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Abstract

Unmanned Aerial Vehicles (UAVs) connected to cellular networks present
novel challenges and opportunities in mobility management and localization,
distinct from those faced by terrestrial users. This thesis presents an inte-
grated approach, combining two key aspects essential for the integration of
UAVs with cellular networks.

Firstly, it introduces the mobility management challenges for cellular-
connected UAVs, which differ significantly from terrestrial users. While ter-
restrial mobility management primarily aims to prevent radio link failures near
cell boundaries, aerial users experience fragmented and overlapping coverage
with line-of-sight conditions involving multiple ground base stations (BSs).
Thus, mobility management for UAVs extends beyond link failure avoidance,
aiming to minimize unnecessary handovers while ensuring extended service
availability, particularly in up-link communication. Line-of-sight conditions
from a UAV to multiple BSs increase the likelihood of frequent handovers,
resulting in control packet overheads and communication delays. This the-
sis proposes two approaches to address these challenges: 1) A model-based
service availability-aware Mobility Robustness Optimization (MRO) adapt-
ing handover parameters to maintain high service availability with minimal
handovers, and 2) A model-free approach using Deep Q-networks to decrease
unnecessary handovers while preserving high service availability. Simulation
results demonstrate that both the proposed algorithms converge promptly and
increase the service availability by more than 40% while the number of han-
dovers is reduced by more than 50% as compared to traditional approaches.

Secondly, to assess the ability of a network to support the range-based lo-
calization for cellular-connected UAVs, an analytical framework is introduced.
The metric B-localizability is defined as the probability of successfully re-
ceiving localization signals above a specified Signal-to-Interference plus Noise
Ratio (SINR) threshold from at least B ground BSs. The framework, account-
ing for UAV-related parameters in a three-dimensional environment, provides
comprehensive insights into factors influencing localizability, such as distance
distributions, path loss, interference, and received SINR. Simulation studies
explore the correlation between localizability and the number of participating
BSs, SINR requirements, air-to-ground channel characteristics, and network
coordination. Additionally, an optimization problem is formulated to maxi-
mize localizability, investigating the impact of UAV altitude across different
scenarios. Our study reveals that in an urban macro environment, the effec-
tiveness of cellular network-based localization increases with altitude, with
localizability reaching 100% above 60 meters. This finding indicates that
utilizing cellular networks for UAV localization is a viable option.

Keywords: Unmanned aerial vehicles, Localization, Service availability,
Air-to-ground channel, Mobility, Handover
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Sammanfattning

Unmanned Aerial Vehicles (UAV) anslutna till cellulära nätverk presente-
rar nya utmaningar och möjligheter inom mobilitetshantering och lokalisering,
skilda från dem som markanvändare står inför. Denna avhandling presenterar
ett integrerat tillvägagångssätt, som kombinerar två nyckelaspekter som är
väsentliga för integrationen av UAV:er med cellulära nätverk.

För det första introducerar den mobilitetshanteringsutmaningarna för mo-
bilanslutna UAV:er, som skiljer sig avsevärt från markbundna användare. Me-
dan markbunden mobilitetshantering i första hand syftar till att förhindra ra-
diolänkfel nära cellgränser, upplever antennanvändare fragmenterad och över-
lappande täckning med siktlinjeförhållanden som involverar flera markbassta-
tioner (BS). Mobilitetshantering för UAV sträcker sig sålunda bortom att und-
vika länkfel, och syftar till att minimera onödiga överlämningar samtidigt som
man säkerställer utökad servicetillgänglighet, särskilt i upplänkskommunika-
tion. Synlinjeförhållanden från en UAV till flera BS:er ökar sannolikheten för
frekventa överlämningar, vilket resulterar i kontrollpaketkostnader och kom-
munikationsförseningar. Denna avhandling föreslår två tillvägagångssätt för
att möta dessa utmaningar: 1) En modellbaserad tjänsttillgänglighetsmedve-
ten Mobility Robustness Optimization (MRO) som anpassar parametrar för
överlämning för att bibehålla hög servicetillgänglighet med minimal överläm-
ning, och 2) Ett modellfritt tillvägagångssätt med Deep Q- nätverk för att
minska onödiga överlämningar samtidigt som hög servicetillgänglighet bibe-
hålls. Simuleringsresultat visar att båda de föreslagna algoritmerna konverge-
rar snabbt och ökar tjänstens tillgänglighet med mer än 40% medan antalet
överlämningar minskas med mer än 50% jämfört med traditionella metoder.

För det andra, för att bedöma förmågan hos ett nätverk att stödja den
räckviddsbaserade lokaliseringen för de cellulärt anslutna UAV:erna, introdu-
ceras ett analytiskt ramverk. Metriska B-lokaliseringsförmågan definieras som
sannolikheten för att framgångsrikt ta emot lokaliseringssignaler över en spe-
cificerad signal-till-interferens plus brusförhållande (SINR) tröskel från minst
B jord BSs. Ramverket, som tar hänsyn till UAV-relaterade parametrar i en
tredimensionell miljö, ger omfattande insikter i faktorer som påverkar loka-
liserbarhet, såsom avståndsfördelningar, vägförlust, störningar och mottagen
SINR. Simuleringsstudier undersöker korrelationen mellan lokaliserbarhet och
antalet deltagande BS:er, SINR-krav, luft-till-mark-kanalegenskaper och nät-
verkskoordination. Dessutom har ett optimeringsproblem formulerats för att
maximera lokaliseringsförmågan, undersöka effekten av UAV-höjd över olika
scenarier. Vår studie avslöjar att i en urban makromiljö ökar effektiviteten
av mobilnätsbaserad lokalisering med höjden, med lokaliserbarhet som når
100% över 60 meter. Detta fynd indikerar att användning av mobilnät för
UAV-lokalisering är ett gångbart alternativ.

Keywords: Unmanned aerial vehicles, Localization, Service availability,
Air-to-ground channel, Mobility, Handover
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Chapter 1

Introduction

1.1 Background

In the impending future, UAVs, commonly called as drones, are poised to assume
a pivotal role in our daily lives [6]. Specifically within the realm of wireless com-
munications, UAVs can serve in three primary capacities: 1) as flying base sta-
tions augmenting coverage and capacity [7]; 2) as aerial users linked to terrestrial
wireless networks (cellular or WiFi) [1, 2]; and 3) as aerial relays establishing a
crucial link between transmitters and receivers [8]. These strides are attributed to
notable technological advancements in UAV technology, encompassing control sys-
tems, embedded technology, security protocols, and communication mechanisms.
The realization of these applications on a broad scale necessitates the resolution
of numerous research challenges, with a prominent focus on providing UAVs with
efficient means of communication and networking.

This thesis concentrates specifically on functioning of UAVs as aerial users and
the accompanying research challenges in communication. When UAVs leverage
terrestrial cellular networks for communication, they are referred to as cellular-
connected UAVs. Facilitating communication between UAVs and cellular net-
works introduces new possibilities for UAV applications, including cargo transport,
surveillance, multimedia transmission, remote sensing, precision agriculture, traffic
monitoring, and rescue operations. Achieving the same quality of service (QoS)
as terrestrial users becomes imperative for cellular-connected UAVs. Additionally,
these UAVs demand dependable command and control signaling and robust con-
nectivity for the seamless transmission of application-related data.

One of the key research challenges associated with the seamless integration of
the cellular-connected UAVs is their efficient mobility management. For the terres-
trial user, the handover procedure, as shown in Fig. 1.1, transitions the connection
of the user between a serving base station (BS), and a target BS. The user initiates
a handover request when it detects that the reference signal received power (RSRP)
from the target BS is greater than that from the serving BS by a margin known as

1



2 CHAPTER 1. INTRODUCTION

the handover margin (HOM), and this condition persists for a duration called as
the time to trigger (TTT). In contrast to terrestrial users, the altitude of a UAV
plays a substantial role in determining its connectivity with ground-based BSs. The
antenna tilt of these ground BSs contributes to the creation of fragmented and over-
lapping coverage patterns in the sky. This phenomenon results in the satisfaction
of handover conditions more frequently than observed for terrestrial users, leading
to unwarranted handovers under current mobility management schemes. Address-
ing this challenge necessitates the development of innovative mobility management
schemes specifically tailored to the distinctive characteristics and requirements of
cellular-connected UAVs.

Figure 1.1: Illustration of the user’s measurement report on RSRP from the serving and
target BS, along with handover parameters: Handover Margin and Time to Trigger.

Since mobility management is responsible for maintaining mobile users’ connec-
tions as they continue to change their location, it is important that the network has
the knowledge of the user locations. The unique advantage of the cellular-connected
UAVs having line-of-sight (LoS) channel conditions with multiple ground BSs makes
it favorable candidate for range based localization. In range based localization, the
target to be localized needs to receive multiple localization signals from different
sources. Given cellular-connected UAVs will always be connected with cellular net-
works, it is possible to utilize cellular BSs as sources in the range based localization
of the UAVs. Better localization of the users will allow the network to better map
these users for proper resource and mobility management. In the range based lo-
calization, target UAV will receive localization signals from multiple surrounding
ground BSs and use range combining methods like trilateration, triangulation, or
multilateration to calculate the location as shown in Fig. 1.2. The combining
method and the number of required signals will depend on the localization tech-
nique implemented. Consequently, investigating the cellular network’s capability
to support range-based localization for UAVs emerges as an intriguing research
direction.
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In the following, we discuss the primary research questions in this area that this
thesis tries to address.

14

Figure 1.2: Illustration of the signaling process involved in range-based localization for
cellular-connected UAVs.

1.2 Research Questions

1.2.1 Service Availability Based Mobility Management
In current mobility management schemes, the decision for handover relies on the
relative difference in RSRP between the serving and target BS. However, apply-
ing the same method to cellular-connected UAVs, which experience LoS links with
multiple ground BSs, can result in unnecessary handovers. These unnecessary han-
dovers in turn lead to additional control packet exchanges between the UAV and
the BS, consequently filling the buffer queue and causing delays in the transmission
of uplink data. To address this problem, our objective is to refine the handover de-
cision process for cellular-connected UAVs, incorporating not only RSRP but also
the buffer queue status of the UAV. For instance, a cellular-connected UAV with
excess data in the buffer should prioritize handover to stronger BSs, while a UAV
with minimal or no data to transmit should remain with the serving BS as long as
the radio link maintains RSRP greater than the minimum threshold.

In addressing this challenge, our research aims to answer the following questions:
RQ1.1: What strategies can be employed to tailor handover decision

parameters according to the buffer queue state information of a UAV
in a way that optimizes network performance in terms of number of
unnecessary handovers and service availability?

RQ1.2: Given the limitations identified in the model-based approach
for handovers, what alternative strategies can be explored to directly
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base handover decisions on the buffer queue state information of the
UAVs?

RQ1.3: How can we translate a handover optimization problem into a
reinforcement learning (RL) framework, and what would be an effective
modeling approach for defining the action space, state space, and reward
structure within this RL context?

1.2.2 Localizability of Unmanned Aerial Vehicles
Exploring the utilization of cellular networks for localizing cellular-connected UAVs
represents an exciting research direction. To assess the network’s potential in im-
plementing a range-based localization technique for the target, it is crucial to ensure
that the target receives sufficient number of usable signals. To gather this infor-
mation, a new metric must be defined to capture the likelihood of receiving usable
signals from a set of ground BSs. Also, to capture the dependence of this metric
on the cellular-connected UAVs wireless channel based parameters, an analytical
framework needs to be defined and investigated.

In tackling this challenge, our work aims to answer the following research ques-
tions:

RQ2.1: How can localizability and associated factors be effectively
modeled for UAVs connected with the cellular network?

RQ2.2: In downlink communication-based localization, how does the
altitude of a cellular-connected UAV influence its localizability perfor-
mance, taking into consideration the effects of various network parame-
ters?

RQ2.3: How can the distribution of path loss, interference, and re-
ceived signal-to-interference-plus-noise ratio (SINR) at the target UAV,
particularly with respect to air-to-ground (A2G) channel characteristics,
be accurately obtained?

1.3 Related Work

1.3.1 Service Availability Based Mobility Management
We present the current efforts focused on identifying and tackling the challenges
associated with mobility management for cellular-connected UAVs. Authors in [9]
investigate the effects of altitude of cellular-connected UAVs on coverage and han-
dover performance in terms of radio link failures in urban and rural environments.
It is concluded that new network architectures and new mobility management so-
lutions are required to integrate UAVs in 5G and beyond networks. Mobility man-
agement is also studied for satellite networks to serve UAVs in [10].

Some of the current studies [11–17] have explored various threshold-based tech-
niques for the mobility management of the cellular-connected UAVs. These studies
do not consider the optimization of the handover parameters and are based on
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the threshold criteria on the received signal strength indicator (RSSI) or SINR
with fixed values of HOM and TTT. However, they improve the UAV mobility
management by considering the optimization of UAV speed [17], down-tilt of BS
antennas [16], and route of the UAV [11,12].

Mobility robustness optimization (MRO) has also been explored in recent stud-
ies [18–20], where the handover parameters HOM and TTT are optimized based
on the quality of experience (QoE), sum capacity and cell load. In [18], authors in-
vestigated the optimization of handover parameters for individual terrestrial users
using deep Q-network (DQN). Specifically, they explored the use of a service-based
QoE metric for optimizing these parameters. The other common approach is to use
analytical tools like multi-objective optimization techniques to jointly optimize the
key performance indicators such as the number of handovers, spectral efficiency,
radio link failure, and outage probability [21].

Machine learning (ML) perticularly RL has found application in the mobility
management of wireless networks for both terrestrial and aerial users [17, 22–26].
Several RL-based schemes have been proposed to improve the performance of mobile
networks in the context of UAVs. In [22], authors utilized a DQN-based handover
decision policy to optimize both handover rate and user throughput. For cellular-
connected UAVs, [23] employed Q-learning to minimize handovers and maximize
signal quality, proposing an RL-based framework to balance the number of han-
dovers and received signal strength. With the main focus on decreasing the uplink
interference from UAVs, authors in [25], proposed an RL-based handover manage-
ment scheme that jointly optimizes communication delay, interference, and number
of handovers in cellular networks. In [26], the authors proposed a handover man-
agement scheme based on DQN to strike a balance between signal strength and
handover frequency.

