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ABSTRACT

This research is concerned with theoretical and methodological aspects of geographic information
transformation between different user contexts. In this dissertation I present theories and methodological
approaches that enable a context sensititve use and reuse of geographic data in geographic information
systems.

A primary motive for the reported research is that the patrons interested in answering environmental
questions have increased in number and been diversified during the last 10-15 years. The interest from
international, national and regional authorities together with multinational and national corporations embrace
a range of spatial and temporal scales from global to local, and  from many-year/-decade perspectives to real
time applications. These differences in spatial and temporal detail will be expressed as rather different
questions towards existing data. It is expected that geographic information systems will be able to integrate a
large number of diverse data to answer current and future geographic questions and support spatial decision
processes. However, there are still important deficiencies in contemporary theories and methods for
geographic information integration

Literature studies and preliminary experiments suggested that any transformation between different users’
contexts would change either the thematic, spatial or temporal detail, and the result would include some
amount of semantic uncertainty. Consequently, the reported experiments are separated into studies of change
in either spatial or thematic detail. The scope concerned with thematic detatil searched for approaches to
represent indiscernibility between categories, and the scope concerned with spatial detail studied semantic
effects caused by changing spatial granularity.

The findings make several contributions to the current knowledge about transforming geographic
information between users’ contexts. When changing the categorical resolution of a geographic dataset, it is
possible to represent cases of indiscernibility using novel methods of rough classification described in the
thesis. The use of rough classification methods together with manual landscape interpretations made it
possible to evaluate semantic uncertainty in geographic data. Such evaluations of spatially aggregated
geographic data sets show both predictable and non-predictable effects. and these effects may vary for
different environmental variables.

Development of methods that integrate crisp, fuzzy and rough data enables spatial decision support
systems to consider various aspects of semantic uncertainty. By explicitly representing crisp, fuzzy and rough
relations between datasets, a deeper semantic meaning is given to geographic databasses. The explicit
representation of semantic relations is called a Geographic Concept Topology and is held as a viable
tool for context transformation and full integration of geographic datasets.

Key words:Geographic information, geographic context, semantic models, conceptual models, interoperability,
uncertainty, scale, classification , rough sets, fuzzy sets, decision support, uncertainty
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FRAMEWORK AND OBJECTIVES

Our truth is the intersection of independent lies.
RICHARD LEVINS

Introduction

Current decision making with an expanding
amount of information to take into consideration
calls for an effective information service. The
development of computer technology has implied
considerable changes of work routines as well as
an improved efficiency in a number of sectors.
Computerized systems have the ability to handle
large sets of information, which could assist the
mental, human parts in completing the decision
process. Future systems for decision support are
expected to give quick overviews and extract
necessary information based on questions,
available facts and other considerations given.
This would give the opportunity to concentrate
the human resources on the overall visions and
decisions.

A computerized treatment of geographic
datasets is today made possible through
commercial Geographic Information System-
packages. The use of these software is however
hampered by lack of information on data quality,
the functions and processes included in the data
and relations between the data. Variations in
temporal and spatial scale are another major
bottleneck when trying to integrate different data
in a Geographic Information System.

One of the reasons why all these obstacles
emerge when using a Geographic Information
System is that the potential sources of information
are so diverse. Given a certain location we may
have to deal with material from a detailed level up
towards highly generalized levels of information,
each developed for a specific purpose and
assembled in different ways. The use of
Geographic Information System as a tool to
handle all this data has been suggested for some
time now.

The theoretical base for how to treat highly
diverse data properly in an integrated fashion has
not been developed as quickly as the technical
tools available. In geography there is no such
thing as a single representation of the world that
incorporates every possible viewpoint. This is of

fundamental importance and must be considered
when we organize spatial data for integrated use
in a Geographic Information System

From efforts to integrate geographic datasets
in analyses from local to global scales, in which
generalization constitutes one important process,
we may conclude that we still lack a firm
theoretical and methodological basis for this
process (Wilkinson, 1998; Devogele et al., 1998;
Thomlinson et al., 1998; Van Beurden and
Douven, 1999). Increasing amounts of available
data at increasingly better levels of detail give us
theoretically an almost infinite possibility to
choose at what spatial, temporal and thematic
resolution we perform geographic analysis. This
is a fairly recent turn into a data rich situation
where each implementation raises some important
questions.

The problem outlined above, indicates a
substantial gap between geography and
contemporary use of geographic information
systems. This is used as an outset for this thesis.

Framework

This thesis project was initiated through the
Swedish Centre for Geoinformatics as one of
seven research foci carried out as PhD-student
projects. The original title of this project was
"Knowledge based digitisation of thematic maps”.
This title wanted to emphasise that map reading is
an intellectual process and as such would require
a context-sensitive digitisation for further use as
information in a Geographic Information System.
The main goal of the project was formulated:
“…to find a model how to digitise map symbols
together with the mapping model so that the
context can be exploited in a GIS.” An alternative
interpretation of this goal is to look for an inverse
to the mapping process in order to achieve more
effective reuse of data in different situations.

As a PhD-student I was given relatively free
hands to interpret this project focus into a
research plan according to my own understanding
of the problem. Coming from six years of
professional practice within local and regional
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environmental planning and management, I
naturally projected the research question onto
these experiences. Together with my supervisor,
ass. Prof. Wolter Arnberg, I also developed
several contacts with other researchers and one of
the more imortant ones has been the involvement
in the “Sustainable Landscapes” project.

The Swedish research program Remote
Sensing for the Environment (RESE) has
highlighted the landscape perspective in the
project “Sustainable Landscapes”. In landscape
studies a major concern is to integrate variables
that depict structure and composition as well as
operative processes within the landscape. As such
the landscape as it is treated by the “Sustainable
Landscapes” project seemed to provide a suitable
testbed for the development of a conceptual
model for geographic information handling. This
dissertation may not show any concrete evidence
from this collaboration but many of the
discussions and work by other members within
this group have certainly influenced my work.

Scope

This research is concerned with theoretical and
methodological aspects of geographic information
transformation between different contexts. My
own academic and professional experience has
affected this scope in two important ways:
1. Examples and discussions are restricted to

certain parts of biology and earth sciences,
mainly within the realm of ecological
geography and landscape ecology.

2. The research questions are formulated from
an application oriented view, emanating
from my own experience of current practice
in regional and local environmental
management.

Thus, worked examples mainly concern
information with relevance to managerial issues
of nature conservation, such as the local
implementation of global conventions on for
example biodiversity (UNEP, 1992) and
sustainable development (WCED, 1987). Tests
uses information from vegetation maps, scalar,
ordinal and categorical variables interpreted from
maps and aerial images, and continuous data from
digital elevation models. Findings are expected to
be applicable to situations where any sort of
categorization is applied to geographic data.

Objectives

The main goal of this study is to enable a context
sensitive use and reuse of geographic data. In

other words to make it possible to organize
geographical information of different origin in
such a way that this information can be used at
other levels of scale and detail and in other
contexts than those used to assemble the
information. To reach this general goal it has been
broken down into a handful of objectives toward
which focused efforts have been directed:
• To review both theoretical and

methodological aspects of integrating
geographic data.

• To identify important deficiencies or gaps in
contemporary theories and/or methods for
geographic data integration.

• To identify approaches that consider
geographic context information.

• To suggest a feasible solution to support a
context sensitive use of existing geographic
data.

• To demonstrate an application of a context
sensitive integration of geographic data.

These objectives are to be interpreted within a
framework of computerized geographic analysis.
An important outset is the current ambition of
geographic information science that tries to
integrate geography, philosophy, physics and
mathematics with the realms of cognitive and
sociocultural sciences (Couclelis, 1999). Located
within an admittedly complex intersection of
separate sciences this work does not try to
develop the general theory of spatiotemporal
phenomena. I do however detail some important
means of improving methods for transfer of
geographic information between different user
contexts.

Approach and thesis structure

The dissertation is divided into several chapters
each addressing one or several of the research
objectives. The chapter organization intends to
lead the reader through a logical order of
argumentation and findings.

This first chapter provides an overall
introduction to the problem as well as the
background for the study. It also intends to define
the limits of the presented research and to give a
general overview of the thesis.

To address the main goal of this dissertation I
recognized early in my preliminary studies the
problems that multiple world views will impose
on any change of spatial or categorical detail or
any effort to translate information from one
context into another. These preliminaries are
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mainly articulated in chapter 2 and 3, which
describe some of the problems associated with a
computer-assisted analysis of geographic
information. Chapter 4 and 5 were also part of the
preliminary studies. The suite of chapters from 2
through 5 has been revised later on, and especially
chapters 2 and 3 have been continuously updated
during the entirety of this project.

Early in my work with this dissertation I also
had to formulate an experimental design that was
suitable for investigating transformation between
different user’s contexts. From the preliminary
studies it seemed reasonable to assume that any
such transformation would either change the
thematic, spatial or temporal detail. I
consequently decided to perform experiments on
data that could isolate effects caused by either
change in spatial or thematic detail. The limited
amount of previous research on temporal aspects
as well as the limitations in time for a dissertation
led to a very restricted treatment of this dimension
in my studies.

The continued preliminary work included data
assemblage and two case studies presented in
chapters 4 and 5. The findings from these studies
both confirmed that the general experimental
design gave interesting results and they also
called for a methodology to handle categorical
uncertainty. The continued studies therefore
followed two parallel trails. One concerned with
categorical detatil that searches for approaches to
represent indiscernibility between categories,
reported in chapter 6, and one concerned with
further studies of effects caused by changing
spatial detail, reported in chapter 7. Finally, in
chapter 8, I pull together the initial discussions
from chapters 2 and 3 with some of my
experimental results to demonstrate a combination
of map algebra with different extensions of set
theories to define semantically certain, graded and
indiscernible relations between geographic
concepts.

Expected scientific contribution

I hold the most important contribution of this
dissertation to be the Geographic Concept
Topology construction. This is theoretically
established in chapter 3 and demonstrated in
chapter 8. Although still unverified in a wider
setting, I claim that this structure enables an
explicit representation of semantic relations for
geographic concepts. In addition I propose that a
Geographic Concept Topology can be used as a

primary tool for a context sensitive transformation
of geographic information. The Geographic
Concept Topology acknowledges that different
spatial representations may be used in concert and
it is capable of handling important aspects of
semantic uncertainty simultaneously. Still, the
feasibility of the Geographic Concept Topology
framework remains to be tested in a wider
practical situation with large amounts of diverse,
real data.

Furthermore, the Geographic Concept
Topology serves as a first suggestion to formalize
the due process and boundary object ideas first
proposed by Star (1989) and introduced to the
wider geographic decision and planning
community by Harvey and Chrisman (1999).
These notions are fully explained in chapters 2
and 3 but the actual achievement is the connection
with the Geographic Concept Topology construct,
as a concrete example of the ideas of “due
process” and “boundary objects”.

Geographic information science has only
recently directed its interest towards the full suite
of uncertainty aspects possible in geographic
information. Among the least researched parts are
uncertainty related to poorly defined objects or
concepts, yet these are very common in the
geographic discipline (Fisher, 1999). I view the
research reported in chapters 6 and 8 as important
theoretical foundations for further development of
general considerations of imprecision in
geographic information.

These findings and the experimental design in
chapter 7 enabled the investigation of various
aspects of semantic accuracy in a geographic data
set. These aspects have only recently been
acknowledged and so far a very limited amount of
research on appropriate methods for measuring
semantic quality aspects of geographic data has
been conducted. In chapter 7 I describe a test
design that uses manual interpretations at
different resolutions. This design makes it
possible to detect generalization effects other than
purely statistical, and this has recently been
acknowledged to be a neglected and problematic
part of a quality report for geographic data
(Weibel and Dutton, 1999).
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ENVIRONMENTAL MANAGEMENT AND
INFORMATION SOURCES

Uncertainty sends the brave on the trail of discovery
and the coward on the route of the herd.

DARTWILL AQUILA, http://www.bentarz.se/me/dartwill.htm

An applied perspective

During the last 10 years or so the concept of
spatial decision support systems (SDSS) has
evolved to improve the performance of decision
makers and managers when they confront semi
structured spatial decision problems (Malczewski,
1999, p.277). Still the application of computerized
geographical analysis is to many people an
overwhelming task. Given a local authority, the
department responsible for natural conservation
may wish to use the information produced by
some other department. Or it may even want to
compare a new survey with an older one to
identify changes in the vegetation. Besides
problems of getting data to match into the
geographic information system currently used by
the department some profound questions will be
articulated sooner or later. At what scale can we
use this information? Do we need to perform
some kind of generalization on these data? And if
so, what generalization method should we use?
And how accurate is the result? Some of these
questions have been tackled to some extent but
sufficient knowledge is still lacking to be able to
recommend a standardized set of methods.
Notably the issue of reliability or quality has
received some well-deserved attention lately. One
requirement is of course to minimize the error in
the final output, but from an informational
viewpoint we also need to make sure that the
information is carried through the analysis
process without being distorted in terms of the
semantic content, the meaning of the data.

In the beginning of the work I came from an
applied environment. Following my
undergraduate education I was employed by the
Åland Landskapsstyrelse, office for regional
planning, to develop an environmental database
with geographic references. The database was
developed using the PC-network based Paradox

software with loose coupling to a custom graphics
software. The main issues were database design
and integration of information from separate
offices within the administration. This work gave
me a thorough introduction into the problems of
information sharing, database development,
geographic data types and programming of user
interfaces. Also the problems related to
homogenization and integration of data from
different users became evident to me.

Following this employment I held a substitute
position as ecologist within the municipal
administration of Järfälla, located just northwest
of Stockholm. My main duties were the
management of natural areas owned by the
municipality and the management of two larger
natural reserves. This also included management
of the forest resources within the natural areas. I
also had responsibility for nature conservation
issues within the local planning process. In this I
participated in the development of new
management plans for the nature reserves as well
as a municipality-wide water management plan.
Much work was performed using traditional
cartographic techniques and it included
development of new cartographic products as part
of geographic analyses and presentations.

The projects I have been involved in often
required the production of a map of some kind
depicting a situation of interest. One report
wanted to define and delineate ecologically
sensitive areas; another report included suggested
areas for water conservation and protection
purposes. Each report reflected a specific purpose
and a specific question.

The title of this PhD project was in the
beginning “knowledge based digitization of
geographical information”.  The idea was to see if
maps and other existing data could be digitized
into a computer using the knowledge of skilled
experts to enrich the database with some ‘extra’

Chapter
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information that made it possible to access these
data for other purposes, to answer new questions
than those used at the time of collecting this
information.

I started out to try to compare my own exam-
work from my undergraduate studies, a vegetation
map (Ahlqvist and Wiborn, 1992), with another
vegetation map collected over the same area 15
years earlier (Edberg, 1971). I found not only
geometrical deviations, but also a large difference
in classification systems, which specifically
caught my attention. Could these two maps ever
be used to answer the question if the vegetation
had changed during this period? This question
turned out to be a very researchable one, and the
work with this dissertation finally landed in a
study of translating the classification system of
the new map into the old map producing two
semantically similar maps (chapter 8). How
similar they are is still a question, but the general
idea to convert information from one context
background into another has wide applications.

This and the next chapter will outline some
general factors influencing the process of
transforming geographic phenomena, or things
“out there”, into computer representations. First
of all I will treat the issue of how models of the
real world may be constructed as a way to
describe and understand the world that surrounds
us. This review of previous research will almost
immediately acknowledge the second factor,
which is the importance of the user context or the
purpose behind the construction of a certain
model. The third factor, the mode of observation
acts as a kind of mediator between the other two.
The mode of observation articulates the
observational detail or granularity, which is
directly related to the detail of the knowledge, and
it also includes aspects of uncertainty in the
observation. This outline parallels work by
Couclelis (1996) who sketched a similar division
between factors that are in part responsible for
how we choose to create a computer
representation of a geographic entity. Toward the
end of chapter 3 the discussion has both
summarized previous research as well as the
findings in this dissertation. At that point the
requirements for a context sensitive
transformation of imprecise geographical data
have been articulated together with some
suggested solutions to these requirements. This is
then finally brought into the proposed
Geographical Concept Topology framework

capable of supporting a context sensitive use and
reuse of existing geographic data

Models of the real world

How to understand the real world has been an
issue ever since the development of life on earth
but from a shorter history-of-science perspective
it seems to be a matter of “faith”. When scientists
try to make models of the real world they have
different ‘models’ or perceptions of the real
world, different ‘world views’. At a very broad
level Johnston (1999) list three types of science
models, or “faiths” – empirical, hermeneutic and
critical – that may be separated into a multitude of
separate approaches with their own detailed
exemplars, paradigm instances of how science
should be done.

The simplified illustration in Figure 1 is an
attempt to illustrate the relation between the real
world, our perception of this as perceived reality,
and the specification that ultimately leads to a
data representation of the real world. From the
geographic literature it could be assumed that
‘perceived reality’ or ‘abstract view of the
universe’ (Salgé, 1995, David et al. 1996, Mark
and Frank, 1996) is formed through some kind of
understanding or modeling within the human
mind. Also, a separation can be distinguished
between a) a perceived reality which is inherently
virtual, represented by human knowledge
structures and b) a conceptual and logical
specification which can be used to collect data
into a database and which is somehow a subset of
the perceived reality. The perceived reality might
also be termed ‘world view’. Since certain parts
of every individual worldview are shared - both
cognitive and bodily - with other individuals,
some authors suggest that this overlap might be
synthesized into a ‘shared world’ (Gould, 1994).
This notion corresponds with the idea of
experiential realism discussed by Mark and Frank
(1996) that is based on a real world (shared
world) that people share mental experiences
within.

To start with the question of “what exists?”
there is a problematic and old philosophical
controversy between “plenum” and “atomic”
ontologies (Couclelis, 1992; Couclelis, 1999). Is
the world made up by discrete objects (atomic) or
is it a continuum of named attributes (plenum)?
Ontology is the branch of metaphysics that deals
with the nature of being. The term has during the
last five years or so been used in the geographic
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information science literature where its meaning
ranges from the metaphysical science of being, to
the more computer scientific view that ontology is
a formalization of how to represent objects and
concepts and their interrelations within an area of
interest. These different interpretations led Smith
(1998) to make a terminological distinction
between R-ontology (referent) and E-ontology
(epistemological). R-ontology refers to a theory
about how a given referent-domain is structured,
what sorts of entities it contains, relations and so
on. This relates mostly to the short introduction
above. E-ontology on the other hand is a theory
about how a given individual or group or
language or science conceptualizes a given
domain. It follows from that definition that there
are as many proper E-ontologies as there are
conceptualizations, and it is this type of ontology
that will be dealt with in this dissertation.

So, how does ontology take us any further?
The experiential or cognitive perspective
advocated by Mark and Frank (1996) suggests
that humans deal with categories in a way that
depart in a few fundamental ways from the
traditional set-theoretic view that until recently
has been the dominating idea for a formalized
treatment of geographic information. I have no
intention to go deeper into the philosophical or
psychological sciences and theories of knowledge
(epistemology). I will instead follow one of

Pawlak’s (1991) propositions and hold knowledge
as being deep seated in the abilities of human
beings and other species to classify anything;
(apparently) real things, states, processes,
moments of time and all other more or less
abstract concepts we can think of. By this
definition, knowledge is necessarily connected
with the classification patterns related to specific
parts of the real or abstract world and seen from
the opposite direction classification is one of the
fundamental tools of science (Mark, 1993).
Knowledge thus consists of a family of
classification patterns (conceptualizations or E-
ontologies) of a domain of interest, which provide
explicit facts about reality – together with a
reasoning capacity able to deliver implicit facts
derivable from explicit knowledge (Sowa, 1999).
By a classification or conceptualization I mean
any subdivision or partition of a real or abstract
world using concepts and it is assumed from here
on that classification is used to create categories
which are also assumed to be basic “building
blocks” of knowledge.

The terms ‘category’, ‘class’ and ‘concept’ are
held synonymous although the common use of
‘class’ within computer implementations make
this term ambiguous for this discussion and is the
reason for me to prefer ‘category’ or ‘concept’ in
this treatise. The term ‘entity’ refers to instances
of concepts in the real world and as a
consequence of Figure 1 that will be instances of
concepts in the perceived reality. The related term
‘object’ refer to the digital representation of the
entity and is therefore relevant to the specification
and data in Figure 1. Entities and objects may also
be termed grains and the term granularity is thus
related to the resolution of the information.
Unfortunately the term resolution is already
associated with specific meanings for both spatial
and temporal measurements (Veregin, 1999). I
prefer here to use granularity as a more generic
term in the sense that information contain grains
such as classes, pixels and time units, that are
limited in their spatial, temporal and categorical
extent. Thus the granularity imposes restrictions
on the possibilities to discern between
entity/object elements within a grain.

The full process of creating a model of reality
from the real world through human perception to
a computer representation will be readdressed at
the end of this chapter. For now it suffice to
conclude that real world perceptions are
inherently complex but seem to be possible to

 

’Real world’   

  

Perceived  
reality  

Specification  

Data   

Figure 1 The abstraction process from perception of
real world phenomena as entities in the perceived
reality through a specification to an object
representation in a database.
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divide into building blocks that we call categories.
Through E-ontology these categories may be
defined and given significance and hopefully
further organized in the framework of a
geographical decision support system. Dealing
with the where, when, and why of the real world,
geography has developed some workable theories
and methods to be able to conduct study and
analysis of real world phenomena. It is impossible
here to provide a full review of current methods
or theories. In the following section I will simply
elaborate on the notion of real world models in
geography and the traditional use of a
cartographic language to express geographical
knowledge.

Real world models and Geography

Models of the real world have within geography a
tradition of being space-time centered where
descriptions of space seem to have dominated
until work by Newton in the seventeenth century
made it possible to treat time in a similar manner
(Couclelis, 1999). The ‘object’ or  ‘plenum’ views
lead either to a world view focused on objects or
on fields (Couclelis, 1992) which in turn may
suggest a scale dependency of geographic space
into for example small scale and large scale space
(Mark and Frank, 1996). It is also commonly
noticed that a separation can be made between
true objects and humanly constructed objects, for
example fiat vs. bona-fide objects (Smith 1995),
non-geographic vs. geographic entities (Nunes,
1991). As a contrast one can also argue for a
psychological definition of space where scale is
defined not by the actual or apparent absolute size
but on the basis of the projective size of the space
in relation to the human body (Montello 1993). In
this case a room in a house and the surface of the
earth as seen from an airplane would belong to the
same psychological space domain as they can
both be apprehended from the same position. The
lack of consensus on this issue indicates that we
probably have to deal with some combination of
these notions (Peuquet, 1988). The plenum and
atomic (Couclelis, 1982) ‘space paradigms’ are
probably at work in parallel in our way to use our
own ‘external models’ of reality. The traditional
map actually supports some of these ideas as it
uses small-scale space to represent a large-scale
space, extending the well known Euclidean
geometry of everyday objects into a geographic

space of realms and regions (Montello 1993) and
geographic information systems have
theoretically the ability to incorporate both
plenum and atomic views represented as rasters
(fields) and vectors (objects) respectively.

Geographical information includes indiscreet
values, inaccurate attribute definitions as well as
variations in temporal and spatial scale.
Traditionally geography has been communicated
through maps but also through texts and images.
The latter becomes evident whenever visiting a
geography library where books constitute a
significant part of the information volume. During
the last few decades increased use and availability
of remotely sensed data has added a variety of
new information sources for geographic analyses,
for example aerial photographs, satellite images
and radar data. Despite the fact that remote
sensing devices provide an increasing amount of
geographic information, I still regard the map as
one of the most important sources of documented
spatial information. It is also a well-refined model
of communicating the atomic view of the real
world. In addition, the fact that maps in many
cases are the only available historical spatial
record, the set of existing maps is an invaluable
source for environmental information.
Considerable amounts of geographical data
collected in textual form with some sort of
geocoding inherent, together with numerous
inventories that have been carried out during the
past few decades also form an extensive source,
however mostly textual, for information on the
environment (Frank and Mark, 1991).

Communication through a ‘map-interface’,
which usually consists of a set of symbols, colors,
text, is adapted to and designed for human-to-
human communication. This communication
process includes at least two steps where human
interpretation is involved: first the real world is
interpreted by the cartographer who produces a
map using sets of well-known semantics and
abstractions, then the user reads the map and tries
to extract the necessary realism from the
abstractions in the map. The map metaphor has
been described and also further developed by
several authors, among which Christopher Board
and Arthur Robinson have made substantial
contributions (MacEachren, 1995).



Environmental management and information sources • 9

The form a representation of geographic
phenomena takes on a map or other display
cannot be divorced from its purpose and the
requirements of the society in which the visual
language gains currency (Gombricht, 1977). This
is essentially an expression of underlying faith,
the hermeneutic science metaphor (Johnston,
1999) or the socio-cultural perspective on time
and space (Couclelis, 1999). Still, we cannot

ignore the fact that each spatial entity has been
identified for a specific purpose and that the way
this entity is visually represented on the map can
be different according to the cultural preferences
of the cartographer or the intended audience.

The examples in Figure 2 show the same
geographic region as three different thematic
maps compiled at1:50 000 scale portray it, and
where some common features are shown.

Figure 2 Three different thematic maps covering the same area compiled in 1:50 000 scale. The legends cover some
common features among which the boulder concept is discussed in the text. (From Lind 1997)
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Although the maps have been compiled in the
same cultural setting and with mapmakers from
the natural science disciplines, the representation
of ‘boulder’ in Figure 2 within the mapped area
differs from 0 to 7 symbol instances. The symbols
should be interpreted as an indication of actual
place for the feature and to some extent the areal
coverage or frequency.

Some of the differences in Figure 2 might be
held as interpretation inaccuracy during map
compilation, but when we are given information
on the purpose of each map the differences
become understandable: For vegetation mapping
the presence of boulders can be a significant
character of the vegetation type and control the
variation of the vegetation within one given class
unit. The signs are to be taken as a secondary
label indicating the presence of boulders within
the area and the location should not be expected
to be of high spatial accuracy. To a
geomorphology map, boulders are of vital
importance to the interpretation of the landforms
and their genesis. In this map we can therefore
expect a higher amount of boulder signs and
relatively high spatial accuracy in their location.
The geology map finally does use boulder signs,
but we would expect them to appear only when
the boulders are used as an indicator of actual
bedrock.

So, we see that maps can serve a multitude of
purposes. Important for this work is that maps can
be considered as spatial representations of real
world features which can in turn stimulate other
spatial representations and all such
representations are acts of knowledge-
construction (MacEachren 1995). No matter how
far this process is driven, the geometric
representation of a feature on a map will always
be a generalized abstraction of its current form
and status (Livingstone and Raper 1994). The
map as a representational model to communicate
something of the nature of the real world is only
able to deliver a fraction of the total amount of
information present in the real world. So, we are
either forced, or we deliberately choose to use
different levels of detail in our representation of
the features of interest. The example in Figure 3
taken from Board (1967) illustrates how
representations of spatial features can be seen as
organized along a gradient from an infinite reality
to an ultimate ideal abstraction. It also indicates
that relative abstraction levels can be identified as
a function of two important components:

dimensional scale and degree of complexity.
Along this abstraction gradient we trade faithful
complexity with distorted understanding (Board
1967). It is apparent that by chosing a certain
level of abstraction a certain amount of detail gets
lost. Still manual map reading may gain some of
the lost detail through inference.

 Given some knowledge of the purpose of an
information collection, a knowledge based
reasoning on the information value of each map
element reveals more than can be read only be
coupling the map legend to a concept definition.
This is a kind of ‘back-tracking’ of the map-
making processes by using some knowledge
about the context in which the map features were
assembled. The meaning of ‘context’ may vary
among people but I intend to embrace a wide
meaning of the term and define geographic
context as the historical, social, physical, and
disciplinary domain where geographic
abstractions are formed. The geographic entities
we try to describe such as those mentioned in the
examples above own three special characteristics
responsible for the shortcomings of current
representational techniques according to Peuquet
et al. (1995).
• The data volume needed to adequately

represent geographic entities can be very
large.

• Spatial relationships between geographic
entities tend to be imprecise and application-
specific, and the number of possible spatial
interrelationships very large.

• The definitions of geographic objects
tend to be inexact and context-dependent.

As if the volumes of data and complex relations
were not enough, two of these three statements
include formulations such as ‘application-
specific’ and ‘context-dependent’, which
illustrates the complex nature of geographic
representations. In fact, that there can never be a
single uniform representation of the geographic
world is well known to geographers. The two
latter statements also talk about imprecise
relationships and inexact definitions, which will
be subject for further elaboration in following
sections about accuracy and knowledge
representation.

To summarize, communication of geography
through maps is traditionally a manual task that is
now turning increasingly automated and
information intensive. Nonetheless, any
qualitative or quantitative spatial analysis need to



Environmental management and information sources • 11

consider that every representation of geographical
features, be it on a map or in a digital database, is
an abstraction of the reality, and as such they have
been generalized for some specific purpose,
therefore depending on the geographic context.

Real world models and geographic
information systems

Apart from highlighting the context dependent
nature of all geographic information, the map
example in the previous section also shows how
the cartographic language has been used to exploit
the human ability to understand a situation by
simultaneously overview a large area and pick up
details. In Figure 2 a general pattern is given as
colored areas and important details are given as
symbols. Boulders would not really be visible in
the given scale, but by using symbols one can
indicate the presence and approximate location of
these phenomena. It also makes sense to the map-
reader, as it is possible to extrapolate cognitively
the ‘boulders’ from the given location of the
representation. This possibility of using a
combination of detail and generalizations is not
readily implemented in current geographic
information systems but it might be possible to
do, given that we can develop enhanced

possibilities to express geographical meaning for
entities in a geographical database.

In a geographic information system the
visualization and the storage of data are separate.
Possibilities to change scale by zooming in and
out, reclassify data, create great opportunities for
geographical analysis. In a geographic
information system we are theoretically not
constrained anymore by a paper map sheet with
finite size and depth. ‘The map’ may instead be
used as an abstract algebra paradigm (Tomlin,
1990) where the map elements are handled in a
GIS toolbox to perform spatial analysis. The map
itself will become a process as the on-screen map
will play a key role as an interface to data in
future GIS use (Kraak, 1995) GIS map-use is
therefore two-way oriented in a way that include a
large amount of user interaction with the data. In
the light of the previous discussion on map
communication and multiple world-views, the
user-producer dialogue in a GIS makes it even
more important that communication can be
carried out within the ‘shared world’ of the user
and the producer. On the downside, there is at
least one serious concern that must be dealt with.
There is no guarantee that the displayed
information will appear in the same way as in the

( Board C. 1967 )

Figure 3 The gradient between reality and abstraction indicating examples of types of maps at their appropriate level
of abstraction (after Board 1967)
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source material. The previous map example
illustrated that many map features have a
symbolic meaning, and these features have been
designed for use with other map features in the
scale and extent set by the paper map. This
suggests that a straightforward transfer, that is
digitization, of map features into digital format is
a difficult task. A further aggravation is that the
GIS user interface tends to mask the different
origins of data, thereby leaving the user unaware
of inherent limitations in the information. Even if
the user should be aware of this problem it is not
always possible to trace the origin and the
limitations of the data stored in a GIS database.
Nevertheless, digitized map data is widely used in
geographic information systems.

Any attempts to use GIS to integrate data from
environmental databases and to use models or
analytical tools upon data need a full
understanding of the origin and context of each
data set used. Thus taking data using several
different conceptualizations from different
contexts the GIS integration process relies upon a
transformation of this information into the desired
conceptualization and current context. The issue
of finding automated methods for that kind of GIS
integration has been the focus of much work.
Recently the above described integration process
has been put into a comprehensive framework of
interoperability of geographic information
systems (see for example collections edited by
Vckovski, 1998 and Goodchild et al. 1999).
Interoperability has earlier been understood as a
capability to transfer data from one computer
system to another. It is only recently, and at a
more general level, that the term has found its
way to the wider geographic information science
community. At the general levels of geographic
information systems and applications,
interoperability is concerned with the
establishment of a smooth interface between
multiple information sources (Harvey, 1999). At
the GIS level, problems of interoperability can be
created by different geometric syntactic
representations, difference in class hierarchies,
and different semantics (Bishr, 1998). Since
different applications have different worldviews
and semantics, interoperability at the application
level is essentially a semantic problem (Bishr et
al., 1999)

The discussion so far has elaborated on the
fact that geographical data is subjected to major
influences from various individual

conceptualizations of the same reality.
Furthermore I have argued that a geographic
information system theoretically has the ability to
do spatial analysis of integrated geographical
data. Still there are apparently some fundamental
aspects of context and semantics that need to be
resolved. I now intend to resume the initial
discussion on models of the real world in the
context of modeling a computer representation of
the real word and how the geographic context can
be represented in this model.

Existing models in use
The individual worldview and the shared world
concepts correspond to the external and
conceptual models in the ANSI-SPARC
definition, which has been used as a general
framework for designing geographic information
systems (Laurini and Thompson 1992, p.357). An
overview of this model framework is given in
Figure 4. The external models are defined by the
potential user and their purposes and needs, the
conceptual (or semantic) level is concerned with a
synthesis of all external models, the logical level
is a high-level description which is
mathematically based and computing oriented and
the internal level is concerned with the byte-level
data structure of the database (Laurini and
Thompson 1992, p.357f.)

Somewhere along this chain of model levels
the supposedly chaotic real world is somehow
systematized and made discrete for the purpose of
digital handling. Apparently this step will have to
be taken at a high level. The bridge between a
concept/semantic model and a logical model is
easier to create if a more formal mechanism is
used at the conceptual level rather than narrative
statements. However, the conceptual level will
still need to hold both the deeper semantic notions
of external models as well as synthesized
concepts, which easily translate into logical level
models. Clearly, the separation of models into a
few levels does not solve this problem, but a short
description from this more data modeling oriented
viewpoint seems appropriate. Also, by explicitly
identifying a semantic level in the data model
stresses the importance of the actual meaning of
data. I will return to this issue from many aspects
since it is central for this thesis.

Proposed semantic level models
Seen from a GIS integration viewpoint the focus
up until around 1995 was mainly on systems, data
and to some extent information (Sheth, 1999).
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Work on semantic or conceptual models for
geographic information focusing on information
and knowledge has received a significant amount
of attention only in the past five or six years
(Livingstone and Raper, 1994; Peuquet, 1994;
Ruas and Lagrange, 1995; David et al., 1996;
Usery, 1996). David et al. (1996) reported on
early work to develop conceptual models for
geometry within the European Committee on
standards (CEN/TC287) and suggested that the
main bottleneck in geographic information
handling is the understanding of the semantic
level and the way entity meaning affects the
modeling of entity interactions over varying
spatial and temporal scales.

Ruas and Lagrange (1995) outlined one
possible logical model connecting the semantic
models with the physical models. From their
perspective of generalization, this should be seen
as a process allowing us to perform a change in
the perception level of geographic data. They also
stated that the first generalization stage is the
transition from one initial data schema to one
corresponding at another level of perception.
According to this the actual generalization
decisions are made at the semantic level and
further operations need ‘only’ be carried out on a
rule base at the logical and physical levels. The
issue of generalization is readdressed in the
sections about spatial and categorical granularity
in chapter 3.

Another relatively early idea proposed by
Peuquet (1988; 1994) incorporates concepts from
perceptual psychology and advocate a “triad”
representation of spatiotemporal data in the later
publication. It builds on the idea that the three
“views”, time based, location based and object
based, all provide different aspects of the data and
thus each facilitates a specific kind of query. The
integration of these three views would enable for
example objects to be explained by the spatial
view and conversely spatial patterns to be
matched against object based knowledge. The
“triad”- view (Peuquet, 1994) is based on a dual
framework of object- location integration
(Peuquet, 1988) and the incorporation of time into
this framework is still under investigation
(Peuquet, 1999). This kind of simultaneous
representation of multiple views of the same fact
seem as a theoretically sound concept, and the
following few paragraphs will show that much
research verify the difficulty to find one common
level of understanding. Instead it seems as if a

description of common and diverging points of
reference are the most feasible way to give
geographic entities more meaningful
representations. In chapter 8 I argue that the
integration of fuzzy, rough and crisp
representations is a feasible implementation of the
dual framework proposed by Peuquet (1988).

Usery (1996a, b) developed a feature based
conceptual model along the same line of thought
as Peuquet. Using an entity based view of
geographic phenomena this model explicitly
represents spatial, temporal and thematic
attributes which can be directly accessed. A fuzzy
set implementation of geographic features is
proposed as a solution to capture some of the
ambiguity inherent in features based on human
perception and cognition (Usery, 1996b). The use
of fuzzy set representation is a notable exception
from the other proposed frameworks presented in
this short review. Although this model seems very
promising it remains to be tested. Also, to some
extent noted by Usery, the mechanism for
comparing multiple views of the same geographic
feature has not been identified.

Livingstone and Raper (1994) argued for a
semantic model where the entities should define

Exernal
model 1

External
model 2

External
model 3

’real world’

Conceptual
model

Logical
model

Internal
model

Figure 4 The four information modelling levels;
external, conceptual, logical and internal, according to
the ANSI-SPARC design methodology (After Laurini
and Thompson 1992)
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the space they occupy and also guide the
appropriate spatiotemporal representation. This
view follow that of Nunes (1991) who claimed
that the debate on concepts of space, shortly
referred to earlier, show that no further
specification of geographic space is possible
unless the geographic objects can be defined. A
semantic model theory developed form this
viewpoint needs to be defined at a higher level of
abstraction than the spatial and temporal models
used to represent the phenomenon (Livingstone
and Raper 1994). It has been argued that this
would provide the necessary link between a GIS
application, external process models and used
spatial databases, and that an object-oriented
approach using environmental metaclasses
provide the means to perform co-ordination
between different “world views” of the same “real
world” entity (Livingstone and Raper, 1994;
Raper and Livingstone, 1995). A metaclass is in
object oriented wording an assemblage of data
classes or model classes, it works independently
from the subordinate data or model classes, at the
logical model level, and it is concerned with the
behavior and relationships of the class categories
and available morphisms between the classes.
One main problem with this construct seems to be
that since a metaclass determine what objects it
will be possible to represent one need to explicitly
define at a metaclass level the attributes and
methods of all current and future objects.

Recent work by Bishr (1998) and Bishr et al.
(1999) have provided a useful formalized,
approach for semantic modeling. Bishr in his
thesis (1997) proposed a general framework for
semantic translators capable of mapping between
spatial database schemas while preserving their
semantics. The main tool to connect semantically
similar objects is in his framework based on
common ontologies, essentially a standardized
vocabulary for various domains of interest.
Gahegan (1999) basically propose the same idea
and both authors hold the use of interchange
format (the term proxy context in Bishr’s work)
as a mediator to transform data from one
information context to another. Gahegan also
conclude that such a framework including
categorization and transformation can achieve
communication of meaning. However, Kuhn
(1999), although involved in the work by Bishr et
al. (1999), points out that existing approaches to
semantic modeling such as semantic networks and
first order logic are too limited for a rich and deep

description of semantic meaning. That motivated
him to suggest a connection between semantic
nets and algebra that combines the best of these
two worlds, a direction proposed as early as 1984
by Andrew Frank (Kuhn, 1999). One of the main
achievements by this approach would be the
possibility to provide links between two different
semantic networks.

Semantic model integration
The original issue of modeling the real world has
now turned into an even more challenging one of
integrating different worldviews. In the above
discussion several ideas based upon definition of
common ontologies (Bishr et al., 1999; Gahegan,
1999) or metaclasses (Raper and Livingstone,
1995) were put forward. Such work will
ultimately become a matter of getting groups of
people together to negotiate their disagreements
and consequently the issue of real world
integration turns into what has been formalized as
part of the sociology of science theory as Group
or Organizational Decision Support Systems
(King and Star, 1990). Bishr et al. (1999) uses the
term “geospatial information community” to
mean a group of spatial data producers and users
who share an ontology of real-world phenomena.
However, King and Star (1990) takes a broader
stance, uses a social metaphor rather than a
psychological one, as in e.g. Smith and Mark
(1998), and address the entire decision making
process in which “due process” and the
construction of "boundary objects" is of particular
importance (Star, 1989). Due process can be
explained as groups and organizations constant
struggle to recognize, gather and weigh evidence
from heterogeneous conflicting sources (King and
Star, 1990). Boundary objects is a structure for
coordinating distributed work that not only
involves heterogeneous actors, elements, and
goals but also incorporates different research
methods, values, and languages. A boundary
object both supplies common points of reference
as well as differences to enhance participant
understanding of what world views other
participants hold, and why they hold them. This
theory has recently been brought into the
geographic information science by Harvey (1997)
and further discussed by Harvey and Chrisman
(1998), Chrisman (1999) and Harvey (1999). It
seems from their examples of wetlands mappings
in the United States and the ATKIS standard
database model in Germany that a definition of
common ontologies and schema integration can at
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best reach some kind of associations and partial
matching. Again this can hardly be represented by
approaches based on binary relations but it can be
constructively moved further if viewed from the
ideas of due process and boundary objects.
Vague, inconsistent, ambiguous and illogical
information open the domain for concept
negotiation, and there is enough proof that these
situations are successfully handled within for
example organizational decision processes (King
and Star, 1990). Several types of boundary objects
have been identified and King and Star (1990) list
four such types; repositories, ideal types,
coincident boundaries, and standardized forms.
Repositories are “piles” of objects that are
indexed in a standardized form such as a library
or a museum. Ideal type or platonic object may be
fairly vague but a good enough abstraction from
all included domains of participants such as an
atlas or a diagram. Coincident boundaries are
terrain objects that have the same boundaries but
different internal contents such as the delineation
of the counties within Sweden. The last type of
boundary objects, standardized forms or labels,
are methods of common communication such as
the standardized form used by the national forest
inventory described in chapter 4. It is argued that
boundary objects may serve as a mediator in
negotiations around which similarities and
differences can be articulated (King and Star,
1990; Harvey and Chrisman, 1998). If it turns out
possible to formalize the idea of boundary objects
into something that explicitly can represent
commonalities as well as differences this would
hopefully serve as a better means to represent
geographical meaning in a geographic
information system. A similar line of thought
although never formalized in this way was
proposed by Nyerges (1991a) for geographic data
integration based on concept meaning and the full
implication of these ideas will be more clear by
the end of the next chapter.

