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Abstract 
 
Multiplication is an important part of real-time system applications. Various hardware parallel multipliers 
used in such applications have been proposed. However, when the operand sizes of the multipliers and the 
process technology need to be changed, the existing multipliers have to be redesigned. 
 
From the point of library cell reuse, this master thesis work aims at developing a module generator for 
parallel multipliers with the help of software programs. This generator can be used to create the gate-level 
schematic for fixed point two's complement number multipliers. Based on the generated schematic, the entire 
multiplier can be implemented by small manual intervention. This feature can reduce the time of chip design. 
 
The design phases consist of the logic, circuit and physical designs. The logic design includes gate-level 
schematic generation with C and SKILL programs and structural VHDL-code descriptions as well as 
validation. The circuit and physical design are custom in Cadence and the routing uses automatic place and 
route tools. 
 
To demonstrate the design method, an 18 by 18-bit modified Booth recoded multiplier was implemented in 
0.18 µm CMOS process with a supply voltage of 1.2 V and simulated using simulator (Spectre). The number 
of integrated transistors is 13000 and the active area is 85000 µm2. The postlayout simulation shows the 
critical path with a delay of 17 ns. 
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ABSTRACT 
 
 
Multiplication is an important part of real-time system applications. Various 
hardware parallel multipliers used in such applications have been proposed. 
However, when the operand sizes of the multipliers and the process 
technology need to be changed, the existing multipliers have to be 
redesigned. 
 
From the point of library cell reuse, this master thesis work aims at 
developing a module generator for parallel multipliers with the help of 
software programs. This generator can be used to create the gate-level 
schematic for fixed point two’s complement number multipliers. Based on 
the generated schematic, the entire multiplier can be implemented by 
minimizing manual intervention. This feature can reduce the time of chip 
design. 
 
The design phases consist of the logic, circuit and physical designs. The 
logic design includes gate-level schematic generation with C and SKILL 
programs and structural VHDL-code descriptions as well as validation. The 
circuit and physical design are custom in Cadence and the routing uses 
automatic place and route tools.  
 
To demonstrate the design method, an 18 by 18-bit modified Booth recoded 
multiplier was implemented in 0.18 µm CMOS process with a supply 
voltage of 1.2 V and simulated using simulator (Spectre). The number of 
integrated transistors is 13000 and the active area is 85000 µm2. The post-
layout simulation shows the critical path with a delay of 17 ns.  
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Chapter 1      Introduction 
 
 
 
Low power high performance multipliers have become a basic building 
block in computations especially in digital signal processing. For most of 
the applications, multiplication operations take a significant part of time 
delay, area cost, and power consumption. Therefore, many techniques and 
design methodologies have been proposed to improve the speed and power 
dissipation of the multipliers. Most of the designs are targeted at a specific 
technology and require redesign for a new process technology. To speed up 
the chip design, a module generator for implementation of parallel 
multipliers with different sizes is presented in this thesis. 
    

1.1 Purpose 
 
The aim with this thesis work is to develop a module generator for fixed-
point parallel multipliers. The delay, area and power have also been taken 
into considerations. The multiplier should be able to multiply two n-bit 
two’s complement numbers and produce a 2n-bit product. Using such a 
method, the basic library cells can be reused, which results in a less time of 
the chip designs. To demonstrate the design method, an 18 by 18 bit parallel 
multipliers is designed. 
  

1.2 Design Specifications 
 
The design specifications for the parallel multiplier include the general 
requirements for designing the parallel multipliers and special requirements 
for implementing the 18 by 18 bit multiplier. Both of them are described as 
follows. 
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Chapter 1  

General Requirements 
 
Multiplicand:     n-bit two’s complement number. 
Multiplier:          n-bit two’s complement number. 
Product:             2n-bit two’s complement number. 
Supply voltage: 1.2 V.  
Rise/fall time:    500 ps. 
Target performance:  Minimum area and power consumption under the  
                                   required delay. 
 
Special Requirements 
  
Multiplicand:   18-bit two’s complement number. 
Multiplier:        18-bit two’s complement number. 
Product:            36-bit two’s complement number. 
Supply voltage: 1.2 V. 
Rise/fall time:   500 ps. 
Target performance:  Minimum area and power consumption under the  
                                   operating frequency of 25.6 MHz. 
 
In addition, the design and implementation should also satisfy the following 
further requirements. 
 

1. The logic design and functional validation shall be performed in 
UNIX C and the Modelsim from Mentor Graphics for VHDL 
simulation.  

2. The gate-level schematic shall be generated according to the 
required word-length. 

3. All the transistor sizes shall be parameteriable. 
4. The library for all the transistors in schematic view shall be 

analogLib and the DK_hcmos8d for the layout. 
5. The design and implementation shall be carried out in 0.18 µm 

CMOS process technology. 

1.3 Reading guidelines 
 
This thesis consists of six chapters. The rest of the chapters are organized as 
follows.  
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Introduction 

Chapter 2 gives an overview of the theoretical algorithms on parallel 
multipliers, such as encoding and sign extension schemes. 
 
Chapter 3 briefly presents the power reduction techniques that are related to 
the design and implementation of parallel multipliers. 
 
Chapter 4 contains the description of the overall architecture as well as the 
major functional units of the parallel multiplier. In addition, the partial 
product reduction tree topologies are also described in this section. 
 
Chapter 5 focuses on the design of the module generator and the 
implementation of the 18 by 18 bit MBE multiplier. Three design phases, 
that is, logic, circuit and physical designs, have been represented in details.  
 
Chapter 6 summarizes the results and comes to the conclusions from the 
master thesis work. Moreover, some suggestions on the future possible 
improvements are discussed in this chapter. 
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Chapter 2      Encoding Schemes 
 
 
 
This chapter briefly describes the methods for generating partial products. 
The major encoding schemes used for multipliers will be introduced, and 
their advantages and disadvantages will also be discussed. In order to 
introduce the concept of the encoding for the multiplication operation, let us 
start with an overview of the multiplication process. 
 
2.1 Multiplication Process 
 
The simplest multiplication operation is to directly calculate the product of 
two numbers by hand. This procedure can be divided into three steps: partial 
product generation, partial product reduction and the final addition. 
 
To further specify the operation process, let us calculate the product of two 
two’s complement numbers, for example, 1101two(−3ten) and 0101two(5ten), 
when computing the product by hand, which can be described according to 
figure 2.1. 
 
                             1 1 0 1                Multiplicand 
                  ×         0 1 0 1                Multiplier 
           ------------------------ 
                 1 1 1 1 1 1 0 1                PP1 
                 0 0 0 0 0 0 0                   PP2 
                 1 1 1 1 0 1                      PP3 
          +     0 0 0 0 0                         PP4 
         -------------------------- 
              1 1 1 1 1 0 0 0 1  = −15     Product 
 
 discard this bit 

Figure 2.1 Multiplication calculation by hand 
 
The bold italic digits are the sign extension bits of the partial products. The 
first operand is called the multiplicand and the second the multiplier. The 

5 



Chapter 2  

intermediate products are called partial products and the final result is called 
the product. However, the multiplication process, when this method is 
directly mapped to hardware, is shown in figure 2.2. 
 
                             1 1 0 1                Multiplicand 
               ×            0 1 0 1                Multiplier               PP generation 
           ------------------------                                                     
                 1 1 1 1 1 1 0 1                PP1 
                 0 0 0 0 0 0 0                   PP2 
                 1 1 1 1 0 1                      PP3                            PP reduction            
          +     0 0 0 0 0                         PP4                              
                 0 0 0 0 1 0 0 1                Sum bit                                  
              1 1 1 1 0 1 0 0 0                Carry bit                      final addition   
                 1 1 1 1 0 0 0 1  = −15     Product 
discard this bit 

Figure 2.2 Multiplication operation in hardware 
 
As can been seen in the figures, the multiplication operation in hardware 
consists of PP generation, PP reduction and final addition steps. The two 
rows before the product are called sum and carry bits. The operation of this 
method is to take one of the multiplier bits at a time from right to left, 
multiplying the multiplicand by the single bit of the multiplier and shifting 
the intermediate product one position to the left of the earlier intermediate 
products. All the bits of the partial products in each column are added to 
obtain two bits: sum and carry. Finally, the sum and carry bits in each 
column have to be summed.  
 
Similarly, for the multiplication of an n-bit multiplicand and an m-bit 
multiplier, a product with n + m bits long and m partial products can be 
generated.  
 
The method shown in figure 2.2 is also called a non-Booth encoding 
scheme. Its advantages and drawbacks will be discussed in next section. 
 

2.2 Non-Booth encoding 
 
Using the non-Booth encoding method for partial product generation, the 
multiplier bits are examined sequentially starting from LSB to MSB. If the 

 6
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multiplier bit is one, the partial product is simply the multiplicand. 
Otherwise, the partial product is zero. Each new partial product is shifted 
one bit position to the left. Each partial product can be produced by just 
using a row of two-input AND gates. The number of partial products 
generated equals the size of the multiplier bits. 
 
The advantage of this method is that the partial product circuit is simple and 
easy to implement. Therefore, this scheme is suitable for the implementation 
of small multipliers. 
 
The drawback is that the method is not able to efficiently handle the sign 
extension and it generates a number of partial products as many as the 
number of bits of the multiplier, which results in many adders needed so 
that the area and power consumption increase. This method is not applicable 
for large multipliers. 
 

2.3 Booth Encoding 
  
The Booth encoding, or Booth algorithm, was proposed by Andrew D. 
Booth in 1951 [1]. This method can be used to multiply two two’s 
complement number without the sign bit extension.  
 
The operation of Booth encoding consists of two major steps [2]: the first 
one is to take one bit of the multiplier, and then to decide whether to add the 
multiplicand according to the current and previous bits of the multiplier. 
This encoding scheme is serial, which means that the different value of the 2 
bits (current and previous bits) corresponds to the different operations. The 
serial encoding scheme is usually applied in serial multipliers. The operation 
procedure can be described with the following table. 
 
        00: no arithmetic operation. 
        01: adding the multiplicand to the left half of the product. 
        10: subtracting the multiplicand from the left half of the product. 
        11: no arithmetic operation.   
 
The second step is to shift the product right one bit. 

 7 
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For example, let us consider the multiplication of two two’s complement 
number 0110two(6ten) and 1011two(−5ten) = 11100010two(−30ten). The 
operation is illustrated in Figure 2.3. 
 
 

Itera- 
 Tion 

Multi- 
plicand

       
                 Step 

 
        Product 

   0  0110 Initial values          0000  1011 0 
 0110 10 => Prod = Prod − Mcand  1010  1011 0  

   1  0110 Shift right product  1101  0101 1 
 0110 11 => no operation  1101  0101 1  

   2  0110 Shift right product  1110  1010 1 
 0110 01 => Prod = Prod + Mcand  0100  1010 1   

   3  0110 Shift right product  0010  0101 0 
 0110 10 => Prod = Prod − Mcand  1100  0101 0  

   4       0110 Shift right product  1110  0010 1 
                Note: The circled bits are used to determine the operation for the next step. 
                

Figure 2.3 Booth encoding with negative multiplier 
 

2.4 Modified Booth Encoding   
 
The modified Booth encoding (MBE), or modified Booth’s algorithm 
(MBA), was proposed by O. L. Macsorley in 1961 [3]. The encoding 
method is widely used to generate the partial products for implementation of 
large parallel multipliers, which adopts the parallel encoding scheme. The 
basic principle for the modified Booth encoding can be described as 
follows. 
 
