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Physical systems are modeled by field equations; these are coupled, partial
differential equations in space and time. Field equations are often given by bal-
ance equations and constitutive equations, where the former are axiomatically
given and the latter are thermodynamically derived. This approach is useful in
thermomechanics and electromagnetism, yet challenges arise once we apply it
in damage mechanics for generalized continua. For deriving governing equa-
tions, an alternative method is based on a variational framework known as the
extended Noether’s formalism. Its formal introduction relies on mathematical
concepts limiting its use in applied mechanics as a field theory. In this work, we
demonstrate the power of extended Noether’s formalism by using tensor alge-
bra and usual continuum mechanics nomenclature. We demonstrate derivation
of field equations in damage mechanics for generalized continua, specifically in
the case of strain gradient elasticity.

1 INTRODUCTION

In rational continuum mechanics, we axiomatically start with the balance equations in a formal manner established in
[1]. For thermomechanics there are balance equations of mass, momenta, and energy. For electromagnetism there are
Faraday relation (balance of magnetic flux) and balance of electric charge, they lead to Maxwell’s equations. These
balance equations are called “universal” since they hold for all materials. For a specific application with knownmaterials,
equations for stress, heat flux, (internal or free) energy, electric current, electromagnetic force, charge and current poten-
tials are yet to be defined by constitutive equations in order to close the system of equations. The constitutive equations are
needed for establishing the material specific behavior into the system.
Starting with [2–4], the thermodynamics of irreversible processes has been used for obtaining the constitutive equa-

tions in a formal way. There are ample methods in the literature, we may name at least four famous approaches:
The Coleman–Noll procedure [5], Müller’s rational thermodynamics [6], non-equilibrium thermodynamics [7], and
extended thermodynamics [8]. Thermodynamical approaches consider bulk properties; for surface phenomena such as
crack propagation or surface polarization, additional assumptions or models need to be suggested. In the case of surfaces,
additional axiomatic balance equations may be used for singular surfaces [9]. When it comes to edge effects, further com-
plications arise and there is simply not onemethod covering all systems in generalized continua. In short, for applications
involving first space derivatives (gradients) of unknowns—the method is useful [10], where we start directly with balance
equations and derive all the rest. If an application demands higher gradients to cover surface and edge effects (and even
beyond) then we need a generalization of this method, technical challenges arise.
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The formal difficulties aside, definition of internal or free energy is challenging as well. Energy is a directly measurable
quantity and a theory based on energy is known as the variational formulation with roots over many centuries long
[11, 12]. In continuummechanics, variational formulation has been suggested in different settings, in hydrodynamics [13,
14], fluid-structure interactions [15, 16], multiphysics [17, 18], dynamics [19, 20], mechanics with dissipation [21, 22], and
for discrete structures [23]. Specifically for crack propagation, variational approaches exist in quasi-static cases [24]. This
approach uses an energy concept and may be extended to generalized mechanics, yet it causes technical difficulties in the
case of applied surface or volume forces [25]. In classical mechanics, energy integral in time is called action. Invariance
of action is postulated by using a Lagrange function. Although the method is useful, its motivation is formal [26]. This
Lagrange function leads to Euler–Lagrange equations that are the field equations for the bulk. In the case of bulk
quantities, classical mechanics [27–29] is utilized for displacement in “regular” systems, i.e. with no singularities.
Topological methods by using geometric formulations [30, 31] have been exploited for developing a geometric contin-

uum mechanics [32–35], which are applied in multiphysics as well as in multiscale theories [36, 37]. Such formulations
are developed for regular domains, in simpler terms, the underlying mathematical structure needs smooth functions that
is only possible if the continuum body has no voids or cracks. A crack may be seen as a singular surface in the sense that
the displacement value on both sides of the surface is different. Thus, there is a jump in the displacement field across this
“singular” surface. We call this singularity a “defect” or “fracture” in the material.
In elasticity, a propagating crack is modeled by forces that are acting on this defect [38]. These so-called material (or

configurational) forces are conceptually beneficial for generating a so-called material stress and an energy-momentum
tensor as introduced in [39]. This method provides a model for the surface related phenomena. The energy-momentum
tensor is written by using a space-time continuum. This approach has been proven to be adequate in the special and
then general relativity [40], where a spatial space is used in the formulation. A spatial space is coordinates pointing at
locations with or without massive particles occupying this locations. This concept is well-known in fluid dynamics with
a control volume, also called a Eulerian approach, where space coordinates are fixed in the physical space (where we
live). We call it a laboratory frame. Motion of coordinates are not related to the motion of massive particles. Often we
visualize that the laboratory frame is fixed (not moving). In continuum mechanics, we use a material frame where the
space coordinates point to the same massive particle (material point or matter). Motion of coordinates means the motion
of massive particles. As the matter may move, a continuum body is deforming, we may think of a co-moving frame for
space. The four-dimensional notation has been used in the Eshelby energy-momentum tensor by means of a material
frame. In non-relativistic approaches, we skip a distinction between time defined on a laboratory or co-moving frame. By
decomposing the energy-momentum tensor into a time and space part, the so-called Eshelby stress tensor is obtained
and used in connection with crack modeling in different formulations [41–45] and also in applications with numerical
examples [46–51]. For the history of Eshelby stress tensor and its use in variational formulation, we refer to [52]. For
technical details in surface phenomena [53] and Eshelby stress tensor’s relation to fracture mechanics, we refer to [54].
Displacement is the primitive function that we calculate in mechanics. In continuummechanics, functions are regular

without singularities. Crack is indeed causing a jump of the displacement, since the bond between material particles has
been lost, and its thickness is at a smaller length-scale such that we consider this singularity as a fictitious surface (without
its ownmass). The Eshelby stress tensor is used in [55] in a systematic study in order to define an entropy production on
the singular surface. This excellent idea leads naturally to constitutive equations for the velocity of the singular surface
that is tantamount to the crack in physics; in the literature, there is no such consideration for suggesting a relation and
its experimental verification. Another novel approach is presented in [56], where Müller’s rational thermodynamics
is used to obtain a balance equation with the necessary constitutive equation for the damage parameter. A differential
equation related to the Eshelby stress tensor is without doubt a possible modeling tool for crack propagation [57, 58].
In a first-order continuum, in the case of elasticity, we know the governing equations including Eshelby stress ten-

sor. When it comes to a generalization, for example higher-order theories or in multiphysics, it becomes challenging
to motivate if and how Eshelby stress tensor needs to be modified. Therefore, we follow another approach and derive
field equations by using Noether’s formalism in continuum mechanics. In this approach, all governing equations,
including Eshelby stress tensor, are acquired by applying Noether’s formalism. Herein we exploit this approach by
using a continuum mechanics jargon known as Ricci calculus. The manuscript comprises a detailed motivation of the
formalism:

1. In Section 2, we discuss about variation of fields, which is the core of the subject and is discussed in an abstract setting.
We give examples to well-known transformation rules for clarifying their role in this formulation. For the sake of
consistency, we include possibly well known concepts from variational calculus and tensor algebra.
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2. In Section 3, we explain the extended Noether’s theorem for fields. We emphasize that we demonstrate (discrete)
systems as in dynamics depending on time; and also (continuous) systems in space and time. It is of utmost importance
to distinguish that many variational formulations utilize a spatial space. Historically, Noether’s theorem has been
applied for such systems mainly in electromagnetism, since there, the fields propagate with or without matter. But
herein, we focus on a continuum body, where space is defined as attached to and co-moving with thematter. Therefore,
we may call it a “configurational” space, see [59] for the history of this distinction. We obtain the so-called Rund–
Trautman identity in this configurational space.

3. In Section 4, we obtain the usual Euler–Lagrange equations. We provide the derivation of Noether’s current
leading to conservation (balance) laws, by using Euler–Lagrange equations and Rund–Trautman identity. The
formalism is utilized in an abstract manner in order to employ for generalized continuum.

An important outcome of this work is the clear differing in governing equations and their derivations. In this way, we
enable a more broader use of this formalism. The Noether’s formalism leads to Euler–Lagrange equations. This
approach is often used in classical mechanics for discrete systems, but we use it herein for obtaining field equations. The
balance laws are acquired with this formalism. Usually, after acquiring the balance laws, the Noether’s formalism is
taken aside. We do the contrary and continue with the extended Noether’s formalism that leads to Rund–Trautman
identity. This identity contains not only balance laws yet also Eshelby stress tensor, where the latter leads to a so-called
𝐽-integral used in damage mechanics. Therefore, we exploit the extended Noether’s formalism in order to obtain field
equations in damage mechanics, first, for classical elasticity, then, for strain gradient elasticity:

1. In Section 5, we give examples of well-known elastodynamics by using the extended Noether’s formalism. In this
way, it is clarified that the balance of momentum is obtained from the Euler–Lagrange equations, balance of energy
is acquired from the Noether’s current, and the Eshelby stress tensor is attained by the Rund–Trautman identity.

2. In Section 6, we apply the same approach for generalized continua. In addition to balance laws for generalized elasticity,
we acquire Eshelby stress tensor (and 𝐽-integral) in the case of strain gradient elasticity.