To summarize; a geographic information
model need to capture the vital components of
geographic information. A host of authors
conform in the outline of which the basic
characteristics are that makes up geographic
information. (Sinton, 1975; Peuquet 1994,
Albrecht 1996, Gahegan, 1999) For example
Albrecht (1996) state that in order to fully
characterize geographic information it is
necessary to simultaneously capture the basic
spatiotemporal, thematic and topological aspects

of the geographic entities and phenomena. Time,
space (3D), theme, and their inter-
/intraconnections thus can be viewed as a basic
set of rather abstract properties that need to be
described. How these characteristics should be
modeled have been the focus for much research
and development and it is only lately with
increased demand for interoperability and data
integration that the issue of meaning of the entity
itself has gained focus.

Thus, in the next chapter I will start by
examining the space, theme and time components
separately. First of all though, I address in general
the quality question, which in any use of data is
an important concern. Quality issues include
aspects of detail and accuracy and these have also
become central in my thesis.
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DETAIL IN GEOGRAPHIC INFORMATION
MODELS

Human knowledge is a process of approximation. In the focus of experience,
there is comparative clarity. But the discrimination of this clarity leads into

the penumbral background. There are always questions left over.
The problem is to discriminate exactly what we know vaguely.

ALFRED NORTH WHITEHEAD, Essays in Science and Philosophy

In the previous chapter I concluded that aspects of
time, space (3D), theme, and their inter-
/intraconnections can be viewed as a basic set of
rather abstract properties that need to be described
to fully characterize geographic information. As a
first step in the experimental design I decided to
investigate these aspects separately in order to
isolate and identify important deficiencies or gaps
in theory and/or methods for geographic data
integration. This chapter will treat the issue of
detail and changing detail in space and theme.

As a preliminary I will go through some
definitions pertaining to quality assessment and
discuss their relevance to this dissertation. This is
followed by an examination of spatial, temporal
and thematic properties of geographic objects,
reviewing other research efforts in the context of
the work presented in this dissertation. By the end
of this chapter I pull together most of the
discussion and the findings reported further on in
this dissertation in a discussion on a proposed
solution to provide context information with
geographic data. The proposed semantic model
framework is labeled Geographic Context
Topology, GeCoTope, and the work in chapter 8
demonstrates a partial implementation of this
framework.

Quality – Detail, Granularity, Accuracy,
Fitness-for-use and Uncertainty

During the last 20-30 years some well needed
research efforts have been made to understand

aspects of error and quality control in geographic
data. Also, work to systematically define and
standardize aspects of geographic data quality has
been published (Guptill and Morrison, 1995).

Some attempts have been directed towards
creating a common typology of quality. The two
examples below both suggest a general typology
for data quality or ‘goodness’ measures. Although
they represent quite different fields of research
they agree in much, and both works outline a
separation between measurable and non-
measurable aspects of quality.

Veregin (1999) in a recent treatment of the
quality issue implicitly outlines a two dimensional
matrix of geographic data quality components.
Like any geographical phenomenon description,
quality aspects may be divided into spatial,
temporal and thematic components (Sinton, 1978;
Veregin, 1999). Each one of these dimensions
includes aspects of accuracy, resolution,
consistency and completeness. So, we have for
example an aspect of spatial resolution in a
dataset, an aspect of thematic consistency etc
Table 1. Interestingly, another and somewhat
similar typology from the field of Modeling and
Simulation (M&S) can be found in Meyer’s
(1998) definition of ‘goodness’ measures. In his
definitions (level of) Detail is a measure of the
completeness/complexity of a model with respect
to the observable characteristics and behaviors of
phenomena that the model represents. (level of)
Accuracy is a measure of the exactness of a

Table 1 Data quality components

Accuracy Granularity Consistency Completness
Space Spatial

accuracy
Spatial
granularity

Spatial
consistency

Spatial
completeness

Time Temporal
accuracy

Temporal
graunlarity

Temporal
consistency

Temporal
completeness

Theme Categorical
accuracy

Categorical
granularity

Categorical
consistency

Categorical
completeness

Chapter

3



18 • detail in geographic information sources

model's details with respect to the observable
characteristics and behaviors of phenomena that
the model represents. (level of) Fidelity is a
measure of the agreement of a simulation with
respect to perceived (i.e. within a specific context)
reality. (level of) Resolution is a measure of the
minimum degree to which accuracy and/or detail
must coincide with the fidelity of the simulation.
Accuracy and detail are relevant primarily in
relation to models. Fidelity and resolution are
appropriate to use in a simulation context.
Meyer’s terms fidelity and resolution are not
directly related to any of the four aspects listed by
Veregin, instead they are embraced by a broader
quality term ‘fitness for use’. These quality
aspects have received very little attention from a
geographic information science perspective. This
may be due to the fact that they are hard for
anyone but the data consumer to evaluate.
Notably, both authors agree that fidelity,
resolution or fitness-for-use are extremely hard to
quantify, as they have almost no context-free
meaning. This is probably already about to
change with continued development of for
example applied environmental models
(Goodchild et al., 1993; 1996a; 1996b) but also as
a result of designing an infrastructure that enables
semantic interoperability (Harvey, 1999). In any
case, following the argumentation of Meyer
(1998), a necessary foundation for any such
evaluation is that the aspects of detail and
accuracy first can be properly measured.

So, if we turn to the quality measures that
seem possible to quantify; detail/resolution and
accuracy, we may note that Veregin’s definition
of resolution correspond with Meyer’s definition
of detail, whereas both authors use the term
accuracy to mean the same thing. As for the use
of the terms detail, resolution or granularity it is
still a matter of discussion (Duckham et. al, 2000)
and I noted earlier that I prefer to use granularity
in this text to avoid confusion with detail and
resolution. Occasionally I will also use the term
resolution/granularity, mainly when reference is
made to some specific work using the term
resolution in the meaning of granularity.

Veregin (1999) and Meyer (1998) as well as
several others (Salgé, 1995; Goodchild, 1995)
treat accuracy as a relative measure since it is
dependent on the intended form and content of the
database. In addition to accuracy and granularity
Veregin (1999) also include quality measures of
consistency and completeness, Table 1. If we

consider the measurements in Table 1 as a
minimum requirement to document we now need
to suggest some viable ways to measure each
property. It turns out that the matrix works fairly
well for well-defined features (Goodchild, 1995;
Veregin, 1999). We need to keep in mind though
that measurement is always made against a logical
specification of the conceptual model that was
used to collect the data (Veregin, 1999).
Goodchild (1995) noted that for poorly defined
features it is not always possible to separate for
example attribute accuracy from spatial accuracy.
For example in the case of vegetation maps it is
subjected to discussion whether the location of a
boundary between two vegetation types is
uncertain due to the problem of measuring the
exact location of the vegetation types or if it is
due to the problem of discerning between the two
vegetation types at the correct location
(Goodchild, 1995; Painho, 1995). Salgé (1995)
provided the first treatment of quality
measurements from this perspective in his
seminal text on semantic accuracy.  Semantic
accuracy refers to the quality with which
geographical objects are described in accordance
with the selected model (Salgé, 1995). Figure 5
show a modified version of Figure 1. It illustrates
the concepts of model quality or ‘ability of
abstraction’ as a measure of how well a real world
feature can be defined in the perceived reality. It
also shows the meaning of an evaluation of
dataset quality as how well geographical objects
in a database correspond with the perceived
reality. Veregin (1999) actually uses these notions
but deviates slightly from the proper definition of

 

’Real world’   

 

Perceived  
reality 1  

Specification  

Data  

Quality  of the   
dataset  

Quality  of the model  
“Ability of abstraction”  

Figure 5 Two main aspects of semantic accuracy
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completeness to produce a measurable situation in
the case of completeness measures. Brassel
(1995) in a similar way as Salgé (1995) defined
completeness as the difference between the
objects in a database and ‘the abstract universe’ of
all such objects. This lead Veregin (1999) to
consider both data completeness and model
completeness but this is really a general problem
for all four quality measures, and it is directly
related to the nature of the object under
consideration.

It is important not to restrict the discussion of
quality to either well defined objects or poorly
defined objects and an alternative way to treat the
subject is to approach the quality issue from an
uncertainty viewpoint. Fisher (1999) discusses
uncertainty in general and separates uncertainty
into two main categories depending on the
difficulties to define object classes and instances
of these. For well-defined objects the type of
uncertainty can be characterized as error of some
sort and this can be treated with probability-based
methods, which typically produce true or false
results. For this type of uncertainty there are today
a collection of measures such as mean error, root
mean square error, percent correctly classified,
Kappa, sampling interval, sample resolution
(pixel size or time collection interval for each
measurement) (Veregin, 1999). For poorly
defined or unresolved objects two types of
uncertainty have been recognized, vagueness and
ambiguity (Fisher, 1999). These latter types of
uncertainty may be treated using concepts of
fuzzy and rough sets. No general framework, such
as the one described for well defined features
(Veregin, 1999) Table 1; have been articulated for
quality measures of poorly defined features. Salgé
(1995) suggest that similar measures as for well
defined objects should be used, for example
commission and omission error. I would suggest
that the framework of Table 1 could be used also
in the case of poorly defined features with one
reservation. The reason for this reservation
originates from the experiment in chapter 7 where
the degree of categorical completeness propagates
into the analysis and is embedded in the following
accuracy. We must bear in mind that for
assessment of poorly defined objects as defined
by Fisher (1999) the conceptual model is of
primary importance. Thus, until further
investigated quality assessment for poorly defined
features need to commence from the lower right
part of the matrix in Table 1 in order to

acknowledge that the conceptualization of the real
world governs the measurement of time and
space. This also conform with Nunes (1991)
referred to in chapter 2.

As already noted, which analytical approach
to use for the uncertainty assessment is generally
guided by the nature of the objects under study.
With well-defined object classes and individuals
the uncertainty is probabilistic in nature whereas
poorly defined objects or classes are better
handled by fuzzy set approaches (Fisher 1999).
Rough sets is used where uncertainty comes in the
form of indiscernibility, it is therefore suited
whenever the granularity of the information is too
limited to discern between sought alternatives.
These later cases have been thoroughly explored
in chapters 6 through 8. Although this general
division might be argued it clarifies the
complementary nature of these three approaches,
and that a proper use of each method is decided
by the data at hand. All of these uncertainty
aspects will be further put into the context of
representing geographical meaning in the last
section of this chapter.

A central concern of this dissertation is use of
data from different contexts and it is essential to
admit that several instances of the same real
world feature may be possible with equal
relevance, since perceived reality often only exists
as an intellectual construct. In Figure 6 I have
included the additional aspect of semantic
heterogeneity (Bishr, 1997) to give a more
complete illustration of the semantic uncertainty
involved in a translation between contexts.

If we recapitulate the earlier description of
categories, conceptualization or E-ontologies, we
see that semantic accuracy evaluation must be
acknowledged as a fundamental part in the
representation of knowledge through categorical
data. The experiments and methods dealt with in
this dissertation all pertain to the problem of
transforming information from one context to
another and it has been recognized that this is
mainly a matter of semantics. So, a major scope in
chapter 7 is measurements of semantic accuracy.
There I demonstrate approaches that evaluate both
the aspect of ‘ability of abstraction’ as well as an
evaluation of the semantic accuracy of two
different spatial generalization operators. By a
careful measurement of attributes in a controlled
environment, errors have been reduced to a
minimum and remaining errors are controlled to
enable a constructive interpretation of remaining
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deviations. A problem though is that any attempt
to quantify semantic accuracy against perceived
reality becomes extremely susceptible to
subjectivity, but so will any assessment of
translation results between user contexts be. A
single measurement of semantic accuracy cannot
accommodate for all different worldviews that
might be at play and the use of these kind of
‘closed’ tests may very well be contested. In an
environment of open systems operated by
individuals who often use unresolved information
we need a type of quality tests adequate for these
conditions. Star (1987) argued in such a context
for a different form of evaluation based on real
time design, acceptance, use and modification of a
system by a community and suggested the ideas
of due process and boundary objects introduced
earlier.

It will be important to keep the uncertainty
discussion in mind through the following
treatment of spatial, temporal and thematic
granularity, as I will return to the space-time-
theme dependence by the end of these following
sections.

Spatial granularity

As I already noted, a well developed way to
formalize and communicate space is the
traditional map, and map scale has been one way
to articulate a sort of spatial granularity.
According to ICA (1973) the scale of a map is the
ratio of distance measured upon it to the actual

distances that it represents on the ground. Dent
(1993, p.77) expands the term further by stating
that scale relates to the size of precision and
generalization applied in the study. He also sets
out that the nature of the inquiry sets the scale,
and the scale in turn determines the degree of
generalization. This clearly relates to other
dimensions than only spatial granularity but to a
larger domain of generalization. This is probably
due to the fact that scaling of geographical data
has traditionally been made manually including
all sorts of spatiotemporal and categorical
considerations. With increased demand for
automated tools for generalization, updates and
revision of databases made at different scale
levels the issue of scaling has gained a renewed
interest.

The lack of an adequate definition of
generalization in the context of digital processing
environments motivated McMaster and Shea
(1992) to suggested the following definition:
‘Digital generalization can be defined as the
process of deriving, from a data source, a
symbolically or digitally encoded cartographic
dataset through the application of spatial and
attribute transformations’. In their definition they
also stated that the objectives of a generalization
process are to produce data that is consistent with
chosen map purpose and intended audience; and
to maintain clarity of presentation at the target
scale. Since then the increased use of digital
systems for storage and analysis of geographic
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data has widened the traditional meaning of
generalization to encompass not only map output,
but almost any transition between representational
models of the real world (Weibel and Dutton,
1999). In order to be a generalization though, this
transition is confined to one that decrease the
level of detail but at the same time try to
maximize the information content with respect to
some application.

The ‘value-added’ aspect of digital
generalization included in these definitions was
rather lately added to the GIS research agenda
(Müller, 1989; McMaster and Shea, 1992; Müller
et al., 1995). The last decade has provided a
multitude of fruitful discussions and
investigations on generalization issues in a GIS
context (Buttenfield and McMaster 1991; Müller
et al 1995).

Even if a lot of the work reported so far on
automated generalization has a cartographic
flavor to it, a subset of the research labeled object
and model generalization (Weibel and Dutton,
1999) is of direct interest to this discussion.
Object and model generalization is the process of
data abstraction dealing with the identities of
geographic phenomena and their semantic
relationships. This is essentially the same problem
that has been outlined previously as a problem of
GIS integration, interoperability and semantic
modeling. An automated generalization process
needs knowledge on object geometry, spatial and
semantic relations (Ruas, and Lagrange, 1995).
Thus the model generalization research needs
knowledge on semantic relations in very much the
same way as any other knowledge based
technique. Today scale, granularity and
generalization are receiving interest from
researchers as generic issues. For example
Goodchild and Quattrochi (1997) suggest a full
science of scale that would include the ability to
change scale in ways that are compatible with our
own understanding of Earth system processes.

Apparently, generalization is concerned with
changes of both thematic and spatial detail and a
restricted focus on pure spatial granularity, as in
this section, lead rather naturally to consider
modern granularity limited data such as remote
sensing images. With remote sensing images I
include both aerial photographs and satellite
images. In maps the concept of scale is set
explicitly but the remote sensing image has no
pre-defined scale as such. It does however have a
concept of spatial granularity but this must not be

confused with scale since there is no direct link
between the two.

Resolution/granularity is a measure of
detectable separation between objects in a visual
field (Dent, 1993, p.260). This has only recently
been noticed as a theoretical problem as the
efforts to integrate and compare remote sensing
data at different scales has shown problematic and
therefore received some much needed attention
(Wilkinson 1996). Studies of the effects of spatial
data aggregation on grid data have often been
performed using remote sensing images,
simulated remote sensing images, and classified
versions of the two. Those studies have provided
a lot of useful insights into the effects imposed by
a changed spatial granularity on grid data (cf
Quattrochi and Goodchild, 1997).

Following the work by Woodcock and
Strahler (1987), many studies have reported on
the effects of spatial data aggregation. Most work
employ methods and frameworks that provide
global measures of the aggregation effects of
changed spatial granularity and these effects can
be evaluated from several aspects. One such
aspect is to see how image statistics is changed
over resolutions/granularity (Bian and Butler,
1999; Van Beurden and Douven, 1999; Milne and
Cohen, 1999; Moody and Woodcock, 1994). One
other evaluating certain landscape components
(rural, forest) and their inherent responses to
aggregation processes (Woodcock and Strahler,
1987, Turner et al, 1989). All these efforts may
however be characterized as evaluations of truth
in the model, where the model is a specially
constructed set-theoretic reality surrogate whose
relation to reality itself is left unspecified (Smith,
1995). The issue of evaluating how aggregation
affects the semantic accuracy (as defined in
previous sections) of for example land cover has
not been worked upon as much.

This apparent gap in the literature about
spatial granularity motivated me to look more into
these aspects and the work presented in chapter 5
are the first efforts in this direction. I argue that
from an application perspective the preservation
of image statistics is not necessarily the goal. On
the contrary, for example visualization often uses
aggregation to reduce noise and enhance certain
information, similar to the way we all ‘low-pass-
filter’ a visual experience when we squint our
eyes, which of course change the image statistics.
It follows from the definitions above that the
ultimate goal of any kind of generalization is that
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the information we finally produce is appropriate
to the task. But how do we make sure that this is
the case?

This has connections to the issue of
appropriate spatial granularity for study, which
have been debated by geographers for some time
now. As a result of these discussions there is
today an agreement that a changes of analysis
scale also changes the importance and relevance
of specific variables (Meentemeyer, 1989). The
recent development of landscape ecology
(Forman and Godron, 1986) has not only brought
an increased insight into the spatial domain of
ecology but also some renewed attention to this as
a geographical issue. Purely ecological studies
have traditionally been biased toward particular
spatial and temporal scales (Johnson 1996). In the
development of landscape ecology as a field of
research some general ideas of scaling up
ecological processes (King 1990), to some extent
based on a hierarchical concept of ecosystems
(O’Neill et al. 1986) were put forward. Further
work speculated that patterns and their
relationships might be ordered into scale domains
and that transitions between such domains might
be relatively abrupt, much like phase transitions
in physics (Wiens 1992). One example of a
suggested framework uses a scale dependent
hierarchy of classification systems where both
abiotic and biotic factors are coupled to both
space and time (Klijn and Udo de Haes 1994).

Figure 7 gives an overview of this idea in the
spatial domain. The concept indicates the

possibility of assigning certain granularity
intervals at which controlling factors can be
considered relevant for the spatial pattern of
ecosystems. By identifying controlling factors for
a specific variable it would be possible to delimit
the scale interval within which this variable will
exhibit an identifiable pattern. This can be seen as
an effect of the ‘constraint envelope’ concept
suggested by O’Neill et al. (1986). These ideas
may be hard to verify (Schneider, 1994) but they
have gained support and are now considered by
several authors as one important key to making
progress within the domain of geographic
information science (Lam and Quattrochi 1992;
Buttenfield 1995; Painho 1995; Jelinski and Wu
1996; Johnson 1996).

One of the problems to handle changes in
levels of detail may be coupled to the way we
measure this as an absolute space or as
representative fraction as in maps (Goodchild,
1999). A possible candidate for a scale invariant
measure of granularity is the “scope” (Schneider,
1994) or LOS, “large over small” (Goodchild,
1999) measure. Schneider (1994) define this as
the ration of the range (extent) to the
resolution/granularity and suggests that this
relative measure is useful in comparing
phenomena over spatial, temporal as well as
thematic scales. The information value of this
measure seem to be high since it in some sense
incorporates two of the three most prominent
scale concepts related to geographic information
‘extent of a study’ and ‘operational scale’ (Lam
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and Quattrochi, 1992). And if the third of these
scale concepts ‘cartographic scale’ is too
problematic for the digital domain (Goodchild,
1999) it seems as if the scope measure is a
potentially powerful concept. It remains still to be
tested in what way it might be applicable to the
general issue of changed granularity of
geographical data.

MacEachren (1995) also emphasize a need to
investigate the possible psychological factors that
may interact with such scale dependent real-world
patterns. The latter has been discussed as part of
the broader issue of scale and detail in the
cognition of geographical information (Montello
and Golledge, 1999).

Apparently a model of geographic reality that
can be varied in scale must account for the
variations in objects, attributes and relations that
may be encountered as an effect of changing
spatial granularity. In chapter 7 I follow this line
of thought by demonstrating location specific
methods for the estimation of generalization and
spatial grain effects on categorical data sets. The
study can be seen as an extension of the initial
case studies reported in chapter 5. The design in
these two studies still did not allow for an
assessment of the influence of physically
controlling factors such as hydrology, topography,
climate et c. From the literature this still seem to
be an important source for the conceptualization
of a domain of interest (cf. Klijn and Udo de
Haes, 1994; Johnson, 1996). Accordingly it
should be possible to include these ideas in a
framework for transformation of information
between contexts. The demonstration in chapter 8
include wetness index as a determining factor for
the target classification. I take this as affirmative
proof that the proposed framework is capable of
incorporating the idea of controlling
environmental variables although this specific
issue is not very much elaborated on in this thesis.
Although chapter 7 failed to address the issue of
controlling factors, it has attacked the problem of
evaluating semantic accuracy due to changed
spatial granularity. The hypothesis tested in both
chapter 5 and 7 is whether the outcome of a
changed spatial granularity of a dataset is the
same as if data were instead collected at this
desired level of granularity. The joint results from
chapters 5 and 7 do not give any clear-cut answers
which I take as evidence for that we have to deal
with a multifaceted problem and that we miss an
appropriate information theoretic model to handle

aggregation operations. The case studies in
chapter 5 showed a sensitivity of certain
environmental variables to changed spatial
granularity whereas the experiment in chapter 7
did not provide clear evidence for this.

Temporal granularity

Peuquet (1999) suggest that the goal of a
temporal representation is to record change over
time and the basic questions asked against a
temporal database would be about states and
changes. From an ecological perspective Huston
(1994, p232) holds disturbance and successional
changes as the primary landscape processes that
are observed by humans and that regularly
interact with human activities, and the intensity
and frequency of disturbance are of major
importance to community and ecosystem
properties. Also from a more general perspective
duration and frequency seem to be important
concepts to describe temporal patterns (Peuquet,
1999). A disturbance regime often forms a
dynamic equilibrium characteristic to a particular
landscape (Huston, 1994). A landscape can in the
same way be defined as the tangible and
characteristic result of the interactions between a
specific society, its cultural preferences and
potential, the given physio-geographical
conditions and biotic as well as abiotic processes
(Sporrong 1993). Thus, a landscape is described
by geographical boundaries and concepts ranging
from physical objects such as houses, trees and
rivers via processes like climatic variability and
ecosystem succession to highly immaterial parts
of the landscape such as land ownership pattern
and human ideological structures. Once again we
may note the problem to separate geographical
information into its ‘primary’ components.

The time aspect of geographical information,
although not as much investigated, seems to
behave in a similar way as the spatial aspect. Both
Langran (1992) and Klijn and Udo de Haes
(1994) point at support for the hypothesis that the
natural rate of change, that is frequency, for a
natural process generally follows the spatial
hierarchy outlined in Figure 7. In that figure the
temporal scales are reflected by the most rapidly
responding processes being located relatively low
in the hierarchy.

Recent attempts on the formation of coastal
geomorphology theories as well as other
landscape ecological studies emphasize the use of
space and time scales as an organizing principle
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(Raper and Livingstone, 1995; Turner et al.,
1993). Both these works argue for a geographic
model in which time and space are treated
together in relation to the nature and behavior of
the described entities. Peuquet (1999) review
some approaches to the representation of
spatiotemporal data in digital databases and
divide these in groups of location-based, entity-
based and time-based. She concludes that section
by arguing for a combined representation such as
the ‘triad representational framework’ treated in
the previous section (Peuquet, 1994)

The scope concept was introduced in the
previous section and I will use it here to speculate
on how the spatiotemporal characteristics of a
geographic phenomena might be expressed using
the ideas reviewed so far. Given a piece of
hemiboreal Scots Pine forest the spatial scale will
have a lower limit of some 50-100m in order to
call a piece of landscape a “forest” that also
exhibit “foresty” properties such as influence on
local climate and flora. The upper spatial limit
might be set using the controlling factors soil and
ground/surface water giving a spatial granularity
interval of approx. 50-1000m. The temporal scope
of forests depend on management, but for a Scots
Pine forest the natural “disturbance regime”, that
is the turnaround interval, can be set somewhere
between 50 and 100 years (Angelstam 1997). If
these figures shall be as absolute values or on a
relative scale as scope is still a matter of question
as discussed in the previous sections.

The figures indicate appropriate ranges and
the grains of the information, which govern the
usage of this set of data. This information should
for example be used to set limits for when the
current data set is violated due to for example a
zooming operation in a GIS.

What this short elaboration demonstrates is
that regardless of the space-time strategy used,
categories will always be guiding the space-time
conceptualization and the granularity of the

spatiotemporal representation. So, I therefore turn
to the treatment of thematic detail and how this
could be handled before the final two sections
where I propose an integrated framework of a
Geographic Concept Topology.

Categorical granularity

The theme of a geographical dataset is to be
understood here as the domain of a study. It was
defined earlier that knowledge was made explicit
by classification patterns where categories are
building blocks of knowledge. The treatment in
geographic research of categorical granularity has
not received as much direct interest as the issue of
spatial granularity. For example Mark et al.
(1999) list only four studies of geographical
categories that have involved human subjects
testing. But in the last few years a number of
publications indicate an interest in category
theory and ontology.

Categorical granularity or degrees of
complexity in the terminology of Board (1969) is
normally organized as concepts in a hierarchical
structure. In such structures general and abstract
categories can be found at the top and less
abstract and more specific categories are found at
the bottom of hierarchical organizations, such as
the two hierarchies outlined in Figure 8. Increased
complexity is found by climbing down to lower
levels in the hierarchy. Such a hierarchical
structure can be either constructed as a conceptual
hierarchy (left) or a hierarchical tree (right)
(Freksa and Barkowsky, 1996). There are some
fundamental differences in the two hierarchy
types of Figure 8 that will be examined below.

In the case of hierarchical trees Mark et al.
(1999) separate between ‘partonomies’ and
‘taxonomies’ depending on the type of relation
between categories at one level up or down the
tree.  Taxonomies relate to ‘kind-of’ relationships,
such as an oak forest is kind of a deciduous forest.
A taxonomy enable inferences about properties
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Figure 8 A conceptual hierarchy structure (left) adapted from Freksa and Barkowsky (1996) compared with a
hierarchical tree structure (right) compatible with e.g. several vegetation classification systems (Påhlsson 1995)
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and class inclusion, which is fruitfully exploited
in for example object oriented knowledge
representation. A partonomy on the other hand is
based on ‘part-of’ relations such as ‘a tree is a
part of a forest’. Although geographical concepts
associate naturally with both partonomies and
taxonomies, partonomies does not support
property inferences (Mark et al., 1999). The lack
of inferential power makes the application of
partonomies as knowledge representational
technique a question suitable for further
investigation. A deeper investigation of the
differences between partonomies and taxonomies
will not be treated here.

In a concept hierarchy, refinement of
concepts, that is increased complexity, is not
merely done by a subdivision of individual
concepts as in the hierarchical tree case. In a
concept hierarchy we see that additional
categorical detail is given by creating categories
for borderline cases. Thus, each subdivision is
also revised according to the horizontal
neighborhood structure. Consequently each
concept is defined at a specific place in the
hierarchy and given a meaning by its position in
both vertical and horizontal direction (Freksa and
Barkowsky, 1996). We can observe this in Figure
8 where the immediate neighborhood of the
concept mesic is dry/wet in horizontal direction.
In vertical direction the concept neighborhood
consists of dry/wet at the more general level and
droughty/mesic/moist at a more detailed level. All
of these neighborhoods are related to the meaning
of the source concept moist.

Concept relations can also be defined between
separate hierarchies in order to relate a category
in one context with a corresponding category in
another context. Building further on the idea of a
meaningful neighborhood structure I will
illustrate such a relation between two different
contexts. This problem domain has been termed
“the metadata folding problem” within computer
science (Aslan and McLeod, 1999) where it is
understood as the problem of partial integration of
remote and local databases in the presence of
semantic conflicts. And it seems to have set off a
variety of efforts to resolve this problem although
Aslan and McLeod (1999) list some serious
shortcomings for most of these that are related to
limited dynamics and considerable knowledge
demands. The Cyc-project (Lenat, 1995) for

example uses a global schema approach that today
demonstrate some workable implementations,
such as search engines for the internet, some 10
years after its start.

From a geographical viewpoint, any
categorical mapping that fails to incorporate
spatiotemporal aspects will fail to give a full
geographic description. Thus approaches based
solely on categorical matching will not qualify as
a viable candidate in a geographical situation. In
the following real example I use two different
vegetation classification systems, and these
actually represent instances of the two hierarchy
types illustrated in Figure 8.

The upper part of Figure 9 shows the
hierarchical tree of the forest vegetation types in a
Nordic vegetation classification system (Påhlsson,
1995). It is separated into four levels of detail
where the lowest level exhibits the highest degree
of complexity. Enlarged squares give a few
examples of the most specific categories, in this
case vegetation types. The highlighted vegetation
types have also been mapped onto a diagram
decided by soil moisture and richness in the lower
part of Figure 9. We may look upon this diagram
as one level in a concept hierarchy that has been
extended in two dimensions, guided by both
nutrition status and moisture. In an object based
view these are the attributes of a certain
vegetation object but in a location-based view
they are the physical conditions of a continuous
space. The nutrition-moisture gradient forms the
basis for several other classification systems
commonly used within the Nordic countries (cf.
Påhlsson 1972), and as such the linkages forms a
mapping between these two classification
systems.

By using the idea of a concept hierarchy such
as the left one in Figure 8, each concept is now
closely associated to its neighboring concepts in
terms of both nutrition status and soil moisture,
whereas in the original hierarchy (upper part,
Figure 9) the horizontal neighborhood is not
necessarily indicative of any specific property in
the adjacent classes. Typically a geographic
vegetation object should be regarded to have
some internal heterogeneity, thus the mapping
onto these continuous variables comes in the form
of a more or less vague range, the elliptical shapes
in the diagram of Figure 9.
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The example has large resemblance with the
work by Mark (1993) on the conceptual
boundaries between similar categories of water
bodies in English (lake, pond, lagoon) and French
(lac, étang, lagune). In that experiment Mark
showed that many categories for water entities
may be discriminated using size, spatial relation
to the ocean, salinity, presence of marshes at the
edges, and whether it is man made or not. An
important observation in these examples is that a
mapping between similar concepts, but from
different contexts, often cannot be achieved
through a crisp relation. In the chosen examples
there are components of uncertainty related to
graded concepts and indiscernibility between
competing concepts that cannot be fully described
by a binary relation. These problems are
approached in the following section and tackled in

more detail in chapters 6 through 8 where I also
propose and demonstrate a few solutions to
handle them.

Although the examples so far deal with the
horizontal neighborhood structure it is also
conceivable to think of additional vertical
neighborhood mappings as in Figure 8 left. The
example in Figure 9 uses two dimensions at one
concept hierarchy level, moisture and nutrition.
The example by Mark (1993) explicitly illustrated
the use of three dimensions, or controlling factors,
size, edge marshiness, and man-madeness.
Theoretically the dimensionality could be
increased infinitely creating a multidimensional
network of concept meanings provided by
mappings between similar concepts and between
concepts and controlling factors. Nyerges (1991a)
outlines a general interpretation of this idea that
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he called a heterarchy of concepts, based on
multiple, and interconnected conceptual
hierarchies, forming a multidimensional
knowledge framework of concept meanings.
Thus, a heterarchy would be something similar to
what linguists would call connected word maps.
Such a heterarchy of concepts could be explored
by e.g. generalization operations (Nyerges,
1991a) or be used to provide input to predictive
geographical models (Nyerges, 1991b). I will now
follow this general design and furthermore argue
for some additions that I see as a prerequisite for a
semantically rich representation of geographic
concepts.

I have demonstrated in this section that
categories from different contexts are often not
related through crisp, binary relations. In such
cases there is some amount of uncertainty
involved in the relation. Now, uncertain concept
relations, such as those illustrated in Figure 9 do
not only extend the original notion of concept
hierarchies (Freksa and Barkowsky, 1996) into
considering a horizontal neighborhood in two
dimensions. More important, it illustrates the
general idea behind my proposed formalization of
transformation between similar concepts from two
different contexts. This idea acknowledges that
geographical categories may use location-based,
time-based as well as object-based views for their
representation. Figure 9 illustrate how expert
knowledge is used to produce an approximate
mapping of categories that is accompanied by a
definition of how target concepts are related to
certain important spatial properties. I now claim
that the arguments and discussions brought
forward so far implies that the categorical aspect
of geographic information is the proper starting
point for any transformation of geographic
information that involves a changed spatial,
temporal or categorical granularity or any
combination of these.

In the next two sections I will go into detail on
available options to describe semantic uncertainty
in (expert) knowledge representations. Here I will
focus on crisp, fuzzy and rough sets as candidate
frameworks for the representation of concept
interrelations and the degree of uncertainty in the
mapping. Thus, the remainder of this chapter
outlines a core idea of knowledge representation
under semantic uncertainty.

Knowledge representation and uncertainty

Integration, understanding and communication are
essential concepts when we talk about knowledge.
The previous section proposed that multiple
interconnected conceptual hierarchies could be
used to express a deeper geographical meaning of
used concepts. Most efforts to implement
semantic level models to date have proposed set
theoretic approaches for its implementation
(Nyerges, 1991b; Livingstone and Raper, 1994;
Bishr, 1999; Gahegan, 1999). Related frameworks
have also been proposed, such as ‘mereotopology’
(Smith, 1996) that uses mereology, referred to as
the theory of part and whole, as an alternative to
set theory to describe topological relations
between parts and wholes of things. One reason to
search for alternatives to set theory has been its
limited capability to express semantic ambiguity
of categories (Mark and Frank, 1996). Although
uncertainty may have various sources,
randomness and imprecision are two major types
that are of importance in spatial knowledge
representation and inference (Leung, 1997).
Probability as a mathematical and statistical idea
is well studied, understood and also well
documented (Fisher, 1999) and its
implementation within the field of geography is
fairly well developed. I see no reason today to
abandon the set-theoretic realm since the fuzzy
(Zadeh, 1965) and rough (Pawlak, 1982)
extensions of traditional set theory seem to be
viable techniques capable of handling the types of
category uncertainty or imprecision that
previously was problematic from a
representational viewpoint. As an example, the
work by Usery (1996) has shown the possibility
(sic) to represent features as fuzzy sets. I will
explore this issue in more depth in this section,
which finally by the end of this chapter blend into
a general description of geographic knowledge
representation under semantic uncertainty and a
proposed solution.

There are a variety of views on the theory of
knowledge but in order to build a spatial decision
support system we need data that explicitly define
at least parts of our current knowledge. Recent
advances in data intensive methods, such as
knowledge discovery through data mining
(Fayyad et al., 1996), will probably gain in
significance with the ever-increased amount and
volumes of data. Although some pointers to the
literature are provided by Pawlak (1991) and
deeper treatments can be found in Fayyad et al.
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(1996) and Leung (1997) I will neither go into
detail into these, nor is my intention to cover all
techniques to represent knowledge in spatial
decision support systems. The following
description tries instead to link the different views
on knowledge representation with the previous
discussion of different types of uncertainty.

There are today a few major approaches to
represent knowledge and to make inferences from
this in a formalistic manner (Leung, 1997). The
first and maybe most known and used alternative
is to use declarative knowledge represented
through some kind of formalism such as first-
order predicate logic, production systems built up
by ordered sets of IF-THEN statements, semantic
networks, frame-based hierarchies, object-
oriented approaches or combinations thereof.
These representations are adequate whenever
knowledge can be expressed as clear-cut true or
false statements such as ‘this area is a swamp’.
This also leads to clear-cut answers, ‘yes’ or ‘no’.
In this case uncertainty is essentially a stochastic
event connected to well-defined objects. One
frequently cited implementation uses a
probabilistic approach to uncertainty
representation (Goodchild, Guoqing and Shiren,
1992). From an error matrix we may produce
probability vectors for each pixel given the actual
estimate. Using such probability estimates it is
possible to produce multiple realizations of the
original interpretation and make the actual
comparison of result upon these realizations.

However, human knowledge is often inexact
and we therefore need some knowledge
representation technique that is capable of
handling uncertainty or imperfection related to
poorly defined objects. Consider the three
following expressions ‘this area might be
swampy’, ‘this area is rather swampy’ and ‘this
area is either swampy or flooded’. They are all
propositions that include aspects of uncertainty
that are quite different in nature and therefore
require different methods for representation.

The first proposition ‘this area might be
swampy’ articulates a type of uncertainty that is
caused by some degree of randomness and the
validity of an inference under randomness can be
expressed as the chance, or probability of the
event. These measures are often produced through
statistical testing and evaluation of frequencies of
occurrence. To make inferences and to update
previous knowledge with new evidence we may
use Bayesian methods of updating. A geographic

implementation of this can be found in Aspinall
(1992). We may also use an extension of
Bayesian probability theory called Dempster-
Shafer theory, cf. Eastman (1997) and Leung
(1997) for an introduction to the two approaches
in a spatial information setting.

In the second proposition ‘ this area is rather
swampy’ we have expressed that the area might
possibly be regarded as swampy. This type of
inexact human knowledge led to the development
of fuzzy sets and fuzzy logic (Zadeh, 1965).
Fuzzy sets are a suitable representational tool to
accommodate graded and subjective statements
such as ‘rather’ to express partial belonging to a
specific concept. As such fuzzy logic is suited to
represent and infer with this type of imprecise
human knowledge. In implementations of fuzzy
systems we may translate the grade of
belongingness of an object (this area) to the
concept (swampy) into membership values, which
can be used in propositions and inference. Gopal
and Woodcock (1994) and Woodcock and Gopal
(2000) present geographic implementations of this
method where they use fuzzy sets for accuracy
assessment and area estimation of thematic maps.
Their approach enables a translation from
linguistic terms of interpretation judgments into
fuzzy memberships for further use in accuracy
assessment. It follows that the validity of answers
from a fuzzy system is depending on the meaning
associated with the concepts used in the fuzzy
propositions. It is important to note that
membership values as such reflect an ordering
that is not based on probability but on admitted
possibility (Burrough and McDonnell, 1998).

The last one of the propositions ‘this area
might be either swampy or flooded’ may
intuitively be translated into a 50/50 % chance of
either alternative. But in many situations this
statement is based on the total lack of support for
either of the two outcomes (a natural tag to the
statement would be ‘… I don’t know.’). To give
both of the alternatives the same chance is to
violate the fact that no such information is
available. The recent development of rough set
theory (Pawlak, 1982; Pawlak, 1991) has
provided a viable tool to address uncertainty that
arise from inexact, noisy or incomplete
information. Also, rough sets and the concept of
rough classification have demonstrated promising
applications for geographic information handling
(Schneider, 1995; Worboys, 1998a; Ahlqvist,
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Keukelaar and Oukbir, 2000a - chapter 6 this
thesis).

In the previous section about categorical
granularity I illustrated some examples that tried
to associate categories in one context with similar
categories in another context. This was known as
mapping semantic similarity and it was
acknowledged that this mapping needed to be able
to represent graded concepts and indiscernibility
between competing concepts. The concepts of
probabilistic, fuzzy, and rough uncertainty can
easily be confused but in light of the discussion
above it should be apparent that these three
concepts represents quite different facets of
uncertainty. In the following chapters, especially
chapters 6 through 8, this knowledge
representation technique will be addressed in
more depth.

It is also conceivable to think of combinations
of these types of uncertain knowledge, for
example ‘this area might be rather swampy’
stating that there is some probability of this area
to be regarded as swampy, even though it might
not be a full member of the ‘swampy’ concept. It
would only be natural then to try to merge the
different representational techniques into joint
measures of uncertainty capable of expressing all
combinations of uncertain knowledge. Formal
descriptions of the relations between these
different models of uncertainty have also been
published (Dubois and Prade, 1992). This is
where we reach the current forefront of the
research on uncertainty in decision-making
problems (cf. Pal and Skowron, 1999). In chapter
8 I present one effort to further develop these
theories applied to the field of geographical data
integration. Chapter 8 also goes further to include
the wider problem of knowledge representation
under semantic uncertainty. These last issues are
the focus of the following section.

A geographical concept topology

Approaching the remaining problem of
combining the different types of uncertainty
represented by probabilities and possibilities there
seem to exist workable approaches. The idea of
using multiple sources to explain a specific
concept has close similarity with multi-criteria
decision analysis (Malczewski, 1999; Eastman,
1997). The multi criteria decision analysis
framework enables a combination of separate
lines of uncertain evidence such as deterministic,
probabilistic and possibilistic (fuzzy) rules, into

an answer or several scenarios. I propose here that
these theoretical constructs can be used to
perform a transformation from one context into
another, using multiple sources of knowledge and
interconnected concepts. I further propose that
each concept involved in this transformation can
be given a deeper meaning by explicitly defining
mappings such as the examples related to Figure
9. These mappings can use either certain one-to-
one, many-to-one relations or uncertain
probabilities (not treated in this work) or
possibilities. Above given examples have shown
that semantic relationships very often is of an
underdetermined character that is either graded or
indiscernible of a type that is not probabilistic.
Therefore implementations of context mediation
based on first order logic are too restricted, and I
propose instead to construct mappings using
formalisms capable of expressing various forms
of imprecision. In chapter 8 I present a method to
integrate fuzzy and rough data into a result that
can be generalized into a map. This
implementation is a demonstration of the idea to
use crisp, fuzzy or rough sets to define a complete
or incomplete translation from one concept to
another, and create a transformation between
contexts from this. Since no information source
provide a one to one mapping the idea is based on
the integration of the multiple lines of evidence. It
uses the concept of multi criteria decision support
and the idea of fuzzy aggregation operations to
extended the fuzzy approach to incorporate crisp,
fuzzy and rough sets through conversions into
bifuzzy sets.

