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The full semantics of the Intel-x86 architecture has been de�ned by Raad et al in POPL 2022, extending the

earlier formalization based on the TSO memory model incorporating persistency. This new semantics involves

an intricate combination of the SC, TSO, and PSO models to account for the diverse features of the enlarged

instruction set. In this paper we investigate the reachability problem under this semantics, including both its

consistency and persistency aspects each of which requires reasoning about unbounded operation reorderings.

Our �rst contribution is to show that reachability under this model can be reduced to reachability under a

model without the persistency component. This is achieved by showing that the persistency semantics can

be simulated by a �nite-state protocol running in parallel with the program. Our second contribution is to

prove that reachability under the consistency model of Intel-x86 (even without crashes and persistency) is

undecidable. Undecidability is obtained as soon as one thread in the program is allowed to use both TSO

variables and two PSO variables. The third contribution is showing that for any �xed bound on the alternation

between TSO writes (write-backs), and PSO writes (non-temporal writes), the reachability problem is decidable.

This de�nes a complete parametrized schema for under-approximate analysis that can be used for bug �nding.

CCS Concepts: • Theory of computation→ Veri�cation by model checking; • Software and its engi-

neering→ Formal software veri�cation.
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1 INTRODUCTION

The semantics of a modern concurrent memory system can be quite complex and hard to compre-
hend. One component of such semantics is the consistency model which determines the values
that read operations may return along computations. The simplest such model is the sequential
consistency (SC) model where instructions within each thread are executed in the order in which
they are issued (program order) and where memory writes are instantaneously visible to all other
threads. In general, for performance reasons, consistency models allow violations of both of these
properties: they permit reordering of operations, and they may also make the result of a write visible
at di�erent times to di�erent threads (a simple example of this is when the writing thread may read
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the written value before it is available to other threads). These features result in behaviours that
do not meet the strong consistency guarantees of the SC model and the set of reachable memory
con�gurations is larger than under SC. Some well known examples of such relaxed/weakly memory
models are the Total Store Order (TSO) and Partial Store Order (PSO) models, that form part of the
model studied in this paper.

In addition, when the memory system includes a mechanism for ensuring resilience to crashes,
by the use of non-volatile storage, the semantics includes a second component that determines the
order in which writes to memory take e�ect in such a storage (persistent storage). For performance
reasons, this order may di�er from the order re�ected in the consistency model and thus resulting
in another dimension of reordering of operations. The result of this second type of reordering is
visible after recovering from a crash – the values still available in memory are only those recorded
in the persistent memory prior to the crash. As a result, the set of memory con�gurations reachable
along runs with crashes and recoveries include some that are not reachable based only on the
consistency model.

Typically, a variety of instructions (fences) are provided in the instruction set which programmers
may use in their code to force ordering of instructions, both w.r.t. the consistency and the persistent
stages. The behaviour of these fences is another important component of the semantics. (Notice
that fences are expensive as they go against the purpose of the reorderings which is to provide
better performance.)
These aspects of a modern memory system (consistency, fences and persistency) interact in

non-trivial ways and thus programming concurrent applications under such models is hard and
error prone. There is a need to develop veri�cation methods applicable to this setting. In this work,
we consider the issue of the decidability of the safety veri�cation problem (reducible to solving the
state reachability problem) which is fundamental for the development of automatic veri�cation
algorithms. We address this issue on a concrete instance that is signi�cant enough to show the
main issues that arise in this context – we consider the case of verifying concurrent programs
running over the Intel-x86 architecture with persistent memory for which a formal semantics has
been de�ned in [Raad et al. 2022]. We assume in this work that programs have a �nite data domain,
and concentrate on the decidability issues related only to concurrency and the e�ect of reordering
among operations.

The decidability of reachability veri�cation under weak consistency and persistency has not yet
been investigated extensively so far in the literature. The only work we are aware of in this context
is [Abdulla et al. 2021a] where the authors prove the decidability of this problem for Persistent
x86-TSO (PTSO) [Raad et al. 2020] which is an extension of the TSO (Total Store Order) consistency
model with a persistency model. However, PTSO does not capture faithfully the semantics of the
Intel-x86 architecture with persistency as has been pointed out in [Raad et al. 2022]. Our aim in
this paper is to address the decidability of the veri�cation of the reachability problem for the full
semantics of the Intel-x86 architecture with persistency as it was de�ned in [Raad et al. 2022].
According to the TSO model, write operations issued by a thread are placed in an unbounded

FIFO store bu�er where they remain pending till committed to (volatile) memory. During this time,
the written value is visible only to the writing thread. Commit to memory makes it visible to all
other threads simultaneously. While a write is pending in the store bu�er, later reads, in program
order, by the same thread to other locations can be executed fetching values from the memory. The
relaxation provided by TSO model may still be unnecessarily strict for some applications — for
instance bulk transfers of video bu�ers may not need the preservation of ordering between writes
on distinct locations.
To provide �exibility the Intel-x86 architecture provides instructions to be used for di�erent

types of consistency requirements, ranging from strong SC like to very weak ones. Its subset of
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instructions with TSO semantics corresponds actually to the one targeting the so-called write-back

(wb) memory. There are others. Among the available memory types, uc (for strong-uncacheable)
memory allows only updates that are immediately committed, like write operations in the SC
model. On the other hand, wc (for write-combining) memory allows reorderings between writes on
di�erent variables issued by a same thread, as it can happen in the PSO (Partial Store Order) model
(though wc reads di�er from PSO reads). In addition to having di�erent semantics for di�erent
memory types, writes operations can be declared to be non-temporal, which changes their original
semantics. Roughly, non-temporal writes (ntw) behave similarly to wc memory updates, allowing
reordering between writes on di�erent variables, even if these writes are on the write-back memory.
The permitted reorderings of reads in these di�erent memory types have subtle di�erences and
further there are also intricate rules governing reorderings of operations to distinct memory types.
The di�erent memory types, non-temporal writes, and the interactions between these features
induce a consistency model eTSO (for extended TSO) that is more relaxed and way more complex
than the TSO model.
Apart from the consistency stage, the Intel-x86 architecture also includes a persistency stage.

Operationally, the consistency model is extended with an additional unbounded bu�er to which
writes can be moved from the volatile stage observing certain ordering rules. Naturally these rules
di�er for the di�erent types of memory operations. This model, which we call epTSO model, is
formalized in [Raad et al. 2022] generalizing the one [Raad et al. 2020] taking into account all the
features of the Intel-x86 architectures mentioned above (various types of memories, non-temporal
writes, and associated fence operations).

Even for �nite-state threads (i.e., the data domain is �nite and each thread has a �nite control),
proving decidability (of reachability) in this context is hard because of the unbounded reorderings of
operations permitted by the complex consistency model, the persistency model and their interaction.
All this hints at undecidability. Yet, despite the in�nity sources in the semantics the models could
still satisfy some properties that make their analysis possible. In fact, reachability under both
TSO and PSO consistency models for instance is decidable [Atig et al. 2010, 2012]. This has been
proved by reduction to reachability problems in well-structured systems [Abdulla et al. 1996; Finkel
and Schnoebelen 2001] (a class of systems for which it is known that this problem is decidable).
More recently, the reachability problem for PTSO has also been proved to be decidable by a quite
sophisticated reduction to well-structured systems. This makes the decidability of reachability an
interesting and challenging problem.
Our �rst contribution is to prove that the reachability problem under epTSO can be reduced to

the reachability problem under eTSO. To achieve that, we proceed in two steps. The �rst and easier
step is to eliminate crashes from our analysis. A computation with crashes is decomposed into a
sequence of crash-less phases separated by occurrences of crashes. Then the sequence of persistent
states at the interfaces between these phases are guessed, reducing the original reachability problem
to checking reachability between two given persistent memory states via computations without
crashes. The second and involved step is to reduce this crash-free reachability between persistent
memory states to reachability without the persistency stage.
Now, to solve the crash-less reachability problem (between persistent memory states), we �rst

observe that (as far as reachability is concerned), wb and ntw updates together with atomic read-
writes and fences, can simulate all other types of write operations. Then, the main reduction consists
in showing that reachability under the model with persistency can be reduced to reachability under
a model without persistency that is an extension of TSO with non-temporal writes (only). The
reduction is code-to-code, in the sense that given a program for which a reachability question
is stated, this question is reduced to another reachability question for a program that is derived
from the original one. The main idea behind the construction is to consider a manager running as
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an additional thread which, in cooperation with the other threads of the program, implements a
protocol that simulates the persistency semantics. Basically the manager guesses for each variable
the value that will be recovered from the persistent memory upon the next crash, and then checks
the validity of the guess by ensuring that no operation which overwrites the persistent memory in
a manner that invalidates the guessed persistent memory state occurs. That this manager is just
a thread, and not an external �nite state observer synchronizing with all updates, is important
– otherwise, the TSO bu�ers are FIFO, and such a manager in cooperation with the threads can
solve undecidable problems such as PCP. This makes interaction of the manager with the program
threads quite subtle. Each thread helps the manager in its guessing by marking, for each variable,
a write operation that it considers as its last write that persists. The manager takes one of these
values as the guessed value for that variable. Then, by watching the operations done by each thread,
subsequent to this point, it can check that his guess was right. This requires an intricate protocol
of signaling between the threads and the manager. The important and surprising fact is that, the
manager can be de�ned as a �nite-control process, i.e., it needs to track only a �nite amount of extra
variables and yet we get rid of the unbounded bu�er usually employed to model the persistency
stage, e.g., in [Raad et al. 2020] and [Raad et al. 2022]. Another important point is that the manager
uses only SC variables. This implies that our reduction can be used already for SC extended with
persistency, as well as for TSO or PSO extended with persistency. In particular, this construction
remarkably simpli�es the models introduced in [Abdulla et al. 2021a; Khyzha and Lahav 2021] to
reason about reachability in PTSO.
The question then is whether the reachability problem for Intel-x86 without persistency (the

eTSO consistency model) is decidable or not? Our second contribution is to prove its undecidability.
This is surprising — the operations on each of the Intel-x86 memory types and non-temporal
writes, when considered in isolation, have semantics corresponding to either the SC, TSO, or PSO
models, and reachability is known to be decidable under each of these models. However, we prove
that very limited interactions between operations in these models, as allowed in eTSO, leads to
undecidability. The reachability problem becomes undecidable for programs where all threads are
running according to SC except one that uses TSO variables and two PSO variables.

Given the undecidability, a natural approach to this problem is to seek a decidable parametrized
bounded under-approximate analysis schema. This means de�ning some appropriate bounding
parameter : such that the reachability problem is decidable under each �xed bound, i.e., by consid-
ering only the program behaviors satisfying the bounding constraint. This is a classical and widely
adopted approach in the context of bug �nding, particularly for concurrent programs where a num-
ber of bounding concepts such as context-bounding [Qadeer and Rehof 2005] and delay-bounding
[Emmi et al. 2011] have been introduced. Ideally, the parametrized bounding schema should be
complete in the sense that the union of all program behaviors under all bounds is the set of all its
possible behaviors, which implies that if there is a bug in the program, there must exist a bound :
where it will be observed.