Previous works [27–31] on optimizing handover parameters in the MRO has
primarily focused on terrestrial users. Our work represents the first effort to de-
vise an MRO mobility scheme tailored specifically to aerial users by optimizing the
handover parameters to reduce the number of handovers while improving service
availability. Although a Q-learning based MRO scheme was proposed in [19], the
authors focused on using UAVs as base stations rather than as aerial users. The
ML-powered mobility management schemes proposed for cellular-connected UAVs
aim to decrease the number of handovers, but they do not consider the buffer queue
state information of the UAVs when making handover decisions. In light of the over-
lapping coverage encountered by UAVs from ground-based base stations, leveraging
buffer queue state information becomes pivotal for the network to make informed
handover decisions. This involves efficiently transitioning users with filled buffers
to optimize service availability, while concurrently maintaining the association of
users with the same base station as long as the link remains stable. The objective
is to uphold user service availability and concurrently diminish the frequency of
handovers.
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1.3.2 Localizability of Unmanned Aerial Vehicles

State-of-the-art range-based localization techniques, encompassing signal strength-
based methods such as received signal strength (RSS) or timing-based approaches
like time of arrival (TOA) and time difference of arrival (TDOA), offer viable op-
tions for UAV localization. The literature presents diverse strategies for UAV local-
ization, as surveyed in [32], particularly focusing on Radio Frequency (RF)-based
precise localization techniques tailored for GPS-denied environments. Innovative
approaches include utilizing ultraviolet light-emitting diodes on UAVs, as exempli-
fied in [33], and cooperative localization techniques among UAVs, leveraging anchor
UAVs to deduce the positions of other UAVs with compromised GPS receivers [34].
Additionally, radar-based systems, requiring both ground radar setups and radar
units on UAVs [35], have been explored. Furthermore, [36] proposes employing
dedicated sensors on the ground equipped with single or multiple dipole anten-
nas to track target UAVs by receiving RF signals. The main drawback of these
methods is that they rely on extra hardware that must be added to UAVs, along
with the need for specialized ground setups like cameras and radars. As a result,
these requirements make these solutions too expensive for large-scale deployments
of UAVs.

The existing literature predominantly addresses the challenge of localizing a
generic 3D target using range-based techniques within contexts that focus on en-
hancing estimation algorithms under favorable channel conditions. Notably, studies
such as [37], [38], and [39] assume LoS channel conditions, developing 3D location
estimators for RSS and angle of arrival (AOA) range-based techniques. However,
these works do not consider the effect of the channel and interference and assume
availability of strong decodable signals for accurate estimation from a set sources.

Authors in [40] consider cellular networks for RSS-based localization of the UAVs
to calculate the Cramér–Rao lower bound (CRLB). They assume a generic LoS
channel model and do not consider localizability before calculating the estimation
bounds. In literature, consideration of cellular localizability is limited to terrestrial
targets only. Authors in [41] investigate cellular localizability for terrestrial user de-
vices with the help of stochastic geometry. They also show how obtaining a higher
number of participating BSs enhances localization precision performance. However,
their approach assumes an infinite number of randomly distributed BSs across an
unbounded area, an impractical assumption. In [42], authors adopt narrow-band
Internet-of-Things (NB-IoT) to study the localizability of the ground sensor nodes.
However, they only consider the localization of devices on the ground without con-
sidering the challenges of 3D communications. Cellular localizability performance
for cellular-connected UAVs is investigated in [43] via simulations by capturing the
inherent nature of A2G channels and network dynamics such as interference. How-
ever, the statistical characterization of the localizability is missing, which requires
a deeper analytical investigation of the path loss, received power, interference, and
SINR at the UAV.

In addition to the above two areas, significant advancements have been made in
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the field of direct air to ground communication (DA2GC) not only for low-altitude
aerial vehicles, specifically UAVs, but also for high-altitude flying vehicles such as
airplanes [44–48]. The authors in [46] design an improvised terrestrial network tai-
lored to facilitate DA2GC for airplanes traversing European airspace, with a keen
consideration of real-world flight data and traffic patterns. In [47,48], to enhance the
onboard connectivity with focus on achieving high-capacity air-to-ground commu-
nications, new architecture and gate-to-gate connectivity concepts are introduces.
The authors in [49] performed measurement study to utilize directional antenna in
connecting the flying vehicles, while in [50], authors use mesh topology to connect
flying vehicles. Authors in [51, 52] use an integrate terrestrial and non-terrestrial
networks including satellites for improving connectivity for airborne platforms.

1.4 Research Methodology

In Figure 1.3, we present our general research methodology. The research strat-
egy begins by outlining a defined research territory and a very high-level research
area. Subsequently, a qualitative literature review is conducted to comprehend the
current state of the field, including existing studies and related works. This ex-
ploration guides the identification of a specific research gap that aligns with the
initial high-level research questions. Throughout this process, continuous verifica-
tion ensures the meaningfulness of the identified gap and its relevance to practical
issues. Following this, a well-defined system model is constructed, accompanied
by clear and practical assumptions, and is consistently reassessed alongside the re-
search gap and questions. Once the system model is established, key performance
indicators (KPIs) are then defined to evaluate the system. After that, a specific
research problem is formulated, with periodic reassessment to ensure clarity. An
appropriate evaluation tool is selected to model, analyze, and simulate the net-
work, providing a comprehensive understanding of system behavior and impact of
parameters. Based on this understanding, potential improvement opportunities are
identified, leading to the proposal of solutions aimed at enhancing network per-
formance. Finally, the proposed solutions are rigorously evaluated to investigate
improvements and trade-offs in the network, concluding the research process.

In addressing research questions RQ1.1 and RQ1.2 within the domain of net-
work mobility management, our focus centers on exploring how handover decisions
affect service availability in terms of the buffer queue state of a UAV. Recognizing
the need for novel mobility management solutions to seamlessly integrate UAVs
into 5G and beyond networks, we pose the problem of optimizing handover de-
cisions for cellular-connected UAVs. The KPIs in this problem are service avail-
ability, queueing delay, and the number of handovers. Two distinct approaches
are investigated to address this challenge. The first approach involves a model-
based handover parameter optimization scheme known as service availability MRO
(SA-MRO). This scheme dynamically adjusts handover management parameters,
including HOM and TTT, to optimize service availability. The second approach
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Figure 1.3: Research Methodology

introduces a learning-based handover parameter-free mobility management scheme.
Addressing the research question RQ1.3, we transformed the optimization problem
into the RL paradigm by translating the objective functions into a reward function,
and representing the constraints as components within the state and action spaces.
In this scheme, a trained DQN agent autonomously makes handover decisions by
following a learned policy to guide its actions.

The research area of questions RQ2.1, RQ2.2, and RQ2.3 falls within the do-
main of range-based localization through cellular networks, and the initial question
is how to find the ability of the cellular network to be able to localize a UAV through
a range-based localization technique. The literature review shows that most studies
only consider performance in terms of the accuracy of the localization techniques
and do not consider non-deterministic conditions such as network coverage, traffic
load, and channel condition on the ability of the network to localize. In our study,
we define an analytical framework to quantify the ability of the network to localize
a target in 3D. We define the important factors affecting the performance in local-
izing a UAV in the sky. We formulate an optimization problem to maximize the
localizability performance and investigate how altitudes affect localizability. Lever-
aging tools from stochastic geometry, we derive the distribution of the path loss,
interference, and the received SINR by considering UAV-related system parameters
in a 3D environment. We perform Monte Carlo simulations and evaluate the results
by comparing the simulation results with theory.
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1.5 Thesis Contributions

To put our work into the context of current research, an overview of the thesis
contributions are listed below:

• Service Availability Based Mobility Management:
Mobility management for terrestrial users is mostly concerned with avoiding
radio link failure for the edge users where the cell boundaries are defined.
The problem becomes interesting for an aerial user that has fragmented cov-
erage in the sky and experiences LoS conditions with multiple ground BSs.
Thus, mobility management is not only about avoiding link failures for the
edge user but also avoiding unnecessary handovers while maintaining an ex-
tended service availability, especially in the up-link communication. The LoS
conditions from a UAV to multiple neighboring BSs make it more prone to
frequent handovers, thus leading to control packet overhead and delay in
service. The critical nature of UAV missions needs reliable and robust con-
nectivity services, thus making mobility management a critical task for the
network. Cellular networks must enable availability-oriented mobility man-
agement for aerial communication. Thus the classic MRO procedure opti-
mized for terrestrial users needs to be updated to incorporate aerial users.
In this work, we propose the following two approaches for service-oriented
availability approach for mobility management of UAVs. 1) A model-based
availability-aware MRO where handover control parameters, mainly, HOM
and TTT are tuned to maintain high service availability with the minimum
number of handovers. 2) A DQN based model-free approach for decreasing
unnecessary handovers while maintaining high service availability.

– Paper 1: I. A. Meer, M. Ozger, D. Schupke, and C. Cavdar, “Availabil-
ity Oriented Mobility Management for Cellular-Connected UAVs: Model
Based Versus Learning Based Approaches". IEEE Transactions on Net-
work and Service Management.

• Localizability of Unmanned Aerial Vehicles:
Localization of the cellular-connected UAVs plays an important role in their
security and operation. In this area, we focus on the ability of a cellular
network to support range-based localization schemes which require more than
one detectable signals from the BSs. We propose an analytical framework for
B-localizability of UAVs, which is the probability of successfully receiving
localization signals above a certain SINR level from at least B ground BSs.
Our framework provides a holistic insight into distance distributions of the
target UAV, distribution of path loss, interference, and the received SINR
by considering UAV-related system parameters in a 3D environment. In our
simulation study, we investigate the relation between the localizability and
the number of participating BSs, received signal SINR requirements, air-to-
ground channel characteristics, and network coordination, which are shown to
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be the most important factors for the localizability performance of UAVs. We
formulate an optimization problem to maximize the localizability performance
and investigate how altitudes affect the localizability for different scenarios.

– Paper 2: I. A. Meer, M. Ozger, and C. Cavdar, “Cellular Localizabil-
ity of Unmanned Aerial Vehicles". Elsevier Vehicular Communications,
Volume 44, 2023.

1.6 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we investigate the ser-
vice availability based mobility management and propose two handover optimiza-
tion algorithms to minimize the number of handovers while improving the service
availability. In Chapter 3, we consider the localizability of the cellular-connected
UAVs and investigate the impact of network coverage, traffic load, and channel con-
dition on the localizability performance. Concluding remarks and future research
directions are given in Chapter 4. Finally, the dissertation concludes with the ap-
pended papers at the end, offering additional depth and context to the presented
research.



Chapter 2

Service Availability Based Mobility
Management

Different from terrestrial users, flexibility by 3D movement of cellular-connected
UAVs and undefined cell boundaries in the sky makes mobility management a more
challenging task. The altitude in 3D operation of UAVs has a profound impact on
association of the UAV as a farther BS may possibly be chosen as the serving BS over
the closest BS. This is because, the BS antennas are tilted downwards to optimize
terrestrial coverage and UAVs at some altitude may be served by the sidelobes of
the BS antennas. This means, unlike a terrestrial user which experiences strong
signals from nearest BSs only, aerial users may experience an antenna null from
the nearest BS and a strong signal from the farther BS. This leads to fragmented
and overlapping coverage from different BSs in the sky. It is shown that due to
the fragmented BS association pattern in the sky, a large number of handovers
are observed from measurement studies in LTE networks [53, 54], and [55]. The
frequent unnecessary handovers while serving UAVs adds the control data leading
to the increased packet delay. In order to have the UAV data transmitted with
low latency and with more reliability, future cellular networks need to upgrade the
mobility management schemes to effectively manage mobility of UAVs in 3D .

Most of the UAV applications like surveillance, remote sensing, precision agri-
culture, traffic monitoring, and rescue operations require to upload the data with
the minimum possible delay. The service-related data in the buffer queue can ex-
perience long wait time because of the excess control data generated due to the
multiple handovers. The data is correlated with the location of the UAV and be-
cause of the high mobility of the UAVs, the delayed data in the buffer queue can
become obsolete and thus severely affecting the service availability.

From aerial networks perspective, communication reliability is defined as the
probability that an end-to-end message is transmitted within a certain time limit
[56]. This definition also considers the service availability, defined as the percentage
of time the network delivers the required service. In this work, to realize the use

11
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cases of the UAVs, we define the performance metric capturing the buffer queue
data of the cellular-connected UAVs. We define the service availability as the
probability that the buffer queue length is smaller than a predefined threshold.
The outage means that the packets delayed in the buffer become obsolete and will
lead to the service unavailability. This definition captures different dimensions
of the communications such as user buffer, data rate and resulting delay for the
transmitted packets.

In this work, we propose two novel service availability oriented mobility manage-
ment schemes for aerial users. In the first approach, a service availability oriented
MRO algorithm is proposed to dynamically update the handovers parameters such
as HOM and TTT. However, unlike previous approaches on the MRO which con-
sider signal strength based performance for updating the handover parameters, the
proposed scheme adds service availability as a constraint to the MRO for optimiz-
ing the handover parameters. The model based approach is threshold based and
depends on handover parameters in the network and their optimization is limited
with the parameter space. We aim to adopt a handover parameter free approach for
mobility management. Machine learning provides such an opportunity to develop a
mobility management scheme which does not depend on the handover parameters
and has a larger optimization space. Therefore, we propose a service availability
oriented learning based mobility management algorithm which combines deep neu-
ral networks (DNN) and reinforcement learning (RL) for taking the handover and
resource allocation decisions. The RL-based mobility management scheme aims
to optimize KPIs such as service availability, delay and number of handovers for
cellular-connected UAVs. The two approaches solving the same problem are dif-
ferent in many ways as the former is a model based approach while later is model
free learning based approach. The resulting approaches are compared with the
benchmark scheme with a fixed HOM and TTT and the results are validated in
a dynamic system-level simulations implementing a realistic 3GPP aerial user sce-
nario from [53]. The main contributions of this study can be summarized as follows:

• Uncovering the challenges in mobility management in 3D communication us-
ing the traditional schemes.

• A model based adaptive handover scheme to increase the service availability
while decreasing the number of handovers by adopting the HOM and TTT
based on the RSSI and UAV status i.e., buffer queue length information.

• A learning based approach for mobility management to increase the service
availability while decreasing the number of handovers by taking the handover
decisions based on the current state which includes UAV current location and
buffer queue length information.

• Implementation and validation of the proposed algorithms via dynamic sys-
tem level simulations using a realistic 3GPP aerial user scenario from [53].
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2.1 System Model
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Figure 2.1: Network Architecture (Reprinted from [1], ©2024 IEEE, reused with permis-
sion).

Throughout this work, we consider the following UAV up-link communication
scenario (i.e., from the UAVs to BSs), which is depicted in Fig. 2.1. In a given
service area, we have a total of N BSs deployed at fixed locations. A total of
K UAVs are moving inside of the area at the same time, and they are being served
by the BSs on orthogonal resource blocks. We assume that the network has the
location information of the UAVs moving in the service area. We consider for any
UAV k, Lk ∈ N is the set of closest neighboring candidate BSs for the handover.
The BSs operate in a total bandwidth B consisting of Nb radio resource blocks
(RRBs). The serving direct air to ground (DA2G) link for the UAV is shown by
the blue dashed line and communication links for terrestrial users are depicted by
dashed green lines in Fig. 2.1. The target BS DA2G link is shown by the red dashed
line in Fig. 2.1. The UAV will handover to a target BS, if it satisfies the handover
condition i.e., having signal strength from the target BS greater than the serving
BS by a margin greater than the HOM. We assume that the connection with the
source BS remains unchanged during the establishment of the connection with the
target BS, which is referred to as a soft handover. This procedure does not have an
impact on the handover decision-making but it improves the connection continuity.