I denote such mappings between concepts a
semantic topology of available geographic
databases. The notion of topology is within
geographic information science normally
understood as the spatial interrelations that
describe how real world phenomena are linked
together (cf. Burrough and McDonnell, 1998).
Topology may also be generally understood as the
study of interconnections (FOLDOC) and
therefore include any type of connection such as
spatial, temporal or categorical. I will thus in this
thesis use a wide definition of topology and
propose the use of a Geographic Concept
Topology, a GeCoTope, to establish a formalized
representation of semantic interrelations. A
GeCoTope forms part of the metadata for each
dataset and it also forms a higher-level metadata
structure capable of connecting different datasets
both semantically and functionally. The
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GeCoTope is primarily intended to make explicit
the semantic similarity between categories from
separate contexts and I hypothesize that
categories of controlling factors such as
topography, hydrology, soils, are among the more
important contexts to establish mappings to.

Figure 10 illustrate the implementation of the
GeCoTope as a context transformation tool
between (1, 3) and within (2) three hypothetical
organizations. In the experiment in chapter 8 I
show how the concept of multi-criteria evaluation
can be used to transform local vegetation data into
a regional vegetation classification (1) ‘weighing’
additional information about wetness into the
decision (2). In chapter 8 I also suggest that other
local organizations could produce similar
mappings and that a network of such mappings
give a possibility to transform data within and
between organizations (4) realized through
chained transformations. It may be discussed
whether it is better to use ‘controlling factors’
such as the topography form an elevation model
(2) as a bridge or ‘proxy context’ for these

mappings rather than arbitrary classification
systems. In any case, the framework of the
GeCoTope allows for solutions based on
‘arbitrary’ common ontologies as well as
controlling physical factors.

This issue connects to the use of federated
data bases that in earlier work has been seen as a
viable solution to establish bridges (proxy
contexts) between localized contexts (Bishr,
1997) whereas others have argued for localized
approaches (Aslan and McLeod, 1999). Here the
proposed framework seems open for both
federated and localized solutions. A combination
of these may also be envisioned where a large
number of transformation alternatives can be
accomplished through chained transformations
such as those outlined in chapter 8. The fact that
these operations will often include
transformations between measurement
frameworks require careful consideration of the
inherent meaning of each data set as
transformation rules are formulated (Chrisman,
1999).
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Figure 10 Organizational perspective on exemplified (1-3) and possible (4) transformations using the suggested
approach.
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From a general geographical point of view,
and following the argumentation in chapter 8, the
GeCoTope framework enable the consideration of
both location-based (wetness data) and object-
based views (vegetation units) in a concept
transformation process. This has other interesting
connections to the ideas of Boundary object and
Due process (Star, 1989) mentioned earlier in
chapter 1. In chapter 8 I argue that the
construction of fuzzy membership functions and
rough classification rules in that chapter, can be
interpreted as a “due process” where different
groups or organizations constantly try to
recognize, gather and weigh evidence from
heterogeneous conflicting sources.

I also suggest in chapter 8 that many current
techniques for spatial analysis, including the
proposed framework, is a spatial implementation
of the boundary object idea. Consequently, I
suggest that multiple concept mappings, here
termed a GeCoTope, can be used to negotiate
semantic similarities and differences using a
formalized framework of bifuzzy classifications.

Since the due process is supposed to be a
dynamic and ongoing activity I hold it likely that
it will require a fairly simple implementation
structure. I anticipate that the GeCoTope
framework, where each link is maintained by a
limited number of participants, is a simple yet
powerful implementation of the idea of a due
process.

With this preview of the findings in my work I
have given a summary of the entire thesis. I hope
that this makes the argumentation in the following
chapters easier to follow. I also hope that it
enables a “high level browsing” of the following
texts for those not interested in the details and
particulars of each chapter.
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DISCRETE METHODS FOR
INTERPRETATION OF LANDSCAPE
INFORMATION

Introduction

In this work it has been of great importance to
reduce the possible sources of error and to control
those that are inevitable. It has also been a goal to
be able to study changes in spatial and categorical
granularity separately. This chapter is primarily
devoted to a description of the data that was
selected for analysis of changes of spatial
granularity. For the studies of categorical
granularity another set of previously described
data has been used (Ahlqvist and Wiborn, 1986)

Most, if not all, studies on effects of changed
spatial granularity in raster based data use data
that in some way are a product of automated or
semi automated data collection (Woodcock and
Strahler, 1987, Turner et al, 1989; Moody and
Woodcock, 1994; Bian and Butler, 1999; Van
Beurden and Douven, 1999; Milne and Cohen,
1999). This has a positive effect in that a wide
range of resolutions and aggregation levels may
be covered by the study since the most detailed
level of data can be collected in huge quantities,
10-100 thousands of pixels. The major drawback
of the automated approach is that a translation has
to be made between the information a
machine/sensor captures and the information that
humans preferably use. By focusing interest
towards manually interpreted information it is
possible to close up on scaling effects that pertain
to the human mind and the concepts we use to
understand the real world.

Interpretation of land cover information can be
made with extreme variation using different data
sources (maps, aerial images, satellite images),
different spatial representations (point, area), and
different measurement scales (continuous,
ordinal, nominal). Early in the digital map age
there were no standard method to collect
information for digital spatial databases. Thus,
textbooks on the subject from this time tend to
have rather detailed descriptions of the procedures
to capture data both manually and by automated
methods, cf McDougall, 1976, p.57-60 for

description of collecting rasterized data. The
progress of technology has significantly reduced
the amount of textbook space down to a few lines
or paragraphs for consideration of manual
methods to produce raster based, source datasets
(Cromley, 1992, p.131; Jones, 1998, p.96).
Manual production of geographic datasets is
today mostly confined to the object/vector spatial
model. This might be an issue of renewed debate
since analyses of spatially regionalized data have
been shown to produce difficult problems, such as
the modifiable areal unit problem (Openshaw,
1983). Moreover, as most methods for spatial
modeling are done in a raster model of space it
can be argued that source data sets more often
should employ a regular grid structure in the
collection phase.

Against this background of a diminishing
interest for manually collected grid data it may
not be surprising that the data described in this
chapter was collected using methods originally
developed in the 1970’s. The described methods
are based on manual inventory and interpretation
of maps and areal images. Both methods also use
a regular square grid as the basic areal unit. The
content of these datasets therefore resemble
contemporary datasets that today is assembled
through satellite or airborne sensors followed by
digital image analysis.

In 1996 a co-operation was initiated between
MSc Rolf Ruben and BSc. Ola Ahlqvist. Ruben
early had supplementary training additional to his
university degree in forestry with two years of
studies at the Royal Institute of Technology, dept.
for Surveying and Mapping Engineering. During
his 38 years within the silvicultural organization
he worked with development of more effective
site-specific methods for forest primary
production. Parts of this work is documented e.g.
the Reforestation assessment (Skogsstyrelsen,
1966). Other work is only available as internal
reports, field protocols and other working papers.
Thus, the main content of this chapter is a
compilation and documentation of Mr. Ruben’s

Chapter

4
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previously unpublished method development and
results.

Consequently, this chapter has several
objectives. Primarily it gives a thorough
description of the datasets that have been used for
studies of changed spatial granularity in this
dissertation. Second, Rolf Ruben and myself want
to present these two previously unpublished
datasets. We also hope that a thorough description
of the methods behind these data will initiate
deeper discussions about methodological and
statistic aspects. In this way this chapter may be
of both public and scientific interest both in terms
of actual information and the methods employed.

Structure of the method and data description
First I give a short background to the context in
which the described methods were developed and
data was collected. Information from the National
Forest Inventory has been used as a basis for
definitions and quality control. Therefore a
description of that inventory is also provided as a
background.

Both of these methods, the R-method and the
classification of economic map sheets into
landscape types are described in separate sections.
Each of these sections consists of a Method sub-
section and a Result sub-section.

The first dataset to be described, R-data of the
PSU model, cover the Stockholm county and
consist of landscape descriptions from 34,464
square shaped areas, each covering 25 hectares.
The second dataset, classification of economic
map sheets into landscape types, cover entire
Sweden and contain information on landscape
types within 18,000 square shaped areas, each
covering 25km2.

Planning support for the usage of the
forested landscape and the R-method
In 1980 the Swedish National Board of Forestry
started a long-term project called Planning
Support for the Usage of the Forested Landscape,
PSU. The aim was to develop methods to link
strategic data from the National Forest Inventory
with operative data often collected in the form of
forest management plans. Another purpose for the
project was to provide an information source for
forest and land-use politics aiming at a better
balance between central and local concerns.
Stockholm County was chosen as a pilot example.

The project should be viewed from the forest
industries’ continuous need for both general and
detailed planning and decision support in their

management of landscape resources. Also, by the
time of the initiation of the project the technical
developments had enabled computerized
treatment of areal information from remote
sensing sources.

The method to provide a reliable source of
information on a general level within reasonable
time and financial limits was the same then as it is
now. A statistically representative sample is
measured with greatest possible accuracy with a
consistent and thoroughly controlled method. The
National Forest Inventory has in this way
provided reliable information on the status of the
forest resources in Sweden. The National Forest
Inventory data can be spatially separated down to
a spatial resolution corresponding to the county
administrative level. This spatial resolution thus
enables an illustration of the spatial distribution of
certain forest variables. Regional authorities may
also use this disintegrated information as an
indication of the relation of the local region to the
entire country. Because of statistical reasons it is
not possible to get a higher spatial resolution
directly from the National Forest Inventory.

The technique to collect similar information at
the local level, e g municipalities or a single
property has up until recently been characterized
by a manual survey, estimation, and mapping of
the entire area. In this way, a good documentation
of the variation within the surveyed area has been
collected. This documentation has then been used
in forestry operations.  The quality of these plans
in terms of absolute values is however not as good
as those achieved through systematic sampling.
These local data sources are therefore not suited
for integration over larger areas because of the
variable and unknown bias included in each
separate dataset. The comprehensive forestry
inventory that was conducted during 1980
through 1993 aimed at producing county-wise
collections of detailed forestry data. For reasons
explained above some kind of correction of the
individual bias would be required for
comprehensive forestry inventory data. This
correction would have been possible using the
methods and data described in this report. The
comprehensive forestry inventory was however
never completed because of a change in the
Swedish forestry statute in 1994 (SFS 1993:553)

In view of that the county and municipal
authorities has been short of a reliable information
source for planning purposes since these
organizational levels require a higher spatial
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resolution than what the National Forest
Inventory can produce. It is in this context that the
described R-method was developed.

Classification of economic map sheets into
landscape types
In the late 1980s The Swedish National Board of
Forestry, Environmental Protection Agency, the
National Heritage Board and the Nordic Council
of Ministers co-operated on a project to
investigate the relation between forestry and other
interests in the Swedish and Finnish archipelago
regions (Kihlbom, 1991). To ensure scientifically
sound comparisons in cases like these it is
important to produce a stratification of the
landscape into regions, and several researchers
have during the last century divided Sweden into
regions based on a multitude of geographical or
topic specific criteria (Hall and Arnberg,
submitted). As one part of this effort, Rolf Ruben,
made a delineation of the Swedish archipelago
region in areal units of one Swedish economic
map sheet. Furthermore, as a working material,
the background information for this delineation
was extended to cover entire Sweden. As a result
this working material came to include estimations
of constituting landscape types in 18,000, 5 by 5
km quadratic squares covering entire Sweden.
Still, this material has never been documented,
nor analyzed in any larger extent.

Description of the study area

Sweden
Sweden is located in northwestern Europe
between Lat 55° 20′ N through 69° 4′ N and Long
10° 58′ E through 24° 10′ E. The extension from
north to south is at roughly the same latitude as
Alaska or—in the Southern Hemisphere—the
stretch of ocean between Cape Horn in South
America and the Antarctic continent. In terms of
area it is similar to Spain, Thailand or California.
In population, it is in the same league as Belgium,
Ecuador or New Jersey. Its long coastlines, large
forests and numerous lakes characterize Sweden.

Geologically, Sweden is located on the
Precambrian Baltic shield and the geologic
history extends as far back as the Archean
orogeny some 2.8 billion years ago. The
landscape still bears traces of many of the
geological transformations that the land has
subsequently undergone. Most of the interior of
northern and central Sweden is dominated by
‘Norrland terrain’. This terrain consists of
scattered bedrock hills from 50 to 400 m high.

This topography is mainly the result of millions of
years of weathering and erosion of a previously
flat rock surface. The western border between
Sweden and Norway mainly follows the
Scandinavian mountain range. It was folded up
during the Silurian and Devonian periods in the
Caledonian orogeny, later eroded and was then
raised again during the Tertiary period and then
eroded again. Now its peaks rise 1,000–2,000
meters above sea level. Drainage from the
mountains flows in a southeasterly direction
eventually forming the river valleys that feeds the
Gulf of Bothnia. Much of southern Sweden is
characterized by a sub-Cambrian peneplain,
which in many places has been reshaped by
tectonic movements and erosion. This peneplain
has formed for instance the characteristic
Stockholm region fissure-valley landscape, which
extends into the Baltic Sea as an archipelago.

The two main natural soils, podzol and
cambisol, are shallow, usually within the range
20-50 cm deep. These soils are formed in deposits
mainly originating from the latest Weichselian
glaciation. These glacial deposits are often found
as till covering the bedrock surface. In lower parts
of the terrain, especially below the highest
shoreline, glacial or postglacial clay or silt has
been deposited on top of the till cover. Peat is also
abundant in the northern parts of Sweden.

Sweden's climate is determined by its northern
position in the border zone between Arctic and
warmer air masses as well as its location on the
western rim of the Eurasian continent close to the
Atlantic Ocean with its warm Gulf Stream.
Annual mean temperatures range from +8°C in
the south to -3°C in the north. Annual
precipitation typically varies between 500 and
800 mm but in the mountain range annuals may
reach as much as 2000 mm. Mean annual
precipitation is on average more than twice as
much as evapotranspiration. This, together with
the influence of glacial deposits, gives Sweden
numerous lakes of varying sizes.

The vegetation of Sweden is divided into four
main zones. The Alpine zone is located along the
mountains in the northwest. The boreal zone in
northern Sweden is part of a vast coniferous forest
belt, the taiga, which covers the northern Polar
Regions. The boreonemoral zone south of the
biological Norrland boundary, Limes
Norrlandicus, is a belt of mixed forests consisting
of coniferous trees and a significant amount of
birch and aspen on till soil and groves of nemoral
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trees in the cultivated landscapes. In the far south
and on the west coast is the nemoral zone with
elm, ash, beech, maple, lime and oak trees, with
beech being the most characteristic.

The most densely populated areas lie in the
triangle formed by the three largest cities—
Stockholm, Göteborg and Malmö—and along the
Baltic coastline north of the capital. The interior
of Norrland is very sparsely populated. The most
distinctive agricultural districts appear as

scattered ‘islands’ in a sea of forests.

Stockholm
The County of Stockholm is part of the relatively
homogeneous central Swedish fissure-valley
landscape, located within the boreonemoral zone.
This region was entirely covered by ice during the
Weichselian glaciation. During the deglaciation
phase the region has changed from being
completely submerged under the ice-sea lake

Figure 11 Map of study areas. Structure data were collected for entire Sweden (upper inset) and R-data collected for
Stockholm County (main map). Dot symbols show the location of NFI tracts and plots within these tracts (lower inset) that
were used for accuracy control.
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surface into a region of scattered smaller and
larger islands and lakes at the Baltic Sea coast.
Governed by the fissure valley bedrock structure
the glaciation and deglaciation has produced an
areal pattern of lower and higher land, in which
valleys are filled with sedimentary clays and
higher ground is covered by till or consists of bare
rock.

The southern shore of Lake Mälaren is mostly
consisted of rocky cliffs, its northern shore rather
flat. The city of Stockholm was founded in the
13th century on a small island at the entrance of
Lake Mälaren. The southern region was sparsely
populated and in the north the town met with
farming settlements and villages. During the last
few hundred years, Stockholm has undergone
periods of rapid urbanization. In the second half
of the 20th century the built up areas started to
expand radially along the main roads and railways
within a radius of 25-30 km. Between these
suburban settlements there are still significant
areas of forestland as well as some agriculture
that reach fairly deep into the city center.

The National Forest Inventory

The following brief description is meant to give a
background on the purpose of the National Forest
Inventory, its content and the spatial and thematic
resolution of the data.

Background
The goal of the National Forest Inventory is to
provide information on the forest natural resource
for planning and management on a national and
regional level. It also aims at providing data for
forestry research. Based on the National Forest
Inventory it should be possible to present
information on a regional level with adequate
accuracy. It is on the other hand not possible to
give estimates of smaller geographic units, for
instance municipalities.

The first National Forest Inventory was
conducted 1923–29 and the second 1938-52. Both
these inventories were carried out one county at a
time and in the form of a traverse sampling.
Starting 1953 and until present entire Sweden is
surveyed with a sparse sampling frame. At the
same time the actual sampling was changed to an
inventory of quadratic so called tracts with
circular sample plots located along the tract edges
Figure 11. Further refinement of the sample
density has resulted in that from 1973 and
onwards it is possible to make reliable estimates

for several important forestry parameters based on
the integration of 5 years of data.

The density of the sample has been chosen to
provide a maximum standard error of 12% for
estimates of forestland area and a maximum
standard error of 5% for estimates of growing
stock.

Method
The National Forest Inventory is an inventory
based on sampling. The sample consist today of
circular plots with a 10m radius (314m2). The
plots are distributed along the sides of quadratic
so-called assessment tracts. One such tract can
under normal conditions be surveyed in the field
in one workday. The tracts are systematically
distributed over the entire country in a sparse
network. To be able to use different sampling
density Sweden has been divided into 5 regions.
The distance between tracts and the number of
sample plots may vary between these 5 regions.
Stockholm County is located within a region
where the side of the quadratic tract is 1200m, the
average distance between the tracts in a 5-year
sample is 7km, and the number of plots in each
tract is 20. The field inventory is carried out
during the summer from May trough August by
some 20 inventory teams each consisting of 5
persons. In addition to this approximately 10% of
the surveyed area is subject to control inventory.
This is made to enable detection and correction of
any errors in the data collection and to estimate
the accuracy of the registrations.

There are two types of errors in the
registrations, random errors and systematic errors.
Random errors usually arise as a consequence of
the sampling. These errors can be statistically
estimated and they are presented with the data as
a standard error for each variable. Systematic
errors might occur due to deficiencies in the
measurements, used factors in calculations of
volume or individual variation in the
interpretation of inventory methods and field
interpretation.

For area calculations of some characteristic
the following information is used; the total area of
the county, the total number of field plots in the
county and the number of field plots that have the
wanted characteristic. First the area factor is
calculated, that is the land area that each field plot
in the sample represents. The area factor = total
land area / number of filed plots. The area factor
for Stockholm County for the period 1973-77 is
254ha. To calculate the area of for example
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swamp land supposing that we know from the
field data that 100 field plots were found to be
swamp. The total swamp area in the county would
be estimated to be 254 * 100 = 25 400 ha.

Variables
The National Forest Inventory measures and
calculates a host of variables out of which this
introduction only considers variables also
included in the R-method.

Land-use classes
Land areas are in the National Forest Inventory
divided into the following land-use classes.
• Forestland
• Swamp
• Rock surface
• Power lines
• Various land
• Sub alpine woodland
• High mountains
• Roads and railways
• Agricultural land
• National parks, nature reserves, certain

military areas etc. (NRS)
• Water
• Outside County

Site quality
Site productivity is a measure of the site specific,
wood productive capacity. In the National Forest
Inventory, Jonson’s (1914) site productivity
estimation method is still used. This is expressed
as 8 ordinal classes divided by the ideal timber
volume production for a 100-year growth period.
Field estimation of site productivity is difficult
and includes several subjective elements. This is

why data such as local forestry plans and
comprehensive forest inventories can be expected
to include rather large errors in terms of absolute
values. Results from the control inventory
performed during 1973-77 show that site quality
measurements are fairly consistent in the National
Forest Inventory data (Svensson, 1980).

Cutting classes
The concept of cutting class is related to forestry
application and it is a classification of the
maturity within a field plot relative to the final
felling age. It also indicates the next silvicultural
measure to be conducted. The classification is
based on information on crown closure, average
tree diameter, age and height. Table 2 illustrates a
slightly generalized version of this division.

Forest type
The forest type variable is derived by first
specifying the constituent tree species fraction of
basal area expressed in tenths. The classification
rules in Table 3 are then applied on the derived
species mixture, dividing the forest type variable
into 5 classes.

Crown closure
The crown closure variable expresses to what
degree an existing stand uses the site productivity
as a consequence of the density of the stand.
Crown closure is given on a relative scale from 0
to 1 divided into 10 classes. 1 denotes fully closed
crown foliage that makes full use of the stand
area. If a stand is so dense that it impedes the
development it is classified as over-closed and is
given a value of 1+. Crown closure below 0.3 is
held as a regeneration area and a value between
0.3 and 0.5 is held as sparsely distributed forest.

Growing stock
Growing stock or standing volume is measured in
m3sk, and is a measure of total stem volume over
bark above stump height including top. The
growing stock variable is only measured on trees
higher than breast height, that is > 1.3m.

Material and methods – the R-method

Background

Table 3 The National Forest Inventory Site quality classes (Jonson, 1914)

Site quality class  I  II  III  IV  V  VI  VII  VIII
Ideal yield,
m3sk/ha and year  10,5  8,0  6,0 4,5  3,4  2,5  1,8  1,2

Table 2 The National forest inventory classification of
cutting classes (Svensson 1979)

 Cutting class  Meaning
 A  Unstocked forest
 B1  Thicket stage
 B2, B3 Young forest
 C  Young thinning forest
 D1, D4  Old thinning forest
 D2, D3  Final felling forest
 E  Residual or creamed forest
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The basic idea behind the R-method (R=ruta,
square in eng.) is a systematic summary of
landscape information within quadratic, 25-
hectare squares. One important feature in the
design of the R-method is the ability to
compensate for systematic bias. This is
accomplished by comparison of the results with
the corresponding estimates from the National
Forest Inventory, which have statistically
determined standard errors. The systematic bias in
the R-data can hereby be quantified and corrected
to the level of the National Forest Inventory. One
of the main requirements has also been that the R-
method shall produce objective data within a
reasonable time and at a higher resolution than the
National Forest Inventory. The described method
is able to produce data for an area corresponding
to Stockholm County within one man-year.

The definition of the R-data variables given
below, allow for two variables to be directly
related to the county estimates from the National
Forest Inventory. These are ‘area of productive
forestland’ and ‘growing stock’ per hectare
productive forestland.

Method
The R-method involves the systematic summary
of landscape information derived from aerial
photographs. The collected R-data include all
500x500m squares delimited and specified by co-
ordinates on the Swedish economic map and that
also have at least 50% of the square area located
within Stockholm county. This comprehensive
summary of landscape information within a
relatively large area is derived from large amounts
of detailed information. This detailed information
is derived through ocular inspection, which is
interpreted and translated into 8 variables with 3
to 10 classes for each variable. These variables
and classes are described in detail below.

The R-method has mainly used aerial
photographs as information source for the
database that has been created for Stockholm
County. Regardless if the areal unit is 25 ha or 1

ha, aerial photographs, satellite images and also
field studies are able to provide large quantities of
landscape data of interest for various applications.
The final choice of measurement method and the
size of the areal unit is guided both by the purpose
of the study and by available resources. There is
however a fundamental difference between
remote sensing and field based measuring
methods. Both airplane and satellite carried
sensors have the ability to give an overlook and
detailed information at the same time. Field
measurements on the other hand often demand
time-consuming transportation in order to get
close to the same amount of summarized
information.

During the summer 1975 all of Stockholm
County was surveyed by aerial photography at a
low elevation, 9200m, using panchromatic film.
The R-data described here used these images
copied onto photographic transparencies at a 1:50
000 scale. For the interpretation the photographic
transparencies were mounted on a light-table and
interpreted through a mirror-stereoscope (Wild).
An enlargement factor of 3 times was used during
the interpretation. A constant source for additional
information was also the Swedish topographic
map, scale 1:50,000 and the Swedish economic
map, scale 1:10,000. In addition a countywide
map of forest landscape parameters, scale
1:50,000, was used. This map was compiled with
the aid of silvicultural advisers from the local
districts during a preparatory phase of the actual
R-data inventory.

During the digital registration of the R-data
each 25-hectare square unit was specified by its
co-ordinates in the national grid. The boundary of
each economic map sheet was transferred onto the
aerial photographs using a mm-graded ruler and
with the guidance of the land ownership pattern.
The interpreted values for the 8 variables were
written onto a transparent film with a 1cm2 square
grid, which in a 1:50 000 scale corresponds to the
areal unit of the inventory, 25 hectare, Figure 12.

Table 4 The National forest inventory classification of forest types based on measured tree species mixture (Svensson
1979)
 Forest type  Fraction of basal area or of number of

stems/plants
 Pine forest  Pine at least 7/10
 Spruce forest  Spruce at least7/10
 Mixed coniferous forest  Pine and spruce altogether at least 7/10
 Mixed coniferous and broad leaved forest  Broad leaved trees 3/10-6/10
 Broad leaved forest  Broad leaved trees at least 7/10
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Thus, the inventory is conducted on a square-
by-square basis. The entire area within the square
and nothing on the outside is visually interpreted
and classified according to the instructions below.
Regardless of content, each square was always
given an estimate of the area of productive
forestland within the square. This estimate is
given as tenths, 2.5 hectares, of the total square
area. Thus the code 1 means 10,0-19.9% or 2,50-
4,99 hectares. In cases of doubt, a direct
measurement was performed on the economic
map sheet.

The pilot study that was conducted as part of
the PSU-project covers entire Stockholm county
and it describes forest landscape variables for
34,464 quadratic, 25-hectare squares. The average
interpretation performance using the R-method
was estimated to about 4000 hectares/day.

Instructions for the inventory
The following section describes how the
interpreted variables are to be classified and
written down on the transparent inventory sheet.

 

Figure 12 Example inventory transparency



Discrete methods for interpretation of landscape information • 41

Area productive forestland
Codes 0-9 are given for each tenth of the total
square area that is covered by productive
forestland. Numbers are written in the top left part
of the square on the inventory transparency.

Land-use class
If water, planned buildings, agricultural area or
other land-cover types except forestland cover
50% or more of the square area, a code is given in
the middle of the square on the inventory
transparency. Codes are given according to Table
5.

For all squares coded as V, P, J or A the areal
coverage of that land-use class is specified in
tenths in the lower right part of the square on the
inventory transparency.

Forest wasteland
Areas not classified, as V-, P-, J- or A-squares
according to the specification above, are
forestland squares. In these squares the total area
of productive forestland, rock surface wasteland
and swamp wasteland is always more than 12.5
hectares, that is more than 50% of the total square
area. If the area of wasteland dominates, the
square is classified as either rock surface
wasteland or swamp wasteland according to Table
6. The code is written in the middle of the square
on the inventory transparency.

For both types of wasteland the areal coverage
of that type of wasteland is specified in tenths in

the lower right part of the square on the inventory
transparency. In addition, the crown closure and
the bearing capacity of the wasteland is specified
by a number next to the wasteland class code
following the directions for these variables below.
As usual, the remaining productive forestland is
specified in tenths in the upper left corner of the
square on the inventory transparency.

Visible roads, power lines, landfills etc. is not
included in the forest area. Larger trails, ditches,
telephone lines etc. should however never be
excluded. This would require images of higher
quality and a substantially higher level of
ambition.

All other squares are evaluated on all 8
variables, which are specified with a six-digit
code in the square on the inventory transparency.
The first sign in this code is, as previously
explained, a number that represent the amount of
productive forestland within the square. All six
signs describe forestry conditions in the
productive forestland area. At the interpretation
the signs are written down within the square area
on the inventory transparency in two rows with
three signs in each row in a systematic fashion,
Figure 12.

Site quality
The second sign, written in the upper middle part
of the square on the inventory transparency,
represents the site specific, wood productive
capacity. This is encoded according to Table 7.

Table 5 Land-use classes and corresponding codes in R-data
 Code  Land-use class

 V   Water area also including smaller islands < 1ha
 P   Area planned for dense settlements
 J   Agricultural area with accompanying grounds. 10 classes are separated as follows:
  J0  More than 50% of the area is settlement, farm center et c.
  J1  ≥ 50% of the area is field and accompanying buildings
  J2  ≥ 50% of the area is field of  good quality
  J3  "  normal quality
  J4  "  poor quality
  J5  "  varying quality
  J6  ≥ 50%  of the J-area is grazed  
  J7  "  and field on solid ground
  J8  "  and field on swampy ground
  J9  Other varying agricultural land  
 A   Other land-use classes than forestland cover more than 50% of the area

Table 6 Forest wasteland classes and corresponding codes in R-data
 Code  Waste land type

 H  Rock surface wasteland; at least 50% of the forestland is rock surface and other
waste land

M Swamp waste land; at least 50% of the forestland is swamp and other waste land
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Table 10 Growing stock classes and corresponding
codes in R-data

 Code  Growing stock class
 (m3sk/ha productive forestland)

 0  0-24
 1  25-49
 2  50-74
 3  75-99
 4  100-124
 5  125-149
 6  150-174
 7  175-199
 8  200-224
9 225-

Tree species
The third sign, written in the upper right part of
the square on the inventory transparency,
represents what tree species that is estimated as
dominant on the productive forestland.
Classification and encoding follows Table 8.

Cutting class
The fourth sign, written in the lower left part of
the square on the inventory transparency,
represents cutting class and is a classification of

the maturity within a forest stand relative to the
final felling age. Classes and codes used are given
in Table 9.

Growing stock
The fifth sign, written in the lower middle part of
the square on the inventory transparency, gives an
estimation of the average growing stock. Values
are given as one of ten classes according to Table
10.

Stand density and ground bearing capacity
The sixth and last sign, written in the lower right
part of the square on the inventory transparency,
represents the relative stand density measured as
crown closure and the ground bearing capacity on
the productive forestland. Classification and
encoding follows Table 11.

Commentary on the instructions for the
inventory

Land-use class
The first consideration at the interpretation of
every individual square area is to determine
whether or not other land-use classes than
forestland, including forest wasteland, cover more

Table 7 Site quality classes and corresponding codes in R-data
 Code  Site quality class

 +  Good productive capacity; site quality ≥ 6,0 m3sk/ha*year is estimated to cover ≥
50% of the productive forestland area

 •  Normal productive capacity; site quality 4,0 – 5,9 m3sk/ha*year is estimated to cover
≥ 50% of the productive forestland area

- Poor productive capacity; site quality < 4,0 m3sk/ha*year is estimated to cover ≥ 50%
of the productive forestland area

, Other productive forestland with varying site quality

Table 8 Tree species classes and corresponding codes in R-data
 Code  Tree species class

 T  Pine forest; pine constitute at least 70% of the growing stock
 G  Spruce forest; Norwegian spruce constitute at least 70% of the growing stock
 B  Coniferous forest; neither pine nor spruce dominates, coniferous trees constitute at

least 70% of the growing stock
 L  Deciduous forest and mixed forests where deciduous trees constitute at least 30%

of the growing stock
∅ Regeneration area or area with unknown species composition

Table 9 Cutting classes and corresponding codes in R-data
 Code  Cutting class

 X  Final felled area with or without planting and nurse trees as well as other areas
according to the old Swedish forestry statute SVL§ 5:1, 2, 3, is estimated to cover ≥
50% of the productive forestland area.

 U  Thicket stage forest is estimated to cover ≥ 50% of the productive forestland area.
 C  Thinning stage forest is estimated to cover ≥ 50% of the productive forestland area.
 S  Final felling forest is estimated to cover ≥ 50% of the productive forestland area.
E Other combinations of cutting classes
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than half of the square area. If so, this square is
assigned one of the four following land-use class
labels:

· Water (V)
· Planned settlement area (P)
· Agricultural area (J)
· Other land-use (A)
If this is not the case, the square is regarded to

be forestland. This procedure will generally
reduce the frequency of land-use classes that
already occur in lower frequencies or in smaller
areal patches than the average. This is caused by
the fact that such land-use classes less often
covers 50% or more of the interpreted 25-hectare
area.

No direct comparisons can be made between
the estimates of land-use classes from R-data and
the National Forest Inventory, unless the
differences in classification can be eliminated,
Figure 13. See also section Data analysis below.

V-squares - Larger water bodies such as the
major bays of the Baltic archipelago, the lakes
Mälaren and Erken, are not included in the
inventory. On the other hand, pure V-squares in-
between islands and the coastline are included for
purposes of completeness. For the squares
classified as water, the code 0V9 (0 forestland and
9 water) normally mean 100% water. The total
number of such squares is rather large within
Stockholm County. Theoretically, following the
definition, the code 0V9 implies that 0-9% of the
square area might be other than water, for
example shoreline tree vegetation. However, these

areas ore not considered holding any productive
forestland.

V-squares encoded 0V5 through 8 indicate a
certain proportion of other land-use classes than
water of which some might be forestland. These
scattered pieces of forestland close to water is not
included in the total estimate of productive
forestland in the county. It might be of interest to
know that the total area of such scattered
forestland with proximity to water within the
county is probably around 3000 hectares.

Shoreline forestland has sometimes during the
interpretation been considered as wasteland and
therefore not been counted as productive
forestland.

P-squares - In cases where half of the square
area consists of planned settlements the economic
map has been consulted in detail. From this the
following areas have been included in the class:
all plots whether built on or not, smaller adjacent
parcels not suitable for forestry or agriculture, and
areas such as sport fields, maintained beaches et
c.

Forested areas an non-maintained agricultural
land bigger than 0.5 hectares has been regarded as
productive forestland even if these areas might
have substantial other values such as recreational
area for local residents. If more than half of the
forest production theoretically could be harvested
these areas have been classified as forestland even
if it is situated with densely populated areas.
Consequently parts of the Djurgården and

Table 11 Crown closure and ground bearing capacity classes and corresponding compound codes in R-data
 Code  Crown closure and ground bearing capacity.

 0  Forests with markedly varying crown closure as well as ground bearing capacity
 1  Well closed forest stands  and high ground bearing capacity comprise > 50% of the

productive forestland area
 2  "  and normal ground bearing capacity comprise > 50% of the

productive forestland area
 3  "  and clay or otherwise wet ground with low ground bearing

capacity comprise > 50% of the productive forestland area
 4  Forest stands with normal

closure
 and high ground bearing capacity comprise > 50% of the
productive forestland area

 5  "  and normal ground bearing capacity comprise > 50% of the
productive forestland area

 6  "  and clay or otherwise wet ground with low ground bearing
capacity comprise > 50% of the productive forestland area

 7  Forest stands with sparsely
distributed trees

 and high ground bearing capacity comprise > 50% of the
productive forestland area

 8  "  and normal ground bearing capacity comprise > 50% of the
productive forestland area

 9  "  and clay or otherwise wet ground with low ground bearing
capacity comprise > 50% of the productive forestland area
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Humlegården parks have been classified as
forestland.

Residential plots in the forestland that are not
yet built upon have been counted as P-land if it is
anticipated that they may be built upon in a near
future. Otherwise they have been considered as
forestland. Old, non-developed, one-hectare sized
parcels, frequently found in the Värmdö area,
have been counted as forestland.

Squares encoded 0P9 (0 forestland, 9 planned
settlement area) are pure built-up areas. P-squares
encoded 0P5 through 8 have a certain proportion
of other land-use classes. Smaller groves and
parks are often present, probably covering some
800 hectares in the entire county, but they have
not been counted as forestland.

There are 1,701 squares in the county encoded
1 through 4 P 8 through 5. These hold something
like 9,000 hectares of productive forestland or
almost 3% of the entire forestland in the county. It
should be noted that this forestland has an average
distance to dense settlements of 100m.

J-squares; The agricultural areas are in
Stockholm county mainly concentrated as
continuous areas such as those around
Skeppstuna, Hölö and many others. In the

archipelago and the forest districts the agricultural
areas are markedly scattered. It was previously
mentioned that this pattern might give some
skewed results due to the fairly large basic areal
units used in the inventory. This is especially true
for the J-areas and to partly compensate for that
fact the J class is subdivided into 10 subclasses
according to Table 5.

“J0 - More than 50% of the area is settlement,
farm center etc.” are not very common but still
viewed to be of particular cultural and historical
interest. As soon as this situation has been
conceived as possible, this code has been used.

“J1; ³ 50% of the area is field and
accompanying buildings” has often been used,
maybe too often.

“J2 - 50% of the area is field of good quality”
is probably the most frequently used J-sub-class.
The yield from the agricultural fields may
sometimes be overestimated due to favorable field
structures, proper maintenance or some indication
of homogeneous and lush crops at the image
interpretation.

“J3 - 50% of the area is field of normal
quality” is not as common as one might suspect.
The agricultural output of this class might be

Land use classes in R-data  Land use classes in the
National Forest Inventory

   Forestland

   Swamp

 Forestland   Rock surface

  Sub alpine woodland

   High mountains

 Water   Fresh water

 Agricultural land   Agricultural land

 Planned developments   Roads and railways

  Other   Power lines

   Various land

   National parks, nature
reserves, certain military
areas etc. (NRS)

 
 

 
 Outside County

Figure 13 Corresponding land-use classes in R-data and the National Forest Inventory
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slightly overestimated in the archipelago region
and underestimated in other regions.

“J4 and J5 - 50% of the area is field of poor or
varying quality” probably should have been used
more often, maybe the courage was missing! The
support from the image for this delimitation is
often rather weak.

Codes “J6, J7 and J8 - 50% of the area is
grazed and field on solid or swampy ground”
have maybe been used too liberally and these
areas are very likely to have been interpreted as
forestland in the National Forest Inventory.

“J9 - Other varying agricultural land” usually
refers mainly to presently non-cultivated
agricultural land with uncertainty about future
land-use.

Similar with the V- and P-squares, no
productive forestland has been recorded for the
1,381 squares encoded 0 J0-9 5 through 9. This
unregistered area is estimated to be at the most
1,000 hectares for the entire county. These areas
are mostly smaller forested plots adjacent to farm
buildings, fields or small forest groves within
enclosed pastures. They are probably as a
consequence of their location especially valuable
biotopes for the preservation of biodiversity
within the cultural landscape.

A-squares comprise both concentrated
occurrences of for instance golf courses, timber
storage areas, bathing places and mixed V-, P-
and J-areas that altogether cover more than 12.5
hectares. The definition of the A-class is therefore
a bit more complicated than the previous ones.

As a consequence, one A-square can have a
totally different mix of land-use classes than
another. We do know however that neither the V-,
P-, J- nor the forest area alone exceeds 12.5
hectares. The use of an A-class is to get 100%
coverage of the entire county area.

By the technique of excluding the wasteland
area in the A-square estimates, some information
is gained. The code 3 A 5 for instance, give us the
following information; at least 30% is productive
forestland, at least 50% is A-class area and at
least 10% is forest wasteland. This design enables
a good estimation of the relation between
productive forestland and forest wasteland.

Forest wasteland
H-squares - If forest wasteland is mostly made up
of rocky ground or high hills the square is coded
H. Stereo-interpretation of these areas requires
good sense of observation and a good knowledge
of the regional conditions. Big, high hills with

steep slopes into the forests are easy to detect both
on the economic map sheets and in the stereo
images. This type of landscape is common on
Södertörn, Värmdö and in the southern parts of
the archipelago. In all other areas it is a lot harder
to delimit areas of rock surface wasteland only
with maps and stereo imagery.

The following method was employed to solve
this problem: Two versions, one older and one
newer, of the economic map was compared. If the
older version on its orthophoto had a bright spot
where the newer version had a height-curve, and
the aerial imagery did not show any other sign of
productive forestland, then this area was
considered as rock surface wasteland. Smaller
outcrops covered by mosses and shadowed by
forest with north facing slopes are almost
impossible to detect in the stereo imagery. And
this may be the most common type of rock
surface impediment in the county.

Rocky hill areas larger than 5 hectares have
been mapped onto the countywide forestry
inventory of 1972 and this information was of
course of great help at the interpretation.

M-squares - Larger mires is relatively easy to
identify in stereo images and they are also
specifically marked on the new economic map
sheet. However, on Scots pine bogs it may
sometimes be hard to separate wasteland from
forestland with poor productive capacity. It is
likely that some of the M-areas have been
classified by the national forest inventory as
swamp forest of poor site quality. On the other
hand, in the comprehensive forestry inventory the
same areas would probably have been classified
as wasteland.

These two wasteland categories occur as both
densely and sparsely forested variants. This is
why the code for crown closure and ground
bearing capacity, explained below, has been used.
The code 0 means mixed conditions and this code
has been fairly frequently used.

Area productive forestland
For every inventoried 25 hectare square unit the
share of productive forestland has been recorded
as codes 0 through 9. Thus the code records tenths
of the total square area and for example the code
1 means that there is at least 10.0% and at most
19.9% productive forest land within the square
unit. The figure is a combined estimate using the
economic map sheet and the stereo image.

Water, house lots, agricultural fields,
buildings, roads, power lines were most easily
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located on the economic map sheet. The map
sheet does not however identify for example
grazing areas and forest clear-cuts. These cases
were settled by using the stereo image but even
this may not result in a clear answer. In such cases
the area was located on the old economic map
sheet, which has a fairly good bottom imprint of
the aerial image from the end of the 1940s. If the
same land use pattern did not appear on this map
it is probably a felling site area. If however the
same land use pattern appeared on the older map
it may be a grazed area. This might still be a
recently abandoned grazing area and to resolve
this possibility the areal image was consulted
once again with specific attention to details. If
brushes could be seen to encroach from the edges
or along ditches and especially if signs of
scarification or performed ground clearing could
be found the area was classified as forest land. On
the other hand, if grazing animals, areas of
heavily trampled ground was detected in the
image; the area was classified as pasture.

