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Abstract
The CO2 flux (FCO2) from lakes to the atmosphere is a large component of the global carbon cycle and

depends on the air–water CO2 concentration gradient (ΔCO2) and the gas transfer velocity (k). Both ΔCO2 and
k can vary on multiple timescales and understanding their contributions to FCO2 is important for explaining var-
iability in fluxes and developing optimal sampling designs. We measured FCO2 and ΔCO2 and derived k for
one full ice-free period in 18 lakes using floating chambers and estimated the contributions of ΔCO2 and k to
FCO2 variability. Generally, k contributed more than ΔCO2 to short-term (1–9 d) FCO2 variability. With increased
temporal period, the contribution of k to FCO2 variability decreased, and in some lakes resulted in ΔCO2 contrib-
uting more than k to FCO2 variability over the full ice-free period. Increased contribution of ΔCO2 to FCO2 vari-
ability over time occurred across all lakes but was most apparent in large-volume southern-boreal lakes and in
deeper (> 2m) parts of lakes, whereas k was linked to FCO2 variability in shallow waters. Accordingly, knowing
the variability of both k and ΔCO2 over time and space is needed for accurate modeling of FCO2 from these vari-
ables. We conclude that priority in FCO2 assessments should be given to direct measurements of FCO2 at multiple
sites when possible, or otherwise from spatially distributed measurements of ΔCO2 combined with k-models
that incorporate spatial variability of lake thermal structure and meteorology.

Lakes occupy only a small portion of the Earth’s surface but
are estimated to emit large amounts of carbon dioxide (CO2)
to the atmosphere with recent emission estimates ranging
from 0.3 to 0.6 Pg carbon (C) per year (Holgerson and
Raymond 2016; Raymond et al. 2013). The CO2 emissions
(FCO2) from lakes depend on the gas transfer velocity (k) and
differences in concentration of CO2 in the surface water

and its theoretical concentration when in equilibrium with
the atmosphere (ΔCO2):

FCO2 ¼ k �ΔCO2 ð1Þ

The variable k in Eq. (1) parameterizes the physical gas
transport across the surface boundary layer and is modified by
physical factors that influence turbulence, such as wind speed,
direction and fetch, heating and heat loss, and currents
(Banerjee and MacIntyre 2004; Read et al. 2012; Tedford
et al. 2014; MacIntyre et al. 2021). In contrast, ΔCO2 repre-
sents the balance between lake input of C, in-lake factors, and
export via FCO2 . Lake input of C comes from the surrounding
catchment (Duarte and Prairie 2005; Maberly et al. 2013;
Marcé et al. 2015) and is modified by catchment size and bio-
geohydrological properties and the magnitude and intensity
of rainfall. In-lake factors constitute, for example, uptake,
processing, and respiration of C by aquatic organisms (Lauster
et al. 2006; Cole et al. 2007; Reis and Barbosa 2014) and are
modified by light intensity, nutrient concentrations, and the
standing stock of organisms.
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The many factors involved makes it challenging to assess
the relative influence of k and ΔCO2 on FCO2 , especially
because the effect of such factors is manifested at different
temporal scales ranging from hours or days (e.g., diurnal changes
in winds, temperature, primary production, and respiration)
to seasons or years (e.g., seasonal and annual variability in
temperature, nutrient availability, and C input). Besides, k and
ΔCO2 may interact in contrasting ways, making it difficult to
interpret their individual effect on FCO2 . For example, during
periods of stratification CO2 may accumulate in the hypolim-
nion and the rate at which CO2 can be transported to the sur-
face depends on how effective winds and cooling are at
deepening the upper mixed layer. These mixing-effects can
range from being transient and associated with day–night pat-
terns of wind and temperature (Jammet et al. 2017; Czikowsky
et al. 2018) to being seasonal and linked to lake mixing in
spring or autumn (L�opez Bellido et al. 2009; Ducharme-Riel
et al. 2015; Jansen et al. 2019).

In addition, temporal patterns in ΔCO2 and k can vary
from one location to another in a lake (Natchimuthu
et al. 2017). For example, at shallower depths the time for
CO2 from the sediment to reach the surface can be shorter,
and the sediment is more sensitive to resuspension, which can
increase near-shore ΔCO2 (Tonetta et al. 2016). In contrast,
there can be lower ΔCO2 at nearshore locations in lakes with
uptake of CO2 by primary production in the littoral zone
(Schilder et al. 2013; Peixoto et al. 2016). Winds can also pro-
duce local patterns in turbulence and k (Read et al. 2012;
Schilder et al. 2013; Vachon et al. 2013) and may tilt the ther-
mocline, causing upwelling of CO2 resulting in local increases
in FCO2 in both small lakes (Natchimuthu et al. 2017; Mac-
Intyre et al. 2021; Rudberg et al. 2021) and larger ones
(Heiskanen et al. 2014; Czikowsky et al. 2018). Alongside
within-lake variability in ΔCO2 and k, variability in lake
depth, size and morphology, catchment hydrology (discharge
and precipitation), and temperature and wind patterns can
lead to between-lake variability of k and ΔCO2.

Interaction effects between k and ΔCO2 have been identified in
river systems (Rocher-Ros et al. 2019), where turbulence is gener-
ally high. There, ΔCO2 was regulated by emission rate and thus
covaried with k in the sense that ΔCO2 was low when k was high
and vice versa. Although multiple studies have investigated the
variability of either ΔCO2 or k in lakes (e.g., Natchimuthu
et al. 2017; Jansen et al. 2020; MacIntyre et al. 2021), studies com-
paring the relative influence of ΔCO2 or k on FCO2 variability at
different temporal scales and across multiple lakes are rare. Yet,
such knowledge is needed for fundamental understanding of gas
fluxes in lakes and for improving process-based modeling of FCO2

(Tan et al. 2017). It is also key for assessing when and where
ΔCO2 and k need to be measured to reliably assess FCO2 .

Here we used floating chambers and surface water samples to
measure FCO2 and ΔCO2, respectively, at deep and shallow loca-
tions for short-term (1–9 d) and monthly intervals in 18 lakes, in
hemi-boreal, boreal, and sub-arctic regions in Sweden. We

combined these measurements to derive spatially resolved values
of k and identified: (i) changes in variability of FCO2 , ΔCO2, and
k over time, (ii) the relative contributions of ΔCO2 and k to
FCO2 variability for different time scales, and (iii) how differ-
ences in the relative contributions of ΔCO2 and k to FCO2 vari-
ability at both short-term (1–9 d) and seasonal time scales can
be related to the characteristics of lakes and other environ-
mental variables that affect processes within lakes. Based on
our findings, we also discuss how to effectively assess the vari-
ability in FCO2 across spatiotemporal scales in lakes.