Let us consider the multiplication of two fixed-point two’s complement 
numbers, X and Y, where X is the multiplier and Y is the multiplicand, both 
of them have n bits, and the X can be expressed by  
 

                   1
12 −
−−= n

nXX + , ∑
−=

=

2

0
2

ni

i

i
iX

                      , i
iii

ni

i
XXX 2

12212

12/

0
2)2( ⋅++−= −+

−=

=
∑
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                      , i
ni

i
id 2

12/

0
2⋅= ∑

−=

=

                                                                                              (2-1)               i
ni

i
id 4

12/

0
⋅= ∑

−=

=

 
Using this notation, the multiplication of X and Y is given by 
 

               ,                                              YdYX i
n

i
i ⋅⋅= ∑

−

=

4
1)2/(

0

                                                                                            (2-2) i
n

i
iP 4

1)2/(

0
⋅= ∑

−

=

 
In this way, the bits of the multiplier are partitioned into sub-strings by the 3 
adjacent bits and each sub-string group ( ) corresponds to one 
of the value in the set {−2, −1, 0, +1, +2}[30]. This means that the each 
three adjacent bits of the multiplier can generate a single encoding digit, 
which is called the modified Booth recoding digit (d

12212 ,, −+ iii XXX

i) [5], as shown in table 
2.1. Each MBE blocks can work in parallel, therefore, all the partial product 
bits are generated simultaneously. The parallel encoding scheme is suitable 
for parallel multipliers. 
  
                            Table 2.1 Modified Booth encoder truth table 

   X2i+1    X2i
    X2i-1        di

     0     0      0         0 
     0     0      1       +1 
     0     1      0       +1 
     0     1      1       +2 
     1     0      0       −2 
     1     0      1       −1 
     1     1      0       −1 
     1     1      1         0 

 
The number of bits for the multiplier, X, must be even. Otherwise, the sign 
bit of X should be extended. For the mn×  multiplication, using the 
modified Booth encoding  partial products are produced or  
partial products if m is odd. Obviously, from the equation (2-2), the partial 
product, , should be shifted two positions to the left of the partial 
product, , due to the  is multiplied by .  

2/m 2/)1( +m

1+iP

iP iP i4
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The operation for Y times X can be summarized in figure 2.4. 
 

             di          Operation on mcand (Y) 
            0   0*Y:  0 => Prod 
          +1 +1*Y:  mcand => Prod 
          +2 +2*Y:  one shift to the left for macnd = > Prod  
          −1 −1*Y:  inverted mcand & added 1 to the LSB 
          −2 −2*Y:  one shift to the left for macnd, then 

            inverted mcand & added 1 to the LSB       
 

Figure 2.4 Partial product selections by using MBE 
 
This operation can also be illustrated graphically. For example, an  bit 
MBE multiplier with X =10011101

88×
two(−99ten),Y =01101101two(109ten), n = 8, 

is shown in figure 2.5. The binary numbers in parentheses are the generated 
sign bits of the partial products.    
                                               Added zero 
1   0   0   1   1   1   0   1   0                                                                                 
                                                                      
                                                           
+2       +2      −1     +1      these coefficients are from the table 2.1                                        
                                                                                          
                                            (1) 0  1  1  0  1  1  0  1        +1Y 
                                                                              0 
                                    (0) 1  0  0  1  0  0  1  0                −1Y 
                                                                      1 
                            (1) 1  1  0  1  1  0  1  0                        +2Y 
                                                              0  
                   (0)  0  0  1  0  0  1  0  1                                −2Y   
                                                      1 
               1   0   1   0  1  0  1  1                                   constant 
                                 
               1   1   0   1  0  1  0  1  1  1  0  1  1  0  0  1  = − 10791      
 
          Figure 2.5 An example for an 88×  bit MBE multiplier 

 
The advantage of using MBE is that it can reduce the number of partial 
products by 50%, which results in about half of the adders reduced 
compared to the non-Booth encoding, and the consumed power is also 
decreased. This encoding method is applicable for parallel multipliers with 
the input operands of equal to or greater than 16-bit.   
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However, the modified Booth encoding is not suitable for implementing 
smaller multipliers due to the extra hardware overhead for MBE encoder 
and the complex circuit of the partial product generator. 
 

2.5 Other Encoding 
 
Besides the non-Booth and Modified Booth encoding, higher radix Booth 
encoding such as radix-8 can be also used to generate partial products. 
Radix-8 Booth encoding method is also called the Booth 3 scheme [32]. 
Using the Booth 3 encoding scheme, the multiplier is divided into 
overlapping groups of 4 bits in parallel. Each partial product can be selected 
from the set of the multiplicand Y {0, ±Y, ±2Y, ±3Y, ±4Y} [32].  
 
The advantage of this encoding method is that it can further reduce the 
partial products to (n + 1)/3.  But the drawback is obviously the complexity 
of the partial product selection logic and the Booth encoders as well as the 
generation of the ±3Y multiple. In this thesis work, this method will not be 
discussed in detail. 
 
Another encoding scheme for generation of partial products is to use smaller 
multipliers. For instance, an 88×  bit multiplier can be constructed with four 

 bit multipliers and two adders [4], as shown in Figure 2.6. 44×
 
The non-Booth encoding scheme can be used to partition and distribute the 
two 8-bit numbers to the four 44×  multipliers. The four 44×  smaller 
multipliers could be implemented by non-Booth encoding method, and their 
partial product generator is simply two-input AND gates. The four 8-bit 
products produced can be added by using two adders. 
 
In general, this encoding is not efficient compared to other encoding 
schemes implemented in current process technology [32]. 
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S 1 5 ~ S 1 2 S 3 ~ S 0S 1 1 S 1 0 S 9 S 8 S 7 S 6 S 5 S 4  
 

Figure 2.6 An 88×  bit multiplier based on smaller multipliers 
 

2.6 Sign Extension Schemes 
 
The multiplication and addition operations for two’s complement numbers 
have to handle the sign bits, as shown in figure 2.2. The addition of the 
extended sign bits for each partial product results in additional cost. To 
reduce the cost of the sign extension, several extension schemes have been 
proposed, as described in [28]. 
 
In the following section, the basic principle of sign extension and one 
method used for sign extension in this thesis will be introduced.  

2.6.1 Basic Concept of Sign Extension 
  
The two’s complement is a special case of radix complement for binary 
numbers in which the radix equals to two. For instance, a 1+k  bit number A 
can be represented in two’s complement as 
 

           A =                                                             (2-3) ∑
−

=

⋅+⋅−
1

0
22

k

i

i
i

k
k aa
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where the is the sign bit. A is positive when equals to zero, while A is 
negative when is 1.  

ka ka
ka

 
If the sign bit of a two’s complement number A is extended by S bits, then A 
should include three parts [29], the original MSB, the extension of the sign 
bit by S bits and the number’s value. In this case, the A is rewritten by 
 

        A =                                           (2-4) ∑ ∑
−+

=

−

=

+ ⋅+⋅+⋅−
1 1

0
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i
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When defining as the sign bit plus the S extended bits, the  can also 
be presented using two’s complement format with a length of  and bit 
significances from  to . The can be expressed as 

extA extA
1+S
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             = ,     with .                                        (2-5) k
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From the above derivation, it is clear that the sign for the number with sign 
extension is the same as the original one. Therefore, the positive two’s 
complement numbers actually have an infinite number of 0s on the left, 
whereas the negative ones have an infinite number of 1s. In order to fit the 
width of the hardware, sign extension can be used to restore some of the 
hidden sign bits.  
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2.6.2 Conventional Sign Extension  
 
Conventional sign extension is similar to the method used to calculate the 
multiplication by hand [28]. This method can be used to add the partial 
products sequentially. This means that the first row of partial products is 
summed to second row and the result is added to third row and so on. In this 
way, sign extension is only performed from one row to the next. 
Furthermore, the sign is encoded into the carry and sum of the MSB of the 
intermediate addition results. Therefore, the carry and sum of MSB should 
be extended to the next row.  
 
This method is not efficient for low power design since the full adder on the 
most significant position in each row has one more fan-out than the rest of 
the adders. Another efficient method that is called sign generate is described 
in the following section.  
 

2.6.3 Sign Generate Sign Extension 
 
The sign generate scheme [5] is an efficient method to reduce the length of 
each partial product. This sign extension scheme assumes that all the partial 
products are negative. Based on such an assumption, for an n by m 
multiplier, the sum of all sign extensions can be precalculated as 
 

          , ∑
−

=

−=
1)2/(

0
4)2)1((

m

i

inSigns

                    )
3

12)(1(2 −
−=

m
n  .                                                          (2-6)  

The equation (2-6) shows the relationship that can be interpreted as a fixed 
number, [ ]3/)12()1( −− m , which should be added to the Nth binary position 
of the partial product leftwards. This number expressed in binary form is 
equal to 1010101…01011, where there are exactly 12/ −m  zeros. If the 
partial product generated is positive, its sign bit should be simply replace by 
a one to suppress the effect of the previous assumption. This technique can 
be summarized as follows. 
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1. Inverting the sign bit of each partial product, and placing it into the Nth 
binary position. 

2. Adding one to the left of each partial product. 
3. Adding one in Nth bit column. 
 
The operation of the one addition can be implemented by using increment 
adders. Therefore, no extra adders for adding these constant 1s are required 
using this method. The advantage of the sign generate method is that it does 
not only reduce the area, power consumption, but also speed up the 
multiplication. The following example illustrates an 8 by 8 multiplier using 
this method together with the modified Booth encoding [28]. In this case, 
the sign of the final result can be expressed as 
 

                           (2-7) ∑∑∑∑
====

+++=
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where  is the sign bit of the partial product in the row. By using the 
following two equations 
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                                                                                    (2-8) jn
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                                                                                            (2-9) ii SS −= 1
 
then S becomes 
 
  .           (2-10) 8151311914

3
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2
10

1
8

0 222222222 ++++++++= SSSSS
 
Equation 2-10 indicates that the sign of the final result can be calculated 
directly according to the partial products. Figure 2-7 shows the partial 
product diagram with the sign generate method, in which T is the one’s 
complement of the sign and C is the correction constant for the negative 
partial products. Another example is shown in figure 2.5. 
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                                                       1 
                                                  1   T  ● ● ● ● ● ● ● ● 
                          1  T  ● ● ● ● ● ● ● ●     C 
                    1  T  ● ● ● ● ● ● ● ●      C 
             1  T  ● ● ● ● ● ● ● ●      C 
                   Final          product 
 

Figure 2.7 Partial product diagram with the sign generate scheme 
 

2.7 Summary 
 
The aim of this chapter was to give an overview of the methods for 
generating the partial products. It started with the introduction of the 
multiplication process. Several encoding schemes have been described and 
their advantages and drawbacks have also been discussed. 
 
The Non-Booth encoding method generates the same number of partial 
products as the number of bits of the multiplier. It is suitable for 
implementing the smaller multipliers due to the simple realization of the 
partial product generator and no need to use an encoding circuit. 
 
The original Booth encoding performs the encoding serially. The serial 
encoding scheme is usually employed in bit-serial multipliers.  
 
The modified Booth encoding performs the encoding in parallel, which is 
widely used to generate the partial products of the large parallel multipliers. 
In general, this method is not applied to implement the multipliers with a 
word length less than 16 bits. 
 
Higher radix Booth encoding also performs the encoding in parallel, which 
can further reduce the number of partial products, but it uses a more 
complex circuit for the Booth encoder. 
 
A small multiplier can also be used to construct large multipliers. However, 
it is not an efficient method compared to other encoding schemes in current 
implementation technology. 
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Chapter 3    Power Reduction Techniques 
 
 
 
Reducing power consumption has become an important issue in digital 
circuit design, especially for high performance portable devices. Many 
power reduction techniques have also been proposed from the system level 
down to the circuit level. In this section, some of these techniques, which 
are related to the design for parallel multiplier, will be presented. 
 

3.1 Sources of power Dissipation 
 
The sources of power dissipation in digital CMOS circuits are composed of 
the following parts: switching power, short-circuit power, and leakage 
power, which are expressed in the following equation 
 
                                     Dynamic Power                             Static Power 
   

Ptotal = 10−α ٠C  ٠
L V dd

2
٠ + f clk I SC ٠V  + 

dd I leakage ٠V                (3-1) 
dd

 
                              Switching power          Short-circuit power   Leakage Power 
 
The first term stands for the switching power, which is the power required 
to charge/discharge the circuit nodes. 10−α  is the node switching activity 
factor of the circuit, which is the average number of the node making a 
power consuming transition per clock cycle. CL is the load capacitance, Vdd 
is the supply voltage, and fclk is the clock frequency. The switching power 
consumption is the dominating component in digital circuits, and it can be 
reduced by minimizing any one or several of 10−α , CL, Vdd, and fclk under the 
required performance.    
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The second term in equation (3-1) represents the short-circuit power 
consumption due to short-circuit current. The short-circuit current in 
complementary CMOS circuit arises when both the pull-up network and the 
pull-down network are turned on at the same time during the transitions. 
The amount of Isc is proportional to the rising and falling time of the input 
signals, transistor sizes and the output load capacitance [6]. Hence, the 
longer the transition time for the input signals, the larger the short-circuit 
current which results in more power consumed. The short-circuit power 
consumption can be lowered by optimal transistor sizing and input 
reordering transistors [7]. 
 