In remaining uncertain situations the decision
between forest land or grazed agricultural land
was based on considerations of the spatial
configuration of the area under consideration and
surrounding land parcels. Properties such as size,
shape and especially relation to water and farm
center were used as decision variables if it could
be feasible to continue grazing or forestry on the
area.

From this detailed description it is important
to note two things. First, the areal estimate is
made with great care in order to produce a reliable
estimate for each areal unit. Second, there are a
multitude of considerations of very different
character and either one of these may determine
the outcome of the classification.

As previously explained the areal distribution
of land cover types is of importance for this
classification system. First of all it is decided if
the combined area of productive forestland and
wasteland covers more than half the areal unit.
After this the wasteland area is estimated and
subtracted. The remainder is classified as
productive forestland and that area is recorded as

10% classes. This procedure also enables not
explicitly recorded land use areas to be calculated
as the difference between given area and the total
area of the square unit.

The following variables are solely determined
based on the properties of the productive
forestland area within the square area.

Site quality
Table 7 makes clear that the site quality variable
does not refer to the average site quality within
the square. Instead a mode-like measure is
employed where a specific site quality class is
chosen only if it covers 50% or more of the
productive forest area. Site qualities may,
especially within the County of Stockholm be
very variable from one stand to another, and each
stand is typically relatively small, only c.3
hectare. It is therefore argued that it is not
meaningful to produce an average. The chosen
measure is considered more expressive to people
that are non-forestry experts.

The estimates are not based on measurements.
A countywide map with site quality estimates
from the local districts silvicultural advisers
together with elevation information from the
economic map sheet has been important
information sources. With this information in
mind it is a fairly easy task for a skilled forestry
expert to use the aerial image to finally choose
which of the four classes that best correspond
with the picture.

It is anticipated that site quality information at
this resolution could be very valuable
information, especially for municipal planning
purposes.

The approximate correspondence between the
site quality classes used in the R-method and
classes according to Jonson (1914) are illustrated
in Table 12. The mixed class of the R-method has
no equivalence in the Jonson system.

Tree species
All trained aerial image interpreters know that it
is precarious to make estimates of tree species
proportions in black-and-white images. Especially
dicey are cases with younger and intermediate age

Table 12 Site quality class correspondence between the R-method and Jonson (1914)

 Site quality class
 R-data

 Good (+)  Normal (•)  Poor (-)

 Site quality class
 Jonson (1914)

 I  II  III  IV  V  VI  VII  VIII

 Ideal yield,
 m3sk/ha and year

 10,5  8,0  6,0  4,5  3,4  2,5  1,8  1,2
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coniferous forest stands. So, for that reason the
information from the local silvicultural advisers
have been thoroughly studied before the aerial
photo interpretation. Surprisingly often the
background photograph on the old economic map
gave additional information on the actual forest
stand.

Squares with more than 3/10 deciduous forests
(L-squares) appeared easiest to identify. After
this, older, not too well closed spruce forests
seemed easiest to identify. The dark shadow from
these scrubby spruces was a contributing factor.
On rocky substrates where normally pine trees
prevail the code T was recorded, at least when the
lighter gray shade of pine forests could be
distinguished. Where the local silvicultural
advisers had recorded pine trees this was taken as
evidence to use the T class label even if the area
was of young or intermediate aged forest. Spruce
forests on good site quality locations were
determined similarly.

In most cases, the images of the forest
landscape were studied in a way that several
squares could be compared in detail. When the
joint information suggested the code L, G or T,
this was recorded.

Cutting class
The managed forests in the Stockholm region
have an average growth period of some 100 years.
Because of this it is anticipated that information
about the forest maturity or cutting class is of
large interest for all use of the forested landscape.
For forestry purposes information on the location
of large volumes of forests ready for final felling
is of course of interest. Furthermore, this
information is of interest to all parties involved in
the physical planning process, especially
municipal and non-governmental organizations
interested in for example the preservation of
recreational values in the forested landscape. The
design of the cutting classes in the R-method, X,
U, C, S, and E is for that reason defined in order

to enable all parties to participate in a constructive
dialogue about the spatial issues of forest
landscape information. The correspondence
between these classes and the National Forest
Inventory is illustrated in Table 13

During the air photo interpretation it can often
be hard to tell between the S and C classes. If in
doubt the photographic backdrop from the 1950s
on the old economic map was compared with the
stereo images. If there was a significant difference
between the two the square was coded C,
otherwise it was coded S. If the difference was
substantial for some stands and not for other
stands the square was classified as a combination,
E. The X and U cutting classes stand out fairly
well from the other classes in the image
interpretation. It may, however, be hard to tell X
and U apart. In those cases the records from the
local silvicultural advisers have been an excellent
information source.

The E cutting class has always been used
when none of the classes X, U, C, or S alone have
been estimated to cover at least half of the
productive forest land area within the square unit.
Due to the landscape structure in the Stockholm
region, most if not all squares would have been
classified as E-squares if the forests had been
intensely managed for a longer period of time.
This is not the case at the time of this inventory
but it might very well be the case for many areas
today except maybe for larger areas managed by
large forest companies in the northern and
western parts of the county.

Growing stock
The mean growing stock per hectare productive
forestland was estimated for each square unit.
These estimates were based on experience from
measurements through the National Forest
Inventory and especially estimates from forest
management plans covering some 40,000
hectares, which were compared with the stereo
image. In addition, information from other

Table 13 Cutting class correspondence between the R-method and the Swedish National Forest Inventory

 R-method cutting class  National forest inventory cutting class
 X  Felling site  A  Unstocked forest
   B1  Thicket stage

 U  Thicket stage  B2, B3 Young forest
 C  Thinning stage  C  Young thinning forest
   D1, D4  Old thinning forest

 S  Final felling stage  D2, D3  Final felling forest
 E  Other combinations

of cutting classes
 E  Residual or creamed forest
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planning activities and related field sampling
covering some 100,000 hectares of the county
assisted the growing stock estimates.

The growing stock varies from stand to stand
between 0 and 400m3sk/hectare. Especially the
cutting class value influences the amount of
growing stock. The forest stand average for
felling sites is somewhere between 0 and 10
m3sk/hectare, not counting nurse trees, which
have some 20-80 m3sk/hectare. The thicket stage
has a large variation in the range 10-120
m3sk/hectare and in some cases even more at the
transition to thinning stage forest. The values for
thinning stage forests is between 60 and 250
m3sk/hectare and forests ready for final felling
usually lie in the range 80-400 m3sk/hectare. In
some extreme cases these stands may hold more
than 400 m3sk/hectare.

The second most important factor is the site
quality. Poor site quality usually gives values at
the lower end whereas good site quality result in
values at the higher end of the intervals
mentioned above.

Another contributing factor is how densely the
forest grows and in the stereo images the crown
closure is a measure of this. A well-closed stand
with large crowns does not have as much growing
stock as a similarly well-closed stand with small
crowns that indicate a higher number of stems.

Also the tree species affects the volume of the
growing stock. Deciduous stands have generally
less volume than Norwegian spruce stands with
similar conditions. Alder, Ash and Aspen might in
thinning stage stands reach the same levels as
comparable coniferous stands, whereas Birch and
especially Oak stands normally have significantly
lower volumes of growing stock.

An estimate of the growing stock volume
using the described method is of course very
subjective. Each person has different experiences,
which become articulated through the series of
considerations that are included in the estimation
process. Systematic errors in the estimations may
lead to an over- or underestimation of the total
growing stock volume, maybe as much as +/-
15%. The quality control that has been performed
as part of this report shows however that there is a
very good agreement between the R-data
estimates and the National Forest Inventory for
the entire county.

Stand density and ground bearing capacity
Stand density is measured as crown closure since
this is possible to detect in the aerial images. In

the National Forest Inventory the stand densities
is given as volume-density and is calculated from
field measurements of basal area and mean
height. The relation between the NFI measures
and the R-data measure is not developed any
further in this text.

The ground bearing capacity variable was
recorded in the comprehensive forest inventory
but not in the NFI. There are several reasons to
include this variable in the R-data inventory. For
forestry purposes this variable is of interest to
road construction and logging planning. The
indirect consequences for choice of plant species
and silvicultural planning is however far more
important. Also, this variable may be of interest to
other interest groups such as for recreation
purposes.

In the original R-data these two variables are
found in the same position. This is the primary
cause of the following mixed treatment of these
variables.

Codes 0-9 have been used for all square units
classified as productive forest and also for those
squares where forest wasteland is dominant (H
and M squares). Note however the special
meaning of the code 0 in connection with the
forest wasteland class.

For squares classified as productive forests the
code 0 is used with a special meaning for felling
sites that show signs of regeneration measures.
Felling sites with no signs of soil cultivation or
scarification or other regular point pattern, which
may indicate seedlings, have been given the code
0. Felling sites with nurse trees and signs of
ground clearing have often been coded 4, 5, or 7
although no seedlings have been identified.

The codes 1, 2, and 3 means that the forest
stands are generally well closed with high normal
or low ground bearing capacity. The interpretation
may however have favored the normal case.

The codes 4, 5, 6, and 7 have also been
applied with no significant deviations from the
instruction. Though the code 5 “Forest stands
with normal closure and normal ground bearing
capacity” have been used in situations of a lack of
indications for any of the other classes.

Squares given the codes 8 or 9 “Forest stands
with sparsely distributed trees and {normal, low}
ground bearing capacity“ are usually areas that
have been neglected or otherwise show signs of
unsatisfactory forest conditions. A large amount
of these areas may nevertheless be abandoned
agricultural land or enclosed pastures that hold
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other specific values than those favored by this
classification system. It may thus turn out useful
from a nature conservation perspective to
investigate these areas in more detail.

Data processing
During the period from 1981 until 1987 the Board
for regional planning and industry within the
Stockholm county council was the authority that
specifically co-operated with the PSU-project
leaders at the Swedish National Board of
Forestry. This co-operation has largely consisted
of registration and processing of original R-data
performed by Gerd Lundström under the
supervision of ME Björn Lindfeldt.

Registration control and corrections
Copies of inventory originals were continuously
provided for computer registration. Printouts of
the recorded data were similarly brought back to
the interpreter (Rolf Ruben) for control and
correction. This procedure was repeated until no
errors were found.

By February 1986 the entire county was R-
inventoried and computer registered. Finally the
database was added the national grid coordinates
for each registered R-data square. At the same
time the codes from the inventory sheets were
translated into number format.

To be able to evaluate a possible drift in the
estimates, several square units were interpreted
twice and even three or four times after some
time. Also after a longer break in the inventory
work some 1000 hectares were re-interpreted.
These were all measures to evaluate any
systematic errors from one period of inventory to
another. Codes were given to these square units to
be able to identify the most recently inventoried
square.

Quality assessment
As soon as the following prerequisites can be
fulfilled, the R-data can be compared with
corresponding variables from the National Forest
Inventory.
• R-data should be collected according to the

above instruction for the inventory and for a
geographical area that correspond to
statistically verified data from the National
Forest Inventory.

Furthermore data from the National Forest
Inventory need to be processed so that the
following information is available:
• The total area an the land use class

proportions

• The productive forestland area, mean site
quality and the areal coverage for each site
quality class.

• The total volume of the growing stock, an
overall mean value per hectare, areal
distribution of growing stock classes and the
mean growing stock per hectare for the three
site quality classes <4m3sk/ha, 4-6 m3sk/ha
and ≥ 6 m3sk/ha as well as for the cutting
classes (A + B1); (C + D1) and  (D2, 3, 4 +
E).

• Areal distribution of cutting classes and the
distribution for the site quality classes
above, at least for the cutting classes (A +
B1); (C + D1) and  (D2, 3, 4 + E).

• The areal distribution of tree species and the
growing stock distribution for tree species
and for the three site quality classes that
belong to the cutting class D2, 3, 4 + E)
together with total figures.

If possible the standard error should be given.
The National Forest Inventory has not

surveyed the entire county. The municipalities of
Danderyd, Järfälla, Lidingö, Nacka, Sollentuna,
Solna, Stockholm, Sundbyberg, Täby and parts of
Vaxholm municipality, has not been surveyed in
detail. The area of these municipalities is in the
National Forest Inventory assigned to the land use
class “Agricultural land”. Since this is a rather
large area it would be hard to make any absolute
comparisons between the two datasets if not some
sort of adjustments were performed. To make a
correct comparison between the two materials, the
R-data not within the survey area of the National
Forest Inventory needs to be removed.

The remaining difference between the
National Forest Inventory figures and the R-data
estimates may be related to that the distinction
between productive forestland and forest
wasteland has been different. There is also a
possibility that deviation may occur due to the
differences in spatial resolution of the two
methods. The National Forest Inventory field
plots are 314m2 while the areal unit in R-data is
250,000m2. This means that the two methods have
different abilities to record properties of areal
units, which size lie between these limits. In cases
of systematic deviation in R-data from the
National Forest Inventory data it is anticipated
that using a correction factor can compensate for
this deviation.

The area productive forestland is the only
variable that is consistently given for all square
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units no matter what land use class that dominates
the square. Concerning the areal estimates of
other land use classes, the purpose of the R-
method is only to give a rough estimate of the
land use structure by, for example, calculating the
frequency of square units with a specific land use
class or by examining the map image, Figure 16.
For such areas the area of the specific land use
class is given in tenths together with the estimate
of productive forestland area. The remaining area,
if any, is an indirect measure of the amount of
other land use types.

Squares not covered by 50% or more
productive forest land has not been specified
according to the forest variables, site quality, tree
species, cutting class, growing stock, stand
density, and ground bearing capacity. The
estimate of these variables is accordingly based
on square units that have a 50% or more areal
coverage of productive forestland. The truth of
the overall estimates relies upon the assumption
that the forests do not have entirely different
properties for these different square units. This
assumption may prove incorrect but is
nevertheless the best estimate available.

For the quantitative summaries the class
middle have been used as a mean value for each
class. This means for example that for the variable
“area productive forest land”, the class 0, which
by definition includes an interval 0-10% of the

square area, is represented with the 5% value of
the square area, 1.25 hectare.

Condensed-county method
The quality assessment was performed by
concentrating the evaluation to those R-data
squares that spatially intersected one or more of
the National Forest Inventory field plots, Figure
14. In this way the spatial correspondence
between the two data sets increase significantly.
All National Forest Inventory field plots from the
period 1973-77 thus determine the “condensed
county”. The sampling based National Forest
Inventory is designed to give reliable estimates of
county totals. It is therefore argued that the
"condensed county" method gives an even better
correspondence between the actual situation and
the sample, due to the increased spatial
correspondence.

Results – R-data

Quality assessment
The quality assessment is here restricted to total
productive forest area and total growing stock
estimates for the entire county. Other quality
assessments are also possible but will require
additional information from the National Forest
Inventory according to the specification above. If
possible though approximate figures from the
National Forest Inventory have been given to give
the reader an idea of the differences that may exist
between the two data sets.

The total area of the “condensed county” is
46,750 hectare. It consists of 1,870 R-data square
units and 3,091 corresponding National Forest
Inventory field plots. The total area productive
forestland for the “condensed county” is
according to R-data 21,012 hectare. To produce
an estimate of the total area within the whole
county, the same technique is used as within the
NFI. In 46,750 hectare of surveyed area we have
21,012 hectares of productive forestland. The
ratio 21,012/46,750 is used against the known
land area of the entire county, 649,000 hectares.
This gives 21,012 / 46,750 * 649,000 = 291,696
ha. The National Forest Inventory estimates the
area productive forestland to be 287,000, which
means that the R-data estimate is 1.6% higher.
We should expect some degree of overestimation
when the areal unit for investigation is increased
from 314m2 of the NFI field plot to 250,000m2 of
R-data. Such circumstances generally suppress
uncommon classes, in this case forest wasteland,
and favor more common classes. It is however

Figure 14 Conceptual layout of the condensed county
square units. The square grid illustrates the grid of the
25 ha R-data inventory units. The small dots represent
field plots in the National forest inventory, which
usually come in square shaped tracts. The shaded 25ha
units indicate those squares that intersect with one or
more National Forest Inventory plots.
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hard to predict the magnitude of this effect since it
is dependent on the spatial properties of land use
classes, such as the size and distribution of
homogeneous areas.

The growing stock estimate is in R-data given
as mean growing stock volume per hectare
productive forestland within each 25-hectare unit.
The mean growing stock in the “condensed
county” is estimated to 120.17 m3sk/ha, which
can be compared with the National Forest
Inventory estimate of 121 m3sk/ha. The difference
between the two estimates is thus <1%. The
county total is in R-data estimated to be
35,003,520 m3sk/ha, which deviates by 2.6%
from the NFI estimate of 34,100,000 m3sk/ha. Of
course, the R-data estimate here includes the
previous overestimation of the productive
forestland area. A summary of the quality
assessment is given in Table 14.

Clearly there is a very good correspondence
between the estimates of area productive
forestland and growing stock produced by the
National Forest Inventory and the R-method
respectively. The estimates of total growing stock
will also be discussed further in one of the result
sections below.

Land use class
Figure 16 illustrates the geographic distribution of
recorded land use classes. A total of 337,481
hectares of productive forestland has been
recorded in R-data for the Stockholm County.
250,643 hectares have been described regarding
their site quality, tree species, cutting class,
growing stock, stand density, and ground bearing
capacity. This area is 78% of the total productive
forestland area in the county. The remaining 22%
is consequently not described in detail for these
variables because it is located in square units that
predominantly consist of other land use classes.

The National Forest Inventory states that the
area productive forestland is 287,000 hectare. The
reason for this large deviation is due to the
previously mentioned fact that the National Forest
Inventory does not survey significant parts of the
county. The previous quality assessment showed
the reliability of the R-data estimates for
productive forestland. The estimates for the other
land use categories given in Table 15 are only
given as a rough estimate of the areal proportion
of land cover categories within the county. For
reasons explained previously these figures, except
the figure for forestland, can not be used as an
estimate of the absolute values of these land use
types.

Site quality
Figure 17 illustrates the geographic distribution of
the site quality classes. Out of the forest area that
has been described in detail, 30.2, 28.8, 19.7 and
21.3% have been classified as good, normal, poor
and other varying site quality in that order.

Studying the areal distribution of the site
quality variable in Table 16 we see that 46% of
the felling sites are on good site qualities. This
relation is however not the case for the thicket
stage forests. This result is not unexpected, but
maybe a bit more pronounced than anticipated.
That clear cuts during the 1960s and the 1970s
were mainly done on the good sites have been
known through information from local
silvicultural management plans. The reason for
this is partly the more aggressive logging policy
during these years, partly due to the autumn storm
in 1969 that fell large areas of high-grown forests
on clay or otherwise wet ground, that is on good
site qualities. During the 1950s the logging policy
was different and many forest plantations were
performed during this period. Markedly often it
was forests on eskers and other higher hills that
were logged during this period.

Table 14 Summary of the quality assessment of R-data against the National Forest Inventory for Stockholm county
estimates of area productive forestland and growing stock for the period 1973-77.

NFI estimate R-data Condensed
County

R-data Total
estimate

Area productive forestland (ha) 287,000 291,696 337,481
Average growing stock (m3sk/ha) 121 120 126
Total growing stock (m3sk) 34,100,000 35,003,520 42,522,606

Table 15 Areal coverage within Stockholm County of the 5 land use classes that was identified by R-data.
Forest Water Planned

buildings
Agricultural

area
Other

Area  (ha) 337,481 178,457 51,500 93,542 39,166
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For the other cutting classes there are only
minor deviations from the overall distribution for
the entire county. It seems only logical that the
felling stage forests have a slightly lower average
site quality than the thinning stage forests.

Cutting class
The geographic distribution of the different
cutting classes is shown in Figure 18. The areal
distribution summarized in Table 17 seem to
correspond well with the estimates of the National
Forest Inventory acquired in a totally different
manner.

Tree species
The comparisons of results for tree species are
summarized in Table 18. These numbers indicate
that the Norwegian spruce forest area have been
largely underestimated in R-data. The spruce
forests have probably been classified as
coniferous forest due to the well-known difficulty
to separate spruce from pine during the image
interpretation. Stereo image interpretation of color
infrared images would certainly lead to a more

accurate result. The underestimation may also be
a result of the size of the areal unit for
measurement. If spruce forest stands generally
occur as relatively small and dispersed units, this
would result in a lower frequency in the R-data
than in the reality. The geographic distribution of
tree species according to R-data is illustrated in
Figure 19.

Growing stock
The good correspondence between the R-data and
NFI estimates of growing stock was previously
established. This evaluation was based on a so-
called “condensed county” assessment. One
reason to perform this type of evaluation was that
the National Forest Inventory does not cover the
entire county with forest parameter evaluations,
but R-data give an exhaustive evaluation of the
entire county area. The average growing stock
volume per hectare is estimated to 126
m3sk/hectare in R-data, Table 14. This figure is
higher than the county average for the areas
covered by the NFI discussed earlier. From this
we may draw the conclusion that the forests in the

Table 16 Areal distribution of site quality classes over cutting classes. Numbers are given in hectares based on R-data
from Stockholm county 1975.

Cutting class
Site quality
class

 Felling site  Thicket
stage

Thinning
stage

 Final felling
stage

 Other
combination

Total

Good 13,201 4,809 23,852 24,401 8,830 75,094
Normal 8,722 6,337 22,673 25,232 8,855 71,821
Poor 3,410 5,944 16,757 20,408 3,297 49,817
Other/varying 3,526 3,509 15,654 20,219 10,998 53,909
Total 28,860 20,601 78,938 90,260 31,982 250,643

Table 17 Comparison between R-data and NFI estimates of the areal distribution of recorded cutting classes. Numbers
are given as percent coverage of the total forest area in the county 1975.

Cutting class R-data (%) NFI (%)
Felling site (A + B1) 11.5 14.2
Thicket stage (B2 + B3) 8.2 10.8
Thinning stage (C + D1 + D4) 31.5 29.8
Final felling stage (D2 + D3) 36.0 44.3
Other combinations, residual (E) 12.7 0.9

Table 18 Comparison between R-data and NFI estimates of the areal distribution of recorded tree species. Numbers are
given as percent coverage of the total forest area in the county 1975. The NFI estimates pertain to the entire Svealand
region and not only Stockholm County.

Tree species R-data (%) NFI (%)
Pine 31.8 36.6
Norwegian spruce 10.4 28.8
Conifer 44.0 22.8
Deciduous or mixed 6.7 11.8
Unknown 7.1 0
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municipalities of Danderyd, Järfälla, Lidingö,
Nacka, Sollentuna, Solna, Stockholm,
Sundbyberg, Täby and parts of Vaxholm
municipality has a significantly higher average
growing stock than other areas in the county.

Stand density
The general impression from Table 19 is that
most of the thinning and final felling stage forests
have a well-closed structure and only some 2% of
the thinning stage forests hold sparsely distributed
stands. No map of this parameter has been
produced.

Ground bearing capacity
The areal distribution of the ground bearing
capacity is summarized in Table 20 for each site
quality class. This shows for instance that high
ground bearing capacity occurs mainly on areas of
poor site quality, these are often on rocky
substrates. Low bearing capacity occurs largely in
locations with good site quality, often in clay
filled depressions and valleys.

Material and methods – Structural data;
classification of economic map sheets
according to landscape type

Background
As previously mentioned the classification of
economic map sheets into landscape types was
performed as a background material for the
delineation of the archipelago region in Sweden.
The extent of this working material came to cover
entire Sweden in which four different landscape
types have been identified. The idea behind this
extended background data was that it could be
used to differentiate for example forestry
practices between different landscape types. The
grid structure of the material was also anticipated
to be possible to compare with other data such as
national and regional summaries from the
National Forest Inventory and data such as the R-
data described previously in this chapter.

Method
In the working material four different landscape
types have been identified, coastal district,
urban/suburban district, agricultural district and
forest district. As a result this working material
came to include estimations of constituting

Table 19 Areal distribution of stand density (crown closure) classes over cutting classes. Numbers are given in hectares
based on R-data from Stockholm county 1975.

Cutting class

Crown
closure

Felling
site

Thicket
stage

Thinning
stage

Final
felling
stage

Other
combi-
nation

Total
hectare

Total
%

Well closed 892 6,690 52,728 46,505 8,909 115,723 46
Normal 1,428 6,976 19,826 37,046 11,539 76,815 31
Sparsely 2,471 1,327 1,835 3,799 3,357 12,788 5
N/A 24,070 5,608 4,549 2,912 8,178 45,317 18
Total ha 28,860 20,601 78,938 90,261 31,983 250,643
% 12 8 31 36 13 100

Table 20 Areal distribution of ground bearing capacity classes over site quality classes. Numbers are given in hectares
based on R-data from Stockholm county 1975.

Bearing
strength

Site quality

Good Normal Poor Other Total (ha) Total (%)
High 765 18,992 39,161 8,673 115,723 46
Normal 47,035 38,878 2,370 31,963 76,815 31
Low 11,780 1,980 1,612 2,118 12,788 5
N/A 15,515 11,971 6,675 11,155 45,317 18
Total (ha) 75,095 71,821 49,818 53,909 250,643
Total (%) 15 14 10 11 100



54 • Discrete methods for interpretation of landscape information

landscape types in 18000, 5 by 5 km quadratic
squares covering entire Sweden.

The term district above will be used
throughout this description an is meant to be
synonymous to the Swedish word ‘bygd’ which
essentially mean a geographic region often in the
countryside and populated to some extent. The
spatial extent of this concept is not clear but from
the translation above it follows that a ‘bygd’ or
district in the context of this report embraces at
least one or a few kilometers.

As source material the Swedish topographic
map sheet series at 1:50 000 scale was used. The
varying availability of the latest editions of these
map sheets resulted in a time span from 1960 to
1980 in the used maps. Each map sheet is divided
into 5 by 5 km squares corresponding to
individual map sheets in the Swedish economic
map sheet series in 1:10 000 scale. The areal
coverage of certain land cover / land use types is
estimated for each 5x5km square unit. On the
basis of this estimation the square is classified as
one of four landscape types. Furthermore the
estimated areal proportion of all landscape types
present in the square unit is also recorded. The
estimates are given as tenths of the total square
unit area. Thus, the smallest area registered is 2.5
km2, which may in fact be a summary of many
smaller areas summing to an area large enough to
be registered.

Instructions for the inventory
Areal units corresponding to one entire economic
map sheet is divided into four categories
according to the instruction below. It is also
possible to use other sizes of the areal unit
following the occasional modifications detailed
below.

The landscape types identified are:
1. Coastal district, code K, Archipelago covers

at least 60% of the areal unit. Archipelago
denotes the land area within 500 m from the
seashore or from the shore of any of the four
larger lakes in Sweden, Vänern, Vättern,
Mälaren, and Hjälmaren. Included are also
water bodies of these lakes. Code K is used
within 500m from sea etc. no matter what the
size of the areal unit is.

2. Urban/suburban district, code T, is used
when at least 1/8 of the areal unit is covered
by urban/suburban land, that is, built up land
including house lots, streets, parks, industrial
and commercial areas. Also golf courses,
airfields, power lines, freeways and sports

facilities (excluding slalom slopes) is counted
as urban/suburban land.

3. Agricultural district, code J, is used when
fields, meadows and urban/suburban land
cover at least ¼ of the areal unit. By fields and
meadows mean agricultural fields, grazed
areas including tree patches within these areas.
Also roads and buildings within or connected
to these areas are counted. In addition to that
urban/suburban land as defined above is
included in this landscape type, though
observing the sequence of work given below.

4. Forest district, code S, is used for all other
areas, thus encompassing forested areas and
other land cover types that do not belong to
the other three categories

Sequence of work
In the classification process, first an evaluation is
made whether the square should be classified as
Coastal district, code K, or not. If this is not the
case it is tested whether the requirements for
Urban/suburban district, code T, is fulfilled.
Again, if this is not the case it is tested if the
requirements for Agricultural district, code J, is
fulfilled. If the requirements for neither K, T, nor
J is fulfilled the area is classified as Forest
district, code S.

The areal estimates are always given as
figures rounded to whole tenths of the areal unit.
Occurrences less than 1/20 is recorded with a dot,
• = incidence.

During the inventory, information is recorded
as letter and number codes in geocoded squares
on a separate interpretation worksheet. The class
code is given in the middle of the square on the
worksheet. In addition the areal share of each
landscape type within the square unit is recorded
as integer numbers in the four corners of the
interpretation worksheet, each corner
corresponding to one landscape type.

In the upper left corner, the coastal areal share
within the square unit, rounded to whole tenths, is
recorded. The lower left corner is in a similar
manner used to record the areal coverage of
urban/suburban area. The lower right corner
records the agricultural area and the upper right
corner is used to record the forest area. Inland
lake area other than that included in the coastal
area definition is not explicitly recorded but can
be calculated as the remaining area between those
recorded for the four landscapes type and the full
area of the areal unit.
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Results – Structural data

Most of the material is still only available as
unprocessed interpretation worksheets. Due to the
focus of the original project on coastal areas these
have, however, been transferred into digital
format. For the purpose of this work a portion
corresponding to the Stockholm County has also
been transferred into digital format. Figure 15
show the areal share estimates for each recorded
landscape type for Stockholm County. Figure 21
illustrates the areal distribution of the final
classifications into landscape types for Stockholm
County.

Discussion and conclusions

This chapter has given a detailed description of
two previously unpublished data sets. The

methods that was used to record these data sets
and the final structure of these data resembles to a
varying degree the structure used in contemporary
techniques for digital analysis of landscape
analysis.

A primary goal has been to highlight these
data as a possible source for further scientific
studies. Another important goal has been to
illustrate some interesting techniques to record
and assess the quality of information about the
physical landscape.

For the purpose of this dissertation the chapter
has given a thorough description of the data used
in chapters 5 and 7.
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A – Urban/suburban B - Forest

C - Agricultural D – Coastal
Figure 15 Images illustrating the estimates of areal share of the landscape types, Urban/suburban (A), Forest (B),
Agricultural (C), and Coastal district (D) form the Structural data inventory 1960-80. Each pixel represents an area
corresponding to one Swedish economic map sheet, 5 x 5 km. Low areal share is given in dark tones and higher shares are
given as increasingly whiter tones.
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Figure 16  Map of land use categories in Stockholm County according to R-data from 1975
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Figure 17  Map of site quality categories in Stockholm County according to R-data from 1975
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Figure 18  Map of cutting class categories in Stockholm County according to R-data from 1975



60 • Discrete methods for interpretation of landscape information

Figure 19  Map of tree species categories in Stockholm County according to R-data from 1975
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Figure 20  Map of growing stock categories in Stockholm County according to R-data from 1975
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Figure 21 Landscape types in Stockholm County according to the Structural data inventory 1960-80
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PILOT STUDIES

Introduction

The following chapter presents two pilot studies
that were performed during the first phase of this
research. Parallel to the problem formulation it
was essential to gain some insight into the
problems associated with data transformations. As
I have already mentioned I tried to separate the
transformation problem into separate geographic
dimensions. This chapter deals with the problem
of transforming geographical data through a
change of spatial scale.

Scaling of geographical data has traditionally
been made manually, and the issue of aggregation
and generalization has a long tradition within
geography. There is today an increased demand
for automated tools for generalization, updates
and revision of databases made at differing levels
of generalization. Several disciplines apart from
geography such as ecology, land surveying,
computer science and cognitive psychology are
currently involved in research on this issue. A
review of research within this field has been
presented in the spatial granularity section of
chapter 3.

The need for a general framework to deal with
scale and complexity changes of geographical
data was also indicated in chapter 3. The spatial
pattern of various environmental variables and
their relationships might be ordered into scale
domains and it is also speculated that transitions
between such domains might be relatively abrupt
much like phase transitions in physics (Wiens,
1992). King (1990) denotes such domains as the
‘maximum extent’ in the context of ecological
models. The fairly wide support for ideas of scale
dependent controlling factors, on for example
ecosystems, encouraged me to try to design
experiments that investigated these theories as a
tool for context transformation processes.

Both studies approach the scaling problem
trying to isolate the change in spatial granularity,
fixing the thematic and temporal granularity.
Thus, they also make a first attempt to detect any
evidence for a scale dependent perception of land

cover categories. This research direction is further
developed in chapter 7.

The first study considers both continuous and
categorical data and uses both global measures as
well as location specific analysis to estimate the
spatial aggregation effects. For the categorical
data this first study uses two different spatial
aggregation strategies, one standard procedure
using a majority decision and an alternative
aggregation method based on confusion matrices.
The second pilot study wanted to test the idea that
physical controlling factors such as climate,
hydrology and soils impose general and scale
dependent constraints on other environmental
variables. The second pilot study also considers
both qualitative and quantitative data but focus
more on the problem of how mixture classes and
mixed pixels behave in the aggregation process.

Data for the pilot studies consisted of the R-
data material presented in the previous chapter
and additional data collected specifically for the
purpose of the pilot studies, but in line with the
same methodology. Of these two pilot studies, the
second has been presented at the 8th annual GAP
analysis meeting, 1998, Santa Barbara, USA
(Ahlqvist, 1998).

Pilot study 1

Objective
The objective of this study is to evaluate the
results of a straightforward aggregation of an
initial dataset. This kind of assessment has been
done before but in this study the initial dataset, as
well as the reference dataset for testing the
aggregation performance, is derived through
manual classification at both levels of resolution.
The basic hypothesis in this study is that the
human perception of landscape features varies
with field of view. If true this would imply that
information gathered for a certain area would
show differences depending on the spatial unit
used for registering the information.

Method
To investigate whether or not there is a difference
in interpretation depending on scale, data were

Chapter

5
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needed from two separate interpretations of the
same area using different spatial resolutions.
Other studies of aggregation effects on grid data
have mainly evaluated direct changes in spatial
metrics such as local variance and pattern indices.
This study uses an alternative approach based on
manual interpretation at two resolutions using the
same classification scheme. It is anticipated that
the effect of different automatic data aggregation
methods can be assessed in the right context if
using manually classified data at different
resolutions as reference data.

It may be speculated that the same piece of
landscape might be differently evaluated as a
result of the area of focus for interpretation and
classification. The experimental design also has
the profound difference with normal remote
sensing image based tests that some of the
information in this material has a sub-pixel
resolution. Variables such as area productive
forest actually gives the areal percentage of the
class productive forest land within each pixel.
Also the data actually contain gridded object
information not spectral ‘object-like’ information
and this is very important for the purpose for the
investigation especially in the case of comparing
aggregation results with a reference image.
Aggregation of spectral signatures averages all
sub-pixel object signatures and gives the
integrated signature as an input to the
classification algorithm to decide what class
should be assigned to the pixel. In the
interpretation process the interpreter actually
summarizes the individual features on which the
classification is based, and thus provides an object
specific estimate for the pixel value. The use of
manually interpreted data at two different levels
of resolution is uncommon and as a result there
are no guidelines on what methods might be
appropriate for this kind of analysis. The methods
used in the analysis are therefore a blend of
techniques from digital cartographic
generalization, remote sensing and statistical
literature.

Study area and data used
The study area is located within the Stockholm
County, Figure 11. There is a problem of doing
multiscale studies with manually interpreted
information and that is to collect a reasonably
small but still representative sample. Three study
sites were chosen so that both the physical
properties of the landscape as well as different
land ownership patterns should be represented

within these samples. The total number of
interpreted pixels was limited to n=675 at the
higher resolution and n=27 at the lower
resolution.

The low-resolution data set was extracted
from the R-data described previously having a
spatial resolution of 500x500m. To recapitulate
quickly, this method is based on air photo
interpretation and classification of 25 ha quadratic
areas in a regular grid with full areal coverage.
Interpretation is made using areal panchromatic
photographic images at 1:50 000 scale.

The additional high-resolution data set was
collected using the same method over the three
study sites, Angarn, Hejsta and Strömma,
indicated in Figure 11. The only thing that
separates the two is that the second dataset was
compiled using a spatial resolution of 100x100m.
Data was thus assembled for 1 ha pixels and 25 ha
pixels separately, giving two sets of data of
different resolution distributed over the three
study sites.

It may seem odd to use this kind of data in a
study on modern automated generalization tools
but it is anticipated that this data have some
inherent properties that make them most suited for
this kind of analyses.

As earlier mentioned, the classification system
for R-data has been adapted from the Swedish
National Forest Inventory classifications. This
inventory is an annual survey covering the whole
of Sweden. Part of the overall R-data approach is
a ground truth calibration method. Using data
from the nation wide National Forest Inventory R-
data interpretations can be evaluated and adjusted
for systematic bias in the interpretation. The
accuracy evaluation is an important step to ensure
that relevant conclusions can be made from the
results. Also, calibration to reduce systematic bias
is necessary whenever absolute accuracy is
needed e.g. comparison with other datasets. Data
used as ground truth in this study is a compilation
of existing data from the Swedish National Forest
Inventory.

Quantitative data – area productive forest land
The parameter ‘Area productive forest land’ is
made up of 11 interval classes from 0=0-5%, 1=5-
15% up to 9=95-100%. This parameter was
digitized from manual interpretation protocols to
produce the raster images shown in Figure 22
columns a) and b).

Accuracy assessment of absolute values was
made by comparing averages of manually
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interpreted data with ground truth data from the
Swedish National Forest Inventory (NFI). Four
total averages of productive forest land, two for
manually interpreted data at 1 and 25 ha
resolution and two averages for the corresponding
NFI sites are given in Table 21. These averages
are based only on those interpreted pixels and NFI
field sites that overlap spatially.

Automatic generalization of 1 ha pixels were
done by averaging 5x5 pixels into rounded integer
pixel values producing images shown in Figure 22
c). This operation produces 25 ha pixel images
with average values of area productive forest very
close to the original 1 ha pixel images.

Comparison of summary statistics from the
manual and automatic data at 25 ha resolution is
presented in Table 22.

During the analysis it was speculated that the
interpretation accuracy could be affected by the
spatial configuration of the landscape features.
Therefore a range of spatial pattern indices was
produced from the high-resolution data (1ha
pixels) using the pattern module in IDRISI. The
derived index images were then compared with
the images showing differences between the
automatic and manual interpretation, Figure 22 d),
using simple cross tabulation.

   a) 1 ha data manual  
interpretation   

b) 25 ha data manual 
interpretation  

c) 25 ha data automatic  
generalisation  

d) Difference  
(auto  –  man)  

Angarn   -1 0 0

0 +1 +2

+1 +1 +2

Hejsta   0 +1 +2

+1 0 +1

+1 +1 +2

Strömma   0 +1 +1

0 +2 +3

+4 +2 +2

Figure 22 Results from manual interpretation with a) 1 ha pixel resolution, b) 25 ha pixel resolution, c) automatic
generalisation of a) 1 ha pixels, and d) showing the difference between interpreted data and automatically generalised
data at 25 ha pixel resolution. Increased tree cover is shown as increasingly darker tones.

Table 21 Accuracy evaluation results showing the accuracy of the manual interpreted data for the variable area
productive forest land. Data from the Swedish National Forest Inventory serve as ground truth.

Total error
analysis area

NFI reference
plot area

Average of man.
Interpretation (%)

Average of
NFI data (%)

Deviation Error

1 ha   pixel
data 225 ha 21,4 ha 48.2 46.3 0.019 4.1%

25 ha pixel
data 17125 ha 35,0 ha 45.1 43.6 0.015 3.4%
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Qualitative data – tree species
Data on tree species for the three test sites were
collected in the same way as for quantitative data
above. The NFI reference data contain 9 tree
species classes that were aggregated into 5 classes
to give corresponding classes with the manually
interpreted data, Table 23. After this, the only
discrepancy between the two tree species
classifications is the undetermined class in the R-
data classification. Pixels classified as
undetermined in the R-data set have been
excluded from the analysis to avoid erroneous
results. Those NFI data that spatially overlap such
undetermined pixels have also been excluded
from the analysis.

The 1 ha data were aggregated into 25 ha data
by categorical generalization using two different
aggregation operators. The first strategy uses a
majority method assigning the aggregated pixel a
value of the most frequent class in the source 25
pixels. In this study it was possible to give two
alternative answers in the case of ties with equal
counts.

The other aggregation operator used confusion
matrices for each individual tree-species class.
NFI reference plots have been used to determine

the mix of tree species within interpreted pixels.
In this way it was possible to determine for
example that pixels classified as Scots pine in
average contain 39% Scots pine, 21% Norwegian
spruce, 29% mixed conifers and 11% deciduous.
For pixels classified as Spruce, Conifer, and
Deciduous mix, other distributions were derived
from the reference NFI data. In this way
confusion matrices were produced for all tree
species classes and at both interpretation levels, 1
ha and 25 ha resolution, Figure 24

We may look upon the diagrams in Figure 24
as class signatures. Consequently, this method is
very similar to a supervised remote sensing image
classification. So why is not the usual Image
classification algorithm used from here?

The number of samples from the three test
sites did not prove to be large enough to give a
full estimation of the usefulness of the latter
approach. The aggregation of 25 pixels into one
proved to reduce the number of pixels in the
lower resolution data too much. Nevertheless,
these first results are included to give a general
idea of the approach. From each set of 25 pixels
to be aggregated, a species class signature was
produced. This is illustrated as the nine

Table 22 Summary statistics from images produced by manual interpretation and automatic aggregation.

Site Data Average Max. class Min class Stand.dev.
Angarn 1 ha man. 7 9 0 2.8

25 ha man. 7.8 9 3 1.9
25 ha auto. 6.9 9 4 1.5

Hejsta 1 ha man. 6.6 9 0 2.2
25 ha man. 7.6 9 7 0.7
25 ha auto. 6.6 8 5 0.9

Strömma 1 ha man. 0.6 4 0 1.3
25 ha man. 2.2 5 0 1.7
25 ha auto. 0.6 1 0 0.6

Table 23 Classification correspondence between the NFI system and classification system used in manually interpreted
data.