Methods
Study lakes and sampling design

Eighteen lakes were studied between 2018 and 2020 (six lakes
per year) (Supporting Information Table S1; Fig. 1). The lakes are
distributed within six regions spanning sub-arctic to hemi-boreal
environments in Sweden. Lakes were chosen to cover landscape
characteristics and carbon and nutrient conditions representative
of ranges observed in Swedish lakes (Supporting Information
Fig. S1). Ranges of dissolved organic carbon (DOC), absorbance
at 420 nm and total phosphorous (TP) were: 2–22 mg L�1,
0.006–0.11 cm�1, and 4–280 μg L�1.

All lakes were visited monthly for week-long sampling cam-
paigns during the full ice-free period for 1 yr. Sampling was
conducted on 2–5 occasions during each week-long visit, with
24–48 h between each sampling. Samples of pCO2aq and
pCO2air were collected to derive ΔCO2 and combined with
FCO2 measurements to estimate k along three horizontal tran-
sects from shore toward the lake’s center. Each transect con-
sisted of 2–4 sampling locations that represented both shallow
(�0–2m) and deep (> 2m) parts of the respective lakes
(Fig. 1). Typically, shallow and deep locations constituted
near-shore and offshore locations, respectively, but for logisti-
cal reasons the most central part of the lakes were not always
covered. In three of the shallowest lakes, Dammsjön (DAM),
Lammen (LAM), and Grinnsjön (GRI), and in BD6, where
sampling was limited to one of two bays, deep sampling was
partly made at depths less than 2m and reflects longer dis-
tance to shore rather than a great depth difference.

Floating chambers were deployed at each sampling location
and were used to measure both FCO2 and pCO2aq. The cham-
ber design was similar to that used in Natchimuthu et al.
(2017) and each chamber consisted of an inverted plastic
bucket (volume: 5.9–8.6 liters, diameter: 0.3m), covered with
aluminum tape to minimize internal heating by sunlight. The
chamber had floats attached to its sides allowing the chamber
walls to immerse approximately 3 cm into the water. The
chambers were attached to another small float with a �1-m
line, which in turn was connected to weights; this mooring
allowed the chambers to move up and down with waves
and water level changes. This type of chamber design yield
similar flux estimates as other methods that do not interfere
with the water surface (Cole et al. 2010; Gålfalk et al. 2013).
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A 0.2- to 0.3-m polyurethane tube (inner and outer diame-
ter of 3 and 5mm, respectively) connected to a three-way
Luer-lock valve was attached through the top of the cham-
ber for manual collection of CO2 from inside the chamber.

We retrieved air temperature and atmospheric pressure at
2 m height, wind speed at 10 m height, and precipitation
from the meteorological reanalysis model MESAN developed
by the Swedish Meteorological and Hydrological Institute,

which interpolates measurements from nearby weather sta-
tions combined with a meteorological model to determine
hourly means of meteorological variables on a 2.5 � 2.5 km
grid (Häggmark et al. 2000). Although the MESAN model pro-
vides estimates for wind speed at 10 m height, it gives consis-
tent (R2 = 0.78–0.87) values of wind speed and wind gust
speed compared to values measured at lake level (Rudberg
et al. 2021).

Fig. 1. Location of lakes and sampling locations of FCO2 and pCO2aq within the study lakes, with red and blue markers denoting shallow and deep sam-
pling locations, respectively. Blue color toning represents depth intervals of 2m, calculated in ArcGIS (3D Analyst, Natural Neighbor). The colors in the
main map correspond to lakes within frames of similar color. Horizontal white scale bars have length of 100m. Orthophotos were retrieved from
Lantmäteriet, Sweden.
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Field measurements
Measurements of pCO2aq and pCO2air

pCO2aq was measured with two separate methods; a pri-
mary method combining headspace- and dissolved inorganic
carbon (DIC) samples (pCO2HS) and dissociation constants
from Wallin et al. (2010), used in 95% of cases and a second-
ary method involving measurements from equilibrated float-
ing chambers (pCO2FC), used in the remaining cases.
Sampling of pCO2aq and pCO2air is only briefly described
below and details are found in the Supporting Information
(Supporting Information Text S2). Sampling and measuring
DIC are described in Rudberg et al. (2021).

The pCO2HS-method involved collecting water samples at
� 0.1 m depth and then extracting them into the headspace
of a syringe. We used a 140-mL syringe with 35 mL of air and
equilibrated the sample for 2–3 min. Values of pCO2aq were
converted from ppm (obtained from the gas analysis) to
μatm, by accounting for changes in the carbonate system
equilibrium in the vial headspace during sampling
(Koschorreck et al. 2021), as described in Rudberg et al.
(2021). In cases where headspace equilibration samples
were not collected at the specific sampling location but else-
where in the sampling transect (21% of pCO2HS values), we
instead calculated pCO2aq using headspace samples from
the closest sampling location.

In cases where no headspace measurements were collected
on the sampling transect, we estimated pCO2aq using the
pCO2FC-method. The pCO2FC-method involved collecting gas
samples from the headspace of floating chambers after deploy-
ment times of � 24 or 48 h, which is sufficient time for the
chambers to fully equilibrate with CO2aq (Bastviken
et al. 2015). The chamber headspace was sampled with three
60-mL syringes and the gas was used to flush a 20-mL vial
followed by injecting sufficient gas in the vial to create an
overpressure. The sample integrity was confirmed when the
overpressure in the vial was released prior to analysis in
the lab (see below). Values of pCO2aq were converted from
ppm to μatm by multiplying with the pressure during sam-
pling. There is a k-dependent delay in capturing the real
pCO2aq with floating chambers, which has been estimated to
1 and 3 h for wind speeds > 6 and < 1 m s�1, respectively
(Bastviken et al. 2015). Such delay times imply a smoothing of
short-term temporal variability of pCO2aq. The bias in pCO2FC

caused by this delay was investigated by comparing pCO2HS

and pCO2FC-samples that were collected within a few minutes
of each other. A standardized major axis (SMA) linear regres-
sion between the two methods showed no consistent bias
(slope: 1.04, R2 = 0.8; Supporting Information Fig. S2), after
removing outliers (7 of 790 values).

Sampling of pCO2air was made the same way as for the
pCO2FC-method by collecting air directly above the water sur-
face. Assuming that variability of pCO2air was small within a
transect, it was only sampled from the location nearest to the
shore at each transect.

Values of pCO2air and pCO2aq were converted from ppm to
μatm by multiplying with the pressure during sampling. ΔCO2

(mmol m�3) was derived by first subtracting transect location
pCO2air from sampling location pCO2aq and then multiplying
with Henry’s constant (M atm�1), calculated from surface
water temperatures at the time of sampling according to
Weiss (1974).