The total average short-circuit current can be minimized by designing with 
equal input and output edge times [8]. In this way, the power consumed by 
the short-circuit currents is less than 10% of the total dynamic power. In 
particular, when the supply voltage is lowered to be below the sum of the 
thresholds of the transistors, the short-circuit currents can be eliminated.  
  
The third term in equation (3-1) refers to the leakage power dissipation due 
to the leakage current. Though one and only one of the pull-up and pull-
down networks in a static CMOS circuit is conducting in steady state, there 
still is a small leakage current which flows through the reverse-biased diode 
junctions of the transistors between the diffusion regions and the substrate 
[9]. Another source of the leakage current is potentially the subthreshold 
current of the transistors. Both sources of leakage caused the static power 
dissipation which constitutes a small fraction of the overall power 
dissipation in current technologies. However, with the progress of the 
technology scaling, the subthreshold leakage currents will become a larger 
component in total power dissipation. The leakage current depends strongly 
on the technology, and it can be reduced by applying some techniques such 
as multithreshold voltage CMOS technology [10] etc.   
 

3.2 Supply Voltage Scaling 
 
The most effective method to reduce the power consumption is scaling the 
supply voltage, as indicated by equation (3-1). Reducing the supply voltage 
can significantly reduce the power dissipation that is a quadratic function of 
the operating voltage. This is illustrated in figure 3.1, which shows the 
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power consumption as a function of  for a 4-bit carry look-ahead adder 
in 0.18 µm process technology. The power consumption dependence on 
supply voltage for various logic functions and logic styles has been 
described in [11]. 
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Figure 3.1  Power consumption for a 4-bit CLA as a function of Vdd

 
However, reducing the supply voltage also increases the delay. The 
relationship between Vdd and the delay, Td, can be expressed [8] by 
 

( )( )2
2 / tdd
C

ddLddL
d VVLW

VC
I
VC

T
ox −

×
=

×
=

µ
                                              (3-2) 

 
From the equation (3-2), when Vdd approaches the threshold voltage, Vt, the 
delay increases drastically, as shown in figure 3.2. 
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Figure 3.2 Propagation delay versus Vdd for a 4-bit CLA adder 

 19 



Chapter 3 

Obviously, using this method causes the performance loss on the speed. In 
order to compensate for the loss in throughput at low supply voltages, 
several techniques can be applied such as parallel and pipelined 
architectures as well as modifying the threshold voltage of the devices [8].     
 

3.3 Reducing Effective Capacitance 
 
When the performance loss in throughput due to lowering the supply 
voltage is not acceptable, reducing the effective capacitance can also obtain 
low power consumption in CMOS circuits. The effective capacitance is 
defined by the product of the physical capacitance and the switching 
activity, which is shown as 
 
                    Leffective CC 10−= α  
 
where 10−α  is the node transition activity factor, and  is the load 
capacitance which refers to physical capacitance. The switching power 
consumption can be rewritten as 

LC

 
                    clkddeffectiveswitching fVCP 2=
   
From the above equation, reducing the switching power consumption can be 
achieved by minimizing both of the physical capacitance and the switching 
activity. 
 

3.3.1 Physical Capacitance Reduction 
 
The physical capacitance can be reduced through selecting the appropriate 
circuit style and optimizing the transistor sizes.  
 

Effects of Circuit Styles 
 
The different circuit and logic styles result in different gate and diffusion 
capacitance of the transistors in a combinational logic circuit. Some of the 
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circuit styles can substantially reduced the physical capacitance and is good 
for low-power operation. Figure 3.3 shows the relationship between the 
power-delay products of an 8-bit adder that was implemented in 2 µm 
CMOS technology with different circuit styles and the corresponding 
propagation delays [9]. 
 

 
 

Figure 3.3 Power-delay product versus delay for an 8-bit adder 
 
As shown in Figure 3.3, the adder that was implemented by using 
complementary pass transistor logic (CPL) is about twice as fast as the 
conventional static CMOS. This is due to that CPL improves the 
performance of the circuit with a lower input capacitance and reduced 
voltage swing. Moreover, a CPL logic circuit consumes less power than a 
static CMOS one, for instance, the power saving for a CPL adder is about 
30% compared to a conventional static CMOS adder [12]. This 
improvement is mainly due to the reduction in capacitance.  
 
The performance of a full adder implemented with different circuit styles, 
such as conventional CMOS, transmission gate CMOS, CPL without output 
swing restoration, CPL with minimum size PMOS restoration transistors 
(LCPL2), CPL and TG combination (CPL-TG), has been compared in [13]. 
This comparison reveals that the circuit styles impact dramatically on the 
delay and power dissipation of the circuit. The compared results indicate 
that the CPL-TG provides the lowest power delay product, and the LCPL2 
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has the second lowest power delay product. Both of them are the best suited 
for low-power high-performance applications such as adders and 
multipliers. 
 

Transistor Sizing 
 
The capacitive load that originates from transistor capacitance and 
interconnect wiring can be reduced by optimizing transistor sizes whenever 
possible and reasonable. In general, increasing the transistor sizes results in 
a large (dis)charging current and simultaneously increases the parasitic 
capacitance. On the other hand, reducing the transistor sizes will result in 
decreasing input capacitance that may be the load capacitance for other 
gates and lowering the speed of the circuit. Thus, the objective of transistor 
sizing is to obtain the minimum power dissipation under given performance 
requirements.  
 
In order to explain how to make transistor sizing, let us consider a static 
inverter driving a load capacitance being composed of an intrinsic 
(diffusion) and an extrinsic (wiring and fan out) capacitances.  When the 
total load capacitance to the gate output is dominated by the diffusion 
capacitance, the smallest possible sizes of the transistors should be used for 
obtaining the lowest power consumption. Otherwise, if the load capacitance 
is dominated by the extrinsic component, the power consumption first 
begins to decrease with increasing transistor sizes and then starts to 
increase. An optimal sizing factor that corresponds to the minimum power 
consumption can be found [8]. 

 

3.3.2 Switching Activity Reduction 
 
The dynamic power consumption of a circuit is strongly related to the 
switching activity of the circuit. The node switching activity in the circuit is 
predominantly determined by the architectural and register transfer level 
[14]. At the circuit level, one main consideration for low-power designs is 
the choice of the static or dynamic logic styles. The dynamic logic gates are 
clocked, and undergo the precharge and evaluation phases, which are 
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suitable for high-speed applications at the expense of high power dissipation 
[14]. Whereas the static CMOS is the best choice for low-power high-speed 
implementation of dedicated circuit applications like multipliers [14].  
 
The switching activity can be reduced by many means such as reordering 
input signals, no bus-sharing technique, and minimizing the glitching 
activity of the static circuits etc. 

Minimizing Glitching Activity 
 
Glitches, or dynamic hazards, are unwanted signal transitions which occur 
before the signal settles to its intended value. Glitches can be generated and 
propagated in both data path and control parts of the circuits. Figure 3.4 
illustrates the glitching behaviour for a 4-bit ripple carry adder which was 
implemented in static CMOS.  

 
 

Figure 3.4 Glitching behaviour for a 4-bit RCA 
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The simulation result from the circuit simulator (Spectre) was obtained 
under the following conditions. All input bits of Ai and Cin go up from zero 
to one, and all the input bits of Bi are set to zero. As shown in the figure, 
spurious transitions appear at the sum bits of Si due to the finite propagation 
delays of the intermediate carry signals. The spurious transitions consume 
extra power compared to the glitch-free scenarios. The number of spurious 
transitions in a circuit depends on the logic depth, input patterns, and 
intermediate carry signal states etc.  
 
In some arithmetic circuits such as adders and multipliers, the glitches may 
result in a large portion of the switching power dissipation.  For example, in 
a non-pipelined 16 by 16 bit array multiplier, 75% of the switching power 
consumption is due to glitches [15].  
 
The glitching activity in static circuit designs can be minimized by selecting 
structures with balanced signal paths and reduced logic depth. The tree 
structures can be applied to implement a circuit with both of the balanced 
signal paths and less logic depth, while the chain structures are quite the 
contrary. A good example in figure 3.5 illustrates the choice of the tree or 
chain structures. In the chained implementation shown in figure 3.5(a), the 
second adder computes twice and the third adder computes three times per 
cycle due to the finite propagation delay through the previous adders. By 
contrast, the logic depth in the tree case has been reduced from three to two 
and the signal paths are more balanced.  Thus, the switched capacitance 
(effective capacitance) for the chained case is a factor of 1.5 larger than in 
the tree [8]. 
          A            B 
                                                   A         B    C       D 
                                C 
                                 
                                       D 
                                      
 
 
                              S                                S 
 
                              (a)                             (b) 
 
                 Figure 3.5 Tree versus chain structures 
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Another possible approach to eliminate the spurious transitions is to use 
dynamic logic circuits instead of static logic, since any node in dynamic 
logic circuits can only undergo at most one transition per clock cycle. 
 

3.4 Summary 
 
This chapter briefly described some of the power reduction techniques that 
are related to the arithmetic circuit designs such as the adder and multiplier. 
In some arithmetic circuits, the major portion of the switching power 
consumption is due to glitches. The glitching activity can be minimized by 
selecting structures with balanced signal paths and reduced logic depth. 
Furthermore, both supply voltage scaling and reduction of effective 
capacitance are the important means to lower the power consumption. 
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Chapter 4      Multiplier Architecture 
 

 
 
To meet the various demands of multiplication-based arithmetic operations, 
many classes of multipliers such as bit-serial multipliers, digit-serial 
multipliers, and parallel multipliers have been developed. However, for 
high-speed applications, the parallel multiplier is one of the best solutions.  

 
In general, the architecture of a parallel multiplier consists of the following 
parts: partial product generator (PPG), partial product reduction tree 
(PPRT), and final addition. Each part can be implemented by using various 
architectural choices. Figure 4.1 shows the architecture of the parallel 
multiplier that has been widely applied for the large multiplier.    
                 

R e g is te r  ( m u lt ip l ie r ) R e g is te r  ( m u l t ip l ic a n d )

M o d if ie d  B o o th  E n c o d e r P a r t ia l  P r o d u c t  G e n e r a to r

W a lla c e  T r e e

V e c to r  M e r g in g  A d d e r

X Y

P r o d u c t  
                                                                  

Figure 4.1 Architecture of the parallel multiplier 
 

This architecture consists of modified Booth encoder, partial product 
generator, Wallace tree that is also called partial product reduction tree, and 
vector merging adder (VMA). 
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4.1 Modified Booth Encoder 
 
When calculating fixed-point two-operand multiplication, the modified 
Booth (MB) encoding is often employed to produce the partial products. 
Usually, this method is more suitable for input operands of equal to or 
greater than 16-bit. Using MB encoding to generate partial products, the 
hardware for this section can be divided into the following three 
components: modified Booth encoder, partial product and sign bit 
generators, each component performs different logic functions. 
 
Assuming the multiplier X has n bits wide and the multiplicand Y has m bits, 
for this case, n/2 or (n + 1)/2 three-input MB encoders are required. The n 
bit multiplier can be partitioned into overlapping groups of three bits in 
parallel. Each group acts as the input of one of the MB encoders. Each MB 
encoder generates several control signals to select one of the multiples of 
the multiplicand Y {0, ±Y, ±2Y}, the MB encoding scheme can reduce the 
number of partial product by 50% compared to the non-Booth encoding. 
The MB encoder can be implemented by using various fashions. A glitch-
free MB encoder [16] at gate level is shown in Figure 4.2a. 
 