2 VARIATION OF FIELDS

We use standard continuummechanics notation and understand a summation over all repeated indices called Einstein
summation convention. Consider a body composed ofmassive particles. Particle is defined as the smallest observable piece
of material consisting of an infinitesimal volume element. This volume element is, however, large enough to neglect any
quantum phenomena. The body’s image is the continuum domain in the space 𝑅3, with (contravariant) coordinates 𝑥𝑖 ,
where 𝑖 = 1, 2, 3. Coordinates label the particles of the body; in other words, we use the particle coordinates analogous as
in [60]. We use time, 𝑡, and space, (𝑥1, 𝑥2, 𝑥3); the numerical values of coordinates do not change as they denote the same
massive particle. As the numerical values of 𝑥𝑖 do not change for the same particle, the particle rests in this “material”
frame. Since the equilibrium is defined by referring the material frame, we call it the reference frame. It may be called the
inertial frame with respect to which the dynamics of the system is prescribed. An inertial frame is basically the coordinate
system labeling particles, since the definition of the inertial frame is the one where the mass rests,1 and thus, does not
carry any inertial forces [61].
Motion is modeled by means of two distinct processes. First, the particle may deviate from its equilibrium position, this

displacement is fully recoverable. The best example is in elasticity. An elastic deformation is such that the particles change
their positions by deviating from the reference frame (equilibrium); after unloading, the particles turn to the same equi-
librium position. Reference frame itself—equivalently the equilibrium position of the continuum body—may be altered
irreversibly. If the motion of the body is such that the system obtains another equilibrium position upon unloading, as in
plasticity, then we need different field equations defining the deviation from the equilibrium and the motion (evolution)
of the reference frame.
We aim for a general formulation that employs transformation properties of tensors. We start with the continuous

transformation that forms the basis of the Hamilton–Jacobi equation in the Noetherian formalism. This variational
principle leads to governing equations as introduced formally by [62] and [63] we refer to [64] for the historical remarks
about Noether’s theorem. The variational principle is based on the variational calculus that is the algebra of func-
tionals and their extremal values. Suppose that we define a (tensor of rank 0) function 𝐿(𝑡; 𝑥𝑖, 𝜕𝑥𝑖∕𝜕𝑡) depending on an
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independent variable, 𝑡, and on variables depending on this independent variable, 𝑥𝑖 = 𝑥𝑖(𝑡) and 𝜕𝑥𝑖∕𝜕𝑡 =
𝜕𝑥𝑖

𝜕𝑡
(𝑡). Its

integral over the independent variable is called action:

 = ∫ 𝐿 d𝑡 , (1)

which becomes a form by rewriting,

 = ∫ d𝑈

d𝑡
d𝑡 = ∫ d𝑈 . (2)

This so-called first integral in 𝑈 means that the path of the integral does not matter, transformation in 𝑡 leaves its value
unchanged. According to the theory of invariants the differential form d𝑈 is an invariant: its transformation in 𝑥𝑖 fails to
change its numerical value. In short, action is invariant under transformation of 𝑡 and 𝑥𝑖 . We discuss this formal property
going back to [65] in more detail in what follows.
An important side note is the invariants and their use inmechanics. For example in hyperelasticity, deformation energy

is modeled by invariants (of strain) since they do not change under coordinate transformations. The values of the (strain)
tensor change by following the transformation rules. Although the components of a tensor change, the invariants remain
the same. Therefore, by using the invariants, we obtain an energy definition independent of coordinate systems.
The transformation is arbitrary2 and 𝐿 is called Lagrangean. In order to understand, what the transformation means,

we briefly introduce a continuous transformation. We use a function taking the variable 𝑥𝑖 and transforms along 𝜀, as
follows:

𝑥𝑖
′
= 𝜁𝑖(𝒙, 𝜀) . (3)

We provide some examples in the Appendix. The general framework is used for an arbitrary but linear transformation.
When we expand 𝜁 in Taylor series, around 𝜀 = 0, then a first order approximation for the transformation reads

𝑥𝑖
′
= 𝑥𝑖 + 𝜀

𝜕𝜁𝑖

𝜕𝜀

|||𝜀=0 + (𝜀2) ≈ 𝑥𝑖 + 𝜀𝜉𝑖(𝒙) , (4)

where the coefficients to the first power, 𝜉𝑖 , are called the generators of the transformation [68, Section 4.1]. As at the limit
𝜀 → 0, the approximation becomes accurate, 𝜀 is often introduced as a “small” parameter. If we define a tensor of rank
one and weight zero,𝑨, in the space 𝑅3, then the variation of the tensor’s (contravariant) components becomes, due to the
change of (contravariant) coordinates,

𝑥𝑖
′
= 𝑥𝑖 + 𝜀𝜉𝑖 ,

𝐴𝑖|||𝑥𝑗′ = 𝐴𝑖|||𝑥𝑗 + δ𝐴𝑖|||𝑥𝑗 = 𝜕𝑥𝑖
′

𝜕𝑥𝑗
𝐴𝑗|||𝑥𝑗 = (

𝛿𝑖
𝑗
+ 𝜀

𝜕𝜉𝑖

𝜕𝑥𝑗

)
𝐴𝑗|||𝑥𝑗 ,

𝐴𝑖 + δ𝐴𝑖 =
(
𝛿𝑖
𝑗
+ 𝜀

𝜕𝜉𝑖

𝜕𝑥𝑗

)
𝐴𝑗 , δ𝐴𝑖 = 𝜀

𝜕𝜉𝑖

𝜕𝑥𝑗
𝐴𝑗 .

(5)

In other words, the variation of 𝐴𝑖 means

δ𝐴𝑖 = 𝐴𝑖|||𝑥𝑗′ − 𝐴𝑖|||𝑥𝑗 = 𝐴𝑖(𝑥𝑗
′
) − 𝐴𝑖(𝑥𝑗) . (6)

Standard tensor calculus rules apply; the transformation is invertible,

𝜕𝑥𝑖
′

𝜕𝑥𝑗

𝜕𝑥𝑗

𝜕𝑥𝑘′
= 𝛿𝑖

′

𝑘′
= 𝛿𝑖

𝑘
. (7)

We find the variation of covariant components of the same tensor of rank one [67, Section 23] in a straight-forwardmanner

𝑥𝑖 = 𝑥𝑖
′
− 𝜀𝜉𝑖 ,

𝐴𝑖
|||𝑥𝑗′ = 𝐴𝑖

|||𝑥𝑗 + δ𝐴𝑖
|||𝑥𝑗 = 𝐴𝑗

𝜕𝑥𝑗

𝜕𝑥𝑖′
= 𝐴𝑗

(
𝛿
𝑗

𝑖
− 𝜀

𝜕𝜉𝑗

𝜕𝑥𝑖′

)
, δ𝐴𝑖 = −𝜀𝐴𝑗

𝜕𝜉𝑗

𝜕𝑥𝑖
.

(8)
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Analogously, for a tensor of rank two and weight zero, we obtain

δ𝐴𝑖𝑘 = 𝜀
𝜕𝜉𝑖

𝜕𝑥𝑗
𝐴𝑗𝑘 + 𝜀

𝜕𝜉𝑘

𝜕𝑥𝑗
𝐴𝑖𝑗 ,

δ𝐴𝑖
𝑘
= 𝜀

𝜕𝜉𝑖

𝜕𝑥𝑗
𝐴
𝑗

𝑘
− 𝜀

𝜕𝜉𝑗

𝜕𝑥𝑘
𝐴𝑖

𝑗
,

δ𝐴𝑖𝑘 = −𝜀
𝜕𝜉𝑗

𝜕𝑥𝑖
𝐴𝑗𝑘 − 𝜀

𝜕𝜉𝑗

𝜕𝑥𝑘
𝐴𝑖𝑗 .

(9)

As we have determined the transformation of co- and contravariant components of tensors, we start applying the
formalism regarding transformation of Lagrangean.

