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A B S T R A C T

Dynamic thermal rating allows transformers to operate beyond the nameplate rating according to the actual
weather and loading conditions. This paper proposes a methodology to improve the application of this
technology in the design of new transformers or in the operation of existing transformers connected to wind
farms by accurately predicting their load profiles, accounting for the influence of wake effect and turbine
availability. Specifically, the variation of turbine availability due to the intermittent wind is considered in the
load profile estimation. Additionally, a correction method, which can be incorporated into any wake model, is
proposed to improve the accuracy of wake loss computation. A case study shows that the wake effect and the
changing turbine availability shorten the time that the transformers maintain at full load, thereby reducing
the aging rate of the wind farm export transformers. The findings suggest that considering these two factors
in the DTR application can benefit the longevity and efficiency of wind farm exported transformers.
1. Introduction

The European Union (EU) is accelerating its green energy transition
with the objective of reducing the dependence on fossil fuels. The
‘‘Marienburg Declaration’’ (Anon, 2022b) and the ‘‘Esbjerg Offshore
Wind Declaration’’ (Anon, 2022a) signed in 2022 set ambitious goals
to increase the installed capacity of offshore wind farms significantly
in the following decade. The high penetration of wind power and
increasing electricity demands require an upgrade or expansion of
the existing transmission networks, which is hindered by the high
investment costs and long construction cycles (Teh et al., 2018). If
the power transmission is to be improved with the existing grid, the
regulated loading limit of grid infrastructure, which is called static
thermal rating (STR), becomes the constraint.

Static thermal rating (STR) is a traditional method to rate power
transmission components such as overhead lines, transformers and
cables. Regarding to transformers, their expected lifespan can be con-
sidered a function of insulation degradation (Hillary et al., 2017) and
related to working temperature. For instance, for a transformer at the
planning stage, STR assumes a constant load and sets a constant thermal
limit to ensure its safe operation under the ‘‘worst-case’’ environment
conditions (Susa et al., 2005) without continuous monitoring. However,
in the wind farm scenario, STR restricts the efficient utilization of wind
farm export transformers (WFETs) due to the intermittent nature of
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wind, ambient temperature and air cooling effect. Power transformers
limited by STR are typically loaded at 40%−60% of their actual capacity
to guarantee their reliability during contingencies (Humayun et al.,
2015), which results in a lower aging rate and much longer remaining
lifetime compared to the initial design estimation (Anon, 2012). In
Sweden, the operation lifetime of wind turbines typically ranges from
20 to 25 years (Pakenham et al., 2021; Anon, 2016), whereas the
economic lifespan of the transformers is in the range of 50 years (Anon,
2018a).

The underutilized transformers cause unnecessary expenditure and
complicate the evaluation of their remaining life expectancy. Compared
to an expansion of new transmission grids, dynamic thermal rating
(DTR) provides an alternative to make better utilization of the existing
transmission systems. DTR enables transformers (especially mineral-oil-
immersed type (Arguence and Cadoux, 2020; Tripathy and Lakervi,
2005; Simonson and Lapworth, 1995)) to operate beyond their name-
plate rating while still adhering to their thermal limits (Lachman et al.,
2003).

In the existing literature, most works focus on discussing the bene-
fits of applying DTR in transmission components (Turnell et al., 2018;
Zarei et al., 2019) and how to further optimize the power system
operation with DTR (Viafora et al., 2019; Akhlaghi et al., 2022; Li
et al., 2023). However, few previous papers discuss in detail about how
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Nomenclature

BD Binomial distribution
DTR Dynamic thermal rating
HST Hot spot temperature
MSE Mean square error
MTBF Mean time between failure
MTTR Mean time to repair
NO non-operative state
OOS out of service state
PA Production-based availability
STR Static thermal rating
TOT Top oil temperature
WFET Wind farm export transformer

(oil-immersed)
WIF Wake impact factor
WMSE Weighted mean square error
WT Wind turbine
𝜆 Failure rate of wind turbine
𝜇 Repair rate of wind turbine
𝑁 Total number of wind turbines
𝑛 Number of failures in the measured inter-

vals
𝑝 Unavailability of wind turbine, 𝑝 = 1 − 𝑞
𝑞 Availability of wind turbine
𝑇 Number of measured intervals in the data
𝑈cut−in Lower limit of wind speed at which the

turbine starts generating electricity, unit:
m/s

𝑈cut−out Upper limit of wind speed at which the
turbine stops generating electricity, unit:
m/s

𝑈ind Reduced wind speed of each individual
turbine due to the wake effect, unit: m/s

𝑈rated Wind speed at which the turbine starts
producing its maximum power, unit: m/s

𝑍 Number of intervals for which the turbines
are out of service

to apply DTR in wind farm export transformers (WFETs). Due to the
structure complexity of transformers compared with overhead lines and
cables, it is not analyzed thoroughly yet how to apply DTR to transform-
ers. It is indicated in Turnell et al. (2018), Li et al. (2021b), Viafora
et al. (2019), Kazmi et al. (2021), Lai and Teh (2022) that the aging
rate of transformers are highly influenced by the load profile and the
ambient temperature. Without considering the factors influencing the
load profile, applying DTR may put the transformer insulation at risk
of accelerating aging and mechanical deterioration, which reduce the
lifespan of transformers below expectation (Anon, 2012). Nonetheless,
few research works discuss how to implement reliable estimation of the
load profiles of transformers to ensure safe operation.

There are multiple factors influencing the estimation of the load pro-
files of WFETs, which can be classified as weather conditions (e.g. icing,
wind speed and ambient temperature (Iskender and Mamizadeh, 2011;
Daminov et al., 2021)) and loading conditions (e.g. turbine availabil-
ity (Kazmi et al., 2021), wake loss (Li et al., 2021a)). In terms of loading
conditions, the impact of the wake effect and the turbine availability
on the load profile of the transformers connected to the wind farms is
not analyzed thoroughly.