            

X 2i+1

X 2i

X 2i-1

N EG

Z P

X 1
X 2P

X 1

X j

X j-1

N E G ZP X 2P

PP j

(a) (b)  
          
     Figure 4.2: a) Glitch-free MB encoder, b) Partial product generator 
 
The partial product generation circuit by using MB encoding is composed of 
complex gates, as shown in Figure 4.2b [16]. Moreover, corresponding to 
the operations of the negative partial products { YY 2,1 −− }, one generator 
should be implemented. The one generator can be controlled by the adjacent 
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three bits of the multiplier, the circuit at gate level and the truth table are 
illustrated in Figure 4.3. 
 
 
               X2i-1 
               X2i                                                          C 
               X2i+1
 
 
 
 
 
                                 (a)                                                  (b) 
 
          Figure 4.3: a) One generator, b) Truth table of the one generator 
 
The sign bits of the partial products can be obtained by using sign extension 
or sign generate methods. A 1616×  bit multiplier by using MB encoding 
scheme and sign generate is illustrated in Figure 4.4. 
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Figure 4.4 1616×  bit modified Booth encoding 
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4.2 Partial Product Generator 
 
The partial products in a parallel multiplier can be generated using several 
encoding methods, such as non-Booth encoding, modified Booth encoding 
(Radix 4), higher radix Booth encoding (Radix 8), and smaller multipliers 
methods etc. A glitch-free partial product generator with modified Booth 
encoding at the gate level is shown in figure 4.2(b).  
 
Actually, the partial products can be generated in two stages. During first 
stage, the modified Booth encoders generate the Booth codes for encoding 
the multiplicand into partial products. After that, the partial product 
generators read in Booth code signals and encode multiplicand producing 
the partial products. 
 

4.3 Wallace Tree 
 
The Wallace tree was proposed by C. S. Wallace in 1964 [17]. This method 
can be used to sum up all the bits of the partial product in each column. The 
summation is independent and simultaneous due to each modified Booth 
encoder works in parallel. It results in all bits of partial products arrive at the 
adder tree at the same time. Thus, the Wallace tree structure increases the 
speed of the multiplication by introducing parallelism.  
 
The Wallace tree was first constructed by using 3-2 counters (carry save 
adders). A 3-2 counter is also called a 3-2 compressor, which has three 
inputs and two outputs. This counter has a maximum of two XOR delays. 
The Wallace tree uses 3-2 counters to sum up all the partial products with 
the same weight, and produce two bits, one is the carry bit with the weight 
of n + 1 and the other is the sum bit with the weight of n.  
 
In order to sum up N partial products to two bits, this operation requires 
about  log3/2(N/2)  levels of the 3-2 counters [31]. For example, if the 
maximal number of the partial product in a column is 7 bits, three levels are 
required, yielding the Wallace tree with 3-2 counters in Figure 4.5.  
 
The Wallace tree with 3-2 counters is irregular in structure and is difficult to 
layout due to the irregular interconnections. 
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3 -2  C o u n te r

C o u t1

C o u t2

C a rry S u m  
 
                      Figure 4.5 Wallace tree with 3-2 counters 
 

4.4 4-2 Compressors 
 
A more regular partial product reduction tree based on a binary tree can be 
obtained with 4-2 compressors. 4-2 compressors can be used to reduce the 
number of partial products by one half. This method was first proposed by 
A. Weinberger, and improved by V. G. Oklobdzija and D. Villeger [18]. A 
4-2 compressor can be built by using two 3-2 counters (full adder based) in 
cascade, as described in Figure 4.6. 
 

 A       B      C in

C o            S

C o u t

 A       B      C in

C o           S

C a r r y S u m

C in

A B C D

 
    

Figure 4.6  4-2 compressor built with two 3-2 counters 
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As described in Fig. 4.6, a 4-2 compressor has five inputs and three outputs. 
The five inputs and sum output have the same weight, whereas the outputs 
of Cout and Carry have one greater binary bit weight. In addition, the output 
of the Cout does not have to be a function of the Cin input, so that the carry 
propagation is avoided. By this implementation, the sum, intermediate carry 
and carry output signals can be expressed with 
 
                [ ][ ] CinDCBASum ⊕⊕⊕⊕= )(       
        
                CBCABACout ⋅+⋅+⋅=  
  
                [ ] CinDCinDCBACarry ⋅++⋅⊕⊕= )()(  
  
The 4-2 compressor was constructed as described above and denoted the 
conventional approach. It has a critical path which contains a maximum of 
four XOR delays [19]. But this 4-2 compressor has more regular structure 
and suitable to layout than the 3-2 compressors. The truth table of the 4-2 
compressor is shown in Table 4.1. 
 
                       Table 4.1 Truth table of the 4-2 compressor 

              Cin = 0              Cin = 1    
  A 

 
    B 

 
   C 

 
   D Cout Carry Sum Cout Carry Sum 

   0         0    0    0    0      0    0     0     0     1 
   0      0    0     1    0     0    1     0            1    0 
   0     0    1    0    0     0    1     0     1    0 
   0     0    1    1    0     1     0     0     1    1 
   0     1    0    0    0      0    1     0     1    0 
   0     1    0    1    0     1    0     0     1    1 
   0     1    1    0    1     0    0    1     0    1 
   0     1    1    1    1     0    1    1     1    0 
   1     0    0    0    0     0    1    0     1    0 
   1     0    0    1    0     1    0    0     1    1 
   1     0    1    0    1     0    0    1     0    1 
   1     0    1    1    1     0    1    1     1    0 
   1     1    0    0    1     0    0    1     0    1 
   1     1    0    1    1     0    1    1     1    0 
   1     1    1    0    1     0    1    1     1    0 
   1     1    1    1    1     1    0    1     1    1 

               
An improved approach to build a 4-2 compressor by using pass-transistor 
multiplexer [20] is shown in Figure 4.7. This structure of the 4-2 
compressors includes a critical path with the maximal delay of three XORs. 
Thus, it has higher performance than that of the full adder based design.     
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X O R

X O R

X O R

X O R

M U X

M U X

A B C D

C o u t

C in

S u m C a r r y  
 

Figure 4.7 An improved structure of the 4-2 compressor 
 
A 4-2 compressor can further reduce the logic depth. For N partial products 
with the same weight, the summation tree built with 4-2 compressors has 
about log 2N levels. 
 

4.5 Vector Merging Adders 
 
The final unit in a parallel multiplier is a fast adder, which performs fast 
addition for the sum and carry bit vectors from the outputs of the PPRT. 
There are many different fast adders that suit parallel multipliers, such as 
carry look ahead, carry skip adder and carry select adder etc. In the 
following section, the carry look ahead adder and carry skip adder as well as 
the combination of them will be introduced. 
 

4.5.1 Carry Look Ahead Adder 
 
Carry Look Ahead (CLA) can produce carries faster due to the carry bits 
generated in parallel whenever inputs change. This technique uses carry 
bypass logic to speed up the carry propagation. In order to explain carry 
look ahead, two important signals, traditionally called carry generate (Gi) 
and carry propagate (Pi), are defined as follows. 
 
                        iii BAG ⋅=  
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                     iii BAP ⊕=  
 
The concept of the carry generation and propagation can be explained as 
follow. For a given stage, a carry signal is generated if Gi is true, and it 
propagates an input carry to its output if Pi is true. 
 
The carry output signal can be derived from the carry generate, carry 
propagate and the carry-in signals, as expressed by 
 
                       iiii CPGC ⋅+=+1  
To avoid carry ripple, the carry output Ci+1 should be expressed by using the 
Ci for each stage. 
 
Let us use this technique for the carries of a 4-bit CLA adder 
 
           0001 CPGC ⋅+=  
 
           )( 000112 CPGPGC ⋅+⋅+=  
 
           00120121223 CPPPGPPGPGC ⋅⋅⋅+⋅⋅+⋅+=
 
           0012301231232334 CPPPPGPPPGPPGPGC ⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅+=
    
The each above equation, there is a corresponding multi-input circuit. 
Figure 4.8 shows the block diagram of the 4-bit CLA adder.  
 
From the figure, the CLA circuit generates the carry signals C1, C2, C3, and 
C4 by using the carry-in C0 simultaneously.  The adder circuits generate the 
sums, which is expressed by 
 
                             iiii BACS ⊕+= −1  
 
                                 ii PC += −1

 
In general, 4-bit look ahead block is used to implement an n-bit CLA adder 
with a single level. To go faster, an n-bit CLA adder can be implemented at 
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a high level. The number of look ahead levels is  log r n , where r is the 
maximum number of inputs per gate.  
 
                A3  B3            A2 B2             A1  B1             A0 B0  C0 
 
 
 
 
                   Adder               Adder              Adder             Adder 
 
 
             G3  P3    S3     G2  P2   S2      G1  P1    S1    G0  P0   S0 
 
                                                   CLA circuit 
 
                   C4                C3                      C2                    C1 
 
  
                        Figure 4.8 Block diagram of the 4-bit CLA adder 
 
The delay of the CLA adder increases as the logarithm of the word size, 
whereas the delay of the ripple carry adder increases linearly with the word 
size. Thus, the addition performed by a multi-level CLA for a large word 
size is much faster than a ripple carry adder. For example, when we 
compare the number of gate delays for the critical path of two 16-bit adders, 
one using ripple carry and the other using two-level carry look ahead. As a 
result, for the 16-bit addition, carry look ahead adder is six times faster than 
ripple carry [2]. On the other hand, due to high complexity of carry look 
ahead circuit, it consumes more power than ripple carry adder. 
 

4.5.2 Carry Skip Adder 
 
The carry skip adder is also called a carry bypass adder. In general, a carry 
skip adder should be built using n-bit ripple-carry adders as basic blocks and 
multiplexers. Figure 4.9 shows that the block diagram of a 16-bit carry skip 
adder. Each basic group can be constructed using 4-bit ripple-carry adder. 
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Each group also generates a group propagate signal  which is used as the 
select signals.  can be defined as 

iP

iP
 
  321 +++ ⋅⋅⋅= jjjji ppppP      ( ;2,1=i   j = 0,1,2,…. 15 ) 
 
If  = 1, the carry out signal  from the first 4-bit RCA will propagate 
to the incoming carry of the next 4-bit RCA. In this way, it is possible to 
bypass the carry out  to the carry in of the third or fourth 4-bit RCA. 
While  = 0, the whole carry skip adder becomes a ripple carry adder. 

1P 0outC

0outC

iP
 

4-bit RCA4-bit RCA4-bit RCA4-bit RCA
Cin

S3  S2  S1  S0
S7 … S4S11 …S8S15 S14 S13 S12

P11…P8 P7…P4

a15…a12

0

1

0

1

a11…a8 a7…a4 a3…a0b15…b12 b11…b8 b7…b4 b3…b0

C16 Cout2 Cout1

Cout0

 
                 

Figure 4-9 Block diagram of a 16-bit carry skip adder 
 
The total propagate delay is linear in the number of bits N. Figure 4.10 
shows the relationship of the propagate delay between carry skip and ripple 
carry adders [9]. As can be seen in the figure, for a larger adder the carry 
skip adder is quite faster than a ripple carry adder, while for a smaller adder 
the ripple carry adder should be chosen. The crossover point depends on the 
technology, it is normally between 4 and 8 bits.                    
                                                                        Ripple carry adder               pt
 
 
                                                                              Carry skip adder 
 
 
                                                                                  N 
                                  4…8 

Figure 4.10 Propagation delay of the RCA versus CSKA 
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4.5.3 Carry Look ahead with Bypass Adder 
 
The carry look ahead with bypass adder has the advantages of both carry 
look ahead and carry skip adders. The block diagram of a 16-bit carry look 
ahead with bypass adder is shown in figure 4.11. In this case, the bypass 
circuit can be implemented by using multiplexer which can be inserted 
between each CLA adder. The carry bypass signals  is the function of 
the propagate signal, , for each CLA. If a 4-bit carry look ahead adder 
used as a basic block constructs the 16-bit, the can be defined as 

iBP

jP

iBP
 
     = iBP 321 +++ ⋅⋅⋅ jjjj pppp      ( ;3,2,1=i   j = 0,1,2,…. 15 ) 
 
The critical path for the CLA with bypass adder could be the first CLA 
block, three multiplexers and the final CLA block. This method is more 
suitable for larger adders. 
 