Measurements of FCO2

Each floating chamber was equipped with a CO2 sensor
(K33 ELG, SenseAir AB) to measure CO2 concentration in the
chamber headspace at 5- to 6-min intervals. The sensors also
logged temperature and relative humidity. These CO2 sensors
have proved reliable under non-condensing conditions
(Bastviken et al. 2015). The CO2 sensor was placed inside the
chamber within a plastic box attached to the chamber top, to
protect from splashes. The box was drilled with multiple 0.5-
to 1-cm-diameter holes to facilitate gas transport. To protect
the sensors against humidity, critical areas on the circuit
boards were coated with polyurethane resin. Before each field
measurement the sensors were cross calibrated for approxi-
mately 3 h by comparison to reference CO2 measurements
made with an Ultraportable Greenhouse Gas Analyzer (Los
Gatos Research). Sensors whose measurements deviated from
the reference were not used in field measurements. Following
retrieval of data from CO2 sensors, the data were filtered to
account for humidity peaks, and the CO2 concentration was
corrected for temperature and humidity effects, as described in
Bastviken et al. (2015). In nine cases, we identified nonlinear
patterns in our sensor measurements associated with short-
term instabilities and that sensor CO2 increase at the time
near deployment was not reflecting the long-term trend.
Those cases were excluded from further analysis.

FCO2 was calculated through an iterative procedure,
accounting for measurements within a time window of
6–45min from the chamber deployment. Measurements made
within the first 6 min after deployment were discarded to min-
imize bias from incomplete mixing inside the chamber or pos-
sible turbulence caused by deploying the chamber. A slope
representing CO2 change over time was estimated for the first
three measurements within the time window, and additional
slopes were calculated after including one measurement point
at a time for the whole time window. Among these slopes, the
one with highest R2 was used for calculation of FCO2 according
to Eq. (3). Cases when the highest R2 of the slopes was <0.9
were only considered if the root mean square error was below
10ppm to not discriminate against small fluxes, as R2 gener-
ally decreases when the surface water CO2 concentration is
close to equilibrium with the atmosphere. For the calculation
of FCO2 in Eq. (2), Δf =Δt represents the change in mole frac-
tion over time (ppms�1), P is atmospheric pressure (atm) at
the time of sampling, V and A correspond to the volume (m3)
and area (m2) of the chamber headspace, T is the air tempera-
ture (K) during sampling, derived from the chamber CO2
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sensor, R is the ideal gas constant (L atmK�1mol�1) and 86.4 �
103 is the number of seconds per day, used to convert units
from s�1 to d�1.

FCO2 ¼
1

106 �
Δf
Δt

� PV
RTA

�86:4 �103 ð2Þ

Values of pCO2aq, pCO2air and associated chamber CO2

sensor values allowed further assessment on data quality. We
checked whether the concentration change measured by the
CO2 sensor (i.e., increase or decrease) over the first hour after
deployment fully equilibrated with water (pCO2aq minus
pCO2air), which was seen as unrealistic as it normally takes
> 1 h for that to occur (Bastviken et al. 2015). To limit the
effect of outliers, we discarded measurements where the above
criterion was violated for at least three consecutive sensor
measurements. Six hundred twenty of 1810 (34%) measure-
ments did not pass this quality assessment and were excluded
from analysis. Our motivation for this filtering approach and
potential impacts on results are discussed in detail in
Supporting Information Text S3. Briefly, 32% of the discarded
measurements were made at such near-saturation conditions
(jpCO2aq � pCO2airj < 100 μatm), when the uncertainty of
k estimates is high (Supporting Information Fig. S3). An addi-
tional 14% of the discarded CO2 sensor measurements used
for estimating fluxes were made during reducing air tempera-
tures when relative humidity neared 100%, conditions where
condensation inside the chamber headspace can potentially
bias measurements (but such conditions did not always lead
to data discards). One possible explanation for the remaining
(� 50%) discards is that pCO2aq derived from syringe sampling
at � 0.1 m depth (pCO2HS method) was lower than the
pCO2aq in the surface water boundary layer, potentially due to
microbial processes or photochemical reactions in the surface
microlayer, enhancing CO2 production (Conrad and
Seiler 1988; Zhou and Mopper 1997; Cunliffe et al. 2011),
which would contribute to underestimating pCO2aq and result
in overestimating k (Pajala et al. 2023), and in turn more
rejected data.

Estimation of k from FCO2 and ΔCO2

Values of k were derived from sampling location and time-
specific FCO2 and ΔCO2, by solving Eq. (1) for k. The direction
of FCO2 is out of the lake (i.e., positive) when ΔCO2 is positive,
and likewise FCO2 is into the lake (i.e., negative) when ΔCO2 is
negative. Hence, k can only be positive. Nevertheless, 7% of
our k-estimates were negative, which can happen near equilib-
rium (i.e., when ΔCO2 is low) due to uncertainties in the mea-
surements. These values were excluded from the analysis.

Additional lake chemistry and environmental variables
Values of pH in surface water were either derived indi-

rectly by solving the carbonic acid equilibria equation
(Stumm and Morgan 1996), using monthly measurements
of DIC and pCO2aq at � 0.1 m depth at each chamber

position as described in Rudberg et al. (2021), or measured
directly at � 0.1 m depth at the lake center with a pH elec-
trode (HACH IntelliCAL PHC201). Measurements of surface
water pCO2aq is explained above. Surface water DIC was
sampled with a syringe according to Rudberg et al. (2021).
In short, 5 mL of water was injected to a 22-mL N2-filled
vial holding 100 μL concentrated phosphoric acid. The vial
was kept at 20�C before the headspace gas of the vial was
analyzed with gas chromatography (see below). DIC con-
centration in the water phase of the vial was derived by
applying Henry’s law to the concentration in the vial head-
space. The in situ DIC concentration was calculated as the
combined molar DIC amount in the water phase and head-
space of the vial divided by the volume of the vial water
phase.

Near-surface water (0.5–1 m depth) measurements of chlo-
rophyll a (Chl a), total nitrogen (TN), TP, total organic carbon
(TOC), DOC, and absorbance were made by sampling water
with a Ruttner sampler at the deepest location of the lake. Part
of this water was used to fill 125-mL acid-washed high-density
polyethylene bottles that were transferred to a freezer upon
arrival to the lab and kept at �18�C before being analyzed for
TP. The remaining water was stored in a 4-L cubitainer until
arriving at the lab the same day. At the lab, part of this water
was transferred to 50-mL polypropylene tubes and stored at
4�C, to be analyzed for duplicate measurements of TN and
TOC. Another part of the water was filtered using 47-mm
Whatman GF/F glass fiber filters (nominal pore size 0.7 μm)
with 100 mL of the filtrate transferred to two 50-mL polypro-
pylene tubes and stored at 4�C to be analyzed for duplicate
measurements of DOC and the remaining filtrate used for
measurements of absorbance. The remaining water in the
cubitainer was used for filtering with GF/C filters, upon which
the filters were folded and wrapped in aluminum foil and
stored at �18�C to be analyzed for Chl a. TP was analyzed
with a segmented flow analyzer (AutoAnalyzer II, Seal Analyti-
cal) according to Murphy and Riley (1962). TN, TOC, and
DOC were analyzed with a Total Organic Carbon Analyzer
(TOC-V CSH, Shimadzu with a TN analysis unit), and certified
standards containing 1, 2, and 5 mg L�1 TN and 10 mg L�1

TOC were used for calibration. Samples that we assumed had
TOC concentrations higher than 20 mg L�1 were diluted with
deionized water prior to analysis of TOC and DOC. Light
absorbance at a 420 nm wavelength was measured with a
spectrophotometer (Aqualog, Horiba). Chl a was extracted
with pure methanol according to Swedish standard procedures
(SS 28170) with a method based on Richards and Thompson
(1952) and was analyzed with spectrophotometry.