We take as bounding parameter the number of alternations between wb writes and ntw’s along
computations. Clearly this bounding schema is complete. We prove that for any �xed bound on such
alternations, the reachability problem is decidable. The proof is by a reduction to the reachability
problem under PSO which is known to be decidable [Atig et al. 2012]. Our reduction is formulated
as a code-to-code translation to PSO. In our reduction, each thread is now represented by 2: threads,
one for each of its rounds (in each round it performs either only wb writes or only ntw writes),
which run in parallel. The TSO rounds are handled by suitable insertion of fences. There are a
number of subtle requirements imposed by fences that require orderings to be enforced between
operations among these 2: threads. There is also the �ow of information, through read own writes,
between these threads that has to be managed. Both of these are handled by a dedicated manager
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thread (i.e. we have one manager to handle the 2: threads corresponding to one eTSO thread).
Interestingly, this manager is �nite-state and needs to track only a �nite amount of information at
the interface between the di�erent computation rounds.

Related Work. Our work uses the formal semantics of Intel-x86 memory types and non-temporal
stores that has been proposed in [Raad et al. 2022]. For the related work on formal semantics of
weak memory models, the reader is referred to [Raad et al. 2022].

In the following, we focus on the decidability and complexity results for the veri�cation problems
of programs running under weak memory models. The decidability and complexity of the reacha-
bility problem for program under Total Store Ordering (TSO) has been studied in [Abdulla et al.
2016, 2018; Atig et al. 2010, 2012], Partial Store Ordering (PSO) in [Abdulla et al. 2015b; Atig et al.
2012], POWER architecture in [Abdulla et al. 2020b], Release-Acquire in [Abdulla et al. 2019] and its
variants Strong Release/Acquire (SRA) and Weak Release/Acquire (WRA) in [Lahav and Boker 2020,
2022] and promising semantics in [Abdulla et al. 2021b]. The work [Abdulla et al. 2022] studies
the reachability problem for TSO programs with dynamic thread creation. The parameterized
veri�cation (i.e., the veri�cation of an arbitrary number of identical threads) for TSO has been
addressed in [Abdulla et al. 2016, 2018, 2023, 2020a] and Release Acquire in [Krishna et al. 2022].

The robustness problem (which can be seen as a stronger problem than reachability) for programs
running under weak memory models has been addressed for TSO [Bouajjani et al. 2013, 2011],
POWER architecture [Derevenetc and Meyer 2014] and fragments of C11 memory model [Lahav
and Margalit 2019; Margalit and Lahav 2021]. A closer problem of the robustness problem called
persistence has been studied in [Abdulla et al. 2015a].
All these works do not consider persistency. [Abdulla et al. 2021a] is the only work (as far as

we know) that addresses the decidability and complexity of programs running weak memory
models with persistency. However, the considered formal model in [Abdulla et al. 2021a] uses the
formal semantics of Intel-x86 persistency that was introduced in [Raad et al. 2020]. This formal
semantics considers only write-backs memory and does not model non-temporal stores as it is the
case of [Raad et al. 2022]. Our results are di�erent from [Abdulla et al. 2021a]: First, the reachability
problem for program under Px86 was shown to be decidable in [Abdulla et al. 2021a] using the
framework of well structured systems [Abdulla 2010; Abdulla et al. 1996; Finkel and Schnoebelen
2001] while we show that this problem is undecidable for the full Intel-x86 consistency model
regardless of the persistency feature. Furthermore, we show, in this paper, that the reachability
problem under the full Intel-86 architecture with persistency can be reduced to the reachability
problem under a consistency model without persistency. Finally, our decidability result of the
reachability problem when bounding the number of alternation between non-temporal writes and
temporal write-back operations is more general than the decidability result of [Abdulla et al. 2021a]
and the proof is done by reduction to the reachability problem for PSO.

2 PRELIMINARIES

2.1 Notation

Let Σ be an alphabet, Σ∗ (resp. Σ+) denote the set of (non-empty) �nite words over Σ. Let n denote
the empty word. ConsiderF a word over Σ, we use |F | to denote the length ofF . For 8 : 1 ≤ 8 ≤ |F |,
we write F [8] to denote the 8Cℎ letter of F . For any 0 ∈ Σ, we write 0 ∈ F to denote that there
exists 8 : 1 ≤ 8 ≤ |F | such that F [8] = 0. Given two words F1,F2 ∈ Σ

∗, F1 · F2 stands for the
concatenation of F1 and F2. Given a word F ∈ Σ

∗ and Σ
′ ⊆ Σ, we use F ↓Σ′ to mean the word

obtained by deleting fromF all the letters not in Σ
′.
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prog ::= gvars∗ (thread lvars∗ instr∗)∗x ∈ gvars, b, a ∈ lvars, e ∈ expr, 3 ∈ D,

instr ::= lbl : stmt

stmt ::= x :=wb a | x :=ntw a |x :=rmw a, b | a := x | a := d | flushopt(x) | flush(x) |

mf | sf | assume e |if e then ℓ | goto ℓ

Fig. 1. Syntax of concurrent programs.

Given two sets � and �, we use [�→ �] to denote the set of all functions from � to � and we
write 5 : �→ � to denote that 5 ∈ [�→ �]. We write 5 [0 ← 1] to denote the function 5 ′ where
5 ′ (0) = 1, and 5 ′ (0′) = 5 (0′) if 0′ ≠ 0.

2.2 Transition System

Let Σ be a �nite alphabet (called also the set of events) which contains a special empty event (denoted
g). A word ℎ ∈ Σ

∗ is called a history over Σ if the empty event g does not occur in ℎ. Let F be a
word over Σ. We use g− (F) to denote the history F ↓Σ\{g } (obtained from F by deleting all the
occurrences of the empty event).

A transition systemA is de�ned by a tuple ⟨Γ, Γinit, Σin, Σout,−→⟩ where Γ is a set of con�gurations,
Γinit ⊆ Γ is the set of initial con�gurations, Σin (resp. Σout ) is the set of input (resp. output) events, and

−→⊆ Γ×Σin×Σout ×Γ is the transition relation ofA. We use W
4/4′

−−−→ W ′ to denote that ⟨W, 4, 4′, W ′⟩ ∈ −→.

We also use W1 −→ W2 to denote that there are 41 ∈ Σin and 42 ∈ Σout such that W1
41/42
−−−−→ W2. Let

∗
−→ be

the re�exive transitive closure of −→.
Given a set of con�gurations � ⊆ Γ, we use � |= W ′ to denote that there is a con�guration W ∈ �

such that W
∗
−→ W ′. We abuse the notation and use W |= W ′ for {W} |= W ′. We sayA |= W when Γinit |= W .

This de�nition is extended to sets of con�gurations as expected, denoted by A |= � where � ⊆ Γ .

A run d of A is a sequence of transitions of the form W0
41/4

′
1

−−−−→ W1
42/4

′
2

−−−−→ W2
43/4

′
3

−−−−→ · · ·
4=/4

′
=

−−−−→ W= ,
with W0 ∈ Γinit is an initial con�guration. Let Runs (A) be the set of all runs of A. Let JdK :=
〈

g− (41 · 42 · 43 · · · 4=), g
− (4′

1
· 4′

2
· 4′

3
· · · 4′=)

〉

and JAK := {JdK | d ∈ Runs (A)}.
In the following, let A1 ⊗ A2 = ⟨Γ, Γinit, Σin, Σout,−→⟩ denote the composition of two given

transition systems A1 =

〈

Γ
1, Γ1

init
, Σ1

in
, Σ1

out
,−→1

〉

and A2 =

〈

Γ
2, Γ2

init
, Σ2

in
, Σ2

out
,−→2

〉

as follows: (1)

Γ = Γ1 × Γ2, Γinit = Γ
1
init
× Γ2

init
, Σin = Σ

1
in
, and Σout = Σ

2
out

. The transition relation −→ is de�ned as the

smallest relation such that ⟨W1, W2⟩
41/42
−−−−→ ⟨W3, W4⟩ if one of the cases is satis�ed: (8) W1

41/g
−−−→1 W3, 42 = g ,

and W2 = W4, (88) W2
g/42
−−−→2 W4, 41 = g , and W1 = W3, or (888) W1

41/4
−−−→1 W3 and W2

4/42
−−−→2 W4 for some 4 ≠ g .

The composition operator ⊗ can be extended to multiple transition systems A1 ⊗ A2 ⊗ · · · ⊗ A=

in the straightforward manner

3 EPTSO– FORMAL SEMANTICS

In this section, we present the formal semantics of concurrent programs running under the epTSO
semantics (following the style of [Abdulla et al. 2021a; Raad et al. 2022]). We assume a �nite
data domain D, which also contains the special value 0. To de�ne a program, we de�ne a simple
programming language in Fig. 1. A program P is then any code that conforms to this programming
language. Notice that a program then contains a set of shared (global) variables (say X) and a set
of threads (say Θ). We sometimes refer to a program as P = ⟨Θ,D,X⟩. A thread \ ∈ Θ declares
a set lvars\ of local variables, followed by its code. Let lvars =

⋃

\ ∈Θ lvars\ be the set of all local
variables. We assume that the local variables and the global variables range over the data domain
D. An instruction is of the form ℓ : stmt where ℓ is the label and stmt is the statement of the
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instruction. A label occurs at most once in P, and hence, for a given label ℓ , the instruction and
the thread to which ℓ belongs are uniquely de�ned. We use Λ to denote the set of all labels. We
assume a set expr of Boolean expressions involving local and global variables. The set of thread’s
instructions includes reading, writing, atomic-read-write instructions on shared and local variables,
and branching instructions. Moreover, we allow �ush operations (flushopt and flush), and fence
instructions (mfence and sfence). There are two types of write instructions, write-back (wb) and
non-temporal writes (ntw).

3.1 Handling other type of operations

In Intel-x86 architecture there are several other kinds of reads and writes [Raad et al. 2022]. Further,
the memory is partitioned into di�erent types and the operations permitted on a location are
determined by its type. We allow only one memory type which corresponds exactly to the wb-type
in [Raad et al. 2022]. We also restrict our write operations to ntw and wbwrites and rmw. We describe
below, how to handle other type of operations using only these operations.
The wc-type memory permits wc writes which have exactly the same behaviour as ntw writes

on the pending and persistency stages, so they can be simulated by ntw writes. However, wc reads
behave di�erently from reads on wb type memory. They do not overtake any operation (and reads
are not overtaken by any operation). In e�ect, it is like a wb read but should execute only when the
pending bu�er is empty. One may be tempted to simulate it by a mfence followed by an wb read
and this matches the behaviour of wc read in the pending stage. However, memory fence has the
e�ect of �ushing the persistent bu�ers while wc read entails no such �ushing. The correct solution
is the following and uses an additional helper thread man and a new variable ◀ empty▶ which
takes values over {⊤,⊥}. To simulate a rdwc (G, 0) we execute:

flush (◀ empty▶));◀ empty▶ :=wb ⊤; assume (◀ empty▶ = ⊥) ;0 := G

The helper thread man is a thread that non-deterministically executes ◀ empty▶ :=rmw ⊤,⊥.
Observe that the �ush at the beginning of the sequence ensures that no prior writes (in particular
ntw writes) can be delayed beyond this point. The write followed by read on ◀ empty▶, in
conjunction with the helper thread, veri�es the emptiness of the pending bu�er.