Regarding the wake effect, only the results in Li et al. (2021a) show
that the estimated load profile considering the wake effect is closer to
1400
the measured loading data than if it is not considered. Wake effect is the
phenomena where downstream turbines suffer the increased turbulence
and extraction of energy form the upstream turbines (Manwell et al.,
2010). The wake effect occurs as long as more than one turbine
is in operation on the wind farm. When estimating the wake loss
to avoid an overestimation of wind power output (de Sá Sarmiento
et al., 2022; Porté-Agel et al., 2020), the influence of wind speed
and direction (Wang et al., 2022; Zhan et al., 2020) and wind farm
layout (Yang et al., 2019) are considered in this paper. While atmo-
spheric stability (Guo et al., 2021; Radünz et al., 2021) is not discussed
here, the analysis of data on wind speed and direction still reveals
the impact of the atmospheric stability on the wake loss. The first
wake model was proposed by Jensen in Jensen (1983) and refined
in Katic et al. (1986). It is a simplified one-dimensional analytical wake
model (Jensen, 1983) assuming the wake effect is linearly expanding.
Due to its simplicity, the Jensen model and its refined model are widely
used in the planning of wind farm layout (Kim et al., 2012; Long and
Zhang, 2015; Hou et al., 2015; Song et al., 2016) and the connected
transmission system (Wu et al., 2013; Yang et al., 2015; Hou et al.,
2016; Tao et al., 2020). However, the impact of the wake effect on
the design and operation of the transmission components connected to
wind farms, especially transformers, is not discussed in detail in the
papers above.

Regarding turbine availability, few papers link it with the load
profiles of WFETs except in Kazmi et al. (2021), in which the turbine
availability is assumed as a constant when building a probabilistic
model to estimate the annual load profile of a WFET. Nevertheless,
the previous studies still provide valuable information on how turbine
availability influences wind power generation (Sulaeman et al., 2017;
Nguyen et al., 2019) and how to build probabilistic models to estimate
the load profile of WFETs considering the turbine availability (Sayas
and Allan, 1996; Karki et al., 2006; Leite et al., 2006; Manco and
Testa, 2007; Nguyen and Mitra, 2017; Bhaumik et al., 2018). However,
as Sulaeman et al. (2017), Nguyen et al. (2019) indicates, the turbine
availability varies due to the intermittent nature of wind. Under high
wind speed, it is unclear if the transformers suffer accelerating aging
due to full loading or if the aging of transformers is reduced due to
the variation of the turbine availability. Hence, the variation of the
turbine availability due to the intermittent wind cannot be ignored
when evaluating the load profile of WFETs.

It can be observed that the impact of the factors (wake effect
and turbine availability) on the load profile of WFETs, is crucial to
be analyzed when applying DTR to WFETs but has not been well
implemented in the previous papers. In this paper, a methodology is
introduced to consider the wake effect and the turbine availability in
the load profile estimation of WFETs. The accuracy of the proposed
methodology is verified by the measured data from an onshore wind
farm located in the north of Sweden. Furthermore, the impact of the
turbine availability and the wake effect on the load profile of the WFETs
is assessed.

Compared to the existing research works, the main contribution of
this paper can be summarized as follows. A methodology is proposed
to assess the impact of wake effect and turbine availability on the load
profile and aging rate of WFETs. Regarding the wake effect part, a
Wake Impact Factor (WIF) correction method is proposed to correct
the measured data to improve the accuracy of wake loss estimation.
The proposed WIF method can be incorporated into any wake model
and it requires wind data from only one turbine to estimate the wind
speed of the rest turbines on the wind farm. Regarding the turbine
availability part, a Markov model is proposed to consider the influence
of the turbine availability in the load profile estimation of WFETs. The
impact of wind speed on the change of turbine availability is taken into
account.

The rest of this paper is organized as follows. Methodology descrip-
tion and modeling are given in Section 2. Section 2.1 illustrates how

to implement the correction method in the wake loss computation.
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Fig. 1. Jensen wake model applied to two interacting turbines.

Section 2.2 explains the principle of the proposed Markov model and
how to consider the variable turbine availability in the estimation.
Section 2.3 exhibits the transformer thermal model. Section 3 presents
the analysis of the data resource and a case study to verify the accuracy
of the proposed model. Finally, this paper is ended with conclusions in
Section 4.

2. Methodology

2.1. Estimation of wake effect

2.1.1. Jensen model
Compared to the Jensen model, the wake models in Larsen (1988),

Ishihara et al. (2004), Frandsen et al. (2006), Yang and Sotiropoulos
(2016) generate more accurate results at the price of high computa-
tional costs, which is not suitable for the scenario and time horizon
in this paper. Hence, the Jensen wake model is used in this paper to
consider the power loss caused due to the wake effect considering its
simplicity. The model principle is shown in Eq. (1) and Fig. 1. Assuming
𝜃nowake (the direction of the incoming wind) is not changed, the reduced
wind speed 𝑈wakej (m/s) of the 𝑗th turbine considering the wake effect
ue to other turbines is calculated based on the speed of the incoming
ind 𝑈nowake (m/s).

wakej = 𝑈nowake[1 −
𝑁−1
∑

𝑖=1
(1 −

√

1 − 𝐶𝑡)(
𝑑
𝑑𝑋𝑖

)2] (1)

In Eq. (1), 𝑈nowake is the incoming wind speed of the whole wind
farm and 𝑈wakej is the downstream wind speed of WTj considering the
cumulative wake effect of the rest (𝑁 − 1) turbines. 𝐶𝑡 is the thrust
coefficient of the wind turbine, 𝑑𝑋𝑗

is the diameter of the expanded
wake area, which equals to,

𝑑𝑋𝑗
= 𝑑 + 2𝑟𝑥𝑗 = 𝑑 + 2𝑘𝑥𝑗 (2)

where 𝑑 is the rotor diameter and 𝑥𝑗 is the distance between WTj and
WTi. A wake decay constant 𝑘 = 0.075 is used in this onshore wind
farm scenario (Zigras and Moennich, 2006). The wind shade effect due
to upstream obstacles (turbines) is ignored.

