Innovative cellular therapies for autoimmune diseases: expert-based position statement and clinical practice recommendations from the EBMT practice harmonization and guidelines committee

Raffaella Greco,a,y,∗ Tobias Alexander,b Nicoletta Del Papa,c Fabian Müller,d,e Riccardo Saccardi,f Georg Schett,g,z,aa Basil Sharrack,h John A. Snowden,i Karin Tarte,j Francesco Onida,k,ab Fabio Ciceri,a Andrea Doria,p Jörg Henes,q James Lindsay,r,ad Andreas Mackensen,d,z Paolo A. Muraro,s Elena Ricart,t Montserrat Rovira,u,ae Tsila Zuckerman,v Ibrahim Yakoub-Agha,w,af and Dominique Farge,ag,**

aUnit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
bCharité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, Berlin, Germany
cScleroderma Clinic, Rheumatology Department, ASST G. Pini-CTO, Università degli Studi di Milano, Milano, Italy
dDepartment of Internal Medicine 5 - Hematology and Oncology, University Hospital of Erlangen, Erlangen, Germany
eCellular Therapies and Transfusion Medicine Unit, Careggi University Hospital, Florence, Italy
fDepartment of Hematology, IBSAL-University Hospital of Salamanca and Department of Medicine, University of Salamanca, Salamanca, Spain
gDepartment of Internal Medicine 3 - Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
hDepartment of Neuroscience and Sheffield NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust & University of Sheffield, Sheffield, England, United Kingdom
iDepartment of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Division of Clinical Medicine, School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
jSITI Lab, CHU Rennes, EFS Bretagne, University Rennes, Rennes, France
kHematology & ASCT Unit, ASST Fatebenefratelli-Sacco, University of Milan, Italy
lSecretary of the Practice Harmonization and Guidelines Committee of EBMT, Barcelona, Spain
mDepartment of Medical Sciences, Uppsala University, Uppsala, Sweden
nHematologie Department, Gustave Roussy, Villejuif, France
oDepartment of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases (UEC, CSUR) of the Catalan and Spanish Health Systems/Member of ERN-ReConNET, Hospital Clinic, Barcelona, Catalonia, Spain
pRheumatology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
qCenter for Interdisciplinary Rheumatology, Immunology and Autoimmune diseases and Department of Internal Medicine II (Haematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany
rDepartment of Gastroenterology, The Royal London Hospital, Barts Health NHS Trust, London, UK
sDepartment of Brain Sciences, Imperial College London, London, UK
tGastroenterology Department. Hospital Clinic Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHID), Barcelona, Spain
uBMT Unit, Haematology Department, Institute of Haematology and Oncology, IDIBAPS, Hospital School of Medicine, University of Barcelona, Barcelona, Spain
vRambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa, Israel
wCHU de Lille, University Lille, INSERM U1286, Infinite, 59000, Lille, France
xInternal Medicine Unit (04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d’Ille-de-France, AP-HP, St-Louis Hospital Paris-Cite University, France
yCo-Chair of the Practice Harmonization and Guidelines Committee of EBMT and Chair of the ADWP of the EBMT, Barcelona, Spain
zBayrisches Zentrum für Krebsforschung (BZKF) Erlangen, Germany
aaDeutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen- Nürnberg, Erlangen, Germany
abCo-Chair of the Practice Harmonization and Guidelines Committee of EBMT, Spain
acEBMT Medical Officer, Executive Office, Barcelona, Spain

*Corresponding author. Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, via Olgettina 60, 20132, Milano, Italy.
**Corresponding author. Internal Medicine Unit (04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, St-Louis Hospital Paris-Cite University, 1 avenue Claude Vellefaux, 75010, Paris, France.

E-mail addresses: greco.raffaella@hsr.it (R. Greco), dominique.farge-bancel@aphp.fr (D. Farge).
Summary

Autoimmune diseases (ADs) are characterized by loss of immune tolerance, high chronicity, with substantial morbidity and mortality, despite conventional immunosuppression (IS) or targeted disease modifying therapies (DMTs), which usually require repeated administration. Recently, novel cellular therapies (CT), including mesenchymal stromal cells (MSC), Chimeric Antigen Receptors T cells (CART) and regulatory T cells (Tregs), have been successfully adopted in ADs. An international expert panel of the European Society for Blood and Marrow Transplantation and the International Society for the Cell and Gene Therapy, reviewed all available evidence, based on the current literature and expert practices, on use of MSC, CART and Tregs, in AD patients with rheumatological, neurological, and gastroenterological indications. Expert-based consensus and recommendations for best practice and quality of patient care were developed to support clinicians, scientists, and their multidisciplinary teams, as well as patients and care providers and will be regularly updated.

Introduction

Autoimmune diseases (ADs) are a heterogeneous group of diseases affecting 8–10% of the Western population, characterized by loss of immune tolerance to auto-antigens, although it is rare to identify a single antigenic epitope in some of the diseases. Consequent polyclonal activation of the immune system, with a defect of B or T lymphocyte selection and altered lymphocytic reactions, leads to the appearance of auto-reactive T and B cells and autoantibodies, which together contribute to tissue damage and inflammation. Both T and B cells are central in the self-sustaining
autoreactive adaptive immune response and immune-mediated damage to target organs. The innate immune system and its tissue environment also play an important role to determine if exposure to a given antigen will induce an immune response or tolerance. Most of the classical ADs are polygenic diseases and share features of the broad spectrum of autoimmune and auto-inflammatory mechanisms. Therefore, the optimal treatment of an AD should be discussed, in light of this specific pathological continuum between autoimmunity and auto-inflammation, which variably interacts in the ultimate phenotypic expression. They were traditionally classified as ‘organ specific’ or ‘systemic’ AD. Examples for severe forms of ADs are systemic diseases such as Systemic Lupus Erythematosus (SLE) and Systemic Sclerosis (SSc), neurological diseases, such as Multiple Sclerosis (MS), Neuromyelitis Optica Spectrum Disorder (NMOSD) and Myasthenia Gravis (MG) and other organ-centered conditions such as autoimmune Inflammatory Myopathy (IIM), Rheumatoid Arthritis (RA), primary Sjogren Syndrome (pSS) and Crohn’s disease (CD).

The use of immunosuppressive or immunomodulatory drugs administered as monotherapies or in combinations are recommended by expert consensus as first-line or later treatment for ADs. However, not all AD patients respond to conventional systemic immunosuppression (IS) or to targeted disease modifying therapies (DMTs), with some patients being refractory or recurrently relapsing. Moreover, a prolonged use of these drugs, accounts for high morbidity and mortality in the AD population.

In this context, restoration of the immune tolerance with consequent resolution of the auto-immune and inflammatory response against self-antigens is one of the treatment goals to provide durable remissions and to foster tissue regeneration in AD patients. It can be achieved by the use of high dose chemotherapy followed by autologous, or less frequently allogenic, hematopoietic stem cell transplantation (HCT) which results in resetting of the immune response and induces tolerance de novo as developed for almost 3 decades. Clinical application for HCT in AD has expanded as a treatment option for several specific ADs refractory to conventional therapy, or otherwise associated with poor prognosis and has become an integral and standard-of-care part of treatment algorithms in certain indications (e.g. subset of SSc or active Relapsing Remitting MS failing disease-modifying therapies [DMTs]). However, not all AD patients can undergo HCT and the use of different innovative cellular therapies (CT), that include mesenchymal stromal cells (MSC), Chimeric Antigen Receptors T cell therapy (CART), or regulatory T cells (Tregs) has progressively increased for severe ADs. Of importance, patients treated by HCT or innovative CT, are managed in services authorized for these procedures, within network of references for cell therapies in ADs, either at the national or European level, where AD experts work in tandem with hematologists in accordance with JACIE accreditation process and other regulatory requirements.

New insights are emerging in the complexity and power of innovative CT in this field. MSC, are a heterogeneous population of multipotent progenitor stromal cells that can be easily isolated, cultured, and expanded ex-vivo from the bone marrow (BM) stem cell niche and from many other sources as adipose tissue (AT), umbilical cord (UC) or Wharton’s jelly (WJ). These multipotent progenitor cells, as identified in vitro according to the 2006 ISCT criteria and then extensively characterised in vitro, have been investigated as treatment for several indications based on their immunoregulatory, pro-angiogenic and anti-fibrotic properties. MSC exert their immunomodulatory and trophic functions through a wide panel of mechanisms. MSC effects are mostly mediated through the production of soluble factors, which are induced by proinflammatory signals in the local milieu. Several growth factors, cytokines/chemokines, and enzymes (including vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF1), angiopoietin-1 (ANGPT1), indoleamine 2,3-dioxygenase (IDO), prostaglandin-E2 (PGE2), tumor necrosis factor-inducible gene 6 (TSG-6), IL-10, transforming growth factor β (TGFβ), CXCL12, CCL2), with different profiles according to MSC tissue source and donor type, contribute to tissue regeneration in various AD, such as for SSc, SLE, MS and CD patients. MSC also secrete neurotrophic growth factors, including glial cell-derived neurotrophic factor (BDNF), VEGF, and brain derived neurotrophic factor (BDNF), which neuroprotective effect in addition the immunomodulatory function of MSC support their use in progressive MS. MSC from various sources differ in terms of proliferation potential, multilineage capacities, transcriptional profile, and functionality and standard functional markers of MSC potency as well as release potency assays have been defined for conducting advanced clinical studies. Promising results and sustained safety have been obtained with MSC of different tissue origin for cellular therapy in SSc, SLE, MS and with access to the market in CD (Supplementary Table S1).

