematic of the full adder.

B

W=1.8 u

W=0.84 u

com_Cout

W=1.8 u

W=0.84 u

Cout

W=1.8 u

W=0.84 u

com_S

W=1.8 u

W=0.84 u

S

W=1.8 u

W=0.84 u

C
W=1.8 u

W=0.84 u

A

W=1.8 u

W=0.84 u

W=0.28 u

A

Inv_A

Inv_B

Inv_C

Inv_A

Inv_B

B

C

Inv_C

W=0.28 u

W=0.28 u

W=0.28 u

W=0.84 u

W=0.84 u

W=0.84 u

W=0.84 u
W=0.84 u

W=0.84 u

W=0.84 u

W=0.84 u

W=1.12 u W=1.12 u

W=1.12 u

W=1.12 u W=1.12 u

W=1.12 u

W=1.12 u

W=1.12 u

W=1.12 u

Figure 5.10 Schematic of the full adder

Based on these three kinds of adders, more than thirty basic cells have been
constructed in both circuit and layout levels, which are used for the partial
product reduction tree as compressors.

The Layout

Figure 5.11 on the next page shows the layout for the full adder. The area
and the number of transistors for the full adder, half adder and increment
adder will be given in table 5.2.

 65

Chapter 5

Figure 5.11 Layout of the full adder

The Simulation

The simulations for the adder cells have been done individually. The block
delay and the power dissipation for each cell are given in table 5.2.

 Table 5.2 Features for the adder cells (at 1.2 V, 25.6 MHz)

Cell
Name

No. of
trans

Area
µm2

Worst case
delay (ps)

Average power
Dissipation (µW)

Input
style

Output
style

FA 38 219 796 37 sss dd
HA 24 151 457 25 ss dd
IA 24 148 512 34 ss dd

5.5.3.9 Implementing 4-2 compressors

The 4-2 compressors can be constructed by using two full adders that has
been implemented according to the description above. The truth table and
hierarchical schematic have been given in table 4.1 and figure 4.6. From the
figure, the 4-2 compressors adds four partial products and a carry in signal,

 66

Implementation

and then generates a sum signal and two carry signals (Co and Cout), where
the Co is independent of the input Cin. In order to avoid using “zero” or
“one” as the input for a 4-2 compressor, the second full adder in a 4-2
compressor can be replaced by using a half adder or an increment adder.
Therefore, the 4-2 compressors can be built using different cell
combinations as shown below.

 FA_FA: two full adders used.
 FA_HA: one full adder and one half adder used.
 FA_IA: one full adder and one increment adder used.
 IA_HA: one increment adder and one half adder used.

The Notation

Similarly, the 4-2 compressors can also be identified using the notation
presented for the adders. The difference for the 4-2 compressors is that the
group of the character has been divided into five fields, as explained as
follows:

1. The first field consists of two adder’s names, which are used to
realize the compressors. There is an underscore, “_”, between the
two adder’s names.

2. The second and third fields are the same as that of the adder cells.
3. The fourth field indicates that the intermediate carry out signal is

either single rail or dual rail.
4. The fifth field stands for that the carry in signal is either single rail

or dual rail.

For example:
FA_IA_ddd_dd_d_d, specifies a 4-2 compressor combined with a full adder
and an increment adder. Such a 4-2 compressor has three dual rail input
signals and one hidden input of “one”, two dual rail outputs, one dual rail
intermediate carry out signal, and one dual rail carry in signal.

The Layout

The layouts for the 4-2 compressors built with different adder cells have
been done.
The Simulation

 67

Chapter 5

The post layout simulations for the 4-2 compressors designed in this thesis
work have also been done. Some transistors in the compressors have been
resized according to the simulation results. The propagation delay and the
power dissipation can be obtained through simulation. For instance, the cell,
FA_FA_ssss_dd_d_d, has 1.6 ns maximum delay and consumes 0.075 mW
average power.

5.5.3.10 Implementing the Vector-Merging Adders

The vector-merging adder, or final adder, can be implemented using carry
skip or carry look-ahead adders. In this thesis work, the vector-merging
adders with the word-length more than 6 bits are constructed by using 3-bit
and 4-bit CLA adders.