The other type of memory considered in [Raad et al. 2022] is the uc-memory. The behaviour of
uc-read is exactly identical of that wc-read. The uc write however behaves di�erently from wb and
ntw writes. Its e�ect on the pending bu�er is the same as a mfence followed by wb write followed
by a mfence, but it has no e�ect on the persistent bu�er.
We use the same idea as above but in addition we have to ensure the emptiness of the bu�er

after the write completes. This can be arranged by executing the above protocol after the write.
We can also comply with the typing of memory by syntactically identifying memory locations

with speci�c memory types. With this translation we can restrict our attention to wb and ntw

writes to prove our results.

3.2 Semantics

In the following, we give the operational semantics of a program in the epTSO semantics as a
composition of three transition systems namely the program, the volatile memory, and the persistent
memory transition systems. These transition systems are de�ned below. For the purpose of these
de�nitions, we �x the threads of program to be Θ and the shared variables to be X.

3.2.1 The Program Transition System. A program P induces an transition system AP =
〈

Γ
P , ΓP

init
, ΣP

in
, ΣP

out
,−→P

〉

de�ned as follows: A con�guration of AP is a pair ⟨L,R⟩ where L :

Θ→ Λ returns, for each thread, the label of the next instruction to be executed, and R : lvars→ D
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Fig. 2. The volatile stage transition relation.

gives the values of the local variables. There is only one single initial con�guration ⟨Linit,Rinit⟩

where Linit (\ ) returns the label of the initial instruction, and Rinit (0) = 0 for every 0 ∈ lvars.
The empty event is the only input event (we assume here that our program does not take any
input). Let \ ∈ Θ be a thread, G ∈ X be a variable, and 3, 31, 32 ∈ D be any values. An output
event can be either (1) a write-back ⟨\, wb, G, 3⟩, (2) a non-temporal write ⟨\, ntw, G, 3⟩, (3) a read
⟨\, rd, G, 3⟩, (4) an rmw ⟨\, rmw, G, 31, 32⟩, (5) an optimized �ush ⟨\, fo, G⟩, (6) a �ush ⟨\, fl, G⟩, (7)
a store fence ⟨\, sf⟩, (8) a memory fence ⟨\, mf⟩, or (9) the empty event g . The transition relation
is de�ned in the straightforward manner. We let AP [L] =

〈

Γ
P , ΓP

init
[L], ΣP

in
, ΣP

out
,−→P

〉

where

Γ
P
init
[L] = {⟨L,Rinit⟩} i.e. the transition system obtained by setting L as the starting locations.

3.2.2 The Volatile Stage Transition System. The volatile stage transition system AV
=

〈

Γ
V, ΓV

init
, ΣV

in
, ΣV

out
,−→V

〉

describes how we handle each instruction of the program in the

the volatile stage of epTSO. Here, Σ
V
in

= Σ
P
out

, that is, the set of input events is equal
to the set of output events from the program. Furthermore, the set of output events
Σ
V
out

is equal to {⟨\, wb, G, 3⟩, ⟨\, ntw, G, 3⟩, ⟨\, rmw, G, 3, 31⟩| (\ ∈ Θ) ∧ (G ∈ X) ∧ (3,31 ∈ D}) ∪
{⟨\, sf⟩, ⟨\, mf⟩| \ ∈ Θ} ∪ {⟨\, fl, G⟩, ⟨\, fo, G⟩| (\ ∈ Θ) ∧ (G ∈ X)}. A con�guration of the system
is a pair of the form ⟨�,"⟩ where: (1) the map � : Θ → �∗, with � := {⟨flG ⟩| G ∈ X} ∪

{⟨foG ⟩| G ∈ X} ∪ {sf} ∪
{〈

wbG
3

〉

| (G ∈ X) ∧ (3 ∈ D)
}

∪
{〈

ntwG
3

〉

| (G ∈ X) ∧ (3 ∈ D)
}

is the bu�er
alphabet, corresponds to the operations delayed by the corresponding thread, and (2) the map
" : X→ D gives the value of each shared variable in the volatile memory. In the sequel, we refer to
� as the pending (or store bu�er) and the elements residing in it as messages. For instance, we say a
wb-message on G in the bu�er of \ , or an fo-message, etc. We may refer to messages by their types,
e.g., a message of type wb, fo, etc. We de�ne the initial con�gurations as: ΓV

init
:= {⟨�init, "init⟩},

where �init (\ ) := n for any \ ∈ Θ and "init (G) := 0 for any G ∈ X. We will sometimes use
AV ["] =

〈

Γ
V, ΓV

init
["], ΣV

in
, ΣV

out
,−→V

〉

where ΓV
init
["] = {⟨�init, "⟩} to mean the transition system

obtained by modifying the initial volatile memory.
We de�ne the transition relation according to the inference rules of Fig. 2. We classify the set of

inference rules in four categories: (i) In the rules wb-get,ntw-get,sf-get,fl-get, fo-get, the transition
system gets the corresponding events from the program. We append the corresponding message
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Fig. 3. The persistency stage transition relation.

to the tail of the store bu�er. (ii) The transition described in the rule rmw can only be executed if
the store bu�er is empty, the value of G in the volatile memory is 31. The execution of this rule
will set the value of G in the volatile memory to 32. Observe that the rule mf requires also that the
store bu�er is empty. (iii) Reading the value of a shared variable G can be performed by two rules.
In read-own-write, the store bu�er contains a write message on G . Then, the most recent pending
write message on G is read. In read-from-memory, there is no write message on G in the store
bu�er. In such case, we read the value of G directly from the volatile memory. (iv) This category of
transitions concerns updates (i.e. propagating the messages from the store bu�er). We carry out
the updates of sf in-order (i.e. it does not re-order with any other instructions). The cases of ntw
and wb are dealt with separately in the rules wb-update and ntw-update, respectively. In case the
message to be updated is of the form

〈

wbG
3

〉

then it is propagated only if the following messages
are absent in front of it in the bu�er: (i) ⟨sf⟩- and fl-messages, (ii) ntw-write messages on the
same variable G , and (iii) wb-writes on any variable. In case the message to be update is of the form
〈

ntwG
3

〉

then it is propagated only if the following messages are absent in front of it in the bu�er: (i)
⟨sf⟩- and fl-messages, (ii) write-messages (whether wb or ntw) on the variable G . If the messages
are of the form ⟨flG ⟩ or ⟨foG ⟩, then the rules fl-update and fo-update are used respectively.

3.2.3 The Persistent Stage Transition System. We capture the behavior of the persistency stage by the
transition systemAP :=

〈

Γ
P, ΓP

init
, ΣP

in
, ΣP

out
,−→P

〉

. Here ΣP
in
= Σ

V
out

and ΣP
out

= {g}. In other words, the
transition system gets its input events from the pending stage transition systems. The con�gurations
Γ
P are of the form ⟨�, # ⟩ where (1) � : X → �∗, with � :=

{〈

wr\
3

〉

| (\ ∈ Θ) ∧ (3 ∈ D)
}

∪
{〈

fo\
〉

| \ ∈ Θ
}

is the bu�er alphabet, is the content of the persistency bu�er for every shared
variable, and (2) # : X ↦→ D gives the value of each variable in the persistent memory. The set
of initial con�guration is de�ned by Γ

P
init

= {⟨�init, #init⟩} where �init (G) = n and #init (G) = 0 for

any shared variable G . We use AP [# ] =
〈

Γ
P, ΓP

init
[# ], ΣP

in
, ΣP

out
,−→P

〉

where ΓP
init
[# ] = {⟨�init, # ⟩}

to refer to the transition system obtained by replacing the initial persistent memory. The transition
relation −→# is given in Fig. 3.
The wb-get handles wb write messages arriving from the volatile stage. It appends the corre-

sponding message to the tail of the persistency bu�er for the relevant variable. The rule fo-get
concerns fo-messages. Both the wr and fo messages are removed from the bu�er in-order. The
ntw case is handled by the rule ntw. It is only enabled if the bu�er of the corresponding variable
is empty. In this case the value is directly propagated to the persistent memory. The case of fl is
similar, i.e. the rule fl is enabled only if the corresponding bu�er of the variable is empty. The case
of rmw-messages is described in rmw. The transition is enabled only if there are no fo messages on
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Fig. 4. A run of P1 in Fig. 5 that persists G = 2 and ~ = 1.

\ in any of the bu�ers, where the \ is the thread that executed the instruction. The case of sf and
mf are also similar and is given in the rules sf and mf respectively.

Remark 1. When only the program transition system and the volatile stage transition systems are

involved, we refer to their composition as the eTSO system. That is, given a program P, we refer to

AP ⊗ AV as the eTSO transition system.

3.3 The Reachability Problems

Let P be a program with a �nite set Θ of threads and with a set Λ of labels. LetAP be the transition
system associated with the program. Let L be a labelling function and #1, #2 be a pair of persistent
memories. The Crash-Free Reachability Problem (CRP) asks whether for a given con�guration W

of AP , if W can be reached (i.e.
(

AP [L]
)

⊗
(

AV [#1]
)

⊗
(

AP [#1]
)

|= ⟨W,W1, W2⟩ for some W1 and
W2). The Crash-Free Persistent Reachability Problem (CPRP) asks whether for a given #2, there is
a W2 = ⟨�, #2⟩ for some � such that

(

AP [L]
)

⊗
(

AV [#1]
)

⊗
(

AP [#1]
)

|= ⟨W,W1, W2⟩ for some W
and W1. That is, whether a con�guration with the persistent memory as #2 can be reached when
starting from #1 in both the persistent memory and the volatile memory. With an abuse of notation,
we denote this as

(

AP [L]
)

⊗
(

AV [#1]
)

⊗
(

AP [#1]
)

|= #2.
Let Rec : [X→ D] → [Θ→ Λ] be a recovery function that associates for each valuation of

the persistent memory a labelling function. Intuitively, the recovering function de�nes the new
initial labels of the threads after a crash of the system. We assume w.l.o.g that Rec (#init) = Linit

and that the recovery function is computable. Let # be an valuation of the persistent memory.
We de�ne P□# to be the event transition system

(

AP [Rec (# )]
)

⊗
(

AV [# ]
)

⊗
(

AP [# ]
)

. The

Full-Reachability Problem (FRP) asks whether, for a given a con�guration W of AP and a recovery
procedure Rec, there exists a �nite sequenceA0#0A1#1 · · · A= such that : (1) A0 = A

P⊗AV⊗AP,
(2) A8 |= #8 and A8+1 = P□#8 for all 8 < =, and (3) A= |= ⟨W,W1, W2⟩ for some W1 and W2.
To solve the full-reachability problem, it is su�cient to guess the intermediary valuations of

the persistent memory #0, #1, . . . , #= , then solve the crash-free persistent reachability problems
A8 |= #8 and the crash-free reachability problem A= |= ⟨W,W1, W2⟩.