3 EXTENDED NOETHER’S THEOREM

Suppose that 𝐿(𝑡; 𝜒𝑖, 𝜕𝜒𝑖∕𝜕𝑡) is defined by an independent variable, 𝑡 ∈ [𝑎, 𝑏], by variables, 𝜒𝑖 = 𝜒𝑖(𝑡), and their deriva-
tives, 𝜕𝜒𝑖∕𝜕𝑡 = 𝜕𝜒𝑖

𝜕𝑡
(𝑡), with respect to the independent variable. We define the transformation, 𝑡′ = 𝑡 + 𝜀𝜏 and 𝜒𝑖

′
=

𝜒𝑖 + 𝜀𝜉𝑖 , with the corresponding generators, 𝜏, 𝜉𝑖. If𝐿 is a scalar, its numerical value does not change—it is invariant—with
respect to a particular choice of an infinitesimal transformation with the generators, 𝜏, 𝜉𝑖 , as follows:

𝐿(𝑡; 𝜒𝑖, 𝜕𝜒𝑖∕𝜕𝑡) = 𝐿(𝑡′; 𝜒𝑖
′
, 𝜕𝜒𝑖

′
∕𝜕𝑡′) . (10)

We use a simplified notation 𝐿′ = 𝐿(𝑡′; 𝜒𝑖
′
, 𝜕𝜒𝑖

′
∕𝜕𝑡′) and rewrite 𝐿 = 𝐿′. The (action) functional,  = ∫ 𝐿 d𝑡, has its

variation

δ = ′ −  = ∫ 𝐿

(
𝑡′; 𝜒𝑖

′
,
𝜕𝜒𝑖

′

𝜕𝑡′

)
d𝑡′ − ∫ 𝐿

(
𝑡; 𝜒𝑖,

𝜕𝜒𝑖

𝜕𝑡

)
d𝑡

= ∫
(
𝐿

(
𝑡′; 𝜒𝑖

′
,
𝜕𝜒𝑖

′

𝜕𝑡′

)
d𝑡′

d𝑡
− 𝐿

(
𝑡; 𝜒𝑖,

𝜕𝜒𝑖

𝜕𝑡

))
d𝑡 . (11)

As 𝐿 = 𝐿′ or in other words, δ𝐿 = 0, we expect that δ is independent of 𝑡, 𝜒𝑖 . The trivial way is to choose, δ = 0. As the
theory is at first order, that is in 𝜀1, owing to Equation (4), we acquire δ → 0 faster than 𝜀 → 0. By choosing a small 𝜀,
linear in 𝜀 is an accurate theory in first order. Therefore, we may have a linear in 𝜀 difference,

δ = ∫ 𝜀 d𝐹 = ∫ 𝜀
d𝐹

d𝑡
d𝑡 , (12)

where 𝐹 is an arbitrary (but given) function. The latter brings an important equation:

𝐿

(
𝑡′; 𝜒𝑖

′
,
𝜕𝜒𝑖

′

𝜕𝑡′

)
d𝑡′

d𝑡
− 𝐿

(
𝑡; 𝜒𝑖,

𝜕𝜒𝑖

𝜕𝑡

)
= 𝜀

d𝐹

d𝑡
. (13)

This abstract transformation that produces a source term has been used extensively in [69, 70] to derive the principle of
least action. A more general form for the right-hand side fails to exist, since the transformation is linear in 𝜀. Although
not written in this way, the formalism goes back to Maupertius and has been used for solving differential equations.
This formalism is often called a canonical transformation.3 We transform the functional in the parameter 𝑡 that produces
a right-hand side, if 𝐿 is in unit of energy then the induced 𝐹 is in momentum times position.
Now, we generalize the procedure by defining (𝑡, 𝑥𝑖) as independent variables and 𝜙𝑘 = 𝜙𝑘(𝑡, 𝑥𝑖) as variables depending

on the independent variables. A Lagrangean density (per space-time) depends on them and their derivatives,

 = (𝑡, 𝑥𝑖; 𝜙𝑘, 𝜕𝜙𝑘
𝜕𝑡
,
𝜕𝜙𝑘

𝜕𝑥𝑖

)
,  = ∫  dΣ , (14)

 15214001, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300020 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 23 ABALI

where  is in unit of energy per volume. We use an infinitesimal space-time element, dΣ =
√
𝑔 d𝑥 d𝑡, in a frame with

the metric tensor, 𝑔𝜇𝜈, and its determinant, 𝑔 = det(𝑔𝜇𝜈). As aforementioned, this frame may be chosen as laboratory
(fixed) or reference (co-moving) frame. Herein, we choose it as the reference frame (material system) and use a standard
mapping to an arbitrary frame by means of a transformation. In continuum mechanics, such a mapping is introduced
from reference to current frame. Herein, we use a general formulation by using an arbitrary (linear) transformation. We
define the reference frame in a Cartesian system, leading to d𝑥 ≡ d𝑥1 d𝑥2 d𝑥3, and thus, the transformed frame is oblique
but not curvilinear, d𝑥′ = 𝜀𝑖𝑗𝑘 d𝑥1

𝑖′
d𝑥2

𝑗′
d𝑥3

𝑘′
, by using the Levi-Civita symbol, 𝜀𝑖𝑗𝑘. By constructing a four-dimensional

space for space-time with its metric (for continuous transformation), 𝑔𝜇𝜈, where 𝜇, 𝜈 ∈ {1, 2, 3, 4}, we obtain

𝑋
𝜇′

𝜇 =𝛿
𝜇′

𝜇 + 𝜀
𝜕(𝜏, 𝜉1, 𝜉2, 𝜉3)𝜇

′

𝜕(𝑡, 𝑥1, 𝑥2, 𝑥3)𝜇
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 + 𝜀
𝜕𝜏

𝜕𝑡
𝜀
𝜕𝜏

𝜕𝑥1
𝜀
𝜕𝜏

𝜕𝑥2
𝜀
𝜕𝜏

𝜕𝑥3

𝜀
𝜕𝜉1

𝜕𝑡
1 + 𝜀

𝜕𝜉1

𝜕𝑥1
𝜀
𝜕𝜉1

𝜕𝑥2
𝜀
𝜕𝜉1

𝜕𝑥3

𝜀
𝜕𝜉2

𝜕𝑡
𝜀
𝜕𝜉2

𝜕𝑥1
1 + 𝜀

𝜕𝜉2

𝜕𝑥2
𝜀
𝜕𝜉2

𝜕𝑥3

𝜀
𝜕𝜉3

𝜕𝑡
𝜀
𝜕𝜉3

𝜕𝑥1
𝜀
𝜕𝜉3

𝜕𝑥2
1 + 𝜀

𝜕𝜉3

𝜕𝑥3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐽 = det(𝑋
𝜇′

𝜇 ) = 1 + 𝜀
𝜕𝜏

𝜕𝑡
+ 𝜀

𝜕𝜉𝑖

𝜕𝑥𝑖
+ (𝜀2) ,

(15)

and therefore dΣ′ = 𝐽 dΣ or equivalently d𝑥′ d𝑡′ = 𝐽 d𝑥 d𝑡. Moreover, we have

𝑔𝜇𝜈 = 𝑋
𝜇′

𝜇 𝑋
𝜈′
𝜈 𝑔𝜇′𝜈′ , 𝑔′ = det(𝑔𝜇′𝜈′ ) , 𝑔 = det(𝑔𝜇𝜈) , (16)

by taking the determinant of the first equation, we obtain

𝑔 = 𝐽𝐽𝑔′ ,√
𝑔 = 𝐽

√
𝑔′ . (17)

Since the continuous transformations are written as a set with an identity element, they have unique inverse transforma-
tions; therefore, they form a Lie group according to the group theory. Of course, we want to have mathematical relations
transforming as the coordinate system transforms. Therefore, we use tensors in formulating such relations. A tensor of
rank 0 is a scalar. We begin with an assertion that the Lagrange density is such a proper scalar,  = ′, and observe

 = ∫ √𝑔 d𝑥 d𝑡 = ∫ 𝐽√𝑔′ d𝑥 d𝑡 = ∫ √𝑔′ d𝑥′ d𝑡′ = ∫ ′
√
𝑔′ d𝑥′ d𝑡′ = ′ . (18)

Equivalently, we may begin with a scalar,  = ′, for a given transformation, and obtain that the Lagrangean is an
invariant. This invariance is exploited for the principle of least action as aforementioned, and this formalism is called
Noether’s theorem. We continue by building on this formalism and demonstrate an extension of this formalism.
Let us choose a specific type of generators for the arbitrary transformation, say, Lorentz transformation;  is called

a Lorentz scalar. We may give an analogy to continuum mechanics by neglecting shortly the time integral; consider
that  = ′ means that the energy is the same in both frames. This fact makes sense, but how do we know that the energy
density (per volume) is also the same in both frames such that = ′ is also fulfilled? Indeed, wemaywant that the energy
density is the same for corresponding material particles, but how do we enforce this case? Now by using this analogy, we
ask to answer the question: What if we do have a scalar, ′ = ; however, not a proper scalar,  ≠ ′, by definition, what
are the additional conditions to be fulfilled in order to generate a proper scalar,  = ′ ?
For a formulation with field equations, we may incorporate the source term in Equation (13) (right-hand side) in two

steps. First, we build up the procedure for fields with the Lagrangean in Equation (14) for arbitrary transformations in
space and time. All the transformation is achieved with different generators but one-parameter 𝜀. The variation reads in
domain Ω for fields

δ = ∫
Ω′

′ dΣ′ − ∫
Ω

 dΣ = ∫
Ω

(′𝐽 − ) dΣ , (19)
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ABALI 7 of 23

since dΣ′ = 𝐽 dΣ. Second, from [71] we know that a transformation may produce a non-conservative force. In order to
implement this concept, we need a clear distinction between conservative and non-conservative forces. A conservative
force is derivable from a proper scalar, 𝑆, which is an invariant, as follows:

𝐹cons.
𝑖

=
𝜕𝑆

𝜕𝑥𝑖
. (20)

A non-conservative force does not have this special property; thus, in the general case, we may generate a tensor rank 1
from a tensor rank 2, 𝑆𝑘

𝑖
, by using its derivative

𝐹non−cons.
𝑖

=
𝜕𝑆𝑘

𝑖

𝜕𝑥𝑘
. (21)