Depth gradient measurements of temperature and light
intensity in the photosynthetically active wavelength range
(400–700 nm) were made at monthly intervals during the ice-
free period at the lake center. Temperature measurements were
made vertically at 0.5- to 2-m intervals with a multi-parameter
probe (AP-5000 Aquaprobe or LD0101 IntelliCAL HACH

Rudberg et al. Concentration and transfer velocity impacts on lake CO2 flux
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probe). Light intensity was measured with an underwater
quantum sensor (LI-192SA LI-COR) every 10 cm down to
1 m depth and thereafter in 50-cm intervals. The slope of
the regression between the logarithm of light intensity
vs. depth was used to calculate light attenuation, according
to Beer-Lamberts Law.

Dissolved oxygen (DO) saturation was measured at
0.1–0.25 m depth throughout the ice-free period using one
centrally located PME miniDOT logger. Measurements were
made at 10-min intervals or were recalculated to 10-min
averages if higher measurement frequencies were used, in
accordance with the sensor response time. Water tempera-
ture was obtained from the miniDOT loggers at 10-min
intervals and at second intervals from thermistors
(RBRsolo2, RBR) located within each sampling transect at
0.1 m depth.

Gas analysis
Analysis of gas samples and of headspace gas in the DIC

samples were made with an Agilent 7890A gas chromatograph
(Agilent Technologies, equipped with a 1.8 m � 3.175 mm
Porapak Q 80/100 column from Supelco, and a thermal con-
ductivity detector) through automatic injection, with a 7697A
headspace sampler (Agilent Technologies) attached. After con-
firming a linear and stable response by analyzing serially
diluted samples from a certified high concentration standard
(50,000 � 1000 ppm) upon GC system evaluation, an inde-
pendent certified standard of 1985 � 40 ppm was used for cali-
bration for each batch of samples being analyzed. Prior to
analysis, vial overpressure was released by inserting a 0.5-mm
hypodermic needle holding a water droplet making outflow of
excess gas visible and forming a barrier to gas inflow. This
setup made it possible to verify sample integrity during stor-
age. Stopper CO2 permeability was characterized by indepen-
dent experiments and sample analyses were corrected to
sample storage time.

Data analysis
Temporal variability in FCO2 , ΔCO2, and k

Interquartile range (IQR) was used for assessing temporal
variability in FCO2 , ΔCO2, and k. By calculating IQR on
datasets that represented different temporal scales in the
respective lakes, we derived measures on lake-wise temporal
variability. The temporal scales ranged from one monthly
sampling campaign (1–9 d) and consecutive monthly intervals
(i.e., multiple monthly sampling campaigns) to the full ice-
free period. For each lake and temporal scale, IQR was calcu-
lated using all possible monthly combinations of data belong-
ing to that time scale, to not favor certain monthly
combinations over others. The combined mean IQR of these
individual estimates was calculated and correspond to the
temporal variability for that lake and scale.

Variation in FCO2 explained by ΔCO2 or k
We used dominance analysis to estimate the relative influ-

ence of ΔCO2 and k on FCO2 variability (Budescu 1993; Azen
and Budescu 2003). In dominance analysis, relative influence
of predictor variables is derived by first calculating the addi-
tional contributions that each predictor variable provides to
the model R2 across all possible linear subset models (in our
case two subset models, one with only ΔCO2 included and
one with only k included as the predictor variable). The addi-
tional contribution of each predictor is calculated as
the increase in R2 that results from adding that predictor to
the regression model, and results in an output between 0 and
1, where higher output indicates greater relative influence of
that predictor variable to the response variable.

We based our model used for dominance analysis on the
logarithm of Eq. (1), satisfying the requirement of linear rela-
tionships between predictor variables, log(ΔCO2) and log(k),
and the dependent variable, log(FCO2). We used absolute
values of FCO2 , ΔCO2, and k in dominance analysis because
logarithms cannot be calculated on negative values. It was also
preferrable to use absolute values to not bias results in cases of
negative FCO2 (otherwise, k will be positive when FCO2 is nega-
tive, and the relationship between FCO2 and k will be non-lin-
ear if positive and negative FCO2 are used in the same
regression; Supporting Information Fig. S4). The model is dis-
played in Eq. (3).

log FCO2j j ¼ log kj jþ log ΔCO2j j ð3Þ

Due to the small number of measurements with negative
FCO2 , we did not conduct separate dominance analyses for sets
of values associated with negative and positive FCO2 , respec-
tively. Instead, all values were combined in the same analysis.
By doing so, we presume that k and ΔCO2 influence FCO2 in
similar ways when the flux is directed into (4% of cases) and
out of (96% of cases) the lake, respectively.

Influence indexes were derived at various temporal scales
by applying dominance analysis on separate subsets of data
that represented measurements of FCO2 , ΔCO2, and k from dif-
ferent temporal scales. The method was designed as an itera-
tive Monte-Carlo procedure. The temporal scales were the
same as those used for estimating temporal variability in our
data (explained above). Similar to that method, individual
estimates of influence indexes were calculated for each time
scale, consisting of different monthly combinations of data to
not favor certain monthly combinations over others (i.e., for a
temporal scale of 2 months, one set included data from March
and April, another April and May, and so forth). The method
followed the general procedure: (1) The first month in the
dataset was set as the starting month. (2) Data belonging to
the starting month was added to data for consecutive
month(s), where the total of months compiled depended on
the monthly scale considered. (3) We identified the smallest
number (nmin) of observations for any of the months included

Rudberg et al. Concentration and transfer velocity impacts on lake CO2 flux
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in the data. (4) We extracted a random subset of nmin unique
samples from each month of data, to ensure similar weights
for months with unequal sample sizes. (5) We calculated influ-
ence indexes of ΔCO2 and k to FCO2 variability for the subset
of samples with dominance analysis; 6. Steps 4 and 5 were
repeated 100 times. (7) We calculated the respective mean rel-
ative influence of ΔCO2 and k to FCO2 variability from the iter-
ations. (8) Steps 1–7 were repeated but using different starting
months as reference. (9) After separate mean relative influ-
ences had been estimated accordingly for all monthly combi-
nations that represented the same time scale, the collective
mean of these values was calculated and correspond to lake
mean relative influence (here denoted I) for that specific time
scale.