Tregs are a specialized subset of CD4+ T lymphocytes with immune suppressive capacities, which are dysfunctional or decreased in some ADs. Adoptive Tregs therefore constitute an interesting therapeutic tool in AD. Despite high safety, polyclonal Tregs mediated suboptimal/controversial responses in clinical trials, which was mainly attributed to low amount of disease relevant, antigen-specific cells (Supplementary Table S2).

The CAR specifically redirects T cells to eradicate defined cell subsets. Current targets encompass the B cell antigen CD19 (broadly expressed from B cell
precursors up to plasmablasts) and the B cell maturation antigen (BCMA, expressed from plasmablasts up to long-lived plasma cells). Compared to monoclonal antibodies, CART aim to restore immune tolerance by depleting autoreactive B cells deeper than monoclonal antibodies, especially in inflamed tissues and within lymphoid organs (i.e. lymph node and spleen). Current available clinical data reveal that autologous CD19 CART effectively deplete B cells and plasmablasts in patients with SLE, leading to impressive short and longer term drug-free remission in patients refractory to standard therapies. The clinical effect of CART appears to be associated with abrogation of autoreactive antibodies and effects persists even after B cell reconstitution. Other early clinical reports with CD19 and BCMA CART have been reported in a variety of AD (anti-synthetase syndrome, SSC, NMOSD and MG), confirming that the generation and administration of CART in ADs is feasible and safe (Supplementary Table S3). Future studies on CART are warranted to elucidate the mechanism of action and to establish the sustained long-term duration of response.

Because of the rapidly growing field with numerous treatment options, there is a need for clinical practice recommendations to provide useful information and general principles on the use of these innovative cellular therapies in ADs, within the community, at the level of national and international organizations and local clinical teams across relevant rheumatologic, neurological and gastrointestinal specialties. This European Society for Blood and Marrow Transplantation (EBMT) consensus aims to promote patient safety and facilitate harmonization of procedures for AD patient selection, care and follow-up, clinical and immune monitoring before and after treatment delivery, and data collection, following Good Clinical Practice (GCP) and Good Manufacturing Practice (GMP), and appropriate accreditation and regulatory requirements. As previously with the clinical development of HCT for ADs, the EBMT, the International Society for the Cell and Gene Therapy (ISCT) and wider ADs specialist community should be central to coordination of retrospective registry-based analyses and prospective studies to evaluate the safety and efficacy of innovative CTs in patients with ADs.

Methods
Methodology
This workshop was conducted according to the methodology published by the EBMT practice harmonization and guidelines committee. In April 2023, RG and DF proposed to set up a workshop to issue European recommendations regarding the indications and management of innovative cellular therapies (MSC, CART cells and Tregs) in ADs. Twenty-six experts from different countries belonging to the EBMT, including from the EBMT-Autoimmune Diseases Working Party (ADWP), and other disease-oriented specialist societies, from the International Society for the Cell and Gene Therapy (ISCT) and representatives from the Joint Accreditation Committee for ISCT and EBMT (JACIE) were invited to join the workshop. Several teleconferences took place to discuss and advance the first draft.

Search strategy and selection criteria
Data for this literature review were identified by searches of MEDLINE, Current Contents, Pubmed, and references from relevant articles using the search terms “Mesenchymal (stromal OR stem) cell”, “cart-T-cell”, “T-reg cells” and rheumatological diseases (SLE, SSC, IIM, RA and pSS), neurological diseases (MS, NMOSD and MG) and CD.

Only articles written in English from January 2010 until September 2023, including all clinical (single or randomized early phase I, phase II, or phase III randomized controlled) trials as well as retrospective or prospective case studies and key reviews were considered in the evaluation, and served as the basis for the discussions. Abstracts and reports from meeting were included only when they related directly to previously published work. As defined by the panel, the workshop together with literature search (Supplementary Material) included the use of MSC, CART and Tregs in AD patients with rheumatological (SLE, SSC, IIM, RA and pSS), neurological (MS, NMOSD and MG) and gastroenterological (CD) indications. The following records were excluded: metanalysis, protocols, preclinical and animal studies, studies that did not specify the stem cells type and/or origin. Best practice recommendations for management of adults and children undergoing CART from EBMT, JACIE and EHA provided a model for discussions. HCT and MSC, CART or Treg experts in AD from various medical specialties (internal medicine, rheumatology, neurology, gastroenterology, immunology, hematology) assembled to draft recommendations during a two-day face-to-face meeting that took place in Lille, France on September 25th and 26th, 2023.

Objectives
These recommendations were created due to the growing number of MSCs and CART for patients with ADs. Although experience on Tregs is limited compared to MSC and CART, new Tregs-based approaches are currently under investigation (i.e. CAR Tregs). Given the current absence of high-quality evidence from randomized trials or large cohort studies in the field, the decision was made not to grade the recommendations. They therefore represent the consensus point of view of expert authors from international multidisciplinary teams (MDTs). These recommendations aim to cover indications, contraindications and areas of caution in patients with rheumatic, neurological, or gastroenterological ADs being considered for treatment with
innovative CTs, including: diagnostic work-up before CT and subsequent clinical administration, management of complications and follow-up according to each AD. They reflect current best practices in this new and rapidly evolving field, as mainly derived from MSC, CART, and HCT experience and research, and aim to help clinicians and other healthcare professionals in providing consistent, high-quality patient care. They will be inevitably updated according to newly emerging data and a growing evidence base.

These EBMT recommendations are intended to be general in scope and applicable to all mentioned diseases and types of innovative CTs adopted as standard clinical practice. When administering innovative CTs within clinical trials, physicians are advised to follow respective trial protocols.

Role of the funding source
This study was unfunded.

Results (consensus recommendations)
General considerations
Evidence for the feasibility, efficacy and toxicity of CT, such as MSC, CART and Tregs in ADs is summarized in each section of these recommendations. For some ADs, the effect of certain types of CT can be extrapolated from experience in HCT for this type of AD and/or in haematological cancers. Risks of serious toxicity vary between types of CT, the preparative and supportive care regimens required for their delivery, type and stage of AD and the associated co-morbidities.

Novel cellular therapies (MSC, CART, Tregs) are currently evaluated as a therapeutic option for patients with severe refractory ADs, and administration of any of these therapies may be delivered either for compassionate use or through an academic or industry-sponsored clinical trial. A severe and treatment-refractory AD course is considered a potential indication for CT as immunomodulatory or immunosuppressive intervention.

There is currently no unique definition nor guideline for refractory ADs, although these patients are at higher risk of morbidity and mortality due to sustained “moderate to severe” disease activity that is resistant to the currently available (biologic and non-biologic) immunosuppressive therapies. Furthermore, the AD can be complicated by recurrent disease activity flares that lead to progressive organ damage.

General considerations on the use of CTs:

- CT may be considered as a therapeutic option in patients with severe ADs being active or progressing despite the use of standard (guideline-based and/or regulatory approved) therapy.
- The selection of the approach of CT (MSC, CART, Treg) may vary depending on the specific indication and treatment target and expectations (e.g. suppression of inflammation, elimination of autoimmune cells). Depending on the half-life and efficacy of the cellular product, repeated application might be necessary as already shown for MSC and Tregs.
- Whenever possible, CT in ADs should be performed in the context of a clinical trial with well-defined end points and eligibility criteria in accordance with GCPs and appropriate regulatory requirements. If no study or clinical trial is available, patients should be considered for CT in documented multidisciplinary team (MDT) meetings, with clinical/research ethics committee review and/or external expert second opinions from both haematologists and relevant AD specialists, as mandatory.
- In patients for whom CT represents a treatment option, referral should be made to a centre with appropriate inter-disciplinary interaction using combined haematological and AD specialist experience to select and manage severe and refractory AD patients. Such expert centres should have a JACIE accreditation for Immune Effector Cells (IEC) administration and established multidisciplinary team meetings and/or similar processes for CT as for HCT, involving AD specialists and haematologists working in tandem in the same place to support thorough assessment, treatment and follow-up of these high-risk fragile patients.
- Appropriate clinical and laboratory monitoring that can assess efficacy and tolerability of CT should be available.
- Discussions should account for both the likelihood of AD response and the safety and risks of the specific CT, along with patient performance status, vital organ function, co-morbidities (including the presence of acute or chronic uncontrolled infections), AD respective indexes of activity and damage, and any other aspects that impact on risks of potentially serious complications and treatment-related mortality. AD bridging treatment before CT should also be an important part of these discussions.
- Alternative non-CT treatment options, including potential participation in other clinical trials, should be included in such assessment.

Deliverability of CTs is associated with substantial costs. At present, clinical trials provide the best means of delivering CT treatment, which may obviate the costs of clinical care. However, patients may be considered for individualized CT treatment outside of clinical trial settings (i.e. in case of life-threatening disease and no available clinical trial), and one should be mindful of costs and other healthcare resource limitations relevant to the feasibility of treatment.