This property is a general identity, because in tensor calculus, we may always reduce the rank by a derivative.
In a transformation from one frame (with prime) onto another frame (without prime), a (non-conservative) force may

be generated. This fundamental property may be physically understood as a (virtual) work in case of such a transforma-
tion. If we suppose that this transformation is between frames like the current and reference one, the deviation is a virtual
displacement: δ𝑢𝑖 = 𝑥𝑖

′
− 𝑥𝑖 . For this transformation, we need to supply an energy, that is a virtual work into the system,

δ𝐴 = 𝐹𝑖δ𝑢
𝑖 , where this non-conservative force is measurable on the reference frame. The work is virtual since the trans-

formation between the frames is nothing physical. The choice of frame, where the fields are described and equations are
evaluated, has nothing to do with the system itself. Thus, the work caused by the transformation is virtual. However, the
force is real and measurable. The direction of transformation from the reference to current gives a minus sign

(𝑡, 𝑥𝑖) → (𝑡, 𝑥𝑖
′
) ,

𝑥𝑖
′
= 𝑥𝑖 + δ𝑢𝑖 , 𝐽 = 1 +

𝜕δ𝑢𝑖

𝜕𝑥𝑖
,

 = ′𝐽 + δ𝐴 ⇒ δ = ∫
Ω

(′𝐽 − ) dΣ = −∫ δ𝐴 dΣ . (22)

This notion is used in elasticity. But the shown principle is applicable for a transformation between laboratory and refer-
ence frame as well. Then a transformation from the fixed laboratory frame (control volume) to the co-moving reference
frame reads as a positive virtual work on the right-hand side.We are going to use± in front of this term, in order to empha-
size that both choices are adequate depending on the chosen frame to transform to. This right-hand side is introduced for
the first time in [72] as δ = 𝜀

𝜕𝐹𝜇

𝜕𝑥𝜇
that is a simplification and is called a divergence invariance. We stick to themore general

formwith the virtual work.We emphasize that this virtual work is given by a non-conservative force such that it is possible
to begin with δ = ±δ, where δ is a non-conservative (dissipative) work, also called Rayleigh dissipation. Indeed,
the names work, force, and displacement are in harmony with mechanics, but the relation holds true in multiphysics, as
also known from dynamics in discrete systems, and they may be called “generalized” force or work-conjugate term. In
thermodynamics, one often calls them “thermodynamical” forces and fluxes.
The invariance of the Lagrangean leads to the Rund–Trautman identity [68, Section 6.5]. The Lagrangean density

′ = (𝑡′, 𝑥𝑖′ ; 𝜙𝑘′ , 𝜕𝜙𝑘′
𝜕𝑡′

,
𝜕𝜙𝑘

′

𝜕𝑥𝑖′
) depends on the independent variables (𝑡, 𝑥𝑖) and primitive variables (𝜙𝑘, 𝜕𝜙

𝑘

𝜕𝑡
,
𝜕𝜙𝑘

𝜕𝑥𝑖
), which

depend on the independent variables. We axiomatically assume that primitive variables exist. We stress that the frame
is oblique, hence, we skip distinguishing between covariant and partial space derivatives. The same holds for the time
derivative since we measure this in the reference frame. The linear transformations read

𝑡′ = 𝑡 + 𝜀𝜏 , 𝑥𝑖
′
= 𝑥𝑖 + 𝜀𝜉𝑖 , 𝜙𝑘

′
= 𝜙𝑘 + 𝜀𝜑𝑘 , (23)

where all of them are along the same parameter 𝜀. Since the invariance property 𝐿 = 𝐿′ asserts the condition to satisfy,
′𝐽 −  = ∓δ𝐴, we can set the variation along one-parameter 𝜀 vanish such as:

d

d𝜀

(′𝐽 −  ± δ𝐴
)||||𝜀=0 = 0 , (24)
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8 of 23 ABALI

where we utilize a directed differentiation often called a Gateux derivative. Although we have introduced the virtual
work as a physical quantity, δ𝐴 = 𝐹𝑖δ𝑢

𝑖 , with an analogy in mechanics, in the general case, each primitive variable causes
virtual work, δ𝐴 = 𝐹𝑖𝜀𝜑

𝑖 . The linear transformations depend on 𝜀, and thus, ′ as well as 𝐽 depend on 𝜀. However, the
term  does not, therefore, we obtain (

d′
d𝜀
𝐽
)||||𝜀=0 +

(′ d𝐽

d𝜀

)||||𝜀=0 = ∓𝐹𝑘𝜑
𝑘 . (25)

By using Equation (15), we obtain

′||𝜀=0 =  , 𝐽 = 1 + 𝜀
𝜕𝜏

𝜕𝑡
+ 𝜀

𝜕𝜉𝑖

𝜕𝑥𝑖
⇒ 𝐽

|||𝜀=0 = 1 ,
d𝐽

d𝜀

||||𝜀=0 = 𝜕𝜏

𝜕𝑡
+

𝜕𝜉𝑖

𝜕𝑥𝑖
, (26)

and thus,

d′
d𝜀

||||𝜀=0 + ( 𝜕𝜏

𝜕𝑡
+

𝜕𝜉𝑖

𝜕𝑥𝑖

)
= ∓𝐹𝑘𝜑

𝑘 . (27)

By using a short notation ()∙ = 𝜕()∕𝜕𝑡 and (),𝑖 = 𝜕()∕𝜕𝑥𝑖 , we calculate

𝜕𝜙𝑘
′

𝜕𝑡′
||||𝜀=0 = 𝜕(𝜙𝑘 + 𝜀𝜑𝑘)

𝜕𝑡

𝜕𝑡

𝜕𝑡′
||||𝜀=0 = 𝜕(𝜙𝑘 + 𝜀𝜑𝑘)

𝜕𝑡

𝜕(𝑡′ − 𝜀𝜏)

𝜕𝑡′
||||𝜀=0

=

(
𝜕𝜙𝑘

𝜕𝑡
+ 𝜀

𝜕𝜑𝑘

𝜕𝑡

)(
1 − 𝜀

𝜕𝜏

𝜕(𝑡 + 𝜀𝜏)

)||||𝜀=0 = 𝜕𝜙𝑘

𝜕𝑡
= (𝜙𝑘)∙ , (28)

where 𝑡′ = 𝑡 + 𝜀𝜏 has been explicitly inserted, and obtain

d

d𝜀

𝜕𝜙𝑘
′

𝜕𝑡′
||||𝜀=0 = d

d𝜀

((
𝜕𝜙𝑘

𝜕𝑡
+ 𝜀

𝜕𝜑𝑘

𝜕𝑡

)(
1 − 𝜀

𝜕𝜏

𝜕(𝑡 + 𝜀𝜏)

))|||||𝜀=0 = −
𝜕𝜙𝑘

𝜕𝑡

𝜕𝜏

𝜕𝑡
+
𝜕𝜑𝑘

𝜕𝑡
= (𝜑𝑘)∙ − (𝜙𝑘)∙𝜏∙ . (29)

Analogously, we acquire

𝜕𝜙𝑘
′

𝜕𝑥𝑖′
||||𝜀=0 =𝜕(𝜙

𝑘 + 𝜀𝜑𝑘)

𝜕𝑥𝑗
𝜕𝑥𝑗

𝜕𝑥𝑖′
||||𝜀=0 = 𝜕(𝜙𝑘 + 𝜀𝜑𝑘)

𝜕𝑥𝑗
𝜕(𝑥𝑗

′
− 𝜀𝜉𝑗)

𝜕𝑥𝑖′
||||𝜀=0

=

(
𝜕𝜙𝑘

𝜕𝑥𝑗
+ 𝜀

𝜕𝜑𝑘

𝜕𝑥𝑗

)(
𝛿
𝑗

𝑖
− 𝜀

𝜕𝜉𝑗

𝜕(𝑥𝑖 + 𝜀𝜉𝑖)

)||||𝜀=0 = 𝜕𝜙𝑘

𝜕𝑥𝑖
= 𝜙𝑘

,𝑖
,

(30)

and

d

d𝜀

𝜕𝜙𝑘
′

𝜕𝑥𝑖′
||||𝜀=0 = d

d𝜀

((
𝜕𝜙𝑘

𝜕𝑥𝑗
+ 𝜀

𝜕𝜑𝑘

𝜕𝑥𝑗

)(
𝛿
𝑗

𝑖
− 𝜀

𝜕𝜉𝑗

𝜕(𝑥𝑖 + 𝜀𝜉𝑖)

))|||||𝜀=0 = −
𝜕𝜙𝑘

𝜕𝑥𝑗
𝜕𝜉𝑗

𝜕𝑥𝑖
+
𝜕𝜑𝑘

𝜕𝑥𝑖
= 𝜑𝑘

,𝑖
− 𝜙𝑘

,𝑗
𝜉
𝑗

,𝑖
. (31)