In the text, we refer to lake mean relative influence of ΔCO2

and k on FCO2 variability at a given temporal scale as ICO2 and
Ik, respectively. The sum of ICO2 and Ik is always 1, which
means that ICO2 >0.5 indicates greatest influence of ΔCO2 on
FCO2 . Likewise, ICO2 < 0.5 indicates greatest influence of k on
FCO2 . We refer to short-term relative influence as the shortest
temporal scale included here (one monthly sampling cam-
paign; 1–9 sampling days) and refer to long-term relative influ-
ence as covering the full ice-free period in our lakes.

We calculated ICO2 and Ik for all sampling depths combined
in each lake. We also investigated spatial within-lake variabil-
ity by comparing results for shallow and deep sampling loca-
tions, according to definitions of “shallow” and “deep”
mentioned earlier and displayed in Fig. 1. Due to limited sam-
pling at deep locations in BD3 and BD6 (Supporting Informa-
tion Fig. S5), those lakes were excluded from analyses
concerning ICO2 and Ik at deep sampling locations.

Comparison with lake characteristics
To explore how much short-term and long-term ICO2 could

be linked to lake characteristics, univariable linear, logarith-
mic, and exponential ordinary least squares (OLS) regressions
as well as multivariable linear OLS regressions of ICO2 (one
value per lake) were made with a range of variables (Table 1).
In multivariable regressions, the potential predictor variables
listed in Table 1 were used in combinations of two at a time.
Shallow and deep location ICO2 were statistically different
(p<0.05, t-test) at long-term scales among the lakes, hence
regressions were conducted on shallow and deep locations,
respectively. At short-term scales, shallow and deep location
ICO2 were not statistically different (p=0.62, Kruskal–Wallis
test) and were thus combined in the regression analysis.

All lake water and weather variables were compiled by first
averaging values by sampling occasion and then calculating a
total average for the respective lakes. Values of wind speed,
averaged by both sampling occasion and the full year, were
analyzed. Lake water and meteorological weather variables
thus represent mean values for the whole lake in all regres-
sions (i.e., in regressions with whole-lake, shallow, and deep

ICO2). Variable values for the respective lakes are listed in
Supporting Information Table S2.

Model stability was evaluated by repeating the regression
analysis but leaving one lake out each time. In cases where
model significance was determined by the inclusion of one
lake alone, the model was deemed unstable and was excluded
from analysis. Furthermore, predictor variables included in
multiple regressions were examined for collinearity by calcu-
lating variance inflation factors (VIF), which is a measure of
the maximum correlation between the respective predictor
variables. Significant regressions were only accepted if VIF
was < 5 for the predictor variables (Sheather 2009). Finally,
models were ranked based on adjusted R2 (calculated
according to Eq. 4).

Statistical analysis
Probability values below 0.05 have been considered statisti-

cally significant to reject null-hypotheses in statistical tests
and regressions. Reported R2 values are adjusted to the num-
ber of observations (n) and predictors (p) in the model
(adjusted R2):

AdjustedR2 ¼1� 1�R2� �n�1
n�p

ð4Þ

In boxplots, boxes indicate the distribution of data, where
the box itself represents the range of the middle 50% of data
(IQR), the horizontal lines in each box show the median
value, the whiskers above and below boxes show the first and
last quartile of data within � 1.5 � IQR, and points represent
outliers (> j1.5 � IQRj).

SMA regression was done in R Studio v.1.1.456, using pack-
age smatr (Warton et al. 2012). All other statistical analyses,
data handling, and plotting were made in Python v.3.7, using

Table 1. Variables used in OLS regression analysis.

Lake and catchment
propertiesa

Lake water and weather
variables

Catchment area, mean

catchment elevation slope, lake

area, lake to catchment area

ratio, lake volume, lake water

residence time, latitude,

altitude, mean and maximum

lake depth, percent catchment

coverage of forest, farmland,

clearcut and wetland,

respectively, duration of ice-free

period, fraction of ice-free

period that lakes were stratified

ΔCO2, light absorbance

(420 nm), light attenuation

(400–700 nm), Chl a, pH,

DOC, TOC, DIC, TN, TP, DO

saturation, water temperature,

air temperature, precipitation,

wind speed

aSee Supporting Information Text S1 for more information on how vari-
ables were calculated.

Rudberg et al. Concentration and transfer velocity impacts on lake CO2 flux
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packages scipy, version 1.9.1 (Virtanen et al. 2020), statsmodels,
version 0.13.2 (Seabold and Perktold 2010) and domina-
nce_analysis, version 1.1.8 (Azen and Budescu 2003; https://
dominance-analysis.github.io/dominance-analysis). Normality
tests for residuals were made with scipy.stats.shapiro. Pearson
(for normally distributed residuals) and Spearman (for non-
normally distributed residuals) correlation tests were made
with scipy.stats.pearsonr and scipy.stats.spearmanr, respectively.
Tests for differences in means between groups with normal
distribution were made with t-tests, using scipy.stats.ttest_ind,
and applying Welch’s correction in cases where variances were
unequal. Tests for equal variance between groups were made
with Bartlett’s test, using scipy.stats.bartlett. For cases where
normality could not be achieved with or without log-
transformation, differences in means between groups were
assessed with the Kruskal–Wallis test, using scipy.stats.kruskal.
OLS regressions were calculated with statsmodels.api.formula.
ols. VIF were calculated with statsmodels.stats.outliers_influence.
variance_inflation_factor. Dominance analysis was made using
dominance_analysis.Dominance.

Results
Magnitude and variability of FCO2 , ΔCO2, and k

Mean ice-free FCO2 , ΔCO2, and k ranged between 2 and
73mmolm�2 d�1, 4 and 78mmolm�3, and 0.8 and 3.2m d�1,

respectively, for the different lakes (Table 2; Fig. 2). FCO2 was
predominantly positive in our lakes (i.e., flux out of the lake)
but was negative (i.e., flux into the lake) for 3%, 6%, 16%, and
38% of measurements in oligotrophic BD6 and our three
eutrophic lakes, GUN, VEN, and SOD. Mean FCO2 and ΔCO2

corresponded well (r=0.81) and were linked to light absor-
bance at 420nm (r=0.74 and 0.79) which in turn was linked
to DOC (r=0.9). No clear trend was identified between FCO2

and k (Fig. 2). Variability in ΔCO2 increased from temporal
scales of 1–9 d up to the full ice-free period (10months or
less). In contrast, variability in k was reduced or leveled out at
scales > 5months in most lakes (Fig. 3). Variability in FCO2 dif-
fered between lakes. In lakes VEN, GUN, LAM, and GRI, FCO2

variability increased at lower time scales but was reduced at
scales > 6–8months. In most other lakes, FCO2 variability either
increased or was leveled out over time.