Health economic assessments are necessary to determine whether CT-based treatments prove cost-effective by preventing, delaying or otherwise limiting the need for biological and other treatments. Studies using other sources of data (registry and established
Table 1: Recommendations for general screening and eligibility before CT (adapted from Hayden et al., 2022).39,*

<table>
<thead>
<tr>
<th>Criterion</th>
<th>EBMT/EHA recommendations*</th>
<th>AD-specific recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance status</td>
<td>ECOG <2, Kamofsky >60% or Lansky >60%</td>
<td>Same as hematological indications for all CTs (MSC, CART, Tregs) in ADs</td>
</tr>
<tr>
<td>Prior treatments, including prior immunosuppressive treatment</td>
<td>Relative contraindication. Any systemic immunosuppressive treatment may impair the efficacy of CART.</td>
<td>Consider balance of active disease, sequelae, damage and the possibility of withdrawing immunosuppressive therapies in the time window required to perform CTs. Specific wash out periods for CART cell process are described in table 10.</td>
</tr>
<tr>
<td>Infections</td>
<td>Active infection is a contraindication. In most cases, active infection requires only a temporary deferral. Nasopharyngeal PCR for SARS-CoV-2 before CT should be negative. Treatment should be delayed in cases of positive COVID-19 PCR. Some latent infections e.g., HIV, are a contraindication to manufacturing for several (but not all) commercial and trial CART products. When proceeding to CART in cases of latent HBV, HCV or HIV infections, prophylactic anti-viral treatment is required.</td>
<td>Same as hematological indications for all CTs (MSC, CART, Tregs) in ADs</td>
</tr>
<tr>
<td>CNS involvement</td>
<td>EBMT recommendations consider risk/benefit ratio. Anticonvulsant prophylaxis is mandatory in CNS involvement when using CART cell approaches. There is no evidence suggesting substantially increased ICANS risk in AD patients receiving CART cells. However CNS involvement and peripheral neuropathy should be assessed at baseline and individual patient risk has to be considered, especially in CART.</td>
<td></td>
</tr>
<tr>
<td>Disease confirmation</td>
<td>Diagnosis should be confirmed using appropriate tests. Activity, damage and organ involvement should be carefully assessed before CTs in ADs.</td>
<td></td>
</tr>
<tr>
<td>Bilirubin AST/ALT</td>
<td><34 mmol/l in trials; higher limit acceptable (<43 mmol/l) with Gilbert’s syndrome. <4 ULN a contraindication in some trials.</td>
<td>Specific AD involvement should be ruled out before CTs.</td>
</tr>
<tr>
<td>Creatinine clearance</td>
<td>>30 ml/min.</td>
<td>Same as hematological indications for all CTs (MSC, CART, Tregs) in ADs.</td>
</tr>
<tr>
<td>Hepatitis B and C</td>
<td>As per national guidelines.</td>
<td>Same as hematological indications for all CTs (MSC, CART, Tregs) in ADs.</td>
</tr>
<tr>
<td>HIV</td>
<td>Leukapheresis for some CART cells as mentioned in SPC (e.g., tsisagenlecleucel [Kymriah] manufacturing) will not be accepted from patients with a positive test for active HBV, HCV or HIV.</td>
<td>Same as hematological indications for all CTs (MSC, CART, Tregs) in ADs.</td>
</tr>
<tr>
<td>Cardiac function</td>
<td>TTE to assess cardiac function and exclude significant pericardial effusions and structural abnormalities. LVEF <40% (via 4D EF or Simpson’s biplane method) is a relative contraindication. ECG to exclude significant arrhythmias. Cardiac biomarkers (troponin and NT-proBNP) at baseline. CMR to assess extent of disease with cardiac involvement.</td>
<td>Extensive cardiac function assessment is mandatory in AD patients undergoing CTs (MSC, CART, Tregs).</td>
</tr>
<tr>
<td>CNS imaging and lumbar puncture</td>
<td>MRI not required except in those with a history of CNS disease or current neurological symptoms. Lumbar puncture not required except in those with a history of CNS disease or current neurological symptoms. In case of underlying diagnosis of SLE and neurological ADs, a detailed clinical examination, Montreal Cognitive Assessment (MOCA), MRI ± EEG are strongly recommended.</td>
<td></td>
</tr>
<tr>
<td>Fertility</td>
<td>Females of childbearing potential must have a negative serum or urine pregnancy test. Test must be repeated and confirmed negative within 8 days of the CART cell infusion.</td>
<td>Same as hematological indications for all CTs (MSC, CART, Tregs) in ADs. Fertility assessment and preservation should be proposed to AD patients before a CT.</td>
</tr>
</tbody>
</table>

*These EBMT recommendations were made for CART in hematologic malignancies and may differ to ADs.

Table 1: Recommendations for general screening and eligibility before CT (adapted from Hayden et al., 2022).

Clinical trials should be used in evaluating the potential cost-effectiveness of CT compared with alternative ‘standard’ treatment options in ADs.

Common recommendations for the application of CT in ADs:

- Active organ involvement that poses the patient at high risk for organ failure and/or damage needs to be present.
- AD needs to be resistant to at least two lines of immunosuppressive drug regimens, administered in an adequate dose and for a sufficiently long time to judge response. Type and number of drugs to have failed may vary among different forms of ADs.
- A ‘refractory’ disease course can be based on misdiagnosis rather than true resistance to treatment. Therefore, a critical evaluation of correct diagnosis of the respective AD fulfilling respective conditions is essential.
disease criteria is of outmost importance before considering CT.

- Age should not be a specific limitation for CT treatment per se, but, given that fitness may decline, and co-morbidities may increase with age, should be considered as part of the biological fitness of the patient for the specific CT treatment.

- Impact of the lymphodepleting regimen (such as on reproductive function) are an important consideration in the planning of CT in ADs.

- Patient compliance and understanding of the procedure and expectations is essential, as a basis for providing informed written consent for compassionate based treatment or on a clinical trial.

Regarding the screening tests to be performed before the cellular therapy, we refer to current EBMT guidelines for CT (Table 1).

Data reporting of all AD patients, who received CTs to the EBMT registry is strongly recommended. The EBMT registry has recently been upgraded to accommodate CTs (EBMT website: https://www.ebmt.org/). As a minimum, annual review and data reporting is mandatory to capture all outcomes, including late effects (i.e. secondary malignancies, insertional mutagenesis, secondary autoimmune diseases). Centers administering CTs for ADs should provide systems for long-term follow-up at least until 10 years after CT.

Annual simultaneous follow-up consultation of the AD specialist and the hematologists/CT specialists is recommended to facilitate assessments and data collection. If patients are discharged from the hematological center and followed by the referring specialist, their contact details should be available to the treatment center data managers so that data can be updated. Data managers should be adequately trained and supervised by relevant CT and AD specialists.

Considerations and recommendations for rheumatic diseases

Rheumatic and musculoskeletal diseases (RMDs) are chronic systemic diseases that can affect any organ of the body. Many of these diseases have a long-term relapsing course and worsen over time. In severe and refractory cases, RMDs can result in significant disability, with a major impact on both quality of life and life expectancy. Use of adequate tools to assess comorbidities at different organ levels and to differentiate AD activity and damage are required. MDT evaluation is highly recommended.

Experience in this setting is summarized in the Supplementary Tables S1–S3. To ensure RMD patient eligibility to innovative CTs and fitness, the indications, contraindications and disease-specific assessments in Table 2A and B should be considered. This list is not exhaustive, and, in the trial setting, trial protocols should be followed. Regarding the screening tests to be performed before the CT, we refer to current EBMT guidelines for CT and Table 1.

Considerations and recommendations for neurological ADs

Neurological autoimmune disorders may affect any part of the nervous system, including the brain and spinal cord, the peripheral nerves, neuromuscular junction and skeletal muscles.

There is limited evidence for the use of advanced CTs in autoimmune mediated neurological disorders (Supplementary Tables S1–S3). At this stage, all patients should be treated in clinical trials.

Patients should be discussed in MDT meetings before offered any of these therapies. To ensure patient eligibility to receive innovative CTs, the indications, contraindications and relevant assessments are summarized in Table 3A and B. This list is not exhaustive, and, in the trial setting, study protocols should be followed.