Figure 5.12 on the next page shows a 4-bit CMOS carry look-ahead
generator circuit [9]. Such a circuit can simultaneously generate the carry
signals due to that the generate signals and the propagate signals have
been created in parallel. However, the drawback of this carry look-ahead
circuit is that the delay for each bit will increase with increasing the number
of bits. For this reason, another alternative has been proposed in this thesis,
as can be seen in figure 5.13, where the difference is that the third and forth
bit structures directly use the second carry out signal. In this way, the area
of the circuits can be reduced substantially keeping the same speed.
Moreover, the 4-bit carry look-ahead circuit becomes very simple and
regular, which makes the layout easy. And the proposed structure in this
thesis can be used to construct the carry look-ahead circuit block with a bit
number of greater than 4 bits.

iG iP

The sum generator has been implemented by using transmission gates since
the truth and complement of the propagate signal were available, as shown
in figure 5.13. This proposed structure in the thesis is a good choice for the
sum generator due to only four transistors are used.

 68

Implementation

Ci,0

P0

P1

P2

P3

C0,3

G0

G3

G2

G1

VDD

Figure 5.12 Schematic diagram of a 4-bit look-ahead adder

The Layout

The circuit structure for the 3-bit CLA is similar to that of the 4-bit carry
look-ahead adders. Thus, figure 5.14 only shows the layout of the 4-bit
CLA. The area and the number of transistors for the 3-bit and 4-bit CLA
adders will be given in table 5.3.

Figure 5.14 Layout of the 4-bit CLA

 69

Chapter 5

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.8
 u

C
in

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.8
 u

W
=1

.6
8

u

S
1

W
=1

.6
8

u

W
=3

.6
 u

W
=1

.6
8

u

W
=3

.6
 u

W
=3

.6
 u

A
1

B
1

B
1 A
1

B
1

A
1

A
1

B
1

W
=3

.6
 u

W
=3

.6
 u

W
=1

.8
 u

W
=1

.8
 u

W
=3

.6
 u

W
=3

.6
 u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u
C

in

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.8
 u

W
=1

.6
8

u

S
2

W
=1

.6
8

u

W
=3

.6
 u

W
=1

.6
8

u

W
=3

.6
 u

A
2

B
2

B
2 A
2

B
2

A
2

A
2

B
2

W
=3

.6
 u

W
=3

.6
 u

W
=1

.8
 u

C
in

W
=3

.6
 u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.8
 u

W
=3

.6
 u

W
=3

.6
 u

W
=1

.8
 u

W
=1

.6
8

u

W
=1

.6
8

u
W

=1
.6

8
u

W
=3

.3
6

u

W
=3

.3
6

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.8
 u

W
=1

.6
8

u

S
3

W
=1

.6
8

u

W
=3

.6
 u

W
=1

.6
8

u

W
=3

.6
 u

W
=3

.6
 u

A
3

B
3

B
3 A
3

B
3

A
3

A
3

B
3

W
=3

.6
 u

W
=3

.6
 u

W
=1

.8
 u

W
=1

.8
 u

W
=3

.6
 u

W
=3

.6
 u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.8
 u

W
=1

.6
8

u

S
4

W
=1

.6
8

u

W
=3

.6
 u

W
=1

.6
8

u

W
=3

.6
 u

A
4

B
4

B
4 A
4

B
4

A
4

A
4

B
4

W
=3

.6
 u

W
=3

.6
 u

W
=1

.8
 u

W
=3

.6
 u

W
=1

.6
8

u

W
=1

.8
 u

W
=1

.8
 u

W
=3

.6
 u

W
=3

.6
 u

W
=1

.8
 u

W
=1

.6
8

u

W
=1

.6
8

u
W

=1
.6

8
u

W
=3

.3
6

u

W
=3

.3
6

u

C
ou

t

Fi
gu

re
 5

.1
3

Th
e

pr
op

os
ed

 s
ch

em
at

ic
 o

f t
he

 4
-b

it
C

LA

 70

Implementation

The Simulation

The simulations for the 3-bit and 4-bit CLA have been done. The delay and
the power dissipation for both of cells under the worst case input pattern of

and ,1,0 == ii BA 1=inC are given in table 5.3.

 Table 5.3 Features of the vector merging adders (at 1.2 V, 25.6 MHz)

Cell Name No.of
trans

Area
µm2

Worst case delay
 (ps)

Power Dissipation
 (mW)

3-bit CLA 82 650 818 0.13
4-bit CLA 112 862 957 0.18

5.5.4 Cell-Level Schematic

The cell-level schematic for the 1818× -bit multiplier has been created. It
looks like the gate-level schematic as shown in figure 5.2. However, the
difference is that the cell level schematic has a hierarchical structure and the
low level circuits have been available. Also, the functionality has been
validated through the prelayout simulations.

5.6 Routing

When the cell-level schematic has been created and the layout for each leaf
cell has been done, it is possible to start the routing that can be performed
by using the automatic design tool called Cadence’s ICcraftman Routing
Tool.

The routing can be done according to the following steps.