Theorem 3.1. The full-reachability problem is reducible to the crash-free persistent and crash free

reachability problems.

4 REMOVING THE PERSISTENCY STAGE

In this section we show informally how we can eliminate the persistency stage, while preserving
correctness modulo reachability. More precisely, given a program P, we translate P to a new
program P′ such that the CRP of P′ is equivalent to the CPRP of P. We provide an overview of the
translation, through examples in Sub-sections 4.1 to 4.5.2 and then give the formal reduction in 4.6
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Fig. 6. An ntw-spoiled run of P2 in Fig. 5.

4.1 Speculation

At the heart of our translation scheme is a speculation procedure: for each variable G , the protocol
guesses and freezes the value 3 of an arbitrary write message on G . The protocol then ensures that
the value of G in the persistent memory is 3 just before the next crash. We implement the protocol
with the help of an extra thread, the manager, that acts according to SC, and that veri�es the
consistency of these guesses. In implementing such a protocol, we need to handle these challenges:

• Soundness: We must preserve the behavior of the input program P up to reachability.
• Freezing: The manager and the other threads must agree on a freezing point for each variable.
• Non-Spoiling: the frozen values should not be spoiled, i.e., they should not be overwritten in
the persistent memory.

if a = 1

a := y

y :=wb 2

x :=wb 1

y :=wb 1

θ

φ

sf

x :=wb 2

flushopt(x)

if a = 1

a := y

y :=wb 2

x :=wb 1

y :=wb 1

θ φ

x :=ntw 2

sf

if a = 1

sf

a := y

y :=wb 2

x :=wb 1

y :=wb 1

θ φ

x :=wb 2

persistent:

(x = 1) ∧ (y = 2)
3

7

7

P1

P2

P3

Fig. 5. Three programs with threads \

and q . The di�erences between program

codes are highlighted in pink.

Consider the programP1 of Fig. 5 consisting of the threads
\ and q , in which we would like to persists the values G = 1

and ~ = 2. In Fig. 4, we give a run that persists these values.
In W1, the thread \ has executed its instructions and has
placed the corresponding messages in its pending bu�er.
The run de�nes the freezing point of G to be the message
〈

wbG
1

〉

. In W2, the two messages of \ have updated the volatile
memory and crossed to the persistency stage. In particular,
the message

〈

wr\
1

〉

is induced by the message that was the
freezing point of G . Also, inW2, the threadq has performed its
three instructions and placed the corresponding messages
in its pending bu�er. The con�gurations W3 and W4 show
these messages update the volatile memory and cross to the
persistency bu�ers. InW5, the message

〈

wr\
1

〉

has updated the
persistent memory. Since this message is a freezing point,
the run can no longer write to G in the persistent memory;
otherwise, we would overwrite a frozen value. InW6, we have
transferred the messages in the ~-persistency bu�er to the persistent memory, and, in particular,
we have obtained the desired values of G and ~.

Consider the program P2 of Fig. 5, which we get from P1 by replacing the instruction G :=wb 1

by the instruction G :=ntw 1. Also, consider the run of P2 depicted in Fig. 6. The con�gurations W1
and W2 are similar to Fig. 4. We notice that, due to the presence of ⟨sf⟩, the message

〈

wb
~
2

〉

will

reach the end of the pending bu�er after the message
〈

ntwG
2

〉

(this is true even in the case of P1).

The main di�erence is that the
〈

ntwG
2

〉

cannot cross to the persistency stage until the G-persistency
bu�er is empty. Furthermore, the ntwmust hit the persistent memory immediately without passing
through the G-persistency bu�er. This means that the frozen value G = 1 will be overwritten in the
persistent memory. We say that the

〈

ntwG
2

〉

acts as a spoiler. Sometimes, we explicitly refer to the

spoiler’s type, so, in this case, we say that
〈

ntwG
2

〉

is an ntw-spoiler.
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Fig. 7. An SFW-spoiled run of P2 in Fig. 5.

In our construction, we will rely on the fact that to be able to persist a set of write messages, we
should be able to �nd a run along which (i) we can freeze the values of the variables in some order,
and (ii) once the value of a given variable is frozen, then the value will not be spoiled (overwritten in
the persistent memory). In general, di�erent program runs may use di�erent spoilers to overwrite
the variable values in the persistent memory. In Fig. 4, we demonstrated that P1 has such a run
that allows freezing the correct value without spoiling. In particular,

〈

wbG
2

〉

is not a spoiler in the
run of P1 in Fig. 4 since it can be transferred to the persistent memory only after all the correct
variable values have persisted.

Next, we consider another type of spoiler, namely sf-fo-wr-spoilers (SFW-spoilers for short). We
illustrate SFW-spoilers using the program P3 of Fig. 5, In any program run, the three highlighted
instructions of q will act as a spoiler. The three instructions generate the following sequence of
messages ⟨sf⟩⟨foG ⟩

〈

wbG
2

〉

, see Fig. 7. According to the epTSO semantics, these messages cannot

be re-ordered in the pending bu�er. Therefore,
〈

wbG
2

〉

will �rst enter the G-persistency bu�er as

the message
〈

wr\
2

〉

. Next, the message ⟨foG ⟩ will also enter the G-persistency bu�er, and it cannot

be re-ordered with
〈

wbG
2

〉

. Finally, when the message ⟨sf⟩ reaches the end of the pending bu�er,
it forces the message ⟨foG ⟩ to leave the G-persistency bu�er, which, in turn, causes the message
〈

wbG
2

〉

to persist. In general, to be a spoiler, an operation or combination of operations should be
able to force a new value to be persisted (after the freezing). There are also other types of spoilers
namely fl-wr, mf-fo-wr and rmw-fo-wr-spoilers, which are similar.

4.2 Soundness and Visibility
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,

e

wb
J y·◊ I

Ù 3 Û

f

e

wb
J y·◊ I
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f

e
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Ù 3 Û

f

e

wb
J y·◊ I

Ù 3 Û

f

1

⊥

2

⊥

⊥

3

Fig. 8. The Writing Protocol, illustrated on an a single

thread \ operating on two shared variables G and ~.

The text boxes, with a green background, on the right-

hand side of the figure describe the manager’s actions.

We also show part of the shared memory: the variables

G , ~, ◀G · \ ▶, and ◀~ · \ ▶.

As we mentioned in Section 4.1, spoiler detec-
tion is a vital component of the speculation
protocol. We must enable the manager to de-
tect the spoilers that reach the shared memory.
Recall that we no longer have the persistency
stage; hence, we need to make all decisions
based on messages that reach the volatile mem-
ory. The manager cannot detect spoilers only
by inspecting the values of the variables in the
volatile memory. The reason is twofold: (i) ntw-
spoilers are di�cult to detect since we cannot
distinguish between values written by wb or
ntw instructions. A value, say G = 2 in the mem-
ory, does not reveal whether the writer was of
type wb or ntw. (ii) We cannot detect WFS or
WFF spoilers since fences and barriers do not
modify the memory in the �rst place. To solve
this problem, we “divert the tra�c” from the
threads to the memory and make it pass through the manager. More precisely, we now have addi-
tional copies of the memory locations. The threads write to one of the copy and the manager moves
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the written value to the main memory. Together with the normal data values, we augment the
messages travelling through the store bu�ers with additional information that helps the manager to
detect freezing points, the types of writes, etc. Furthermore, we make fences and barriers visible to
the manager by replacing them with write instructions on special variables. The manager inspects
the arriving messages looking for frozen messages and spoilers and then copies the relevant data,
i.e., the variable’s values, to the shared memory. A crucial challenge is to ensure that replacing
instructions in this manner is “su�ciently precise” to preserve the epTSO semantics. We achieve
this objective using the protocols of the following subsections. The manager processes exactly one
message from one thread at a time. So messages are processed atomically, preserving order within
threads (however some messages may be missed) and interleaving across threads.

4.3 The Writing Protocol

Consider the single-thread program P1 of Fig. 8 performing three wb instructions. The writing
protocol ensures that the manager observes and transfers enough write messages to preserve the
epTSO semantics (up to reachability). We only need to preserve su�ciently many messages, but
not necessarily all messages, since, in a similar manner to the classical TSO semantics, the epTSO
semantics is almost lossy (but not entirely lossy). In a wb message sequence, on the same variable, in
a store bu�er, we can lose all but the last message without compromising the semantics. As far as
the manager is concerned, it needs to observe the last message in such a sequence, while it may
or may not see the rest. We call this the last-message guarantee. In Fig. 8, we need to ensure that
the manager observes the second write instruction, but not necessarily the �rst. If the manager
missed the second write instruction, we would allow a memory con�guration where the values
of G and ~ are 1 and 3, respectively. This memory con�guration is not reachable in the epTSO
semantics. For each thread \ ∈ Θ and variable G ∈ X, the protocol uses a shared variable ◀G · \ ▶.
In W1, the thread \ has executed all its instructions, resulting in the three messages we show in
the �gure. At the other end of the bu�er, the manager will wait for the variables ◀G · \ ▶ and
◀~ · \ ▶ to be populated. The �rst message will update the value of ◀G · \ ▶ (con�guration W2). In
this program run, the manager will not notice this message since its value is overwritten by the
next message (con�guration W3). In W3, the shared variable ◀G · \ ▶ carries the last written value
on G before a write message on another variable (~ in this case) arrives. The one at a time feature
means that the manager must process this last written value on G before the message on ~ arrives
— it fetches the value 2 of G verifying that no other variable updates have occurred. It thus provides
the last-message guarantee. The rest of the simulation similarly transfers the write message on ~.

4.4 The Freezing Protocol

The aim of the freezing protocol is twofold. Firstly it allows, for each shared variable G ∈ X, to guess
and freeze the value 3 of a particular write instruction on G . The intuition here is that (i) 3 will
persist and (ii) 3 will not be overwritten in the persistent memory until the next crash occurs. It
also facilitates each thread to guess within its execution, the position where the freeze occurs.