Fig. 2.1 details the presented architecture for mobility management decisions,
which utilizes open radio access network (O-RAN) architecture focusing on O-
RAN Alliance standards as our reference. O-RAN provides openness through open
interfaces to enable customization of the network and intelligence at every layer
of the network to enable optimized closed-loop automation [57]. Disaggregation in
O-RAN enables to divide BSs across multiple nodes in the RAN [58]. Hence, BSs
are logically separated into different nodes for RAN functionalities which are radio
units (RUs), distributed units (DUs), central unit-user plane (CU-UP), and central
unit-control plane (CU-CP). These units are connected through interfaces defined
by O-RAN and 3GPP. The green bold connections represent O-RAN interfaces
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whereas the dashed green connections show 3GPP interfaces in Fig. 2.1. RUs are
connected to DUs via open fronthaul links, and DUs are connected to the CU over
the F1 interface. The E1 interface connects the user and control plane at the CU.
One important feature of O-RAN is the new functionality named Radio Intelligent
Controller (RIC). RIC Near Real-Time (Near-RT) layer provides intelligent radio
resource management, and quality of service management [57]. It also can leverage
intelligence in RAN functions such as quality of service management, connectivity
management, and seamless handover management [57]. RIC Near-RT is connected
with RAN via the E2 interface to control the aforementioned functionalities. A1 is
the interface connecting the orchestration and automation layer and the RIC Near-
RT layer. Open-Cloud consists of pooled resources for computing and virtualization
infrastructure from one or several data centers [59]. The interface that connects the
management and orchestration functionalities with the cloud is the O2 interface.

The learning-based approach is implemented within the network at the RIC
layer, as highlighted in red in Fig. 2.1. This placement allows for centralized train-
ing, with execution distributed across users. By leveraging centralized resources for
training and distributed execution per user, our design aims to efficiently meet the
computational complexity demands of the deep neural network model and ensure a
balance between efficiency and scalability. Furthermore, this architecture has han-
dover management functionalities that can also support MRO as a part of SONs
for our model-based approach.

2.1.1 Air-to-Ground Channel
We follow the DA2G channel model for urban environments provided in [53]. For
the suburban and rural areas, we can use the same channel model with the simple
substitution of respective parameters. We use probabilistic path loss models for the
DA2G channels with separate LoS and non-LoS links. According to [53], at time
slot t, the probability of experiencing LoS propagation in the communication link
between the lth BS and the UAV at altitude h with a flying speed of v is calculated
as follows:

PLOS =


1, dl

2D ≤ d1
d1

dl
2D

+ exp
(

d1

p1

)(
1− d1

dl
2D

)
, dl

2D > d1
, (2.1)

where p1 = 4300 log10(h) − 3800, d1 = max
(
(460 log10(h) − 700), 18

)
, in meters,

and dl
2D is the horizontal or 2D distance between the UAV and the BS l for 22.5 <

h ≤ 100 (in meters). For 100 < h ≤ 300, PLOS = 1 is assumed. For LoS condition,
the path loss PLLOS, when 22.5 < h ≤ 100, is given as [53]:

PLLOS = 28 + 22 log10(d3D) + 20 log10(fc), (2.2)

where dl
3D is the 3D distance between the UAV and the lth BS in meters, hBS is

the height of the BS, and fc is the carrier frequency in GHz. Path loss for non-LoS
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(NL) condition, PLNL, is given as [53]:

PLNL=15+
(
46-7 log10(h)

)
log10(d3D)+20 log10(fc). (2.3)

Shadow fading also depends on the LoS/NL condition. Standard deviation of
the shadow fading for LoS condition is σLOS = 4.64 exp(−0.00066h), and for NL
condition, σNL = 6 [53].

We consider UAVs with a single omnidirectional antenna. For BSs, we assume
a vertical N -element uniform linear array (ULA), where each element is omnidirec-
tional in azimuth with a maximum gain of gmax

E . Directivity as a function of the
zenith angle is given by the following [60]:

gE(Θ) = gmax
E sin2(Θ), (2.4)

where Θ is the zenith angle between the ground BS and the UAV. Considering half-
wavelength spacing between the adjacent antenna elements and a fixed down-tilt
angle Θt, the array factor of the ULA is calculated as

gA(Θ) = sin2(Nπ(cos Θ− cos Θt)/2)
N sin2(π(cos Θ− cos Θt)/2)

. (2.5)

The BSs antenna gain in linear scale is calculated as

g(Θ) = gE(Θ)× gA(Θ). (2.6)

2.1.2 Buffer Queue and Traffic Model
Many UAV applications, especially for surveillance applications need to have low
delay communication to send observed data such as video. Therefore, one of the
main focuses of this paper is the up-link communication delay for UAVs. Let u(t)
denote the number of data units in bits that arrive at the buffer of the UAV at
the end of time epoch t. The data units arriving in the buffer follow the Poisson
point process (PPP) distribution with a mean arrival rate of λ0

k for UAV k. Since
the handover decision needs some control packets to be transmitted, the handover
decision affects the arrival rate of control data units. Taking this into consideration,
we model the arrival rate of data units to the buffer queue of UAV k as follows:

λk(t) = λ0
k +

∑Th

τ=1
I(k, t− τ)λm

k,h, (2.7)

where λm
k,h models the arrival rate of control signals due to handover, Th represents

the length of time for which control messages will be issued after a handover de-
cision, and I(k, t − τ) is a handover indicator function, which is equal to one if a
handover occurred for UAV k at t − τ , and zero otherwise. Due to the handovers
and associated control signal arrivals, we have light and heavy traffic arrival win-
dows and to model both application and control data, we follow a Switched PPP



16
CHAPTER 2. SERVICE AVAILABILITY BASED MOBILITY

MANAGEMENT

(SPP) model. If qk(t) represents the number of data units at the start of the time
epoch t in the buffer queue of the UAV k. During the transmission interval, the
transmitted (served) data from the queue is given by sk(t) the arrived data to the
queue is given by u(t). Hence, UAV k’s buffer queue size (or buffer queue state
information) as one of our KPI is modeled as

qk(t + 1) = [qk(t) + uk(t)− sk(t)]+ , (2.8)

where [x]+ = max(x, 0) indicates that the amount of served data cannot exceed the
amount of the stored data in the queue. The newly arriving packets at time t will
experience a queuing delay of qk(t)/Rk(t) where Rk(t) is the expected data rate
for UAV k. We assume an upper limit on the buffer queue size, i.e., qmax

k , beyond
which a packet is dropped.

2.1.3 Allocated Spectrum and Data Rate
To calculate the up-link data rate for UAV k, we assume that the transmission time
interval (TTI) is less than the coherence time of the channel. Therefore, the data
rate over the allotted sub-carriers, denoted by bk(t) is derived as:

Rk(t) = F(Ws, bk(t), pk(t), hk(t)), (2.9)

where F(·) is a function, to be described in the following. Furthermore, Ws is the
sub-carrier bandwidth, pk(t) is the power allocation vector, hk(t) is the vector of
the ratio of channel gains to the noise plus interference level over the allocated set
of sub-carriers. Without loss of generality, we exemplify our modeling for single
carrier frequency division multiple access and approximate the F(·) function as:

F(Ws, bk(t), pk(t), hk(t)) ≈Ws|bk| log2(1 + γk(t)), (2.10)

where,

γk(t) = Pk · gk(Θ, t)
( ∑

s∈bk(t)

1
αs,k(t)

)−1

; (2.11)

αs,k(t) = |Hs,k(t)|2

N0 + WsIs,k(t) ; (2.12)

N0 is the noise power over each subcarrier; Is,k(t) is the power density of interference
over the sth subcarrier; Pk is the transmit power; gk(Θ, t) is the antenna gain;
and Hs,k(t) is the frequency-domain channel response of the sth subcarrier and
includes path loss, shadowing, and multipath fading [61]. Furthermore, bk(t) is
characterized by a RRB allocation indicator function, denoted by Φ(l, b, t, k), which
is 1 if the b RRBs of BS l is allocated at time t to the kth UAV and 0 otherwise.

The decision of the handover at any time epoch, denoted as t, impacts the data
rate as expressed in (2.10) in two ways. Firstly, it affects the channel response to
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the newly associated BS, resulting in a change in data rate. Secondly, the impact
due to the allocated number of RRBs, is represented by |bk|. A higher allocation of
RRBs correlates with an improved data rate. However, due to resource constraints
at the BS, achieving maximum RRB allocation is not always feasible. The change
in the data rate affects the buffer queue size, given that the transmitted data sk(t)
equals the product of the data rate and TTI. This, in turn, influences the queueing
delay.

2.1.4 Service Availability Model
From an aerial network perspective, service availability is part of communication
reliability which is defined as the probability that an end-to-end message is trans-
mitted within a certain time limit [56, 62]. These performance metrics are mainly
used for communications regarding airspace management, which includes applica-
tions such as air traffic management (ATM), universal traffic management (UTM),
remote piloting operations (RPOs), fully autonomous operations, and reduced crew
operations. Communication reliability requirements for these operations are given
in Table 2.1. These communication demands focus primarily on command and
control functionalities. On the other hand, satisfying the requirements of data or
payload communication of cellular-connected UAVs is vital to realize use cases. Ser-
vice availability as one of our main KPIs is defined based on the buffer queue state
information of the UAV and is directly affected by the handover decisions. Service
availability is achieved if the queue size at the transmitting UAV remains less than
the threshold. This is formally defined as:

Pr(qk(t) ≤ q0) = δ(t) ∀ k ∈ K,∀t. (2.13)

It is also important that we guarantee queue stability and keep the outages low.
These are formally defined as:

E[qk] = lim
T →∞

1
T

T∑
t=1

qk(t) <∞ ∀ k ∈ K, (2.14)

Pr(qk(t) > q0) = 1− δ(t) ∀ k ∈ K,∀t, (2.15)

where E[qk] is the expected buffer queue size for the kth UAV, q0 is the queue thresh-
old and 1 − δ(t) gives the outage probability. The extreme cases of having queue
sizes very long lead to the worst queuing latency and can degrade performance [63].

2.2 Problem Formulation and Solution Approaches

2.2.1 Problem Formulation
In this work, we optimize the handover decisions for the cellular-connected UAVs
with an aim to improve service availability, while decreasing the queueing delay,
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Table 2.1: Communication Requirements

Application Latency Service
Availabil-
ity

Ref.

ATM 5 sec 99.9999% [64, 65]
UTM 500 ms 99.999% [64]
RPOs 1-250 ms 99 −

99.99%
[56]

and the number of handovers. For all k ∈ K and l ∈ Lk, the set of available RRBs
at BS l, at time t is denoted by Bl(t). Our problem is to reserve b RRBs from
BS l at time epoch t to UAV k, which is denoted by Φ(l, b, t, k). The decisions
must improve service availability (or minimize the outage probability) of the UAV
with a minimum number of handovers, and minimum queueing delay experienced
by the UAV. Then, at decision epoch t, we need to solve the following optimization
problem for serving kth UAV:

min
Φ

[
ξr(1− δk(t)) + ξd( qk(t)

Rk(t) ) + ξhI(k, t)
]
, (2.16)

subject to:

(C1)
∑

l∈L
I
(

k, 0 <
∑

b∈Bl(t)
Φ(l, b, t, k)

)
=1, ∀k,

(C2) qk(t) ≤ qmax
k , ∀k;

(C3)
∑

b∈Bl(t)

Φ(l, b, t) ≤ bmax
l , ∀k;

where the term (1− δk(t)) represent outage, qk(t)
Rk(t) represents delay and I(k, t) rep-

resents the handover. All the terms in (3.26) are multiplied by the real positive
scaling coefficient represented as ξr, ξd, and ξh for service availability, experienced
delay, and handover indicator, respectively. Furthermore, I(k, t) is a binary indi-
cator equal to one if a handover has happened for UAV k at time t otherwise zero.
The first constraint (C1) assures that a UAV is associated with only one BS, (C2)
ensures that the buffer queue is not overflowing, and (C3) states that the available
number of RRBs at the BS can not be greater than the maximum number of RRBs
of the BS. Furthermore, in the joint-optimization in (3.26), the first term and the
second term are correlated but achieve two objectives. The first term in (3.26) aims
to minimize the instances where the buffer queue size is greater than the threshold
while the second term aims to minimize the queuing delay by efficiently allocating
the resources.
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2.2.2 Solution Approaches
2.2.2.1 Model based approach

A well defined model based approach for mobility management is based on com-
paring the received signal power levels between the serving BS and the target BS.
The criteria for handover is the difference between the power levels being greater
than HOM also known as the hysteresis value for a time interval greater than TTT.
After assigning radio resources to the randomly generated terrestrial users, the re-
maining available radio resources are assigned to the UAV. The UAV using pilot
signals sends the measurement report containing the signal strengths from other
BSs to the serving BS. The handover is initiated at time τ if the criteria for the
handover is met, i.e., if the received signal from a target BS l′, ∀l′ ∈ L is greater
than the serving BS l, ∀l ∈ L by a HOM of Ψ(t) for a TTT greater than Ω(t).
Therefore, handover is initiated when:

Pk,l′(t)− Pk,l(t) ≥ Ψ(t) ∀t ∈ [τ − Ω(t), τ ], (2.17)

where Pk,l′(t) and Pk,l(t) are the pilot signal strengths from the target BSs l′ and
the serving BS l respectively to the UAV k. The received signal strengths in (2.17) is
calculated by taking into account the channel gains, small-scale fading, and antenna
gains. The selection of handover parameters is important for optimizing mobility
performance, especially for cellular-connected UAVs. If the HOM is too low, it will
lead to frequent handovers. When it is too high, it may create extra delay and affect
the service availability. The model based approach in (2.17) is dependent on two
key handover parameters (HOM and TTT). We design an algorithm that adapts the
handover parameters based on the buffer queue size of the UAV i.e., Ψ(t) = F(qk(t))
and Ω(t) = F(qk(t)). Tuning these parameters in an adaptive manner based on
the buffer queue size ensures service oriented availability. A complete algorithm on
how the parameters are optimized in time is provided in detail in the next section.

2.2.2.2 Learning based approach

In the learning based approach, we do not control the handover parameters for
deciding the handover but learn a policy to choose the BS with which the UAV
should be connected at each time. This makes the approach model free and it
can assign radio resources based on past experience in addition to selecting the
serving BS. A solution to the formulated problem in (3.26) at time epoch t affects
different performance indicators in future epochs. For instance, a decision for han-
dover propagates in time, which may lead to the ping-pong effect and unnecessary
interference to terrestrial users. Furthermore, the optimization problem is highly
complex due to the dependencies between decisions taken at different time epochs,
non-convex functions, and integer constraints. We transform this problem where
we consider the long-term benefits with temporal availability measures. Also, due
to the dynamic nature of the cellular network environment, and the changing num-
ber of active BSs and terrestrial users, the solution needs to be more adaptive to
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the changes in the environment. Hence, to balance between the instantaneous and
long-term availability measures, we transform this optimization problem into a RL
problem. For this transformation, the constraints from the network are converted
into action and state spaces, while the reward function is a transformation of the
objective function that we aim to maximize. The goal of the learning problem is
defined in the reward function which controls the actions of the agent. Hence, the
transformed problem is completely described by the action space, the state space,
and the reward function. The central agent responsible for mobility management is
trained by running multiple flights of the UAV over the serviced area. We adopt a
DQN based algorithm with a decaying learning rate to determine the BS association
for the UAV.