We recommend the following criteria (Table 3) to identify potential candidates for the use of innovative CTs in this group:

- Multiple Sclerosis (MS)
 - Relapsing Remitting MS (RRMS)
 - Diagnosis of RRMS according to the McDonald and Lublin criteria between 3 and 6
 - Expanded Disability Status Scale (EDSS) between 3 and 6
 - Active inflammatory disease (with at least one significant relapse or MRI disease activity over the previous 12 months) despite treatment with high efficacy DMTs for at least six months
 - Primary Progressive MS (PPMS) or Secondary Progressive MS (SPMS)
 - Diagnosis of progressive MS according to the McDonald and Lublin criteria
 - EDSS between 3 and 6
 - Documented evidence of disability progression over the previous 12 months
 - Evidence of intrathecal IgG production through oligoclonal bands present in the cerebrospinal fluid (CSF) or an elevated IgG index
 - Active inflammatory diseases (with at least one significant relapse or MRI disease activity over the previous 12 months), mainly for CART candidates;

- Neuromyelitis optica spectrum disorder (NMO)
 - Confirmed diagnosis based on the published diagnostic criteria
 - Active disease despite the use of at least one biological agent (i.e. monoclonal antibodies against B-cells, the interleukin-6 receptor, or complement);

- Myasthenia Gravis (MG)
 - Confirmed diagnosed of generalized MG
A) Patient eligibility

<table>
<thead>
<tr>
<th>Type of disease</th>
<th>Indications</th>
<th>Contraindications</th>
<th>Concerns</th>
</tr>
</thead>
</table>
| **Systemic Lupus Erythematosus** | Age: ≥18 yrs | - EULAR-ACR classification criteria 2019[^44]
- Anti-DsDNA or anti-histone or anti-SM or anti-nuclear antibody positive
- With active disease (defined by not being in remission according to DORIS criteria or in low disease activity state [LLDAS])[^52]
- With at least one active organ system involvement[^48]
- With one BILAG A score (severe) or more than 2 BILAG B scores (moderate disease activity) and with insufficient response to glucocorticoids and to at least 2 of the following treatments for at least 3 months each: cyclophosphamide, mycophenolate mofetil or its derivatives, belimumab, azathioprine, anifrolumab, methotrexate, rituximab, obinutuzumab, cyclosporin, tacrolimus or vuclosporin. | - Life-threatening end-organ damage defined as:
 - LVEF <40% cardiac echocardiography
 - Pulmonary hypertension: baseline resting systolic PAP >50 mmHg by echocardiography
 - Active liver disease: AST, ALT ≥ 3 × N
 - History of malignancy, unless being free of the disease for ≥2 years (except basal or squamous cell carcinoma of the skin, carcinoma in situ of the cervix or breast), mainly for CART[^49]
 - Neutropenia <0.5 × 10^9 ANC/L, Thrombocytopenia: <30 × 10^9 platelet cell count/L, Anemia: Hb < 8 g/dL, Lymphopenia: lymphocyte count <100 × 10^9/L
 - Uncontrolled infection
 - Unvaccinated against SARS-CoV-2 unless previous exposure
 - Psychological, sociological or geographical conditions precluding compliance
 | - Autologous MSC intrinsic abnormalities
 - Allogeneic cells triggering immunization when injected repeatedly
 - Fertility preservation
 - Pre-existing irreversible kidney damage |
| **Systemic Sclerosis** | Age: ≥18 yrs | - SSc according to ACR/EULAR 2103 criteria[^50]
- Disease duration ≤5 yrs and ii) mRSS of >20 and (ESR >25 mm and/or Hb < 11 g/dL), or ii) mRSS >15 and ≥1 major organ involvement:
 - Lung: DLCO and/or FVC <80% + interstitial lung disease (chest X-ray and/or HRCT scan);
 - Kidney: past renal crisis and/or stage 2 or 3 chronic kidney disease (Crl: 30-89 ml/min);
 - Heart: reversible congestive heart failure, atrial or ventricular rhythm disturbances and/or mild to moderate pericardial effusion.
- Insufficient response to at least two of the following mycophenolic acid, methotrexate, tocilizumab, rituximab, nintedanib, methotrexate, cyclophosphamide for a minimum of 3 months, and Contraindication, inadequate response or unwillingness to undergo AHCT (determined by patient and physician judgement) | As above | As above |
| **Rheumatoid Arthritis** | Age: ≥18 yrs | - RA according to 2010 ACR/EULAR classification criteria[^51]
 - Moderate to severe disease activity (DAS28-ESR>3.2)
 - Failure to at least 3 different classes of previous DMARDs (targeted synthetic or biologic) for at least 3 months
 - Seropositivity for RF and/or anti-CCP antibodies or presence of B cells in synovial biopsies is recommended for cellular therapy targeting B cells | As above | Presence of “activity” based on non-inflammatory domains
 - Autologous MSC intrinsic abnormalities
 - Allogeneic cells triggering immunization when injected repeatedly
 - Fertility preservation
 - Lymphopenia may inhibit feasibility for CART production |
| **Sjögren’s syndrome** | Age: ≥18 yrs | - Sjögren’s syndrome according to 2016 ACR/EULAR with persistent high activity defined by EULAR ESSDAI >5[^60]
 - Presence of extra-glandular domains such as vasculitis, or hematologic, lung, kidney and neuronal involvement
 - Serological activity defined as hypocomplementemia or elevated CRP/ESR/fGFRF level (excluding acute or chronic infection and other factors).
 - Poor response to previous treatments with glucocorticoids and at least 2 of the following drugs: cyclophosphamide, azathioprine, MMF, methotrexate, rituximab or belimumab. | As above | Autologous MSC intrinsic abnormalities
 - Allogeneic cells triggering immunization when injected repeatedly
 - Fertility preservation
 - Lymphopenia may inhibit feasibility for CART production
 - Pre-existing irreversible damage
 - Consider risk of concomitant lymphoma |
| **Polymyositis** | Age: ≥18 yrs | - Idiopathic Inflammatory Myopathy (IBM) according to EULAR/ACR criteria[^31]
 - Active myositis on MRI or biopsy, with or without the presence of interstitial lung disease
 - In case of amyostic disease course, presence of interstitial lung disease (ILD) involvement is mandatory
 - Presence of myositis specific autoantibodies
 - Incomplete response to high doses of glucocorticoids combined with at least 2 of the following treatments: iv Igs, methotrexate, azathioprine, cyclophosphamide, tacrolimus, JAK inhibitors or rituximab. | As above | Challenge of rapid progressive disease especially in ILD
 - Consider risk of concomitant cancer
 - Autologous MSC intrinsic abnormalities
 - Allogeneic cells triggering immunization when injected repeatedly
 - Fertility preservation
 - Lymphopenia may inhibit feasibility for CART production |

(Table 2 continues on next page)
B) Disease assessment

<table>
<thead>
<tr>
<th>Type of disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic Lupus</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
</tr>
<tr>
<td>Polymyositis</td>
</tr>
<tr>
<td>Sjogren’s Syndrome</td>
</tr>
<tr>
<td>Overall disease activity (SLEDAI-2K)</td>
</tr>
<tr>
<td>Overall disease activity (ESSDAI)</td>
</tr>
<tr>
<td>Overall disease activity (DAS28, CDAI)</td>
</tr>
<tr>
<td>Overall disease activity (LMR)</td>
</tr>
<tr>
<td>Overall disease activity (SSDAI)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Response measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>DORIS remission or LLDAS criteria which includes SLEDAI, PGA and concomitant treatments</td>
</tr>
<tr>
<td>Response to treatment, defined as decrease in mRSS >25%, increase in FVC >10% predicted and/or increase in DLCO >15% predicted, without need for further immunosuppression except low dose steroids</td>
</tr>
<tr>
<td>Progression-free survival, progression defined as any one of the following: decrease in FVC >10% predicted; decrease in DLCO >15% predicted; decrease in left ventricular ejection fraction on cardiac echocardiography >15%; decrease in weight >15%; decrease in creatinine clearance >30%; increase in mRSS >25%; and/or increase in Scleroderma-Health Assessment Questionnaire >0.5</td>
</tr>
<tr>
<td>Rate of ESSDAI response, or MCI of ESSDAI, which was defined as an improvement of ESSDAI at least three points</td>
</tr>
<tr>
<td>Rate of ESSPRI response, or MCI of ESSPRI, which was defined as an improvement of ESSPRI at least one point or 15%</td>
</tr>
<tr>
<td>Change of salivary glands function including the salivary flow rate (unstimulated whole salivary flow: if score > 0 at baseline: increase of ≥25% from baseline. If score is 0 at baseline: any increase from baseline.) and the Schirmer test (increase ≥2.5 mm from baseline)</td>
</tr>
<tr>
<td>Change of PGA score</td>
</tr>
<tr>
<td>Change of salivary glands function including the salivary flow rate (unstimulated whole salivary flow: if score is > 0 at baseline: increase of ≥25% from baseline. If score is 0 at baseline: any increase from baseline.) and the Schirmer test (increase ≥2.5 mm from baseline)</td>
</tr>
<tr>
<td>Change of laboratory/serology parameters including CRP, ESR, IgG (decrease of ≥100 mg/L from baseline) and/or increase in Scleroderma-Health Assessment Questionnaire >0.5</td>
</tr>
<tr>
<td>EULAR-ACR Remission</td>
</tr>
<tr>
<td>EULAR-ACR major response 2016 criteria in TIS (ACR-EULAR myositis response criteria)</td>
</tr>
</tbody>
</table>

- Fluctuating or inadequate clinical response to second line immunosuppressive treatment (i.e. azathioprine, mycophenolate mofetil, cyclosporine, methotrexate, cyclophosphamide);

- Chronic inflammatory demyelinating polyneuropathy (CIDP);

- Confirmed diagnosis based on the European Academy of Neurology/Peripheral Nerve Syndrome (EAN/PNS) criteria;

- Fluctuating or inadequate clinical response to second line immunosuppressive treatment.

The following disease-specific assessments are suggested at baseline, 3 and 6 month and yearly thereafter:

- **MS**
 - Clinical score: EDSS,
 - Brain and spinal cord magnetic resonance imaging (MRI),
 - Bladder ultrasound with search and quantification of post-void residual,
 - A baseline cardiac echocardiography should be performed in all patients plus a myocardial MRI for...
those who have received previous cardiotoxic treatments (mitoxantrone or high cumulative dose cyclophosphamide), with follow-up evaluations according to clinical need, especially in CART.