Fig. 9 shows the simulation of the protocol for a program with two threads \ and q sharing two
variables G and ~. Each thread guesses, for each variable G ∈ X, an G-freezing point. The freezing
point is de�ned by a write message which we enrich by an extra �ag ❆. A typical example of such a

message is
〈

wb◀G ·\ ▶

⊳ 1·❆ ⊲

〉

that is issued by thread \ in Fig. 9. This will tell the manager that \ expects
the value of G to be frozen after the message is fetched from the store bu�er but before the next

message of the form
〈

wb◀G ·\ ▶

⊳3 ⊲

〉

is fetched from the bu�er. The manager, for its part, waits until
the freezing points for G have arrived from all the threads. At that point, the manager freezes the
value of G currently in the shared memory, we refer to this point in simulation as G-freeze.
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Fig. 9. The Freezing Protocol. We simulate the protocol on the program shown in the top-le� corner. Together

with the pending bu�ers, we depict part of the shared memory, namely the variables G , ~, and the variables

◀G · \ ▶, ◀~ · \ ▶, ◀G · q ▶, and ◀~ · q ▶. We also show some of the manager’s freeze variables, namely

the local variables ◀G · \ · ❆▶, ◀~ · \ · ❆▶, ◀G · q · ❆▶, and ◀~ · q · ❆▶. The pink text boxes describe the

thread’s actions, while the green ones describe the manager’s actions.
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Fig. 10. The ntw Protocol.

In Fig. 9, the threads guess the freezing points for G to be the �rst messages in their respective
bu�ers and guess the freezing points for ~ to be the last messages in the bu�ers (con�guration W1).
In W2, the G-freezing point of \ has reached the memory, to which the manager reacts by ticking
its local variable ◀G · \ · ❆▶. The manager copies the value 1 of G carried by the message to the
variable G in the shared memory (con�guration W3). The next message fetched from the bu�er
(corresponding to the second instruction of \ ) is not a freezing point, so the freezing protocol does
not react to it. However, the value will still be transferred to the memory (con�guration W4). In
W5, the manager receives the G-freezing point of q . At this point, the manager has received the
G-freezing points of all threads. The manager freezes the value of G in the shared memory, which
in W5 is equal to 4. Notice that although the manager requires all the threads to propose their own
G-freezing points, it freezes only a single value, namely the value accompanying the last G-freezing
point. In this case, the G-freezing point of q arrived last (i.e., after the G-freezing point of \ ), and
hence the value 4 was frozen (rather than 1). We might get the impression that, for a given variable
G , it is su�cient that only one of the threads guesses the freezing of G . After all, only the last
freezing point for G is taken to consideration. However, as we see below, the per-thread freezing
points for G are needed so that the threads can help the manager to handle potential G-spoilers.

4.5 Handling Spoilers

4.5.1 The ntw Protocol. We recall that an ntw-spoiler is an ntw-message on G in the bu�er of a
thread \ , that occurs after the G-freezing point of \ . The goal of the ntw-protocol is to enable the
manager to detect NTW-spoilers (cf. Fig. 10). To that end, we enrich the data domain by values of the
form ⊳3 · ntw ⊲ where 3 ∈ D, i.e., we tag the written values by an ntw-�ag. Before the G-freezing
point, we generate write messages using the standard (un-tagged) values (the messages<1 and<2
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in Fig. 10. After the G-freezing of \ occurs (the message<3 in Fig. 10, we watch out for the �rst
ntw-instruction on G by \ (the message<4 in Fig. 10) The message<4 is an ntw-spoiler of G . Instead

of generating a message
〈

wb◀G ·\ ▶

⊳ 5 ⊲

〉

, the thread will generate the message
〈

ntw◀G ·\ ▶

⊳ 5·ntw ⊲

〉

. In other
words, the value 5 of the message is tagged with the ntw-�ag. When the manager sees the message,
it knows from the tag that it is an ntw-spoiler. From this point on, the threads tags all write messages
on G , whether of type wb or type ntw, with the ntw-�ag, i.e., it only generates messages of the form
〈

wb◀G ·\ ▶

⊳ ntw·3 ⊲

〉

or for the form
〈

ntw◀G ·\ ▶

⊳ ntw·3 ⊲

〉

. The reason is that these subsequent messages, e.g., the
message<5 in Fig. 10, may overwrite the spoiler. For instance, assume we do not tag<5 with ntw.
A possible scenario is that the manager misses<4 and only reads the memory after<5 has arrived
(this is an allowed behavior according to the almost-lossiness property we described above). This
means that when the manager reads the memory, the message<5 has already overwritten the
value ⊳ 5 · ntw ⊲, written by<4, and replaced it with the un-tagged value 4; and hence the manager
have missed the fact that a spoiler has occurred. With the tagging of the subsequent messages, this
scenario will not occur. More precisely, whenever the manager sees the ntw-�ag in a write message
on G , it knows that either the message itself or a preceding message is an G-spoiler. Two further
remarks: First, the manager halts the program execution whenever it sees an ntw-tagged message
since such a message indicates the existence of an ntw-spoiler. Therefore, these tagged messages
never reach the (volatile) memory. As for read-own-operations, the thread strips o� the ntw-�ag
and treats the message as a regular write operation. Second, the tagged messages preserves the
message type (wb- or ntw-type message), and hence the protocol does not a�ect the re-ordering of
messages inside the bu�ers.

 spoiler
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Fig. 11. The SFW Protocol.

4.5.2 The SFW Protocols. We describe the idea
behind detecting any SFW spoiler in detail. Such
a spoiler involves a pattern consisting of an G-
freezing point, a write toG , an flushopt-message
on G , and an sf-message. One di�erence with
the case of ntw-spoilers is that that the write
to G may be performed by another thread. We
use this thread to reveal the possibility of such
a spoiler to the manager.

The thread waits until it is past the freezing point for G before activating the SFW-protocol. Once
we are past this point, the thread switches to helping the manager detect a possible SFW spoiler
by going three phases, (i), (ii) and (iii), as follows. In phase (i), it guesses the position where it
expects the violating write on G to occur (which is possibly from another thread) and marks it
with a write to a special variable ◀ nxt · G · \ ▶. This guess can be veri�ed by the manager. After
inserting this message the thread changes its behaviour and enters phase (ii). It no longer executes
the flushopt (G) but looks for one which can be a potential spoiler. Note that the ⟨foG ⟩ can re-order
with other messages, hence not all the flushopt (G) in phase (ii) are potential spoilers. It remembers,
in its local state, if a potential spoiler indeed occurs. In phase (iii) the thread tracks ⟨sf⟩-messages.
The reason is that an flushopt-instruction would contribute a spoiler only if it is followed by an
⟨sf⟩-message. As mentioned earlier, there is no way for the manager to observe an sf-message
since it does not modify the memory. Hence, if such a ⟨sf⟩-message were to be generated, the
thread inserts a write on the variable◀ sf ·\ ▶with a special value ⊳ flushopt ·G ⊲ as a signal to the
manager that a SFW spoiler has occurred. If this message reaches the manager it detects the spoiler
and aborts. Replacing an ⟨sf⟩ by by a write to the variable ◀ sf · \ ▶ can allow more behaviours
since a write can re-order with other operations where as an sfence cannot. We remedy this by
guarding the write with ⟨sf⟩ messages. The other spoilers are handled using similar ideas.
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4.6 Formal Translation

Recall that in CPRP, we are given a program P = (Θ,D,X) and a persistent memory # , we ask
if
(

AP
)

⊗
(

AV
)

⊗
(

AP
)

|= # . We show in this section that we can construct another program

JPK =

〈

JΘK, JDK, JXK
〉

and a con�guration W of AJPK such that W can be reached if and only if #
can be reached, as stated in the below theorem.

Theorem 4.1. Given a program P and a persistent memory # , we can construct another program

JPK and a con�guration W such that
(

AP
)

⊗
(

AV
)

⊗
(

AP
)

|= # ⇐⇒ ∃W1, W2

(

AJPK
)

⊗
(

AV
)

⊗
(

AP
)

|= ⟨W,W1, W2⟩

That is, the CPRP reachability in P reduces to CRP reachability in JPK.

We show in the Figure 12, the translation of the given program P = ⟨Θ,D,X⟩ into JPK =
〈

JΘK, JDK, JXK
〉

, in particular we have
− JΘK = {J\1K, . . . , J\=K} ⊎ {\man}, where \man is the manager thread that acts as a validator.
− JXK = X ∪ X′ ∪ Vinstr with X′ = {G ′ | G ∈ X} and Vinstr =

{◀G · \ ▶,◀ sf · \ ▶,◀ fl · G ▶,◀ fo · G · \ ▶,◀ nxt · G · \ ▶ | G ∈ X, \ ∈ Θ}.
− JDK = Dwr ∪Dsync ∪D, where Dwr = {⊳3 · B ⊲ | B ∈ {❆, ntw}, 3 ∈ D}},Dsync = {⊳ rmw ⊲, ⊳ rmw ·

❆ ⊲, ⊳ fo · G ⊲, •}

[[!]] := [["]] ⋅ ([[θ ]])
θ∈Θ ⋅ θ&'(

[["]] := " ∪ "′ ∪ +,(-./
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: 67θ
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m
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:]] ⋅ ℓ
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[[23456]] := 23456 ∪ ?@/A

Fig. 12. Program translation

Threads. The thread J\8K is obtained through a line by line
translation of the thread \8 , as shown in the Figure 12. That is,
if \8 = ℓ8

1
: st8

1
; ℓ8
2
: st8

2
; . . . ; ℓ8< : st8< ;, where ℓ8 : st8 is the label,

statement pair, then J\8K = Jℓ8
1
: st8

1
K; Jℓ8

2
: st8

2
K; . . . ; Jℓ8< :

st8<K; ℓ8
end

: halt;. For any statement ℓ : st, its translation
Jℓ : stK will be de�ned soon.

Shared Variables and Data. Let us examine the shared
variables and data-values listed above and explain their roles. We begin with the variables in Vinstr.
The variable ◀G · \ ▶ is used by the thread \ to implement the wb or ntw writes in such a way that
the manager is aware of it, this is as explained in Sections 4.3. The variables ◀ sf · G · \ ▶, is used
to make visible the occurrences of SFW spoiler to the manager. Recall that an sfence is replaced by
a write to this variable in case the thread identi�ess it as a spoilers, this was discussed in section
4.5.2. Further, in the phase-i of the protocol, each thread speculated where it expects a violation
and writes to a variable ◀ nxt · G · \ ▶ at that position. We also have other variable that will be
used as part to detect the other spoilers.
Next we turn our attention to the data values. As indicated in Section 4.4, the freeze protocol

required each thread to speculate a freeze point. This was achieved by tagging the data value with
a ❆ tag. Similarly the ntw protocol described in Section 4.5.1, on detecting an ntw spoiler required
that the data value is tagged with an ntw tag. The data values Dwr serve this purpose. The values in
Dsync will be used to handle the synchronisations due to rmw, sf, fl instructions.