1. Set the rules filling out the layer form.
2. Translate the design from the layout window to Virtuoso custom

Router.
3. Import cells to be needed for constructing the whole multiplier. This

step can be done using programs. Firstly, one program used reads
each cell schematic view in a file according to the cell’s instance
names and coordinates. After this, another used C program sorts the
file based on the magnitude of the coordinates for each instance.

 71

Chapter 5

Finally, another used SKILL program reads out each instance from
the file and imports them to the router window.

4. Determine the location of all the cells and assign the interconnect
areas within the flexible block, so that the total area used can be
minimized.

5. Connect the power supply wires manually, metal2 may be used for
GND, while metal3 for Vdd.

6. Add I/O pins. This can be performed by using a program that picks
the I/O pins from the schematic view and then adds them to the
corresponding points in the router window.

7. After design rule checking, if there is no design rule violations, the
routing can automatically be performed using Cadence’s ICcraftmen
Routing Tool.

8. After the routing, the DRC check has to be done, and any design rule
violations have to be fixed.

9. After the routing is complete, the exact length and position of
interconnects for each cell have been determined, and the parasitic
capacitance and resistance related to each interconnect can be
calculated. This is done through a process called extraction.

10. Cadence provides two major design check functions, one is DRC,
and the other is LVS. After the extraction, an electrical schematic is
extracted from the physical layout. This schematic can be used to
compare to the net list that has been generated from the cell-level
schematic. Any discrepancy and design rule violation should be
fixed.

11. After doing LVS check, the analog extraction can be performed,
which can be used for simulation. By this time, the routing for the
entire multiplier has been finished.

Following the above steps, the final layout of the 1818× bit multiplier can
be obtained, as shown in figure 5.15. The active area is 85000 µm2.

 72

Implementation

Figure 5.15 Final layout of the 1818× bit multiplier

5.7 Simulation Strategy

After creating a configuration view, the full simulation of the multiplier has
been tried. However, the full simulation for a complex circuit such as the

-bit multiplier is not possible in Cadence. For this reason, the
simplified simulation method proposed in [13] can be used to estimate the
performance. The basic idea is to replace most of the cells by their
equivalent input capacitance.

1818×

Based on the above idea, we only analyse the critical path of the -bit
multiplier, but we use the actual input capacitances that can be back
annotated from the extracted view of the final layout. The critical path,
corresponding to the seventeenth weight, is shown in figure 5.16.

1818×

The cells on the critical path include the MBE encoder, PP generator, three
levels of 4-2 compressors and six groups of the CLA adders from bit 14 to
the position of bit 36. These cells can be divided into two sections, the first
part consists of the MBE encoder, PP generator, three levels of 4-2

 73

Chapter 5

compressors, and the second part is the six groups of the CLA adders. The
delay can be measured through the simulation with parasitics at 1.2 V. As a
result, the former has a maximum delay of 13 ns, and the latter has the worst
case delay of 4 ns. Therefore, the total critical path delay is 17 ns.

 MBE PPG

 Weight 17
 PPRT

 36-17 bit CLA 16-0 bit CLA

 Note: The solid line blocks show the critical path

Figure 5.16 Critical path for the 1818× multiplier

5.8 Summary

In this chapter, the design of a module generator for low power parallel
multipliers was described in detail and the implementation of an 18 by 18
bit multiplier has also been performed successfully.

This module generator can be used both to redesign an existing multiplier
when the process needs to be changed from one to another and to redesign
an existing multiplier when the word length needs to be changed. Using this
method for both cases, lots of design tasks could be saved.

In the former case, the logic design, circuit drawings and their validation can
be reused, and the routing could be simplified by using two programs for
automatically importing all the cells and adding the pins.

In the latter case, for the logic design, the existing cell’s VHDL descriptions
and their test benches as well as the structural test bench of the entire
multiplier can be reused. Moreover, the structural schematic of the

 74

Implementation

multiplier can be generated using a program with minimum manual
intervention and the structural VHDL-code can also be created
automatically using a program. The circuit design and the routing can be
simplified as mentioned in the former case.

For the 4-bit CLA design, two new structures have been proposed in this
thesis. One is for the 1-bit adder and the other is used for the carry look
ahead circuit, which have been described in details in subsection 5.5.3.10.

 75

Chapter 5

This page is left blank on purpose.

 76

Chapter 6 Conclusion

This chapter summarizes the results and gives the conclusions from the
master thesis work. Also, some suggestions and the future possible
improvements will be discussed.