2.1.2. Wake impact factor correction
For a wind farm in operation, a rough method to estimate the wind

power generation is to use the average value of the measured wind
speed from all turbines. The average value is used to minimize the
impact of the wake effect on the estimation accuracy. However, the
estimation using the average value differs from the real case. It is also
challenging to collect accurate measured data from all turbines (due
to the offline of some anemometers). Commonly, only data from a
limited number of turbines is of high quality. A wake impact factor
1401
(WIF) correction method is proposed to solve this issue. This correction
method requires wind data from only one turbine from the wind farm
and the wind farm layout to estimate the wind speed of other turbines
considering the influence of the wake effect.

In order to estimate the diminished wind speed of each turbine on
a wind farm, 𝑈nowake used in the Jensen model must be the incoming

ind speed for the entire wind farm, in other words, the upstream
ind for all turbines. The measured wind from the anemometer of
ne turbine can be upwind or downwind for other turbines on the
ind farm depends on the wind direction and the location of the
nemometer. Hence, the wind data measured by the anemometers
on the meteorological tower or on the turbine nacelle) is not usable
irectly as input for the Jensen model since the wind may have already
uffered reduction before the measurement due to the wake effect. It is
nclear if the measured wind speed from one turbine is upstream or
ownstream with regard to the rest turbines on the wind farm due to
he changes in wind direction.

The intention of the wake impact factor correction (WIF) method
s to correct the measured data before the data is proceeded with
he Jensen model. The WIF method only requires wind speed from
ne turbine and can correct the wind speed from the “non-incoming”
irection. Before the data is input to the Jensen model, it needs to be
orrected to the incoming wind speed for the whole wind farm using
he WIF method.

Initially, it is assumed that 𝑈meaj represents the measured wind
peed from the anemometer of the 𝑗th wind turbine (WTj). A test
ncoming wind speed 𝑈nowake (with a variable wind direction 𝜃nowake)
s defined in a certain range. This step aims to evaluate the influence
f the wind farm layout on 𝑈nowake before 𝑈nowake reaches WTj. The
ombination of 𝑈nowake and 𝜃nowake in the defined range include all
ossible cases of wind. Using the Jensen wake model, the reduced
ind speed 𝑈wakej of WTj under all possible wind conditions can be

alculated. After 𝑈wakej is derived based on 𝑈nowake and 𝜃nowake, the wake
mpact factor (WIF) for the wind farm under different wind conditions
s calculated using Eq. (3).

IF{Umeaj ,𝜃nowake}
=

𝑈wakej

𝑈nowake
(3)

Assuming the imported wind direction 𝜃nowake is not changed, the
wind speed 𝑈meaj from WTj can be corrected to the corresponding
ncoming wind speed 𝑈nowake(wif) for the whole wind farm using Eq. (4).

nowake(wif) =
𝑈meaj

WIF{Umeaj ,𝜃nowake}
(4)

2.1.3. Wind power evaluation
After the corrected incoming wind speed 𝑈nowake(wif) is calculated

using the WIF method, Eq. (1) is used again to calculate the reduced
wind speed 𝑈wake(wif) of each turbine to estimate the generated power
from the wind farm. The power curve of the chosen turbine is used to
estimate the power output from the turbine based on the wind speed.
The corrected wind speed 𝑈wake(wif) of each turbine is fitted into the
power curve to get the corresponding real-time power output 𝑃indiv. The
ideal real-time power output 𝑃out(est) on the condition that all turbines
are in operation is calculated as,

𝑃out(est) = 𝑃indiv𝑁 (5)

Since the final objective of the paper is to operate transformers
according to the thermal limit, the load factor is chosen to represent
the load profile of transformer, similar to the setting in Arguence and
Cadoux (2020). The total power output 𝑃out from the wind farm is
converted into load factor 𝐾, which is a ratio between load current 𝐼load
and rated current 𝐼rated. This variable is an input in the calculation of
the transformer operating temperature. If the voltage drop across the
leakage reactance is ignored and the output voltage 𝑈 is assumed as
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a constant, 𝐾 can be expressed by the generated power using Eq. (6).
The denominator 𝑃rated is the rating of the selected-size transformer and
the numerator 𝑃load depends on the real-time generated power from the
wind farm.

𝐾 =
𝐼out
𝐼rated

=
𝑃out∕𝑈
𝑃rated∕𝑈

=
∑𝑁

𝑖=1 𝑃indiv,𝑖

𝑃rated
(6)

Load factor can also be used to check the simulation accuracy by
comparing the results between the simulation duration curve 𝐾SIM
and the measurement duration curve 𝐾real. Mean-squared error (MSE)
is used as an indicator to evaluate the quality of simulation result
compared to the measured data.

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝐾SIMi

−𝐾reali )
2 (7)

Since this paper focuses on the influence of the wind power on
the transformer insulation, more attention should be paid to when
the transformer load is high. Hence, an weighted factor 𝑤𝑖 = 𝐾reali
is added to neutralize the influence of zero values in the load factor.
The weighted mean square error (WMSE) is calculated to evaluate the
simulation accuracy.

WMSE = 1
𝑛

𝑛
∑

𝑖=1
𝑤𝑖(𝐾SIMi

−𝐾reali )
2

= 1
𝑛

𝑛
∑

𝑖=1
𝐾reali (𝐾SIMi

−𝐾reali )
2

(8)

2.2. Turbine availability

Production-based availability (PA) is used in this section for the
estimation of the transformer load. It is a simplified index to evaluate
the availability of turbines when the wind speed 𝑢ind satisfies the
requirement of power generation. When 𝑈cut−in ≤ 𝑢ind ≤ 𝑈cut−out ,
the corresponding WT is considered production-based unavailable if
it cannot produce power in either out-of-service (OOS) mode or in
non-operative (NO) mode according to standard (Anon, 2019). This
definition considers the WT as a whole and aims to avoid confusion
with the reliability of the wind turbines sub-assemblies. In this way,
the availability of wind turbines can be combined with wind power
prediction to improve the estimation of the transformer load.