Local variables. To implement the freezing protocol from Section 4.4 each thread \ has a variable
◀G · lfrz▶ to indicate if it has issued the freezing write on G . The process uses the variable
◀G · lntw▶ to remember an ntw spoiler, the threads then ensure that any write that follows this
is also tagged as a spoiler (see Section 4.5.1). To implement the SFW protocol (and other spoiler
protocol) correctly, each thread \ , has a local variable◀G ·lpfo▶,◀G ·fo▶,◀ nxt ·G ▶. The need
for the local variable ◀G · lpfo▶ is important and subtle. It is used to arrange the re-orderings
of the fo with the other messages. Recall we mentioned that every flushopt in phase ii of the
SFW protocol need not be a potential spoiler. This is because the fo can be removed from the
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store bu�er before the write to ◀ nxt · G ▶ is removed from the bu�er. The the local variable
◀G · lpfo▶ allows for such re-orderings. It is set as soon as ◀ nxt · G ▶ is written to and any
flushopt when it is set is deemed not a potential spoiler. The variable ◀G · lfo▶ is used to
remember a potential fo that is a spoiler. Thus the set of local variables used by each thread is
given by Lprg = {◀G · lpfo▶,◀G · lfo▶,◀G · lfrz▶,◀G · lntw▶,◀ nxt · G ▶ | G ∈ X}.
Next we examine the local variables used by the manager thread. It uses a local variable ◀G ·

\ · lfrz▶ to remember whether the freeze marked write on variable G from thread \ has been
observed and ◀G · lfrz▶ to remember if all the freeze markers are observed. To detect the
spoilers listed in Section 4.1, and to verify that the threads have guessed the next write positions
correctly, it uses the variable ◀G · \ · lwr▶. This variable is set when it encounter a write to
a frozen variable G from thread \ . We have the set of local variables of the manager, Lman =

{◀G · \ · lfrz▶,◀G · \ · lwr▶,◀G · lfrz▶ | G ∈ X, \ ∈ Θ}. ·

Algorithm 3: JsfenceK

1
”

G∈X

assume (¬JG · lpfoI)

2 flg :=
‘

G∈X

JG · lfoI

3 if flg then

4 sfence; J sf · \ I :=wb û fo ù

5 sfence; ND()

Algorithm 4: Jflushopt (G)K

1 if JG · nxtI∧¬JG · lpfoI then

2 JG · lfoI := true

3 ND()

Algorithm 1: JG :=wb 3K

1 assume (¬JG · lpfoI)

2 assume (¬JG · lfrzI∨JG · nxtI)

3 0 := 3

4 if JG · lntwI then

5 0 := û3 · ntw ù

6 if H ∧ (¬JG · lfrzI) then

7 JG · lfrzI := true

8 0 := û3 · f ù

9 JG · \ I :=wb 0; ND()

Algorithm 2: JG :=ntw 3K

1 assume (¬JG · lpfoI)

2 assume (¬JG · lfrzI∨JG · nxtI)

3 0 := 3 if JG · lfrzI then

4 JG · lntwI := true

5 0 := û3 · ntw ù

6 if H ∧ (¬JG · lfrzI) then

7 JG · lfrzI := true

8 0 := û3 · f ù

9 JG · \ I :=ntw 0; ND()

1

2

3

4

5

6

7

8

9

10

11

12

13

Algorithm 0: ND ()

1 if JG · lfrzI then

2 J nxt · G · \ I = •

3 JG · nxtI := true

4 JG · lpfoI := true

5 if H then

6 assume (JG · lpfoI)

7 JG · lpfoI := false

8 if H then

9 Reset(lvars)

10 goto ℓ\
end

Translation. We are now ready to describe translation and the be-
haviour of the manager, we only provide the implementation relevant
to the ntw spoiler and SFW spoiler, the rest of the implementations
are similar. The algorithm 1 through 4 are for the implementation of
the thread and rest of the algorithms are the implementation of the
manager.

Program code. We now describe the code to code translations. We
describe in the Algorithm 3, how to simulate the sfence. In this case, it
is �rstly checked if the◀G ·lpfo▶ is set, this guards any flushopt from
re-ordering with it. In case there was a flushopt that was a potential
spoiler (line 2), then the variable ◀G · fo▶ would be set, this also indicates an SFW spoiler. In this
case, we write to ◀ sf · G · \ ▶ (line 4) as described in the Section 4.5.2. Otherwise the instruction is
simulated as it is. Notice the invocation of the procedure ND(), we will describe this in sequel. The
simulation of the instruction flush and rmw are similar, their implementation is guided by how to
handle the fl-wr spoiler and rmw-fo-wr-spoilers respectively.
Next we examine Algorithm 1 which provides the translation of wb-writes. Firstly we guard

against re-ordering with an flushopt, this is in line 1. We also ensure that we do not write before
we speculate the next write, this is done in line 2. If the �ag ◀G · lntw▶ is set then we tag the data
value with ntw, indicating that this write is preceded by a spoiler. As explained in Section 4.5.2 this
ensures that the manager never misses an ntw-type spoiler. It can also nondeterministically choose
to set the freeze marker, if it was not set before. Finally it simulates the instruction as a wb write to
the variable ◀G · \ ▶.

Algorithm 2, for ntw-writes, is similar but is also tasked with setting the◀G ·lntw▶ if the thread
has already used its freeze marker for G . The rest of the code follows the pattern in Algorithm 1.
The flushopt (G) instruction is described in Algorithm 4. The instruction is simply ignored as

long as it is not a potential spoiler. It is deemed a spoiler if it cannot re-ordered before the write to
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◀ nxt · G ▶. In this case, it is remembered in the ◀G · lfo▶ �ag. A read on G is now simulated by
�rst reading the ⟨G, \⟩ variable and if its value is ⊥, the value is fetched from G directly.
What is remaining to explain in the thread implementation is the procedure ND(). The need

for this non-deterministic procedure is as follows. It non-deterministically guesses the position
of the violating write (see Section 4.5.2) and implements a write to ◀ nxt · G · \ ▶ (line 1-4) and
sets ◀G · lpfo▶ �ag to true to allow for the fo to re-order. It also non-deterministically stops the
thread simulation by jumping to the �nal halt location of the program. It resets the values in the
local variables, the need for this will become clear soon.

Manager. The manager is responsible processing the updates. It non-deterministically invokes a
procedure from {updtRMW, updtWr, updtNxtWr} and executing it. It does this until values in all
the variables are persisted. Finally it also ensures that the persisted values are from # . The manager
also employs a procedure testInit() to ensure the last write guarantee explained in Section 4.3. It
simply checks if all the thread speci�c variables in Vinstr are ⊥, as shown in the Algorithm 8.

Algorithm 7: updtWr()

1 Let var 2 X, \ 2 Θ

2 0 := J var · \ I

3 assume (ntw 8 0)

4 rmw(J var · \ I,0,?)

5 if f 2 0 then

6 J var · \ · lfrzI := true

7 var0 := var

8 if J var · \ · lfrzI = true then

9 assume (J var · lfrzI)

10 J var · \ · lwrI := true

11 var :=atm Value(0)

Algorithm 8: testInit()

1 for var 2 X, \ 2 Θ do

2 assume (J var · \ I = ?)

3 assume (J var · \ · nxtI = ?)

4 assume (J var · \ · flI = ?)

5 assume (J var · \ · rmwI = ?)

6 assume (J\ · sfI = ?))

Algorithm 6: updtNxtWr()

1 Let var 2 X, \ 2 Θ

2 assume (¬J var · lwrI)

3 rmw(J var · \ · nxtI, •,?)

Algorithm 5:Manager()

1 while flg do

2 Let func 2 {updtRMW,

3 updtWr, updtNxtWr}

4 testInit(); func(); testInit()

5 flg := true

6 for var 2 X do

7 J var · lfrzI :=
”

\ 2Θ

J var · \ · lfrzI

8 flg := flg^J var · lfrzI

9
”

G2X

assume (G 0 = # (G))

10 Halt

The Algorithm 7 describes the procedure updtWr, this is used by the manager to handle the
writes by the threads. The procedure is invoked non-deterministically, upon its invocation, the
value in ◀G · \ ▶ is read. It is veri�ed that the value is not an ntw spoiler (line 3). Further if this
write is guessed to be one of the last writes by the process, then it is recorded (line 5-7). It is also
ensure in line 9 that the current write respects the freeze point and records the same as the next
write. The value is �nally propagated to G in line 11.

The procedure updtNxtWr ensures that ◀G · lwr▶ is not set while processing any writes to
◀ nxt · G · \ ▶, this ensures that the guessed position of the next write by any process is well before
the actual next write. The updtRMW procedure implements a handshake protocol.
Finally, we provide the W as required by the Theorem 4.6. We let W = ⟨L,Rinit⟩, where for any

thread \ ∈ Θ, L(\ )ℓ\
end

and for the manager, L(man) = 10. Notice that our ND() procedure resets
the values of the local variable and hence we can a�ord to let Rinit in W .

Remark 2. In our translation, we have made an assumption that every thread writes to every

variable. This ensures that the freeze point of each thread is communicated to the manager. We make

this assumption to simplify the construction. A given program can easily be transformed to con�rm to

the assumption by the following procedure. Each thread at the very beginning of its execution, re-writes

the initial memory for each variable with the same value by means of an atomic read write.

5 UNDECIDABILITY

We reduce the well known Post correspondence problem (PCP) [Post 1946], which is known to be
undecidable, to crash-free reachability in our model. Given a set of words * = {D1, · · · , Dℓ } and
+ = {E1, · · · , Eℓ }withD8 , E8 ∈ Σ

∗, PCP asks if there is a sequence of indices 81, · · · 8= ∈ [1..ℓ] such that
D81 ·D82 · · ·D8= = E81 ·E82 · · · E8= . We show how to reduce this problem to crash free reachability problem
in our setting. We �x an PCP instance * = {D1, · · · , Dℓ } and + = {E1, · · · , Eℓ } over an alphabet Σ.
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Towards the reduction, we develop a programs whose crash free reachability is ensured if and only
if the PCP has a solution. The program consists of two threads (PCPGen, PCPVerif), as shown in
Algorithms 1, 2. The �rst thread, the generator, proceeds in a sequence of rounds, in each round it
guesses an index 8 ∈ {1, · · · , ℓ}, and ntw-writes the letters ofD 9 to the variable B and E 9 to the variable
C (this is indicated in the lines 5,6). In the program, suppose D = 01 . . . 0= , we use B :=ntw D to mean
the sequence of instructions B :=ntw 01 . . . B :=ntw 0= . It non-deterministically stops this process after
iterating a certain number of times. The other thread, the veri�er, reads alternately from B and C to
verify that the values read match (see line 7,8 in Algorithm-2). But it has to do so without skipping or
re-reading any letter. It uses rmws to prevent any re-reads. To prevent skipping, the �rst thread also
wb-writes |D 9 | + |E 9 | many 1s to two variables G and ~ (line 7 of Algorithm-1). The veri�er, in each
iteration, uses rmw instructions to consume these 1’s from the two variables, in a manner resembling
the alternating bit protocol to prevent skipping. It reads 1 from G while ensuring ~ = 0, reads 1 from
~ while ensuring G = 0 (see lines 4, 5 and 9, 10). This way, the number of times PCPVerif program
executes the while loop starting in line 3 is exactly same as the number of times PCPGen executes
its while loop. Hence, the location 12 is reached in PCPVerif if and only if D81 . . . D8: = E81 . . . E8: .