4-bit CLA4-bit CLA4-bit CLA

S7 … S4S11 …S8

P11…P8 P7…P4

a15…a12

0

1

0

1

a11…a8 a7…a4b15…b12 b11…b8 b7…b4

C16 Cout2 Cout1 4-bit CLA

S3 … S0

0

1

a3…a0 b3…b0

Cout0
Cin

P3…P0

S15 S14 S13 S12

 
Figure 4-11 Block diagram of a 16-bit CLA with bypass adder 

4.6 Partial Product Reduction Tree Topologies 
 
After the partial products are generated, the partial product matrix must be 
summed up in each column to obtain the final product. To solve this 
problem, several techniques have been proposed such as the Wallace tree, 
Carry-save tree, and the Wallace tree based on 4-2 compressors. These 
approaches are generally called partial product reduction tree (PPRT) [21] 
or partial product compression tree (PPCT). The PPRT performs the multi-
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operand addition for all the generated partial products and produces the two 
vectors, the carry and sum.  
 
The summation in the PPRT usually adopts counters and compressors. The 
counters and compressors can be connected in several different ways. This 
is a major consideration in the design of parallel multiplier due to different 
interconnection among these components, leading to different critical path 
delay. A special terminology, which is called multiplier topology, has been 
used to describe how to configure the PPRT. That is, the multiplier topology 
refers to the way of interconnection among bit positions in PPRT.  
 
The multiplier topology has two important points to keep in mind, one is the 
minimum number of wires needed to interconnect the counters or 
compressors, and the other is the number of counter or compressor delays. 
The topologies for configuring the PPRT can be roughly classified into 
regular and irregular structures.  
 

4.6.1 Regular Topologies 
 
Use of regular topology is a common method in custom digital circuit 
design, especially for the design of parallel multipliers. Regular topology 
takes into account a trade-off between performance optimisation and design 
effort. Regularity makes the generation of the structure possible to program. 
Regular topology can be realized in array and tree structures. 
    
4.6.1.1 Array Structures 
 
To introduce array structures in a PPRT, let us consider the multiple of two 
unsigned 4-bit binary numbers. If we apply manual computational method 
and directly map the operations into hardware, the resulting structure is 
called an array multiplier. In this case, there is a one-to-one correspondence 
between the partial products in the multiplier and the ones in the manual 
method. The adder tree with an array structure is shown in Figure 4.12.   
                                                                                                                   
The array topology in figure 4.12 is implemented as ripple carry structure. 
This array method is also called linear or simple array. There are more than 
two almost identical critical paths in this array.  
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H A F A F A H A

F AF A F A F A

F AF A F A F A

 
 

Figure 4.12 44× ripple carry array multiplier 
 
The optimization of the performance can only be achieved with careful 
transistor sizing, which is time-consuming. Another more efficient array 
structure can be obtained by using carry save adders. The PPRT without the 
final adder is presented in figure 4.13. 
 

H A H A H A

F A F A F A

F A F A F A

C S C S C S

C S C S C S

C S C S C S  
                     
           Figure 4.13 Rectangular floorplan of 44×  carry save multiplier  
 
In this way, the array just includes only one worst-case critical path. The 
number of counter delays is two full adder plus one half adder, while the 
number of wiring tracks per bit channel is 3. 
 
Obviously, the addition of partial products can be performed with (m, n) 
counters and 4-2 compressors in an array topology. For example, a 54×54-
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bit full parallel multiplier [22] adopted 4-2 compressors to construct the 
PPRT, as shown in Figure 4.14.  
 

Partial Products

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum
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X1    X2    X3    X4
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Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

X1    X2    X3    X4
Co                   Cin
4-2 Compressor
Cout        Sum

 
 

                     Figure 4.14 Array topology using 4-2 compressors 
 
For this special case, the 4-2 compressors in four levels are needed to add 27 
partial products. The compressors can sum up the partial products 
concurrently. Though the carry out Co signal is connected to next 4-2 
compressor’s carry-in signal, Cin, as can be seen in the figure, the Co is 
never produced by Cin. Moreover, the 4-2 compressors have 3 XOR gate 
propagations at the critical path, while two 3-2 counters in carry-save adder 
tree have 4 XOR gate propagations. Hence, the array topology used 4-2 
compressors can speed up the summing computation compared to an 
ordinary carry save array structure. 
 
In summary, the principle of array topology is to minimize the width of 
wiring channel per bit position at the expense of counter delays. 
Comparatively, array topologies have poor speed performance and power 
wastage due to spurious transitions. But this method has a regular structure 
and is easy to layout, therefore it still is a common approach to partial 
product reduction.     
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4.6.1.2 Tree Structures  
 
Trees, similar to the array mentioned above, are also constructed using 
counters and compressors, but the tree structure is substantially faster than 
the array topology due to the optimized depth at the expense of the width of 
a tree [31]. The width of a tree also refers to the number of wires per bit 
position in the tree.  
 
Trees are either regular ones or irregular. The width of regular tree is a 
known function of the number of partial products, while the width of 
irregular tree is determined by design layout. The regular trees contain 
binary tree, balanced-delay tree, and overturned staircase tree etc. In this 
section, a brief overview of the binary and balanced-delay trees will be 
given.  
 
Binary Tree 
 
The binary tree [23] has a regular structure. This tree is implemented using 
4-2 compressors. 4-2 compressors are also called (5,3) counters due to the 
components with 5 inputs and 3 outputs. The 4-2 compressors can be 
combined using two (3,2) counters serially or implemented using the 
method shown in figure 4.7.  The latter has three XORs delay in the critical 
path, whereas the former with four XORs delay.  
 
The binary tree topology with 4-2 compressors is similar to the complete 
binary tree with n nodes. When the n nodes in the complete binary tree are 
replaced using 4-2 compressors, the resulting structure becomes the binary 
tree topology that can reduce n partial products to two bits. The bit slice of a 
16-bit binary tree is shown in figure 4.15 [31] on the next page. 
 
The 4-2 compressors can reduce the partial products in the 2-to-1 
compression ratios. Therefore, to reduce n partial products to two, the 
log2(n/2)  levels of  4-2 compressors are needed [32]. 
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4-2 Compressor

4-2 Compressor 4-2 Compressor

4-2 Compressor 4-2 Compressor 4-2 Compressor

4-2 Compressor

Partial Products

 
 

Figure 4.15 A binary tree topology with 4-2 compressors 
 
Balanced Delay Tree 
 
The balanced delay tree was proposed by D.Zuras and W.McAllister (ZM) 
[24] in 1986. This tree has regular tree structure. It can be recursively 
defined by a tree body and a chain. The tree body and chain consist of 3-2 
counters, the delay in each chain is the same as one of the tree. Figure 4.16 
illustrates a balanced delay tree [31], which reduces 18 partial products to 
two. As can be seen in the figure, the series 3-2 counters increase in the 
lateral direction as 1, 1, 3, 5,.. . The tree constructed in this way is called a 
balanced delay tree of type 1.  This tree can reduce the N partial products in 

)2( NO  3-2 counters levels [31]. 

4.6.2 Irregular Topologies 
 
The first tree for partial product reduction was the Wallace tree [17], which 
was an irregular tree originally built using 3-2 counters. This topology can 
speed up the multiplication time for large multipliers compared to the carry 
save structure. On the other hand, it is hard to design and layout due to the 
irregularity and complexity. Thus, the Wallace tree is only applied to the 
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designs whose performance is critical and design effort is of secondary 
consideration. 
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3-2 C ounter
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Figure 4.16 A balanced delay tree topology using 3-2 counters 
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4.7 Summary 
  
In this chapter, the most commonly used architecture for implementation of 
a parallel multiplier was presented, and the partial product reduction tree 
topologies were also described. The topologies can be divided into either 
regular or irregular. The regular topology can be realized in array and tree 
structures, which takes into account a trade-off between performance 
optimization and design effort. The irregular topology is applied to the 
designs whose performance is critical and the design effort is of secondary 
consideration. 
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Chapter 5     Implementation  
 
 
 
Various design and implementation techniques for parallel multipliers have 
been proposed. However, most of these techniques can only be applied for 
that of fixed word-length multipliers. This means that when the word-length 
of the multipliers or the process technology is changed, the whole circuits 
need to be redesigned. To solve this problem, this chapter describes the 
design procedure of the parallel multipliers with variable sizes through the 
implementation of an 1818× bit multiplier. This design consists of the logic, 
circuit and physical stages. The meet-in-the-middle design methodology 
will be used in this thesis. For this custom design, the speed, area and power 
trade-off of the multipliers should be taken into account. Furthermore, some 
choices for the design from the architecture to the circuit styles will be made 
later in the following sections. 

5.1 Architecture Selection 
 
Selecting the architecture is very important before starting the detailed 
design, since the performance such as speed, area, and power dissipation 
strongly depends on the architecture of the multiplier. The architecture 
should be low-power, high-performance, and easy to implement. The choice 
of the architecture should include the encoding scheme, sign extension 
method, partial product reduction structure and the final addition. The 
chosen architecture is shown in figure 4.1. 
             
For the selected architecture, the modified Booth encoding is used for this 
design due to MBE can reduce the number of the partial products by a factor 
of 50%, which results in a higher speed and a lower power dissipation than a 
non-Booth encoding scheme. Also, the glitch-free partial product generator 
is employed, whose gate-level circuit is shown in figure 4.2(b).  In addition, 
the Wallace tree with 4-2 compressors is applied to the partial product 
reduction tree. The tree structure in the static style can reduce the spurious 

45 



Chapter 5 

transitions as mentioned in section 3.3.2 and increase the speed of summing 
by means of increased parallelism as well as result in a much more regular 
structure. Furthermore, the carry look-ahead adders that uses block of 4 bits 
are made use of the final addition. These are the most common choice and 
more suitable for the cell-based design of the multiplier with different 
operand sizes.    

5.2 Design Methodology 
 
For a custom ASIC design, several design methodologies such as bottom-
up, top-down and meet-in-the-middle have been proposed. These methods 
can be applied to deal with the design complexities and reduce the design 
time. Which methodology to select depends on the system requirements, the 
complexity, the cost and the available time. In this thesis, the meet-in-the-
middle design method will be used to develop the module generator for 
parallel multipliers. By using this method, the logic and circuit designs 
could be started independently and simultaneously, but the results for the 
logic and circuit designs should be exactly same. The basic principle of this 
method is that the specification process is essentially a top-down method to 
validate the functional correctness, while the design of the building blocks 
for the circuits starts from the bottom level. Thus, the advantages of this 
methodology are that the library cells can be reused, and the circuit design 
phase can be shorted through using program creating the structural 
schematic. Because the cell-based design of a large parallel multiplier could 
include hundreds of building blocks and the interconnections among these 
blocks could be up to thousands. In such a case, the structural schematic of a 
manually generated multiplier is hard to ensure correctness for. 

5.3 Design Flow 
 
The previous section presents the architecture and the design methodology 
employed in the multiplier. In this section, the design flow used to realize 
the above architecture is presented, as shown in figure 5.1.  
 
The design process based on the design flow starts from the specification 
that defines the functionality and performance targets according to the 
user’s requirements. Based on the specification, the architecture, including 
the encoding scheme, the PPRT structure, and the vector merging adder 
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should be chosen. The modified Booth encoding method and its application 
in multiplier have been proved in [25, 30]. In general, the design is 
partitioned into more basic blocks so that each block can be reused and 
analysed individually. After this, each cell symbol is created in Cadence, 
however, the cell symbols at this moment are combined by using only 
empty rectangles with the input and output pin names, the circuit inside is 
going to be designed in circuit design stage. Also, the preliminary floorplan 
should be created through estimating the size and complexity of the each 
block. Based on the above design steps, the logic and circuit design can be 
started. When logic and circuit designs are complete, the physical design 
may begin. In the subsequent subsections, these three design stages will be 
presented in more detail. 
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Figure 5.1 Design flow 
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5.4 Logic Design 
 
As shown in figure 5.1, the logic design begins with creating the VHDL-
code for each basic block when the design partition is finished. For the logic 
design, there are several tasks to be performed, which will be described in 
the following sections.  
 