To calculate the turbine availability, the failure and repair rate of
turbines should be evaluated first. It has to be noted that the ‘failure’
here means the turbine stops rotation when the wind speed is in the
range (𝑈cut−in ≤ 𝑢ind ≤ 𝑈cut−out) and the ‘repair’ means the whole process
after the failure and before the turbine re-starts operation.

2.2.1. Failure & repair rate
After Type III data (the data influenced by the failure and main-

tenance of wind turbines) is included, the turbine availability should
be taken into account. The wind turbines stop operation and cannot
produce power during the failure or maintenance period. In this paper,
the failure rate and repair rate is defined in a per turbine per year
format.

A filter is defined to select the data in which the wind speed satisfies
the condition of power generation (𝑈cut−in ≤ 𝑢indi ≤ 𝑈cut−out). It is
assumed the repair is initiated immediately when the failure occurs. A
data-based method is defined to calculate the failure and repair rate in
Fig. 2. Based on 𝑛 and 𝑍 derived in Fig. 2, the availability of the wind
farm can be determined. For the wind turbine, which is a repairable
system, the repair/down time cannot be ignored compared to the
operating/up time. According to Carroll et al. (2014), Wallnerström
and Hilber (2014), Spinato et al. (2009), Tavner et al. (2007), for a
repairable system with data in hours, the yearly based MTTF, MTTR
and MTBF can be expressed as.

MTTF = 𝑇 −𝑍 (9)
1402

𝑛

Fig. 2. Flow chart of defining 𝑛 and 𝑍 to calculate failure and repair rate.

MTTR = 𝑍
𝑛

(10)

MTBF = MTTF +MTTR (11)

The yearly based failure rate 𝜆, repair rate 𝜇 and the availability 𝑞
can be expressed as,

𝜆 = 1
MTBF

(12)

𝜇 = 1
MTTR

(13)

𝑞 = MTTF (14)

MTBF
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2.2.2. Binomial distribution (BD) model
The binomial distribution (BD) equation is used to calculate the

probability distribution of the number of running turbines based on a
constant wind turbine availability 𝑞. The probability distribution that
a certain number of turbines in operation is given by the binomial
probability density,

𝐴𝑥 =
(

𝑁
𝑥

)

𝑝𝑥𝑞𝑁−𝑥 = 𝑁!
(𝑁 − 𝑥)!𝑥!

𝑝𝑥𝑞𝑁−𝑥 (15)

where

• 𝑥 is the number of real-time running turbines, varying from 0 to
𝑁

• 𝑝 is the unavailability of wind turbine, 𝑝 = 1 − 𝑞

Next, the uniform pseudo-random number generator in Matlab is
used to generate a sequence of random number based on the binomial
probability distribution, which simulates the variation of the real-time
number of operational turbines 𝑁run in time series. The improved
estimated wind power output 𝑃(wif)+BD from the wind farm, which
considers the influence of turbine availability, can be calculated as:

𝑃(wif)+BD = 𝑃indiv𝑁run (16)

2.2.3. Markov model
In the BD model, the variation of turbine failure and repair rate un-

der different weather conditions is not considered. In reality, the failure
rate and the repair rate of turbines are influenced by environmental
conditions. The correlation between the wind speeds and the failure
rates of turbine sub-assemblies is determined to be negative in Tavner
et al. (2006). Based on this conclusion, a discrete Markov chain model
is proposed in Nguyen et al. (2019) to take the variation of turbine
availability under different weather conditions into consideration.

However, the turbine population considered in Tavner et al. (2006)
is too large and spread unevenly over Denmark. Clearer correlations
can be found between WT failures and weather data if a limited
population of identical WTs at several locations is used (Tavner et al.,
2013). Besides, the wake effect, an important factor influencing the
turbine operation and power generation, is not considered in Nguyen
et al. (2019). In this session, a new Markov-chain method considering
the wake effect is proposed to check the correlation between the wind
turbine availability and the wind speed of a wind farm with 𝑁 wind
turbines. In this way, the accuracy of wind power prediction can be
developed further.

The wind farm is sometimes restricted to achieve full power rating
due to turbine maintenance. When the corrective/preventive mainte-
nance is implemented, the repair time might be extended when the
wind speed is above a certain limit. The repair crew might be forbidden
to climb the turbine tower due to weather issues (e.g. strong wind, icing
problems). Hence, considering the influence of wind speed on turbine
failure and repair, the wind speed is divided into three states.

• 𝑈L: low wind speed, low failure rate, one crew is arranged to
repair

• 𝑈M: medium wind speed, failure rate increases, one crew is
arranged to repair

• 𝑈H: high wind speed, high failure rate, repair is not allowed

The failure and repair rate at different wind speed range is defined
as:

• 𝜆L: failure rate at low wind speed
• 𝜆M: failure rate at medium wind speed
• 𝜆H: failure rate at high wind speed
• 𝜇L: repair rate at low wind speed
• 𝜇M: repair rate at medium wind speed
• 𝜇 : repair rate at high wind speed
1403

H

Fig. 3. State transition matrix for the Markov chain model.

The transition rates between different wind speed states can be
defined as:

• 𝜌L,M: transition rate from low to medium wind speed
• 𝜌M,L: transition rate from medium to low wind speed
• 𝜌M,H: transition rate from medium to high wind speed
• 𝜌H,M: transition rate from high to medium wind speed

After classifying the data according to the wind speed range, the
WT failure and repair rate under low, medium and high wind speed
is calculated using Eqs. (12) and (13). The transition rate is calculated
using Eq. (17),

𝜌i,j =
𝑁i,j

𝐷i
(17)

where 𝑁i,j is the number of transitions from state i to state j and 𝐷i is
the duration of state i before switching to other states.