2.3 Service Availability Oriented 3D Mobility Management

2.3.1 Proposed SA-MRO Algorithm

The model based SA-MRO algorithm automatically tunes the handover parameters
such as HOM (Ψ) and TTT (Ω) as explained in Section 2.2.2.1. During the flight of
the UAV, the serving BS connected with a self-organizing networks (SON) entity,
collects the data from the UAV and periodically optimizes the handover parameters.
The proposed SA-MRO scheme not only aims to reduce unnecessary handovers,
and ping-pong rates but also aims to satisfy the service availability constraint. The
network starts with the initial values of HOM Ψ = 2 dB and TTT Ω = 10 TTI.
The UAV sends the buffer queue state information i.e., q(k) to the serving BS in
addition to the other information like the signal strength from other BSs. The
network after every Tw TTIs calculates the service availability as given in (2.15).
The resulting service availability value and the current HOM and TTI determine
the updates to the HOM and TTI values. If the service availability is greater than
the required (δth = 0.99) and the HOM is less than the maximum (Ψmax = 7 dB),
HOM is increased by a value ∆(Ψ) = 0.5 dB and if the HOM is maximum, TTT
is increased by ∆(Ω) = 10 TTIs. The updated values are valid for the next Tw

TTIs. The algorithm after every Tw TTIs continues to check whether the service
availability requirement is met. If it is satisfied, the algorithm increases the HOM
and TTT to reduce the number of handovers. If the service availability requirement
is not satisfied, the algorithm decreases the HOM and TTT to let the handover
happen to get associated with the better BS. Algorithm 1 summarizes the overall
proposed procedure.

The service availability oriented MRO requires continuous measurement reports
to be sent to the serving BS. Thus the resulting control packets will lead to further
delay. Also, the achievable availability is directly affected by the length of the Tw.
Therefore, we look for another solution that can overcome these outcomes.
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Algorithm 1 Service Availability Oriented MRO Algorithm
0: Initialize Ψ, Ω and Tw

0: while qk(t) > 0 do
0: if t mod tw == 0 then
0: Obtain the qk(t), Ψ(t), Ω(t)
0: Calculate service availability δk(t)
0: if δk(t) ≥ δth and Ψ < Ψmax then
0: Ψ(t + 1) = Ψ(t) + ∆(Ψ) dB
0: else if δk(t) ≥ δth and Ψ = Ψmax then
0: Ω(t + 1) = Ω(t) + ∆(Ω) TTI
0: else if δk(t) < δth and Ψ > Ψmin then
0: Ψ(t + 1) = Ψ(t)−∆(Ψ) dB
0: else if δk(t) < δth and Ψ = Ψmin then
0: Ω(t + 1) = Ω(t)−∆(Ω) TTI
0: end if
0: end if
0: end while=0
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Figure 2.2: Deep Q-Network Architecture (Reprinted from [1], ©2024 IEEE, reused with
permission).

2.3.2 Proposed Learning Based Algorithm

We introduce a model-free DQN algorithm, that combines the Q-Learning algo-
rithm and deep neural networks. The DQN leverages experiences to iteratively
enhance system performance. In the DQN framework, an agent engages with the
environment through a sequence of events, selecting actions from the permissible
set and collecting rewards for each action taken. The triple (S, A, r) defines an
RL problem, where S and A encompass the set of possible states and actions, re-
spectively, and the agent aims to accumulate r as a reward. Fig. 2.2 illustrates
the DQN architecture, while Algorithm 2 provides a detailed description. For our
specific problem, the DQN-based learning framework is defined as follows:
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1) The State Space: It describes the set of all the states accessible to the agent
upon executing an action within the specified environment. The discrete state
is characterized by factors influencing handover decisions in a given radio envi-
ronment. In our context, the state of the environment for UAV k at time t is
denoted as Sk(t) = (hk(t), vk(t), lk(t), qk(t), xk(t), yk(t), Ck(t)), encapsulating al-
titude, velocity, current serving BS, buffer queue size, the x-axis and y-axis co-
ordinates, and set of strongest candidate BSs of UAV k respectively. If lk(t) is
serving BS, then the number of BSs in Ck(t) will be equal to (|L| − 1). Conse-
quently, the state space S encompasses all feasible instances of Sk(t). For instance,
Sk(t) = [100, 20, 1, 0, 100, 200, {3, 7, 8}] represents a state where UAV k flies at an
altitude of 100 m with a speed of 20 m/s, located at (100, 200), served by BS-1,
possessing an empty buffer queue, and BS-3, BS-7, BS-8 being the strongest can-
didate BSs. To limit the number of states, we quantize the area into small squares,
each square center representing the x and y coordinates of a specific state.
2) The Action Space: The action space presents the set of decision parameters
available to the agent at each decision epoch. We present the action at time t for
UAV k as Ak(t)=[Φ(l, b, t, k)], where Φ stands for BS association and radio resource
allocation. The action space, A, consists of different combinations of associated BS,
and an allocated set of RRBs. For example, Ak(t) = [{1, 2}] represents an action
in which, UAV k should transmit its data over two chunks of radio resources in BS
indexed as 1.
3) The Reward Function: It defines the objective function of the learning based ser-
vice availability oriented mobility management problem that is to be maximized.
Using the notation presented above, the immediate reward for the UAV k at time
t, i.e. rk(t), is defined as a weighted sum of the rewards from service availability,
low-delay performance, and a low number of handovers. Hence, we formulate rk(t)
as:

rk(t) =αr × Service availability reward + αd × Low-delay
reward− αh ×Handover regret, (2.18)

= αrδ(k, t) + αd

1 + qk(t + 1) − αhI(k, t), (2.19)

where, αr, αd, and αh are the weights, which are real positive numbers. The
weights determine the relative importance of the KPIs in target UAV applications.
Definitions of rewards and regrets for respective terms are given in (2.18). In the
first term in rk(t), the service availability reward is obtained when the buffer queue
size is less than a threshold. The second term, Low-delay reward, is proportional
to the inverse of buffer queue size, and finally, the last term, handover regret, is
an indicator of a handover event, and hence, its contribution is negative in the
immediate reward. The first term and the second term in (2.19) are correlated but
achieve two objectives. The first term in (2.19) aims to reward the instances where
the buffer queue size is lesser than the threshold while the second term aims to
reward for reducing the queuing data and thus delay by efficiently allocating the
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resources. Furthermore, all these measures have been scaled in [0, 1] interval, to
prevent any one metric from dominating others.

Qk(sk, ak; θ)=r+γ max
a′∈A

Qk(s′
k, a′

k, θ′), (2.20)

where the network weights θ and θ′ are used to parameterize the action value func-
tion. During training, initially, the agent takes actions more randomly to explore
different states and stores the experiences as a tuple (current state, action taken,
reward collected, next state) in the memory. When the network has enough expe-
rience, memory replay is invoked to train the target network. The experiences in
the memory are randomly sampled to train the network. The process of training
from experiences and sampling from the replay memory that stores the experiences
is called experience replay. This reduces the correlation between the samples and
therefore leads to efficient learning. To train our neural network, we use the loss
function which is defined as the squared difference between the two sides of the
Bellman equation and calculated as follows

L(θ) = E[(r+γ max
a′∈A

Qk(s′
k, a′

k, θ′)−Qk(sk, ak; θ))2]. (2.21)

We use gradient descent to minimize the loss function [66] in (2.21). The number
of neurons in the first and final layers is determined by the dimensions of the state
space |S| and action space |A|, respectively.

We consider the decaying ϵ-greedy exploration method to maintain a balance
between exploration and exploitation. At a given epoch, the agent selects a random
action with probability ϵ and opts for the best action where the Q-value is the
highest with probability 1 − ϵ. Therefore, the probability of selecting action ak in
state sk is defined as

πk(sk, ak) =
{

ϵ/(|A| − 1), otherwise (2.22)

To fill the experience replay buffer, the algorithm tends to explore more at the
beginning of the training. This makes sure the agent learns about the variation
in the environment by starting with a random policy. We let ϵ = 1 at the start
and let it decay with each learning episode, and then finally set it at a small value
ϵ = 0.01. This means more exploitation after training for some episodes in which
actions follow the policy.

The learning rate controls the change in the model each time we update the
model weights. We implement a decaying learning rate model to balance between
the accelerated training speed and the convergence to the optimal set of weights as
well as avoiding the unstable training process. A too small value of the learning rate
will lead to a long training process while a too large value may lead to convergence
to a sub-optimal set of weights too fast. Therefore, the learning rate is an important
hyper-parameter to configure for the neural network. The decaying learning rate is
given as

α(Γ) = α0

(1 + ηΓ) , (2.23)
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where α0 is the initial learning rate, Γ is the episode number of the training and η
is the constant parameter for the decaying rate.

Algorithm 2 DQN Based Service Availability Oriented Mobility Management Al-
gorithm

0: Γ← Training Episodes;
0: Hyper-parameters: learning rate α ∈ (0, 1], discount rate γ ∈ [0, 1), ϵ-greedy

rate ϵ ∈ (0, 1]
0: Initialize: replay buffer memory D, mini-batch size M, and DQN parameters

(θ, θ′) for main and target networks.
0: S,A: State and Action space of the DQN agent
0: for each episode ← 1 to Γ do
0: Update α(Γ) from (2.23)
0: UAV with state s1 initialized with random action a1
0: for t = 1, 2, · · · do
0: if pϵ ≤ ϵ //(pϵ is random probability) then
0: Select a random action at ∈ A
0: else
0: Select at = arg maxa∈A Q(st, a, θ)
0: end if
0: Return Φ(l, b, t), ∀l, b;
0: The UAV observes st+1
0: Collects the reward rt from (2.19)
0: Stores the tuple (st, at, rt, st+1)
0: Samples the random mini-batch of transitions

(si, ai, ri, s′
i) from D;

0: for each i ∈M do
0: Qi(si, ai; θ) = r + γ maxa′∈A Qi(s′

i, a′
i, θ′)

0: Compute Loss and perform gradient descent
for Q(s, a; θ)

0: Update the target network parameters θ′ = θ
0: end for
0: end for
0: end for=0

2.4 Results and Discussion

In this section, we compare the performance of the proposed schemes with a bench-
mark scheme. To have a fair comparison of the two approaches, all the system
settings and parameters that are common in these schemes must be kept the same.
We investigate the performance of our SA-MRO and DQN-powered learning solu-
tion and compared their results with the following benchmark scheme:
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Figure 2.3: Numerical results showing session and average rewards against training iter-
ation for the convergence of the proposed learning based algorithm (Reprinted from [1],
©2024 IEEE, reused with permission).

2.4.1 Simulation Environment

For the simulation setup, we consider 3 km × 3 km areas with 8 ground BSs
uniformly distributed. The Algorithm 1, Algorithm 2, and the benchmark scheme
are implemented in Python. We assume that each UAV is flying at a constant
altitude of h and a speed of v. Our learning based solution targets that (i) for
each time frame, i.e., 10 TTIs, each UAV should be associated with the serving BS
having the best channel quality; (ii) at each TTI, UAV should be connected to only
one BS; and (iii) for decreasing the buffer queue data, the UAV should connect to
the best channel BS. We perform the learning with multiple UAV flights and then
save our model for testing. The learning model selects the velocity and altitude of
the UAV randomly thus making the trained model applicable to all the velocities
and altitudes. The other system parameters used are provided in Table 2.2.

2.4.2 Behavior Analysis of the Proposed Algorithms

In this section, we present the results of the convergence of the learning based
algorithm and the behaviour analysis in the time domain of the proposed SA-MRO
algorithms.
Convergence of the learning based algorithm: To observe if our system is
converging with training, we investigate the change in average session reward with
respect to the number of iterations, which is shown in Fig. 2.3. The reward is
given by (2.19), where all the KPIs are normalized and the sum of the weights (αr,
αd, and αh) is equal to one. This is done for two reasons: 1) the normalization
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makes sure that all the KPIs contribute to the reward equally, i.e., none of the KPIs
dominates the reward function and 2) the sum of the weights equal to one makes
sure that the neural network takes the decisions based on the relative importance
of the KPIs. In Fig. 2.3, we see the reward initially being negative as the system
takes random actions which leads to multiple handovers, and the agent is penalized
by the negative reward. As the training progresses and the agent learns from the
previous actions, the rewards start to improve and the agent converges to a desired
policy. Since we always have some random action as ϵ never goes to zero but is
very small, which means the random actions lead to some fluctuations we can see
in Fig. 2.3.
Analysis on Policy Design: It is not enough that the DQN algorithm converges,
it is also important to know to which policy the algorithm has converged. To
understand the converged policy, we observe the change in service availability and
percentage of handovers as the agent trains in Fig.2.4. Different policies in the
RL mean how the coefficients in the reward function are assigned and the agent
converges to that policy, i.e., at which state which action is the best as per that
policy. In our case, we want the agent to take action in such a way that a high service
availability is maintained with few handovers. Fig.2.4 captures the progressive
shifts in service availability and the percentage of handovers as the agent undergoes
training using Algorithm 2. As can be observed from Fig. 2.4, after the first 150
iterations, the system starts to learn, and the service availability is increased by
90% while the number of handovers is reduced by 50%. This shows that the system
learns according to the desired policy. After a higher number of iterations, the
system becomes more stable, and we observe that the service availability remains
constant with handovers below 10% as compared to the initial number of handovers.

Behavior Analysis of SA-MRO: In our proposed SA-MRO scheme, we dynam-
ically adapt the parameters HOM and TTT according to the buffer queue state
information of the UAV as explained in Algorithm 1. Fig. 2.5 shows the sensitiv-
ity of handover parameter HOM Ψ in response to variations in the buffer queue
size q(t). Notably, when the data in the buffer is low (falls below a predefined

Table 2.2: Simulation Parameters

Parameters Values
Service area 3 × 3 Km2

Available RRBs for UAV (per
TTI)

Random, up to 4 × 180
KHz

BSs antenna height, carrier fre-
quency

25 m, 2 GHz

Packet arrival rate and size at
UAV

0.3 packet per sec; 2
Kbits

Handover control packet size 4 × 1 Kbits
∆(Ψ), ∆(Ω) 0.5 dB, 10×TTIs [67]
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Figure 2.4: Numerical results showing the learned policy as the agent undergoes training
using Algorithm 2 (Reprinted from [1], ©2024 IEEE, reused with permission).

threshold (q0 = 20 kbits)), the algorithm increases the value of HOM Ψ till its
maximum allowed value of 7 dB. The increased value of HOM will reduce the num-
ber of handovers, prompting the system to encourage the UAV to maintain its
connection with the serving BS. Conversely, as the buffer queue size surpasses the
threshold, the algorithm decreases the value of the parameter HOM Ψ, facilitating
a faster handover to a stronger BS. This adaptive mechanism enhances data rate,
expedites buffer data depletion, and improves overall service availability. There-
fore, Algorithm 1 effectively minimizes unnecessary handovers while ensuring the
buffer queue size remains below the stipulated threshold. To address challenges
encountered during the initialization phase of parameter tuning, the system adopts
a strategic approach. It initiates with the lowest possible HOM value, prioritizing
the establishment of a robust connection with the strongest BS. Whether the sys-
tem resets or a new user initiates data transmission, the HOM defaults to its lowest
value by design. This approach ensures that the primary focus during these initial
phases is on establishing and maintaining a reliable connection with the user.