5.4.1 Cell Models 
 
Each cell model is created in VHDL, these functional models are then 
validated by using a corresponding testbench. The design environment is the 
Modelsim from Mentor Graphics for VHDL simulation, the text editor that 
used for VHDL editing, Vcom for VHDL compiling, and Vsim for VHDL 
simulation.  
 

5.4.2 Creating schematic generation files 
 
In order to create the structural schematic, three files used to define the 
necessary information need to be created by using a dedicated C program 
that is written in UNIX C.  
 
The first file named BKins.txt is used to define the cell names and instance 
names as well as their coordinates.  
 
The second file called BKpin.txt is created to describe the input/output pin 
definition and connection to the corresponding cells. This file includes the 
input/output pin names that will be connected to the bus, instance names and 
the pin names on the instance. The relationship among them is that the 
input/output pins from a bus connect to the pins on the instances. 
 
The third file called BKnet.txt defines the interconnections between 
different logic blocks. This file consists of instance names and their pin 
names. There are two instance names and two corresponding pin names on 
each row in this file, and the two pins are interconnected. 
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5.4.3 Gate-Level Schematic Generation 
 
When the three files are created and the cell models written in VHDL are 
validated, the gate-level schematic for the entire multiplier is ready to be 
generated by using another existing program that was written in the SKILL 
programmable language. This method has been proved to be feasible for 
generating some part of the multiplier. However, to create the entire 
schematic of the multiplier also needs manual intervention due to the 
complexity. Since this project includes a lot of design tasks, there was one 
part of the C program that was not completed during this thesis work. This 
means that the C program still needs to be modified in the future work. Of 
course, this schematic can also be generated manually. The schematic for 
the -bit parallel multiplier is shown in figure 5.2. 1818×

 
                  

Figure 5.2 Schematic for the 1818× -bit multiplier 
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5.4.4 Structural VHDL Generation 
 
Once the gate-level schematic of the whole multiplier is generated, the 
structural VHDL of the multiplier can be created using another existing 
program that was also written in SKILL. This structural VHDL-code 
describes the hierarchical design that reduces the size and complexity of the 
schematic. This structural VHDL-code for the 18x18-bit multiplier is more 
than 1400 lines, which would be very hard to generate manually. Moreover, 
this hierarchical structure includes 31 basic blocks whose VHDL code has 
been created manually and each cell has been validated through simulation 
using an individual test bench. 
 

5.4.5 Structural VHDL-Code Validation 
 
After the structural VHDL-code is automatically generated, the VHDL-code 
is validated using a test bench. The test bench has been created during this 
thesis work and works well. It can be reused after specifying the word 
length. A random test method has been used for this validation. 20000 test 
vectors have been generated randomly. These test vectors are used to drive 
the model under test and the responses have been compared to the expected 
responses that have been generated using the conventional multiplication 
method. 
 

5.5 Circuit Design 
 
When the functionality of the multiplier is validated through the structural 
VHDL simulation, the circuit design can be started. Actually, the circuit 
design can be also started together with the logic design if there are more 
designers. The circuit design of a multiplier can be accomplished manually 
or automatically, which one to be used depends on the required 
specification. In this thesis, the design for each building block at the low-
level is performed by the custom method. 
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5.5.1 Custom versus Automatic Designs 
 
There are two styles of circuit design at the low-level: custom and 
automatic. 
 
The automatic circuit design uses synthesis tools to select circuit topologies 
and gate sizes. It takes much less time than custom design in which both the 
schematic is drawn and the paths are optimised manually. On the other 
hand, the drawback is that the results in this way strongly depend on the 
synthesis tools, and it is usually restricted to a fixed library of static CMOS 
cells and generates slower circuits compared to the designs by a skilled 
engineer. 
 
The custom design gives the designers more flexibility to generate building 
blocks at transistor level or select the predefined cells from a given library. 
The design effort is to obtain the better performance. In a custom design, 
many design decisions such as logic styles and circuit topology choices 
should be made before starting the design. The custom design is a good 
method to understand the basic principle of the ASIC design. Therefore, the 
custom design approach is adopted in this thesis. 
 

5.5.2 Logic Style Considerations 
 
Implementation for the partitioned blocks at circuit level can be done in 
static logic or dynamic logic circuits. Both of them have advantages and 
disadvantages. The one to be used depends on the primary requirement such 
as ease of design, robustness, area, delay, or power consumption etc.  As 
opposed to dynamic logic gates, static logic gates have the advantages of 
being robust and they are more amenable to supply voltage scaling. Thus, 
for low-power design, the static approach is attractive for the 
implementation of the arithmetic circuits such as adders and multipliers. In 
this design, several static logic styles, e.g. static CMOS, transmission gate 
(TG), and complementary pass-transistor logic (CPL) are considered. 
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Static CMOS  
 
A static CMOS gate is composed of two complementary networks. One is 
the pull-up (PUN) and the other is the pull-down (PDN). The PUN consists 
of PMOS devices, whereas the PDN is constructed using NMOS transistors. 
This choice is due to the strong one generated by the PMOS and the strong 
zero produced by the NMOS. In steady state, one and only one of the 
networks turns on. This implies the output node is always a low-impedance 
node and hence there is no static power consumption. The static CMOS has 
high noise margins due to its  and  equal to  and GND, 
respectively. Its robustness against transistor sizing and voltage scaling 
allows the operation at low voltages. Therefore, it is the best choice for 
implementation of a low-power, low voltage combinational circuits due to 
its single-rail property that saves the routing resources, and its robustness 
which is an important issue in submicron VLSI design [14]. 

OHV OLV ddV

 
The partial product generator and one generator are implemented by using 
static CMOS gates. 
 
Transmission Gate 
 
The transmission gate (TG) based on pass-transistors is composed of an 
NMOS and a PMOS device in parallel. It acts as a bidirectional switch 
controlled by the gate signals that are a pair of complementary signals. The 
TG logic is one of the ratioless logic gates. Therefore, if the external load 
capacitance is not the dominating factor in the devices, the minimum 
transistor sizes should be used as mentioned in section 3.3.1, which results 
in less area and power dissipation. The TG is characterized by no threshold 
loss and an almost constant resistance (RC-equivalent network) that implies 
that long cascades of the TG should be avoided.  The drawback of this 
circuit is that the control signal and its complement have to be generated, 
and a static buffer at the output needs to be used to improve the switching 
speed for the gates with large load capacitance. 
 
The TG can be applied to efficiently build some complex gates such as 
XOR/XNOR, which is shown in figure 5.3. The implementation of such a 
gate requires a less number of transistors when compared to other logic 
styles implementing this gate. For instance, a new CMOS XOR circuit 
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based on pass-transistors uses only six transistors to produce both an XOR 
and its complementary XNOR functions with full voltage-swing and 
negligible static power dissipation [26], which is shown in figure 5.3(b). 
The conventional implementation of an XOR gate using CMOS would 
require about 12 transistors.  
 

•• • •• • •

•

•

A B A     B⊕

(a)      

••

•

• •

•

•

•

•

•
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A    B⊕

A     B⊕
(b)  

 
Figure 5.3 Pass-transistor XOR/XNOR circuits 

 
Since the logic functions for modified Booth encoder, and one-bit adders 
using propagate and carry in signals for CLA, are simple XOR and XNOR 
operations, it is an efficient method to implement these blocks with 
minimum area and power using TG.  
 
Complementary Pass-Transistor Logic 
 
The typical CPL gate is constructed by using two NMOS logic networks for 
dual-rail, two small pull-up PMOS transistors for swing restoration, and two 
output static CMOS inverters for the complementary output signals. A 
number of CPL gates, such as AND/NAND, OR/NOR, and XOR/XNOR, 
can be implemented using a small number of transistors, as shown in figure 
5.4 [9]. 
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Figure 5.4 Typical complementary pass-transistor logic gates 
 
The advantages of the CPL are the small input capacitance that results in 
lower power and faster operation, and the intermediate low-swing node 
which contributes to lowering the power dissipation as well as the fast 
differential stage due to the cross-coupled PMOS pull-up transistors. The 
differential characteristic means that complementary input and output 
signals are always available which eliminate the need for extra inverters. 
 
The drawbacks are a larger short-circuit current due to the differential stage 
which consumes extra power, and high wiring overhead due to the dual-rail 
signals. However, the CPL gates still are good choices for low-power high 
performance digital circuit applications [14] in the current process 
technology. 
 
The 4-2 compressors, full adders, half adders and increment adders in the 
partial product reduction tree are implemented by using CPL gates with the 
logic functions AND, OR, XOR and their inversions. 
 

5.5.3 Leaf Cell Design 
 
This section describes the design of the leaf cells for the multiplier. The 
design is done with bottom-up method. Each block is built based on the 
partition as described in section 5.3 and the chosen logic styles described in 
section 5.5.2.  
 
The design procedure for each cell includes the description, the design, the 
implementation, the layout and the simulation, and so forth.  
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The partitioned basic blocks for the multiplier contain the modified Booth 
encoder, one-generator, partial product generator, 4-2 compressor, full 
adder, half adder, increment adder, 3-bit and 4-bit carry look ahead adders 
etc. The design and implementation for each leaf cells will be presented in 
subsequent subsection. 
 

5.5.3.1 Design Environment 
 
The design and implementation for the multiplier will be performed using 
Cadence electronic design package. The process technology used is 0.18 µm 
CMOS that is a modern technology. This process has some special features, 
such as six metal layers available, thinner wire, minimum area requirement, 
smaller transistor length with minimal value of 0.18 µm and the minimum 
width with the value of 0.28 µm, and so on. 
 

5.5.3.2 Transistor Sizing Criteria  
    
To satisfy the performance constraints, the transistor sizing is very 
important for a custom design. This is a tedious and subtle process due to 
the choice of the transistor dimensions having a major impact on the area, 
performance, and power dissipation of a circuit. For this reason, some 
transistor sizing strategies have been proposed as shown in section 3.3.1. 
During the implementation of each cell, the transistor sizing, and the 
transistor resizing after the postlayout simulation, if necessary, can be 
accomplished according to the criteria below, if not otherwise specified. 
 

1. The minimum length with the value of 0.18 µm for both NMOS and 
PMOS is used. 

2. The rise and fall time of a gate is less than 1 ns. 
3. The width of NMOS is determined according to the load capacitance 

to be driven. Since the transistor size increases with the increase in 
the load driven by it for a given transition time at the output signal of 
a gate, the actual capacitance can only be back annotated after the 
layout. Therefore, the trial and error method is used. 

4. The ratio between NMOS and PMOS is taken by a factor of 2. 
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5. N cascaded transistors need N times of the width of the only one 
transistor. 

5.5.3.3 Layout Requirements 

When implementing a cell layout in Cadence, in addition to following the 
given design rules, several constraints also need to be specified as follows. 
 

1. To simplify the routing, all building blocks have to be adjusted to 
have the same height between Vdd and GND. 

2. The “align” layer should be used as a boundary for each layout 
block. The “align” rectangle is very suitable as a reference when 
aligning a number of blocks during the routing. 

3. The layout styles for each cell should be as similar as possible. 
4. The pin name for each cell should be defined by using the “dot” 

shape. 
 

5.5.3.4 Implementing the Modified Booth Encoder 
 
Description 
 
The modified Booth encoding (MBE) technique has been widely applied for 
partial product reduction in parallel multiplier implementations. The MBE 
using the Radix-4 encoding scheme can reduce the number of partial 
products by half. The MBE can also be defined and implemented in many 
ways.  
 