Using the parameters shown above, the state transition matrix for
the Markov model is shown in Fig. 3. In the Markov model, 𝜆L ≠
𝜆M ≠ 𝜆H due to the variation of wind speed. The repair rate varies
(𝜇L ≠ 𝜇M ≠ 𝜇H) since the turbine maintenance might be postponed due
to the extreme weather conditions (e.g. fierce wind, icing).

The probability distribution 𝑓 (𝑥)L, 𝑓 (𝑥)M and 𝑓 (𝑥)H that describes
the number of operational turbines under low, medium and high wind
speed is calculated based on the Markov model. The number of opera-
tional turbines is generated using the pseudo-random number generator
according to 𝑓 (𝑥)L, 𝑓 (𝑥)M and 𝑓 (𝑥)H. In this way, the real-time number
of operational turbines, 𝑁L, 𝑁M and 𝑁H in time series under different
wind states is simulated. The improved estimated wind power out-
put 𝑃(wif)+Markov from the wind farm, which considers the influence
of turbine availability under different wind speed, can be calculated
as:

𝑃(wif)+Markov = 𝑃L𝑁L + 𝑃M𝑁M + 𝑃H𝑁H (18)

2.3. Transformer thermal model

The degradation rate of the transformers is determined by the oper-
ating temperature. Two corresponding variables, hot spot temperature
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Table 1
Thermal characteristics.

For exponential equations in ONAF mode Value

Exponential power of total losses versus
top-oil (in tank) temperature rise (oil exponent) 𝑥 = 0.8
Exponential power of current versus
winding temperature rise (winding exponent) 𝑦 = 1.3

For thermal upgraded paper in ONAF mode
free from air at 1.5% moisture condition Value

Pre-exponential factor 𝐴 = 3.0 × 104 h−1

Activation energy 𝐸𝐴 = 86 kJ/mol
Rated top oil temperature rise 𝛥𝜃𝑜,𝑟 = 52.8 K
Rated winding gradient 𝑔r = 12.8 K
Rated hot spot factor 𝐻 = 1.43
Ratio of load loss over no-load loss 𝑅 = 13.74

(HST) and top oil temperature (TOT), reflect the heat dissipation from
winding to oil and from oil tank to the surrounding air respectively due
to the eddy loss (Kulkarni and Khaparde, 2017; Rommel et al., 2021).
IEEE standard (Anon, 2012) indicates that transformers (with thermally
upgraded insulation paper) operating the winding HST of 110 ◦C has a
ife expectancy of about 20 years. In this paper, simplified equivalent
hermal circuits in the standard (Anon, 2018b) is used instead to
stimate the HST and evaluate the aging rate of transformers.

According to Anon (2018b), the lifetime duration of WFET is deter-
ined by the insulation paper of the chosen transformer. The expected

ifetime of the insulation paper mostly depends on the variation of
mbient temperature and transformer load, i.e. the real-time generated
ower from the wind farm. Due to the failure and maintenance of WTs,
ven at high wind speed, the load of WFET cannot always reach the
ower rating of the connected wind farm. A thermal model is built
o assess the impact of the variation of transformer load and ambient
emperature on the transformer insulation.

A scenario is assumed to calculate the aging rate of the chosen
FET. In this case, a mineral-oil-filled transformer is assumed to oper-

te in ONAF (Oil Natural Air Forced) mode and the thermal upgraded
aper is chosen for transformer insulation. The thermal characteristics
f the upgraded insulation paper (free from air at 1.5% moisture
ondition) are referred from Laneryd and Gustafsson (2020), in which
transformer is designed for wind power application and working

n ONAF cooling mode. The thermal characteristics and the assigned
alues used in the equations are shown in Table 1.

Overloading a transformer accelerates the aging of transformer
nsulation paper. The risk of overloading is reflected by the HST of the
ransformer. To calculate the real-time HST, the load factor 𝐾 in Eq. (6)
s used as an input to reflect the variation of the generated power.
o observe the variation of insulation paper lifetime with the change
f installed capacity (i.e. adding turbines at the wind farm expansion
tage), an expansion factor 𝛽 is set to simulate the variation of the wind
arm installed capacity in the expansion stage,

𝛽 = 𝛽𝐾 (19)

here 𝛽 ∈ [1, 1.8] in this paper. According to IEC thermal model (Anon,
018b), the real-time HST 𝜃ℎ can be calculated as,

ℎ = 𝜃𝑎 + 𝛥𝜃𝑜,𝑟

(

1 +𝐾𝛽
2𝑅

1 + 𝑅

)𝑥

+𝐻𝑔𝑟𝐾𝛽
𝑦 (20)

here 𝜃𝑎 is the ambient temperature.
To estimate the expected lifetime of the insulation paper needs

ased on data over a certain period with variable ambient temperature,
he weighted temperature equation (Martin et al., 2015) is used to
erive the weighted hot spot temperature (HST, ◦C) over this period,
s shown in Eq. (21),

hW = 1
⎡

⎢

⎢

− 𝑅
𝐸𝐴

ln
⎛

⎜

⎜

1
𝑇
∑

𝑒

(

− 𝐸𝐴
𝑅(𝜃ℎ,𝑖+273)

)

⎞

⎟

⎟

⎤

⎥

⎥

− 273 (21)
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⎣ ⎝ ⎠⎦
here 𝜃ℎ,𝑖 is the hot-spot temperature in the 𝑖𝑡ℎ 10-min interval. If the
yearly profile of the transformer load is defined as a cycle and count
the number of cycles throughout its lifetime, the life expectancy of the
thermally upgraded paper 𝑡exp (Anon, 2018b) based on the measured
data in this period can be calculated as,

𝑡exp =
1

𝐷𝑃end
− 1

𝐷𝑃start
𝐴 ⋅ 24 ⋅ 365

⋅ exp

[

𝐸𝐴
𝑅(𝜃hW + 273)

]

(22)

where 𝑅 is a gas constant equal to 8.314 J/(K mol); The insulation
DP value at the end of life criterion or the moment of the sampling
𝐷𝑃end = 200; The initial insulation DP value 𝐷𝑃start = 1000.