2.4.3 Model based vs learning based handover management

The results for the outage probability, i.e., the probability that the queue size is
greater than the threshold q0 as defined in (2.15) are presented in this section. Fig.
2.6 shows the outage probability as a function of the UAV altitude for different
approaches. The benchmark schemes with HOM = 7 dB and HOM = 2 dB have
no interest in improving the UAV up-link communication service availability. They
only care about keeping the connectivity with the network, and hence they are the
first (HOM = 7 dB) and the second (HOM = 2 dB) most unreliable approaches.
We consider the mobility of the UAV with velocities 30 m/s in Fig. 2.6(a), 40 m/s
in Fig. 2.6(b) and 50 m/s in Fig. 2.6(c). In Fig. 2.6, the two cases of a fixed HOM
considered are; a low HOM of 2 dB which favors more handovers and a high HOM



28
CHAPTER 2. SERVICE AVAILABILITY BASED MOBILITY

MANAGEMENT

0.5 1 1.5 2 2.5 3

Time (ms) 104

0

1

2

3

4

5

6

7

H
a
n
d
o
v
e
r 

m
a
rg

in
 (

d
B

)

0

1

2

3

4

B
u
ff
e
r 

s
iz

e
 [
b
it
s
]

104

Figure 2.5: Numerical results showing the sensitivity of handover parameter HOM against
the buffer queue size in time for the SA-MRO (Reprinted from [1], ©2024 IEEE, reused
with permission).

of 7 dB margin which favors less handovers. The two HOMs provide us the two
extreme cases in the benchmark scheme where we are only concerned about the
connectivity of the mobile user. We observe in Fig. 2.6(a), the outage probability
for the proposed learning based solution is less than 0.01 for all the altitudes and
close to 0.01 for the proposed model based SA-MRO scheme. It indicates that both
the proposed schemes care about service availability and force the system to take
handover decisions in such a way as to keep the service availability high. We observe
that the service availability improves as altitude increases. This is because, as the
UAV altitude increases, the LoS increase as given in (3.1), making the channel
condition better and thus increasing the data rate and emptying the buffer much
faster. Also, as the speed of the UAV increases in Fig. 2.6(b) and Fig. 2.6(c), the
difference between the SA-MRO and learning based approaches increases indicating
that the model based approach is not suitable for highly mobile users. The learning
based solution can maintain a low outage probability (< 0.01) in all the cases.

In Fig. 2.7, we observe the normalized number of handovers with respect to
the UAV altitude, normalized to the scheme having maximum handovers. Our first
observation is that as the altitude of the UAV increases, the number of handovers
increases in all approaches. This is because, the number of BSs with which a UAV
has LoS link increases as the altitude increases, also signal strength from the side
lobes of the far-off BSs gives more opportunity for the handovers with those BSs.
Secondly, the proposed learning based approach even with high service availability
has only about 25% of handovers as compared to the benchmark scheme having
a fixed HOM of 2 dB. This shows that the proposed learning based solution can
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Figure 2.6: Numerical results for comparison of outage probability P r(q(t) ≥ q0) vs. UAV
altitude (meters) for different UAV velocities. (a) v = 30 m/s (b) v = 40 m/s (c) v = 50
m/s (Reprinted from [1], ©2024 IEEE, reused with permission).
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Figure 2.7: Numerical results for comparison of normalized number of handovers vs. UAV
altitude (meters) for different UAV velocities. (a) v = 30 m/s (b) v = 40 m/s (c) v = 50
m/s (Reprinted from [1], ©2024 IEEE, reused with permission).

reduce the unnecessary handover while maintaining the high service availability.
The proposed model based scheme SA-MRO also performs very well as the number
of handovers are close to the benchmark scheme having a fixed HOM of 7 dB,
showing that it can reduce the number of handovers while maintaining good service
availability. Comparing the results from Fig. 2.6 and Fig. 2.7, we observe that,
for the velocity of 30 m/s (Fig. 2.6(a), 2.7(a)), the SA-MRO achieves high service
availability with less number of handovers but as the speed increases (Fig. 2.6(c),
2.7(c)), even though the number of handovers is less but the service availability also
decreases. The learning based approach is not affected much by the velocity of the
UAV and can achieve high service availability with a low number of handovers.
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Figure 2.8: Numerical results showing ping-pong percentage vs. UAV altitude (m), for
different mobility management schemes, with velocity v = 30 (m/s) (Reprinted from [1],
©2024 IEEE, reused with permission).

2.4.4 Ping-Pong effect

We also investigate the performance of the proposed algorithms in terms of the
ping-pong rate. The numerical results for the comparison of the ping-pong handover
percentage between learning based approach, SA-MRO, and the existing handover
approach for different UAV altitudes are shown in Fig. 2.8. It can be observed
that the learning based approach and the SA-MRO reduce the ping-pong effect at
all the UAV altitudes. At higher altitudes, the proposed approaches can achieve a
very low ping-pong percentage compared to the fixed HOM, resulting in up to 7
times reduction.

In Fig. 2.9, we show the numerical results for the distribution of the UAV
queue lengths for the UAV up-link communication for all the approaches. Since
the benchmark approach does not care about the data in the queue, we observe
that for fixed HOM of 7 dB, there are long tails that can lead to extreme cases of
latency and can affect the up-link communication quality of service severely. The
proposed approaches control these extreme tails thus making sure that the UAV
does not experience extreme delays.

2.5 Conclusion

In this chapter, two innovative approaches for managing the mobility of cellular-
connected UAVs with a focus on service availability have been introduced. The ini-
tial solution employs a model-based strategy that utilizes the SA-MRO algorithm
to adjust handover trigger parameters. The objective of the SA-MRO algorithm is
to enhance service availability while minimizing the frequency of handovers. This
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Figure 2.9: Numerical results of the distribution of the queue lengths exceeding q0, showing
impact of handover decision on the queue lengths (Reprinted from [1], ©2024 IEEE, reused
with permission).

algorithm periodically optimizes the handover parameters (HOM and TTT) based
on the buffer queue state information of the UAV. The second approach utilizes a
learning-based method, employing a model-free DQN algorithm to determine BS
association and radio resource allocation for cellular-connected UAVs. The DQN
algorithm also aims to improve service availability while reducing queuing delay
and the number of handovers. A multi-layer deep neural network is trained to
approximate the Q-function for state-action pairs. Dynamic system-level simula-
tions, implemented in Python using the 3GPP-defined urban micro scenario, are
conducted to compare the performance of the proposed algorithms. Both solutions
are designed to be implemented on the network side in the Radio Access Network
(RAN) intelligent controller.

The findings indicate that, in most cases, traditional mobility management with
fixed handover parameters leads to a degradation in service availability, character-
ized by an outage probability exceeding 0.1 and a high number of handovers. In
contrast, the two proposed algorithms enhance service availability, with the outage
probability for the learning-based algorithm falling below 0.01 and approximately
25% of handovers. For the SA-MRO algorithm, the outage probability ranges from
0.1 to 0.01, with about 50% of handovers. Both proposed solutions, compared to
legacy mobility management with fixed handover parameters, reduce the ping-pong
percentage by over 40%. Additionally, the analysis demonstrates that making han-
dover decisions based on the queue state information of the UAV helps avoid cases
of extreme delay tails.





Chapter 3

Localizability of Unmanned Aerial
Vehicles

The applications of the unmanned aerial vehicles (UAVs) include rescue, monitor-
ing, and transportation require beyond visual line of sight (BVLOS) operation. One
enabler of the BVLOS operations is the precise localization of UAVs [68,69]. Differ-
ent solutions are being investigated to obtain the location information of UAVs for
their navigation and safe operation. A widely adopted solution is to use Global Po-
sitioning System (GPS) based localization. However, in the case of UAVs that have
3-dimensional (3D) mobility, GPS accuracy performance is still not satisfactory
due to altitude-dependent shadowing. Many solutions including using ultraviolet
light-emitting diodes on UAVs [33], using a radar-based localization system [35],
and using sensors on the ground [70] are being investigated for the localization of
the UAV in the sky.

An alternative approach is to utilize cellular networks so that the UAV can ex-
ploit the RF signals from the neighboring BSs to localize itself [43]. This approach
is highly promising due to the current effort to integrate UAVs into cellular net-
works, i.e., cellular-connected UAVs [71]. They coexist with terrestrial mobile users
while maintaining a certain level of quality of service [3, 72]. Furthermore, cellular
networks with ubiquitous coverage provide the backbone for the UAVs to transmit
mission-related data and also a certain level of reliability for the command and con-
trol signaling. Hence, exploitation of the ground infrastructure for the localization
of UAVs presents opportunities and overcomes the challenges of extra hardware
deployment.

The localization process is divided in two steps. The first is to obtain the local-
ization signals from a set of sources to the target. The second is to use those signals
to estimate the location of the target device. Mostly, calculating or improving the
accuracy of estimating the location of the device is targeted [73]. During estima-
tion, it is assumed to receive a set of strong signals from the required number of
sources. This is not true in general, and more importantly not true in cellular net-

33
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works where interference can play a major role. To analyze if a received signal can
be utilized for localization, signal to interference plus noise ratio (SINR) is a good
metric to use. We focus on this first step of the localization process, and utilize
the term B-localizability as the probability that at least B number of BSs in the
network can successfully participate in the localization process [41, 43]. That is at
least a B number of BSs have the SINR greater than the required threshold. Each
localization method like received signal strength indicator (RSSI), time difference
of arrival (TDOA), angle of arrival (AOA), and observed time difference of arrival
(OTDOA) has its minimum required number of participating BSs. For instance,
in the case of the TDOA based method, we need at least three localization signals
from different sources to locate a target device. The main contributions of the
study can be summarized as follows:

• We propose an analytical framework to analyze the UAV localizability, i.e, the
ability to be localizable. Our interest is the downlink localization for cellular-
connected UAVs. Impact of the UAV altitude, the number of participating
BSs and network coordination on the localizability performance are studied in
detail. We investigate the effect of environment for three different scenarios:
urban micro (UMi), urban macro (UMa), and rural macro (RMa).

• We derive the cumulative distribution functions (CDFs) and probability den-
sity functions (PDFs) of the path loss, interference and received SINR at the
target UAV. This includes undertaking the A2G channel characteristics into
consideration like effect of the UAV altitude on LOS and non-line of sight
(NLOS) channel conditions.

• An optimization problem is formulated to find the altitude that maximizes
the localizability. We performed approximations to solve the problem and
obtain localizability performance.

• We provide insights toward the design parameters like processing gain re-
quirement and network coordination for enhancing the signal strength for the
localizability of UAVs.

3.1 System Model

We model the network as a two-tier cellular network with hexagonal tessellation for
analytical tractability, which is a common assumption for 5G and beyond networks
[74]. The two-layer hexagonal tessellation comprises 19 BSs (denoted as T = 19),
the UAV to be localized (also referred to as target UAV) is assumed to be within
the boundaries of the center cell at an altitude denoted by hUT , depicted in Fig.
3.1. The dashed brown arrows shown in Fig. 3.1 represent the localization signals
received by the target UAV from the BSs participating in the localization process.
Distance relations between the UAV and one of the participating BSs are shown
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Figure 3.1: System model for cellular localizability, localization signals and distance rela-
tions (Reprinted from [2], ©2023 Elsevier, reused with permission).

with the black solid arrows in Fig. 3.1. Key notations to explain the system model
are provided in Table 3.1.

We consider the downlink positioning, which involves the transmission of local-
ization signals from the BSs to the UAV [75]. We also assume universal frequency
reuse on the localization signals. The adjacent BSs share control information with
each other via the high-speed backhaul links e.g., X2 interface shown in Fig. 3.1.
The X2 links enable synchronization and coordination among the BSs [76]. We
consider the three 3GPP-defined scenarios for the UAVs [3]; UMi-AV (urban micro
with aerial vehicles), UMa-AV (urban macro with aerial vehicles), and RMa-AV
(rural macro with aerial vehicles).

For any localization method to work, the target UAV must receive localization
signals from multiple sources with an SINR value greater than a specific thresh-
old. The number of sources and the threshold depend on the localization method
implemented. For example, in the timing based localization, the estimated time
difference translates into circles around the BS, and the intersection of these circles
provides the location of the target UAV. For better accuracy, more BSs should
participate in the multilateration procedure. The minimum required number of
participating BSs changes for different methods. For instance, in the case of AOA
and TDOA, the minimum requirements for the number of participating BSs are
two and four, respectively [77].

Under the same modulation and coding scheme, interference from the other BSs
acts as one of the major hindrances in obtaining localization signals from the re-
quired number of participating BSs. Thus, making the SINR as the most suitable
metric to capture the effectiveness of any localization signal. Furthermore, after
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Table 3.1: Key Notations Used.
Notation Description
hUT , hBS Altitude of the UAV, base station height
di 3D distance between the UAV and i-th participating BS
dk 3D distance between the UAV and k-th non-participating BS
Pt Transmitted power from the BS
ζ Independent shadowing effect
σ2 Variance of the additive white Gaussian noise
PLm Path loss between BS and the UAV, m ∈ {LoS, NLoS}
T Total number of BSs in the network
T Set of BSs in the network
B Number of BSs taking part in the localization of the UAVs
fc Carrier frequency used
I1 Interference from BSs participating in localization
I2 Interference from BSs not taking part in localization
I Total cumulative interference to the localization of the UAV
α SINR threshold before the processing gain
β SINR threshold after the processing gain
γ Processing gain required
p Activity factor modeling the coordination among the B participating BSs
q Activity factor modeling the network traffic load from (T −B) non participating BSs

rk
Indicator variable, equal to one with probability p,
and equal to zero with the probability (1− p), for the k-th BSs

sj
Indicator variable, equal to one with probability q,
and equal to zero with the probability (1− q), for the j-th BSs

P z Probability of LoS (z = LoS) and NLoS (z = NLoS)
PB Probability that B BSs have SINR greater than threshold

the UAVs have processed the localization signals, they transmit their location infor-
mation with payload data. We make the assumption of seamless synchronization
among the participating BSs. This synchronization is attained through packet-
based time alignment, commonly implemented using the Precision Time Protocol
(PTP), which is specified as IEEE 1588 [78].