- **NMOSD**
 - Clinical score: EDSS.
 - MRI of the brain, orbits and spinal cord.
 - Antibodies towards aquaporin-4 (AQP4-Ab) or antibodies towards myelin oligodendrocyte glycoprotein (MOG).
 - Myocardial MRI in patients who have received cardiotoxic treatments, such as mitoxantrone or a high cumulative dose of cyclophosphamide.

- **MG**
 - Functional score: Garches score; clinical severity score: Myasthenia Gravis Foundation of America (MGFA) score.

- **CIDP**
 - Functional Scores: Overall Neuropathy Limitations Scale (ONLS), modified score Rankin score.

- Clinical scores: Medical Research Council (MRC). Inflammatory Neuropathy Cause and Treatment (INCAT-ODSS).
- Nerve Conduction Study.

Regarding the screening tests to be performed before the CT, we refer to current EBMT guidelines for CT and Table 1.

Considerations and recommendations for gastrointestinal diseases

Inflammatory bowel diseases (IBD) are immune-mediated inflammatory diseases. Experience in this setting is currently restricted to MSCs (Supplementary Table S1), able to modulate the immune response in individuals with CD.

MSCs have demonstrated their ability mostly to heal perianal CD fistulae in patients refractory to conventional or biologic therapy in several controlled trials to the point where darvadstrocel (Alofisel®, Takeda), a
suspension of expanded human allogeneic adipose-derived MSCs extracted from the subdermal adipose tissue of healthy donors via liposuction, has been approved since 2018 for use in clinical practice. Darvadstrocel is indicated for the treatment of complex perianal fistulas in adult patients with non-active or mildly active luminal CD when fistulae have shown an inadequate response to at least one conventional or biologic therapy. We highlight that (i) patients should have mucosal healing of any rectal disease and (ii) a combination of the use of MSCs and expert surgical techniques are required for optimal results. Since its administration requires a multidisciplinary medical-surgical approach, it is recommended that its use be centralized in selected referral centers.

Ongoing research on MSCs for perianal fistulizing CD will determine the ideal cell number, optimal delivery, retreatment interval, tissue, source and donor choice. Additionally, studies with the goal of further optimizing the efficiency and effectiveness of local MSC therapy are ongoing with the investigation of novel techniques such as use of fresh adipose tissue, co-injection with adjunctive agents, and use of bioabsorbable plugs.

The data and safety profiles emerging from studies evaluating systemic infusion of MSCs in luminal CD suggest safety but equivocal efficacy. To address this issue, phase II and III studies using both clinical remission and endoscopic response as co-primary endpoints should be performed. Furthermore, the optimal origin and sources of MSCs, as well as dosage and modalities of administration, have still to be determined. Future trials should aim to resolve these questions in order to optimally recommend the potential use of MSCs to treat luminal CD.

It is worth noting that other CTs, like CART or Tregs for CD, lack sufficient evidence at this stage, making it unfeasible to provide recommendations for or against their use. These approaches require further clinical and mechanistic studies to establish their potential in CD treatment, given a more pronounced autoimmune inflammatory background. For this reason, the panels has decided to provide recommendations specifically for MSC, e.g. Darvadstrocel, use in refractory perianal CD:

- Standard screening tests prior to advanced CT (Table 1).
- Endoscopy to assess disease activity,
- MRI of abdomen/pelvis to exclude penetrating disease and undrained sepsis.

This list is not exhaustive, and, in the trial setting, trial protocols should be followed.

Considerations and recommendations for immune monitoring
In recent years, remarkable advances have been made in cell-type phenotyping and the understanding of intercellular interaction mechanisms, intracellular signaling pathways, and genetic control of the immune system (Supplementary Tables S4 and S5).

We recommend specific immune monitoring protocols in patients with ADs, mainly rheumatological and neurological indications, undergoing innovative CTs, with successive time points performed before, during and after CT infusion depending on each CT’s specific kinetic and its expected effects on the immune subpopulations during patient follow-up. Laboratory immune monitoring and biobanking should routinely be performed to refine our understanding of the underlying mechanisms of action and for investigational purposes, so as to optimize clinical HCT protocols.

The cellular product before infusion should be characterized in detail where possible and if allowed by the trial protocol (Table 4A).

Monitoring of the CART product after infusion is highly recommended (Table 4B). Tregs cannot be specifically tracked in the body, while MSCs do not persist in vivo after IV infusion (24 h–7 days). We recommend also to monitor the effects on the immune system (Table 4C) of the AD patients undergoing innovative CTs.

For safety profile, the following additional tests should be considered:

- Soluble factors related to cytokine release syndrome (CRS; i.e. IL-1, IL-6, TNF, IL-8, etc);
- Bone marrow aspirate sampling at baseline and after CART in case of prolonged cytopenia according to EBMT guidelines.

Considerations and recommendations for clinical management of CT in ADs
This paragraph focuses mainly on the application of CART. The experience with MSC is broad and there is little safety concern both in the short- and long-term follow up of patients nor risk of transformation. In contrast, data on Treg usage are scarce. However, there is little toxicity with mainly moderate infusion related side effects. In line, safety concerns are little in Treg to date.
A) CT product characterization upon release

<table>
<thead>
<tr>
<th>Focus</th>
<th>Markers</th>
<th>Material/Technique</th>
<th>Other comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CART</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of CART</td>
<td>CAR, CD3, CD4, CD8, CD45RA, CCR7, CD27, CD69, CD25, CD137, CD127, Foxp3</td>
<td>Cell product/Cytometry</td>
<td>Commercially available reagents.</td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaustion and coinhibitory receptors</td>
<td>CD57, PD-1, LAG3, TIM3, TIGIT</td>
<td>Cell product/Cytometry</td>
<td></td>
</tr>
<tr>
<td>MSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenotype/viability</td>
<td>CD45S, CD31, CD73, CD90, HLA-DR,</td>
<td>Cell product/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Alloreactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function/potency assays</td>
<td>HLA I and II typing, Capacity to produce immunosuppressive and trophic factors</td>
<td>Cell product/molecular biology</td>
<td>Only for allogeneic MSC</td>
</tr>
<tr>
<td>Tregs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenotype and activation status</td>
<td>CD2, CD4, CD127, CD25, Foxp3, Helios, (GARP, LAP, CTLA-4)</td>
<td>Cell product/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B) CART product monitoring after administration

<table>
<thead>
<tr>
<th>Focus</th>
<th>Marker</th>
<th>Technique</th>
<th>Time-points</th>
</tr>
</thead>
<tbody>
<tr>
<td>CART</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Count/viability</td>
<td>CAR (commercial reagents)</td>
<td>PBMC/Cytometry</td>
<td>d7, d10, d14, d28, mo3, mo6, mo9, mo12, mo18, mo24</td>
</tr>
<tr>
<td>Basic characterization</td>
<td>CD4/CD8, TNeo/Temo/Temo/TEMMA</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Extended phenotype</td>
<td>Treg (Foxp3, CD25, CD127), Activation (CD69, CD137, etc), Exhaustion (PD-1, LAG3, etc)</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
</tbody>
</table>

C) CTs effects on immune system

<table>
<thead>
<tr>
<th>Focus</th>
<th>Marker</th>
<th>Technique</th>
<th>Time-points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serology</td>
<td>Ig, Autoantibodies, DSA (allogeneic MSC)</td>
<td>serum/ELISA + electrophoresis</td>
<td></td>
</tr>
<tr>
<td>Immune status</td>
<td>Blood count, Lymphocyte, NK cell, monocyte count, WBC, CD3, CD4, CD8, CD19, CD14, CD56/CD16</td>
<td>Blood count, PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Extended</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B cells</td>
<td>Differe ntiation</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Non-CART</td>
<td>CD3, CD4, CD8, CD45RA, CCR7, CD27, CD57, CCR5, PD-1</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Tregs</td>
<td>CD3, CD4, CD8, CD45RA, CCR7, CD27, CD57, CCR5, PD-1</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Myeloid cells</td>
<td>CD14, CD16, HLA-DR, CD123, CD11c, CD141, CD125</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>MAIT cells</td>
<td>CD3, CD4, CD8, CD161, TCRVa7.2, CCR6 and IL-18 R</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>ILCs</td>
<td>CD45, ln (CD3, CD14, CD19), CD94, CD127, c-kit, CRTh2</td>
<td>PBMC/Cytometry</td>
<td></td>
</tr>
<tr>
<td>Immune system reprogramming</td>
<td>Cell activation & differentiation</td>
<td>Plasma/ELISA or LUMINEX or PEA</td>
<td></td>
</tr>
</tbody>
</table>

(Table 4 continues on next page)
when possible, at the same time-points than phenotypic follow-up (frozen PBMC, serum, plasma). This may be performed for any academic cell product. Commercial products may be measured according to local and national policy and in accordance with company regulations. Baseline = before treatment and lymphodepletion.

to local and national policy and in accordance with company regulations.