Influence of ΔCO2 and k on FCO2 variability
The lake mean relative influence of ΔCO2 on FCO2 variabil-

ity was generally below 0.5 at temporal scales between 1–9 d
and 6months, meaning that k had most influence on FCO2

variability at those temporal scales. However, ICO2 in the lakes
studied here increased with greater temporal scale and at
scales longer than 7months average lake ICO2 was instead
slightly above 0.5 (i.e., ΔCO2 had most influence on FCO2).
Despite this general trend there was large between-lake

Table 2. General information including duration of sampling campaigns, total number of sampling campaigns (ncampaigns) and obser-
vations (nobs) and mean, standard deviation (SD), and minimum–maximum range of FCO2 , ΔCO2, and k for the respective lakes. Statis-
tics are calculated as collective sampling month means (i.e., by first averaging for each monthly sampling campaign and then
calculating a combined average of those). For calculation of SD, only sampling months with > 3 measurements have been considered.

Lake Sampling period ncampaigns nobs

FCO2 (mmolm�2 d�1) ΔCO2 (mmol m�3) k (m d�1)

Mean SD Range Mean SD Range Mean SD Range

BD3 17 Jul to 10 Sep 3 27 18.6 9.8 1–49 6.0 2.4 2–19 3.21 1.41 0.2–7.3

BD4 25 Jun to 11 Sep 4 50 27.8 19.0 0.1–90 18.5 10.9 3–48 1.82 1.25 0.01–5.5

BD6 25 Jun to 10 Sep 4 30 19.1 6.2 -2–62 8.7 5.1 -5–21 2.09 0.75 0.3–4.4

NAS 07 Jun to 30 Sep 5 72 34.1 24.9 2–151 26.2 4.1 10–61 1.41 0.89 0.1–5.5

NBJ 07 Jun to 24 Oct 6 102 57.8 21.9 4–141 78.2 17.4 31–143 0.78 0.32 0–1.9

LJR 05 Jun to 30 Sep 5 73 31.1 15.4 6–117 24.9 2 11–73 1.55 0.75 0.3–5.1

NOR 04 Apr to 04 Nov 8 62 52.3 21.5 2–150 37.8 5 2–84 1.71 0.72 0.2–8.5

GRA 06 Apr to 04 Nov 8 44 49 15.5 10–131 26.0 4.9 12–57 2.04 0.60 0.3–3.9

DAM 03 Apr to 04 Nov 8 64 72.1 31.1 3–315 43.7 9.7 8–82 1.67 0.67 0.2–3.9

VEN 06 May to 03 Dec 10 103 32.4 26.6 �27–181 29.3 14 �12–107 1.5 1.1 0.1–10.5

SOD 07 May to 07 Nov 8 52 1.8 8.7 �26–45 4.4 8.2 �15–50 1.44 0.62 0.1–3.7

PRS 06 May to 07 Nov 9 125 23.3 14.1 3–128 26.1 10.5 3–85 1.21 0.77 0.1–5.0

GUN 13 Apr to 29 Nov 9 81 50.7 23.7 �15–200 37.7 6.7 �10–86 1.51 0.67 0.2–4.2

GRI 13 Apr to 29 Nov 9 101 39.4 23.9 3–171 41.0 9.6 6–138 1.27 0.78 0.1–4.7

SGA 13 Apr to 29 Nov 9 69 28.2 16.7 1–139 20.8 9.3 1–108 1.75 0.88 0.2–5.3

LAM 20 Apr to 18 Nov 8 39 46.1 21.1 4–125 24.6 12.4 4–84 2.32 1.26 0.5–8.2

KLI 20 Apr to 18 Nov 6 35 30.8 14.9 2–98 15.7 5 3–66 2.23 1.08 0.3–5.7

GYS 20 Apr to 18 Nov 8 53 38.7 24.1 3–144 21.2 6.1 2–72 1.95 1.01 0.3–5.8

Rudberg et al. Concentration and transfer velocity impacts on lake CO2 flux
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Fig. 2. Magnitude and variability of FCO2 , ΔCO2, and k for all study lakes. Lakes are sorted by median FCO2 , displayed with red lines. Darker shading of
boxes in the boxplot represents greater light absorbance measured at 420nm. Colors of lake names in the horizontal axis are connected to similarly col-
ored lake regions in Fig. 1. Colors above lake names denote trophic state (blue: oligotrophic, yellow: mesotrophic, green: eutrophic) based on TP,
according to Carlson (1977).

Fig. 3. Temporal variability of FCO2 , ΔCO2, and k, represented by the IQR of measured values aggregated by periods of 1–10 monthly sampling cam-
paigns. The black lines show the average across lakes with at least eight consecutive months of data.

Rudberg et al. Concentration and transfer velocity impacts on lake CO2 flux
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variability, with differences in I ranging between 0.3 and 0.5
depending on temporal scale.

The change in I with temporal scale (increase for ICO2 and
decrease for Ik) was generally greatest at deeper sampling loca-
tions (Fig. 4) and when only these deep sampling locations
were considered, ICO2 had a clear positive trend with increased
timescale in all lakes except in BD3, BD6, SOD, and GRA
(Supporting Information Fig. S5). Accordingly, ICO2 at deep
sampling locations was significantly greater than at shallow
locations when data for the full open water period in the lakes
were used (p<0.05).

Short-term regulation of ΔCO2 and k on FCO2 variability
For short-time periods (1–9 d) catchment slope, catchment

fraction of open field, and lake area were positively related to
relative influence of ΔCO2 on FCO2 variability and combina-
tions of those variables produced the best models (R2=0.54–
0.73; Fig. 5a,b; all equations and statistics are shown in
Supporting Information Table S3). Of these three variables,
catchment slope and fraction of open field were correlated to
wind speed (r=0.72 and 0.84).

Other significant models (R2 = 0.37–0.48) combined either
catchment slope, catchment fraction of open field, or lake
area, with lake physiochemical variables (TOC, absorbance,
ΔCO2, Chl a, DIC, DOC, TP, and light attenuation). Similar
degrees of explanation were identified when catchment frac-
tion of open field was combined with either latitude or air
temperature (R2 = 0.4–0.42), and when lake area was com-
bined with wind speed (R2 = 0.42 and 0.41 using mean values

from sampling occasions and the full year, respectively;
Fig. 5c).

Ice-free period regulation of ΔCO2 and k on FCO2

variability
No significant relations between long-term ICO2 and driver

variables were found for shallow sampling locations. When
deep sampling locations were considered, yearly precipitation,
lake volume, and ice-free period duration had positive rela-
tionships with long-term ICO2 on their own (R2=0.39–0.5; all
equations and statistics are shown in Supporting Information
Table S4). The degree of explanation increased when two of
these variables were combined together (R2=0.61–0.72;
Fig. 6a,c), when precipitation was combined with catchment
area or lake-to-catchment area ratio (R2=0.7–0.72) or when
ice-free period duration was combined with mean depth
(R2=0.64, Fig. 6b). Lake volume was also significant in regres-
sions with DIC, TP or Chl a, but those multiple regressions
mostly explained deviation in lake SOD, which had much
higher values of DIC, TP, and Chl a than other lakes.