Since the official regulation about service lifetime of transformers
aries in each country, a relative aging rate is calculated instead to eval-
ate the transformer lifetime. According to IEC thermal model (Anon,
018b), the aging rate of the paper insulation is given as follows:

= 𝐴 ⋅ exp
[

−
𝐸𝐴

𝑅(𝜃h + 273)

]

(23)

A rated insulation condition ‘‘free from air and 0.5% moisture’’ is
defined in the standard for thermally upgraded paper. The relative
aging rate is defined to relate the aging rate at a certain insulation
condition to the rated rate (Susa et al., 2011):

𝑉 = 𝑘
𝑘𝑟

= 𝐴
𝐴𝑟

exp

[

1
𝑅

⋅

(

𝐸𝐴𝑟

𝑅(𝜃hr + 273)
−

𝐸𝐴
𝑅(𝜃hW + 273)

)] (24)

The value of V reflects the aging rate of the transformer. If 𝑉 = 1,
the transformer in the analyzed case has the same aging rate as in the
rated condition. If 𝑉 > 1, the transformer in the analyzed case is aging
faster than in the rated condition, and vice versa.

3. Validation & discussion

3.1. Data analysis

In this section, the available data is classified according to the
dominant factor influencing the load profile of WFETs at each moment.
There are multiple factors influencing the power generation of a wind
farm. Apart from the persistent wake effect, three other factors, in
which each shows an evident impact on the load profile of WFETs, are
discussed in this paper. The data is classified according to the dominant
factor influencing the power generation at each unit time period.

• Type I — icing: turbine operation during winter is more likely to
be influenced by icing.

• Type II — wind power curtailment: the power generation is
operationally reduced below what the system is capable of pro-
ducing (Qi et al., 2018).

• Type III — turbine availability: the output of turbine is zero or
negative (due to the self-consumption of wind turbine) when the
turbine is under failure or maintenance.

• Type IV — wake effect: all the turbines are in service and only
influenced by the wake effect.

Next, using the algorithm shown in Fig. 4, the data can be classified
according to the influence factors dominant at each moment. 𝑈cut−in
and 𝑈cut−out indicate the cut-in and cut-out wind speed of the selected
wind turbine. This classification assists in identifying the patterns and
trends in the load profiles of WFETs by analyzing each type of data
individually.

This paper focuses on analyzing the influence of type III+IV data
on the load profile of WFETs. Type I and Type II data are noted, but
not analyzed in depth since the impact of these two factors (icing
and power curtailment) on transformer aging is limited. If a wind
farm locates in a region when icing frequently occurs, the ambient
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Fig. 4. Flow chart to label the data type (I:icing; II: power curtailment; III: turbine
availability; IV: wake effect).

temperature and the icing accretion on the turbine blades restricts the
raise of HST. For type II data, the analysis of power curtailment is
outside the scope of this paper since it is more related to power system
operation.

3.2. Case study

The proposed methodology is validated by comparing the simula-
tion outcome with the measured data. The measurement record is from
a wind farm called Stor-Rotliden (SRL). SRL is a 77.8 MW onshore wind
1405
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Table 2
Data classification according to influencing factors.

period
factor I II III IV

2019/01/01-
2019/12/31 32.88% 0.96% 25.78% 40.39%

2020/01/01-
2020/12/31 32.88% 7.27% 15.29% 44.56%

arm with forest and semi-natural landscape, located in Vasterbotten,
weden. The wind farm got commissioned in 2011, consisting of forty
estas Wind Systems V90 turbines (eleven with rating of 1.8 MW and

wenty-nine with rating of 2 MW).
The measurement record contains two year measured data from the

ind farm based on a ten-minute interval (52560 measuring records in
ne year). The records include the following items.

• The measured wind speed from all turbines in the horizontal
direction, 𝑈mea, m/s

• The measured wind direction from all turbines in the horizontal
direction, 𝜃mea, m/s

• Power curtailment setpoint at SRL in time sequence
• Ambient temperature of the turbine closest to the substation, 𝜃𝑎,

◦C
• Active power output from SRL, 𝑃real, MW

The curtailment setting record shows when the turbine rating is
imited due to power curtailment operation. 𝑃real is used to verify the
ccuracy of the model by comparing the simulation with the measured
ata. It is assumed that the turbine operation not in the period from 1st
f March to 31st of October in each year is influenced by icing. Using
he algorithm shown in Fig. 4, the data is classified according to the
actors dominant at each measurement interval. The results are shown
n Table 2.

The results in Table 2 show that for the SRL wind farm, the op-
ration period influenced by the turbine availability is much longer
ompared to that influenced by the power curtailment. As stated in
.1, Type I and Type II data is not included into analysis. Based
n comparison with the ‘filtered’ measured data (Type III+IV), the
nfluence of these factors on the load profile of transformers can be
nalyzed individually.

.3. Validation of WIF method & wake model

Based on self-defined 𝑈nowake (varying in [5, 25], unit: m/s), wind
irection 𝜃nowake (varying in [0, 360], unit: degree) and the wind farm
ayout in Fig. 5, the wake impact factor (WIF) for SRL under different
ind conditions is calculated using Eqs. (3) and (1). The WIF map at
RL is shown in Fig. 6. It is worth noting again that Fig. 6 reflects the
eduction of the incoming wind speed under the assumption that the
ncoming wind direction 𝜃nowake is the same for each turbine.

Type IV data is used to check the accuracy of WIF and the Jensen
ake model. Choosing the measured data from turbine B10 as an

nput 𝑈meaB10 , the corrected incoming wind speed for the whole wind
arm 𝑈nowake(wif) is calculated based on Eq. (4) and Fig. 6. Next, the
ensen model in Eq. (1) is used to calculate the reduced wind speed
wake(wif) of each turbine. The real-time power output of each turbine

s derived by fitting the corresponding wind speed into the power
urve of Vestas V90 in Fig. 8. As indicated in Section 2.3, the power
utput variables (𝑃nowake(wif), 𝑃wake(wif), 𝑃real) are converted into the
orresponding load factors (𝐾nowake(wif), 𝐾wake(wif), 𝐾real) using Eq. (6).
he simulation results and measured data are compared by the duration
urve (load factor versus time), which is shown in Fig. 9(a) and
ig. 9(b). 𝐾nowake(avg.) in Figs. 9(a) and 9(b) indicate the calculated load
actor assuming the wind speed of each turbine is the same as turbine
10 (the turbine chosen for WIF correction). MSE is calculated between
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Fig. 5. Wind farm layout.