The conventional implementations for the MBE have a large fan out which 
results in a slow implementation and extra power consumption. Some 
techniques used to improve the MBE in both speed and power aspects have 
been proposed. One of them is a glitch-free MBE recoding scheme at gate 
level [27] which was implemented by using XOR/XNOR gates at transistor 
level [16]. It used a 6-transistor CMOS XOR circuit with complementary 
outputs. This MBE encoder works well in 0.35 µm process at a supply 
voltage of 3 V.  However, the same structure did not work in the same 
process at 1.5 V. For this reason, a new glitch-free MBE encoder based on 
the principle proposed in [27], which is also implemented by using TG XOR 
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structure, has been proposed in this thesis. This new MBE encoder works 
well in both 0.35 µm and 0.18 µm process at a supply voltage of 1.5 V and 
1.2 V, respectively.  The truth table for the new MBE encoder is the same as 
the one presented in [27], which is given in table 5.1. 
 
                Table 5.1 Truth table of the modified Booth encoder 

B2i+1 B2i   B2i−1
id  Inv_ 

COMP 
 
SHIFT 

Inv_ 
SHIFT 

 ZP ONE PPG  PPn 

0 0 0 0 0 1 0 1 0 0 1 
0 0 1 +1 0 0 1 1 0 A1 A1

0 1 0 +1 0 0 1 0 0 A1 A1

0 1 1 +2 0 1 0 0 0 A0 A0

1 0 0 −2 1 1 0 0 1 A0 A0

1 0 1 −1 1 0 1 0 1 A1 A1

1 1 0 −1 1 0 1 1 1 A1 A1

1 1 1 0 1 1 0 1 0 0 1 

 
From the table 5.1, the modified Booth encoder functions, inv_COMP, 
SHIFT, inv_SHIFT, ZP, ONE, PPG, and PPn, are derived as follow.  
 
           inv_COMP = B2i+1
           
           SHIFT = B2i ⊕  B2i −1 

 
           inv_SHIFT = SHIFT  
          
           ZP= B2i ⊕  B2i+1

         
           ONE = B2i+1·(B2i ·B2i −1) 
 
           PPG = SHIFT·(A1 ⊕ inv_COMP) · SHIFT·((A0 ⊕ inv_COMP)+ZP) 
 
            PPn = PPGN −1

 
where B2i+1, B2i , B2i −1 represent the adjacent 3 bits of the multiplier, B, and 
SHIFT denotes whether a shift is required, inv_COMP indicates whether the 
partial product is negative or positive, ONE is the correction constant 
required to generate a negative partial product, PPG is the partial product, 
PPn is the one’s complement of the sign,  is the recoding digit and Aid 1, A0 
indicate the adjacent 2 bits of the multiplicand. 
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This new MBE encoder can be used to achieve the possible equal path for 
all output signals, which also is very compact due to just two more 
transistors used compared to the implementation in [16].  
 
The Implementation 
 
The transistor level schematic for the MBE encoder, including the one-
generator, is shown in figure 5.5. 
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Figure 5.5 Schematic of the MBE encoder 
 

The Layout 
 
Figure 5.6 shows the layout for the MBE encoder and the one-generator 
with buffers. For the layout, two metal layers, mental1 and metal2, have 
been used for local interconnections in the cell. This block integrates 34 
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transistors which contains the MBE encoder, output buffers, input inverter 
and one-generator. It has the area of 222 µm2. 
 

 
Figure 5.6  Layout of the MBE encoder 

 
When the cell layout is created and has passed the DRC (design rule check) 
check, the extracted view has to be generated, which translates the layout 
into a netlist with the parasitics. Afterwards, the LVS (layout versus 
schematic) can be done. If no discrepancy could be found between the 
extracted netlist and the schematic netlist, the analog extracted view can be 
created, which is similar to the extracted view, however, it is more suitable 
for the simulation.  
 
The Simulation 
 
When the analog extracted view is produced, it is possible to start the 
simulation for the cell by using the simulation tool that is called “Affirma 
Analog Circuit Design Environment”. Before running the simulation, a 
cellview called configuration has to be built, which includes all the 
cellviews needed for creating the netlist. After this, the simulation with 
parasitics can be started.  
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The MBE encoder and one-generator were validated to be correct after 
many simulations. The resulting transistor sizes have been determined 
according to the simulation results and the transistor sizing criteria 
described in section 5.5.3.2, which is also shown in figure 5.5. Since this 
cell has been simulated together with the PP generator, their combined 
propagation delay and power dissipation will be given in the following 
subsection 5.5.3.6. 

 

5.5.3.5 Implementing One-Generator 
 
The one-generator is used to create a binary one during the operation of the 
MBE encoding. When the operation is –Y or –2Y, a binary one has to be 
added to the LSB of the partial product. The gate level schematic and the 
truth table have been described in figure 4.3. The transistor level schematic 
and the layout have been combined in the MBE encoder as shown in figure 
5.5 and 5.6. 
 

5.5.3.6 Implementing PP Generator 
 
Description 
 
A glitch-free partial product generator based on a glitch-free MBE encoder 
proposed in [27] can be used to reduce the energy dissipation by about 30% 
due to eliminating the spurious transitions. Such a structure has been 
implemented at transistor level by using 0.35 µm process at 3.3 V supply 
voltage [16]. This partial product generator consists of three stages, where 
the first stage is the XNOR operation, which was implemented using 
XOR/XNOR gates [26]. To make sure that this logic circuit is working 
correctly in the 0.18 µm process at a lower supply voltage of 1.2 V, another 
alternative using TG XNOR gates is employed to replace this stage, whose 
transistor level schematic is illustrated in figure 5.7 on the next page. 
 
The truth table has been given in table 5.1. In this table, PPG represents the 
partial product, and PPn stands for the generated sign bit.  
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Figure 5.7 Schematic of the partial product generator 
 
The Layout 
 
The layout of the partial product generator is illustrated in figure 5.8. For 
this block, the number of transistors, including the inverters, is 30, and the 
area is 210 µm2. 

 
                             
                               Figure 5.8 Layout of the partial product generator  
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The Simulation 
 
When the configuration view is available, the simulation of the extracted net 
list with parasitic capacitance can be done. The simulation results indicate 
that the logic function is correct. After simulating several times, the 
transistors have been sized as shown in figure 5.7. The maximum 
propagation delay and the average power dissipation, including the modified 
Booth encoder, for the input patterns of 111~000,, 12212 =−+ iii BBB  and 

 are 1.5 ns and 0.16 mW. ,11,1 =+ jj AA
 

5.5.3.7 Implementing Sign Generator 
 
Description 
 
Sign-extension is an important aspect to implement a high speed and low 
power parallel multiplier, since the sign extension has a direct impact on the 
power consumption and the performance for the multiplier. Several sign 
extension techniques have been proposed as discussed in section 2.6. In this 
thesis, the sign-generate scheme has been chosen for generating partial 
products. This scheme can not only simplify the sign bit implementation, 
but also reduce the power dissipation due to that the extra “one” can be 
merged into the adder tree by using an increment adder that will be 
described later in this chapter. 
 
The sign-generate scheme can be realized by using a block called sign 
generator. The truth table has been given in table 5.1. From the point of the 
simplification, this block can be implemented based on the partial product 
generator in which the signal  can be replaced by using  and adds an 
extra inverter at the output. In this way, the layout can almost reuse the 
layout of the partial product generator completely, and the block delay and 
power dissipation only have a slight increase due to the extra inverter. For 
this reason, this cell will not be presented in detail. 

1−iA iA
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5.5.3.8 Implementing Adder Cells 
 
Description 
 
The adder cells consist of a full adder, half adder and increment adder. They 
are used to construct the partial product reduction tree together with 4-2 
compressors that will be described later. These adders are implemented by 
using CPL. In general, a CPL gate is composed of an NMOS pass transistor 
logic network, a CMOS output inverter, two small pull-up PMOS transistor, 
and either single rail or dual rail inputs/outputs. 
 
When the inputs for the adder cells and compressors come from the partial 
product generators, the single rail for the adder cells or compressors in the 
first level of the PPRT has to be used. In the second and further levels, the 
dual rail for the adder cells or compressors should be used. On the other 
hand, when the outputs from adder cells and the compressors feed into the 
final adder, the single rail has to be used. 
 
The pull-up PMOS transistors are used for swing restoration, which can 
decrease the static power consumption. As long as the pull-up function can 
be realized, the width for the PMOS transistors can be taken to be as small 
as possible. 
 
The Notation 
 
The adder cells or compressors used for constructing the partial product 
reduction tree (PPRT) will be implemented by CPL. The differential 
characteristic of CPL leads to that the adder cells or compressors on the 
different positions in the PPRT could have different input and output styles 
(single rail or dual rail). For this reason, the adder cells and compressors are 
identified by defining a group of characters, such a special group of 
characters consists of the adder name, input and output styles which is used 
to specify whether single rail or dual rail is to be used. This group of 
characters is divided into three fields by the underscore “_”. These fields 
can be explained as follows. 
  

1. The first field represents the adder name that comprises one of the 
following three kinds of adders. 
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           FA: full adder, HA: half adder, and IA: increment adder. 
2. After an underscore, “_”, the second field tells that the inputs are 

either single rail or dual rail. “s” stands for single rail, while “d” 
refers to dual rail. 

3. There is another underscore, “_”, after the second field. The third 
field indicates that the outputs are either single rail or dual rail. 

   
For example: 
FA_sss_dd, represents a full adder with three single rail inputs and two dual 
rail outputs where one is sum and the other is carry out. 
 
The Logic Functions 
 
The logic functions and the corresponding truth tables for the adder cells are 
illustrated in figure 5.9. 
 
Full Adder A B C    S Cout 

0 0 0    0    0 
0 0 1    1    0 
0 1 0    1    0 
0 1 1    0    1 
1 0 0    1    0 
1 0 1    0    1 
1 1 0    0    1 
1 1 1    1    1 

        A    B     C 
                                   S = A  ⊕  B ⊕  C    
             FA   
                                   Cout = AB + AC + BC  
       
         Cout    S 
 
 Half Adder            
         A        B    
 
            HA                       S = A ⊕  B 
                                             
                                        Cout = AB   
        Cout    S 
 
 Increment Adder 
        A    B   1                    
                                        S= A ⊕  B 
               IA                              
                                        Cout = A+B      
       
       Cout     S 

A B    S Cout 
0 0    0    0 
0 1    1    0 
1 0    1    0 
1 1    0    1 

A B    S Cout 
0 0    1    0 
0 1    0    1 
1 0    0    1 
1 1    1    1 

 
Figure 5.9 Logic functions and truth tables for the adder cells 
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The Implementation 
 
The full adder, half adder and increment adder, have been implemented 
using CPL. Figure 5.10 shows the schematic of the full adder. 
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Figure 5.10 Schematic of the full adder 
 
Based on these three kinds of adders, more than thirty basic cells have been 
constructed in both circuit and layout levels, which are used for the partial 
product reduction tree as compressors. 
 
The Layout 
 
Figure 5.11 on the next page shows the layout for the full adder. The area 
and the number of transistors for the full adder, half adder and increment 
adder will be given in table 5.2. 
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Figure 5.11 Layout of the full adder 
 
The Simulation 
 
The simulations for the adder cells have been done individually. The block 
delay and the power dissipation for each cell are given in table 5.2.  
 
             Table 5.2 Features for the adder cells (at 1.2 V, 25.6 MHz) 

Cell 
Name 

No. of 
trans 

Area 
µm2

Worst case 
delay (ps) 

Average power 
Dissipation (µW) 

Input 
style 

Output 
style 

FA 38 219 796 37 sss dd 
HA 24 151 457 25 ss dd 
IA 24 148 512 34 ss dd 

 

5.5.3.9 Implementing 4-2 compressors 
 
The 4-2 compressors can be constructed by using two full adders that has 
been implemented according to the description above. The truth table and 
hierarchical schematic have been given in table 4.1 and figure 4.6. From the 
figure, the 4-2 compressors adds four partial products and a carry in signal, 
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and then generates a sum signal and two carry signals (Co and Cout), where 
the Co is independent of the input Cin.  In order to avoid using “zero” or 
“one” as the input for a 4-2 compressor, the second full adder in a 4-2 
compressor can be replaced by using a half adder or an increment adder. 
Therefore, the 4-2 compressors can be built using different cell 
combinations as shown below. 
 