NFI classes R-data classes
Scots pine Scots pine
Spruce Spruce
Conifer Conifer
Foreign conifers
Mixed conifer/deciduous deciduous share 35-44%
Mixed conifer/deciduous deciduous share 45-64%
Birch Deciduous mixed forest
Beech
Broad leafed deciduous species

Undetermined species composition
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histograms in Figure 23 a-i. Each histogram
corresponds to the species distribution within one
5x5 pixel window

To get sufficiently large samples for a
statistical testing of the scaling hypothesis stated
in the beginning, more data was needed. One way
to achieve this was to use low-resolution data
from the entire Stockholm County. Compiling
low-resolution R-data together with spatially
overlapping NFI-reference data, gave an
additional set of samples. Here only those R-data
pixels that contain at least one NFI plot have been
selected together with these NFI plots. This made

it possible to examine the correspondence
between samples of interpreted data at two
different resolutions against a ground truth sample
taken from the national forest inventory. Each
pair of samples selected to overlap spatially as
much as possible and at the same time to produce
a sample large enough for significance test with
Kolmogorov-Smirnov two-sample test. This test
can be used to determine whether two
independent samples may have been drawn from
the same population or from populations with the
same distribution. (Siegel, 1956)

Pixel
size

Scots pine Spruce Conifer mix Deciduous mix
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Figure 24 Confusion matrices showing the class signatures in data produced by manual interpretation at two levels of
resolution 1 ha and 25 ha. Coloured bars show  the relative distribution of actual tree species within each class
according to NFI field control data.
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Figure 23 Image showing original 1 ha pixels in Hejsta study site. Histograms show class distribution within each 5x5
pixel set.
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Results

Quantitative data – area productive forest land
The results form the accuracy evaluation for the
variable “area productive forest land” is given in
Table 21. It shows the correspondence of
averages from manually interpreted data with the
averages from field control data. We see from the
left columns of Table 21 that the interpreted data
for tree cover show an error of 4.1% and 3.4%
respectively. We know from quality assessments
of the NFI data that the standard error in
Stockholm County may be as high as 4.3%. As
none of the interpretations deviate more than the
standard error from the NFI-data no calibration
for systematic bias was made.

Generalized results were produced and
compared with the manually interpreted data at
25ha resolution. These data are illustrated
together with source 1ha data in Figure 22,
columns a, b, and c. The difference images
showing deviations between the manual
interpretation and the automated aggregation are
displayed in Figure 22, column d. Summary
statistics from the manual interpretation and the
automatic aggregation are presented in Table 22.

From the speculation that the spatial
configuration of landscape features could
influence the interpretation accuracy a certain
correlation was found with some of the tested
indexes. Using simple cross tabulations the
strongest direct correlation was found with the
index of diversity. The correlation figures are
given below both as a cross tabulation table in
Table 24 and as histograms in Figure 25. Here we
see that the correctly classified pixels (deviation
0) occur over areas with a flat distribution of

diversity values with some weight on the lower
diversity values. Pixels classified with a +1 to +3
class deviation from expected value show a
distribution with more frequent high diversity
values. For pixels classified as –1 and +4 the
sample is only  n=1 and these will therefore not
be considered in further discussions.

Qualitative data – tree species
Data on tree species for the three test sites are
shown in Figure 26 together with results from
automated categorical generalization using the
majority aggregation operator. Apart from the two
aggregated data being quite different; we also see
examples of pixels assigned to two classes by the
automatic aggregation. These undetermined pixels
are illustrated by splitting the square pixel
diagonally using colors of the tied classes for the
two halves.

 Dev Distribution of diversity  index classes   
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Figure 25 Histograms over 25 ha classifications of
productive forest land. Each diagram shows subset
summary of those interpreted pixels deviating (Dev.) –
1, 0, +1, +2, +3 and +4 from pixels derived through
aggregation of 1ha interpreted pixels. N= Sample size.

Table 24 Cross-tabulation summary of all three sites with
degree of misclassification (columns) against diversity
index classes (rows)

-1 0 1 2 3 4
1 7 38 21 19 3 9
2 0 25 12 9 6 2
3 1 16 8 0 2 2
4 0 14 24 14 1 0
5 7 17 22 15 4 4
6 3 18 33 11 7 4
7 4 19 60 15 12 4
8 2 23 53 29 14 0
9 1 5 12 11 13
10 0 0 5 2 13
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Figure 27 exemplify the results from the
categorical generalization using the second
aggregation operator based on class signatures.
For comparison purposes the previous result form
the majority based aggregation operator and the
manually interpreted low-resolution data are also
displayed in Figure 27 c and d respectively.
Aggregation based on class signatures derived
from confusion matrices is problematic. Due to
the small samples it is hard to reject the
possibility that these distributions could be drawn
from the same distribution as the reference
distributions for the four species classes in a
formal Kolmogorov-Smirnov test. In the example
most pixels can be classified to belong to either
Scots pine or Spruce classes at a 0.15 confidence
level. Only the lower left pixel can be predicted
the same way at a 0.05 confidence level. No pixel
can be given only one class assignment based in
this analysis.

The overall analysis of species distribution at
the two levels of resolutions uses only global
measures and are presented as histograms in
Figure 28. The first two columns are the best

comparison that could be produced having only
fully overlapping R-data and NFI-data. The right
column illustrates a similar result using all
available information for Stockholm county,
disregarding whether there is spatial overlap or
not. The lower row of diagrams d-f all give the
best ground truth estimate available. Figure 28 d)
shows the species distribution for the three test
sites that have been interpreted at 1 ha resolution.
Figure 28 a) above are directly comparable as this
show tree species distribution from those 1 ha
data that are located over the same area. Moving
to the next pair of diagrams Figure 28 b) and e)
we can see that the distributions are very
different. It is clear that the study regions are
located at sites with more Scots pine and less
Spruce compared with the total county average.
The most apparent result of these diagrams is that
classifications made at 25 ha resolution produce a
far more erroneous result compared with NFI data
than the 1 ha classification.

A formal estimation of the difference between
interpreted data and ground truth NFI data was
made using a Kolmogorov-Smirnov two-sample

a) 1 ha data b) 25 ha data manual
interpretation

c) 25 ha data automatic aggregation

Angarn

Hejsta

Strömma

Scots pine
Spruce

Conif er mix

Deciduous mix

Species unknown

Figure 26 Results from manual interpretation of tree species with a) 1 ha pixel resolution, b) 25 ha pixel resolution, c)
automatic generalisation of a) 1 ha pixels using most frequent class as classification criterion for aggregated pixels.
Pixel count resulting in ties are illustrated by splitting the output pixel into multiple colors representing the tied classes.



70 • Pilot studies

test. The test was able to reject the assumption
that the distributions illustrated in Figure 28 b)
and e) could be drawn from the same distribution
at a 0.001 significance level. The same applied to
the sample distributions in Figure 28 c) and f).
The testing of 1 ha resolution data, Figure 28 a)
and d) was however not able to reject the
assumption that the samples are drawn from same
distribution. Thus data at 25 ha resolution had
deviated significantly from the initial distribution
at 1 ha resolution.

Discussion
The results in Table 21 indicated that the relative
difference between the manual and automatic data
at 25ha resolution was small. Nevertheless all
three test sites illustrated in Figure 22 show a

relatively high degree of overestimation of
productive forestland. A majority of the
automatically generalized pixels show none or
minor deviations from the expected result.  In 9
cases areas show a difference in interpretation
with as much as 20-50% productive forestland
(classes +2 through +4). Considering that 1 ha
and 25 ha data pixels were shown to be accurate
with only 3-4% error these large deviations
require some explanation. One reasonable
suggestion would be that the spatial configuration
of the areas influences the interpretation (Turner,
1989). The results from the cross tabulation
indicate some degree of correlation between large
deviations and index of diversity, Figure 25. It
would be interesting to see if this result could be

a)

a)

d)

g)

b)

e)

h)

c)

f)

i)
b)

c) d)

Figure 27 Images showing categorical generalisation over the Hejsta study site. Original 1 ha pixels (a), are aggregated
using Kolmogorov-Smirnov two-sample test (b).  Pixel aggregation resulting in ties are illustrated by splitting the output
pixel into multiple colors representing the tied classes. For comparison, image (c) show the aggregation result using a
majority operator and image (d) show the result from manual interpretation.
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further validated into a general pattern. If so it
could be possible to model this kind of
interpretation accuracy by measuring an index of
diversity in the interpreted area. Further
development of such neutral predictions of
interpreter’s reliability might also be used to
construct a spatially differentiated uncertainty
surface over a survey area.

Increasing grain size in raster data can be
made by simple aggregation of groups of n
adjacent pixels into one large pixel, which is
assigned a value of the most frequent class. The
effects of this has been shown earlier by Turner
and others (1989). In essence their results show
that increased grain size will decrease number of
classes by eliminating less frequent classes.
Furthermore the aggregation will produce an
increase in indices such as dominance and
contagion (spatial correlation). The test results
follow these general rules. Even if no classes are
totally eliminated Figure 28 show a decrease in
less frequent classes for lower resolution data and
originally more frequent classes get an increase.

The fact that the ground truth data from the
NFI only cover a sub area of the classified area
does of course have significant effect. The

number of samples and the spatial distribution of
the tree species is therefore of vital importance for
the interpretation of the classification results.

Although the output image in Figure 27 b
produces a result that is hard to interpret it has the
advantage of keeping the actual species
distribution in the original pixels as relative
proportions of tree species classes. It may be an
appropriate method to preserve some information
through steps of data transformations.

Pilot study 2

Objective
The objective of this study is to investigate if the
use of mixture classes and mixed pixels indicate a
scale dependence of geographic concepts and if a
scale dependency can be attributed to controlling
environmental factors.

Method
The second pilot study has a lot in common with
the first one. It uses the same input data from the
same study areas. In this study however, focus has
been shifted from analysis of the information
change with respect to the National Forest
Inventory data to go deeper into studying the site-

a)

n=92

b)

n=440

c)

n=36269

Scots pine

Spruce

Conif er mix

Deciduous mix

All 1 ha interpreted pixels
(above) having spatially
corresponding field sites from
NFI (below)

All 25 ha interpreted pixels
(above) having spatially
corresponding field sites from
NFI (below)

Total interpreted data covering
Stockholm county. 25 ha
pixels above, NFI data below
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Figure 28 Tree species distribution histograms for spatially corresponding regions given for both interpretation
resolutions. The total interpreted sample covering entire Stockholm county at 25 ha pixel resolution is given in column 3
together with the total NFI field sites covering same region.



72 • Pilot studies

specific correspondence between manually and
automatically aggregated datasets.

Three quantitative and qualitative variables,
site quality, age, and tree species were chosen for
this study. All three variables have mixture
classes in their classification definitions. The
spatial aggregation is performed using a majority
decision. Any class that reaches 50% or more
areal coverage within the aggregated area is taken
as class label for the aggregated pixel. If no class
reaches the 50% limit the mixture class is chosen
for the output. To investigate the effect that the
application of mixture classes could have at
different spatial resolutions, data were spatially
generalized using two slightly different
aggregation operators than those used in the first
pilot study.

Crude aggregation simply sums up the
different class areas and applies the classification
rules on these sums. Refined aggregation uses the
non-mixture classified pixels to provide
information on the detailed distribution of e.g.
tree species. This type of class detail enhancement
is somewhat ‘cartographic’ enhancing some
aspect of the information.

Accordingly, the Crude aggregation operator
makes a strict evaluation of constituent classes.
The Refined aggregation operator ignores the
mixture class in the input thus assuming that these
areas have the same class proportions as the rest
of the area under consideration.

Both aggregation operators were applied on
the data. This resulted in two images per variable
making a total of six images of automatically
aggregated data plus six manually interpreted
images, three at 25 ha resolution and three at 1ha
resolution.

The resulting images were compared both
with the original images at 1 ha resolution and
with the manually interpreted images at 25 ha

resolution. The agreement analysis was performed
using the grid-based geographical information
system IDRISI. Crosstab analyses were made on
all images to produce overall Kappa estimates for
the agreement between each assessed image and
two reference images. Here both 1ha and 25ha
interpreted data were used as reference images.

Results
Automatic aggregation of the original 1ha
resolution data resulted in two images per variable
making six total images of automatically
aggregated data. The overall kappa estimates
using both resolutions of the interpreted data as
reference are presented in Table 25, the same
numbers are illustrated in the bar diagrams of
Figure 29. The test of all variables against the
high resolution 1ha data shows an overall
performance of the manual 25 ha
interpretation/aggregation as Kappa values in the
range 0.22-0.25, and for the automatic
aggregation: 0.25-0.31.

At the same time, the automatically
aggregated data tested against manually
interpreted 25ha data show much better
agreement than against the 1ha-interpreted data.

Different aggregation strategies (crude and
refined) perform differently for the three variables
analyzed. Using 25 ha data as reference, the
‘crude’ method is undoubtedly more similar to the
way the interpreter assesses the site quality than
the refined method. The other two variables show
the same tendency but not as strongly.

Discussion
The first impression is that all aggregations at the
coarse 25 ha resolution are erroneous. However,
using manually interpreted 25-hectare resolved
data as a reference, the overall agreement
increases, indicating that aggregations are

  

Figure 29 Diagrams showing overall kappa estimates for the automatically aggregated data using 1 ha data (left
diagram) and 25 ha data (right diagram) as reference images. Values taken from Table 25.
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producing a result similar to the human
interpreter’s classification of the landscape.

The fact that the two methods of aggregation
perform differently for the three variables in this
study is of major interest for the development of
scale dependent generalization methods. The
indication that some variables seem to produce
better aggregation results than others is also an
important point that needs to be further
investigated.

Hierarchical land cover classification schemes
such as the US Federal Geographic Data
Committee, National Vegetation Classification
Standard (FGDC-STD-005), and EU´s CORINE
land cover classification are intended to be
applicable at a multitude of scales. This intention
can only be fulfilled if the defined class
hierarchies account for how accurately
environmental factors/variables can be
aggregated.

The taken approach made it possible to show
the presence of scale dependent perception of a
piece of landscape using classification schemes
for three variables. It was also possible to assess
scale related differences between manually and
automatically aggregated geographical
information.

Further analyses are needed to evaluate the
strength of the indications pointed out here. The
influence of spatial pattern metrics such as spatial
auto-correlation of variables might for instance
direct the choice of aggregation strategy. If these
results can be firmly verified this would support
the idea that constraints imposed by
environmental factors act as controlling variables
at different scales. This direction may be further
investigated to find methods that can be used to
evaluate the spatial domain of a given variable.

Enhanced knowledge of a variable’s spatial size is
needed to promote the development of neutral
measurements of abstraction levels.

Further research using the presented and
similar methods will most certainly add to the
knowledge base on which to build theories for the
representation, analysis and communication of
geographical data across multiple scales.

Overall discussion and conclusions

To summarize these studies the tests indicate a
sensitivity of certain environmental variables to
changed spatial granularity. The tests also indicate
that these effects are not merely a result of
aggregation. There may also be an effect of the
human interpretation of landscape features at
different resolutions. This is a multifaceted
problem and computer models need to be able to
adapt to a multitude of properties of the
environmental variables registered.

As a general interpretation the results illustrate
the problem with geographical data with specific
attention to the scale effect. The difference
between the automated and manual results could
be held as an interpretation error due to the
difficulty of correctly estimating an area of high
heterogeneity. However, the result can also be
taken to support a view that the automatic result
needs to be adjusted to the perception of the
manual interpreter in order to communicate the
original information correctly. Although actual
data values arrive at one result, this is not the
result that corresponds to the current user’s
perception of this piece of landscape. The user
may translate the entirety into something more
than just the sum of the pieces. This again stresses
the importance of a truthful linkage between the
user and the automated system that takes into

Table 25 Comparison of overall Kappa values from the evaluation of aggregation results using manually interpreted
25ha resolution data (first column) and 1ha resolution data (second column) as reference images.
Overall Kappa estimation results

Ref.img. resolution
Variable Aggregation method 25ha 1ha
Site quality Autom.crude 0.51 0.31

Autom.refined 0.29 0.30
Manual aggr./interp. - 0.22

Age Autom.crude 0.38 0.25
Autom.refined 0.33 0.25
Manual aggr./interp. - 0.24

Tree species Autom.crude 0.44 0.25
Autom.refined 0.41 0.30
Manual aggr./interp. - 0.25



74 • Pilot studies

consideration a change of context, in this case
scale.

The use of mixture classes in the classification
system made it difficult to get full insight into the
aggregation process since a mixture class reduces
the thematic granularity in those instances of
source data. Ideally, in cases of mixed conditions
an explicit representation of this mixture would be
preferable over the mixture class label. The
mixture class problem was tackled to some extent
by using different aggregation methods, such as
the crude and refined procedure described in the
text.

For the continued investigations of the spatial
granularity effect, reported in chapter 7, I made
two principal refinements of the experimental
design. First, I decided to use the Structural data
set from chapter 4, which does not make use of
mixture classes in the same way as R-data.
Second, after testing the interpretation
consistency, it was possible to use methods of
rough classification to represent the ambiguity
that occurs in the spatial aggregation process due
to the detected interpretation inconsistensy.

The explicit representation of the landscape
type mixture for each spatial unit seemed more
suited to the task of detecting differences in
interpretation at different spatial granularity.

One main advantage of the R-data is that it
was possible to do thorough quality tests. The
result of the quality tests in chapter 4 made it
possible to treat the R-data estimates as having
the same accuracy as National Forest Inventory
estimates.
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ROUGH CLASSIFICATION AND ACCURACY
ASSESSMENT

Introduction

This chapter investigates the thematic dimension.
In the previous chapter, aggregation effects led to
uncertainty due to indiscernibility. This chapter
investigates the possibility to represent
indiscernibility that occurs due to limited
categorical granularity. The described theory and
methods will then be used in the analysis of
chapter 7. It is also  an important method for the
developnment of the proposed Geographic
Concept Topology.

The chapter consists of a previously published
paper, which here will be reproduced in its
entirety thanks to the kind permission of
Taylor&Francis.

My contribution to the following paper has
primarily been the initial idea of using rough sets
in a reclassification process. In writing, my
contributions are mainly articulated in the
Introduction, Categorization, and Discussion
sections, and to some lesser extent also in the
Experiment and Conclusion sections

Chapter

6
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Abstract. In search for methods to handle imprecision in geographical informa-
tion this paper explores the use of rough classi;cation to represent uncertainty.
Rough classi;cation is based on rough set theory, where an uncertain set is
speci;ed by giving an upper and a lower approximation. Novel measures are
presented to assess a single rough classi;cation, to compare a rough classi;cation
to a crisp one and to compare two rough classi;cations. An extension to the
error matrix paradigm is also presented, both for the rough-crisp and the rough-
rough cases. An experiment on vegetation and soil data demonstrates the viability
of rough classi;cation, comparing two incompatible vegetation classi;cations
covering the same area. The potential uses of rough sets and rough classi;cation
are discussed and it is suggested that this approach should be further investigated
as it can be used in a range of applications within geographic information science
from data acquisition and analysis to metadata organization.

1. Introduction
Generalization of information into groups is a common step in traditional as

well as computerized geographical analysis. Classi;cation into prede;ned categories
is in many cases an important step to perform geographical analysis in order to
measure or describe a phenomenon of interest. No matter what strategy we employ
for the generalization procedure, this will lead to a loss of detail in one or more
dimensions. This imprecision has to be treated in a controlled manner, and the issue
of the representation of uncertainty in spatial data has become more and more of a
concern (Goodchild et al. 1992, Burrough and Frank 1996 ). One of the reasons for
this is that a current goal is to increase geographical information system interoperabi-
lity. This need may partly be met by eŒorts to arrive at various standards such as
the work by the Open GIS Consortium, CEN/TC287 and ISO/TC211 or research
focused on the development of federated database systems (Devogele et al. 1998 ).
Still there are a number of issues that remain to be solved before any of these
approaches will become feasible implementations.

In this paper we focus on one of these underlying problems, that is, semantic
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imprecision as a result of categorization, exempli;ed by spatial vegetation and soil
information. Building on existing theories of rough sets (Pawlak 1982 ), in §2 we
discuss the causes of semantic heterogeneity in geographical data, fuzzy sets as one
method to handle this heterogeneity and the idea of using rough sets and rough
classes as an alternative. In §3 we develop a number of quality measures as well as
methods for uncertainty assessment useful when comparing layers of roughly classi-
;ed geographical information. We also discuss their relation to commonly used
methods for accuracy assessment in remote sensing and geographical information
systems, such as overall classi;cation accuracy measures and confusion matrices.
Finally in §5 these ideas are taken together in an experiment on geographic data to
demonstrate our ;ndings in a reclassi;cation task followed by an accuracy assessment
on the reclassi;ed data.

2. Categorization
To make geographical analyses and presentations using computerized systems

we need to assemble information about geographic phenomena in a quanti;able
manner. Geographical data as geographic entities are quanti;ed in terms of temporal,
spatial and thematic dimensions (Lanter and Veregin 1992 ) and this complexity
makes it practically impossible to measure all aspects on continuous scales. So, the
assemblage of geographical data normally implies some kind of generalization of the
basic dimensions. This generalization is often done by ;xing one dimension, control-
ling another and measuring the third (Sinton 1978 ). The two main geographical
data modeling paradigms used by contemporary geographical information systems
could be looked upon as two cases of this general assumption. Both paradigms ;x
time. The spatial dimension is either controlled by a regular grid or measured as the
position of 1-, 2- or 3-dimensional objects. Finally, the thematic dimension is either
measured as ;eld values or controlled by grouping objects into predetermined classes.

A geographical information category can be termed an ‘abstraction’ meaning a
simultaneous focus on important content, structure and process while temporarily
ignoring certain details, rather than eliminating details (Nyerges 1991a). From this
it follows that abstractions, that apparently form in our minds, can not be regarded
as crisply de;ned and delimited objects. We will not go any further into the increas-
ingly large body of work on the theoretical basis for how categories are formed. For
the purposes of this work we conclude that apparently there is a complex background
for the formation of entities which are represented in geographic databases. To
increase interoperability in terms of a better conceptual match between diŒerent
databases we need tools to handle the conceptual and literal heterogeneity that
occurs at the higher levels of geographic information modeling (Raper and
Livingstone 1995, Bishr 1998 ). If we separate this heterogeneity into aspects of
semantic, schematic and syntactic heterogeneity this article deals with methods to
handle schematic heterogeneity, i.e. where classi;cation and hierarchical organiz-
ations of real world categories vary across disciplines or contexts (Bishr 1998 ).

Turning now to the issue of how to represent and logically handle semantic
heterogeneity, object oriented methods have been proposed as a viable alternative.
For example Raper and Livingstone (1995 ) demonstrated how an object oriented
geomorphologic spatial model enabled the representation of entities identi;ed as a
result of a categorization procedure, as well as providing the means to link process
models to data models. Openshaw (1996 ) recently noted the evident linkage between
geographical sciences with a multitude of linguistic knowledge expressions and the
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theory of fuzzy sets. Other authors argue in the opposite direction employing discrete
models but using other organizing elements such as concept neighborhoods (Freksa
and Barkowsky 1996, Bishr 1998 ). In the next section we will brieKy go through
fuzzy set theory, its current applications and the reasons we see for developing an
alternative method to deal with imprecision and semantic heterogeneity.

2.1. Fuzzy sets
When considering uncertainty representation of geographic data in a digital

environment we often ;nd implementations in a ;eld (raster) rather than an object
(vector) environment. Fuzzy set theory (Zadeh 1965 ) is an extension of classical set
theory. In fuzzy sets each data point has an associated membership value, which
expresses the degree of membership of the data point in a particular set. The mapping
of data points to degrees of membership is called the membership function. The
theory is well known and contemporary geographic information systems usually
include methods to handle data layers with attribute vagueness using fuzzy set
theory. The fuzzy representation provides the means to express partial membership,
not in the sense of a probabilistic attribute but in the form of an admission of
possibility (Burrough and McDonnell 1998 ). Thus, it can be used to represent
uncertainty about class membership.

So far, most implementations of fuzzy sets in geography have been focused on
characterizing attribute ambiguity in data. However, during the last few years the
issue of spatial vagueness has also been approached (Wang and Hall 1996, Burrough
and Frank 1996, Brown 1998 ). Molenaar (1996 ) discusses fuzzy spatial objects using
a semantic formalism but he also expresses some doubt as to whether this can be
readily handled by existing tools. One major obstacle to the diŒusion of fuzzy set
based uncertainty handling is that the necessary membership function can be very
hard to determine. In those cases, we anticipate that an alternative approach based
on rough sets is more appropriate, since there will be no need to determine a
membership function, or even resort to an arbitrary one. We might for instance end
up with the following reclassi;cation situation: given a categorical map with a map
polygon labelled A, translate this into another classi;cation system, given the alter-
native of assigning a label 4 or 6 according to the reclassi;cation rule. Data in real
situations are often of this discrete nature and membership values may be hard to
determine.

2.2. Rough sets
Pawlak (1982 ) initially introduced the idea of rough sets but links between this

theory and spatial applications have not until recently been elaborated. Rough sets,
like fuzzy sets, are an extension of standard mathematical sets. In this extension an
uncertain set is represented by its upper and lower approximation. If the data point
is in the lower approximation, we are sure that it is in the set. If it is not in the
upper approximation, we are sure that it is not in the set. The spatial representation
of the rough set can be in the form of pixels or entire polygons which are given one
of three possible values: not a member of the set (neither in lower nor upper
approximation), maybe a member of the set (in the upper but not in the lower
approximation) and absolutely a member of the set (in the lower approximation).
Thus rough sets may also be used to represent uncertainty about class membership.

The use of rough set theory has not to any large extent been treated in the GIS
literature but recent work by Schneider (1997 ) and Worboys (1998a, 1998b) has
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shown clear advantages of using a rough set approach in dealing with imprecise
geospatial data. Schneider (1997 ) discusses rough sets in ROSE (Güting et al. 1995 ),
in much the same way as we have implemented them below, but does not discuss
classi;cations and related topics, focusing much more on the formal modeling aspects.
Stell and Worboys (1998 ) reported on a formal approach to multi-resolution in
spatial data handling using an approach similar to rough and fuzzy set theories.
Their most recent ;ndings are reported in (Worboys 1998a, 1998b) where rough sets
are used to handle imprecision due to ;nite spatial or semantic resolution. Also the
work of Cohn and Gotts (1996 ) on spatial relations between regions with indetermin-
ate boundaries has much in common with rough sets.

3. Rough classi�cation
This section builds on rough sets to introduce the idea of rough classi;cation.

3.1. Rough sets
A rough set is a pair (X , X ) of standard sets, the lower approximation and the

upper approximation . In the representation we have chosen, X k X. The meaning of
these two sets is that if a data point lies in X , we are sure that the point is in the
rough set, if a data point lies in XÕ X , we are unsure whether or not the point is
in the rough set, and if a data point is outside X, we are sure that the point is not
in the rough set. These sets can contain either individual points, or continuous areas;
we will use the term ‘area’ below. We will often call XÕ X the area of uncertainty
of a rough set. As opposed to rough sets, standard sets are often called crisp, a term
that also applies to a rough set where X 5 X, which implies an empty area of
uncertainty. Conversely, a rough set with an empty lower approximation and a non-
empty area of uncertainty can be called completely rough.

According to Düntsch (1997 ), the basic set operations, union, intersection and
negation, can easily be extended to rough sets. Union and intersection as follows:
(X , X )< (Y , Y )5 (X <Y , X<Y ), (X , X )> (Y , Y )5 (X >Y , X>Y ). Negation can be
extended in two ways: (X , X )*5 (Õ X, Õ X ) and (X , X )+ 5 (Õ X , Õ X ).

3.2. Rough classi&cation
A standard, or crisp classi;cation C consists of a number of classes X

i
, i ×I,

each of which is a crisp set. I will be called the index set of a classi;cation. For a
crisp classi;cation, YiYjÞ i :X

i
>X

j
5 ù : the classes are pairwise disjoint. We will

de;ne the cardinality of C as |C |5 |<X
i
|, which, in this case, is equal to S |X

i
|.

Likewise, a rough classi®cation R consists of a number of rough classes X
i
5 (X

i
,

X
i
), i ×I, each of which is a rough set. In a rough classi;cation, however, we would

like to be able to express our uncertainty about which class, if any, a certain area
belongs to. Therefore, instead of pairwise disjointness, we impose only the following
restriction: YiYj Þ i :X

i
>X

j
5 h. Of course, since X k X, this implies that

YiYj Þ i :X
i
>X

j
5 ù. We do not impose such a restriction on pairs of upper approxi-

mations, though, so there may be areas where two or more upper approximations
overlap, but none where any lower approximation overlaps with anything else than
the corresponding upper approximation. I will be called the index set of the classi;ca-
tion. We will de;ne |R |5 |<X

i
|, which, in this case, is not equal to S |X

i
|. See ;gure 1

for an example of a rough classi;cation.
In this way, we have expressed two fundamental types of uncertainty:
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Figure 1. A rough classi;cation.

E Uncertainty of spatial location: If, for a rough class (X ,X ), X 5 X, uncertainty
about the spatial location of (part of ) that class has been expressed.

E Uncertainty of attribute value: If a certain area is assigned to the area of
uncertainty of more than one class, it is no longer certain to which class that
area belongs. Thus, uncertainty of attribute value has been expressed.

Given a subset C of I, the index set of a rough classi;cation R, we de;ne its
rough component as follows: R

C
5 >

i×C
(X

i
Õ X

i
)Õ <

i1C
X

i
. A rough component is the

area that is in all the areas of uncertainty of the classes whose index is in C, and in
none of the areas of uncertainty of any of the classes of the rough classi;cation
whose indices are not in C. See ;gure 1 for an example rough component. The rough
classes (X

i
,X

i
) where i ×C we will call the founders of the rough component R

C
.

Rough components are de;ned such that they are always pairwise disjoint;
furthermore, the union of all rough components of a classi;cation and the lower
approximations of all its rough classes is exactly the area covered by the classi;cation.

4. Quality measures of classi�cations
In this section we will discuss the various ways that we can measure the uncer-

tainty in rough and crisp classi;cations. Uncertainty in geospatial data is, as we
stated above, divided into three major dimensions and since these dimensions are
often dependent on each other, it may not be useful to explore thematic and spatial
uncertainty independently (Lanter and Veregin 1992 ). The measures we will examine
in the following discussion deal both with the thematic and the spatial aspect of
uncertainty. This section is split up into four subsections, depending on what we
base our measures. We can base our measures on a single rough classi;cation, on
the comparison of two crisp classi;cations, on the comparison of a rough and a
crisp classi;cation, or on the comparison of two rough classi;cations.

When comparing two classi;cations, we will sometimes assume that one of the
classi;cations is the reference classi;cation, containing our baseline data, whereas
the other one is the assessed classi;cation, the one whose quality we are trying to
measure.
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4.1. Single rough classi&cations
We de;ne two measures that apply to single rough classi;cations: the overlap

measure and the overall crispness measure. In each of these de;nitions, we will be
talking about a rough classi;cation R, consisting of the rough classes (X

i
,X

i
), i ×I.

4.1.1. T he overlap measure
The overlap measure can be computed as follows: M

o
5 (S |X

i
|Õ |R |)/|R |. Since

all the area covered by the rough classi;cation is included at least once in S |X
i
|,

M
o
> 0. If M

o
5 0, there is no intersection between any of the rough classes. If M

o
>0,

Zi Zj Þ i : (X
i
>X

j
)Þ ù (since the lower approximations are pairwise disjoint, this

area of intersection must be in the area of uncertainty of said rough classes). M
o
can

grow if either the total area of intersection grows or (parts of ) this area are shared
by more rough classes. The upper bound for M

o
is the number of classes in the

rough classi;cation minus one, as the maximum overlap occurs when all classes
contain the whole area of the classi;cation. For the example in ;gure 1, M

o
5

((141 91 10)1 (141 91 4)Õ (141 91 101 141 4))/(141 91 101 141 4)#0.17.
Thus, the overlap measure measures the amount of overlap in the rough classi-

;cation. This can be said to measure uncertainty in attribute value.

4.1.2. T he overall crispness measure
The overall crispness measure can be computed as follows: M

c
5 S |X

i
|/|R |.

Obviously, M
c
> 0, and, since the lower approximations are pairwise disjoint, M

c
< 1.

If M
c
5 0, all the lower approximations of the classes of the rough classi;cation are

empty, making the classi;cation completely rough. If, on the other hand, M
c
5 1,

the areas of uncertainty of the classes of the rough classi;cation are empty, and
the classi;cation is in fact crisp. For the example in ;gure 1, M

c
5 (101 4)/

(141 91 101 141 4)#0.27. This can easily be extended to a class based measure
(one measure for each rough class), instead of an overall measure.

The crispness measure measures how much of the total area of the classi;cation
is assigned to lower approximations. This can be said to measure certainty in spatial
location.

4.2. Comparing two crisp classi&cations
When comparing two crisp classi;cations, the standard ;rst step is to compose

an error matrix (Congalton 1991 ), so we start oŒ with a description of this paradigm.
Congalton (1991 ) also describes the various accuracy measures that can be computed
from such a matrix, which we will brieKy review.

4.2.1. Error matrix
We will consider the case where two crisp classi;cations A and B are being

compared. A consists of the classes X
i
, i ×I, while B consists of the classes Y

j
, j ×J.

Much of the following will only be valid if |I |5 |J | ( let us de;ne N5 |I |), and will
probably only make sense if, in fact, I5 J.

The error matrix is now de;ned as an N by N matrix with elements x
i,j having

values x
i,j 5 |X

i
>Y

j
|. We will also assume that <

i
X

i
5 <

j
Y

j
, i.e. that the two classi-

;cations cover exactly the same area. Because of that and the fact that all the X
i

are pairwise disjoint, and all the Y
j
are also pairwise disjoint, the error matrix has

the following three properties:
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E The row-sum property: S
j
x
i,j 5 |X

i
|, i.e. the sum of the elements in a single row

of the matrix is the area of the corresponding class of A.
E The column-sum property: S

i
x

i,j 5 |Y
j
|, i.e. the sum of the elements in a single

column of the matrix is the area of the corresponding class of B.
E The total-sum property: S

i,j x
i,j 5 |A |, i.e. the sum of all the elements of the

matrix is the area covered by either of the classi;cations.

4.2.2. Some commonly used measures
Overall accuracy is de;ned as the total match between the two classi;cations

divided by the total area of the classi;cations, i.e.:

A
o

5 �
i

x
i,i/|A | (1)

This can be split up according to the classes in the classi;cations, but in that
case one is left with the choice of dividing by the column total or by the row total.
Assuming that the reference classi;cation is associated with the columns of the
matrix, dividing by the column total gives the omission error, also called producer ’s
accuracy. Dividing by the row total gives the commission error, also called user ’s
accuracy. In other ‘words’:

O
j
5 x

j,j/�
i

x
i,j , and C

i
5 x

i,i/�
j

x
i,j (2)

A more complicated statistical measure, which makes various assumptions about
the input data, is KÃ (Congalton 1991 ):

KÃ 5

|A |�
i

x
i,i

Õ �
i
A�

j
x

i,j ·�
j

x
j,iB

|A |2Õ �
i
A�

j

x
i,j
·�

j

x
j,iB

(3)

Please note that, apart from the naming of omission and commission errors,
these three measures are completely symmetrical with respect to the columns and
rows of the matrix, i.e. transposing the matrix, by switching A and B, will have no
eŒect on the computed value.

4.3. Comparing rough and crisp classi&cations
We ;rst discuss how to extend error matrices to comparing rough and crisp

classi;cations, and then we discuss the various measures we can compute from such
a matrix. We also introduce a method by which we may apply any measure that
can be applied to the comparison of two crisp classi;cations.

4.3.1. Error matrix extension
When comparing a rough classi;cation, R, with a crisp one, C, such as in ;gure 2,

we can start with constructing an extended error matrix, see table 1 for the example.
For typographic reasons, we choose to associate the crisp classi;cation with the
rows of the matrix, and the rough classi;cation with the columns of the matrix,
independently of which one is the reference classi;cation.

R consists of the rough classes (X
j
,X

j
), j ×J and C consists of the crisp classes

Y
i
, i ×I. Again, we will assume |I |5 |J | (and hope for I5 J ) and de;ne N5 |I |. We

will also assume again that <X
j
5 <Y

i
. The matrix will be of size 2NÖN, having
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Figure 2. Comparing a rough and a crisp classi;cation.

Table 1. An extended error matrix.

A AÕ A B BÕB

A 10 15 0 8
B 0 8 4 15

elements x
i,k . The de;nition of x

i,k depends on k. If k is odd, x
i,2jÕ1 5 x

i,j+ 5 |X
j
>Y

i
|.

Otherwise, k is even, and x
i,2j 5 x

i,j? 5 |(X
j
Õ X

j
)>Y

i
|. When we talk about the

diagonal of this matrix, we will mean the elements x
i,i+

and the elements x
i,i?
.

The column-sum property still holds: The sum of all the elements in a column is
exactly the area of the corresponding part ( lower approximation or area of uncer-
tainty, as the case may be) of the corresponding rough class. However, the row-sum
and total-sum properties do not hold any longer. If we compute the sum of a row
of the matrix, S

k
x

i,k
, we do not, as we would like, get |<

j
X

j
>Y

i
|, but we get

S
j
|X

j
>Y

i
|, thus counting all the overlapped areas multiple times, and similarly for

the total sum of all the matrix elements.

4.3.2. T he relative crispness measure
Assuming that the crisp classi;cation is the reference one, the relative crispness

measure compares the crispness of a rough classi;cation in the areas where it
corresponds to the crisp classi;cation (where it is ‘right’) to its crispness in areas
where it does not correspond to the crisp classi;cation (where it is ‘wrong’).

If, on the other hand, the crisp classi;cation is the one that is being assessed, the
relative crispness measure measures whether the crisp classi;cation is more correct
in areas where the rough classi;cation is certain than in areas where it is uncertain.
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Given the following two de;nitions:

D5G �x
i,i+

�(x
i,i+ 1 x

i,i? )
If�(x

i,i+ 1 x
i,i? ) Þ 0.

0 Otherwise.

(4)

O5G �iÞj
x

i,j+
�iÞj

(x
i,j+ 1 x

i,j? )
If�iÞj

(x
i,j+ 1 x

i,j? )Þ 0.

0 Otherwise.

(5)

D measures the crispness in the diagonal elements of the matrix, whereas O measures
the crispness in the oŒ-diagonal elements. The crispness is not measured in a way
compatible with M

c
, since overlapping areas of uncertainty are counted twice.

The relative crispness measure can be computed as follows: M
r
5 DÕ O. Since

0< D< 1 and 0< O< 1, Õ 1< M
r
< 1. If M

r
5 Õ1, that means that there is no crispness

on the diagonal of the matrix, whereas there is perfect crispness oŒ the diagonal of
the matrix. Values between Õ 1 and 0 mean that there is more crispness oŒ the
diagonal than there is on the diagonal. M

r
5 0 means that there is no diŒerence in

crispness on or oŒ the diagonal. Values between 0 and 1 mean that there is more
crispness on the diagonal than there is oŒ the diagonal. If M

r
5 1, there is no crispness

oŒ the diagonal, while there is perfect crispness on the diagonal. Higher values of
M

r
are ‘better’ than lower values. For the example error matrix in table 1, M

r
#0.31,

which tells us that the diagonal elements are signi;cantly more crisp than the
oŒ-diagonal elements.

4.3.3. Overall accuracy
As stated above for the case of two crisp classi;cations, overall accuracy is the

total correct area divided by the total area. This can be extended to the case of one
crisp and one rough classi;cation. However, we will not get one single answer, but,
;ttingly, an upper and a lower bound.

The upper and lower bounds for overall accuracy are as follows: S x
i,i+

/

|R |< A
o
< S (x

i,i+ 1 x
i,i?
)/|R |. We can be sure that we are not counting anything

twice, since we only use elements from the diagonal of the matrix. The areas
corresponding to these diagonal elements are all subsets of diŒerent classes of C,
and those are disjoint. For the example extended error matrix in table 1, 0.27<
A

o
< 0.86.
The way to arrive at the bounds given above, is to think of the ways the rough

classi;cation can be converted to a crisp one. If the assumption is made that it is
permissible not to assign (parts of ) areas of uncertainty to any crisp class at all, the
bounds given above are valid and tight. If this assumption is not valid, we will have
to resort to the procedure outlined below.

4.3.4. Error matrix parameterization
Since the row-sum and total-sum properties do not hold for extended error

matrices, it is hard to directly apply traditional measures that involve elements
beyond those on the diagonal. For this kind of global measures, we will convert the
rough classi;cation into a crisp one. However, doing so in a consistent fashion is
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not straightforward, since there may be overlap in the areas of uncertainty, and this
information is missing from the matrix. So, we will have to go back to the rough
classi;cation, R, and convert this rough classi;cation to a virtual crisp classi;cation,
V , on which (together with the crisp classi;cation, C ) we will base our crisp error
matrix. V will have the same index set as R, namely J. So there will be a one to one
correspondence between the classes (X

j
,X

j
) of R and the classes Z

j
of V .

Since there is no unique way to convert a rough classi;cation to a crisp one, and
the value of the measure that we want to compute depends on exactly how we do
this, we will have to parameterize our matrix depending on which classes of V , if
any, we assign certain component areas. The component areas will be Y

i
>R

C
, the

intersections of the classes of C with the rough components of R ; in the situation
in ;gure 2 these are the white areas that have numbers in them. We do not need
to parameterize on the lower approximations of the classes of R, since we have
no choice where to assign them; they will become zero-th order terms in our
parameterized matrix.

Given the de;nition C
j
5 {R

C
| j ×C}, the N by N parameterized error matrix has

elements p
i,j given by:

p
i,j 5 |Y

i
>X

j
|1 �

K×Cj

(x
i,j,K · |Yi

>K |) (6)

with the following two restrictions imposed upon the parameters:

0< x
i,j,K < 1 and�

j
x

i,j,K < 1 (7)

This last inequality assumes that it is permissible not to assign some of the area
covered by the areas of uncertainty to any class of V . If this is not permissible, the
inequality becomes an equality: S

j
x

i,j,K 5 1.
If we apply this to the example in ;gure 2, we get the parameterized error matrix

in table 2, although we have simpli;ed the indices somewhat. The additional restric-
tions that we should impose are x2 1 x3 < 1 and x6 1 x7 < 1.