3.1.1 Channel Model

In this paper, we adopt the 3GPP channel model proposed in [3] for cellular-
connected UAVs flying below 120 m. The channel model depends on the probability
of LoS, P LoS , which is defined as below:

P LoS =
{

1, d2D ≤ d1

d1

d2D
+ exp

(
−d2D

p1

)(
1− d1

d2D

)
, d2D > d1 , (3.1)

where d2D is the distance between the BS and the UAV projected on the ground
plane, hUT is the altitude of the UAV as seen in Fig. 3.1. hUT can be greater
or smaller than the height of the BS, hBS . The parameters p1 and d1 for three
scenarios are given in Table 3.2.
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The path loss PLm, where m ∈ {LoS, NLoS} for the LoS and NLoS link condi-
tions, respectively, are calculated as follows [3]:

PLLoS = 28.0 + 22log10(d3D) + 20log10(fc), (3.2)

PLNLoS =− 17.5 + (46− 7log10(hUT ))log10(d3D) + 20log10(40πfc

3 ), (3.3)

where d3D is the 3D distance between the BS and the UAV, and fc is the carrier
frequency in GHz.

We incorporate shadowing effects, where signal variations are modeled by a
Gaussian distributed random variable ζ with a standard deviation that varies with
height [3], described as 4.64exp(−0.0066hUT ) (for LoS), 6 dB (NLoS). However,
the effects of small-scale fading are neglected, as they tend to be smoothed out
when considering the average signal strength. This average incorporates broader
temporal factors like path loss and shadowing and is consistent with the current
models for evaluating cellular localization performance [79,80].

3.1.2 Antenna Gain

In our system model, we consider a single omnidirectional antenna with unitary gain
for the UAV. For the ground BSs, we assume a vertical N-element uniform linear
array (ULA), where each element is omnidirectional in azimuth with a maximum
gain of gmax

E . Directivity as a function of the zenith angle (ϕ) is given by the
following [60]:

gE(ϕ) = gmax
E sin2(ϕ), (3.4)

where ϕ is the zenith angle between the ground BS and the UAV. Considering half-
wavelength spacing between the adjacent antenna elements and a fixed down-tilt
angle ϕt, the array factor of the ULA is calculated as

gA(ϕ) = sin2(Nπ(cos ϕ− cos ϕt)/2)
N sin2(π(cos ϕ− cos ϕt)/2)

. (3.5)

The overall antenna gain of BSs in linear scale is calculated as

g(ϕ) = gE(ϕ)× gA(ϕ). (3.6)

Table 3.2: 3GPP Channel Model Parameters [3].
Scenario p1 d1

UMi-AV 233.98log10(hUT ) − 0.95 max(294.05 log10(hUT ) − 432.94, 18)
UMa-AV 4300log10(hUT ) − 3800 max(460 log10(hUT ) − 700, 18)
RMa-AV max(15021log10(hUT ) − 16053, 1000) max(1350.8 log10(hUT ) − 1602, 18)
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3.1.3 SINR Calculation
Based on the above channel models, the received SINR at the UAV at altitude
(hUT ) from an ith (i ∈ T ) BS, which is at a 3D distance of d3D = di is calculated
as

SINRi = Pr(hUT , di)
I + σ2 , (3.7)

where Pr(hUT , di) is the received power and is given as

Pr(hUT , di) = Ptgi(ϕ)ζiPL−1
m (hUT , di), (3.8)

where Pt is the transmitted power from the ith BS to the UAV and is assumed
to be same for all the BSs, gi(ϕ) is the antenna gain, ζi denotes the independent
shadowing affecting the signal strength. The cumulative interference from the con-
currently transmitting BSs excluding the ith BS is denoted by I and is calculated
as

I =
∑

k∈T and k ̸=i

Ptgk(ϕ)ζkPL−1
m (hUT , dk), (3.9)

where dk is the 3D distance between the UAV and the kth BS (k ∈ T and k ̸= i),
which are transmitting at the same time. Among the |T | = T BSs, B number of
BSs (B ≤ T ) with the strongest time average received signal strength participate
in the localization process. However, their participation is successful only if they
have SINR greater than a given threshold.

A processing gain γ is considered to enhance the localizability signal strength
by integrating the incoming signals in time. Therefore, we have two SINR defini-
tions at the receiver: pre-processing SINR, which is the SINR before any processing
gain, and post-processing SINR after applying the gain. The pre-processing SINR
provided in (3.7) is given without the gain providing an improvement on the local-
ization signal strength to meet the requirements.

It is also important to note here that the 5G opens new dimensions to improve
the localization performance thanks to New Radio (NR) framework [80]. It proposes
new capabilities such as downlink positioning reference signal (PRS) with different
numerology and frequency options such as frequencies below 6 GHz and above
24 GHz. BSs can utilize different PRS sequences to reduce mutual interference.
These sequences can follow different comb structures that use certain subcarriers
in designated symbols [81].

In case of the UAV, as the altitude increases, the probability of LoS condi-
tion with ground BSs increases resulting in better reception of useful signals from
the intended BS. However, it also leads to a higher level of interference from the
unintended BSs. To avoid interference, the B participating BSs attempt to coordi-
nate and avoid allocating the same radio resources. However, perfect coordination
among all B BSs is not always possible. As a result, they simultaneously transmit
their localization signals on the same radio resources with a probability p. The
parameter p encapsulates the effectiveness of X2 link performance in facilitating
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coordination among the participating BSs. A value of p = 0 indicates perfect co-
ordination achieved through X2 links, resulting in no interference, while p = 1
signifies the absence of coordination via X2 links. Meanwhile, due to network load,
each of the remaining (T − B) BSs may also transmit simultaneously using the
same radio resources with probability q. To account for coordination among the
participating BSs and the traffic demands in the non-participating BSs, we intro-
duce two independent random variables: rk for the participating BSs and sj for the
non-participating BSs. To capture participating and non-participating BSs in our
analysis, the SINR calculated in (3.7) can be reformulated as:

SINRi(B) = Ptgi(ϕ)ζiPL−1
m (hUT , di)

I1 + I2 + σ2 , (3.10)

where I1 represents the cumulative interference from the participating BSs and
I2 represents the cumulative interference from the non-participating BSs. Their
mathematical definitions are given as follows:

I1 =
B∑

k=1 and k ̸=i

rkPr(hUT , dk) =
B∑

k=1 and k ̸=i

rkPtgk(ϕ)ζkPL−1
m (hUT , dk), (3.11)

I2 =


T∑

j=1+B

sjPr(hUT , dj) =
T∑

j=1+B

sjPtgj(ϕ)ζjPL−1
m (hUT , dj), if B < T

0, if B = T
,

(3.12)
where rk and sj follow Bernoulli distribution. rk and sj being equal to one with
probability p and q, respectively, and equal to zero with the probability (1−p) and
(1 − q), respectively. The activity parameters associated with participating and
non-participating BSs make the SINRi in (3.10) as a function of B.

3.2 Theoretical Analysis of Localizability Performance

In this section, we develop a theoretical framework to analyze the localizability
performance of a target UAV with the help of cellular networks. We first derive
the B-localizability as the function of the received SINR and the number of partic-
ipating BS B. The received SINR dependents on the received power, cumulative
interference and noise. To obtain the distribution of the received power, we need
to calculate the distribution of the distances and path loss involved. These steps
are provided in the sequel.

3.2.1 Base Stations Participating in the Localization
Let us define a random variable Ψ as the maximum number of BSs successfully
participating in the localization process. Given our system model, the definition of
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Ψ is given as follows:

Ψ = arg max
B∈T and B≤T

B ×
B∏

i=1
1 (SINRi(B) ≥ α), (3.13)

where B is the number of BSs participating in the localization and having the
strongest signal at the UAV, and SINR is given as in (3.10). 1(θ) is the indicator
function which is equal to 1 if θ is true and equal to 0 if θ is false. Hence, Ψ will be
equal to B when all the signals from the B BSs have an SINR value greater than
the threshold.

We define B-localizability as the probability that at least B BSs successfully
participate in the localization procedure [41]. B-localizability, PB , is defined as:

PB = Pr(Ψ ≥ B) = 1 − FΨ(B), (3.14)

where FΨ(B) is the CDF of Ψ and is defined as:

FΨ(B) = Pr(Ψ < B) = 1 − Pr(Ψ ≥ B)

= 1− Pr

(( B∏
i=1

1 (SINRi(B) ≥ α)
)

= 1
)

.
(3.15)

The B-localizability metric can also be viewed as a coverage metric that quan-
tifies the probability of receiving decodable localization signals from B BSs at the
receiver. For instance, in the case of the TDOA localization scheme that requires
at least four decodable signals (B = 4) for unambiguous localization, P4 represents
the probability of achieving this criterion. A value of P4 = 0.99 indicates that the
target UAV may receive at least four decodable signals with a probability of 99%.

The distribution of B-localizability in (3.15) depends on SINR distribution at
the target UAV from participating BSs. Hence, we statistically characterize each
component to calculate SINR defined in (3.10) in the following subsections.

3.2.2 2D Distance and Altitude Distribution
The received power and interference at the target UAV are influenced by the dis-
tance between the BSs and the UAV. Therefore, to determine the SINR distribution
at the target UAV, we first need to calculate the distance distribution between the
BSs and the UAV’s projection point on the ground (i.e., 2D distance). Since the
target UAV is located randomly in the central hexagon cell, it will have two random
2D distances associated with it, which will depend on the point of reference used for
their calculation. Specifically, the first random distance is the distance between the
random location of the target UAV and the central BS (or the center of the hexagon
as the reference point), denoted as θx in Fig. 3.2(a). The second random distance is
the distance between the random location of the target UAV in the central hexagon
cell and any of the neighboring BS (used as the reference point), denoted as θy in
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Figure 3.2: The random 2D distance between the UAV and the reference BSs, where
the UAV is distributed randomly in the center cell. (a) θx is the 2D distance between a
random point of the UAV within a cell and the BS at the center cell. (b) θy is the 2D
distance between a random point of the UAV within a cell and the BS at a neighboring
cell (Reprinted from [2], ©2023 Elsevier, reused with permission).

Fig. 3.2(b). Therefore, the first step is to determine the distributions of these two
random distances: 1) the distance (θx) from a reference point inside the hexagon
to a random point within the hexagon, and 2) the distance (θy) from a reference
point outside the hexagon to a random point inside the hexagon.

Let Fθx(r) and Fθy (r) represent the CDF of θx and θy, respectively. To obtain
the distribution of the random distances θx and θy, we adopt an approach similar
to that presented in [82]. This approach involves the use of decomposition and
recursion techniques to calculate the distance distribution in a polygon. Specifically,
we use the known distance distributions from a vertex of an arbitrary triangle to
a random point inside, to compute the distribution of random distances from an
arbitrary reference point (inside or outside) to any polygon.

To implement this approach, we first triangulate (i.e., divide into triangles) the
hexagonal cell with respect to the reference points. For calculating Fθx

(r), the
reference point is inside and at the center of the central hexagonal cell. Thus, we
triangulate the cell into six triangles with respect to the center, as depicted in Fig.
3.2(a). Similarly, for calculating Fθy

(r), the reference point is outside of the central
hexagonal cell. Hence, we triangulate the cell into four non-overlapping triangles
with respect to one of the vertex of the hexagon, as shown in Fig. 3.2(b).

Overall, this triangulation and decomposition approach allows us to obtain the
distance distribution for a given reference point and polygon. Once we know the
distribution of distances within each triangle, we can use probabilistic summation
to compute the final distance distribution. Specifically, the CDF of the distance
distributions Fθx(r) will be given by a probabilistic sum of the CDF of the distance
distribution in each of the six triangles. Let F κ

θ (r) represent the CDF of the distance
distribution from a vertex to a randomly chosen point within a given triangle (κ),
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such as triangle 2⃝ illustrated in Fig. 3.2(a). To ascertain the distance distribution
from the vertex to a randomly selected point within the triangle (κ), we initiate the
process by drawing a circle centered at the said vertex. In this setup, the radius of
the circle, denoted as θx, corresponds directly to the distance between the vertex
and the random point situated within the triangle (κ). The probability that this
distance measures less than θx, essentially the CDF (F κ

θ ), is equal to the area of the
intersection between the circle and triangle (κ) divided by total area of the triangle
(κ), denoted as Aκ [82].

Subsequently, the CDF Fθx
(r) for the distance distribution from the center to a

randomly selected point within the polygon can be determined through probabilistic
summation, given as:

Fθx(r) =
Ω∑

κ=1

Aκ

A
F κ

θ (r), (3.16)

where Ω is the number of triangles formed in the polygon with BS as the reference.
Aκ is the area of the κth triangle, where A is the area of the cell. In the case of the
hexagon where the triangulation takes place at the center, Ω is equal to six, which
is seen in Fig. 3.2(a).

The CDF of the distance distribution Fθy
is similar to Fθx

(r) given in (3.16), but
with one key difference: F κ

θ (r) is the CDF of the distance distribution from a point
outside of the triangle to a random point located in the κth triangle (e.g., triangle
1⃝ in Fig. 3.2(b)), which is provided in [82]. In Fig. 3.2(b), the reference point (in
this case, the BS) is situated outside the center cell, the cell gets divided into four
triangles with respect to one of its vertex. The CDF of the distance distribution
Fθy

will be given as the probabilistic summation of distance distributions for all
four triangles in the central cell as in (3.16).

The other distance distribution for UAVs is for the altitude of the UAV. We
assume a uniform distribution with a CDF of FH(h) within the limits between 20
m and 120 m.

3.2.3 Statistical Characterization of Path Loss and Received
Power

Characterization of the path loss as the CDF at a certain altitude of hUT is provided
in the following due to its dependence on LoS probability:

FP L(d) =
∑

z∈{LoS,NLoS}

P zFP L,z(d), (3.17)
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where FP L,LoS(d) and FP L,NLoS(d) are derived as follows:

FP L,LoS(d) = Pr(PLLoS(d3D) ≤ d)

= Pr

(
ηLoS

(√
d2

2D + h2
UT

)aLoS

≤ d

)
= Pr

(
d2D ≤

√
(d/ηLoS)2/aLoS − h2

UT

)
=

Ω∑
κ=1

θκ

θ
F κ

θ (
√

(d/ηLoS)2/aLoS − h2
UT ),

(3.18)

where we model the path loss for the LoS condition in (3.2) as PLLoS = ηLoSdaLoS

3D ,
η is the attenuation constant and a is the path loss exponent. Similarly, in case of
the NLoS, the distribution for the path loss can be calculated as:

FP L,NLoS(d) =
Ω∑

κ=1

θκ

θ
F κ

θ (
√

(d/ηNLoS)2/aNLoS − h2
UT ), (3.19)

Let R be the received signal strength at the UAV from a BS which can be described
as the difference between the transmitted power (Pt) and the path loss (PL). Then,
the CDF FR(r) of the received power is calculated as:

FR(r) = Pr(R ≤ r) = Pr((Pt − PL) ≤ r),
= Pr((Pt − r) ≤ PL),

FR(r) = 1− FP L(Pt − r).
(3.20)

The PDF fR(r) of the received power is fR(r) = F ′
R(r)

3.2.4 Statistical Characterization of Interference

As provided in (3.10), the interference to the UAV is due to both participating BSs
(I1) and non-participating BSs (I2). Both interference components, rkPr(hUT , dk)
and sjPr(hUT , dj) given in (3.11) and (3.12) respectively, are products of indepen-
dent binary variables and the continuous received signal strength random variable.
The independent binary variables are used to model the cooperation with the par-
ticipating BSs and the traffic load in non-participating BSs. Let χ denote the
discrete binary random variable rk or sj depending on the BS to be either par-
ticipating or non-participating one, and R denote the continuous received signal
strength random variable (FR(r) is already defined in (3.20)). Hence, to represent
interference to the UAV from a single kth (k ∈ [1, B]) participating BS, we define
a new random variable I1,k = χR. The CDF of the I1,k will be then as follows:
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FI1,k
(i) = Pr(χR ≤ i) = Pr(χ = 1)Pr(χR ≤ i | χ = 1)

+Pr(χ = 0)Pr(χR ≤ i | χ = 0),

=
{

pFR(i) + (1− p), if i > 0,

(1− p), if i = 0,

(3.21)

where FR(i) is defined in (3.20), p is the probability rk being equal to 1. FI1,k
(i)

provides the distribution of interference at the UAV from a single participating BS.
For the distribution of the interference from a jth (j ∈ [B +1, T ]) non-participating
BS, FI2,j

, is derived in same way as in (3.21) with final expression as:

FI2,j (i) =
{

qFR(i) + (1− q), if i > 0,

(1− q), if i = 0,
(3.22)

Under given conditions, we can consider the interference from the BSs as inde-
pendent. FI1,k

(i) and FI2,j
(i) show the individual interference distribution from a

single random BS.
The cumulative distribution of the overall interference at the receiver is obtained

by the convolution of the individual interference distributions as follows:

FI(i) = FI1,1(i) ⊛ ...FI1,B
(i) ⊛ FI2,B+1(i) ⊛ ...FI2,T

(i), (3.23)

where ⊛ is the convolution operator. The PDF fI(i) of the cumulative interference
is the calculated as fI(i) = F ′

I(i).