Algorithm 1: PCPGen

1 Global Vars G,~, B, C

2 Local Vars 8, 9, flg := true

3 while H do

4 Let 8 2 [1, ℓ]

5 B :=ntw D8
6 C :=ntw E8
7 9 := |D8 | + |E8 |

8 while 9 > 0 do

9 G :=wb 1

10 ~ :=wb 1

11 9 = 9 − 1

12 G :=wb #

Algorithm 2: PCPVerif

1 Global Vars G,~, B, C

2 Local Vars 0,1

3 while (0 < #) do

4 G :=rmw 1, 0

5 ~ :=rmw 0, 0

6 Let 1 2 Σ

7 B :=rmw 1, 0

8 C :=rmw 1, 0

9 ~ :=rmw 1, 0

10 G :=rmw 0, 0

11 0 := G

12 Halt

Note that in our construction, a pair of
variables are written to using ntw write
exclusively and another pair is written to
using wb writes exclusively. In fact, the
undecidability holds even when we only
use wb writes on two variables and ntw

write on another. We chose the former
reduction since it is simpler. We brie�y
outline how to obtain the latter reduc-
tion. The reduction in this case is from
the reachability problem for systems with
a FIFO channel. In it, we have a thread
that simulates the execution of the given
system, it uses its store bu�er to simulate
the channel. An enqueue operation is simulated as a wb write to variables G,~ existence of two such
variables allows us to implement an alternating bit protocol as described above. We additionally
have a manager thread which is responsible to ensure that exactly one update updates (of G,~) is
performed while simulating a dequeue operation. To dequeue an element, the thread guesses the
value to be dequeued and writes the value using an ntw write to another variable I. This allows for
synchronization with the manager. The manager thread is used to ensure that exactly one write to
the variables G,~ is updated and that the value there is the value that it obtained in I.

Theorem 5.1. Given a program P, the crash free reachability problem for it is undecidable.

6 ALTERNATION BOUNDED RUNS – THROUGH EXAMPLES

Given the undecidability results, we consider a restriction of the problem that we refer to as the
alternation-bounded reachability problem. In fact, we restrict ourselves to the eTSO semantics
since persistence plays no role in the crash free reachability problem. In alternation-bounded
reachability, we restrict the runs of the program by putting a bound : on the number of alternations
between wb and ntw instructions. A run of the program will now be a sequence of the form
d1 · d1 1

2
· d2 · d2 1

2
· · · d: · d: 1

2
, where the sequences d8 do not contain ntw-writes and the sequences

d8 1
2
do not have wb-writes. We refer to each d8 or d8 1

2
as a phase of the run. We translate the

alternation-bounded reachability problem to the ntw-reachability problem, i.e., the reachability
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Fig. 13. An input program P consisting of a single thread \ . The highlighted parts of the code give the

instructions executed in the phases 1, 1 1
2
, and 2 in the execution of P′, respectively.

problem where we do not use wb instructions. Given a program P and a bound : , we translate P
to new program P′ such the ntw reachability problem for P′ is equivalent to the :-alternation
bounded reachability problem for P. We illustrate the ideas using the program P of Fig. 13. For
simplicity, we let the program have a single thread \ without loops. In general, our framework
deals with multiple threads and with loop constructs.
Forbidding wb-write instructions means that we need to simulate such instructions by ntw-

instructions. To preserve equivalence with the eTSO-semantics, we need to keep the allowed
orderings between messages, i.e., (i) We do not allow wb-messages to overtake each other. We simu-
late a wb-write instruction by an ntw instruction, and we encapsulate the latter by sf instructions,
i.e., we put an sf instruction both before and after the ntw-instruction in our translation. The
encapsulation will help prevent forbidden re-orderings of wb-messages. (ii) We allow ntw-messages
to overtake wb-messages even on the same variable. To that end, we simulate each phase by a
separate thread in P′. Since the threads have di�erent bu�ers, the respective messages may now
overtake each other. (iii) We do not allow wb-messages to overtake ntw-messages on the same
variable; nor do we allow them to overtake sf- or fl-messages. To that end, we add a manager
thread, and implement a protocol, that we refer to as the interface protocol. The protocol lets the
manager, in collaboration with the other threads, ensure that write messages are updated to the
memory in the correct order, and that read instructions see the correct values. In the rest of the
section, we describe howwe implement the interface protocol, by giving the set of threads, variables,
data domains, updates and reads.

Threads. For the program of Fig. 13, we will consider a 2-alternating run in which \ executes the
following instructions: (i) the �rst instruction in phase 1, (iii) the next three instructions in phase
1 1
2
, and (iii) the last three instructions in phase 2. We simulate each phase 8 of \ in P′ by a separate

thread which we call the ⟨\, 8⟩-thread, i.e., the threads are ⟨\, 1⟩,
〈

\, 1 1
2

〉

, and ⟨\, 2⟩. The program
P′ runs the instructions of the di�erent phases one after one. The current phase of \ is given by
the shared variable ◀ phase · \ ▶. Although the instructions are run sequentially, updating the
messages belonging to di�erent phases of the same thread may now interleave since we are using
separate threads to simulate them. Therefore, we need to ensure that message updates and the
values seen by read instructions faithfully mimic the behavior of the input program P. We do
this by guessing the interfaces, i.e., the memory contents between the various phases of the same
thread, and then run a protocol, the interface protocol, that ensures that the inter-phase interaction
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is carried out correctly. We implement the protocol using a manager, which is an extra thread to
which we divert the tra�c between the threads and the memory (similar to the case of Section 4).

Interfaces. For each phase 8 , thread \ , and variable G , we guess the value of the last write operation
on G by \ during 8 . For instance, in Fig. 13, the ⟨\, 1⟩-interface is de�ned by G = ⊥ and ~ = 1. These
values are given by the shared variables ◀ interface · G · \ · 1▶ and ◀ interface · ~ · \ · 1▶,
respectively. The above values tell us that (i) \ will not perform any write instruction on G during
phase 1, and (ii) that the last write instruction of \ on ~ , during phase 1, assigns the value 1 to ~.
The other interfaces are interpreted similarly.

Variables and Data. The variable ◀ phase · \ ▶ gives the current phase of \ . In W1, the current
phase is 1 1

2
, which means that the thread ⟨\, 1⟩ has already executed its (only) instruction (it did so

in phase 1, which we do not show in the �gure.) It has put the corresponding message in the bu�er.
To simulate a wb-write instruction by an ntw instruction, we encapsulate it by sf instructions, i.e.,
we put an sf instruction both before and after it in our translation. The encapsulation will help

prevent forbidden re-orderings. To simplify the notation, we replace the sequence ⟨sf⟩
〈

ntwU
V

〉

⟨sf⟩

by
[

ntwU
V

]

, for any U and V . The enriched message
[

ntw
◀ ~ ·\ ·1▶
⊳ 1·LW ⊲

]

tells us that \ has performed

wb-write on~ in phase 1. The written value is 1; furthermore, the LW attribute tells us is the last write
message on ~ by thread \ . Also, in W1, the thread

〈

\, 1 1
2

〉

has performed its �rst two instructions

and has generated the corresponding messages
〈

ntw
◀G ·\ ·1 1

2
▶

⊳ 2·LW ⊲

〉〈

ntw
◀G ·\ ·1 1

2
▶

⊳ 1 ⊲

〉

. The �rst message

does not have the �ag LW in its value since it is not the last write by the thread
〈

\, 1 1
2

〉

on G . In W3,
we have entered phase 2 and the thread ⟨\, 2⟩ has executed its write instruction resulting in the

message
[

ntw
◀ ~ ·\ ·2▶
⊳ 2·LW ⊲

]

.

Correct Updates. We need to guarantee that updates to the memory are performed in the correct
order. We need to ensure that, within any thread, the following properties are satis�ed: (i) For any
given variable G , the ntwwrite messages are not re-ordered within the same thread. (ii) the wb-write
messages are not re-ordered. We let message updates go through the manager. For instance, from

in the transition from W1 to W2, we transfer the message
〈

ntw
◀G ·\ ·1 1

2
▶

⊳ 1 ⊲

〉

to the variable◀G ·\ · 1 1
2
▶.

This enables the manager to inspect the value before transferring the correct value to the memory
(the last step is not shown in the �gure; in W3, we have already moved the next message of the
bu�er to get the value G = 2 in the memory). We provide, for each variable G , thread \ , and phase 8 ,
the shared variable ◀ LWstatus · G · \ · 8 ▶. The latter is a Boolean �ag that tells whether the last
write message on G generated by the thread ⟨\, 8⟩ is still in the bu�er (the value true) or has left
the bu�er (the value false). For instance, in W1 of Fig. 13, the last write on ~ in phase 1 is still in the
bu�er, whence the value true of the corresponding. The value is false for G since there is no write
on G in phase 1. The manager changes the value of the LWstatus-�ag to false when it receives
a write message whose value contains the LW-�ag. For instance, in W3, the manager has switched

the value of the �ag ◀ LWstatus · G · \ · 1 1
2
▶ since it has received the the message

[

ntw
◀G ·\ ·1 1

2
▶

⊳ LW·2 ⊲

]

(which has LW as part of its value). In this manner, the manager can record whether a given bu�er
contains an outstanding write message on a given variable and approve variable updates only if
they do not violate the semantics. As an example , in W3, the manager would not accept to update

the message
〈

ntw
◀ ~ ·\ ·2▶
⊳ 2·LW ⊲

〉

from the bu�er of the thread ⟨\, 2⟩ since the bu�er of the thread ⟨\, 1⟩

still contains a the message
〈

ntw
◀ ~ ·\ ·1▶
⊳ 1·LW ⊲

〉

. Such an update would correspond to re-ordering two

ntw-writes messages on the same variable, which is forbidden in the eTSO semantics. On the other
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hand, it allowed updating the messages of phase 1 1
2
since they represent wb-messages overtaking

ntw messages on di�erent variables, which is permitted under eTSO.