Now we can apply any accuracy measure to this new matrix, and we will get
a formula that gives us the value of the accuracy measure depending on exactly
how we treat the areas of uncertainty in the rough classi;cation. Theoretically, we
could then maximize and minimize this equation within the bounds imposed on
the parameters, and obtain the maximum and minimum values for the accuracy
measure applied.

Let us look at an example. Omission and commission errors are the diagonal
elements of table 2 divided by, respectively, the sum of the column and the sum of
the row. In any parameterized error matrix, this comes down to a quotient of two
linear expressions, combined with the appropriate restrictions mentioned above.

For another example, let us look at KÃ . Each of the x
i,j is a linear expression in

an unknown number of parameters in our case, the same goes for S
j
x

i,j and S
j
x

j,i .

Table 2. A parameterized error matrix.

A B

A 10111x11 4x2 4x31 4x4B 5x61 3x8 4110x51 5x7
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|A |, meanwhile, is perhaps best translated as |C |, which is constant. Thus, the whole
comes down to the quotient of two quadratic expressions which should be optimized
over a hypercube limited by some hyperplanes.

For both these examples, at least local minima and maxima can be found with
software such as Matlab. Since ;nding the extremes of a quadratic expression over
an N-dimensional box is known to be NP-complete (Garey and Johnson 1979 ),
optimizing the expression for KÃ is at least that hard. We have been unable to ;nd
any mention about the complexity of ;nding the extremes of a quotient of two linear
expressions, so have no such information about omission and commission errors.

4.4. Comparing two rough classi®cations
In the rest of this subsection, we will assume that we are comparing the rough

classi;cation R, consisting of (X
i
,X

i
), i ×I, with S, consisting of (Y

j
, Y

j
), j ×J. We

will make the usual assumptions |I |5 |J | and <X
i
5 <Y

j
and the de;nition N5 |I |.

We ;rst discuss the error matrix extension for this case and its properties, then
explore measures for it, and ;nally parameterize it to apply conventional measures.

4.4.1. Error matrix extension
When comparing two rough classi;cations with each other, like in ;gure 3, we

will use the two-dimensionally extended error matrix, or 2Deem. The 2Deem for the
example from ;gure 3 is given in table 3.

The matrix will be of size 2NÖ2N, having elements x
k,l
. The de;nition of x

k,l
depends on both k and l. If both are odd, x2iÕ1,2jÕ1 5 x

i+ ,j+ 5 |X
i
>Y

j
|. If k is odd,

but l is even, x2iÕ1,2j 5 x
i+ ,j? 5 |X

i
>(Y

j
Õ Y

j
)|. Symmetrically, if k is even, but l is

odd, x2i,2jÕ1 5 x
i?,j+ 5 |(X

i
Õ X

i
)>Y

j
|. Finally, if both are even, x2i,2j 5 x

i?,j? 5

| (X
i
Õ X

i
)>(Y

j
Õ Y

j
) |. When we talk about the diagonal of this matrix, we will mean

the four sets of elements x
i+ ,i+ , x

i+ ,i? , x
i?,i+ and x

i?,i? .
For a 2Deem, none of the row-sum, column-sum and total-sum properties hold

Figure 3. Comparing two rough classi;cations.
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Table 3. A two-dimensionally extended error matrix.

R ,̄ S � A AÕ A B BÕ B

A 7 3 0 0

AÕ A 3 12 0 5
B 0 0 2 2

BÕ B 0 8 2 17

any longer, since neither the parts of classes associated with the individual columns
nor the parts of classes associated with the individual rows are pairwise disjoint
any more.

4.4.2. Overall accuracy
For this case, as well, an upper and a lower bound for overall accuracy can

easily be computed.

4.4.3. Error matrix parameterization
To apply conventional crisp measures to this case, we can use an approach

similar to the one we used for the rough-crisp case in §4.3.4.; constructing a para-
meterized error matrix. This time, we will parameterize on the intersections of a
component of R with a component of S. We will repeat the de;nition C

i
5 {R

C
|i ×C}

and add D
j
5 {S

C
| j ×C}. The elements of the NÖN parameterized error matrix are

now given by:

p
i,j 5 X

i
>Y

j
1 �

K×Ci

(x
i,j,K,Yj

· |K>Y
j
|)1 �

L×Dj

(x
i,j,Xi ,L

· |X
i
>L |)1

�
K ×Ci

�
L×Dj

(x
i,j,K,L · |K>L |) (8)

Of course, still

0< x
i,j,K,L < 1 and YK, L :�

i,j
x

i,j,K,L < 1 (9)

(or make that ...5 1 if you do not believe in not assigning parts of areas of uncertainty
to any class). Like in §4.3.4., this parameterized error matrix is linear in its parameters,
so the conclusions we have drawn there apply to this case as well.

The only diŒerence is in the number of parameters. The maximum possible
number of parameters is much larger for this case (on the order of 22N rather than
2N , a quadratic diŒerence). In practice, however, many, if not most of these parameters
(in either case) will only ever occur in the matrix multiplied by zero, and can thus
be dropped from calculations. It is harder to estimate this practical number of
parameters, but it seems likely that it will be larger in this case than in the case
in §4.3.4.

5. Experiment
The goal of our experiment was to use the idea of rough classi;cations to compare

two vegetation maps, covering the same area of 1.8 by 2.3 km in Stockholm County,
just north of Stockholm. The two maps had been produced for nature preservation
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tasks and diŒerent classi;cation schemes were used to delineate vegetation categories
on a categorical map sheet in 1:15 000 scale. The quality in terms of spatial and
attribute accuracy of these maps are not known but for the purpose of this experiment
that is of less importance, since the main idea is to demonstrate the technique of
using rough classi;cations.

5.1. Experiment description
In our experiment we considered the two layers as two diŒerent representations

of the same area. We started out with two vegetation maps which provided two
crisp vegetation classi;cation layers called veg9 and veg35. Building on vegetation
concepts that were introduced by PaÃhlsson (1972 ), veg9 was classi;ed using moisture
and nutrient status as the classi;cation basis giving nine diŒerent vegetation classes
for the experiment area. Veg35 used a Nordic classi;cation system described by
PaÃhlsson (1995 ), giving 35 diŒerent vegetation classes for the experiment area. The
class descriptions are given in tables 4 and 7. To compare the two, we needed to
reclassify one of them; for obvious reasons, we picked veg35. This can be seen as a
generalization operation where we reduce the number of classes from 35 to 9 and
simultaneously change the classi;cation system.

Reclassi;cation of veg35 into the classi;cation scheme used for veg9 would be a
straightforward task if a one to one or many to one correspondence between the
two classi;cation systems existed. Since this is not the case, we used the idea of
rough classi;cation to represent the uncertainty in the reclassi;cation operation.
Rules to reclassify from the classi;cation system given by PaÃhlsson (1995 ) to the
one given by PaÃhlsson (1972 ) were constructed using both the guidelines given in
(PaÃhlsson 1995 ) and our own knowledge about the association between the diŒerent
vegetation classes. The re-classi;cation rules are given in table 7. The reclassi;cation
rules can also be constructed using decision tables obtained through training data
sets as described in (Skowron and Grzymala-Busse 1993 ).

Since the reclassi;cation of veg35 into rough classes introduces a certain degree
of uncertainty it will be of interest to see if this uncertainty can be resolved by using
additional information about the area. Given that the veg9 classi;cation system uses
nutrition and moisture properties we could argue that more information on these
properties could give evidence to resolve some of the areas of uncertainty. We decided
to use soil information as proxy for the moisture component and provided this
evidence in the form of a digitized soil map covering the experiment area. This
required a reclassi;cation from the soil map classes (table 5) into rough veg9 classes.

Table 4. Classes in veg9.

Id Description

1 bare rock
2 dry heather
3 mesic heather
4 wet heather
5 swamp
6 dry meadow
7 mesic meadow
8 wet meadow
9 steppe alike
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Table 5. Soil classes.

Id Description

1 washed moraine
2 outcrop
3 moraine
4 sandy sediments
5 postglacial clay
6 clay sediments
7 muddy clay
8 mud peat

The rules for rough classi;cation of soil classes in the soil map was entirely done by
our own knowledge about the association between soil classes and vegetation classes
in the veg9 classi;cation scheme. These classi;cation rules are given in table 6.

We proceeded as shown with non-dashed lines in ;gure 4, where single boxes are
crisp layers and double boxes are rough layers. We took veg35 and the soils classi;ca-
tions and reclassi;ed them into two separate rough classi;cations using the nine
classes of veg9. Having this data, we produced some statistics about them and about
their match with veg9, which are presented in §5.2.

5.1.1. Merging two rough classi&cations
The problem under consideration in this section is, given two rough classi;cations

of the same area, with the same classi;cation scheme, how do we combine them?
For example, if, with respect to a speci;c piece of land, the one classi;cation claims
that it is either forest or city, while the other classi;cation claims that it is either
lake or forest?

Let us call the input classi;cations A and B, and let us say that we are looking
at these classi;cations of point x. We will call the set of classes of A of which x is a
member K; for B, we will call that set L . The output classi;cation we will call C,
and the set of classes of which x is a member in C we will call M.

Note that in this representation we can not diŒerentiate between if x is in the
area of uncertainty of exactly one class or in the lower approximation of exactly one
class. This is acceptable, because we are looking at complete classi;cations, and in
that case x being in the area of uncertainty of exactly one class does not really make
sense. This is true for M, the set of output classes, too. If M contains more than one

Table 6. Rough reclassi;cation from soils to veg9.

Soil class veg9 rough classes

1 2, 6
2 2, 6
3 3, 7
4 3, 7
5 3, 7
6 4, 8
7 4, 8
8 4, 8
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Table 7. Veg35 classes and rough reclassi;cation to veg9.

Id Description Veg9 rough classes

1 pine forest type 1 2
2 pine forest type 2 2
3 spruce forest type 1 2, 3
4 spruce forest type 2 4, 8
5 spruce forest type 3 3, 7
6 spruce forest type 4 8
7 spruce forest type 5 4
8 mixed conifer forest type 1 2
9 mixed conifer forest type 2 2, 3
10 mixed conifer forest type 3 3, 7
11 mixed conifer forest type 4 none
12 broad leafed deciduous forest type 1 7
13 broad leafed deciduous forest type 2 8
14 broad leafed deciduous forest type 3 7
15 alder forest type 1 8
16 alder forest type 2 8
17 birch/aspen forest type 1 2, 3
18 birch/aspen forest type 2 7
19 birch/aspen forest type 3 2, 3
20 brushwood 7
21 mixed forest type 1 2, 3
22 mixed forest type 2 7
23 mixed forest type 3 8
24 early successional forest none
25 clear cuts/non determined none
26 alder scrub 8
27 geoliteral shore vegetation none
28 subliteral shore vegetation none
29 dry meadow type 1 6
30 dry meadow type 2 6, 7
31 meadow type 1 6, 7
32 meadow type 2 6, 7
33 meadow type 3 8
34 meadow type 4 3, 7
35 wet meadow type 8

class, x will be in the areas of uncertainty of all those classes. If M contains only
one class, x will be in the lower approximation of that class.

There are two cases that have to be considered separately. Either the two
classi;cations contradict each other (i.e. K>L 5 ù ) or they do not (i.e. K>L Þ ù ). It
is quite likely that any two classi;cations will contradict each other in some points,
if only in sliver areas along the not-quite-equal borders of classes.

Let us consider the non-contradictory case ;rst. In this case, we will apply the
rule that M5 K>L . For a class c, if c 1 K or ck L , that means that that classi;cation
says that it is certain that x is not in c. So only if c ×K and c ×L can we conclude
that c ×M.

But what about the contradictory case? Here, we will adopt the reasoning that,
even if they can not both be right, one of them probably is. Since we do not know
which one, we will just say that M5 K<L . So if classi;cation A says that our point
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Figure 4. Process graph.

X is forest, while B says that it is really water, we will conclude that it must be
either forest or water.

5.1.2. Implementation details
This work was carried out using a custom-built system, ROVer (Rough Object

Visualizer), shown in the screenshot in ;gure 5. It is based on ROSE, the RObust
System Extension, a library of spatial operators based on exact arithmetic, specially
developed for integration into a spatial database system (Güting et al. 1995 ), with
an extension to ROSE that deals with rough sets. The user interface was written
with gtk1 , a small, e�cient and Kexible GUI library for X11. Perl has been embedded
as a programming language. ROVer can display any number of overlaid rough and
crisp classes and classi;cations, even transparently, using a highly dynamic user
interface, and is driven by Perl scripts, which call C routines in ROSE to do the
actual computations. What is not apparent from the screen-shot is that as the user
moves the mouse over the geometry shown, not only do the coordinates update, but
also the little icons in the legend change to indicate which classes the mouse pointer
is in (showing a ‘1 ’ if the mouse is in the lower approximation, a ‘?’ if it is in the
area of uncertainty, and a ‘Õ ’ if it is outside the rough class).

5.2. Results
The reclassi;ed veg35 layer has an overlap measure of 1.058 and a crispness

measure of 0.308. That means that about 30% of the area is certain, and the remaining
70% is uncertain. On that uncertain area, there is overlap (overlap measure is greater
than zero). In fact, the overlap covers a little bit more than the whole classi;cation;
there must, in other words, be areas which are in at least three areas of uncertainty.
When comparing the reclassi;ed veg35 layer with the veg9 layer, we get an overall
accuracy in the range of [0.039, 0.461], not very good.

Themerged classi;cation has an overlap measure of 1.981 and a crispness measure
of 0.168. That means that the certain area has almost been halved as compared to
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Figure 5. ROVer screenshot.

veg35, from about 30% to about 17%. About 83% of the area is uncertain, and on
those 83% there is an overlap that covers almost twice the whole classi;cation. Since
1.981>0.83Ö2, there must be areas where there is a triple overlap; in other words,
there must be areas which are in the area of uncertainty of at least four classes. The
overall accuracy when comparing this classi;cation to veg9 is in the range of
[0.031, 0.697], still not very good. It does mean, however, that if we get more
information about the area under consideration, we could improve the overall
accuracy at most up to 0.697.

6. Discussion
Our experiment shows the simplicity of rough classi;cation in situations where

we have di�culties to associate a particular area with one speci;c category based
on available information. The experiment shows the applicability of rough classi;ca-
tion both to reclassi;cation of existing datasets and to performing spatial analyses
on these datasets. We also see a potential to work with rough classi;cation in
primary classi;cation work such as surveying. To exemplify this we would like to
highlight an example from the ;eld of research in glacial geomorphology where we
think that a rough classi;cation would be well suited.

In a recent paper Hättestrand (1998 ) treated the formation and distributional
characteristics of glacial geomorphological features, particularly ribbed moraines. As
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a basis for his study a survey of glacial landforms was done covering almost two-
thirds of Sweden. One type of moraine that was mapped was the Veiki moraine, a
type of hummocky moraine characterized by plateaus with rim ridges separated by
depressions. In his survey Hättestrand used a narrower de;nition of this moraine
type than previous work by other authors, and what came out was a more restricted
distribution of this speci;c landform. Especially the spatial distribution of the ridges
coincided with the distribution of other ice-marginal features and suggested an
association between them. This ;nding together with other observations made a
reinterpretation of the early phases in the latest glaciation of Fennoscandia possible.
We suggest that surveying of geomorphological landform elements using rough
classi;cation would enable a rough assignment of nearly matching features to the
upper approximation of the set. Subsequent analysis of for example the distribution
pattern may then exploit this preservation of uncertainty and make ;ndings as the
one mentioned possible.

From a geographical information system users point of view the visual interface
is a primary tool for interpretation, analyses and visualizations of geographical data.
Most current geographic information system software provides ready to use functions
to zoom in and out, regroup, aggregate and generalize the data. Still most people in
the geographic information community now realize that the digital generalization
process is still problematic and that research needs to develop methods for data
abstraction and data reduction that keep track of data quality (Müller et al. 1995 ).
The advantage of the rough set based approach is that one doesn’t have to quantify
uncertainty.

There is of course a risk of being too vague if every question is answered with a
rough ‘maybe’. A way to compensate for this vagueness is to provide additional
information on the context of the concept or class. Freksa and Barkowsky (1996 )
discuss fuzziness in geographical objects and argue that a discrete model of spatial
concepts that preserves the conceptual neighborhood has clear advantages in practice.
A conceptual neighborhood means a situation where we either have compatible
concepts on diŒerent levels of granularity or we have competing concepts on the
same level of granularity. Some examples demonstrate this idea of conceptual neigh-
borhood in the context of concepts for spatial relations (Freksa and Barkowsky
1996, Cohn and Gotts 1996 ). In our experiment we show that the same ideas can
be applied to concepts such as vegetation classes. The rules we used to reclassify our
initial data into rough layers apply the idea of conceptual neighborhoods either
stated explicitly (PaÃhlsson 1995 ), or by using an expert decision approach. Of course,
the neighborhood structure is not preserved as such in the data but in all cases of
uncertainty each item is assigned rough set values according to the concept neighbor-
hood. Thus, we see rough classi;cation as a candidate approach for the representation
of conceptual neighborhoods in a wider perspective.

The explicit de;nition of multiple conceptual hierarchies as a heterachy of con-
cepts as part of the meta data may help to preserve the geographical meaning in
databases (Nyerges 1991b). Such an idea to employ a discrete model on the seman-
tic level is closely related to the mechanisms developed by Bishr (1998 ) to capture
and handle concepts at a level of application semantics. Bishr (1998 ) presents a
thorough background to the reasons why and how semantic similarity between
concepts should be used to develop mediator concepts to resolve, for example,
schematic heterogeneity.

The combination of two rough layers performed in our experiment in order to
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resolve some of the uncertainty can be compared to the use of inference network
operations. Examples of commonly used methods include: fuzzy logic AND and OR
operations, Bayesian updating of prior probabilities to posterior probabilities, and
the related evidence theory or Dempster-Shafer theory. The latter divides a probabil-
ity space into two parts, an inner measure given by a belief function and an outer
measure given by a plausibility function.

There is an apparent similarity between Dempster-Shafer belief and plausibility,
and the upper and lower approximations of rough sets. Let us, as an example, look
at evidence of the inKuence of civilization. At the locations where one sees, say, grass,
one can deduce that some external inKuence, be it a herded Kock of sheep or a
lawnmower, must keep out the trees from that location. This can be seen as positive
evidence for the inKuence of civilization. At other locations, such as in a forest, such
evidence may not be present, but this is not the same as evidence of the absence of
civilization. Evidence of absence could be given by, say, extensive growth of reindeer
moss, which is very fragile and grows very slowly. Dempster-Shafer belief and
plausibility diŒerentiate between these options, and so do rough sets.

This has motivated work on the relation between rough set theory and evidence
theory, which has been reported in (Skowron and Grzymala-Busse 1993 ). It follows
from their work that the overall crispness measure described in §4.1.2. can be
interpreted as a belief value in the sense of Dempster-Shafer logic. However, much
of their ;ndings remain to be applied in a spatial context such as the one reported
here. Combination of datasets in overlay operations is an important step to per-
forming multi criteria evaluation where an attempt is made to combine a set of
criteria for a decision according to a speci;ed question. In such a set of criteria we
may want to use boolean, fuzzy and rough set layers.

7. Conclusion
We have discussed rough set based classi;cation, and have argued that it is a

viable alternative to fuzzy set based classi;cation when a classi;cation with explicit
representation of uncertainty is desired. We have introduced various useful concepts
and measures related to rough classi;cation, and have shown how to compare a
rough classi;cation to both a crisp and a rough classi;cation. In our experiment,
we have shown the practical use of this theory, by converting data from one
classi;cation system to another, so they can be compared with other data in the
latter classi;cation system, or be used for further processing that requires data in
this classi;cation system; the uncertainty in our data is explicitly represented at each
step in the analysis. This experiment would not have been possible without the
theory developed here.

It would be possible to perform uncertain reclassi;cation based on fuzzy set
theory. However, as stated previously, membership functions are either di�cult to
determine or rather arbitrary. When discussing rough sets, (Yao, 1998 ) states: ‘Rough
membership functions may be interpreted as a special type of fuzzy membership
functions...’. One could argue then that the decision whether a data point ‘is’, ‘is not’
or ‘is maybe’ in a given class, for instance, is also rather arbitrary. However, in our
case, given the reclassi;cation rules, it is straightforward to determine the rough
memberships for each data point of the classi;cation.

7.1. Future work
Two alternate reclassi;cation approaches, indicated with dashed lines in the

graph in ;gure 4, which remain to be investigated, are:
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E The ‘classical’ direct conversion: Converting the crisp classi;cation veg35
directly to the nine classes of veg9, and comparing them. This would seem to
be an inferior approach, since we cannot indicate our uncertainty when con-
verting from one classi;cation system to another: one input class must always
map onto exactly one output class. It would, however, give us a baseline with
which to compare the other approaches.

E The rough direct conversion: Converting the two crisp classi;cations into one
rough classi;cation in one single step, without any intermediate classi;cations.
This way we can be sure that we do not lose any information in intermediate
steps, which does happen in the indirect approach that we took in the experi-
ment above, see ;gure 4. A closer matching between the conversion and the
reference classi;cation can probably be achieved this way, because we have
the maximum amount of information available on which to base our conclu-
sions, but it is more knowledge-intensive; making this mapping is much more
di�cult than making the two consecutive mappings.

We intend to look into more appropriate measures that can be derived directly
from the rough and/or crisp classi;cations, without the need for converting the
rough classi;cation to a virtual crisp classi;cation. We should probably also explore
these alternate approaches to our experiment. It would be interesting to look at
whether and how the reclassi;cation approach and the measures developed in this
article can be extended to fuzzy data.

Another direction one might take is to develop more high-level interfaces to
rough set based systems. There would then, as we mentioned in the discussion, be a
desire to use crisp and fuzzy data as well as rough data in such high-level systems.
This would require some way of combining these three kinds of data in multi criteria
analysis, for example. Combining crisp and fuzzy layers is rather straightforward,
using crisp data as a mask on fuzzy layers. The question of how to combine rough
data in such overlay operations is, as far as we see today, nontrivial.

A ;eld that we have not covered here is the one concerned with spatial aggregation
of raster data. The increased use and availability of diŒerent air-borne sensor imagery
produces datasets on the environment from local to global scales. In order to exploit
these data there is a current need for proper aggregation and generalization methods.
In this paper we have used rough set classi;cation to explore the possibilities to
perform generalization using a thematic approach. An interesting question that
remains to be studied is how to incorporate this with a spatial aggregation of for
example satellite imagery or other grid datasets.

Altogether, our ;ndings suggest that rough set theory and rough classi;cation
opens an interesting ;eld for further studies as a complement to existing theories on
the representation of uncertainty in geographical information.
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ESTIMATING SEMANTIC UNCERTAINTY IN
LAND COVER CLASSIFICATIONS

Introduction

After the pilot tests in chapter 5 it was concluded
that the use of mixture classes in R-data made it
difficult to fully investigate the effect of spatial
aggregation. The aggregation experiments also
called for a way to handle alternative or tied
outcomes in the result. Further studies of
aggregation effects using the chosen approach
therfore required some solutions to these
problems.

First, I chose to use the structural data
described in chapter 4 instead of the R-data. This
data set was more consistent in the interpretation
of the different attributes and it consequently gave
an areal estimate of each interpreted variable.

Second, the problem of mixed aggregation
outcomes or ties was  interpreted as a problem of
indiscernibility due to a limited granularity in the
information. Chapter 6 fruitfully developed the
method of rough classification and rough
accuracy assessment. These findings are now
anticipated to be applicable to the previously
problematic aggregation effect.

Thus, these two modifications are the major
difference between this more elaborate study of
spatial aggregation effects.

Scale change by spatial aggregation is
technically a straightforward process. Harder
though is to produce information from the
aggregation that is consistent with the analysis
purpose at the target scale. This chapter illustrates
methods to search for semantic differences in a
scale change from fine resolution, pixel based
landscape data generalized into a coarse
resolution data set.

Despite the large interest in data aggregation
and generalization, very few, if any, studies have
investigated digital generalization effects with a
quantitative, location specific approach. This
work anticipates that the use of a location specific
assessment of aggregation results will provide an
additional and sometimes more informative aspect
of aggregation effects. The main purpose of this
chapter is to demonstrate location specific

methods for estimation of scaling and
generalization effects on the semantic accuracy of
categorical data sets.

Experimental design: Conceptual
discussion

To define the general scope of this study, consider
an initial measurement rL at a spatial granularity
of r spatial units and another identical
measurement rL10 made with a granularity of

r∗10 . We would like to find the generalization
function ()g that satisfies

Eq. 1 rr LLg 10)( =

In other words, can we define a generalization
procedure for a given variable so that the outcome
of the generalization is the same as if
measurement were performed at the desired level
of generalization? The assumption of this work is
that any deviation from a strict calculation of
landscape content indicates scale dependence in
the interpretation of used landscape concepts.
Thus, if we can falsify Eq. 1 it strengthens the
alternate hypothesis, that there is a scale
dependent component in the use of the data
concepts. In the context of this experiment, the
definition of the digital generalization method is a
digital implementation of a manual interpretation
and classification instruction.

One large difference between this and other
studies of aggregation is that it uses data acquired
from manual interpretation of printed maps. The
reference dataset is thus derived using exactly the
same technique and exactly the same input
information as the one used in the collection of
lower resolution data. The major reason for this
design is to evaluate whether there is a semantic
effect involved in aggregation of geographic
information. Semantic differences will here be
estimated as differences in semantic accuracy.

The notion of semantic accuracy was
introduced in chapter 2 and exemplified in Figure
5 and Figure 6. Semantic accuracy includes an

Chapter

7
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evaluation of “ability of abstraction” as a measure
of how well a real world feature can be defined in
the perceived reality. It also includes an
evaluation of how well geographical objects in a
database correspond with the perceived reality.
The specification in these figures serves as a
framework for the hypothesis testing in this
experiment.

The following experiment will try to evaluate
both the above-mentioned aspects of semantic
accuracy; “ability of abstraction” and “accuracy
of the dataset”. First the ability of abstraction is
measured using differences between multiple
interpretations as a proxy for an actual “ability of
abstraction”-measure. The logic behind this is that
a multiple interpretation of the same real world
entity uses the same specification and would
ultimately end up with the same data. Any
differences at the data level would be possible to
interpret as a difference at the level of perceived
reality since the path from perceived reality to
data is exactly the same and can be held as a
constant factor.

The analysis of generalized versions against
the manual reference to answer the main
hypothesis (Eq. 1) uses the same logic in that it
uses two versions from the same real world
feature. Once again data is used as a proxy for the
comparison between perceived reality and the real
world. The degree of correspondence between the
two can then be interpreted as the semantic
accuracy of the dataset, that is the semantic
accuracy of the translation from the original
dataset to the generalized level.

Also, the experiment includes an estimation of
the differences between generalization methods
that use different levels of detail in source data.
Automated spatial generalization of categorical
data often uses the same categories at both input
and output levels. Manual generalization on the
other hand may use several levels of detail but
there are few if any reported examples of how this
can be made automatically. Hodgson (1998)
propose a conceptual model of manual image
interpretation. In this he speculates that a manual
interpreter identifies intermediate level
abstractions before the final classification. Of
primary interest in order to make automated
generalization possible is of course to determine
the required spatial and thematic resolution of the
input data in order to produce the desired output.

Since this work uses a site specific approach
to the evaluation of aggregation effects the

analyses will follow some of the standard
procedures for performing site specific accuracy
assessment, mainly those of Congalton and Green
(1999). Due to the inevitable interpretation
inconsistency, this study also implements
methods to include classification uncertainty
using rough classification described in the
previous chapter.

Methods

Source and reference data
In chapter 4 it was concluded that the existence of
mixture classes in R-data caused undesirable
effects for the analysis of aggregation effects.
Now, for the continued investigations of the
spatial granularity effect, I made two principal
refinements of the experimental design.

First, I decided to use the “structural data” set
from chapter 4, which does not make use of
mixture classes in the same way as R-data. The
explicit representation of the landscape type
mixture for each spatial unit is more suited to the
task of detecting differences in interpretation at
different spatial granularity. One main advantage
of the R-data is that it was possible to do thorough
quality tests. The result of the quality tests in
chapter 4 made it possible to treat the R-data
estimates as having the same accuracy as National
Forest Inventory estimates. However, for these
closed experiments it is of secondary interest to
have absolute calibration of the interpretation
values. More important is to assure an internal
consistency in the interpretations, and this was
possible to evaluate for the Structural data.

The second modification of the experimental
design of chapter 4 is the use of rough set
representations explained in chapter 6 (Ahlqvist,
Keukelaar and Oukbir, 2000a). After testing for
interpretation consistency, it was possible to use
rough classification to represent the ambiguity
that occurs in the spatial aggregation process due
to the detected interpretation inconsistency.

Thus, for the purpose of this chapter, a portion
of the original Structural data was selected. From
the entire dataset, data covering two topographic
map sheets (Swedish land survey, 1961, 1977)
within the Stockholm County was selected for a
detailed study, Figure 30. These study areas were
interpreted once again using the same method as
described in chapter 4, only this time using a
smaller grid size, 500x500m. This gave two sets
of data for the same area, both datasets using the
same source information, same areal extent, same
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interpreter (Rolf Ruben), and same classification
scheme. The only thing that differs in the two
pieces of information is the areal unit of
investigation.

The interpretation of landscape types uses
topographic maps to determine the proportion of
land cover types within each areal unit. Using
these estimates a classification of the areal unit
into one of four different landscape types is made.
The areal units consist of a regular quadratic grid
where each map sheet is digitized into an array L
of square grid cells. As already noted this study
uses two different cell sizes, 500x500m called

500L data and 5000x5000m called 5000L data.

One problem of this kind of approach is to
achieve enough data in order to provide a
statistically valid result, as each pixel at the low
resolution corresponds to 100 pixels at the high
resolution. According to general suggestions in
Congalton and Green (1999) we need c. 200
pixels for the assessment. This would in turn
require interpretation of another 20000 pixels at

the 500L resolution. Clearly some kind of trade off

between the statistical requirements of the
analysis and the practical limitations for this study
had to be made. Since sampling is not used for the
assessments of correspondence it may be argued
that a smaller number of target pixels can be
sufficient. I have decided to include an area
corresponding to two topographic map sheets in
this study, giving N=5000 for the fine resolution

500L data and N=50 for the coarse resolution

5000L data. The study areas, and the layout of the

interpretation grid are illustrated in Figure 30. The
study area is comprised of two separate areas each
corresponding to one topographic map sheet
5x5km and in a 1:10000 scale. For purposes of
analysis and visualization the two map sheets
have been tiled side by side to produce one
virtually contiguous study area. All further
aggregation processes and analyses are made
without any involvement of the border zone
between the two maps thus making sure that no
artificial effects arise. Figure 31 shows images

 

500L

5000L

Stockholm county 

Figure 30 Study area interpretation and tiling. Topographic maps (right) from NE and SW parts of Stockholm County
(left) were interpreted at two different grid resolutions L500 and L5000. The two separate study areas were tiled and
analyzed together.
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that portray the interpretation result at both
resolutions.

Congalton and Green (1999) state some
necessary steps to ensure proper collection of data
for accuracy assessment of a map:
• Accuracy assessment sample sites must be

located on both the reference data and on the
map

• Sample units must be exactly the same area
on both the reference data and the map

• Reference and map data must be collected
for each sample unit to create reference and
map labels based on the map classification
scheme.

Since these recommendations pertain to
applied accuracy assessment the reference data
may be collected from a variety of sources, and
may be captured either through observation or
measurements (Congalton and Green, 1999).

These first three requirements are fulfilled by the
data collection procedure explained above.

Classification scheme
A detailed description of the classification scheme
was described in chapter 4. The description given
below is in a translated and more formalistic
form. As can be seen from the images in Figure
31 the collected data includes both nominal and
continuous variables. The following section will
more thoroughly explain the basis for
classification and its formal implementation. The
same scheme was used in all datasets.

For each cell location l  in L  an estimation is
made of the areal coverage of four land cover
categories by visually examining the paper
topographic map sheet. Only the area within the
spatial limits of the cell is considered at any one
time. Categories and their definitions are given in
Table 26.

Landscape type landscape type 

Urban/suburban Urban/suburban

Agriculture Agriculture 

Forest Forest
Figure 31 Interpreted source data at the two resolutions L500, left column, and L5000, right column. The upper two
showing landscape type classifications (Blue= Coastal landscape, beige= Agricultural landscape, green= Forest
landscape, purple= Urban/suburban landscape). The lower six showing areal coverage of assessed land cover types,
black=0-5% coverage, and increased coverage shown as increasingly whiter shades.
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Associated with each cell location l  in L  is
an array of variables  { }PUPAPFPCLT ,,,,
assigned values in the following manner. The first
variable in the cell array { }LTl  is assigned a
class label from the total set of landscape type
classes LT =[Coastal, Urban/suburban,
Agricultural, Forest] according to the
classification scheme in Table 27. The
classification procedure starts by assessing the
areal coverage of land cover type archipelago as
step 1. If the classification rule is fulfilled the
array variable is assigned { }LTl =Coastal
landscape, if not the classification proceeds with
steps 2 through 4 until { }LTl  has been assigned
one of the four possible landscape type values.

After the assignment of landscape type class,
the cell array is also given the values from the
initial estimation of land cover proportions for the
four categories in Table 1 to cell array elements
archipelago { }PCl , forest { }PFl , agriculture

{ }PAl , and urban/suburban { }PUl . The array
elements are assigned to one of 11 possible areal
coverage classes [ ]10,9...1,0 . These values

represent an interval of 10%, where { } 10*Pxl  is
the middle of the interval in percent. Thus a value
{ } 4=Pxl represents an interval from 35%-45%

areal coverage. Note that this does not apply for
classes 0 and 10 where values represent 0%-5%
and 95%-100% areal coverage respectively.

The values for archipelago { }PCl  are
according to the interpretation instruction and
classification system (Chapter 4) not consistently
given as the areal coverage of this land cover
type. This circumstance made that particular
variable unsuited for the study and it was
therefore excluded from the analysis. Necessary
information on the areal coverage of the
archipelago cover type was derived from the
{ }LTl variable instead. The implication of this

circumstance will be discussed in detail in the
next section.

The study thus focuses on the distribution and
areal proportion of the estimates of
urban/suburban, agriculture, and forestland cover
types. These three variables are used to analyze
the effects of aggregation on quantitative pixel
values.

The process described above provide two sets
of data [ ]PUPAPFLTL ,,,500 , N=5000 and

[ ]PUPAPFLTL ,,,5000 , N=50 interpreted

from the same source. Thus in the sense of Eq. 1
we now have the two measurements

500LLr = and 500010 LL r = .

Generalization strategies
The data collection has this far provided two
measurements of the same area at two different
spatial granularity levels 500L  and 5000L . To

answer the question if Eq. 1 holds, a definition is
needed of the generalization function ( )g  that
will be tested. The following section gives a brief

Table 26 Land cover categories assessed for areal coverage in the study
Land cover category Definition
Archipelago Actual sea area and land area within 500m from the seashore

Urban/suburban Built up land including residential ground, streets, parks, industrial and
commercial areas

Agriculture Agricultural fields, grazed areas and tree patches. Also roads and buildings
connected to these areas.

Forest Forested areas and other land cover types that do not belong to the other three
categories

Table 27 Classification scheme followed in the study
Step Landscape type Classification rule
1 Coastal district At least 60% of the areal unit (pixel) is covered by archipelago
2 Urban/suburban district At least 1/8 of the areal unit (pixel) is covered by urban/suburban
3 Agricultural district At least ¼ of the areal unit (pixel) is covered by Inägor and

urban/suburban
4 Forest district All other combinations
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background on the various methods for raster
generalization described in the literature followed
by a detailed description of the aggregation
procedures that were used for our analysis.

Doing aggregation of data is not a trivial task
and a large literature is concerned with
aggregation and the wider field of generalization.
Following the definitions in McMaster and Shea
(1992) raster-mode generalization can be divided
into four fundamental categories.

Structural generalization refers to a spatial
rearrangement of the raster matrix and normally
produces a cell size that represents an increased
area.

Numerical generalization is the type of
generalization often referred to as spatial filtering
or convolution.

Numerical categorization is a process referred
to as image classification in the remote sensing
literature.

Categorical generalization is confined to
generalization of categorical data.

In the following analysis of raster data I will
use a combination of numerical generalization
and numerical categorization. Two different
generalization strategies are used to evaluate
difference in performance. The difference
between these two strategies is that they use input
data at different levels of detail.

The first step of both digital generalization
strategies is to define the spatial tessellation for
the output to be exactly the same as the data we
already have interpreted at the lower resolution

5000L . Thus a 5000x5000m quadratic grid of non-
overlapping cells is produced, where each cell
embraces 10x10 = 100 original 500L data cells.
Now a numerical generalization is made

( )500Lg . It takes 500L data as input and
calculates numerical averages for the four land
cover type variables { }PUPAPFPC ,,, ,
which are output to the coarse resolution grid. The
next section will describe exactly how the
numerical generalization step uses two different
strategies to produce these averages. One called
Proportion based generalization Eq. 2 and the
other called Category based generalization Eq. 3.

Eq. 2   ( ) [ ]UAFCP PGPGPGPGLg ,, ,500

Eq. 3   ( ) [ ]UAFCC CGCGCGCGLg ,,,500

The output from the averaging procedure is
assigned to vector variables identified by the

subscript. PG and CG denotes the two
generalization strategies, Proportion based (PG)
and Category based (CG). The Proportion based
generalization is using all of the available primary
information to produce images on areal coverage
for the variables at the coarser resolution. The
Category based generalization uses only the class
category information from each cell in the
original data to produce images on areal coverage
for the variables at the coarser resolution. It was
suggested earlier that a manual interpretation
might use intermediate level abstractions in the
classification process. The purpose of the second
approach in this study is to simulate one possible
set of such intermediate level abstractions and to
use them as input to the following generalization
process.

The implementations of the two strategies thus
make use of different inputs from the original cell
vector variables [ ]PUPAPFLTL ,,,500  and

the following examples will illustrate in detail
how they work.

Figure 32 a illustrates the Proportion based
(p) numerical generalization procedure from Eq.
2. It uses all the available information in the
vector variables so that for each variable

{ },,,, PUPAPFPCx = a mean value is
calculated for each 10x10 cell frame, which is
passed on to the corresponding vector variable in
the target resolution xPG .

Figure 32 b, illustrate how the category based
numerical generalization procedure from Eq. 3
only uses the nominal cell classification

{ }LTL500 and calculates the frequency of each

class within each 10x10 cell frame as a measure
of spatial coverage for each land cover type. The
frequency for each class is output to the
corresponding vector variable in the target
resolution xCG .

After the averaging process a numerical
categorization is performed on the result. This
can be expressed as a function using the areal
proportions in the coverage variables at each
location to produce a classification given as
nominal values to the generalized landscape type
variable LTPG .

Eq. 4 uses notation for the proportional
generalization strategy but it also applies to the
categorical generalization strategy. This
numerical categorization function is the
automated implementation of the classification
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into landscape types used for the source data
compilation described in chapter 4. It uses exactly
the same rules and since the discrimination
between the classes is not exclusive we need to
follow the same flow in the classification process
as in Table 27.

Data quality assessment
So far several measures have been taken in the
design of the data collection to ensure the quality
of the final data for analysis. These are:
• Use of spatially exhaustive measurements

instead of sampling to eliminate sampling
uncertainty

• Βalancing the number of measurements with
practical considerations to reach reliable
conclusions

• Retrieving reference data using exactly the
same method as for the source data

• Use of only one interpreter for both datasets
thus eliminating need to calibrate
interpretations

• Use of a clearly defined interpretation
procedure to enable a consistent interpretation
process

Some additional steps are still needed to further
control the quality of the empirical data. These
receive extended treatment in the next section.

Interpretation consistency
In general, consistency refers to the absence of
apparent contradictions in a database (Veregin,
1999). An important part of any study using
manually classified information is the sensitivity
of the classification scheme to observer
variability. This can also be referred to as data
collection consistency.

The use of only one interpreter during the data
collection and a clearly defined interpretation
procedure serve the purpose of reducing the
inevitable variance in any estimation process. But
even if these steps manage to reduce variability
we will still be facing some variation in the data
that is hard to control. Manual image
interpretation variability has been reported (Ihse,
1978; McGuire, 1992), and it would be reasonable
to assume that a certain amount of interpretation
variability would be present in map interpretation
also. Apart from pure mistakes one source for this
variation can be due to a lower ability of
abstraction in the used concepts. Although
interpretation variability is difficult to control it is
often possible to measure it and incorporate
information on the variation into the data. In
doing so the results of further analyses are likely
to be more reliable since the uncertainty of each
estimation can be explicitly stated. According to
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the corresponding cover type variables.
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Congalton and Green (1999) there are two options
to measure interpretation variability in the context
of reference data collection for accuracy
assessment of remotely sensed images. One is to
measure each variable at reference sites to provide
an exact reference for the complete interpretation.
The other option is the use of multiple interpreters
of reference sites. Both alternatives seem viable
alternatives to measure the ability of abstraction.
In this case, the first option would be feasible
since we are using paper sheet maps and do not
need to perform extensive field measurements.
Using map originals and measuring the total areas
of interpreted map elements would probably
provide a fairly exact measurement of ground
truth. Although the first option was possible the
second option was chosen because of its
simplicity and since data already were available
as multiple interpretations distributed over the
study area.

Thus, an estimate of interpretation consistency
as proxy for ability of abstraction was performed.
By doing multiple interpretations of the same area
at different times. A total of 73 areal units (cells)
were interpreted twice at 500L resolution and the

multiple samples were assessed using error
matrices for the variables PC, PF, PA, and PU.
Table 28 shows one of the error matrices, variable

500PF , that was generated from the multiple

interpretations.