The first term in Equation (27) reads

d′

d𝜀

||||𝜀=0 =
d

(
𝑡′, 𝑥𝑖

′
; 𝜙𝑘

′
,
𝜕𝜙𝑘

′

𝜕𝑡′
,
𝜕𝜙𝑘

′

𝜕𝑥𝑖′

)
d𝜀

||||𝜀=0
=

⎛⎜⎜⎜⎝
𝜕
𝜕𝑡′

𝜏 +
𝜕
𝜕𝑥𝑖′

𝜉𝑖 +
𝜕
𝜕𝜙𝑘′

𝜑𝑘 +
𝜕
𝜕
𝜕𝜙𝑘′

𝜕𝑡′

d

d𝜀

𝜕𝜙𝑘
′

𝜕𝑡′
+

𝜕
𝜕
𝜕𝜙𝑘′

𝜕𝑥𝑖′

d

d𝜀

𝜕𝜙𝑘
′

𝜕𝑥𝑖′

⎞⎟⎟⎟⎠
||||𝜀=0

 15214001, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202300020 by U

ppsala U
niversity K

arin B
oye, W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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=

(
𝜕

𝜕(𝑡 + 𝜀𝜏)
𝜏 +

𝜕
𝜕(𝑥𝑖 + 𝜀𝜉𝑖)

𝜉𝑖 +
𝜕

𝜕(𝜙𝑘 + 𝜀𝜑𝑘)
𝜑𝑘

)||||𝜀=0
+

𝜕
𝜕(𝜙𝑘)∙

(
(𝜑𝑘)∙ − (𝜙𝑘)∙𝜏∙

)
+

𝜕
𝜕𝜙𝑘

,𝑖

(
𝜑𝑘
,𝑗
𝛿
𝑗

𝑖
− 𝜙𝑘

,𝑗
𝜉
𝑗

,𝑖

)
=
𝜕
𝜕𝑡
𝜏 +

𝜕
𝜕𝑥𝑖

𝜉𝑖 +
𝜕
𝜕𝜙𝑘

𝜑𝑘 +
𝜕

𝜕(𝜙𝑘)∙

(
(𝜑𝑘)∙ − (𝜙𝑘)∙𝜏∙

)
+

𝜕
𝜕𝜙𝑘

,𝑖

(
𝜑𝑘
,𝑖
− 𝜙𝑘

,𝑗
𝜉
𝑗

,𝑖

)
. (32)

Now by inserting the latter into Equation (27), we find the Rund–Trautman identity:

𝜏
𝜕
𝜕𝑡

+ 𝜉𝑖
𝜕
𝜕𝑥𝑖

+ 𝜑𝑘
𝜕
𝜕𝜙𝑘

+ 𝜏∙
(
 − (𝜙𝑘)∙

𝜕
𝜕(𝜙𝑘)∙

)
+ 𝜉

𝑗

,𝑖

(
𝛿𝑖

𝑗
− 𝜙𝑘

,𝑗

𝜕
𝜕𝜙𝑘

,𝑖

)
+ (𝜑𝑘)∙

𝜕
𝜕(𝜙𝑘)∙

+ 𝜑𝑘
,𝑖

𝜕
𝜕𝜙𝑘

,𝑖

= ∓𝐹𝑘𝜑
𝑘 . (33)

This Rund–Trautman identity [73–75] is general. In the following, we analyze this identity term-by-term and discuss
some simplifications leading to well-known scenarios:

1. First term: When Lagrangean does not depend on time, 𝜕∕𝜕𝑡 = 0, and the right-hand side vanishes, 𝐹𝑘 = 0, then
arbitrary transformations in time are allowed and  is conserved. This property is known as “constant energy.”

2. Second term: In the case of homogeneity—Lagrangean is constant in space, 𝑥𝑘, thus, the second term vanishes—
arbitrary transformation in space is allowed in the case of vanishing right-hand side, 𝐹𝑘 = 0. The simple example is a
free motion of a rigid body.

3. Third term: If Lagrangean does not depend on primitive fields, 𝜙𝑘, leading to, 𝜕∕𝜕𝜙𝑘 = 0, then no supply or
volumetric terms apply. In mechanics, supply is because of gravitational or electromagnetic fields.

4. Fourth and fifth terms: Whenever the generator of time transformation depends on time or the generator of space
transformation on space, we have a term called energy-momentum tensor if time and space are written together. We
discuss these terms in the following in more detail. In mechanics, this term is often simplified and not discussed.

5. The terms 𝜕∕𝜕(𝜙𝑘)∙ and 𝜕∕𝜕𝜙𝑘
,𝑖
are called the conjugated momenta, however, in case of fields this name may be

misleading.

The Rund–Trautman identity is an extension to the classical Noetherian approach, we may claim that this identity is
one step before obtaining “conservation laws.” Especially the fourth term is important to notice: multiplied by a minus,
it is often introduced as Hamiltonian of the system

𝐻 = − + (𝜙𝑘)∙
𝜕

𝜕(𝜙𝑘)∙
. (34)

Herein, we see that the term is motivated by the Rund–Trautman identity. The latter definition for the Hamiltonian
is numerically equal to the canonical Hamiltonian in a Lagrangean formulation [76]. We emphasize that these con-
cepts of Lagrangean and Hamiltonian are used for systems with 𝑡 as the only independent variable. We continue the
Noetherian formalism in the following with time and space as independent variables. First, we combine all of the inde-
pendent variables together as a set 𝑎𝜈 = {𝑡, 𝑥1, 𝑥2, 𝑥3}. We may even think of 𝜈 = 0, 1, 2, 3 in order to have 𝑎0 = 𝑡 and
𝑎1 = 𝑥1, 𝑎2 = 𝑥2, 𝑎3 = 𝑥3, for a simpler analogy. Second, the linear transformation is rewritten, 𝑎𝜈′ = 𝑎𝜈 + 𝜀𝛼𝜈. Third, we
write the Rund–Trautman identity once more for (𝑎𝜈; 𝜙𝑘(𝑎𝜈), 𝜙𝑘,𝜇(𝑎𝜈)) in this notation,

𝛼𝜈,𝜈 + 𝜑𝑘
𝜕
𝜕𝜙𝑘

+ 𝛼
𝜇
,𝜈

(
𝛿𝜈𝜇 − 𝜙𝑘,𝜇

𝜕
𝜕𝜙𝑘,𝜈

)
+ 𝜑𝑘,𝜇

𝜕
𝜕𝜙𝑘,𝜇

= ∓𝐹𝑘𝜑
𝑘 , (35)

where we use (),𝜈 = 𝜕()∕𝜕𝑎𝜈. Now we define the energy-momentum tensor just by rewriting the third term in the latter,

 𝜈
𝜇 = −𝛿𝜈𝜇 + 𝜙𝑘,𝜇

𝜕
𝜕𝜙𝑘,𝜈

. (36)
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10 of 23 ABALI

We observe that the Lagrange function,, and its invariance ismore fundamental than a theory based on theHamilton
function, 𝐻 =  0

0 , because it fails to have an invariance property in general. Indeed the “energy-momentum” tensor in
Equation (36) is a generalization of the Hamiltonian in Equation (34). The energy-momentum tensor is composed of
Hamiltonian in its time (scalar) part, 𝐻, and Eshelby stress tensor in its space part  𝑖

𝑗
. The term 𝒫 𝜈

𝑘
= 𝜕∕𝜕𝜙𝑘,𝜇 is

called a canonical momentum in the case of the rigid body motion, where  incorporates the kinetic energy without
deformation energy. We prefer to call it a conjugate term, for example, in elasticity, stress is energetic conjugate of strain
that is the space derivative of the primitive variable, which is displacement. In this analogy, the space part of the energy-
momentum tensor,  𝑖

𝑗
, is often introduced by a so-called Legendre transformation. Herein, we realize that the same

term is directly generated by the Noether formalism. The result has been obtained in [60]; however, the condition of
functional  being extremal has also been used. The procedure herein is different and less restrictive since the energy-
momentum tensor asserts only the invariance of the Lagrangean but not its density. The invariance and extremality are
separate properties, until now, we have only used invariance.

4 CONSERVATION LAWS

Wewill derive conservation laws in two steps, first, we obtain the so-called Euler–Lagrange equations, second, we use
them in the Rund–Trautman identity in order to obtain the conservation laws. They are the balance laws derived by
using the formalism herein. We begin with 𝛼𝜈 ≡ 0, where this restriction means that we neglect, for the moment, any
shift of the independent variables, thus no time and space variation. First and third terms vanish in Equation (35) and we
obtain

𝜑𝑘
𝜕
𝜕𝜙𝑘

+ 𝜑𝑘,𝜇
𝜕
𝜕𝜙𝑘,𝜇

= ∓𝐹𝑘𝜑
𝑘 . (37)

This identity is rewritten in an integral form over a space-time domain Ω and integrated by parts,

∫
Ω

(
𝜑𝑘

𝜕
𝜕𝜙𝑘

+ 𝜑𝑘,𝜇
𝜕
𝜕𝜙𝑘,𝜇

± 𝐹𝑘𝜑
𝑘

)
dΣ = 0 ,

∫
Ω

⎛⎜⎜⎝𝜑𝑘
𝜕
𝜕𝜙𝑘

− 𝜑𝑘

(
𝜕
𝜕𝜙𝑘,𝜇

)
,𝜇

± 𝐹𝑘𝜑
𝑘
⎞⎟⎟⎠ dΣ + ∮

𝜕Ω

𝜑𝑘
𝜕
𝜕𝜙𝑘,𝜇

d𝑆𝜇 = 0 , (38)

where the surface integral, d𝑆𝜇 = 𝑛𝜇 d𝑆, is computed on the boundaries with surface normal, 𝑛𝜇, this normal comprises
space—on boundaries of the continuum body, 𝑛𝑖 is known as the outer normal—and time (initial and end time). We are
interested in a differential equation within the domain, in other words, values at boundaries are given; no variation is
needed, 𝜑𝑘 = 0 , ∀𝑎𝜇 ∈ 𝜕Ω. Thus the last integral vanishes and the well-known Euler–Lagrange equations appear