3.2.5 Statistical Characterization of SINR
The received SINR defined in (3.7) is a function of the received power and the
cumulative interference. For simplicity of notation, we denote the SINR by S,
the received power by R, and the cumulative interference by I. The probability
distribution of the received SINR can be derived using the probability distributions
of the received power fR(r) and cumulative interference fI(i). For tractability, we
consider the received power and the cumulative interference to be bounded between
a minimum and a maximum value, i.e., R ∈ [rmin, rmax], and I ∈ [imin, imax].

Given the value of any two out of the three parameters, S, R, and I, the value
of the third parameter can be calculated using (3.7). Let the SINR corresponding
to received power R and cumulative interference I be denoted by gS(R, I). The
received power corresponding to the SINR value S and cumulative interference I
is denoted by gR(I, S) and cumulative interference corresponding to SINR value S
and received power R is denoted by gI(R, S).

Assuming that the received power R and the cumulative interference I are
independent, the largest value of the SINR would be achieved when the received
power is maximum and the interference is minimum and is given as gS(rmax, imin).
The lowest value of the SINR is achieved when the received power is minimum
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and the interference is maximum and is given as gS(rmin, imax). Therefore, we can
obtain the CDF of the SINR at the UAV by considering gS(rmin, imax) ≤ S ≤
gS(rmax, imin). This is calculated as follows:

Pr(S ≤ α) =



∫ imax

gI (α,rmin)

∫ gR(α,i)

rmin

fR(r)fI(i)drdi,

if gS(rmin, imax) ≤ α ≤ gS(rmin, imin);∫ imax

imin

∫ gR(α,i)

rmin

fR(r)fI(i)drdi,

if gS(rmin, imin) ≤ α ≤ gS(rmax, imax);

1−
∫ gI (α,imax)

imin

∫ rmax

gR(α,i)
fR(r)fI(i)drdi,

if gS(rmax, imax) ≤ α ≤ gS(rmax, imin);

(3.24)

Since it is also possible to have gS(rmax, imax) < gS(rmin, imin), the CDF of the
SINR can also be written as follows:

Pr(S ≤ α) =



∫ imax

gI (α,rmin)

∫ gR(α,i)

rmin

fR(r)fI(i)drdi,

if gS(rmin, imax) ≤ α ≤ gS(rmax, imax);∫ imax

imin

∫ gR(α,i)

rmin

fR(r)fI(i)drdi,

if gS(rmax, imax) ≤ α ≤ gS(rmin, imin);

1−
∫ gI (α,imax)

imin

∫ rmax

gR(α,i)
fR(r)fI(i)drdi,

if gS(rmin, imin) ≤ α ≤ gS(rmax, imin).

(3.25)

3.2.6 Operational Altitudes for Maximum Localizability

Based on the previous discussion, it is evident that the localizability performance is
directly linked to the received SINR at the UAV. Additionally, due to the impact of
the UAV altitude on both the channel gain and the antenna gain, the received SINR
at the UAV is a non-linear function of the altitude. Therefore, our objective is to
determine the relationship between the localizability performance in terms of (PB)
and the UAV altitude. We can achieve this by formulating an optimization problem
that seeks to identify the altitude that maximizes the localizability performance
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(PB) as follows:

max
hUT

∑
i∈T

1(SINRi ≥ α) (3.26)

subject to:
(C1) hUT ≤ hmax,

(C2) hUT ≥ hmin,

where (C1) stands for the maximum allowed altitude for the UAV, and (C2)
assures that a UAV is moving in the air above a certain altitude as per [3]. The
objective function in (3.26) maximizes the number of BSs with SINR greater than
the threshold α with respect to the altitude of the UAV. The objective function in
our case depends on the distribution of the SINR at the UAV given in Section 3.2.5.
Since the distribution does not have a closed-form expression, it is difficult to solve
this optimization problem with conventional optimization methods. Therefore, we
use a discrete brute force approach with Monte-Carlo simulations for obtaining the
dependence of localizability probability on the altitude of the UAV. This approach
is explained as follows.

We assume that there are UAVs distributed randomly in a plane in the center
cell at discrete altitudes. We seek to maximize the numbers of UAVs which receive
an SINR greater than some threshold from at least B number of BSs with respect
to the altitude of the UAV. Thus, we find the optimal altitude that maximizes
the localizability of UAVs. Let j denote the location in the center cell where the
UAV is located, h (hmin ≤ h ≤ hmax) denotes the UAV altitude and i (i ∈ T )
denotes considered BS. Next, we present our optimization problem whose goal is
to determine the altitude of each UAV which maximizes the localizability by the
network as follows:

arg max
hmin≤hUT ≤hmax

(φh), (3.27)

φh =
∑

j

bj,h, ∀h (3.28)

bj,h = 1, if
∑

i

ai,j,h ≥ B, ∀j, h; (3.29)

ai,j,h = 1, if (SINRi,j,h ≥ α), ∀i, j, h; (3.30)

where SINRi,j,h is the received SINR at UAV j at altitude h from BS i. ai,j,h = 1
in (3.30) means the SINR from the BSs i to the UAV j at altitude h is above a
certain threshold α, bj,h = 1 in (3.29) means that total number of BSs having SINR
greater than the threshold (α) is at-least B. The φh in (3.28) means the number
of the location at which the SINR constraint is satisfied for B number of BSs at
different altitudes. The objective function in (3.27) gives us the UAV altitude hUT

which maximizes the total number of locations at which the SINR from at least B
BSs is greater than the threshold.
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Note that there is no guarantee that limited samples of the UAVs in (3.30)
capture the distribution of the SINRs. In order to solve this problem, we used
our analytical calculation and compare the simulation results obtained using the
approach in (3.28)-(3.30) as shown in Fig. 3.3. Since the simulation results and
the analytical results are overlapping, it shows that our approach captures the
analytical evaluation.

3.3 Simulation Results and Discussion

We use Monte Carlo simulation and the snapshot model to analyze the localizability
in Matlab. In our simulations, we performed 100,000 iterations with the target UAV
randomly located in the center cell to obtain the localizability probability. We adopt
the 3GPP channel model for the UAVs [3] in three different scenarios: UMi-AV,
UMa-AV, and RMa-AV. The simulation parameters are given in Table 3.3.

Table 3.3: Parameters for numerical study.
Parameters UMi-AV UMa-AV RMa-AV
Inter-site distances 200m 500m 1732m
BSs antenna height 10m 25m 35m
Carrier frequency 2 GHz 2 GHz 800 MHz
Bandwidth (Bw) 10 MHz
Noise figure (NF) 9 dB
Transmit power 46 dBm
Maximum element gain (gmax

E ) 8 dBi
Number of elements (N) 8
Down-tilt angle (ϕt) 102°
Variance 4.64exp(−0.0066hUT )(for LoS), 6 dB(NLoS)
Noise Power [dBm] 10 log10(400 · 10−20) + NF + 10 log10(Bw) [83]

3.3.1 B-Localizability Performance
In the case of 3D mobility of cellular-connected UAVs, it is hard to obtain an exact
SINR distribution due to its dependency on air-to-ground channel characteristics
with LoS conditions and changing shadowing variance with the UAV’s altitude,
and cooperation between participating and non-participating BSs. The SINR dis-
tribution provided in Section 3.2.5 is computationally intensive. Hence, to provide
the analytical results, we use an approximate method. We use (3.16) to get the
distance distribution of the UAV in the central cell of the network. The received
power and the interference are obtained from (3.20)-(3.23), for different locations
in the central cell. Hence, to have approximate results for the analytical deriva-
tions that we present in Section 3.2, we use empirical CDFs for resulting SINRs.
According to these CDFs, we calculate PB when B = 4, i.e., if the fourth highest
SINR value is greater than the threshold pre-processing SINR, α, as we outline in
(3.14) and (3.15). For fixed p = 1, q = 1 and B = 4, we obtain the analytical and
simulation results for PB in an urban micro scenario in Fig. 3.3. In the worst case
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Figure 3.3: P4 vs. pre-processing SINR threshold α when p = 1, q = 1 for urban micro
scenarios (Reprinted from [2], ©2023 Elsevier, reused with permission).

with no coordination, i.e., p = 1, q = 1, both participating and non-participating
BSs in the network interfere in the localization process. In Fig. 3.3, P4 is almost
one in simulation results at SINR thresholds below −12 dB. This is because a very
low threshold constraint at the UAV is achieved easily by the localization signals
even in worst-case scenarios with lower received power for the localization signals.
We also observe that P4 becomes almost zero for the SINR threshold greater than
0 dB. This means that without any gain or interference cancellation, it is difficult
to achieve the required localizability performance. Since the analytical and the
simulation results coincide, our result will depend on the empirical SINR values
obtained by our extensive simulations in the following sections.

3.3.2 B-Localizability Performance with Different Number of
Participating BSs

In order to analyze B-localizability with a change in the number of participating
BSs, we assume a pre-processing SINR threshold of −6 dB [84]. We analyze all
the three scenarios to observe the B-localizability for different B values at different
altitudes in Fig. 3.4. We observe in the case of the UMi scenario, a B-localizability
becomes 0.4 when hUT = 60 m and all BSs act as interferers, i.e., p = 1, q = 1.
In general, as we increase the altitude hUT , B-localizability decreases except for
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Figure 3.4: PB vs. number of participating BSs, B, when p = 1, q = 1 for three different
scenarios (Reprinted from [2], ©2023 Elsevier, reused with permission).

certain altitudes like around hUT = 60 m for the UMi scenario where localizability
increases. This is because of the antenna radiation pattern at the BS which favor
certain altitudes. On the other hand, as altitude increases, the higher path loss
experienced in the channels becomes dominant, and the localizability performance
decreases. The same effect is observed for the urban macro and rural scenarios. As
we move from the urban to the rural scenario, the LoS probability increases due to
fewer obstacles in the rural area and we observe an increase in the localizability per-
formance. Another interesting observation is that in the case of the UMi scenario,
as the number of participating BSs, B, increases, the B-localizability decreases
and tends to be zero when B = 8 for hUT = 30 m. Thus, it becomes impossible
to implement a localization method where the required number of participating
BSs are eight or more. In the case of the UMa and RMa scenarios, we see that
the B-localizability for hUT = 60 m and B = 8 is higher than in the case of the
UMi. Hence with an interference mitigation technique, it is possible to implement
localization methods that require a higher number of participating BSs.

3.3.3 Processing Gain Requirement with the Number of
Participating BSs

In order to gain some insight into design parameters such as the processing gain at
the target UAV, it is important to observe the change in the gain with respect to the
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Figure 3.5: Processing gain required for achieving P4 = 0.9 for different altitudes, hUT ,
when p = 1, q = 1 for three different scenarios (Reprinted from [2], ©2023 Elsevier, reused
with permission).

altitude of the UAV. A sufficient gain provided to the received localization signals
can achieve an acceptable PB . For achieving P4 = 0.9 with an SINR threshold of
−6 dB, Fig. 3.5 shows the variation of the gain requirements for different altitudes.
We observe that the gain requirement does not follow a trend with the altitude of
the UAV. This is because of the antenna gain achieved as a function of the antenna
tilt in (3.4) which makes some altitudes favorable for the localization. Fig. 3.5
shows the same analysis for the UMa and RMa scenarios.

We observe that variation in the required gain is small for the urban environ-
ment as compared to the rural. Since the wireless channel has almost the same path
loss but a different probability of NLoS link conditions in urban areas, the varia-
tion in the gain is small. Dynamic allocation of gain with altitude at the receiver
can improve localization performance. Based on the altitude and the localization
method, the UAV can select the gain to achieve the successful participation of the
required number of BSs.

3.3.4 UAV Altitude for Maximum Localizability Performance

As explained in Section 3.2.6, we obtain the dependence of the localizability prob-
ability for B = 4 on the altitude of the UAV and observe how some of the altitudes
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Figure 3.6: Localizability probability P4 vs. UAV altitude hUT (m), for different co-
ordination level p., with perfect coordination ( q = 0, p = 0) (Reprinted from [2], ©2023
Elsevier, reused with permission).
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Figure 3.7: Localizability probability P4 vs. UAV altitude hUT (m), for different pre-
processing SINR (α), with perfect coordination ( q = 0, p = 0) (Reprinted from [2], ©2023
Elsevier, reused with permission).

are more favorable for localization in different scenarios. In Fig. 3.6, we observe
the B-localizability for B = 4 as a function of UAV altitude hUT for different co-
ordination levels in three different scenarios. In Fig. 3.6(a), we consider the urban
micro scenario, Fig. 3.6(b), urban macro scenario, and Fig. 3.6(c), the rural sce-
nario with all the non participating BSs interfering (q = 1), while we change the
coordination among the participating BSs. We observe for all the scenarios with
perfect coordination has the best performance in terms of localizability. For the
urban scenarios in 3.6(a), the localizability first increases as the UAV moves up
and then decreases before increasing again. This is because of the small inter-site
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distance and the antenna pattern at the BSs. Therefore, we have certain altitudes
where the localizability performance is highest as in Fig. 3.6(a) for hUT = 40 m;
Fig. 3.6(b) for hUT = 90 m; and Fig. 3.6(c) for hUT = 50 m. In the rural sce-
nario, we observe that there is an improvement in the localizability performance
and maximum localizability is achieved around hUT = 50 for the cases with partial
coordination. As the altitude increases, localizability performance decreases for all
the coordination (p) values. This is because path loss due to the distance plays a
major role as compared to the antenna beam gain.