Abbreviations: Ab antibody; AD autoimmune diseases; BAFF B-cell activating factor; BCR B cell repertoire; BCRseq B Cell Repertoire sequencing; CART chimeric antigen receptors T cells; CD cluster of differentiation; c-kit tyrosine kinase receptor; CRTC2 chemoattractant receptor-homeologous molecule expressed on Th2 cells; CSF cerebrospinal fluid; CT cellular therapy; CTLA-4 cytotoxic T-lymphocyte-associated protein 4; d day; DSA donor specific antibodies anti HLA; ELISA enzyme-linked immunosorbent assay; FoxP3 forkhead box P3; GARP glycoprotein A repetitions predominant; HLA human leucocyte antigen; IF immunofluorescence; Ig immunoglobulin; IL interleukin; ILC innate lymphoid cells; LAG lymphocyte-activation gene; LAG3 lymphocyte-activation gene 3; LAPI LAG-3-associated protein; MAIT mucosal-associated invariant T cells; mo month; MSC mesenchymal stromal cells; PBMC peripheral blood mononuclear cells; PCR polymerase chain reaction; PD-1 programmed cell death protein 1; PEA proximity extension assay; RACE rapid amplification of cDNA ends; RNA ribonucleic acid; RNAseq RNA-sequencing; scRNASeq single-cell RNA-sequencing; TCM naïve central memory T cell; TCR T cell repertoire; TCRseq T cell repertoire sequencing; TEM effector memory T cell; TEMRA effector memory T cells re-expressing CD45RA; TGFβ transforming growth factor-β; TIGIT T-cell immunoglobulin and mucin-domain containing-3; TN naïve T cell; Tregs regulatory T cells; WBC white blood cells. Biobanking should be performed, according to pharmaceutical wash out periods, sometimes lasting effects on T cells, associated risks of infections (such as viral reactivation), available recommendations and less of disease control. None approved drugs frequently used in off-label.

Table 5: Recommendations on washout period before CT, leukapheresis, LD specifically for ADs.

<table>
<thead>
<tr>
<th>Type of therapy</th>
<th>Specific recommendations in ADs</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroids</td>
<td>May be administered at dosages ≤10 mg/day prednison(e (or equivalent), by 7 days before leukapheresis and before LD; after leukapheresis and before LD, steroids may be administered at higher doses as needed for bridging therapy.</td>
<td>Depending on the patient’s clinical picture; topic/inhaled steroids permitted.</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>No specific need for a washout period</td>
<td>Individualized decision</td>
</tr>
<tr>
<td>Mycophenolate Mofetil, Azathioprine, Calcineurin inhibitors, mTOR inhibitors JAK inhibitors</td>
<td>Discontinued at least 2 weeks before leukapheresis</td>
<td>Tapering can be considered based on individual disease</td>
</tr>
<tr>
<td>Dimethyl fumarate, Fingolimod</td>
<td>Discontinued at least 6 weeks before leukapheresis</td>
<td></td>
</tr>
<tr>
<td>Bortezomib/Proteasome inhibitors</td>
<td>Discontinued at least 3 weeks before leukapheresis</td>
<td></td>
</tr>
<tr>
<td>Cladribine</td>
<td>Discontinued at least 6 months before leukapheresis</td>
<td>Try to avoid if T cell therapy is planned</td>
</tr>
<tr>
<td>Cyclophosphamide Methotrexate</td>
<td>Discontinued at least 3 weeks before leukapheresis</td>
<td>The washout period is recommended to ensure T cell activity at time of collection and to reduce potential toxicity for patients</td>
</tr>
<tr>
<td>Belimumab, B cell targeting antibodies (e.g. anti CD20)</td>
<td>Discontinued at least 1 week before leukapheresis</td>
<td>Irrelevant for T cell apheresis and CART production;</td>
</tr>
<tr>
<td>Anti-cytokine antibodies</td>
<td>Discontinued at least 1 month before leukapheresis</td>
<td>The washout period is recommended to reduce toxicity (ie. infections, such as PML) for patients and impact on B-cell, while preserving disease control, especially for CART</td>
</tr>
<tr>
<td>Natalizumab (humanized anti α4-integrin)</td>
<td>Discontinued at least 6 weeks before leukapheresis</td>
<td>Try to avoid anti T cell directed antibody therapy (CD52, ATG, CD38) if B cell targeted CART is considered as next treatment</td>
</tr>
<tr>
<td>Alemtuzumab (anti CD52 mAb)</td>
<td>Discontinued at least 6 weeks before leukapheresis</td>
<td></td>
</tr>
<tr>
<td>Daratumumab (anti-CD38 mAb) ATG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ADs autoimmune diseases; ATG anti-thymocyte globulin; CART chimeric antigen receptors T cells; CT cellular therapy; JAK Janus kinase; LD lymphodepleting Conditioning; mAb monoclonal antibody; mTOR mammalian target of rapamycin; PML progressive multifocal leukoencephalopathy. Suggested wash out period vary according to AD type and activity, manufacturing recommendations, individual decisions and trials, mostly no data available. Suggestions are based on pharmacological wash out periods, sometimes lasting effects on T cells, associated risks of infections (such as viral reactivation), available recommendations and less of disease control. None approved drugs frequently used in off-label.
Table 6: Recommendations before starting LD for CART cells (adapted from EBMT/EHA recommendations: Hayden et al., 2022, Rejeski/Subklewe et al., 2023) and before CTs (CART, MSC, Treg).

<table>
<thead>
<tr>
<th>Criterion</th>
<th>EBMT/EHA recommendations</th>
<th>AD-specific recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphodepletion before CART</td>
<td>Fludarabine - cyclophosphamide; Dose-reduced LD as per local approved label of fludarabine (i.e. 50%) in case of renal impairment</td>
<td>LD generally consists of cyclophosphamide and fludarabine. Use of standard supportive care (such as Mesna) is highly recommended.</td>
</tr>
<tr>
<td>CART product</td>
<td>LD should be administered following receipt of CART product on site</td>
<td>LD should be administered in AD following the receipt of CART product on site.</td>
</tr>
<tr>
<td>Clinical conditions</td>
<td>Active infections should be ruled out before starting LD. Active or chronic infection is a contraindication. Patient should be medically fit to proceed to LD.</td>
<td>Referral should be made to a center with appropriate on-site interdisciplinary interaction using combined haematological and AD specialist experience to select and manage AD patients. If patient develops fever in presence of active infection after LD but before CART infusion, the latter must be postponed until 48 h without fever.</td>
</tr>
<tr>
<td>Cardiac function</td>
<td>Repeat TTE, ECG and cardiac biomarkers (troponin and NT-proBNP).</td>
<td>Detailed cardiopulmonary assessment is required at time of patient selection for CT in AD including ECG and echocardiography for all AD patients. MRI and MUGA can be necessary depending on the underlying AD and on patient comorbidities.</td>
</tr>
<tr>
<td>Lung function/Blood oxygen saturation</td>
<td>92% on ambient air. Chest X ray.</td>
<td>Lung function (i.e. FVC, DLCO) and chest CT scan should have been carefully assessed at time of patient selection for CT in ADs; detailed cardiopulmonary assessment from less than 3 months is required before CTs (CART, MSC, Treg).</td>
</tr>
<tr>
<td>WBC</td>
<td>Administer LD to all patients irrespective of WBC or ALC. The SPC for tisagenlecleucel (Kymriah) state that patients with low WBC (<1 × 10<sup>9</sup>/l) 1 week before CART infusion may not require LD. Use LD with caution when unexplained neutropenia pre-dates CART administration. LD is important to CART activity and proceeding with CART without LD is not generally recommended.</td>
<td>Acquired neutropenia, usually mild and often intermittent, lymphopenia and thrombocytopenia may accompany ADs (SLE, SS, SSC, RA, IBD). LD should be considered for all patients regardless of blood cells counts. In severe cytopenia, LD dose may be reduced based on an individual patient risk assessment.</td>
</tr>
<tr>
<td>Infections markers (C-reactive protein, ferritin, LDH, metabolic profiling, fibrinogen level)</td>
<td>Required to rule out ongoing infection. Baseline assessments of risk for CRS and ICANS.</td>
<td>Inflammatory/ADs may account for abnormalities in routine laboratory studies (i.e. serum proteins, produced in response to inflammation and referred as inflammatory markers). In AD patients, a complete metabolic profile (e.g. protein electrophoresis, pre-albumin, HbA1c) is recommended.</td>
</tr>
<tr>
<td>Liver function (Bilirubin/AST/ALT)</td>
<td>Bilirubin <34 mmol/l; higher limit acceptable (>43 mmol/l) with Gilbert’s syndrome criteria. AST/ALT ≤ 4 × ULN or trial-specific criteria should be met. Identify cause of liver derangement, e.g. infection, drug toxicity including antifungals, etc.</td>
<td>Clear identification of the cause of liver derangement is mandatory before starting the CT program in ADs. MDT evaluation is recommended to assess the risk benefit of CT in case of AD specific liver function abnormalities. An increase in muscle enzymes (creatinine kinase and AST, while ALT are normal) can be seen in autoimmune inflammatory myopathies. In SLE, lupoid hepatitis is frequent (3–4 ULN liver enzymes, in presence of anti-nuclear, anti-ASMA antibodies, and rheumatoid factor). Primary cholangitis can be associated with SSC in case of Reynolds syndrome, with Goujerot-Sjögren or be observed in other mixed connective tissue diseases. Drug-induced hepatotoxicity related to azathioprine can account for high liver enzymes (3–4 ULN).</td>
</tr>
<tr>
<td>Renal function (CrCl)</td>
<td>CrCl >30 ml/min. Physicians should consider appropriate dose reductions in cyclophosphamide and fludarabine when CrCl is <60 ml/min and potentially an increased interval between LD and CART return to permit clearance of fludarabine metabolites.</td>
<td>Comprehensive urine analysis, including culture is recommended before LD to assess renal injury (glomerulonephritis, interstitial nephritis) and may show proteinuria, hematuria or active urinary sediment. Patients with severe renal insufficiency should be carefully evaluated by MDT to assess risk/benefit ratio, adapting LD dose (see above) and medications/dialysis.</td>
</tr>
<tr>
<td>CNS involvement</td>
<td>EBMT recommendations consider risk/benefit ratio. Anticonvulsant prophylaxis is mandatory in CNS involvement for CART.</td>
<td>There is no evidence suggesting substantially increased ICANS risk in AD patients, however CNS involvement and peripheral neuropathy should be assessed before treatment and individual patient risk has to be considered.</td>
</tr>
</tbody>
</table>