𝜕
𝜕𝜙𝑘

−

(
𝜕
𝜕𝜙𝑘,𝜇

)
,𝜇

= ∓𝐹𝑘 . (39)

This equation iswell-known, for example given as the integral Lagrange–d’Alembert principle in [77], Definition 7.8.4]
for discrete systems. We assert it herein as an additional condition to the Rund–Trautman identity. It is also called an
extremal principle, since in Equation (24), the directional derivative vanishes, such that the condition, ′𝐽 −  ± δ𝐴, is
evaluated at its extremum (minimum, maximum, or saddle point). We realize that for a specific case of no space and
time translation, all methods are identical, which we will discuss further in an application. Often, the right-hand side is
neglected in fields, we refer to [78] for a connection of the right-hand sidewith Rayleigh dissipation function.We empha-
size that we have neglected a reference frame evolution that is an irreversible phenomenon; for an example, we refer to the
Appendix with an application. This Euler–Lagrange equation is obtained by using an invariant but it does not mean
that the Euler–Lagrange equation remains the same under coordinate transformations. Their form changes; balance
of momentum is a typical example in mechanics, under a proper coordinate transformation, additional terms emerge.
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ABALI 11 of 23

If there is a coordinate transformation leaving the Euler–Lagrange equation unchanged then this transformation is
called invariant transformation. Herein, we use a formalism for arbitrary transformations.
As the right-hand side is a (non-conservative) force, it is rank 1. Analogous to the aforementioned case, without intro-

ducing any assumption or reduction, we may deduce a rank 1 tensor from a rank 2 tensor by (space and time) derivative

𝜕
𝜕𝜙𝑘

− 𝒫
𝜇

𝑘,𝜇
= 𝑆

𝜇

𝑘,𝜇
, 𝒫

𝜇

𝑘
=

𝜕
𝜕𝜙𝑘,𝜇

. (40)

For the derivation, we have used an oblique but not curvilinear coordinate system (we refer to [67], Section 43],
[40] for a generic derivation with Christoffel symbols). Now we start with Equation (36) and obtain, by using
 = (𝑎𝜇; 𝜙𝑘(𝑎𝜇), 𝜙𝑘,𝜈(𝑎𝜇)) and chain rule,

 𝜌
𝜈,𝜌 =

(
−𝛿𝜌𝜈 + 𝜙𝑘,𝜈𝒫

𝜌

𝑘

)
,𝜌
= −,𝜈 − 𝜙𝑘,𝜈

𝜕
𝜕𝜙𝑘

− 𝜙𝑘,𝜇𝜈𝒫
𝜇

𝑘
+
(
𝜙𝑘,𝜈𝒫

𝜌

𝑘

)
,𝜌
= −,𝜈 − 𝜙𝑘,𝜈

𝜕
𝜕𝜙𝑘

+ 𝜙𝑘,𝜈𝒫
𝜌

𝑘,𝜌
. (41)

By inserting the latter in the Rund–Trautman identity in Equation (35), we acquire

𝛼𝜈,𝜈 + 𝜑𝑘
𝜕
𝜕𝜙𝑘

− 𝛼
𝜇
,𝜈 𝜈

𝜇 + 𝜑𝑘,𝜇𝒫
𝜇

𝑘
= 𝜑𝑘𝑆

𝜇

𝑘,𝜇
,

𝛼𝜈
(,𝜈 + 𝜌

𝜈,𝜌

)
+ 𝜑𝑘

𝜕
𝜕𝜙𝑘

−
(
𝛼𝜇 𝜈

𝜇

)
,𝜈
+
(
𝜑𝑘𝒫

𝜇

𝑘

)
,𝜇
− 𝜑𝑘𝒫

𝜇

𝑘,𝜇
= 𝜑𝑘𝑆

𝜇

𝑘,𝜇
,

−𝛼𝜈𝜙𝑘,𝜈

(
𝜕
𝜕𝜙𝑘

− 𝒫
𝜌

𝑘,𝜌

)
+ 𝜑𝑘

(
𝜕
𝜕𝜙𝑘

− 𝒫
𝜇

𝑘,𝜇
− 𝑆

𝜇

𝑘,𝜇

)
+
(
𝜑𝑘𝒫 𝜈

𝑘
− 𝛼𝜇 𝜈

𝜇

)
,𝜈
= 0 .

(42)

By assuming that Euler–Lagrange equations hold, we insert Equation (40) and obtain(
𝜑𝑘𝒫 𝜈

𝑘
− 𝛼𝜇 𝜈

𝜇

)
,𝜈
= 𝛼𝜈𝜙𝑘,𝜈𝑆

𝜇

𝑘,𝜇
. (43)

By renaming the left-hand side as Noether’s current,  𝜇, we obtain the corresponding equation:

 𝜇
,𝜇 = 𝛼𝜈𝜙𝑘,𝜈𝑆

𝜇

𝑘,𝜇
,  𝜇 = 𝜑𝑘

𝜕
𝜕𝜙𝑘,𝜇

− 𝛼𝜈 𝜇
𝜈 . (44)

In the case of vanishing right-hand side, 𝑆 𝜇

𝑘,𝜇
= ±𝐹𝑘 = 0, the latter “balance” equations are called conservation laws,

 𝜇
,𝜇 = 0.

5 ELASTODYNAMICS

In order to demonstrate themeaning of conservation laws, we give an example in elastodynamics. The primitive variables,
𝜙𝑘, are the components of the displacement field, 𝑢1, 𝑢2, 𝑢3, expressed in Cartesian coordinates. Reference frame is not
evolving such that we have a reversible process. Let us use the following Lagrangean density:

 =
1

2
𝐶̃𝑖𝜇𝑘𝜈𝑢𝑖,𝜇𝑢𝑘,𝜈 , 𝐶̃𝑖𝜇𝑘𝜈 =

⎧⎪⎪⎨⎪⎪⎩
𝜌ref .𝛿𝑖𝑘 if 𝜇 = 0, 𝜈 = 0 ,

0 if 𝜇 = 0, 𝜈 ≠ 0 or 𝜇 ≠ 0, 𝜈 = 0 ,

−𝐶𝑖𝑗𝑘𝑙 if 𝜇 = 𝑗, 𝜈 = 𝑙 ,

(45)

where the stiffness tensor, 𝐶𝑖𝑗𝑘𝑙, is given for the corresponding material. Mass density, 𝜌ref ., is defined on the reference
frame, thus, it is constant in time. In the case of linear and isotropic material, the stiffness tensor reads 𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 +

𝜇𝛿𝑖𝑘𝛿𝑗𝑙 + 𝜇𝛿𝑖𝑙𝛿𝑗𝑘, where the so-called Lame parameters are given by engineering constants; Young’s modulus, 𝐸, and
Poisson’s ratio, 𝜈, as follows:

𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
, 𝜇 =

𝐸

2(1+𝜈)
. (46)
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12 of 23 ABALI

We separate time, 𝜇 = 0, and space, 𝜇 = {1, 2, 3} = 𝑖, for a direct analogy with linear elasticity theory. Hence, the
aforementioned Lagrangean density in space and time reads

 =
1

2
𝜌ref .𝑢

∙
𝑖
𝑢∙
𝑖
− 𝑤 , 𝑤 =

1

2
𝑢𝑖,𝑗𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙 , (47)

with the deformation (or stored) energy density, 𝑤 in J/m3. Instead of starting with Equation(45), we may introduce
Lagrangean density as kinetic energy densityminus deformation energy density. Albeit not immediately obvious, we use
a linear strainmeasure, 𝐸𝑖𝑗 = 1∕2(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), thus, the stored energy density,𝑤 = 1∕2𝐸𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝐸𝑘𝑙, is objective and reduces
to the quadratic energy, 𝑤 = 1∕2𝑢𝑖,𝑗𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙, effected by the minor symmetries, 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 . The formulation is
analogous for finite strain formulation, for demonstrating this, we use a stress measure in the following. By choosing the
deformation energy differently, for example as known in hyperelasticity, stress is calculated by its derivative with respect
to displacement gradient.
In the case of vanishing viscous effects, 𝐹𝑘 = 0, we rewrite the conservation laws in Equation (44), as follows:

 ∙
0 + 𝑖,𝑖 = 0 , 0 = 𝜑𝑘

𝜕
𝜕𝑢∙

𝑘

− 𝜏00 − 𝜉𝑖𝑖0 , 𝑖 = 𝜑𝑘
𝜕
𝜕𝑢𝑘,𝑖

− 𝜏0𝑖 − 𝜉𝑗𝑗𝑖 . (48)

The whole formulation is in material frame, although for simplicity, we ignore the difference between reference and
current frame. The energy-momentum tensor readswith a time part calledHamiltonian and a space part called Eshelby
stress tensor