 FA_FA:  two full adders used.  
 FA_HA: one full adder and one half adder used. 
 FA_IA: one full adder and one increment adder used. 
 IA_HA: one increment adder and one half adder used. 
 
The Notation 
 
Similarly, the 4-2 compressors can also be identified using the notation 
presented for the adders. The difference for the 4-2 compressors is that the 
group of the character has been divided into five fields, as explained as 
follows: 
 

1. The first field consists of two adder’s names, which are used to 
realize the compressors. There is an underscore, “_”, between the 
two adder’s names. 

2. The second and third fields are the same as that of the adder cells. 
3. The fourth field indicates that the intermediate carry out signal is 

either single rail or dual rail. 
4. The fifth field stands for that the carry in signal is either single rail 

or dual rail. 
   
For example: 
FA_IA_ddd_dd_d_d, specifies a 4-2 compressor combined with a full adder 
and an increment adder. Such a 4-2 compressor has three dual rail input 
signals and one hidden input of “one”, two dual rail outputs, one dual rail 
intermediate carry out signal, and one dual rail carry in signal. 
 
The Layout 
 
The layouts for the 4-2 compressors built with different adder cells have 
been done.  
The Simulation 
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The post layout simulations for the 4-2 compressors designed in this thesis 
work have also been done. Some transistors in the compressors have been 
resized according to the simulation results. The propagation delay and the 
power dissipation can be obtained through simulation. For instance, the cell, 
FA_FA_ssss_dd_d_d, has 1.6 ns maximum delay and consumes 0.075 mW 
average power. 
 

5.5.3.10 Implementing the Vector-Merging Adders 
 
The vector-merging adder, or final adder, can be implemented using carry 
skip or carry look-ahead adders. In this thesis work, the vector-merging 
adders with the word-length more than 6 bits are constructed by using 3-bit 
and 4-bit CLA adders.  
 
Figure 5.12 on the next page shows a 4-bit CMOS carry look-ahead 
generator circuit [9]. Such a circuit can simultaneously generate the carry 
signals due to that the generate signals  and the propagate signals  have 
been created in parallel. However, the drawback of this carry look-ahead 
circuit is that the delay for each bit will increase with increasing the number 
of bits. For this reason, another alternative has been proposed in this thesis, 
as can be seen in figure 5.13, where the difference is that the third and forth 
bit structures directly use the second carry out signal. In this way, the area 
of the circuits can be reduced substantially keeping the same speed. 
Moreover, the 4-bit carry look-ahead circuit becomes very simple and 
regular, which makes the layout easy.  And the proposed structure in this 
thesis can be used to construct the carry look-ahead circuit block with a bit 
number of greater than 4 bits. 

iG iP

 
The sum generator has been implemented by using transmission gates since 
the truth and complement of the propagate signal were available, as shown 
in figure 5.13. This proposed structure in the thesis is a good choice for the 
sum generator due to only four transistors are used.  
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Figure 5.12 Schematic diagram of a 4-bit look-ahead adder 
 

The Layout 
 
The circuit structure for the 3-bit CLA is similar to that of the 4-bit carry 
look-ahead adders. Thus, figure 5.14 only shows the layout of the 4-bit 
CLA. The area and the number of transistors for the 3-bit and 4-bit CLA 
adders will be given in table 5.3.  

 
Figure 5.14 Layout of the 4-bit CLA 
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The Simulation 
 
The simulations for the 3-bit and 4-bit CLA have been done. The delay and 
the power dissipation for both of cells under the worst case input pattern of 

and ,1,0 == ii BA 1=inC  are given in table 5.3. 
 
    Table 5.3 Features of the vector merging adders (at 1.2 V, 25.6 MHz) 

Cell Name No.of    
trans 

Area 
µm2

Worst case delay 
         (ps) 

Power Dissipation 
           (mW) 

3-bit CLA 82 650 818 0.13 
4-bit CLA  112 862 957 0.18 

 

5.5.4 Cell-Level Schematic 
 
The cell-level schematic for the 1818× -bit multiplier has been created. It 
looks like the gate-level schematic as shown in figure 5.2. However, the 
difference is that the cell level schematic has a hierarchical structure and the 
low level circuits have been available. Also, the functionality has been 
validated through the prelayout simulations. 

5.6 Routing 
 
When the cell-level schematic has been created and the layout for each leaf 
cell has been done, it is possible to start the routing that can be performed 
by using the automatic design tool called Cadence’s ICcraftman Routing 
Tool.  
 
The routing can be done according to the following steps. 
 

1. Set the rules filling out the layer form. 
2. Translate the design from the layout window to Virtuoso custom 

Router. 
3. Import cells to be needed for constructing the whole multiplier. This 

step can be done using programs. Firstly, one program used reads 
each cell schematic view in a file according to the cell’s instance 
names and coordinates. After this, another used C program sorts the 
file based on the magnitude of the coordinates for each instance. 
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Finally, another used SKILL program reads out each instance from 
the file and imports them to the router window. 

4. Determine the location of all the cells and assign the interconnect 
areas within the flexible block, so that the total area used can be 
minimized. 

5. Connect the power supply wires manually, metal2 may be used for 
GND, while metal3 for Vdd. 

6. Add I/O pins. This can be performed by using a program that picks 
the I/O pins from the schematic view and then adds them to the 
corresponding points in the router window. 

7. After design rule checking, if there is no design rule violations, the 
routing can automatically be performed using Cadence’s ICcraftmen 
Routing Tool. 

8. After the routing, the DRC check has to be done, and any design rule 
violations have to be fixed. 

9. After the routing is complete, the exact length and position of 
interconnects for each cell have been determined, and the parasitic 
capacitance and resistance related to each interconnect can be 
calculated. This is done through a process called extraction. 

10. Cadence provides two major design check functions, one is DRC, 
and the other is LVS. After the extraction, an electrical schematic is 
extracted from the physical layout. This schematic can be used to 
compare to the net list that has been generated from the cell-level 
schematic. Any discrepancy and design rule violation should be 
fixed.  

11. After doing LVS check, the analog extraction can be performed, 
which can be used for simulation. By this time, the routing for the 
entire multiplier has been finished. 

Following the above steps, the final layout of the 1818× bit multiplier can 
be obtained, as shown in figure 5.15. The active area is 85000 µm2. 
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Figure 5.15 Final layout of the 1818× bit multiplier 

5.7 Simulation Strategy 
 
After creating a configuration view, the full simulation of the multiplier has 
been tried. However, the full simulation for a complex circuit such as the 

-bit multiplier is not possible in Cadence. For this reason, the 
simplified simulation method proposed in [13] can be used to estimate the 
performance. The basic idea is to replace most of the cells by their 
equivalent input capacitance.  

1818×

 
Based on the above idea, we only analyse the critical path of the -bit 
multiplier, but we use the actual input capacitances that can be back 
annotated from the extracted view of the final layout. The critical path, 
corresponding to the seventeenth weight, is shown in figure 5.16.  

1818×

       
The cells on the critical path include the MBE encoder, PP generator, three 
levels of 4-2 compressors and six groups of the CLA adders from bit 14 to 
the position of bit 36. These cells can be divided into two sections, the first 
part consists of the MBE encoder, PP generator, three levels of 4-2 
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compressors, and the second part is the six groups of the CLA adders. The 
delay can be measured through the simulation with parasitics at 1.2 V. As a 
result, the former has a maximum delay of 13 ns, and the latter has the worst 
case delay of 4 ns.  Therefore, the total critical path delay is 17 ns. 
 
 
                        MBE                                     PPG            
 
 
                                                                               Weight 17 
                                                 PPRT 
 
 
 
                                              36-17 bit CLA            16-0 bit CLA             
                                         
                                                  Note: The solid line blocks show the critical path                    
 

Figure 5.16 Critical path for the 1818×  multiplier 
 

5.8 Summary 
 
In this chapter, the design of a module generator for low power parallel 
multipliers was described in detail and the implementation of an 18 by 18 
bit multiplier has also been performed successfully. 
 
This module generator can be used both to redesign an existing multiplier 
when the process needs to be changed from one to another and to redesign 
an existing multiplier when the word length needs to be changed.  Using this 
method for both cases, lots of design tasks could be saved.  
 
In the former case, the logic design, circuit drawings and their validation can 
be reused, and the routing could be simplified by using two programs for 
automatically importing all the cells and adding the pins. 
 
In the latter case, for the logic design, the existing cell’s VHDL descriptions 
and their test benches as well as the structural test bench of the entire 
multiplier can be reused. Moreover, the structural schematic of the 
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multiplier can be generated using a program with minimum manual 
intervention and the structural VHDL-code can also be created 
automatically using a program. The circuit design and the routing can be 
simplified as mentioned in the former case. 
 
For the 4-bit CLA design, two new structures have been proposed in this 
thesis. One is for the 1-bit adder and the other is used for the carry look 
ahead circuit, which have been described in details in subsection 5.5.3.10.      
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Chapter 6     Conclusion 
 
 
 
This chapter summarizes the results and gives the conclusions from the 
master thesis work. Also, some suggestions and the future possible 
improvements will be discussed. 

6.1 Conclusions 
 
The aim of this thesis is to design a module generator for the parallel 
multiplier and implement an 1818× bit multiplier in 0.18 µm CMOS process. 
The generator could be used to automatically create the gate-level schematic 
for a fixed point two’s complement number parallel multiplier. Based on the 
generated schematic, the entire multiplier can be implemented with small 
manual intervention. This feature can reduce the time of chip design and is  
suited the case when the operand sizes and the process technology need to 
be changed. 
 
To satisfy the demand on the changeable sizes, a number of basic library 
cells based on the different logic and circuit styles should be built. However, 
during this thesis work it is impossible to build so many basic cells. For 
implementing a larger multiplier, more basic library cells could need to be 
created.  
 
This thesis work is relevant to the software programming skills, arithmetic 
algorithms, logic styles, topologies and power reduction techniques etc. The 
logic family styles have a large effect on the performance of the multiplier. 
Therefore, it is important to understand their advantages and drawbacks at 
the beginning of the design. The algorithm selection for implementing a 
parallel multiplier is also important, the modified Booth algorithm is the 
best choice for the multiplier with more than 16 bit sizes.  
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Moreover, to implement a low power high performance multiplier, all the 
aspects in the multiplier have to be optimized. Such a thesis work can 
provide a better understand for multiplier algorithms, logic styles and ASIC 
design technologies. 
 
During this thesis the module generator (except one C program that still 
needs to be modified) has been developed and the method has been used to 
implement an 1818× bit multiplier successfully.  
 
The resulting 1818×  bit multiplier works correctly and the critical path 
delay satisfies the specification on the speed, but the full simulation for the 
whole multiplier was not performed due to Cadence inability to deal with 
such a complex circuit. For this reason, the total power consumption is not 
given.   
 

6.2 Comments on the Project 
 
The thesis project has been very challenging since it includes both hardware 
and software designs. Such a project would be too large to be finished under 
a required 20 weeks for one master student.  For the hardware design, there 
are lot of tasks to be done. For example, more than thirty cells in circuit and 
layout levels have been designed both in 0.35 µm and 0.18 µm process 
technologies, which took much time for the functional validation, transistor 
sizing, layout and post layout simulation. In addition, many design decisions 
had to be made, such as what encoding scheme should be chosen? What 
logic and circuit styles should be used for different cells? However, the 
software design was even more challenging due to the complexity and the 
requirements on both aspects of the programming skill background and the 
comprehensive principle of the parallel multipliers. Therefore, this project 
should preferably be taken by two master students, one is responsible for the 
hardware design and the other is in charge of the software design. 
 

6.3 Future Improvements 
 
Some considerations should be done to further improve the module 
generator of the multiplier in future work. 
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1. The full simulation for the entire multiplier should be done, if 

possible. 
 
2. The C program used to generate the gate-level schematic also needs 

to be modified for the section of the partial product reduction tree. 
 

3. The total power dissipation should be measured using NanoSim or 
similar tools. 
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