Discussion
Our study of variability in FCO2 shows that variable influ-

ence changes depending on time scale. Over shorter time
scales, k generally had greater influence than ΔCO2 on FCO2

variability. On longer time scales, the relative influence of
ΔCO2 for FCO2 variability increased and became the dominant
factor for FCO2 variability over deep locations, which was in
line with the seasonal pattern of ΔCO2 observed in most of

Fig. 4. Distribution of lake mean relative influence of ΔCO2 on FCO2 variability (ICO2 ) at different temporal scales—(a) 1–10 sampling campaigns and (b)
full ice-free periods—for shallow (red) and deep (blue) sampling locations in our study lakes. Lakes BD3 and BD6 are excluded in the analysis for deep
locations due to limited sampling there. Boxes show the distribution of ICO2 values from the different lakes (each box with its horizontal lines, whiskers,
and points represents maximum one ICO2 value per lake) and colored areas cover values within one standard deviation from the mean. Colored numbers
below each boxplot pair denote the number of lakes included in the assessments. The dashed horizontal line indicates the separation between greater
influence of ΔCO2 on FCO2 variability (above the line; influence of ΔCO2 >0.5) and greater influence of k on FCO2 variability (below the line; influence of
ΔCO2 <0.5). Individual estimates of relative influence used for shallow and deep sampling locations in the lakes are displayed in Supporting Information
Fig. S5. Asterisk in (b) imply significant differences for the relative influence of ΔCO2 on FCO2 variability (and likewise significant differences for the relative
influence of k on FCO2 ) at shallow and deep sampling locations.

Rudberg et al. Concentration and transfer velocity impacts on lake CO2 flux
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our lakes (Supporting Information Fig. S7) and the greater var-
iability observed over longer time scales for ΔCO2 compared
to k (Fig. 3). Nevertheless, k was still the dominant factor for
FCO2 variability at shallow near-shore locations even on longer
time scales. These time-scale differences can be generalized to
ΔCO2 contributing more than k to FCO2 variability on longer
time scales over deep locations, and k contributing more than
ΔCO2 to FCO2 variability at shallow near-shore locations
regardless of temporal scale (Fig. 7). Natchimuthu et al. (2017)
found that ΔCO2 contributed more than k to FCO2 variability
over weekly scales, whereas k contributed more at hourly
scales. However, such findings were reported for one lake only
and the influence of ΔCO2 on FCO2 variability exceeded influ-
ence of k on FCO2 variability in only some of the 18 lakes we
studied. Thus, the relative importance of k and ΔCO2 for FCO2

differ over time and space in lakes and among lakes.

Short-term influence on FCO2 variability across lakes
For short-time periods (1–9 d) catchment slope, catchment

fraction of open field, and lake area were most relevant for rel-
ative influence of ΔCO2 on FCO2 variability. Of these three var-
iables, catchment slope and fraction of open field were
correlated to wind speed. The third variable, lake area, is in

turn important for wind fetch (Read et al. 2012; Vachon
et al. 2013; Klaus and Vachon 2020). The above suggests high
influence of ΔCO2 on FCO2 variability on a short-term basis in
lakes with characteristics favoring high winds (Fig. 5c). A
lower relative influence of k on FCO2 variability in such lakes,
which usually have high values of k (Schilder et al. 2013), may
seem counterintuitive. However, the magnitude of k does not
reflect variability in k, and in lakes where k is commonly stable
from constant wind exposure, k also varies less and is thereby
less important for FCO2 variability. Similarly, the short-term
relative influence of k on FCO2 variability was high in small
lakes sheltered by forests (LJR, NOR, NBJ, and NAS; 1–3ha and
69–89% forest coverage), where wind speeds were below the
lake average and ΔCO2 was generally high (Supporting Infor-
mation Fig. S7). There, variability in k between calm (most of
the time) and higher wind speed (occasionally) can be greater
than in lakes with consistently high wind speeds. In a short-
term study of a small boreal lake located directly beside NBJ,
MacIntyre et al. (2021) found that k was primarily wind driven
yet highly variable even at low wind speeds, which supports
the possibility of variable k in small wind sheltered lakes.

Short-term relative influence of ΔCO2 on FCO2 variability
was higher in lakes with low ΔCO2. In our data, the

Fig. 5. Multivariate regressions for short-term (1–9 d) lake mean relative influence of ΔCO2 on FCO2 variability (ICO2 ), using data from all sampling
depths, together with lake area and (a) mean catchment slope, (b) catchment fraction of open field, and (c) sampling mean wind speed. In each regres-
sion, the variable lake area is displayed in colors ranging from low (white) to high (blue) values on a logarithmic scale.

Fig. 6. Multivariate regressions for differences in long-term (ice-free period) lake mean relative influence of ΔCO2 on FCO2 variability (ICO2 ) at deep sam-
pling locations, including the variables lake volume, duration of ice-free period (tice-free), yearly precipitation and mean lake depth. In each regression, one
of the variables, (a) precipitation, (b) mean depth, and (c) tice-free, is displayed in colors ranging from low (white) to high (blue) values. BD3 and BD6 are
excluded in the regressions due to limited sampling at deep locations. Dashed horizontal lines in the panels represent the divide between higher influence
of ΔCO2 on FCO2 variability (above line) and higher influence of k on FCO2 variability (below line).

Rudberg et al. Concentration and transfer velocity impacts on lake CO2 flux
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unproductive clearwater lakes (BD3, BD4, BD6, SGA) and
the most eutrophic lake (SOD) have low levels of ΔCO2. In
these low-ΔCO2 lakes, even small alterations in ΔCO2 can be
of high relative importance for FCO2 . In such situations, the
interactions between ΔCO2 and k can be extra important for
FCO2 variability. For example, if minor relative changes in
k are still large enough to induce sufficient transport of CO2

from, for example, epilimnetic sediments to surface waters to
generate greater relative changes in ΔCO2, this would imply a
greater influence of ΔCO2 than k on FCO2 variability.

Lower levels of ΔCO2 in more eutrophic lakes may instead
be caused by higher rates of primary productivity than res-
piration during daytime (when most of our samples were
collected), where primary production produces O2 and con-
sumes CO2 and respiration produces CO2 and consumes O2.