𝛼𝛽 = −𝛿𝛼𝛽 + 𝑢𝑘,𝛼
𝜕
𝜕𝑢𝑘,𝛽

. (49)

We use its counterpart in space and time

00 = −  + 𝑢∙
𝑘

𝜕
𝜕𝑢∙

𝑘

= −
1

2
𝜌ref .𝑢

∙
𝑖
𝑢∙
𝑖
+ 𝑤 + 𝑢∙

𝑘
𝜌ref .𝑢

∙
𝑘
=
1

2
𝜌ref .𝑢

∙
𝑖
𝑢∙
𝑖
+ 𝑤 ,

0𝑖 =𝑢
∙
𝑘

𝜕
𝜕𝑢𝑘,𝑖

= 𝑢∙
𝑘
𝒫𝑘𝑖 , 𝒫𝑘𝑖 =

𝜕
𝜕𝑢𝑘,𝑖

= −
𝜕𝑤

𝜕𝑢𝑘,𝑖
= −𝐶𝑘𝑖𝑙𝑚𝑢𝑙,𝑚 = −𝜎𝑘𝑖 ,

𝑖0 =𝑢𝑘,𝑖
𝜕
𝜕𝑢∙

𝑘

= 𝑢𝑘,𝑖𝜌ref .𝑢
∙
𝑘
,

𝑖𝑗 = − 𝛿𝑖𝑗 + 𝑢𝑘,𝑖
𝜕
𝜕𝑢𝑘,𝑗

= −
1

2
𝜌ref .𝑢

∙
𝑘
𝑢∙
𝑘
𝛿𝑖𝑗 + 𝑤𝛿𝑖𝑗 + 𝑢𝑘,𝑖𝒫𝑘𝑗 .

(50)

Noether currents become

0 =𝜑𝑘𝜌ref .𝑢∙𝑘 − 𝜏

2
𝜌ref .𝑢

∙
𝑖
𝑢∙
𝑖
− 𝜏𝑤 − 𝜉𝑖𝑢𝑘,𝑖𝜌ref .𝑢

∙
𝑘
,

𝑖 =𝜑𝑘𝒫𝑘𝑖 − 𝜏𝑢∙
𝑘
𝒫𝑘𝑖 + 𝜉𝑗

(
1

2
𝜌ref .𝑢

∙
𝑘
𝑢∙
𝑘
𝛿𝑗𝑖 − 𝑤𝛿𝑗𝑖 − 𝑢𝑘,𝑗𝒫𝑘𝑖

)
.

(51)

Technically,𝒫𝑖𝑗 is the minus nominal stress or minus transpose of Piola stress, indeed, in small strain assumption that
corresponds to the minus Cauchy stress. The conservation laws,

0 = ∙
0 + 𝑖,𝑖

0 =
(
𝜑𝑘𝜌ref .𝑢

∙
𝑘
−
𝜏

2
𝜌ref .𝑢

∙
𝑖
𝑢∙
𝑖
− 𝜏𝑤 − 𝜉𝑖𝑢𝑘,𝑖𝜌ref .𝑢

∙
𝑘

)∙
+

(
𝜑𝑘𝒫𝑘𝑖 − 𝜏𝑢∙

𝑘
𝒫𝑘𝑖 + 𝜉𝑗

(
1

2
𝜌ref .𝑢

∙
𝑘
𝑢∙
𝑘
𝛿𝑗𝑖 − 𝑤𝛿𝑗𝑖 − 𝑢𝑘,𝑗𝒫𝑘𝑖

))
,𝑖

(52)
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ABALI 13 of 23

may be rewritten as follows, as they hold for arbitrary transformations,

0 =𝜑𝑘
(
𝜌ref .𝑢

∙∙
𝑘
+ 𝒫𝑘𝑖,𝑖

)
− 𝜏

((
1

2
𝜌ref .𝑢

∙
𝑖
𝑢∙
𝑖
+ 𝑤

)∙

+
(
𝑢∙
𝑘
𝒫𝑘𝑖

)
,𝑖

)

+ 𝜉𝑗

(
−
(
𝜌ref .𝑢

∙
𝑘
𝑢𝑘,𝑗

)∙
+

(
1

2
𝜌ref .𝑢

∙
𝑘
𝑢∙
𝑘
𝛿𝑗𝑖 − 𝑤𝛿𝑗𝑖 − 𝑢𝑘,𝑗𝒫𝑘𝑖

)
,𝑖

)

+ 𝜑∙
𝑘
𝜌ref .𝑢

∙
𝑘
− 𝜏∙

(
1

2
𝜌ref .𝑢

∙
𝑖
𝑢∙
𝑖
+ 𝑤

)
− 𝜉∙

𝑗
𝜌ref .𝑢

∙
𝑘
𝑢𝑘,𝑗 + 𝜑𝑘,𝑖𝒫𝑘𝑖

− 𝜏,𝑖𝑢
∙
𝑘
𝒫𝑘𝑖 + 𝜉𝑗,𝑖

(
1

2
𝜌ref .𝑢

∙
𝑘
𝑢∙
𝑘
𝛿𝑗𝑖 − 𝑤𝛿𝑗𝑖 − 𝑢𝑘,𝑗𝒫𝑘𝑖

)
.

(53)

We stress that the transformations in Equation (23)may be chosen in such away that the above equation holds. In this way,
it is possible to formulate an inverse problem and search for possible transformations by solving so-called Killing equa-
tions from the latter. A direct problem is to test different transformations and find out the consequence of invariance and
extremality of . The former has brought us the Rund–Trautman identity and the latter Euler–Lagrange equations.
By using both of them, we have obtained Noether’s currents leading to Equation (53). If we examine a transformation
in displacement field, 𝜑𝑘 = const, and insert it into the latter, we obtain the balance of linear momentum,

0 = 𝜑𝑘
(
𝜌ref .𝑢

∙∙
𝑘
+ 𝒫𝑘𝑖,𝑖

)
. (54)

We emphasize that𝒫𝑖𝑗 = −𝜎𝑗𝑖 in small deformation assumption. Since the transformation is constant in space and time,
such a displacement is called a rigid body motion. We may write the result on material frame for a domain , with its
closure (smooth boundary) 𝜕, after applying Gauss–Ostrogradskiy’s theorem,(∫ 𝜌ref .𝑢∙𝑘 d𝑉)∙ = ∫

𝜕 𝑡𝑘 d𝐴 , 𝑡𝑘 = −𝒫𝑘𝑖𝑛𝑖 = 𝜎𝑖𝑘𝑛𝑖 , (55)

where the traction vector 𝑡𝑖 is defined on the boundary. Without using Cauchy’s tetrahedron argumentation or usual
balance equations’ argumentation, we obtain the result as a consequence of the transformation rule. The justification is
obvious that we search for laws holding under rigid body translations. It is possible to call that a chosen symmetry, 𝜑𝑘 =
const, generates a balance law. This result is not an additional balance law, since we have to satisfy Euler–Lagrange
equations,

𝜕
𝜕𝑢𝑘

− 𝒫𝑘𝑖,𝑖 − 𝒫∙
𝑘0
= 0 ,

𝜕
𝜕𝑢𝑘

= 0 , 𝒫𝑘0 = 𝜌ref .𝑢
∙
𝑘
, 𝒫𝑘𝑖 = −

𝜕𝑤

𝜕𝑢𝑘,𝑖
= −𝜎𝑘𝑖 , (56)

leading to the same governing equation. This consequence is in fact the aforementioned relation that Rund–Trautman
identity reduces to the Euler–Lagrange equations for the case of no space and time variations. More interestingly, now
we may easily examine other transformation rules in order to acquire additional governing equations.
Analogously, we may examine a time translation, 𝜏 = const, in order to obtain the balance of energy with the total

specific (per mass) energy, 𝑒 in J/kg,

(𝜌ref .𝑒 d𝑉)
∙
= ∫

𝜕 𝑢∙𝑖 𝑡𝑖 d𝐴 , 𝑒 =
1

2
𝑢∙
𝑖
𝑢∙
𝑖
+

𝑤

𝜌ref .
. (57)

A Galileian transformation, for example 𝜉𝑖 = const, reads(∫ 𝜌ref .𝑢∙𝑘𝑢𝑘,𝑗 d𝑉)∙ = ∫
𝜕

(
𝑛𝑗 + 𝑢𝑘,𝑗𝑡𝑘

)
d𝐴 . (58)

This new balance law reduces to the well-known 𝐽-integral with the Eshelby stress tensor,

0 = ∫
𝜕

(
−𝑛𝑗𝑤 + 𝑢𝑘,𝑗𝑡𝑘

)
d𝐴 , (59)
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14 of 23 ABALI

for the stationary case. If the integral is taken around a crack tip, the value of this integral is seen as an energy release rate
for forming a discontinuity (propagating a crack) [79–81]. Herein, its dynamical counterpart is acquired by the Noether
formalism, so its interpretation and use are more obvious. In general, we may skip this balance law and hope that it
is fulfilled, but actually, adding an additional restriction is a remedy in numerical accuracy related problems [82]. More
different transformationsmay be examined, for example scaling or rotation (leading to the balance of angularmomentum)
is studied in [83]. A generalization of this formalism for thermoelasticity is possible as in [84].
We have obtained two governing equations to be fulfilled in an isothermal case. One is the term multiplied by 𝜑𝑘 and

the other is the term multiplied by 𝜉𝑖 .