Correct Reads. Similarly to updates, the interface protocol allows to read the correct values.
Assume that the thread \ needs to read the variable G value during phase 8 . Then, the thread ⟨\, 8⟩
in P′ will perform the following sequence of actions: (i) It checks whether it has performed a
write on ◀G · \ · 8 ▶ (this information is maintained locally in ⟨\, 8⟩). In such a case, it reads the
value. (ii) Otherwise, it inspects the value of the last write on G in the previous phase 9 = 8 − 1

2
. If

◀ interface · G · \ ▶ 9 = ⊥, then the previous phase never performed a write on G , and hence we
continue to the phase 8−1 (until we possibly reach the memory). If◀ interface ·G ·\ ▶ 9 ≠ ⊥, then
\ has performed a write on G during phase 9 . We check whether this last written value is still in the
bu�er. More precisely, ⟨\, 8⟩ checks the value of the variable of◀ LWstatus ·G ·\ · 9 ▶. If that variable
contains a value di�erent from ⊥, it fetches the value from ◀ interface · G · \ · 9 ▶; otherwise, it
reads the variable’s value in the memory. For instance, in W2, if \ executes the instruction a1:=y, it
will read the value of ◀ interface · ~ · \ · 1▶ which is 1. If \ executes the instruction a2:=y in W4
it sees its own last write on ~, which is 2. If \ executes the instruction a3:=x in W5 it needs to go all
the way to the memory to �nd the value 2.
Finally we invoke the result in [Atig et al. 2012] which states that reachability problem under

PSO which is known to be decidable to obtain the following theorem.

Theorem 6.1. Given a program P, the alternation bounded reachability problem for it is decidable.

7 CONCLUSION

We have investigated the decidability of the reachability problem under the Intel-x86 semantics
de�ned in [Raad et al. 2022].
We have �rst provided a reduction that allows to take into account persistency without using

an unbounded memory to model the persistency stage. The reduction is based on a program
instrumentation that augment the given program with an extra �nite-state thread, which allows to
reduce the original reachability problem to verifying reachability under the consistency model only.
The reduction is valid in particular when the consistency model is SC, TSO, or PSO. This allows in
particular to provide a simpler decidability proof for the reachability problem under PTSO than the
one in [Abdulla et al. 2021a] that uses an unbounded bu�er for the persistency stage. An interesting
issue is to investigate the class of storage systems for which such a �nite-memory instrumentation
is possible to encode the persistency semantics.

We have also shown that mixing operations obeying to various consistencymodels with decidable
reachability problems may lead to undecidability. However, we have provided for the case we
consider a condition under which verifying reachability becomes decidable: bounding the number
of alternation between wb writes and ntw’s in computations. This result is interesting as it provides
a complete parametrized bounded analysis schema for bug �nding in the setting we consider. Other
types of restrictions could be investigated, based on commonly adopted patterns for the use of
operations on di�erent memory types and for their interactions.

ACKNOWLEDGMENTS

This research was partially supported by Infosys (India), DST-VR funded Indo Swedish Project
P-04/2019, the MATRICS grant (MTR/2022/000312), the Swedish Research Council (Sweden) and
the Project AdeCoDS of the French National Research Agency ANR (France).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 195. Publication date: June 2024.



Verification under Intel-x86 with Persistency 195:23

REFERENCES

Parosh Aziz Abdulla. 2010. Well (and better) quasi-ordered transition systems. Bull. Symb. Log. 16, 4 (2010), 457–515.

https://doi.org/10.2178/bsl/1294171129

Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankara Narayanan Krishna. 2019. Veri�cation of programs

under the release-acquire semantics. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019., Kathryn S. McKinley and Kathleen Fisher

(Eds.). ACM, 1117–1132. https://doi.org/10.1145/3314221.3314649

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, Egor Derevenetc, Carl Leonardsson, and Roland Meyer.

2020b. Safety Veri�cation under Power. In NETYS 2020 (Lecture Notes in Computer Science). Springer.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. 2021a. Deciding

reachability under persistent x86-TSO. Proc. ACM Program. Lang. 5, POPL (2021), 1–32. https://doi.org/10.1145/3434337

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. 2022. Verifying

Reachability for TSO Programs with Dynamic Thread Creation. In Networked Systems - 10th International Conference,

NETYS 2022, Virtual Event, May 17-19, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13464), Mohammed-Amine

Koulali and Mira Mezini (Eds.). Springer, 283–300. https://doi.org/10.1007/978-3-031-17436-0_19

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. 2016. The Bene�ts of Duality in

Verifying Concurrent Programs under TSO. In CONCUR (LIPIcs, Vol. 59). Schloss Dagstuhl, 5:1–5:15.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. 2018. A Load-Bu�er Semantics for

Total Store Ordering. Logical Methods in Computer Science 14, 1 (2018). https://doi.org/10.23638/LMCS-14(1:9)2018

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Florian Furbach, Adwait Amit Godbole, Yacoub G. Hendi, Shankara Narayanan

Krishna, and Stephan Spengler. 2023. Parameterized Veri�cation under TSO with Data Types. In Tools and Algorithms

for the Construction and Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part I

(Lecture Notes in Computer Science, Vol. 13993), Sriram Sankaranarayanan and Natasha Sharygina (Eds.). Springer, 588–606.

https://doi.org/10.1007/978-3-031-30823-9_30

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, Shankara Narayanan Krishna, and Viktor Vafeiadis. 2021b.

The Decidability of Veri�cation under PS 2.0. In Programming Languages and Systems - 30th European Symposium on

Programming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021,

Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12648),

Nobuko Yoshida (Ed.). Springer, 1–29. https://doi.org/10.1007/978-3-030-72019-3_1

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus Lång, and Tuan Phong Ngo. 2015b. Precise and Sound Automatic Fence

Insertion Procedure under PSO. In Networked Systems - Third International Conference, NETYS 2015, Agadir, Morocco,

May 13-15, 2015, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 9466), Ahmed Bouajjani and Hugues

Fauconnier (Eds.). Springer, 32–47. https://doi.org/10.1007/978-3-319-26850-7_3

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Ngo Tuan Phong. 2015a. The Best of Both Worlds: Trading E�ciency and

Optimality in Fence Insertion for TSO. In ESOP.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2020a. Parameterized veri�cation under TSO is PSPACE-

complete. PACMPL 4, POPL (2020).

Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. 1996. General Decidability Theorems for In�nite-

State Systems. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,

USA, July 27-30, 1996. IEEE Computer Society, 313–321. https://doi.org/10.1109/LICS.1996.561359

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the veri�cation problem

for weak memory models. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V. Hermenegildo and Jens Palsberg (Eds.). ACM, 7–18.

https://doi.org/10.1145/1706299.1706303

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2012. What’s Decidable about

Weak Memory Models?. In Programming Languages and Systems - 21st European Symposium on Programming, ESOP

2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,

March 24 - April 1, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7211), Helmut Seidl (Ed.). Springer, 26–46.

https://doi.org/10.1007/978-3-642-28869-2_2

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In

Programming Languages and Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceed-

ings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 533–553.

https://doi.org/10.1007/978-3-642-37036-6_29

Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Deciding Robustness against Total Store Ordering. In Automata,

Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 195. Publication date: June 2024.

https://doi.org/10.2178/bsl/1294171129
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3434337
https://doi.org/10.1007/978-3-031-17436-0_19
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.1007/978-3-031-30823-9_30
https://doi.org/10.1007/978-3-030-72019-3_1
https://doi.org/10.1007/978-3-319-26850-7_3
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-37036-6_29


195:24 Parosh Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan

Part II (Lecture Notes in Computer Science, Vol. 6756), Luca Aceto, Monika Henzinger, and Jirí Sgall (Eds.). Springer,

428–440. https://doi.org/10.1007/978-3-642-22012-8_34

Egor Derevenetc and Roland Meyer. 2014. Robustness against Power is PSpace-complete. In Automata, Languages, and

Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II

(Lecture Notes in Computer Science, Vol. 8573), Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias

(Eds.). Springer, 158–170. https://doi.org/10.1007/978-3-662-43951-7_14

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-bounded scheduling. In Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,

Thomas Ball and Mooly Sagiv (Eds.). ACM, 411–422. https://doi.org/10.1145/1926385.1926432

Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems everywhere! Theor. Comput. Sci. 256, 1-2

(2001), 63–92. https://doi.org/10.1016/S0304-3975(00)00102-X

Artem Khyzha and Ori Lahav. 2021. Taming x86-TSO persistency. Proc. ACM Program. Lang. 5, POPL (2021), 1–29.

https://doi.org/10.1145/3434328

Shankaranarayanan Krishna, Adwait Godbole, Roland Meyer, and Soham Chakraborty. 2022. Parameterized Veri�cation

under Release Acquire is PSPACE-complete. In PODC ’22: ACM Symposium on Principles of Distributed Computing, Salerno,

Italy, July 25 - 29, 2022, Alessia Milani and Philipp Woelfel (Eds.). ACM, 482–492. https://doi.org/10.1145/3519270.3538445

Ori Lahav and Udi Boker. 2020. Decidable veri�cation under a causally consistent shared memory. In Proceedings of the 41st

ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK,

June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 211–226. https://doi.org/10.1145/3385412.3385966

Ori Lahav and Udi Boker. 2022. What’s Decidable About Causally Consistent Shared Memory? ACM Trans. Program. Lang.

Syst. 44, 2 (2022), 8:1–8:55. https://doi.org/10.1145/3505273

Ori Lahav and Roy Margalit. 2019. Robustness against release/acquire semantics. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S.

McKinley and Kathleen Fisher (Eds.). ACM, 126–141. https://doi.org/10.1145/3314221.3314604

Roy Margalit and Ori Lahav. 2021. Verifying observational robustness against a c11-style memory model. Proc. ACM

Program. Lang. 5, POPL (2021), 1–33. https://doi.org/10.1145/3434285

Emil L. Post. 1946. A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc. 52 (1946), 264–268.

Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of Concurrent Software. In Tools and Algorithms for

the Construction and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European

Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in

Computer Science, Vol. 3440), Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 93–107. https://doi.org/10.1007/978-

3-540-31980-1_7

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. 2022. Extending Intel-x86 consistency and persistency: formalising

the semantics of Intel-x86 memory types and non-temporal stores. Proc. ACM Program. Lang. 6, POPL (2022), 1–31.

https://doi.org/10.1145/3498683

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency semantics of the Intel-x86 architecture.

Proc. ACM Program. Lang. 4, POPL (2020), 11:1–11:31. https://doi.org/10.1145/3371079

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 195. Publication date: June 2024.

https://doi.org/10.1007/978-3-642-22012-8_34
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3519270.3538445
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3434285
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1145/3498683
https://doi.org/10.1145/3371079

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Transition System

	3 epTSO– Formal Semantics
	3.1 Handling other type of operations
	3.2 Semantics
	3.3 The Reachability Problems

	4 Removing The Persistency Stage 
	4.1 Speculation
	4.2 Soundness and Visibility
	4.3 The Writing Protocol
	4.4 The Freezing Protocol 
	4.5  Handling Spoilers 
	4.6 Formal Translation

	5 Undecidability
	6 Alternation Bounded Runs – Through Examples
	7 Conclusion
	Acknowledgments
	References