Fig. 6. Map of wake impact factor (WIF).

Fig. 7. Wind rose: (left) 2019; (right) 2020.

the simulation and measurement result and shown in Tables A.7 and
A.8.

Besides, the effect of WIF and Jensen wake model correction can
also be seen from the comparison of the annual energy production
(AEP) of each turbine, which is shown in Figs. 10(a) and 10(b).
1406
Fig. 8. Power curve of Vestas V90 (Anon, 2018c).

Table 3
WT failure & repair rate for BD model.

reliability
date 2019/03/01–

–2019/10/31
2020/03/01–
–2020/10/31

failure rate 𝜆 (occ.∕year) 22.56 15.38
repair rate 𝜇 (occ.∕year) 534.93 566.11
turbine availability 𝑞 (%) 96.28% 97.28%

3.4. Validation of turbine availability model

After the verification of WIF and the Jensen wake model, the turbine
availability is involved to see its influence on the load factor prediction.
The data (type II+III+IV) is used in this case to guarantee the time
continuity of data in the calculation of failure and repair date. Next,
the data (type III+IV) are used to verify the accuracy of the proposed
turbine availability model.

3.4.1. BD model
According to the output 𝑛 and 𝑍 derived from the algorithm shown

in Fig. 2, the failure and repair rates of turbines for the BD model in
these two years are calculated using Eqs. (12)–(14) and the results are
shown in Table 3.

Based on the binomial distribution curve generated by Eq. (15),
random number is generated in time sequence according to the con-
stant turbine availability 𝑞 to simulate the variation of the operational
turbines. The new duration curve considering the constant turbine
availability is included in Figs. 11 and 12. Considering that this model
is used to size the transformer, more attention should be paid to when
the load factor is higher than 0.5. Hence, partial enlarged view is given
to the time range of 0%–15%. The MSE between the simulation and the
measurement is shown in Tables A.7 and A.8.

3.4.2. Markov model
To consider the variation of turbine availability under different

wind conditions, the wind speed is divided into low, middle and high
state. The range of low, middle and high wind speed defined in Arwade
et al. (2011) is based on the average daily wind speed. In this paper,
the three variables are defined according to 𝑈cut−in, 𝑈rated and 𝑈cut−out
of the Vestas V90 power curve.

• 𝑈L: Low wind speed (4.0–9.0 m/s)
• 𝑈M: Medium wind speed (9.0–13.9 m/s)
• 𝑈H: High wind speed (13.9–25.0 m/s)

After classifying the data according to the wind speed, 𝑛 and 𝑍
under different wind speed state can be counted using the algorithm
shown in Fig. 2. The failure and repair rate of the turbines under low,
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Fig. 9. Duration curve using WIF correction & Jensen model. in (a) 2019 (b) 2020.

Fig. 10. Annual energy production of individual turbine in (a) 2019 (b) 2020.

Fig. 11. Duration curve 2019 (a) nowake (b) wake.
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Fig. 12. Duration curve 2020 (a) nowake (b) wake.

Fig. 13. Difference of duration curves between simulated cases and 𝐾real in 2019 (a) nowake (b) wake.

Fig. 14. Difference of duration curves between simulated cases and 𝐾real in 2020 (a) nowake (b) wake.
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Table 4
WT failure & repair rate (2019) for Markov model.

Time 2019/03/01–2019/10/31

wind state 𝑈L 𝑈M 𝑈H
failure rate 𝜆 (occ.∕year) 232.56 14.04 6.12
repair rate 𝜇 (occ.∕year) 6977.1 440.85 85.09
turbine availability 𝑞 (%) 96.66 96.82 92.81

Table 5
WT failure & repair rate (2020) for Markov model.
Time 2020/03/01–2020/10/31

wind state 𝑈L 𝑈M 𝑈H
failure rate 𝜆 (occ.∕year) 224.29 8.53 1.36
repair rate 𝜇 (occ.∕year) 7473.2 577.38 27.24
turbine availability 𝑞 (%) 96.70 98.52 95.01

Table 6
Transition rates for Markov model.

Transition rates 𝜌L,M 𝜌M,L 𝜌M,H 𝜌H,M
2019/03/01–2019/12/31 769.64 3152.1 507.06 3400.2
2020/03/01–2020/12/31 809.82 2739.9 266.88 4134.7

middle and high wind speed are calculated using Eq. (12), Eq. (13) and
Eq. (14) and the results are shown in Tables 4 and 5. Using Eq. (17),
the transition rates between 𝑈L, 𝑈M and 𝑈H are calculated and shown
in Table 6. Random number is generated in time sequence according to
the turbine availability 𝑞 in each wind state to simulate the variation
of the operational turbines. The new duration curve considering the
changing turbine availability is included in Figs. 11 and 12. Since it
is challenging to distinguish the curves due to the overlapping, the
differences between 𝐾nowake(wif), 𝐾wake(wif)+BD, 𝐾wake(wif)+markov and 𝐾real
re plotted in Figs. 13 and 14.

.5. Transformer lifetime estimation

The data of the ambient temperature is selected from the database
f SMHI, measured by a station at Fredrika, which is closest to Stor-
otliden. Using Eqs. (20), (21) and (22), the relative aging rate of the

ransformer insulation is calculated and shown in Figs. 15(a) and 15(b).