LD refers to CART. Abbreviations: AD autoimmune diseases; ALC absolute lymphocyte count; ALT alanine aminotransferase; AST aspartate aminotransferase; ASMA anti-smooth muscle antibody; CART chimeric antigen receptors T cells; CNS central nervous system; CrCl creatinine clearance; CRS cytokine release syndrome; CT cellular therapy; CT scan computerized tomography scan; DLCO diffusing capacity for carbon monoxide; EBMT European Society for Blood and Marrow Transplantation; ECG electrocardiogram; ESA European Hematology Association; FVC forced vital capacity; HbA1c hemoglobin A1c; IBD inflammatory bowel disease; ICANS immune effector cell-associated neurotoxicity syndrome; LD lymphodepleting conditioning; LDH lactate dehydrogenase; MSC mesenchymal stromal cells; MUGA multigated acquisition scan; NT-proBNP N-terminal pro-brain natriuretic peptide; RA rheumatoid arthritis; SLE systemic lupus erythematosus; SPC summary of product characteristics; SSC Sjögren syndrome; TTE transthoracic echocardiogram; Treg regulatory T cells; ULN upper limits of normal; WBC white blood cells. aThese EBMT recommendations were made for CART in hematologic malignancies and may differ to ADs. 56 RNA-based CART did not use LD at all. 57
<table>
<thead>
<tr>
<th>EBMT/EHA recommendations(^{39,40})</th>
<th>Specific recommendations in ADs</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRBC/platelet transfusions in CART</td>
<td>As per institutional standards, based on patient risk profile. For pRBC, consider using 1 product per time to reduce iron overload. Irradiation of blood products; Start 7 days prior to leukapheresis until at least 90 days post CART.</td>
</tr>
<tr>
<td></td>
<td>As for hematological patients; monitoring of blood counts is mandatory in ADs (e.g. at every visit and as clinically indicated, including long-term follow up to evaluate risk of ICAHT).(^{35,40})</td>
</tr>
<tr>
<td>G-CSF in CART</td>
<td>Prophylactic G-CSF: On day +2 in patients with a high-risk profile for ICAHT (e.g. high CAR-HEMATOTOX score(^{37}) and risk profile). In patients at low risk for ICAHT, G-CSF not necessary.</td>
</tr>
<tr>
<td></td>
<td>The CAR-HEMATOTOX score(^{37}) is not validated in ADs. With only few patients reported so far, no prolonged hematotoxicity has occurred in AD. Administration of G-CSF may induce disease flare in ADs. Prophylactic use of G-CSF is not recommended.</td>
</tr>
<tr>
<td>Antibacterial prophylaxis</td>
<td>In patients with a low risk for ICAHT, not recommended. In patients with a high-risk profile for ICAHT, prophylaxis may be considered once ANC <500/mcl. As per institutional standards (e.g. levofloxacin or ciprofloxacin). Look at local bacterial epidemiology. Warning in case of colonization by MDR pathogens.</td>
</tr>
<tr>
<td></td>
<td>As hematological patients Pre-existing humoral immune responses appear to be only marginally impacted by CD19 CART in SLE patients, but probably reduced more dramatically following BCMA CART.(^{31}) The risk of infection depends on the AD and degree of immunosuppression, and management should be carefully discussed upfront by a multidisciplinary team meeting (disease specialist, infection-disease specialist, hematologists and CART experts). A follow-up of potential infectious complications should be considered mandatory. Sufficiently long anti-viral and antibacterial prophylaxis should be maintained according to patient individual risk and in line with institutional guidelines and current EBMT guidelines.(^{40}) Use of G-CSF may potentially favour an AD flare.</td>
</tr>
<tr>
<td>Anti-viral</td>
<td>All patients. Start from LD conditioning until 1-year post-CART infusion AND/OR until CD4(^{+}) count >0.2 × 10(^9)/l. Valaciclovir 500 mg bid or aciclovir 800 mg bid</td>
</tr>
<tr>
<td></td>
<td>As for hematological patients. The risk of infection may depend on the AD and degree and duration of immunosuppression before CTs. Management should be carefully discussed upfront by a multidisciplinary team meeting (disease specialist, infection-disease specialist, hematologists and CART experts). A follow-up of potential infectious complications should be considered mandatory.</td>
</tr>
<tr>
<td>Anti-pneumocystis</td>
<td>All patients. To start from LD conditioning until 1-year post-CART infusion AND/OR until CD4(^{+}) count >0.2 × 10(^9)/l. Co-trimoxazole 480 mg once daily or 960 mg three times each week.</td>
</tr>
<tr>
<td></td>
<td>As for hematological patients. The risk of infection may depend on the AD and degree and duration of immunosuppression before CTs. Management should be carefully discussed upfront by a multidisciplinary team meeting (disease specialist, infection-disease specialist, hematologists and CART experts). A follow-up of potential infectious complications should be considered mandatory.</td>
</tr>
<tr>
<td>Systemic primary anti-fungal prophylaxis</td>
<td>Anti-fungal prophylaxis should be considered in severe neutropenia (ANC <500/mcl) with a high-risk profile for ICAHT (e.g. CAR HEMATOTOX score(^{37}) and risk profile) and/or prolonged neutropenia. Mold-active prophylaxis for 1-3 months (depending on the duration of neutropenia and use of steroids): posaconazole (300 mg/day) or micafungin (50 mg i.v./day). In patients with prior allogeneic HCT, prior invasive aspergillosis and those receiving corticosteroids after CAR-T cells (long-term >72 h, or high dose), prophylaxis is recommended.</td>
</tr>
<tr>
<td></td>
<td>As for hematological patients. The risk of infection may depend on the AD and degree and duration of immunosuppression before CTs. Management should be carefully discussed upfront by a multidisciplinary team meeting (disease specialist, infection-disease specialist, hematologists and CART experts). A follow-up of potential infectious complications should be considered mandatory.</td>
</tr>
<tr>
<td>Vaccine strategy in CART</td>
<td>Influenza vaccine Pre-CART: preferably vaccinate 2 weeks before LD. In B-cell aplasia low likelihood of serological response. Post-CART: ≥3 months after CART patients should be vaccinated irrespective of immunological reconstitution. Comments: where there is incomplete immune reconstitution or ongoing immunosuppression, there is a high likelihood of lower vaccine responses. Consensus view is that vaccination may still be beneficial to reduce rates of infection and improve clinical course. Consider boost upon B-cell recovery. SARS-CoV-2 Pre-CART: Preferably vaccinate before CART, in B-cell aplasia low likelihood of serological response. Post-CART: ≥3 months after CART infusion. Comments: Limited data is available on vaccine response after vaccination is started.</td>
</tr>
<tr>
<td></td>
<td>Vaccinations status should be assessed and updated before LD. Vaccination is a balance between reducing the risk of infection but comes with a theoretical risk of triggering immune events, which is a concern in the setting of ADs. Measurements of specific antibody titers may be helpful in deciding whether to vaccinate or not.(^{31}) Recently, ADWP has also provided specific COVID-19 vaccine recommendations in patients with ADs.(^{41}) Vaccination after CART therapy is effective and risk consideration should guide the decision to vaccinate before the procedure.(^{31}) In AD patients, as per hematological patients, re-vaccinations can be started from ≥3 months after CART therapy in fully immunoreconstituted, defined as absolute CD4 T cells >0.2 × 10(^9)/l, CD19 or CD20 positive B cells >0.2 × 10(^9)/l, no concomitant immunosuppressive or cytotoxic therapy in line with institutional guidelines and current EBMT guidelines.(^{40})</td>
</tr>
</tbody>
</table>

\(\)
EBMT/EHA recommendations

CART, and early reports suggest impaired serological responses in patients treated for haematological malignancies. SARS-CoV-2 vaccine-induced protection relies heavily on T-cell-mediated immunity, therefore B-cell aplasia does not seem to be a contraindication; no T-cell threshold has been defined.

Post-vaccination response monitoring is desirable. Guidance on re-vaccination post-CART and frequency/dosing of booster vaccines will vary between countries. National guidelines should be followed in this area of rapidly evolving clinical practice.

Post-CART: >6 months after CART and >2 months after immunoglobulin replacement.

Comments: Contraindications include concurrent immunosuppressive or cytotoxic therapy. Live and non-live adjuvant vaccines are contraindicated.

Post-CART: 1 year after CART and fully immune reconstituted, defined as absolute CD4+ T cells >0.2 × 10^9/l, CD19 or CD20 positive B cells >0.2 × 10^9/l, no concomitant immunosuppressive or cytotoxic therapy.