The overall accuracy of the example error
matrix is as low as 72% meaning that on average
every 4th pixel is differently interpreted from time
to time. Table 29 provides a summary of the
statistics from the four error matrices that were
generated for the four variables. From the overall
accuracy and KHAT statistics in the first two
columns of Table 4 we can see that the absolute
fit of the analysis is moderate. There is a 73% -
93% agreement between the two interpretations in
terms of overall accuracy measures. The KHAT
statistics that compensate for chance agreement is
as low as 0.63-0.65 for the proportion variables.
But it is much better, 0.89, for the final
classification into landscape types, 500LT . The

general picture from all error matrices is that the
final classification is most consistent between the
two interpretations. This can be explained by the
larger tolerance of this variable to minor
deviations in areal coverage interpretation.

The derived error matrices now give us some
useful information on how severe the
interpretation uncertainty is, and what measures
may be taken to incorporate the uncertainty into
our analyses.

According to the error matrix in Table 28 the
uncertainty is restricted almost entirely within +/-
one areal coverage class. Since the variables are
scalar intervals there is a transition around the
error matrix diagonal from totally consistent
interpretations, almost consistent interpretations
through non-consistent interpretations. Congalton

Table 28 Example error matrix from the assessment of interpretation consistency for the forest variable PF500.
Rows=interpretation #1, columns=interpretation#2. Class 0=0-5%; class 1=5-15%… class 10=95-100% forested area.
Major diagonal shaded, extended diagonal bold outlined.
Forest 0 1 2 3 4 5 6 7 8 9 10 Total Class accuracy

0 16 2 18 0.89

1 1 2 1 4 0.5

2 2 2 4 0.5

3 1 1 2 0.5

4 2 1 3 0.67

5 1 1 2 0.5

6 1 1 0

7 1 1 2 0.5

8 2 2 4 0.5

9 1 4 1 6 0.67

10 1 2 24 27 0.89

Total 17 6 3 1 4 3 0 3 3 8 25 73

Table 29 Assessment of interpretation consistency
Classification Overall accuracy KHAT Extended overall accuracy

PF 0.73 0.65 0.99
PA 0.85 0.63 1.00
PU 0.90 0.64 0.99
LT 0.93 0.89 N/A
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and Green (1999) describe a simple but useful
variation of the error matrix that is appropriate for
this situation. Given that we are dealing with
classifications on a continuous scale it can be
justified to expand the major diagonal in a normal
error matrix. Such an extended diagonal is
outlined in the Table 28 error matrix with bold
lines. This fairly simple extension allow for some
consideration of the idea that class boundaries are
not totally crisp since it accepts plus or minus one
class as a correct classification. In Table 29,
extended overall accuracy measures, based on the
extended major diagonal, show a substantial
increase of the overall accuracy. In other words, if
we are willing to accept a variation in the
interpretation of areal coverage within + or – one
cover class the interpretations will be totally
consistent, 99%-100% overall accuracy, from
time to time.

What we also see in the error matrix, Table 3,
is that the error is not evenly distributed among
the classes. Class 0 and 10 that accommodate
values of no or full areal coverage are more
accurate (89%) than the other classes. The
average for classes 1-9 is 48%. This type of
skewed class accuracy can be analyzed through
accuracy assessment using of fuzzy logic (Gopal
and Woodcock, 1994; Woodcock and Gopal,
1999). This technique will not be used here since
the data does not require this method at the stage
of interpretation consistency evaluation. The issue
of fuzzy logic will however be returned to in the
aggregation procedures and in the analysis of the
results. To some extent the assessment in this
section provides a proxy for the “ability of
abstraction” measure discussed earlier.

Spatial autocorrelation
Knowledge of the degree of spatial
autocorrelation, or the correlation of a variable
with itself through space, is important for any
analysis of scale change. Also, if the analysis is
made using any kind of sampled reference data,
we need to consider the spatial autocorrelation to
choose an appropriate sampling scheme that
fulfills the criterion of independent samples. Since
the analyses in this work is made on spatially
exhaustive data, the risk of uncertainty introduced
by sampling is eliminated, and the spatial
autocorrelation is not of primary interest for the
production of the reference data. More important
though is the effects that spatial autocorrelation
has on the outcome of any spatial aggregation
performed. It is therefore necessary to know the
degree of spatial autocorrelation for the analyzed
variables in order to do a correct interpretation of
the results.

The concept of a spatial correlogram (Cliff
and Ord, 1981) was used to analyze the presence
and range of spatial autocorrelation. The spatial
autocorrelation was estimated as King's case
Moran I index using the AUTOCORR module in
IDRISI for Windows 2.0.  In the analysis the
original images was analyzed separately (image
#1 and #2) to avoid artificial effects due to the
concatenation of non-contiguous landscapes. Also
a binary mask was produced for the coastal
landscape type. The rationale behind this was to
eliminate bias caused by the low and constant
levels of the forest, agriculture, and
urban/suburban cover types in these areas.

In Table 30 and Figure 33 we see that the
autocorrelation quickly tapers off from 0.23 –
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Figure 33 Autocorrelation for both analyzed images, #1 and #2, and for the three variables Urban, Agricultural, and
Forest landscape types. 1st lag at 500m through 10th lag at 5000m.
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0.47 at 500m lag distance to –0.20 – 0.02 at
5000m lag distance. This means that we can
expect that cells at the lower resolution of 5000 m
will be a spatial mix of land cover types from the
higher resolution, 500m. The forest and
agriculture variables exhibit a small increase in
the autocorrelation at a lag distance of 1-3 km.
This is probably due to the fact that the landscape
in this region is dissected by fairly long fissure
valleys. There are a few more dominant such
fissure valleys in the study area. These extend in a
SW-NE direction and are about 1500m across.
The spatial pattern of forest, agriculture and in
some sense the urban areas are of course guided
by these major fissures thus providing the bumps
in the autocorrelation plot.

The analysis does not suggest that the
different land cover variables would behave
differently in the generalization due to effects
caused by differences in autocorrelation.

Interpretation uncertainty propagation
After the previous definition of the digital
generalization methods we now turn back to the
earlier assessment of interpretation uncertainty.
For the following analysis of scale dependent
interpretation it is important to incorporate the
uncertainty in interpretation in order to draw
correct conclusions. Figure 35 builds further on
Figure 31 to illustrate the two different
generalization strategies over an example 2x2
pixel matrix of source data.

The initial proportions of land cover variables
in this example are very close to the classification
threshold for landscape type “Agricultural
district”.  The areal estimates of the land cover
types after the first numerical generalization
differs by 50% units. Despite this large difference
the final classification of landscape type is the
same. We see by this example that the
overestimating effect of the classification rules by
using the category based generalization is even
more pronounced than in Figure 32. Furthermore,
the final classification step is clearly very tolerant
to misinterpretations in the landscape type
variables at certain levels. Despite the large

differences in land cover proportions,
“Agricultural district” is still chosen as the
landscape type in both generalization strategies.
Simply because the classification threshold is not
within the range of the differences in this
particular situation. Now, in Figure 34 when the
tolerance of +/- one areal coverage class is
applied to the same generalization situation we
see that both strategies fail to decide upon the
class label.

Figure 34a shows how the initial data is
averaged into an interval of possible areal
coverage for the land cover type at hand. Since
the interval crosses the classification threshold for
the agricultural and forest landscape types the
output classification has to accept that either one
of these class labels can be correct. Figure 34b
shows the same situation for the category-based
strategy. Remember that this generalization
strategy try to simulate a construction of
intermediate level abstractions used in the final
classification. The input information is in the
form of classified landscape types. Application of
the same logic as the illustration in Figure 34 will
produce borderline cases where a +/- one-class
interpretation consistency may yield different
final landscape type classifications. The
information from the land cover type variables
can be used in this way to determine if the
landscape type classification of the source data is
certain or if several classes are possible. In Figure
34b the input data has undecided classifications in
3 of 4 cells due to the information we have from
the land cover type variables Figure 35b.

Uncertainty handling
In the previous sections the concept of an
extended diagonal in the error matrix was
introduced. The following analysis of the results
from the numerical generalization will use the
same method to handle the detected inconsistency
in the interpretation of the source data. Summary
results will therefore include overall accuracy
measures for both the major diagonal and the
extended major diagonal of the error matrices. It
was also concluded previously that the use of an

Table 30 Moran’s I autocorrelation index of the original 500L interpreted data. I is given for 1st and 10th lag
autocorrelation corresponding to 500m and 5000m lag distance respectively.

1st lag 10th lag
Image #1 Image #2 Image #1 Image #2

Urban/suburban 0.27 0.45 -0.08 0.02
Agriculture 0.22 0.35 -0.11 -0.07
Forest 0.30 0.40 -0.10 -0.20
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extended major diagonal is not suited to nominal,
qualitative data such as the landscape type
variable in the final classification. To be able to
analyze ambiguous generalization outcomes such
as those illustrated in Figure 34 some logic is
needed that can handle the classification
ambiguity in a location specific accuracy
assessment. We face here the same situation as in
the experiments reported in chapter 5, however
this time it is my ambition to confront this
particular problem.

The review of methods for uncertainty
representation in chapter 3 suggested fuzzy sets as
a suitable method for data with poorly defined
objects or individuals. The definitions above may
not seem as poorly defined. Still, the objective of
this study is to reveal differences in the
interpretation of a concept with respect to an
object, i.e. the areal unit. This fuzziness is what
Freksa and Barkowsky (1996) describe as a lack
of detail that result in fuzziness. Fuzziness cannot
be viewed as a property of a single object: rather
it is the property of a relation between a concept
and an object. Using the terminology established

previously, this could be interpreted as the
accuracy of the model or “ability of abstraction”.
As a consequence of this follows that the concept
of ability of abstraction can be approached using
fuzzy set reasoning. As already noted there have
been examples of evaluating crisp classifications
against a fuzzy reference (Gopal and Woodcock,
1994; Woodcock and Gopal, 1999). Their
methods are capable of answering questions of the
accuracy of a crisp map using a fuzzy reference,
but the inverse situation is not easily inferred. As
it turns out in this chapter, we have a fuzzy
classified map, which we want to evaluate against
a fuzzy reference.

It has been pointed out previously that one
difficulty with the use of fuzzy sets is the need to
determine a proper membership function. The
fuzzy set approach also requires that there is some
kind of gradual transition from non-membership
to full membership. This is the situation in for
example an ordered set of linguistic concepts:
[‘short’, ‘medium’, ‘long’]. In the case of non-
ordered linguistic concepts such as [‘forest’,
‘urban’] we do not even have the necessary
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information to build a membership function. In
fact, it would be inappropriate to build one since
there is no evidence for a gradual transition from
none to full membership. The only thing known is
that the information is not detailed enough to
provide a unanimous decision. This non-
quantified uncertainty has until recently been hard
to handle. However, the recent advances on rough
set theory (Pawlak, 1982) and the previous
examination of the use of rough sets to represent
uncertainty in geographic datasets will now come
useful. The following analysis will use the novel
methods of rough classification and calculation of
overall accuracy measures using extended error
matrices described in the previous chapter.

The uncertainty propagation in the numerical
generalization and categorization was outlined in
Figure 34. This uncertainty can now be
represented using the rough set based logic to
create rough classes. Consider for example a
generalization that results unambiguously in the
landscape type class ‘Coastal’. This result will be
assigned a label of C meaning that it is in the
lower, certain approximation of the rough set
( )CC, . If however the result was ambiguous,
that is the numerical categorization found that
both landscape type class ‘Coastal’ and ‘Forest’
was possible, the cell would be assigned two

labels; CC −  and FF − . This means that the
cell is in the area of uncertainty for both the
coastal rough class and the forest rough class.
Thus, the numerical categorization into landscape
type classes was performed once again, now using
the logic of rough classifications. The two
outcomes from the proportion and category based
rough numerical categorizations ∗

LTPG  and
∗
LTCG  respectively, were compared against both

the crisp 5000L  and a rough version ∗
5000L  of the

interpreted data in extended error matrices. The
logic behind the construction of a rough version
of the reference dataset was the same as for the
generalized versions.

The rough classification is then used in an
extended error matrix for a site-specific accuracy
assessment Table 31. In an extended error matrix
we have a rough representation of either target
data or reference data. In the example below, the
generalization has produced a rough classification
(rows), which is compared against a crisp
reference (columns). The error matrix extension
will mean that some of the properties of a

‘normal’ error matrix do not hold since we will
have overlapping areas in the upper
approximations. This property will make it harder
to calculate for example user’s and producer’s
accuracy (Congalton, 1991) but it can be done
using a parameterized error matrix as explained in
chapter 6. However, one measure, the overall
accuracy, will still be easy to calculate but it will
be given as an interval with an upper and a lower
bound, Eq. 5.

Eq. 5 ( )+≤≤ ++ RxxARx iiiiOii // ?,,,

In other words the lower bound of the overall
accuracy is calculated dividing the sum of the
certain, lower approximation areas in the diagonal

+iix ,  by the total area R . Dividing the sum of

the certain and uncertain, upper approximation
areas, ( )?,, iiii xx ++  by the total area, give the

upper bound.
As mentioned, we may have either target data

or reference data in the form of a rough
classification. Furthermore, we may have both
target and source data as rough classifications.
We only need to extend the error matrix in both
directions producing a two-dimensionally
extended error matrix, or 2Deem (chapter 6) as
shown in Table 32. From the 2Deem it is still hard
to calculate producer’s and user’s accuracy. The
overall accuracy is still possible to calculate,
although a bit more elaborate than in Eq. 5.

Analysis
Up to this point the methods for data collection
have been firmly established, the generalization
strategies used to produce two target datasets have
been defined, and methods to handle the

Table 31 Extended error matrix for proportion based
generalization (a) and two dimensionally extended
error matrix, 2Deem for proportion-based
generalization (b). Major diagonal shaded.

Proport
.

Coast. Forest Agri. Urb.

 C 14
CC −

 F 1 3 2
 FF − 3 5 8 4
 A 3 5
 AA − 3 5 8 4
 U 2
 UU − 1
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interpretation accuracy have been described. The
analyses in the following result section uses
several, well described, methods as well as some
novel methods based on rough classification.

The first result section tries to answer if the
original hypothesis, ‘Eq. 1 holds’, can be justified.
Many techniques may be used to assess the
outcome of a spatial aggregation of data. A simple
but useful method that was used here is to
produce histograms of the distribution of class
values in the original and aggregated images.
Error matrices were also produced to provide
overall accuracy measures such as the overall
accuracy and K̂ (KHAT-estimate) (Congalton,
1991). The Kappa analysis method is widely used
to statistically determine if one error matrix is
significantly different from another. Also the
KHAT statistic provides a measure of actual
agreement between reference data and estimated
data. This measure of agreement is based on
actual agreement in the error matrix compensated
for the chance agreement indicated in row and
column totals. This analysis technique is therefore
similar to Chi square analysis. Chi square analysis
may raise problems if cell values in the matrix

equal zero (Congalton, 1983). An analysis of
difference images was seen as a powerful,
location specific method for evaluation of the
outcomes from the different generalization
strategies. The joint outcome of these methods
was used to answer the original hypothesis.

The implementation of rough classification
and extended error matrices section goes deeper
into the results. The concept of rough
classification and extended error matrices from
chapter 6 makes it possible to do a site-specific
evaluation of the final landscape type
classifications. The use of 1- and 2-dimensionally
extended error matrices is here further
demonstrated in a thorough analysis of possible
explanations for the results.

Results

Semantic correspondence analysis
The two source data sets interpreted at 500x500m
and 5000x5000m pixel resolutions together with
two digitally generalized sets of data at
5000x5000m pixel resolution were used in the
following analyses. Examples of the source
interpretations and results of the two

Table 32 Two dimensionally extended error matrix, 2Deem for proportion-based generalization. Major diagonal shaded.

Proport. C CC − F FF − A AA − U UU −
C 10 4 4 3 2

CC −
F 1 6 6 1

FF − 2 1 17 17 2 8
A 3 2 3 3 2

AA − 2 1 17 17 2 8
U 2

UU − 1 1 1 1

    
 a) 500m Agriculture c) prop.gen. Agriculture e) 5000m Agriculture 

  
 b) 500m Landscape type d) cat.gen. Agriculture 

Figure 36 Example source 500PA  data (a), 500LT  data (b), results from the proportion based APG (c), and category

based ACG (d) digital generalization for land cover type variable Agriculture, and reference 5000PA data (e).
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generalization processes are illustrated by the
images in Figure 36. The upper left image (a) is
source data for the Agriculture land cover type.
The lower left image (b) shows source data for the
landscape type variable. The middle column
images show the generalized output for land cover
type agriculture, using the proportion-based
method (image c), and the category based method
(image d). Image (e) shows the manual
interpretation of the agriculture land cover type
variable at the low spatial resolution.

Quantitative variables
Histograms of the distribution of the classes in
interpreted data and the generalized output is
shown in Figure 37. In general the two digitally
generalized outcomes in rows 2 and 3 show large
similarities with the interpreted reference data in
row 4.  In the 500Px  interpreted data, both the

Agriculture variable and the Urban/suburban
variable show a unimodal distribution with low
mean values, whereas the forest variable show a
more flat almost bimodal distribution. We know
from the autocorrelation analysis, Figure 33 and
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Figure 37 Histograms of the scalar variables Agriculture (a), Forest (f), and Urban/suburban (u). 1st row show source
data at 500x500m pixel resolution, 2nd row show generalized data at 5000x5000m pixel resolution using proportion
based averaging, and 3rd row show generalized data at 5000x5000m pixel resolution using category based averaging.
The 4th row shows the reference interpretation at 5000x5000m pixel resolution.
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Table 30, that the aggregation window is greater
than the autocorrelation range. As we then would
expect (Bian and Butler, 1999), the generalization
changes the distribution of the classes and tend to
eliminate low frequency values far away from the
mean. A reduced variance is also apparent
throughout all generalization outcomes. The
proportion based generalization in 2nd row, retains
the mean but reduces the variance. Theoretically
this should be the case for this type of
generalization and the result only confirms this.

The category-based generalization though,
changes both the mean and the variance values.
The mean values here suggest a tendency to over
estimate the Agriculture and Urban/suburban
areas while the forest area is underestimated if we
use 500Px  interpreted data as a reference. Since

this study is more interested in the differences
between the manual interpretation and the digital
generalization at the same resolution I will mainly
use the 5000Px source data as a reference. As we

can see in the 4th row, the 5000Px data produce

mean and variance values that differ slightly from
the high-resolution data. The Agriculture and
Forest variable is interpreted with a lower mean
value than the high resolution data whereas the
Urban/suburban variable retains the mean.

The category based generalization apparently
makes an underestimation of the forestland cover
type but makes an overestimation of the
Agriculture and Urban/suburban land cover type.
The statistical summaries also suggest that the
category based generalization method retain more
of the variation in the data. Variance estimates
does not drop as much as in the proportion based
generalization. Although not apparent, the
variance estimates suggest a pattern where the
proportion based generalization method follow
the low-resolution manual interpretation better
than the category-based generalization.

So far the generalization outcome has only
been analyzed using global measures. Figure 36

gave examples of the spatial outcome of the
interpretations and the generalizations. To make a
location specific analysis, error matrices were
produced, assessing the outcomes of the
generalization against the manually interpretation
as reference data. Example of one error matrix has
already been given in Table 28.  Overall accuracy,
K̂ , and extended overall accuracy statistics were
calculated from all error matrices. Table 33
displays these statistics from the proportion based
and category based generalization strategy
respectively. The overall accuracy shows a
relatively bad correspondence between the digital
generalizations and the manual estimate. The K̂
value only confirms this having values in the
region considered as “poor agreement” by Landis
and Koch (1977).

Since both overall accuracy and K̂ statistics
will be influenced by the +- 10% interpretation
accuracy found in data they will not be used for
further discussion. They are only provided here
for comparison purposes. The lower row with
rough overall accuracy measures show accuracies
compensated for interpretation inconsistency.
These were produced using a 2-dimensionally
expanded error matrix with rough versions of both
source and reference data. These tables together
with the previous histograms give us more
information on how differently the two methods
of aggregation agree with the manually
interpreted reference. The general picture from
the histograms is repeated here. The proportional
generalization works best, capable of producing
estimates of the different land cover types with a
100% correspondence with the reference images.
The category-based strategy manages to produce
90-100% correspondence with the manually
interpreted reference images. It should be noted
for the category strategy that the best result of
100% for the urban land cover category is an
effect of the narrow range of this variable in
combination with the interpretation consistency of

Table 33 Summary accuracy statistics for correspondence assessment of proportion based (PG) and category based (CG)
aggregation of land cover type data, 

5000PxCGx ⇔ .

Archipelago Forest Agriculture Urban
PGC CGC PGF CGF PGA CGA PGU CGU

Overall accuracy N/A 0.54 0.50 0.24 0.56 0.32 0.88 0.54

Overall kappa K̂ N/A 0.41 0.43 0.14 0.41 0.16 0.78 0.29

Rough Overall Acc. N/A 0.90 1.00 0.94 1.00 0.96 1.00 1.00
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+/- one cover class. This has the effect of
embracing most of the range for this land cover
variable. The accuracy estimates for the three
other land cover variables, 90-96% are more
likely to give a correct estimate of the accuracy
for this generalization method. The same
reasoning applies for the proportion-based
estimates although accuracies for the other land
cover variables also produce 100%
correspondence with the reference. Thus a
correspondence of up to 100% is likely to be
representative for the proportion based
generalization method. These highest figures of
course only apply if all the interpretation
inconsistencies turn out in a favorable direction.

To illustrate how these differences in
interpretation and generalization are distributed in
space, a spatial residual analysis was made. In
Figure 38 5000Px  data have been subtracted from

the generalized outcomes xPG  and xCG  to

produce difference images showing the
generalized deviation from the reference image,

5000PxPGx − . Gray shades are set to show

deviations from the reference with brighter shades
representing higher deviations. The shades have
been set to indicate only significant deviations
that exceed the uncertainty interval of +/- 1 class.
Signs show if deviations are positive or negative.

The images in Figure 38 give a spatial version
of the histograms in Figure 37 and accuracy
measures in Table 33. For example the forest
variable in the reference interpretation has a mean
of µ=4.7. The category based generalization mean
is lower, µ=3.9. Figure 38 d illustrate the spatial

distribution of the significant deviations from the
reference image as the gray pixels. The proportion
based generalization mean is µ=4.9 which is
slightly higher than the reference image mean. In
Figure 38 c however we see no gray pixels. This
means that the deviation from the reference image
is not anywhere of a magnitude greater than the
bounds of the +/- 10% interpretation accuracy.
This goes for all variables in the proportion based
generalization outcome, Figure 38 a, c, and e.
Figure 38 f, show that the category based
generalization produce only one significant
deviation from the reference image and this is
positive.

Qualitative variables
Figure 39 illustrate different versions of the
landscape type classifications. First two images
Figure 39 a and b, show the landscape type, high-
resolution 500LT  interpretation and low-

resolution 5000LT  interpretation respectively.

Figure 39 c and d, show the two generalized
classifications, LTPG  and LTCG  that were
produced using generalized land cover images
and the classification scheme defined earlier. The
visualizations of these images do not account for
the +/-10% interpretation accuracy that of course
also affect the final landscape type classification
discussed earlier. A visual inspection of the
images in Figure 39 c and d is nevertheless
instructive in that it confirms the pattern that the
previous images and statistics so far have only
suggested.

xPG

xCG

a) prop. Ag riculture c) prop. Forest e) prop. Urban/suburban

++
+
+

+
+ + +

+

-
-
- -

-

- +

b) cat. Agriculture d) cat. Forest f) cat. Urban/suburban

Figure 38 Difference images for cover type variables Agriculture (a,b), Forest (c, d), and Urban/suburban (e, f).  The
images were produced by subtracting the interpreted reference image from the digitally generalized image. First row are
results from the proportion-based generalization 5000PxPGx − , second row category based generalization 5000PxCGx − .
Grays are set to show significant deviations from the reference image in increasingly brighter shade. Signs show if
deviations are positive or negative.
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Both generalization outcomes, Figure 39 c, d,
are visually different from the reference image
Figure 39 b. The proportion based strategy
produce fewer areas of the urban landscape class
and more areas of the forest landscape class
compared with the reference image. The category-
based generalization apparently overestimates the
agricultural landscape type and the urban
landscape type class whereas the forest landscape
class is underestimated. A location specific
accuracy assessment was performed on these
images also, using error matrices and calculating
overall accuracies. It was earlier concluded that
the method of using an expanded major diagonal
is not appropriate for these categorical data.
Instead rough classifications have been used to
represent the uncertainty and accordingly the
overall accuracy measure will be an interval
within which the classification accuracy is
definitely located.

As we can see from the standard overall
accuracy, none of the generalization strategies
produce a good correspondence with the
reference, 82% and 64% respectively. This result
only confirms the visual inspection of the images
in Figure 39. Since there is a certain amount of
uncertainty hidden in the crisp classification, an

analysis of the rough set based classification
provide valuable additional information. The
rough overall accuracy row in Table 34 tell us that
the overall accuracy for both generalization
methods may reach as much as 100%
correspondence with the manually interpreted
reference. As before, these highest figures only
apply if all the interpretation inconsistencies pull
in a favorable direction. We may actually end up
with an overall accuracy as low as 28% and 26%
for the two generalization strategies respectively
if the uncertainty pulls in a completely
unfavorable direction.

Implementation of rough classification and
extended error matrices
The above results have considered two cases of
uncertainty. One where source and reference data
are both regarded as totally crisp and the other
where both source and reference data incorporates
interpretation uncertainty represented as rough
classifications. After a brief illustration of the
implementation of rough classification this
section will further illustrate the possibilities to
use 1- or 2-dimensionally extended error matrices
(referred to below as 1Deem and 2Deem) with
rough classified data.

The actual implementation of rough

 
a) 500x500m data b) 5000x5000m data

 
c) prop. generalization d) categ. generalization

Figure 39 Landscape type classifications. Manual high-resolution interpretation 500LT  (a), manual interpretation

5000LT  (b), outcome of proportion based generalization LTPG  (c), and category based generalization LTCG (d)

Table 34 Summary statistics from a traditional crisp error matrix (overall accuracy and overall Kappa) and a
2Dimensionally extended error matrix produced from the comparison of generalized landscape type classifications.

Proportional
Strategy

Category
strategy

Overall accuracy 0.82 0.64

Overall kappa K̂ 0.75 0.52

Rough Overall Acc. 0.28-1.00 0.26-1.00
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classifications has been made using the IDRISI
for Windows 2.0 GIS and Microsoft Excel 2000
spreadsheet software. The representation of rough
classes in IDRISI uses separate images for each
variable in each rough classification. For
example, the landscape type classification LTPG
consists of four images PGLTCOA, PGLTFOR,
PGLTAGR, and PGLTURB. Each image uses

values of 0, 1 and 2 to represent X¬ , XX − ,

and X  respectively.
This representation is very similar to the way

fuzzy measures may be accommodated by raster
GIS. In the example images shown in Figure 40
we see the outcome of the category-based
generalization into rough classifications. Lower
approximations X , that are the certain areas,
show as white pixels, areas of
uncertainty XX − show as gray pixels and areas

that certainly not belong to the class X¬ show as
black areas. Figure 40 illustrate that the rough
classification allow overlapping pixels in the area
of uncertainty of the rough classes, but lower
approximations never overlap with anything else
than their corresponding upper approximations.

To further demonstrate the use of 1- and 2-
dimensionally extended error matrices Table 35
show the previous analysis results under two
different assumptions. If one of the data sets is
crisp and the other is rough we can use a 1Deem
in the accuracy assessment. This is illustrated by
the upper and lower left 1Deems. These matrices
use rough versions of the generalized outcomes
from the two different strategies and a crisp

version of the reference data, that is assuming that
reference data is totally confident in its
classifications. For the 1Deem case we may use
Eq. 5 to calculate an overall accuracy interval. For
the shown data these measures would be 0.50 ≤
AO ≤ 0.90 for the Proportion based generalization
(upper left table), and 0.50 ≤ AO ≤ 0.88 for the
category based generalization (lower left table). In
the upper and lower right tables the same two
generalization strategies are compared against a
rough version of the reference data in 2Deems.
The overall accuracies for these two tables, 0.28 ≤
AO ≤ 1.00 for the Proportion based generalization
(upper right table), and 0.26 ≤ AO ≤ 1.00 for the
category based generalization (lower right table),
have already been presented in Table 34. The
increase of the accuracy interval is an effect of the
uncertainty added by the rough version of the
reference data set.

In addition to the overall accuracy, an
examination of the error matrices reveals
additional information on the nature of the
uncertainty in this specific case. One important
aspect of a rough classification is the precision of
the lower approximations since these estimates
are regarded as certain under the given
information. Both P- and C- classifications are
100% correct for the coast class, but as we can see
in the 2Deem the reference data is not totally
confident in its classifications. 4 of the cells are
assigned to the upper approximations of one or
more other classes. Three of the cells attributed to
the lower approximation of class ‘Forest
landscape’ in the P-classification was not correct
according to the 1Deem, but from the 2Deem it is

a) Coastal rough set b) Forest rough set

c) Agricultural rough set d) Urban rough set

( )FF ,

( )UU ,
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( )AA,

C
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¬
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−

¬
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UU
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Figure 40 Rough classification CGLT  implemented as IDRISI for Windows 2.0 images.
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clear that the reference data is very uncertain in
this class. Only one cell in the reference is
assigned to the lower approximation of Forested
landscape and this specific cell was actually given

a partly correct label of FF −  and AA −  in
the proportion based generalization. This last
specific fact cannot be read directly from the error
matrix. Both the proportion based and the
category-based generalization corresponds in their
lower approximations with the lower
approximations of the reference interpretation.
This means that when each generalization method
is confident about its classification, the reference
data does not reject a correspondence. There is
confusion between the forest and agricultural
landscape types, which is evident if we look at the
upper approximations of these sets for both
generalization strategies. Cells assigned to the
area of uncertainty for the forest landscape class,
are also assigned to the area of uncertainty for the
agricultural landscape class. This confusion is an
effect of the classification scheme that forces
areas assigned to the upper approximation of
agricultural landscape to be in the upper
approximation of the forest landscape as well.

This produces an artificial symmetry in the lower
approximations rows of Agricultural and Forest
landscape types. In general terms, the detail and
accuracy of the information is not enough to
produce confident answers in many of these
cases.

Discussion and conclusions

The main focus of this study was to investigate if
a changed spatial resolution also changes the
interpretation of a certain landscape concept. The
original hypothesis stated that the outcome of the
generalization is equal to a manual interpretation
at the target level. The large accuracy intervals
may seem hard to draw any conclusions from.
Indeed this is a problem and in this study one of
the reasons can be found in the rather low
crispness of the interpretations. The uncertainty of
the interpreted images are caused by the
recognition of a limited ability of abstraction
represented as a +/- one areal cover class accuracy
in the interpretation. This uncertainty interval
forces the overall accuracy interval to be quite
big. In fact, it is never possible to reach a better
overall accuracy interval than 0.36 ≤ AO ≤ 1.00.
Following terminology in Chapter 6 (Ahlqvist,

Table 35 Extended error matrices for both generalization strategies. a): Proportion based (P) classification against crisp
reference, b): Category based (C) classification against crisp reference, c): P-classification against rough reference, d):
C-classification against rough reference
.
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Keukelaar and Oukbir, 2000a) this measure can
be translated as the overall crispness measure, MC

= 0.36, meaning that only 36% of the reference
data is unambiguously classified into lower
approximations. Similarly, uncertainty in the
input to the automated generalization causes the
output to have overall crispness measures of MC =
0.50 for the PGLT-generalization and MC = 0.58
for the CGLT-generalization. In spite of the low
crispness and high uncertainty, the results do
allow for some general conclusions to be drawn.

For the classification into landscape types, the
overall accuracy of up to 100% indicate that Eq. 1
may hold for any one of the two suggested
generalization strategies. Thus we have no
evidence to falsify the original hypothesis. This
can also be translated as a high semantic accuracy
of the dataset. But if we consider the outcome
from the analysis of land cover proportions in
Table 33 the picture is a bit different. The
proportion-based classification did produce a
100% correspondence with the reference for all
variables. The category based method though, did
not produce a full agreement with the reference
images. The estimates of areal coverage departed
significantly from the reference in up to 10% of
the cases. The characteristic of the category based
generalization method is the use of a secondary
classification of the original information as input
data. Figure 37 and Figure 38 showed that this
secondary classification exaggerates the amount
of urban and agricultural areas. Clearly this
skewed information has a negative impact on the
correspondence with the reference interpretation.
In this case study the skewed areal land cover
information has in spite of this no proven effect
on the final classification into landscape types.
This is mainly due to the rather broad limits set by
the classification system. Other classification
situations may be more susceptible to this kind of
bias though.

It was speculated earlier that an interpretation
at a coarser spatial resolution might use
intermediate level abstractions before the final
classification is made. The type of intermediate
level abstraction used here in the category-based
generalization does not support this idea but it
still does not reject such a possibility. The pilot
studies in chapter 5 indicated that the automated
aggregation of high-resolution data and the low-
resolution interpretation does not correspond very
well. Some of the errors in those studies may be
attributed to interpretation inconsistency but the

general picture from all analyses carried out is
that some of the analyzed parameters may well be
aggregated to satisfy Eq. 1 whereas other
parameters may not.

Increased granularity in remote sensing
information
In the light of this it is appropriate to discuss the
idea of using one single high-resolution database
as a primary source for information derivatives.
This can be held as a feasible and highly desirable
solution in that source data will be possible to
translate into different concepts according to the
current needs (Müller 1989; Albrecht 1996; Gray
1997). The approach would be ideal for data that
can be collected through quantitative
measurements of field like parameters such as
temperature, topography but also perhaps
individual plant species occurrences. Remote
sensing information is well suited to this kind of
treatment but there are still some fundamental
problems that need to be resolved before this kind
of framework can be made operative for
environmental monitoring and management
(Wilkinson 1996).

Remote sensing through satellites is
continually producing environmental information
of more and more accurate and fine-grained
resolution both in terms of spatial and spectral
resolution. Over the next ten years we can expect
the complexity of remotely sensed datasets to
grow significantly through the use of multi-
sensor, hyper spectral, multi-view angels and
multi-temporal time series. Given that future
remote sensing systems will provide even more
detailed data, each call for automated
interpretation or classification of these fine-
grained data into larger spatial and thematic
groupings will need a thorough understanding of
the generalization steps needed for such
operations. The problem, for example with mixed
pixels, will not disappear with increased
resolution, instead the high resolution pixels will
become mixtures of different things than we are
used to today and accordingly call for other
conceptualizations. Key questions here will be to
identify what actual variables that should be
considered as defining a more abstract concept.

For complex category definitions such as
vegetation types Gray (1997) propose a method of
keeping information as disaggregated fields in
order to be able to use different class concepts in
other contexts. The fine grained dataset given by
remote sensing devices will of course give us
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unique opportunities to study the meaning of
varying concepts in relation to one another. Such
studies would also have the potential to provide
an increased understanding of our own mental
models of the real world entities (Gray 1997).
Given such an understanding of our
conceptualizations methods, to translate field-
based information into objects has been described
by Mackay et al. (1994).

Still there is also a need to approach the
problem with an integrated view of the landscape
where we will deliberately expose ourselves to the
thematic inaccuracies represented in e.g. historical
maps and cultural heritage descriptions. Looking
at the landscape as a whole, errors and loss of
information will not necessarily be the case. The
use of summary concepts such as “agricultural
district” gives an instantaneous idea of the
landscape properties. It may be full of errors and
cannot provide estimates of the actual field area
and the spatial distribution of individual fields,
but on the other hand the concept “agricultural
district” will most likely give the reader more
immaterial notions of ownership structure and
land use traditions which are complicated to
communicate in more formal terms. Of course the
term “agricultural district” might mean something
rather different in a north-American than in a
European context for example. This is exactly the
reason for the current efforts to develop richer
models on a semantic level that have been pointed
out in chapter 2.

This field of research has been of interest to
geographers for a long time now and with the
current developments within the field of cognitive
psychology and computer science there are
openings for further findings. Being able to
handle multiple perceptions of the environment is
not only important for visualization of data. It is
also of great importance when dealing with
environmental models e.g. for wildlife habitat
management.

Implications for image classification
It is also interesting to discuss these results in the
context of current techniques to produce land
cover maps from remotely sensed data. Most
multispectral classification procedures still use
location specific classification based on the
spectral information from one image pixel
location. At the same time, it is often
recommended that training data for a supervised
classification be given as larger regions of several
hundred pixels in order to capture the total range

of the spectral signature of a specific class. This
standard procedure requires that there is a 100%
consistency in the use of a specific class concept
at the two levels of resolution used in a normal
supervised image classification.

The great variety of currently used categories
at different levels of resolution has never been
tested to confirm or reject this fundamental
assumption. I therefore argue that more extensive
tests using similar methods and data illustrated in
this work need to be made as part of any normal
data quality report. It has been argued that this
approach is neither rigorous nor always possible
(Weibel and Dutton, 1999). The problem is that
the other alternative would be to ignore the
problem. There is today no documented
knowledge if there is a semantic variation in the
use of a specific concept at different scales.

So, why insist on comparing results with other
interpreted results when a digital reference might
be used for accuracy assessment? The major
purpose of this chapter is not to show how well
the human interpreter manages to summarize
pieces of data compared with the 'right' answer
that the computer might give us. The purpose is to
find out whether the human mind makes different
assessments of an area if we apply different scales
for our investigation. Of course a baseline of
digital numbers could be of interest to see if we
over- or under estimate at various resolutions.
This might also give some clues of what causes
the differences. The aspect covered by the
correspondence assessment translates into to the
semantic accuracy of the dataset. I can only
suggest that the use of manual interpretations at
different resolutions is a viable method to make
the necessary evaluation of generalization effects
other than purely statistical.

Rough classification method
The analysis of the final classification results and
the demonstration of data in 1Deeem and 2Deems
show the power of rough classifications to
represent and illustrate a type of uncertainty often
found in geographic datasets. The three levels of
memberships that can be represented by the lower
approximation, the area of uncertainty and the
negation of the upper approximation, translates
quite intuitively into the statements ‘absolutely
sure’, ‘maybe’, ‘absolutely not’. In cases where
more levels of gradual certainty is needed,
methods using fuzzy sets have proven to be a
feasible alternative (Gopal and Woodcock, 1994;
Woodcock and Gopal, 2000). The rough set
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approach to uncertainty thus enriches the existing
suite of methods to represent uncertainty in
geographic datasets. The inherent type of
information uncertainty should guide the use of
probability or fuzzy/rough set based
representations of uncertainty.

One drawback of the rough classification
method is of course the problems of generating
measures of per-class accuracy or a KHAT-like
statistic. Although both a crisp-rough and a
rough-rough comparison can produce an overall
accuracy interval, applied questions will often
take advantage of some more summary measures.

Conclusions
This chapter has successfully demonstrated the
evaluation of semantic uncertainty in manually
interpreted land cover classifications. The
analysis illustrated how categorical uncertainty
could be translated into rough classifications. This
made it possible to do assessments of the
correspondence between two datasets using
semantically uncertain data in one or both of the
assessed data sets.

The evaluation of scale dependency in the use
of certain landscape concepts provided no
evidence for a scale dependent use of these
concepts. Still, the results from chapter 5 indicate
the opposite possibility. It is therefore too early to
draw any general conclusions other than a broad
recommendation of caution. Consequently, it was
argued that more extensive testing is required of a
possible scale dependency of commonly used
land cover mapping concepts. Used methods were
here suggested as a way to estimate semantic
accuracy in such tests.

Using methods of rough classification and
error matrix extensions developed earlier, the
potential for these methods to perform
generalization and accuracy assessments was
further illustrated.

The findings also raise important questions for
future quality assessments of digitally aggregated
data. Issues of semantic accuracy assessments as
well as contemporary techniques to produce
digital land cover classifications were discussed.
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CRISP, FUZZY AND ROUGH DECISION
SUPPORT IN GIS

Introduction

In chapter 2 it was established that separate views
on the real world result in two general
distinctions. One view where the world is
considered to be made up of discrete objects and
another view that consider the world as being
made up of a continuum of named attributes.
From a semiotic perspective Sowa (2000) holds
symbolic and image like reasoning as two
necessary components of a complete system of
reasoning. Geographic information systems have
theoretically the ability to incorporate both
plenum/image like/field and
atomic/symbolic/object views represented by
rasters and vectors respectively.

It was further recognized that this theoretical
basis is reflected in several proposed conceptual
modeling frameworks for geographical databases
(Peuquet, 1988; Nyerges, 1991; Peuquet, 1994;
Livingstone and Raper, 1994; Mark and Frank,
1996; Usery, 1996; Bishr, 1998; Mennis et al.,
2000). Most of these works suggest that it is
necessary to simultaneously represent field-based,
object-based and time-based views to be able to
provide a full description of a geographic
phenomenon.

Although some of the proposed frameworks
never have been extended towards the actual
database representation, those that were have
proposed set theoretic approaches for its
implementation (Livingstone and Raper, 1994;
Usery, 1996; Bishr, 1998; Mennis et al., 2000).

In this chapter I will suggest one possible
implementation structure that not only integrates
object and plenum spatial views, but also is
capable of considering vagueness and ambiguity
in these views. I also discuss how this further
opens up possibilities for improved
interoperability of geographic information
systems.

Current and emerging techniques for
geographic data integration
We can presume that future geographic questions
will need information not explicitly represented in
available databases. One large challenge is
therefore to derive implicit facts from explicit
geographic knowledge, and to produce a
statement about the uncertainty in the presented
information.