Fig. 3.7 shows the B-localizability for B = 4 as a function of UAV altitude
hUT for different pre-processing SINRs (α). We consider the case where we have
full coordination among the participating BSs for different pre-processing SINR re-
quirements. We observe that even with perfect coordination, we do not have the
best localizability performance at all altitudes. We observe for the urban scenario
in Fig. 3.7(a), the performance peaks at around hUT = 40 m, showing that the
tilt in the BS antennas and the resulting radiation pattern make the altitude range
around hUT = 40 m favorable for the maximum localizability. For the urban macro
scenario in Fig. 3.7(b), we observe a very low localizability probability value at
around hUT = 40 − 50 m. However, as altitude increases beyond hUT = 50 m, lo-
calizability experiences a notable improvement, peaking at approximately hUT = 65
m. Notably, altitudes exceeding hUT = 60 meters exhibit an increased potential for
favorable localizability. This is because of the reduction in the density of obstacles
at higher altitudes within the urban macro scenario, facilitating LoS A2G links with
multiple BSs. In this scenario, the dense distribution of BSs, coupled with perfect
coordination, leads to reduced interference from neighboring BSs. Consequently,
SINR improves, resulting in enhanced localizability performance. Also, the antenna
gain compensates for the inherent path loss that arises due to increased distance.
In the rural scenario in Fig. 3.7(c), we do not see the effect of the antenna pattern
on the localizability performance because of the large inter-site distances in rural
areas where the signal strength is almost the same over the range of the altitudes.
The results of Fig. 3.6 and Fig. 3.7 provide us with insights for obtaining maxi-
mum localizability results just by changing the operational altitude of the UAV in
different scenarios.

3.3.5 Network Coordination and Network Traffic

To illustrate the impact of interference mitigation through network coordination
among the B participating BSs, we change the parameter p to vary the level of
coordination. This captures the coordination among the participating BSs while
non-participating BSs are transmitting, i.e, q = 1. In Fig. 3.8(a), considering the
UMi scenario with B = 4 and a predefined pre-processing SINR threshold, the
plot demonstrates an ascending trend in P4 as the level of coordination (p) intensi-
fies. Heightened coordination, where one BS transmits while others remain idle or
transmit on other channels, leads to elevated B-localizability. The enhancement in
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Figure 3.8: P4 vs. pre-processing SINR threshold, α when hUT = 30 m, (a) q = 1, and p
varying from 1 to 0 with a step of 0.2; (a) p = 1, and q varying from 1 to 0 with a step of
0.2 (Reprinted from [2], ©2023 Elsevier, reused with permission).

B-localizability showcases the potential of mitigating interference from neighboring
BSs through efficient network coordination.

We explore the impact of traffic among the non-participating BSs by changing q.
This parameter encapsulates varying traffic intensities. Setting the parameter q to
1 implies that non-participating BSs are catering to users on the same channel, in-
cluding other UAVs. This introduces additional interference from these BSs. While
q = 0 represents perfect coordination among the non-participating BS, resulting in
no interference with the target UAV. In Fig. 3.8(b), for the same UMi scenario with
B = 4, an ascending trend in P4 is observed as traffic among non-participating BSs
decreases. However, the impact of the traffic on localizability is comparatively less
substantial than that achieved through network coordination. This result arises
from the fact that participating BSs, being in closer proximity with the UAV to be
localized, exert a more pronounced impact on SINR compared to non-participating
BSs situated at greater distances. Consequently, the effect of non-participating BSs
serving more users in the downlink on SINR and localizability is relatively small.

Additionally, we assess the B-localizability performance with B = 4 for a UAV
in a UMi scenario, as it moves beyond the cellular network’s coverage area i.e.,
away from all the BSs in the two-tier network. The performance results for P4 are
illustrated in Fig. 3.9, depicting its variation with the distance from the central
BS, where the BSs have coverage till the distance equal to 2.5 times the ISD. These
results are obtained under specific system parameters, including a pre-processing
SINR threshold of α = −16 dB, p = 1, q = 1, and hUT = 40, 80, 120 m and an
ISD = 200 m. At altitudes of 40 m and 80 m for the UAV, P4 drops to zero as
the UAV moves farther away. This is expected since at lower heights, the UAV
faces NLoS channels from both nearby and distant BSs. As the distance grows, the



54 CHAPTER 3. LOCALIZABILITY OF UNMANNED AERIAL VEHICLES

2.4 2.6 2.8 3.00

0.2

0.4

0.6

0.8

1

distance, (multiple of ISD)

P
4

hUT = 40 m
hUT = 80 m
hUT = 120 m

Figure 3.9: P4 vs. communication distance from the central BS going away from the
coverage region of the two-tier cellular network (Reprinted from [2], ©2023 Elsevier, reused
with permission).

signal quality diminishes, resulting in a decrease in SINR. Comparing hUT = 40 m
to hUT = 80 m, we find better localizability at the lower altitude, supporting our
initial finding that for the UMi scenario, localizability performance at hUT = 80 m is
very low. At hUT = 120 m, an interesting trend emerges: with increasing distance,
localizability improves notably. This happens because, at higher altitudes, the UAV
usually has a LoS link with most BSs. While moving away, the interference from
distant BSs decreases, while the nearest BSs maintain strong signal strength due to
a clear LoS channel and full power transmission. This interference reduction boosts
the SINR, enhancing localizability.

3.3.6 BS Deployment Model and Communication Frequency

We revisit our assumption that base stations (BSs) are distributed based on a
hexagonal grid model. Our objective is to illustrate how this assumption aligns
with the localizability outcomes produced by the Poisson Point Process model to
show the generalizability of our approach. Fig. 3.10(a) effectively contrasts the
localizability outcomes obtained through these random and hexagonal deployment
scenarios. This comparison is conducted across varying numbers of participating
BSs while maintaining the BS density and constant parameters such as α = −16
dB, hUT = 40 m, and p = q = 0. The variance of shadowing within our channel
model is substantial enough to observe a convergence between the hexagonal grid
model and the Poisson distribution of BSs. This alignment leads to the convergence



3.3. SIMULATION RESULTS AND DISCUSSION 55

4 5 6 7 8
0.4

0.6

0.8

1

B

P
(N

um
be

r
of

pa
rt

ic
ip

at
in

g
B

S
≥

B
)

Hexagonal Grid
PPP Model

((a))

−40 −20 00

0.2

0.4

0.6

0.8

1

Pre-processing SINR, α (dB)

P
4

fc = 28 GHz
fc = 2 GHz

((b))

Figure 3.10: Localizability results for an urban micro scenario (a) BS distribution com-
parison, (b) Frequency range impact (Reprinted from [2], ©2023 Elsevier, reused with
permission).

of results from both models.
In Fig. 3.10(b), we compare the localizability under different frequency ranges

for B = 4. The two frequency ranges being compared are fc = 2 GHz, and fc = 28
GHz. The results for the fc = 28 GHz frequency range are obtained using the
channel model provided in [85]. With the perfect coordination in an urban micro
scenario, i.e., p = 0, q = 0, both participating and non-participating BSs in the
network do not interfere in the localization process. In Fig. 3.10(b), P4 shows a
difference for the two frequency ranges as the signal at fc = 28 GHz is more suscep-
tible to various losses due to NLoS channel, path loss, and atmospheric absorption.
Therefore, the localizability performance is the worst at higher frequency ranges.
Nonetheless, a notable advantage stemming from this analysis is that it suggests the
possibility of utilizing lower frequency ranges for precise localization while reserving
higher frequency ranges for more efficient data transmission purposes.

3.3.7 Model Application: Insights and Limitations

Insights: This localizability analysis represents the initial step towards enabling
UAV localization within cellular networks. The localizability metric serves as a
valuable tool for designers to measure the ability of the network to localize UAVs
and help in selecting optimal localization techniques based on environment, BS de-
ployment, and UAV altitudes. Our findings demonstrate that enhancing localizabil-
ity performance is achievable through techniques such as processing gain, inter-BS
coordination, and strategically operating UAVs within altitude ranges conducive
to favorable localizability outcomes across diverse scenarios. For example, we can
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gain valuable insights into the ability of a network, utilizing a localization tech-
nique reliant on a minimum of four localization signals, to accurately locate a UAV
flying at an altitude of 80 meters. For such a case in rural settings with sparsely
distributed BSs, its localizability surpasses 80%, indicating effective localization is
possible. However, at the same altitude in a densely deployed urban micro scenario,
the localizability drops to less than 30%, illustrating challenges in accurate UAV
localization with the given method.

Limitations: Our study does not take into account a specific interference avoid-
ance model to accommodate interference coordination schemes. We simplify the
control process of interference by coordination through a single parameter. For more
specific interference coordination methods, this parameter needs to be updated.
However, this simplification effectively captures the influence of interference, albeit
without encompassing the precise methods of interference coordination. Also, in
our present model, we employ a snapshot approach to calculate localizability. How-
ever, there is potential for enhancing the tracking of a moving UAV’s position by
incorporating its time series location data. Exploring how correlations within the
sequential location data can be leveraged to boost localizability performance is a
promising avenue for improvement.

3.4 Conclusion

In this chapter, we examine the B-localizability of unmanned aerial vehicles (UAVs)
connected to cellular networks, representing the probability of successfully receiv-
ing localization signals from at least B participating base stations (BSs) with a
signal-to-interference plus noise ratio (SINR) exceeding a specified threshold. Our
investigation is grounded in the scenarios defined by 3GPP for cellular-connected
UAVs. To assess localizability, we introduce an analytical framework that takes into
account both UAV-specific parameters and network-related factors. Monte-Carlo
simulations are employed to explore the impact of altitude, the number of partici-
pating BSs, and their coordination on localizability. We also analyze the processing
gain required to achieve the desired localizability performance. An optimization
problem is formulated to maximize localizability and determine the optimal op-
erational altitudes in various scenarios. Our findings indicate that the optimal
altitude range for cellular localization varies depending on BS deployments. In
scenarios such as the urban micro setting with densely deployed BSs and perfect
coordination, the best localizability performance is observed between 30 and 60
meters. Conversely, urban macro environments exhibit optimal performance above
60 meters. The rural scenario, characterized by sparsely deployed BSs and per-
fect coordination, demonstrates commendable localizability performance across all
altitudes.



Chapter 4

Conclusion and Future Work

4.1 Concluding Remarks

The surge in aerial users, particularly cellular-connected UAVs, has spurred in-
terest in academia and industry to enhance existing cellular networks for a more
efficient integration of the aerial users. The focus on efficient mobility management
and precise localization becomes paramount in achieving this integration. This
dissertation addresses the associated research challenges, emphasizing the need for
updated mobility management schemes tailored to the unique characteristics of
cellular-connected UAVs.

For mobility management, we consider a cellular network which jointly serves
the UAVs and the terrestrial users. However, for the UAVs, because of the overlap-
ping coverage of the ground BSs leads to the unnecessary handovers. This not only
affects the service continuity but also introduces the delay in the delivery of the up-
link data from the UAVs. Thus making it important to update the current mobility
management schemes which consider the unique wireless challenges of the UAVs.
In order to tackle this challenge and respond to RQ1.1, RQ1.2, and RQ1.2, we for-
mulated a handover decision problem to enhance service availability and reduce un-
necessary handovers for cellular-connected UAVs. Two innovative approaches have
been introduced to solve the formulated problem. The first employs a model-based
strategy utilizing the SA-MRO algorithm, optimizing handover parameters based
on buffer queue state information. The second adopts a learning-based method with
a model-free DQN algorithm, aiming to improve service availability while minimiz-
ing queuing delay and handovers. Both approaches leverage the buffer queue state
of the UAV, in addition to signal strength, to make informed handover decisions.

Cellular networks with wide and overlapping coverage in the sky can be used
to localize a target UAV with a range based localization technique. In order to
answer the research questions RQ2.1, and RQ2.2, we introduce B-localizability
which provides valuable insights into UAV localization within cellular networks.
The introduced localizability metric serves as a practical tool for designers, guid-

57



58 CHAPTER 4. CONCLUSION AND FUTURE WORK

ing the selection of optimal localization techniques based on environmental factors,
BS deployment, and UAV altitudes. We provide analytical framework to high-
light the significant impact of processing gain, inter-BS coordination, and strategic
UAV altitude selection on localizability. We formulated an optimization problem to
maximize localizability and determine the optimal operational altitudes in various
scenarios. We provide the insights towards the model application and the limita-
tions. Our findings indicate that cellular based localization is an viable option for
the UAVs where the optimal altitude range for cellular localization varies depending
on BS deployments.

In summary, this dissertation introduces novel mobility management schemes
tailored to the unique demands and challenges of the cellular-connected UAVs.
Moreover, it introduces a methodology to assess the network’s capacity to support
range-based localization techniques for UAVs. By addressing these aspects, the
research provides valuable insights and potential solutions for the seamless inte-
gration of cellular-connected UAVs into existing networks. The findings contribute
to the ongoing evolution of network architectures, offering innovative approaches
to enhance the performance and adaptability of cellular systems in the presence of
UAVs.

4.2 Future Work

Ensuring reliable and fast communication is crucial for controlling cellular-
connected UAVs when they operate beyond the visual line of sight. New technolo-
gies, like multi-connectivity, where users connect through multiple access points
simultaneously, will play a key role. Mobility management is going to be a ma-
jor challenge in such scenarios. In our earlier work, we concentrated on single
connectivity and its mobility management. Now, to build on this and consider
multi-connectivity, our upcoming focus is exploring innovative solutions for mobil-
ity management solution in such scenarios. Some of the interesting directions for
our future work are as follows:

• Advancing Mobility Management in Multi-connectivity Environments:
In contemporary cell-less wireless networks, users experience a departure from
reliance on a single access points (AP) as they are concurrently served in
non-orthogonal multiple access scenarios by numerous distributed APs. This
shift marks a significant departure from traditional mobility management ap-
proaches, moving away from conventional handover management towards a
dynamic cluster reconfiguration model. In this evolving paradigm, users can
now seamlessly connect with a cluster of distributed APs using the same
frequency-time resources. However, adapting this cluster configuration dy-
namically to suit each user’s mobility and meet stringent quality of service
(QoS) requirements, including reliability, is essential. Consequently, there is
a critical need to explore advanced mobility management strategies in such
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multi-connectivity scenarios. Future endeavors can delve into investigating
how UAVs can achieve smooth handovers and efficient resource allocation
when leveraging multiple base stations simultaneously.

• Adapting to varying reliability requirements: Cellular networks often expe-
rience variations in reliability over time or due to service demands. Future
research can focus on developing adaptive mechanisms to handle these fluc-
tuations in reliability. This involves dynamic adjustments in handover pa-
rameters, resource allocation, and mobility management strategies to ensure
consistent and reliable connectivity for UAVs.

• Explainable AI for handover management: Integrating Explainable AI (XAI)
techniques can provide transparency and insights into the decision-making
process of AI-driven handover management for cellular-connected UAVs. By
employing XAI, researchers can delve into the rationale behind handover de-
cisions, making the system more interpretable and facilitating trust among
network stakeholders.
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