The effect of primary productivity (and thus its consump-
tion of CO2) depends on factors that vary on daily and diel
timescales, such as temperature and light availability
(Gomez-Gener et al. 2021). Thus, higher primary productiv-
ity can positively affect the relative influence of ΔCO2 on
short-term variability of FCO2 . In lakes where respiration and
primary productivity is important for surface water CO2, alter-
ations in DO saturation can reflect surface water CO2 concen-
trations (Cole et al. 2000; Hanson et al. 2003; Hanson
et al. 2006). We found strong correlations between DO satura-
tion and ΔCO2 (r=�0.88) and they also had similar impor-
tance in regressions (Supporting Information Table S3).
Therefore, we believe that primary productivity can control
short-term relative influence of ΔCO2 on FCO2 variability in
eutrophic lakes.

Fig. 7. Conceptual flow-chart for lake mean relative influence of ΔCO2 and k on FCO2 variability. Red and blue lines and boxes denote shallow and deep
locations, respectively. The gray box denotes shallow and deep locations combined. Text in colored boxes separate between results (normal font) and
implications (bold font). The bottom box summarizes potential explanations for results.
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Long-term influence on FCO2 variability across lakes
Duration of the ice-free period, lake volume and yearly pre-

cipitation dominated among variables being most relevant for
long-term relative influence of ΔCO2 on FCO2 variability at
deep lake locations and explained up to 74% of variability
when used in multiple regressions (Supporting Information
Table S4). Deep large-volume lakes are likely to have more
gradual and prolonged seasonal mixing periods. The effect of
such mixing periods on FCO2 variability may be accentuated in
lower-latitude lakes with longer ice-free periods, where a
warmer climate may enhance hypolimnetic CO2 production
and accumulation. Prolonged seasonal mixing periods and
enhanced accumulation can in turn generate greater seasonal
variability in FCO2 and ΔCO2 when deep-water mixes to the
surface. The precipitation effect on seasonal FCO2 variability
can be related to transport of CO2 from the catchment to the
lake with surface water or via soil and ground water. If greater
mean yearly precipitation implies greater variability in precipi-
tation and CO2 transport to the lake, this will also trigger
greater variability in FCO2 and ΔCO2.

Factors controlling the influence of ΔCO2 vs. k on FCO2

within lakes
Short-term relative influence of ΔCO2 on FCO2 variability at

shallow and deep locations was similar among our lakes, with
differences in ICO2 between these two depth categories averag-
ing at 10% for our lakes. For longer time periods, differences
were greater (19% on average) and whereas we found variables
that could explain a substantial portion (R2≤0.71) of between-
lake variability in ICO2 at deep sampling locations (Fig. 6), we
found none that could explain such patterns at shallow loca-
tions. This could be due to complex interactions between
ΔCO2 and k. For example, at shallow locations a greater k will
enhance not only gas exchange rates to the atmosphere, but also
the gas exchange with shallow sediments, sustaining a steeper
gas concentration gradient (del Giorgio and Williams. 2005;
Bergström et al. 2010; Bartosiewicz et al. 2015). Hence, k variabil-
ity can have a dual effect on FCO2 and thereby emerge as the
most important factor for FCO2 variability from shallow waters.
In effect, ΔCO2 variability at shallow locations may, similarly
to k, be more linked to short-term patterns in wind speed and
wind direction and less linked to seasonal patterns.

In addition, the use of lake mean values in regressions also
means that some variables, such as wind speed, may not ade-
quately represent near-shore conditions or may represent it
differently in different lakes. This may have resulted in a lack
of models for relative influence on FCO2 at shallow locations.
Furthermore, other drivers for long-term relative influence on
FCO2 at shallow locations than those considered here may be
important, such as groundwater or riverine input (Striegl and
Michmerhuizen 1998; Humborg et al. 2010; Maberly
et al. 2013), catchment geology and productivity (Maberly
et al. 2013), sediment characteristics (Bergström et al. 2010;
Chmiel et al. 2016), internal waves and seiches (Heiskanen

et al. 2014; MacIntyre et al. 2021), and macrophyte density
(Peixoto et al. 2016). These factors need to be addressed in
other studies. Overall, we here show that the consideration of
temporal and spatial scales to disentangle processes important
for spatial and temporal variability is important when compar-
ing patterns in FCO2 within and among lakes.

Implications for assessing FCO2

Clearly, both k and ΔCO2 control FCO2 variability, but with
a relative importance that differs between temporal scales. For
time periods ranging from individual monthly sampling cam-
paigns (1–9 d) to several months, k is a key variable although
ΔCO2 sets base-line conditions for fluxes. Over seasonal time
periods ΔCO2 is a main driver in many lakes, especially in
lakes with large volumes and long ice-free periods, allowing
for prolonged seasonal mixing periods and greater storage of
DIC, or in lakes within large and precipitation-prone catch-
ments, allowing for greater input of carbon through the
catchment (Fig. 7).

The contribution from shallow and deep areas, respectively,
to total lake FCO2 corresponded to the lake area that they
encompassed (shallow areas encompassed 10%–70% of lake
area; Supporting Information Fig. S6), showing that both shal-
low and deep areas are equally important for whole lake FCO2 .
Sampling designs that combine spatially distributed measure-
ments of monthly pCO2aq with single-location estimates from
k models that account for turbulence both within and above
the lake (Tedford et al. 2014; Czikowsky et al. 2018; MacIntyre
et al. 2021), may provide reliable estimates of ice-free FCO2 at
deep central parts of lakes but are likely to bias FCO2 at shallow
near-shore parts of lakes. To limit bias in such sampling
designs, additional measurements at shallow locations as
input to long-term modeling using k would be beneficial. How-
ever, and importantly, the large within- and among-lake differ-
ences in dominance of ΔCO2 vs. k on FCO2 combined with
previous concerns regarding lack of reliability in commonly
used wind-based k models (Schilder et al. 2013; Klaus and Vac-
hon 2020) lead to the general advice to prioritize direct spatio-
temporally distributed measurements of FCO2 whenever
possible or alternatively to assess k from models and with sam-
pling designs that incorporate spatial variability of lake ther-
mal structure and meteorology (e.g., MacIntyre et al. 2021).

Constraining the current uncertainty in FCO2 is critical for
accurate regional and global budgets. Our work here shows
that variability over the short term depends on the gas trans-
fer velocity but over the long term depends on variability in
the concentration gradient of CO2 at the air–water interface.
We have shown that the latter depends on lake volume, pre-
cipitation, and duration of the ice-free period in boreal and
sub-arctic lakes, implying that duration of seasonal mixing
periods, hypolimnetic storage of DIC and input of carbon
from the catchment are key factors. While modeling of
emissions from lakes and reservoirs on global scales uses
typical values of k and of ΔCO2 over broad spatial areas
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(Raymond et al. 2013), our method based on lake-attributes
and landscape characteristics provides an approach for further
refinement. Further improvement will come from studies such
as this one which identify key drivers and with development
of more effective low-cost sensor measurements for CO2

assessments, facilitating estimates of CO2 emissions from
diverse environments.

Data availability statement
The data that support the findings of this study are avail-

able from the corresponding author upon reasonable request.
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