Comments: contraindications include, >8 months after completion of immunoglobulin replacement.

CRS, ICANS and ICAHT in CART

To be monitored and managed according to EBMT/EHA guidelines.

As hematological patients. The early and prompt treatment of these complications is highly recommended in AD setting. Antiviral prophylaxis according to institutional guidelines; mandatory in case of CNS involvement.

Higher-grade toxicities were not observed in the patients with ADs already treated with CART.

MDT clinical monitoring of AD patients after CART is strongly recommended.

WBC, biochemistry panel, AST, ALT, bilirubin, LDH, fibronogen, CRP

Standard follow-up

At every visit and as clinically indicated

As hematological patients.

CMV, EBV, adenovirus, COVID-19

Viral reactivation/infection (post-allogeneic HCT)

As clinically indicated

As hematological patients; quarterly evaluation at least during the first year after CT, in consideration of past immunosuppression.

MDT evaluation recommended.

Quantitative immunoglobulins

Consider i.v. (or s.c.) immunoglobulin replacement

As hematological patients; consider to replace immunoglobulins in case of hypogammaglobulinemia (<4 g/l) in AD patients, due to the risk of recurrent infections. Quarterly MDT evaluation is recommended.

Endocrine function and other standard late effects testing appropriate to age

Standard follow-up

Yearly or as clinically indicated

As hematological patients.

The occurrence of secondary ADs should be investigated.

Abbreviations: AD autoimmunne diseases, ALT alanine aminotransferase; ANC absolute neutrophil count; AST aspartate aminotransferase; CART chimeric antigen receptor T cells; CMV cytomegalovirus; CNS central nervous system; COVID-19 Coronavirus disease 2019; CRP C-reactive protein; CRS cytokine release syndrome; CT cellular therapy; EBMT European Society for Blood and Marrow Transplantation; EBV Epstein-Barr virus; EHA European Hematology Association; FBC full blood counts; G-CSF granulocyte colony-stimulating factor; HLH hemophagocytic lymphohistiocytosis; HCT hematopoietic stem cell transplantation; ICAHT immune effector cell-associated hematotoxicity; ICANS immune effector cell-associated neurotoxicity syndrome; LD lymphodepleting conditioning; LDH lactate dehydrogenase; MDR multidrug resistant; MDT multidisciplinary team; pRBC packed red blood cell; SARS-CoV-2 severe acute respiratory syndrome coronavirus 2; SLE systemic lupus erythematosus; WBC white blood cells. *These EBMT recommendations were made for CART in hematologic malignancies and may differ to ADs.

Table 5. Usual recommendations for a successful CART production advice for 200/mcl CD3+ T cell counts, but CD3+ T cell counts >50/mcl can be sufficient. Secure venous access has to be guaranteed in ADs, when planning leukapheresis and lymphodepleting conditioning (LD).

For hospitalization and distance to the accredited treating center, we refer to current EBMT guidelines for CT and ideally up to 14 days for AD patients without severe reactions. Patients should be located within 60 min of the center with the continuous presence of a caregiver educated to identify the potential complications maintained for a year. Given the intrinsic frailty of AD patients, related to both the underlying disease and prolonged immunosuppressive...
treatments, a case by case evaluation is recommended by MDT.

LD acts to allow homeostatic CART cell expansion by modulating cytokine and immune pathways. Considerations before LD in CART cells and before infusion of other CTs are outlined in Table 6, adding relevant points in ADs. Of note, repeated dosing of BCMA CART has been efficacious in MG without LD and CD19 CART was effective in a case of SLE with only half the dose. If and at what dose LD is needed for effective CART in AD is currently not established. As such, LD follows oncological guidelines.

Due to the complexity of the treatment in combination with the underlying AD, we recommend a joint follow-up period in a multidisciplinary team composed of disease specialist and a CART expert (hematologist) for at least 6 months after which, individual decisions can be made. General guidance for the management of short/medium term complications and long-term follow-up after CART and other CTs are listed in Table 7. Hematologists should be continued to be involved in monitoring of side effects according to EBMT handbook recommendations with a quarterly assessment before LD in CART cells and before infusion of allogeneic MSCs, immuno-compatibility. More and more studies are focusing on the attempts to overcome these shortcomings.

CAR-based therapies are projected to offer significant promise in the near future for several types of AD. However, some limitations must be addressed before the CARs become universally acceptable, especially in the setting of ADs. Research in this context focuses on the safety profile (i.e. CRISPR-Cas9 and suicide gene editing), development of allogeneic CART (ready to use and administered to patients), novel CAR designs, and various engineered immune cells (i.e. NK and Treg cells).

Experience with Tregs is limited in comparison. Despite safe, polyclonal Tregs mediated suboptimal responses in clinical trials, mainly due to low amount of disease-relevant antigen-specific cells and low level of Treg-cell persistence in vivo at least in peripheral blood. CARs can be employed to redirect the suppressive capacities of Tregs, thus increasing the number of antigen-specific cells that can be transferred to patients. CAR-Tregs proved very effective in controlling inflammatory conditions in pre-clinical studies. Clinical trials in this setting are warranted in the next future.

Discussion
There is evolving rationale, experience and forward vision of clinical experience of innovative CTs in patients with ADs. As with HCT, the field is bringing together fruitful multidisciplinary collaborations to address one of the most challenging groups of patients in clinical practice. In parallel, scientific studies will be important to elucidate mechanisms of clinical improvement and control of dysfunctional immune systems in ADs, alongside consideration of short-term toxicities and long-term risks.

Assessment of safety and efficacy need to be further demonstrated in controlled clinical studies. Long-term outcomes of safety, efficacy and ‘late effects’ are also of major importance, and data reporting to the national registry as for HCT and to the EBMT registry, as recently upgraded to include dedicated follow up of AD patients treated by HCT and CT, will be essential for long-term outcomes. Of note both the EHA and FDA agencies request long term follow up of all patients treated with CT before releasing any market authorization. Health economic considerations will also be central to the deliverability of these therapeutic strategies. High-quality, long-term data reporting will be essential for all of these aspects.

These recommendations reflect currently available evidence, coupled with expert opinion, and will be revised according to necessary modifications in practice. For the present, it is intended that this position statement and initial recommendations will promote patient safety and facilitate harmonization of procedural aspects, patient selection, data collection, retrospective analyses, prospective studies and mechanistic research for innovative CTs in each AD.

Outstanding questions
More clinical studies are warranted to properly evaluate the positioning of these innovative CTs within the treatment algorithms for each disease, including monoclonal and bispecific antibodies.

MSCs therapies have achieved tremendous advancements over the past decade, however substantial challenges remain to be overcome, including the CT product stability, heterogeneity, differentiation, and migratory capacity and, in case of repeated injections of allogeneic MSCs, immuno-compatibility. More and more studies are focusing on the attempts to overcome these shortcomings.

Declaration of interests
RG discloses speaking honoraria from Biotest, Pfizer, Medac, Novovi and Magenta. TA received study support from Amgen, Janssen and honoraria from Neovii, GSK, Astra-Zeneca, Abbvie. FM received honoraria & travel support from BMS, Janssen, Gilead, Miltenyi, Novartis, Astra-Zeneca, Biontech, received research support from Gilead, and discloses advisory board from Biontech. JAS discloses consultancy for Vertex, Medac and Jazz, and advisory board from Kiadis. PA discloses study support by NIH/R, payment for expert testimony by Pinsent Mason and Bugge Valentin and consulting to Cellergy AG. RS discloses speaking honoraria from Novartis and Gilead. CCL received travel support for attending meeting by Gilead and discloses consultancy for...
Nektar Therapeutics and Gilead, FSG received study support from Novartis and Gilead, speaking honoraria from Astra-Zeneca and travel support from Abbvie, Gilead and Pierre-Fabre. FO discloses speaking honoraria from Takeda, Medac, Kyowa Kirin, Marinetti-Stemline, and travel support from Medac, Jazz and Janssen. JOL received study support from Abbvie, Gilead, Takeda, consultancy & honoraria from Abbvie, BMS, Celgene, Celtrion, Engyx, Ferring, Galapagos, Gilead, GSK, Janssen, Lilly, MSD, Pfizer, Shire, Takeda, travel support by Abbvie, Takeda, Celtrion, AM received study support from Kyverna, Miltenyi and honoraria from Miltenyi, and participated to advisory board from Century Therapeutics. RC discloses speaking honoraria from GSK, AstraZeneca, Werfen, Ribioli, Eli-Lilly, Pfizer, IYA discloses speaking honoraria from Kite, Novartis and BMS. None of the mentioned conflicts of interest were related to the writing of the content of this manuscript. The remaining authors have nothing to declare.

Acknowledgements
We are grateful for the support by EBMT and ADWP without which this work would not have been possible. We are grateful also to Pauline Lansiaux for the support and valuable recommendations on MSCs. The authors thank the EBMT practice harmonization and guidelines committee, Manuela Badolgi and Myriam Labopin in the EBMT Paris Office, EBMT centers for their contributions to the EBMT registry and those active in the ADWP.

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.org/10.1016/j.eclinm.2024.102476.

References
4. McGonagle D, McDermott MF. A proposed classification of the EBMT practice harmonization and guidelines committee. Manuscript. The authors thank the EBMT practice harmonization and guidelines committee, Manuela Badolgi and Myriam Labopin.