.6. Discussion

Combining the layout of wind farm (SRL) in Fig. 5 and the WIF map
n Fig. 6, it can be seen that the wake effect influences the wind power
eneration especially when the wind speed is in 5–12 m∕s and the wind
1409
direction is in [120, 180] and in [300, 340] degree. The wind farm suffers
ore wake loss in 2019 since Fig. 7 shows a more even distribution of

he wind rose in 2020 than in 2019.
The WIF correction and the wake model improves the accuracy of

ind power prediction. It can be seen in Figs. 9(a) and 9(b) that the
imulated duration curves (𝐾wake(wif) based on 𝑈wif ) fit the measured
uration curve 𝐾real better than the duration curve (𝐾nowake(avg.) based
n 𝑈avg.). Tables A.7 and A.8 also show that the WMSE between 𝐾real
nd 𝐾wake(wif) is the minimum. Besides, the simulated annual energy
roduction (AEP) of each turbine fits better with the measured data in
igs. 10(a) and 10(b) after applying the WIF correction and the Jensen
ake model.

It can be found in Figs. 9(a) and 9(b) that the wake effect reduces
he load of WFETs and to some extent reduces the aging rate of WFETs
ccording to Figs. 15(a) and 15(b). However, the influence of the wake
ffect is limited when the transformer is close to fully loaded. Hence,
ven the wake effect affects the aging rate, it is not the dominant factor
nfluencing the HST of WFETs when the load is close to the installed
apacity of the connected wind farms.

After considering the impact of the turbine availability using
D/Markov model, according to Figs. 13 and 14, the duration curve is
orrected further. Combining with the MSE results shown in Tables A.9
nd A.10, it shows that the simulation results using the Markov model
its the measured data better compared to the BD model since the BD
odel ignores the variation of turbine failure and repair rate. Tables 4

nd 5 reflect that the correlation between the wind speed and the wind
ower generation is not strictly positive. High wind speed leads to a
ower turbine availability compared to low or middle wind speed. The
eduction of the operational turbines at high wind speed reduces the
ind power generation and the load profile of the WFETs, especially
hen the wind speed satisfies the condition of generating power close

o the installed capacity of the wind farm. This finding is beneficial
or the DTR application since the hot spot temperature of transformer
ncreases sharply when the WFET is fully loaded or overloaded. The
ecrease of turbine availability at high wind speed mitigates the risk of
verloading transformers.

As can be seen from Figs. 15(a) and 15(b), the crosspoint between
nowake(wif) and 𝑉rated indicates the transformer capacity would allow
xpansion of the wind farm by 63%. After considering the wake effect
nd turbine availability, the crosspoints between 𝑉wake(wif)+markov and

𝑉rated indicate that the installed capacity of the wind farm could be
increased by 74%–77% (11%–14% more than the 𝑉nowake(wif) case) in
the expansion stage without causing the transformer aging rate higher
than in the rated condition.

The inconsistency between 𝐾markov and 𝐾real can be due to the

differences in operation and maintenance strategies between actual
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implementation and the model’s assumption (e.g. the defined range of
low, middle and high wind speed, numbers of crews). The inconsistency
may also arise due to the finite states included in the Markov model.

4. Conclusion

This paper proposes a new methodology to estimate the transformer
load profile based on wind speed to improve the underutilization issue
of the wind farm exported transformers (WFETs). The case study and
discussion show that it is critical to incorporate turbine availability as
well as wake effect analysis in order to get an accurate estimation of
the load of transformers. The correction method (WIF) can pre-process
limited wind data to eliminate the measurement error caused by the
wake effect. The Markov model outperforms the BD model in predicting
transformer loads by effectively incorporating the variable turbine
availability. However, the BD model maintains its utility, offering a
simpler evaluation of turbine availability’s impact on load profiles due
to its lower input requirements.

The results show that the changing turbine availability and the wake
effect both reduce the aging rate of the WFETs, even the wake effect
has limited influence when the transformer is close to fully loaded
compared to the turbine availability. This methodology allows for a
more accurate assessment of the aging rate of the existing transformers
and the transformers in the planning stage. If components such as
cables and breakers can be upgraded synchronously, it is possible to
under-size the WFETs during the planning stage with the application
of dynamic thermal rating. The WFETs can be better utilized based on
a trade-off between economical cost and acceptable aging losses. After
suitable parameter adjustments in the wake model, this methodology
may also be applied to analyze the substation construction of offshore
wind farms. As one of the heaviest components on offshore platforms,
optimally rated export transformers help reduce construction costs and
difficulty.
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Appendix. MSE comparison

See Tables A.7–A.9.
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Table A.7
MSE between measurement and simulation (2019).

𝐾real

𝐾SIM 𝐾avg. 𝐾nowake(wif) 𝐾wake(wif)

MSE with 𝐾real 8.0228e−4 1.4704e−3 8.3118e−4

Table A.8
MSE between the measurements and simulations (2020).

𝐾real

𝐾SIM 𝐾avg. 𝐾nowake(wif) 𝐾wake(wif)

MSE with 𝐾real 1.1471e−3 9.5766e−4 2.3182e−4

Table A.9
WMSE between measurement and simulation (2019).

𝐾real

𝐾SIM 𝐾nowake(wif) 𝐾wake(wif)

WMSE 2.0282e−3 1.3213e−3

𝐾real

𝐾SIM 𝐾nowake(wif)+BD 𝐾wake(wif)+BD

WMSE 9.1862e−4 4.9855e−4

𝐾real

𝐾SIM 𝐾nowake(wif)+Markov 𝐾wake(wif)+Markov

WMSE 4.8001e−4 2.0613e−4

Table A.10
WMSE between measurement and simulation (2020).

𝐾real

𝐾SIM 𝐾nowake(wif) 𝐾wake(wif)

WMSE 7.5507e−4 2.1422e−4

𝐾real

𝐾SIM 𝐾nowake(wif)+BD 𝐾wake(wif)+BD

WMSE 3.3077e−4 3.9764e−5

𝐾real

𝐾SIM 𝐾nowake(wif)+Markov 𝐾wake(wif)+Markov

WMSE 2.2139e−4 2.3049e−5
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