6.1 Conclusions

The aim of this thesis is to design a module generator for the parallel
multiplier and implement an 1818× bit multiplier in 0.18 µm CMOS process.
The generator could be used to automatically create the gate-level schematic
for a fixed point two’s complement number parallel multiplier. Based on the
generated schematic, the entire multiplier can be implemented with small
manual intervention. This feature can reduce the time of chip design and is
suited the case when the operand sizes and the process technology need to
be changed.

To satisfy the demand on the changeable sizes, a number of basic library
cells based on the different logic and circuit styles should be built. However,
during this thesis work it is impossible to build so many basic cells. For
implementing a larger multiplier, more basic library cells could need to be
created.

This thesis work is relevant to the software programming skills, arithmetic
algorithms, logic styles, topologies and power reduction techniques etc. The
logic family styles have a large effect on the performance of the multiplier.
Therefore, it is important to understand their advantages and drawbacks at
the beginning of the design. The algorithm selection for implementing a
parallel multiplier is also important, the modified Booth algorithm is the
best choice for the multiplier with more than 16 bit sizes.

77

Chapter 6

Moreover, to implement a low power high performance multiplier, all the
aspects in the multiplier have to be optimized. Such a thesis work can
provide a better understand for multiplier algorithms, logic styles and ASIC
design technologies.

During this thesis the module generator (except one C program that still
needs to be modified) has been developed and the method has been used to
implement an 1818× bit multiplier successfully.

The resulting 1818× bit multiplier works correctly and the critical path
delay satisfies the specification on the speed, but the full simulation for the
whole multiplier was not performed due to Cadence inability to deal with
such a complex circuit. For this reason, the total power consumption is not
given.

6.2 Comments on the Project

The thesis project has been very challenging since it includes both hardware
and software designs. Such a project would be too large to be finished under
a required 20 weeks for one master student. For the hardware design, there
are lot of tasks to be done. For example, more than thirty cells in circuit and
layout levels have been designed both in 0.35 µm and 0.18 µm process
technologies, which took much time for the functional validation, transistor
sizing, layout and post layout simulation. In addition, many design decisions
had to be made, such as what encoding scheme should be chosen? What
logic and circuit styles should be used for different cells? However, the
software design was even more challenging due to the complexity and the
requirements on both aspects of the programming skill background and the
comprehensive principle of the parallel multipliers. Therefore, this project
should preferably be taken by two master students, one is responsible for the
hardware design and the other is in charge of the software design.

6.3 Future Improvements

Some considerations should be done to further improve the module
generator of the multiplier in future work.

 78

Conclusion

1. The full simulation for the entire multiplier should be done, if

possible.

2. The C program used to generate the gate-level schematic also needs

to be modified for the section of the partial product reduction tree.

3. The total power dissipation should be measured using NanoSim or
similar tools.

 79

REFERENCES

[1] A. D. Booth, “A signed binary multiplication technique,” Quarterly J. Mechan.

Appl. Math., vol. IV, 1951.

[2] J. L. Hennessy and D. A. Patterson, “Computer organization & Design: The

hardware/Software Interface,” Second Edition, Morgan Kaufmann, 1998.

[3] O. L. MacSORLEY, “High-Speed Arithmetic in Binary Computers,” Proc. IRE,

Jan. 1961.

[4] R. Lin et al., “A Novel Self-Repairable Parallel Multiplier Architecture, Design

and Test,” IEEE Proc. On Asia-Pacific Conference, Aug. 2002.

[5] J. Fadavi-Ardekani, “ NM × Booth Encoded Multiplier Generator Using

Optimized Wallace Trees,” IEEE, Trans, Very Large Scale Integration (VLSI)
Systems, vol. 1. No.2, 1993.

[6] H. J. M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its

impact on the design of buffer circuits,” IEEE Journal of Solid-State Circuits, Vol
19, Aug., 1984.

[7] M. Borah et al, “Minimizing power consumption of static CMOS circuits by

Transistor sizing and input reordering,” IEEE Proc. in VLSI Design’ 95, Jan.
1995.

[8] A. P. Chandrakasan et al, “Minimizing Power consumption in Digital CMOS

Circuts,” IEEE Proc., Vol 83, No. 4, April, 1995.

[9] Jan M. Rabaey, “Digital Integrated Circuits: A Design perspective,” Prentice Hall,

Upper Saddle River, NJ, 1996.

[10] J. T. Kao et al, “Dual-Threshold Voltage Techniques for Low-Power Digital

Circuits,” IEEE Journal of Solid-State Circuits, Vol 35, No. 7, July, 2000.

[11] A. P. Chandrakasan et al, “Low-Power CMOS digital design,” IEEE Journal of

Solid-State Circuits, Vol 27, No. 4, April, 1992.