Multi criteria evaluation (Carver, 1991;
Eastman, 1997) or multi criteria decision analysis
(Malczewski, 1999) is a group of methods that
can be used to face this challenge. Such analyses
are often implemented in geographic information
systems by using two or more pieces (layers) of
attributes or constraints for a certain objective.
The multi criteria decision analysis framework
enables a combination of separate lines of certain
or uncertain factors such as Boolean, probabilistic
and possibilistic (fuzzy) information combined
through a set of rules into an answer or several
scenarios. Standard multi criteria decision
analysis can for example make use of fuzzy set
membership factors and Boolean constraints that
may be summed together to produce an output
result.

Current multi criteria decision analysis
implementations still lack the indiscernibility
aspect of uncertainty. In brief, indiscernibility
refers to the granularity of the knowledge whereas
vagueness (fuzziness) arises due to gradual
notions of categories (cf. Fisher, 1999; Duckham
et al., 2000). Indiscernibility may be explained in
the context of a reclassification situation when
one or several of the source classes do not
translate directly into the target classes. For
example, elements of source class A could be
elements of both classes 2 and 3 in the target
classification.

It has been shown in chapter 6 that rough set
theory and rough classification is capable of
representing indiscernibility. It was also
illustrated how proxy information could be used
as additional evidence for the target classification

Chapter

8



122 • Crisp, fuzzy, and rough decision support in GIS

and resolve some of the unresolved areas of
uncertainty. That is, information on soil moisture
was in chapter 6 taken from a soil map to either
support or reject ambiguities in the first rough
reclassification. I will now readdress this
problem, which in essence can be formulated as a
decision function: given the old class and some
additional evidence, calculate the new class.

A suggested approach
The main problem addressed in this chapter is the
combination of nominal and continuous data in
the decision rule. In standard multicriteria
evaluation this is often solved by a conversion of
continuous variables into grades of membership
in a specified set.

This work uses a similar approach, and uses
the concept of bifuzzy sets to represent two
different facets of imprecision and these ideas are
illustrated in an experiment. In this it is
demonstrated how to use crisp, fuzzy or rough
sets to define a complete or incomplete translation
from one concept to another, and create a
transformation between contexts. Since no
information in the experiment provides a one to
one mapping between the source data and the
target classification the idea is based on the
integration of multiple lines of evidence. It uses
the concepts of multi criteria decision analysis
and fuzzy aggregation operations, extending
current fuzzy approaches to incorporate crisp,
fuzzy and rough sets through conversions into
bifuzzy sets.

 Merging together information about a certain
concept using object-based and location-based
views, the experiment not only illustrates the use
of this method to make transformations of
information from one context to another, it also
suggests this framework as a solution to the wider
problem of integrating different representations of
geographic space (cf Peuquet, 1988; Peuquet,
1994; Couclelis, 1996; Couclelis, 1999; Mennis et
al. 2000).

Method development

The final experiment will use continuous (z)
wetness data converted into fuzzy membership
values MFj(z) corresponding to the target
classification (j). We also convert indiscernible
nominal classes (i) through reclassification into
rough classes corresponding to the target
classification (j). The theoretical basis for
combining rough and fuzzy (z+i) classifications
will be referred to below and it includes the

conversion of data into bifuzzy classifications
before the actual integration is performed through
an intersection overlay operation. The experiment
illustrates all this in an application that integrates
bifuzzy classifications into a final image that
combines both vague and indiscernible
information. A more detailed description of the
formal development of the bifuzzy representation
has been presented at GIScience2000 (Ahlqvist,
Keukelaar, and Oukbir, 2000b).

Transforming fuzzy and rough into bifuzzy
data
It is of interest to see how the two facets of
imprecision that rough and fuzzy data represent
can be integrated. It is tempting to convert rough
sets to fuzzy ones by assigning membership value
0 to elements not in the rough set, membership
value 1 to elements in the lower approximation of
the rough set, and perhaps membership value 0.5
to elements in the area of uncertainty of the rough
set. We could even use some conditional
probability instead of the value 0.5. However,
Dubois and Prade (1992) argue that these attempts
can be only partially in agreement with fuzzy set
theory. It seems, therefore, that a different
approach is called for.

Two methodologies have been proposed to
unify rough sets and fuzzy sets (Dubois and
Prade, 1992). Both result in a mathematical object

which is a pair of fuzzy sets ),( FFM = , each

determined by a membership function Fµ  and

Fµ . This will hereafter be called a bifuzzy set or

BF-set, and this mathematical object is able to
express both uncertainty due to indiscernibility as
well as uncertainty due to vagueness (Ahlqvist,
Keukelaar, and Oukbir, 2000b). In the same way
as with rough sets and rough classifications
(chapter 6) is possible to define a bifuzzy
classification as a set of bifuzzy sets and to
develop useful quality measures that can be
applied on a single bifuzzy classification
(Ahlqvist, Keukelaar, and Oukbir, 2000b).

Bifuzzy representations and multi-criteria
evaluation
Having defined a formal representation for
vagueness and indiscernibility, let us now move
directly further toward the question where we
have several classifications that we want to
evaluate together. In the context of this work this
can be formulated as a problem of combining
different types of uncertainty such as vagueness
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and ambiguity, and to this there seem to be
existing and workable approaches. The idea of
using multiple sources that partly explain a
specific concept has close similarity with multi-
criteria decision analysis (Eastman, 1997;
Malczewski, 1999). In the following discussion I
will in the last few paragraphs of this section first
summarize some of the work in Ahlqvist,
Keukelaar, and Oukbir (2000b). It illustrates the
conceptual idea of using the multi criteria analysis
framework to integrate fuzzy and rough data
through the use of bifuzzy classifications. After
that I will exemplify this approach in an
experiment with geographical data.

Imagine a situation with three classifications
that we want to use in a multi-criteria evaluation,
one crisp, fully determined classification, a
second fuzzy classification with vague
information and a third rough classification with
ambiguous information. All three classifications
are defined on the same universe U , and on the
same index set I . The first classification is a
crisp classification, C , consisting of a number of
crisp classes C

iX . The second classification is a

rough classification R , consisting of a number of

rough classes ( )ii
R
i XXX ,= . Finally we have a

fuzzy classification F , consisting of a number of
fuzzy classes F

iX , each of which is a fuzzy set,

determined by the membership function F
iXµ .

To use these three classifications together in a
multi-criteria evaluation, we convert all of them
to bifuzzy classifications. The conversion of the
three existing classifications proceeds in the most
straightforward way: A crisp class C

iX  is

converted to a bifuzzy class ),( C
i

C
i XX

M
iX µµ= ,

with 1)( =zC
iXµ  if C

iXz ∈ , 0 otherwise. A

fuzzy class F
iX  is converted to a bifuzzy class

),( F
i

F
i XX

M
iX µµ= . A rough class R

iX  is converted

to a bifuzzy class ),(
ii XX

M
iX µµ= , with

1)( =z
iXµ if iXz ∈ , 0 otherwise, and,

similarly, 1)( =z
iXµ if iXz ∈ , 0 otherwise.

To be able to proceed with a multi-criteria
evaluation, it is necessary to define some logic for
this, and for the purpose of this work only the

intersection and union operations on bifuzzy sets

will be defined. The intersection of two bifuzzy
sets is defined as

)),min(),,(min( BABABA µµµµ=∩ . The
union of two BF-sets is defined similarly as

)),max(),,(max( BABABA µµµµ=∪ .
Similarly, other operations such as product,

bounded sum, bounded difference and convex
combination defined for fuzzy sets (Burrough and
McDonnell, 1998) seem possible to extend to
bifuzzy sets.

It is also possible to define something like an
overall accuracy measure (Congalton, 1991) for
bifuzzy classifications. Let us assume that the
reference classification, R , is compared with a
classification M . We could then compute WAM ,
the weighted accuracy measure, Eq. 6

 Here, the function ),,,( dcbaW  defines
what it means for a point to be correctly
classified. If we desire exact equality of the
uncertainty intervals, we could use

2/)2(),,,( dbcadcbaWexact −+−−= .
Any deviation in the evaluated data from the
reference will here result in a decrease of the
global accuracy value. It does not make any
difference if the discrepancy is in the necessary
membership value or the possible membership
value. Other functions may also be defined for

),,,( dcbaW (Ahlqvist, Keukelaar and Oukbir,
2000b) but is not necessary for the purpose of this
chapter.

Experiment

The map data used in this illustration was taken
from two separate investigations covering the
same area (Edberg et al. 1971; Ahlqvist and
Wiborn, 1992). These two vegetation maps had
been produced for nature preservation tasks.
However, they used different vegetation
classification systems to produce the final
categorical map sheet. These two maps were
digitized by scanning and segmentation into two
GIS raster images with pixel values representing
vegetation class labels, Figure 41. Data entry and
all subsequent GIS operations were performed
using the IDRISI for Windows v.2.0 software.
The left map from 1971 uses originally 9 classes
but has been thematically aggregated to 3 classes;
wet, mesic and dry vegetation. This map is called
VEG3. The right map of Figure 41 is from 1986,
it uses 35 classes and will be called VEG35.

Eq. 6  �
∈∈

=
Ii U

R
Ii U

MMRRWA dxxdxxxxxWM
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The following experiment demonstrates the
combination of two different types of knowledge
in a geographic analysis. Using the concept of
multi criteria analysis, we take two different
sources of information and combine them into the
final image. The two data sources are converted to
rough and fuzzy classifications to express the
different kinds of semantic uncertainty these data
have in the context of the target classification
system. A digital elevation model is used to
produce an image with gradual transitions from
non-membership to full membership in the target
classes given as fuzzy membership values. The
other line of information comes from the detailed
vegetation map, VEG35, which is reclassified into
a rough classification. In the rough classification,
membership, non-membership, and possible
membership in the target classes are represented
by the upper and lower approximation of rough
classes. The combination of the two is a bifuzzy
representation that accounts for both gradation
and indiscernibility. The bifuzzy representation is
finally visualized by thresholding membership
values, which produce the final image of the
transformed information.

From fuzzy and rough to bifuzzy
representations
The following sections will explain how the
original data was translated into rough and fuzzy
representations. It also shows how these two, the
fuzzy and the rough classifications, were
transformed into bifuzzy classifications. The
whole operation can be seen as the general
procedure of getting two pieces of information
compatible for assessment of for example changes
in vegetation between two times.

Rough information – reclassification of crisp data
The rules for rough reclassification were
established deductively using domain knowledge.
Each original VEG35-class was evaluated against
the target VEG3 classification system and
translated into rough classification rules, Table
36. Rules such as these could also be set up by
induction using a collection of ground truth
samples from each original class.

Table 36 shows that a majority of the classes
in the original crisp classification cannot be
reclassified directly into lower approximations of
the target classification system. Following the
reclassification rules set up in Table 36 the rough
classification R is produced. This is built up by 3

Dry
Mesic
Wet

N N

Pine f orest ty pe 1
Pine f orest ty pe 2
Spruce f orest ty pe1
Spruce f orest ty pe2
Spruce f orest ty pe3
Spruce f orest ty pe4
Spruce f orest ty pe5
Mixed conif er f orest ty pe 1
Mixed conif er f orest ty pe 2
Mixed conif er f orest ty pe 3
Mixed conif er f orest ty pe 4
Broad leaf ed decid. ty pe 1
Broad leaf ed decid. ty pe 2
Broad leaf ed decid. ty pe 3
Alder f orest ty pe 1
Alder f orest ty pe 2
Birch/aspen f orest ty pe 1
Birch/aspen f orest ty pe 2
Birch/aspen f orest ty pe 3
Brushwood
Mixed f orest ty pe 1
Mixed f orest ty pe 2
Mixed f orest ty pe 3
Early  succession for. ty pe 1
Clear cuts/non determined
Alder scrub
Geoliteral shore v egetation
Subliteral shore v egetation
Dry meadow ty pe 1
Dry meadow ty pe 2
Meadow ty pe 1
Meadow ty pe 2
Meadow ty pe 3
Meadow ty pe 4
Wet meadow

Figure 41 Original maps used in this study. Left, the VEG3 map produced by Edberg et al. (1971)  thematically
aggregated into dry, mesic and wet vegetation types, and right, the VEG35 map produced by Ahlqvist and Wiborn (1986).
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rough classes
( ) { }wetmesicdryiXXX ii

R
i ,,,, ∈= , each

being a rough set and represented in this
experiment by 6 separate images.

Figure 42 illustrates the resulting rough
classification. In this, lower approximations are
white and areas of uncertainty are shaded for each
of the 3 classes in the rough classification R. In
Table 36 we noticed earlier that a majority of the
original classes in the crisp classification I cannot
be assigned to a lower approximation in the rough
classification R. Figure 42 shows the spatial
outcome of this, from which it becomes obvious
that the spatial overlap is fairly high.

The overlap and overall crispness measures
described in chapter 6 are here calculated to be
Mo= 0.64 and Mc=0.41. In this case a totally crisp
classification would yield Mo=0, Mc=1 and a
totally rough classification Mo=2.0, Mc=0.
Obviously the categorical granularity of the crisp
classification I has not enough detail to discern
between the different lower approximations in R.
But still, the rough classification is not short of
information. It is often able to exclude one of the
classes as a possible alternative, leaving only two
alternatives to choose from. This information will
be used later on together with location-based
information about the possibility that a certain
location belongs to one of the target classes. This
second piece of information is introduced next.

Fuzzy information – wetness index
The VEG3 classification system is based upon
vegetation moisture. Thus, additional information

about soil water content may resolve some of the
indiscernibility that was a result of the rough
reclassification in the previous section. One
commonly used source of information on soil

Table 36 Original VEG35 classes and corresponding
rough VEG3 classes

Original classification
I (VEG35)

Rough
classification

R (VEG3)
  1  : Pine forest type 1 {Dry}
  2  : Pine forest type 2 {Dry, mesic}
  3  : Spruce forest type1 {Dry, mesic}
  4  : Spruce forest type2 {Mesic, wet}
  5  : Spruce forest type3 {Mesic}
  6  : Spruce forest type4 {Wet}
  7  : Spruce forest type5 N/A
  8  : Mixed conifer for. type 1 {Dry}
  9  : Mixed conifer for. type 2 {Dry, mesic}
 10 : Mixed conifer for. type 3 {Mesic}
 11 : Mixed conifer for. type 4 {Dry, mesic, wet}
 12 : Broad leafed dec. type 1 {Mesic}
 13 : Broad leafed dec. type 2 N/A
 14 : Broad leafed dec. type 3 {Mesic}
 15 : Alder forest type 1 {Wet}
 16 : Alder forest type 2 {Wet}
 17 : Birch/aspen forest type 1 {Dry, mesic}
 18 : Birch/aspen forest type 2 {Mesic, wet}
 19 : Birch/aspen forest type 3 {Dry, mesic}
 20 : Brushwood {Mesic, wet}
 21 : Mixed forest type 1 {Dry, mesic}
 22 : Mixed forest type 2 {Mesic}
 23 : Mixed forest type 3 {Wet}
 24 : Early succession for. type 1 {Dry, mesic, wet}
 25 : clear cuts/non determined {Dry, mesic, wet}
 26 : alder scrub {Wet}
 27 : geoliteral shore vegetation {Wet}
 28 : subliteral shore vegetation N/A
 29 : Dry meadow type 1 N/A
 30 : Dry meadow type 2 {Dry, mesic}
 31 : Meadow type 1 {Dry, mesic}
 32 : Meadow type 2 {Dry, mesic}
 33 : Meadow type 3 {Mesic}
 34 : Meadow type 4 N/A
 35 : Wet meadow {Mesic, wet}

i  = dry i  = mesic i  = wet 

i X 

ii X X − 

i X − 

Figure 42  Images showing the outcome of the rough reclassification using the reclassification rules set up in Table 36.
Lower approximations are colored white and areas of uncertainty are shaded for each of the 3 classes in the rough
classification R.
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water content is the topographically based
wetness index, w, Eq. 7 (Moore et al. 1991). This
index is calculated for each cell in an elevation
image using the following formula:

Eq. 7
�

��
�

�
=

βtan
ln sAw

Here As is specific catchment area defined as the
upslope area draining across a unit width of
contour, and β is the slope of the cell. So, a
wetness index image was calculated from an
original digital elevation model from Geographic
Swedish data (GSD) provided by the Swedish
National Land Survey, using the TAPES-G
software (Gallant and Wilson, 1996). The used
digital elevation model had a spatial resolution of
50x50m. The calculated wetness index values
were interpolated over a 5x5m resolution image.
The purpose for this was to transform the original
50x50m resolution into the map data at 5x5m
resolution. The accuracy of the output images is
of course questionable, but the intent of this
experiment is only to demonstrate the principles
behind a rough-fuzzy data integration, not to
produce a fully accurate representation. The DEM

together with the derived wetness image are
displayed in Figure 43.

The fuzzy membership functions used to
transform the wetness image into fuzzy
information were established using the semantic
import approach (cf. Burrough and McDonnell,
1998). This method is suitable in cases where
there is a fairly good qualitative knowledge about
how to group data. The two major issues in the
semantic import approach are the choice between
linear, sinusoidal or some other function defining
the class membership, and the definition of the
transitions zone limits and widths. To make things
simple I have chosen linear transition functions
and to support the establishment of transition zone
limits and widths, information from the older
vegetation map was used as a guiding reference.

The established membership functions
displayed in Figure 44 were used to produce the
fuzzy classification F. This consists of 3 fuzzy
classes { }wetmesicdryiX F

i ,,, ∈ , each being

a fuzzy set and represented here by the three
images displayed in Figure 44. These 3 images
show the membership values at every pixel
location in each of the 3 fuzzy classes, dry, mesic,
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Elevation a.s.l (m) Wetness index (w) 

Figure 43 Original digital elevation model over the study area together with the wetness index image produced using Eq.
1 (Medgivande Lantmäteriverket 2000. Ur GSD - Höjddata, ärende nr L2000/646)
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and wet. In a sense they convey a location-based
view of the target classification.

Transformation into bifuzzy data
After the conversion of source data into one rough
classification and one fuzzy classification it is
time for the last step before the actual integration
of the two pieces of evidence to produce a final
output. Here I only follow the definition in one of
the previous sections on how to produce bifuzzy
classifications from the fuzzy and rough
classifications. This results in two bifuzzy
classifications FM and RM  originating from

the fuzzy and rough classifications respectively.
This transformation does not change the actual
information, it only translates it into the notation
of bifuzzy classifications. Therefore the bifuzzy
classification FM  is now represented by a set of
6 images but 3 of those are identical to one of the
other 3 images. Consequently the bifuzzy
classification version of the original fuzzy
classification still looks exactly as in Figure 44,
and similarly the bifuzzy classification of the
original rough classification could be illustrated
as Figure 42.

0 0.5 2.0 5.0
0.0

0.5

1.0

)(wMFi

)(wMFdry )(wMFmesic )(wMFwet

Wetness (w)

a) F
dryX b) F

mesicX c) F
wetX

MFi(w)
0.0

0.5

1.0

Figure 44 Membership functions for the fuzzy reclassification (top) and the three images showing the three fuzzy classes

{ }
F

wetmesicdryX ,, . In the images black areas represent no membership and higher degree of membership is increasingly

brighter reaching white at full membership.
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Bifuzzy data integration
The subsequent integration of bifuzzy
classifications used the concept of multicriteria
evaluation discussed earlier through an
intersection operation

( ) ( )( )R
i

F
i

R
i

F
i MMMM

RF MM µµµµ ,min,,min=∩ .

The result can be represented as a set of 6 images,
Figure 45. The grade of membership in these
images is to be interpreted as the degree of
possibility and necessity for the target classes. At
this stage the previously defined quality measures
were calculated for the integrated bifuzzy
classification. The roughness of the integrated
information was calculated to be 67.0=rM ,

which obviously gives an overall crispness
33.0=cM . The bifuzzy overlap measure was

calculated to be 18.0=oM .

If these measures are compared with the
bifuzzy classifications from the initial rough and
fuzzy data, Table 37, we see that the integration
of the two data sources reduces the overall
crispness as well as the bifuzzy overlap. Given
that the original fuzzy classification introduces
degrees of necessary membership in the lower
approximation areas of the rough classification
(Figure 45), this of course reduces the overall
crispness. At the same time the bifuzzy
intersection operation reduces the amount of
overlap since it uses a minimum operation on the

    
 i = dry i = mesic i = wet 
 

    
 i = dry i = mesic i = wet 

0.0 
iMµ

0.5 

1.0 

0.0 
iMµ

0.5 

1.0 

Figure 45 Images of the bifuzzy classification showing the degree of possible (upper row) membership and necessary
(lower row) membership in each of the target classes; dry, mesic and wet vegetation respectively.
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membership values. What is achieved is a result
with less spatial confusion about the target
classes. We also get an explicit representation of
the spatial variation within each vegetation unit
with respect to the belongingness to a specific
class, Figure 45.

It is also possible that we for some reason
wish to de-fuzzify the result into a crisp result. To
illustrate how this can be done the six images
have been combined to produce a final crisp
classification C ′ . The logic followed in this
combination is to let all bifuzzy lower
approximations ( ) 0>z

iMµ  at location z result

in crisp classes C
iXz ′∈ in C ′ . This is possible

since all lower approximations of bifuzzy sets are
disjunct and will not result in locations being
assigned to multiple classes. The remaining areas
that may include overlapping areas are assigned to
crisp classes in C ′ based on the maximum value
of the upper approximations at each pixel
location. If for example a location has the

following values

{ }
{ }5.0,4.0,1.0)(

,,
=z

wetmesicdryMµ  this will

produce the output classification C
wetXz ′∈ . The

resulting image is given in Figure 46A and can be
compared by the original VEG3 map from Edberg
et al. (1971) to the right, Figure 46B. If the
standard overall accuracy is calculated using these
crisp maps we will find that it is 0.62.

A) Result B)  VEG3

Dry
Mesic
Wet

(i)

(ii)

N

Figure 46 A) Final map produced by intersection of bifuzzy classifications using rough reclassification of VEG35 from
Ahlqvist and Wiborn (1986) and fuzzy classification from  wetness index image. B) Original VEG3 map from Edberg et al.
(1971). Arrows show examples of i) vegetation units in the final map that was previously boundary areas, and ii) new
boundaries within original vegetation units as a result of moisture heterogeneity within these units.

Table 37 Quality measures for the bifuzzy

classifications RM , FM , and RFM ∪  that were
produced respectively from the rough and fuzzy
original information, and through bifuzzy data
integration.

Classification BF-
Crispness

BF-
Overlap

Rough RM 0.41 0.64

Fuzzy FM 1.00 0.32

Bifuzzy RFM ∪ 0.33 0.18
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Discussion and conclusions

The relation between this approach and existing
theories and methods has been indicated
throughout the text. The illustrated example
serves as a backdrop against which the proposed
ideas have been presented and explained. In
Ahlqvist, Keukelaar and Oukbir, (2000b) some of
the ideas of the method development and details
of the experiment results were discussed. In this
work I prefer to elaborate on the wider application
of the described methodology in the context of
this thesis.

Geographic information systems
interoperability
The example demonstrated that the bifuzzy
classification is able to integrate data with
different aspects of uncertainty, such as vague and
ambiguous information. This has wider
applications as it can be seen as a general
transformation mechanism between different user
contexts. In Figure 47 the experiment has been
put into an organizational context. Let us assume
the VEG35 map to be an existing inventory
produced within a local authority for management
purposes. Now suppose a regional organization
wants to produce a map with lower categorical
resolution covering the entire region using
existing local information. The transformation of

local information can be made using methods of
rough, Figure 47 (1), fuzzy (2) and bifuzzy multi-
criteria evaluation (3) outlined in the previous
experiment.

If we picture several local organizations, their
local information could be made accessible
through similar mappings either directly, Figure
47 (4) or through some mediation with other
auxiliary data (5). It is also possible to transform
information from the elevation data through the
ontology of VEG3 using the fuzzy membership
functions and then further reclassify it into the
ontology of VEG35, Figure 47 (6). In this process
fuzzy wetness information, (2), is transformed
into a bifuzzy representation using a reversed
version of the rough reclassification rules (1) in
Table 36. The result of this is essentially 35
bifuzzy classes where the lower approximations
of these are empty and the upper approximations
could be illustrated with Figure 44.

Using the class numbers from Table 36, the
fuzzy class dry, F

dryX , would be reclassified into

the upper approximation of bifuzzy classes {1-
3,8-9,11,17,19,21,24-25,30-32} and would look
like Figure 44a. Similarly, F

mesicX , would be

reclassified into the upper approximation of
bifuzzy classes {2-5,9-12,14,17-22,24-25,30-33},
Figure 44b, and F

wetX  would be reclassified into

Local Inventory of 
vegetation, VEG35 

Regional vegetation 

Elevation Local Organization 1 

Regional Organization

2 

4Local Information, XXX 

Auxillary data 

5 

7 

Local Organization …n 

3 1

6

Figure 47 Organizational perspective on exemplified (1-3) and possible (4-7) transformations using the suggested
approach.
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the upper approximation of bifuzzy classes
{4,6,11,15-16,18,20,23-27,35}, Figure 44c. Since
this is a rough classification there are overlaps,
that is two or more contributing membership
functions that need to be resolved.

The most reasonable solution seems to be to
apply the union operation on the contributing
fuzzy membership values. Accordingly, for
example the derived VEG35 bifuzzy class 2
would be assigned ( )F

mesic
F
dry XXM µµ ∪= ,02

and using the max-operator for fuzzy union the
result of this would look like Figure 48. The same
idea could be applied to other transformations
through already defined relationships. In Figure
47 a transformation between the two local
organizations (7) therefore could be realized
through already established links (1-5).

The suggested chained transformations in
Figure 47 require a careful consideration of the
original formulation, the meaning of each piece of
information, as the transformation rules are
constructed. A similar framework has been
proposed by Bishr (1998) and Bishr et al. (1999)
as a general framework for semantic translators
capable of mapping between spatial database
schemas while preserving their semantics. The
main tool to connect semantically similar objects
in Bishr’s work is based on common ontologies,
essentially a standardized vocabulary for various
domains of interest. Very much the same idea is
reflected by Gahegan (1999) and both suggest the
use of an interchange format (the term proxy
context in Bishr’s work) as a mediator to
transform data from one information context to
another. As pointed out in the introduction, the
use of traditional set theory in these and other
works imposes severe limitations on the ability to
represent semantically meaningful relationships
(Kuhn, 1999; Mark and Frank, 1996). The use of
fuzzy and rough extensions to traditional set
theory is primarily what makes the illustrated
approach substantially different from previous
work. It is anticipated that this improvement
enables the representation of semantically richer
relations between concepts

Bifuzzy data integration and generalization
In the beginning of this thesis it was argued that
the traditional meaning of generalization has been
widened in the digital world to include not only
map output, but also almost any transition
between representational models of the real
world. Thus, digital generalization can be seen as

a process that changes the context of geographic
data.

The experiment is an example of one such
change of context where the initial data was a
categorically detailed vegetation description. This
source data set was transformed into a context
that emphasized vegetation wetness information
at a low categorical granularity. This
transformation of the VEG35 source data into the
VEG3 classification system included use of
additional wetness information into the bifuzzy
representation.

These steps all relate to the process of model
generalization introduced earlier in chapter 3,
which is a data reduction process that preserves a
geometrically and semantically correct object
model. The normal understanding of the model
generalization process is that it that can be
modeled completely formally (Weibel, 1995).
However, this view fails to address the important
issue of semantic accuracy (Salgé, 1995), which
will be an issue as soon as the model-generalized
output is to be translated into any other model of
reality that can be understood by humans.
Semantic accuracy has been thoroughly discussed
in previous chapters. Hence, it suffices to repeat
that measurements always are made against a
logical specification of the conceptual model that
was used to collect the data (Veregin, 1999).
Against this background it is instructive to look at

x
M 2

µ

0.5 

1.0 

0.0 

Figure 48  Example illustration of the upper
approximation of bifuzzy class 2 in the VEG35
classification system after reclassification from fuzzy
wetness classes.
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some of the accuracy values, remembering that
the absolute values should not be taken too
seriously.

The original VEG3 map evaluated to be
42.0=esxactWA  compared with the derived

bifuzzy classification. Let us for one moment
imagine that the derived bifuzzy classification

RFM ∪  was the full set of information that was
available to the surveyor/cartographer who
produced the VEG3 map. That is, knowledge
about the vegetation was at a fairly high thematic
granularity and there was also information on the
wetness for the entire area. Under these
assumptions the accuracy value of 0.42 can be
seen as a measure of the amount of generalization
that has been applied on the original data when it
was transferred into a vegetation map with crisply
delineated polygons. Also, the fuzzy information
in the wetness image can be said to represent the
heterogeneity within vegetation units from the
aspect of wetness, that is within the context of the
target classification.

This experiment exemplifies the discussion in
chapter 3 on accuracy measurements for poorly
defined objects. It becomes obvious in this case of
poorly defined features that the attribute accuracy
is tightly connected with the spatial accuracy. In
the final step it was shown how the bifuzzy
classification could be hardened into a map-like
image, Figure 46A, that uses the same
cartographic manner as the original VEG3 map
shown in Figure 46B. This produces a change of
geometry in the result, as new boundaries are
created within original map units Figure 46A (i),
and new vegetation units are created at original
boundary locations Figure 46A (ii). In chapter 3 I
referred to the discussion whether the location of
a boundary between two vegetation types is
uncertain due to the problem of measuring the
exact location of the vegetation types or if it is
due to the problem of discerning between the two
vegetation types at the correct location
(Goodchild, 1995; Painho, 1995). In this example
the uncertainty of the location of the boundary
between two vegetation types has been treated
primarily as a problem of discerning between the
two vegetation types.

The examples illustrate transformations
between different measurement frameworks
(Chrisman, 1999) and also that different
measurement frameworks imply decisions about
information granularity and accuracy.
Accommodating for semantic accuracy means to

produce a representation that is correct both with
respect to the original model as well as the
conceptualization of the target model. To address
model generalization from this perspective is
somewhat conflicting with current understanding
of the concept (Weibel and Dutton, 1999) and
maybe the division into model and cartographic
generalization needs a revision. Anyhow,
semantic considerations ultimately ask the
generalization process to look for methods that
convey geographic meaning and understanding of
spatial processes, a direction that has been
proposed by several authors (Müller, 1989;
Ormsby and Mackaness, 1999; Van Beurden and
Douven, 1999).

Controlling variables
The demonstrated example shows how use of
process knowledge from the wetness image is
used to discern between the different wetness
classes in the VEG3 classification system. The
idea of scale dependent controlling factors was
introduced in chapter 3 and Figure 7. In this
experiment the use of an elevation image
converted to wetness information is a way to
utilize a ‘controlling variable’ to guide the
delineation in the target context. I therefore
anticipate that the proposed methodology can be
used to define links between concepts and
controlling processes.

However, this procedure is not as
straightforward as it might seem, and a comment
on this is appropriate. The spatial granularity of
the VEG35 map was 5m whereas the source
elevation model used a 50m spatial granularity of
the original measurement. In order to fit the
elevation data to the grid of the map, it was
interpolated over a 5m grid and in this process a
smoothing effect was achieved. The selection of
this data set, the following spatial transformation
and wetness index calculation are all explicit
decisions about how the original measurement
framework can be transformed without putting the
credibility of the final result at risk.

These decisions will be articulated in the final
process of hardening the bifuzzy maps into a crisp
final result. Many of the boundaries in the final,
crisp map are drawn as a result of these decisions
and might have been located differently using for
example other sequences of these operations (Van
Beurden and Douven, 1999). To be able to use
process knowledge in this manner requires careful
consideration of these issues. It also requires
explicit representation of these considerations as
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part of the metadata that explains in detail how a
data set may be transformed. Reclassification
tables and fuzzy membership functions as those
used in this experiment is one way to make such
considerations explicit and open for revision.

Bifuzzy sets and conceptual modeling
In chapter 2 it was established that a conceptual
level geographic information model need to
capture the vital components of geographic
information. I have also referred to a host of
authors that all outline, time, space (3D), theme,
and their inter-/intraconnections as basic
characteristics that makes up geographic
information. (Sinton, 1975; Peuquet, 1994;
Albrecht, 1996; Usery, 1996; Gahegan, 1999)

The “triad”- view proposed by Peuquet (1994)
is based on a dual framework of object- location
integration (Peuquet, 1988) with the incorporation
of time. This kind of simultaneous representation
of multiple views of the same fact raises the
question of how to find one common level of
understanding. The example has provided an
interesting illustration of this question. Something
that in the object based view was held as a wet
vegetation type was a matter of graded
membership in the field view. The integration of
these two views through a bifuzzy set intersection
created the joint field/object based view
illustrated in Figure 45. The most important step
to achieve the bifuzzy representation is that both
the field based and the object-based view is
mapped onto a common ontology. The choice of
common ontologies is still open for discussion. It
may either be domain specific and standardized
ontologies as suggested by Bishr (1998) or sets of
scale dependent ontologies of physically
controlling variables as suggested earlier. The
mapping from the original data onto the chosen
common ontology may with the suggested
approach be defined crisply, vaguely or
indiscernibly through crisp, fuzzy or rough sets
respectively.

We see that the fairly dry mathematical idea of
a bifuzzy set has turned out to be able to negotiate
common and diverging points of reference. This
turn my discussion into the even more challenging
issue of integrating different worldviews and what
has been formalized as ‘Group or Organizational
Decision Support Systems’ (King and Star, 1990)
introduced earlier in chapter 1. There the ideas of
“due process” and “boundary objects” were
introduced. The identification of important
concepts such as different vegetation classes and

wetness information make it possible to think
about the spatial units as “boundary objects”
(Star, 1987) for the negotiation of different
aspects of uncertainty.

It was described in chapter 1 that boundary
objects come in different types. It appears clearer
now that a standard multi criteria evaluation
performed as an overlay operation in a geographic
information system makes use of the boundary
object “terrain with coincident boundary”. When
such an evaluation is conducted it evaluates the
joint outcome of the overlay operation for each
spatial unit, be it a polygon or a pixel. The spatial
unit essentially acts as a boundary object within
which similarities and differences are articulated
and negotiated by the overlay operator. Also the
case with a multi spectral image classification
process uses the boundary object idea, although
not usually acknowledged that way. Each location
pixel acts as a boundary object for the evaluation
of the information from the different spectral
bands in the image data.

It seem reasonable to think that the
demonstrated technique may be used in the kind
of negotiation that can be expected from divergent
viewpoints held by different people in
organizations. Such negotiations may often reach
agreements around vague or imprecise terms as
suggested by (King and Star, 1990). In the case of
this experiment, space served as a boundary
object around which the different aspects of
uncertainty where integrated. The regional
organization, and the two local organizations
may, according to King and Star (1990), exchange
their information only through the process of
continuous identification, gathering and weighing
of heterogeneous information into something here
formulated through bifuzzy classifications. This is
an articulation of a “due process” (Star, 1987;
King and Star, 1990), which has been described in
a similar geographic setting by Harvey (1999).
Within the due process, boundary objects sit in
the middle of a group of participants trying to
negotiate their divergent viewpoints. I imagine
that the use of space as a boundary object will
make it possible to apply multicriteria evaluation
to perform concept mediation and thus perform a
transformation between contexts within and
between organizations. This remains to be fully
tested, as also whether other types of boundary
objects such as ‘repositories’, ‘ideal types’ or
‘standardized forms’ prove to be suitable for
geographic applications.
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Returning to the situation of a polygon
overlay, this is actually a two-step process where
the first step consists of identifying the lines that
define the spatial limits of the boundary objects,
and the second step is the actual negotiation
process. That view of the polygon overlay process
also conforms with the transformational view of
GIS operations described by Chrisman (1997).

To conclude, spatial boundary objects are
defined and used in current digital geographic
information analysis. I therefore propose that the
boundary object idea can be used for coordinating
a specific objective, for example in a data
transformation process from one context to
another. Yet, it remains to prove whether the idea
based on bifuzzy data integration presented here
will contribute to a successful implementation of
this proposition. It also remains to be verified in a
wider setting if the proposed framework is
capable of negotiating the different spatial
conceptual frameworks, field and object based
views.
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CONCLUSIONS

Summary of findings and objective
fulfillment

Spatial decision support using geographic
information systems has been severely limited by
the problems of integrating different types of
geographic data. Efforts directed towards formal
specifications of data structures, increased access
through data warehouses and content standards
has made important contributions. Still, the
problem of conveying the actual meaning of
geographic phenomena across different databases
has not until recently been tackled. This study has
tried to investigate the matter of using old
information to answer new geographic questions.
First of all I made clear that many questions need
to be answered using existing data and in most
cases these will first need to be adjusted to fit the
question. For geographic data an adjustment of
existing data may involve changes in five
dimensions, three spatial, time and theme.

Review of both theoretical and
methodological aspects of integrating
geographic data
In chapters 2 and 3 it was argued that spatial
decision support using geographic information
systems requires integration of geographic data.
Presented examples and cited literature made
clear that the process of geographic data
integration still lack a firm theoretical basis and a
full suite of tools based on such theories.

A translation between geographic abstractions
of real world features was determined to, at least
potentially, include changes of spatial, temporal
and categorical resolution of constituent data sets.
The apparent complexity of such translation
processes motivated a research approach where
each dimension of a geographic dataset was
studied separately. Appropriate data for the
experiments were compiled using already existing
data described in chapter 4 and supplemental data
collection.

Identification of important deficiencies or
gaps in theory and/or methods for
geographic data integration
Important deficiencies in current methods for
geographic data integration were found. The issue
of semantic uncertainty as an important quality
aspect has received relatively little attention so
far. Thus, the theoretical background on this issue
was examined in detail in chapters 2 and 3. Also,
the use of a traditional set theoretic approach to
the semantic level modeling of geographic
information was reported as problematic in these
chapters. As a consequence, these questions
initiated the research reported in chapters 5 and 6.

The classification and reclassification
ambiguity found in chapters 5 and 6 can be seen
as a kind of semantic uncertainty.

Chapter 5 demonstrated how changing the
spatial resolution of a geographic data set cause
both predictable and non-predictable effects and
how these effects may vary for different
environmental variables. The mixed pixel
situation causes effects in the thematic dimension.

In the introductory parts of chapter 6 it was
concluded that current representational techniques
using crisp and fuzzy sets fail to address
situations of classification uncertainty due to
indiscernibility.

Identification of approaches that consider
geographic context information.
Solutions and recommendations that promote a
context sensitive use of existing geographic data
were proposed in chapters 5, 6, 7, and 8.

In chapter 5 the studies of changing spatial
resolution made clear that different environmental
concepts vary in their sensitivity to changes of
spatial resolution. This issue was further studied
with a refined experimental design in chapter 7.
From these studies no general solution to the
spatial aggregation problem could be deduced. It
remains clear however that any change of the
spatial resolution of a dataset must evaluate the
sensitivity to semantic effects for this change.

Chapter 6 demonstrated the possibility to
represent (re)classification ambiguity due to

Chapter

9
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indiscernibility using rough set theory. This
method finds applications whenever operations
involve changes in the categorical resolution of a
geographic dataset and when the categories are
translated by one-to-many relations. This chapter
also showed how rough spatial data may be
compared with other crisp or rough spatial data
using extensions to the normal error matrix
paradigm.

Chapter 7 presented a testing technique to
evaluate semantic uncertainty often found in
geographic data. The used method uses concepts
of rough classification together with manual
interpretations of landscape variables. The test
design was suggested as a way to estimate
semantic accuracy of commonly used land cover
or land use categories at different scale levels.

Chapter 8 proposed the concept of bifuzzy
classifications to enable data integration with
different types of semantic uncertainty involved.
This technique was proposed to be used together
with existing methods of multi criteria evaluation
to create a joint representation of crisp, vague and
indiscernable uncertainties.

Suggested solution to support a context
sensitive use of existing geographic data.
The theoretical background given in chapter 2 and
3 led to the construction of the Geographic
Concept Topology. The arguments for this
construct were given throughout these two
chapters. The Geographic Concept Topology is a
formalized representation of semantic
interrelations. I suggest a joint use of fuzzy and
rough extensions to traditional set theory as
demonstrated in chapter 8. I further argue that this
enable explicit representation of semantically
richer relations between geographic concepts. The
collected set of such explicit links consequently
provides all interconnected data sets with a deeper
geographical meaning.

From a general geographical point of view I
propose that the GeCoTope framework enable the
integration of location-based and object-based
views. It was shown in chapter 8 that it is possible
to extend several crisp, fuzzy, and rough
transformations into a general transformation
mechanism between different user contexts and
hence between different groups or organizations. I
also argue that the GeCoTope framework may
serve as a mediator around which similarities and
differences between different worldviews can be
negotiated.

Demonstration of an application of a context
sensitive integration of geographic data
In chapter 8 I demonstrate that the explicit
representation of crisp, fuzzy and rough relations
between independent datasets is a feasible
alternative to translation and full integration of
geographic datasets. I also argue that such a
translation using predefined crisp, fuzzy and
rough relations illustrate a kind of model
generalization. The proposed framework enables
the use of common ontologies and/or physically
controlling factors at the desired level of
abstraction.

Conclusions

• Spatial decision support using geographic
information systems requires integration of
geographic data and this process still lack a
firm theoretical basis and a full suite of tools
based on such theories.

• Geographic data integration requires
translation between abstractions of real world
features, which often include changes of
spatial, temporal and categorical resolution of
constituent data sets.

• Changing the spatial resolution of a
geographic data set cause both predictable and
non-predictable effects and these effects may
vary for different environmental variables

• When changing the categorical resolution of a
geographic dataset, it is possible to represent
(re)classification ambiguity due to
indiscernibility using rough set logic.

• Rough spatial data may be compared with
other crisp or rough spatial data using
extensions to the normal error matrix
paradigm

• The use of rough classification methods
together with manual interpretations makes it
possible to evaluate the semantic uncertainty
often found in geographic data.

• Integration of crisp, fuzzy and rough data
enable spatial decision support systems to
consider various aspects of categorical
uncertainty.

• Explicit representation of crisp, fuzzy and
rough relations between datasets is a viable
alternative to translation and full integration of
geographic datasets.

• Translation using predefined crisp, fuzzy and
rough relations enable model generalization
using controlling factors at the desired level of
generalization.
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