80

References

[12] K. Yano et al, “A 3.8 ns CMOS 1616× -b Multiplier Using Complementary
Pass-Transistor Logic,” IEEE Journal of Solid-State Circuits, Vol 25, No. 2,
April, 1990.

[13] I. S. Abu-Khater et al, “Circuit Techniques for CMOS Low-Power High-

Performance Multipliers,” IEEE Journal of Solid-State Circuits, Vol 31, No. 10,
October, 1996.

[14] R. Zimmermann et al, “Low-Power Logic Styles: CMOS Versus Pass-Transistor

Logic,” IEEE Journal of Solid-State Circuits, Vol 32, No. 7, July, 1997.

[15] Henrik Eriksson, “Glitch-Power Analysis and Power-Efficient Design of CMOS

Circuits,” Linkoping Studies in Science and Technology, Thesis No. 874, 2000.
pp.10.

[16] Hwang-Cherng Chow and I. Wey, “A 3.3V 1GHz High Speed Pipelined Booth

Multiplier,” IEEE Proc. Vol.5, May, 2003.

[17] C. S. Wallace, “A Suggestion for Fast Multiplier,” IEEE, Trans. Electric

Computer, 1964.

[18] Pascal Bonatto et al, “Evaluation of Booth’s Algorithm for Implementation in

Parallel Multipliers,” IEEE Proc. On Signals, Systems and Computers, Vol. 1,
1995.

[19] K. Prasad and K. K. Parhi, “Low-Power 4-2 and 5-2 Compressors,” IEEE Proc.

Vol. 1, Nov. 2001.

[20] N. Ohkubo et al., “A 4.4 ns CMOS 5454× -b Multiplier Using Pass-Transistor

Multiplexer,” IEEE, Journal of Solid-State Circuits, vol. 30, No. 3, March 1995.

[21] Wen-Chang Yeh et al., “High-Speed Booth Encoded Parallel Multiplier Design,”
IEEE Trans. On Computers, vol. 49, No. 7, July 2000.

[22] J. Mori et al., “A 10-ns 5454× -b Parallel Structured Full Array Multiplier with

0.5 um CMOS Technology,” IEEE, Journal of Solid-State Circuits, Vol. 26, No. 4,
April, 1991.

[23] S. Bhattacharya and Wei-Tek Tsai, “Area Efficient Binary Tree Layout,” Proc.

IEEE 1991 First Lakes Symposium in VLSI, March 1991.

[24] D. Zuras and W. McAllister, “Balanced Delay Trees and Combinational Division

in VLSI,” IEEE Journal of Solid-State Circuits, Vol SC-21, No.5, October, 1986.

 81

References

[25] H. Sam et al, “A Generalized Multibit Recoding of Two’s Complement Binary
Numbers and Its Proof with Application in Multiplier Implementations,” IEEE
Transactions on Computers, Vol. 39, No.8, August, 1990.

[26] M. Vesterbacka, “A New Six-transistor CMOS XOR Circuit with

Complementary Output,” IEEE Proc. On Circuits and Systems, Vol. 2, 8-11
Aug. 1999.

[27] R. Fried , “Minimizing Energy Dissipation in High-Speed Multipliers,” IEEE

Proc. On Low Power Electrics and Design, Aug. 1997.

[28] Edwin de Angel et al, “Low Power parallel multipliers”, IEEE Proc. On VLSI

Signal Processing, 30, Oct. 1, Nov. 1996.

[29] O.Salomon et al, “General Algorithms for a Simplified Addition of 2’s

Complement Numbers,” IEEE Journal of Solid-State Circuits, vol. 30, No. 7,
July 1995.

[30] L. P. Rubinfield, “A Proof of the Modified Booth’s Algorithm for

Multiplication,” IEEE, Trans. Computers, Oct. 1975.

[31] M. J. Flynn, “EE486 lecture 9: Multiply,” Winter 00-01, Stanford University.

[32] Hesham Abdulaziz Al-Twaijry, “Area and Performance Optimized CMOS

Multipliers,” Ph. D. Thesis, Stanford University, August 1997.

 82

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under
en längre tid från publiceringsdatum under förutsättning att inga extra-ordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form
eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller
konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its
possible replacement - for a considerable time from the date of publication
barring exceptional circumstances.

The online availability of the document implies a permanent permission
for anyone to read, to download, to print out single copies for your own use
and to use it unchanged for any non-commercial research and educational
purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative
measures to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be
protected against infringement.

For additional information about the Linköping University Electronic
Press and its procedures for publication and for assurance of document
integrity, please refer to its WWW home page: http://www.ep.liu.se/

© Kaihong Sun