6 GENERALIZED CONTINUA

Without repeating all the analysis, we now address the case if the Lagrangean depends also on the second derivative
(𝑎𝜈; 𝜙𝑘(𝑎𝜈), 𝜙𝑘,𝜇(𝑎𝜈), 𝜙𝑘,𝜇𝛾(𝑎𝜈)). As the transformation is still linear, we have extra terms in Equation (32) appearing for
the term multiplied by 𝛼𝜇 leading to the Rund–Trautman identity for generalized continua,

𝛼𝜈,𝜈 + 𝜑𝑘
𝜕
𝜕𝜙𝑘

+ 𝛼
𝜇
,𝜈

(
𝛿𝜈𝜇 − 𝜙𝑘,𝜇

𝜕
𝜕𝜙𝑘,𝜈

− 𝜙𝑘,𝛾𝜇
𝜕
𝜕𝜙𝑘,𝛾𝜈

)
+ 𝜑𝑘,𝜇

𝜕
𝜕𝜙𝑘,𝜇

+ 𝜑𝑘,𝛾𝜇
𝜕
𝜕𝜙𝑘,𝛾𝜇

= 𝜑𝑘𝑆
𝜇

𝑘,𝜇
, (60)

Therefore, the energy-momentum tensor is renewed

 𝜈
𝜇 = −𝛿𝜈𝜇 + 𝜙𝑘,𝜇

𝜕
𝜕𝜙𝑘,𝜈

+ 𝜙𝑘,𝛾𝜇
𝜕
𝜕𝜙𝑘,𝛾𝜈

. (61)

With the same integral form as in Equation (38) and in this round twice-integrating by parts, we obtain Euler–Lagrange
equations in generalized continua

𝜕
𝜕𝜙𝑘

−

(
𝜕
𝜕𝜙𝑘,𝜇

)
,𝜇

+

(
𝜕
𝜕𝜙𝑘,𝛾𝜇

)
,𝛾𝜇

= 𝑆
𝜇

𝑘,𝜇
. (62)

For a direct analogy, we utilize the same notation as in the previous section with an extension,

𝒫
𝜇

𝑘
=

𝜕
𝜕𝜙𝑘,𝜇

, ℛ
𝛾𝜇

𝑘
=

𝜕
𝜕𝜙𝑘,𝛾𝜇

, (63)

and rewrite the Euler–Lagrange equations:

𝜕
𝜕𝜙𝑘

− 𝒫
𝜇

𝑘 ,𝜇
+ ℛ

𝛾𝜇

𝑘 ,𝛾𝜇
= 𝑆

𝜇

𝑘,𝜇
. (64)

We repeat the same procedure

 𝜌
𝜈,𝜌 =

(
−𝛿𝜌𝜈 + 𝜙𝑘,𝜈𝒫

𝜌

𝑘
+ 𝜙𝑘,𝛾𝜈ℛ

𝛾𝜌

𝑘

)
,𝜌

= −,𝜈 − 𝜙𝑘,𝜈
𝜕
𝜕𝜙𝑘

− 𝜙𝑘,𝜇𝜈𝒫
𝜇

𝑘
− 𝜙𝑘,𝛾𝜇𝜈ℛ

𝛾𝜇

𝑘
+
(
𝜙𝑘,𝜈𝒫

𝜌

𝑘
+ 𝜙𝑘,𝛾𝜈ℛ

𝛾𝜌

𝑘

)
,𝜌

= −,𝜈 − 𝜙𝑘,𝜈
𝜕
𝜕𝜙𝑘

+ 𝜙𝑘,𝜈𝒫
𝜌

𝑘,𝜌
+ 𝜙𝑘,𝛾𝜈ℛ

𝛾𝜌

𝑘 ,𝜌

= −,𝜈 − 𝜙𝑘,𝜈
𝜕
𝜕𝜙𝑘

+ 𝜙𝑘,𝜈𝒫
𝜌

𝑘,𝜌
+
(
𝜙𝑘,𝜈ℛ

𝛾𝜌

𝑘 ,𝜌

)
,𝛾
− 𝜙𝑘,𝜈ℛ

𝛾𝜌

𝑘 ,𝛾𝜌
. (65)
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ABALI 15 of 23

By using the latter in the Rund–Trautman identity in Equation (60), we obtain

𝛼𝜈,𝜈 + 𝜑𝑘
𝜕
𝜕𝜙𝑘

− 𝛼
𝜇
,𝜈 𝜈

𝜇 + 𝜑𝑘,𝜇𝒫
𝜇

𝑘
+ 𝜑𝑘,𝛾𝜇ℛ

𝛾𝜇

𝑘
= 𝜑𝑘𝑆

𝜇

𝑘,𝜇
,

𝛼𝜈
(,𝜈 + 𝜌

𝜈,𝜌

)
+ 𝜑𝑘

𝜕
𝜕𝜙𝑘

−
(
𝛼𝜇 𝜈

𝜇

)
,𝜈
+
(
𝜑𝑘𝒫

𝜇

𝑘

)
,𝜇
− 𝜑𝑘𝒫

𝜇

𝑘,𝜇
+

+
(
𝜑𝑘,𝛾ℛ

𝛾𝜇

𝑘

)
,𝜇
− 𝜑𝑘,𝛾ℛ

𝛾𝜇

𝑘 ,𝜇
= 𝜑𝑘𝑆

𝜇

𝑘,𝜇
,

𝛼𝜈
(,𝜈 + 𝜌

𝜈,𝜌

)
+ 𝜑𝑘

𝜕
𝜕𝜙𝑘

−
(
𝛼𝜇 𝜈

𝜇

)
,𝜈
+
(
𝜑𝑘𝒫

𝜇

𝑘

)
,𝜇
− 𝜑𝑘𝒫

𝜇

𝑘,𝜇
+

+
(
𝜑𝑘,𝛾ℛ

𝛾𝜇

𝑘

)
,𝜇
−
(
𝜑𝑘ℛ

𝛾𝜇

𝑘 ,𝜇

)
,𝛾
+ 𝜑𝑘ℛ

𝛾𝜇

𝑘 ,𝛾𝜇
= 𝜑𝑘𝑆

𝜇

𝑘,𝜇

(66)

which is rewritten, as follows:

− 𝛼𝜈𝜙𝑘,𝜈

(
𝜕
𝜕𝜙𝑘

−𝒫
𝜌

𝑘,𝜌
+ ℛ

𝛾𝜌

𝑘 ,𝛾𝜌

)
+ 𝜑𝑘

(
𝜕
𝜕𝜙𝑘

−𝒫
𝜇

𝑘,𝜇
+ ℛ

𝛾𝜇

𝑘 ,𝛾𝜇
− 𝑆

𝜇

𝑘,𝜇

)
+

+
(
𝜑𝑘

(
𝒫 𝜈
𝑘
−ℛ

𝜈𝜇

𝑘 ,𝜇

)
+ 𝜑𝑘,𝛾ℛ

𝛾𝜈

𝑘
− 𝛼𝜇 𝜈

𝜇

)
,𝜈
= 0 .

(67)

Into the latter, we insert the generalizedEuler–Lagrange equations in Equation (64) and obtain generalizedNoether’s
current, (

𝜑𝑘
(
𝒫 𝜈
𝑘
−ℛ

𝜈𝜇

𝑘 ,𝜇

)
+ 𝜑𝑘,𝛾ℛ

𝛾𝜈

𝑘
− 𝛼𝜇 𝜈

𝜇

)
,𝜈
= 𝛼𝜈𝜙𝑘,𝜈𝑆

𝜇

𝑘,𝜇
,

 𝜇
,𝜇 = 𝛼𝜈𝜙𝑘,𝜈𝑆

𝜇

𝑘,𝜇
,  𝜇 = 𝜑𝑘

(
𝜕
𝜕𝜙𝑘,𝜇

−

(
𝜕
𝜕𝜙𝑘,𝛾𝜇

)
,𝛾

)
+ 𝜑𝑘,𝛾

𝜕
𝜕𝜙𝑘,𝛾𝜇

− 𝛼𝜈 𝜇
𝜈 .

(68)

We follow the same guidelines and generalize to higher order continua for metamaterials. The primitive variable is again
“only” the displacement, 𝜙𝑘 = 𝑢𝑘, expressed in Cartesian coordinates. But now the second derivative plays a role as well,
so we use the following Lagrangean density:

 =
1

2
𝐶̃𝑖𝜇𝑘𝜈𝑢𝑖,𝜇𝑢𝑘,𝜈 +

1

2
𝐷̃𝑖𝜇𝛾𝑙𝜈𝜂𝑢𝑖,𝜇𝛾𝑢𝑙,𝜈𝜂 + 𝐺̃𝑖𝜇𝑘𝜈𝜂𝑢𝑖,𝜇𝑢𝑘,𝜈𝜂 ,

𝐶̃𝑖𝜇𝑘𝜈 =

⎧⎪⎨⎪⎩
𝜌ref .𝛿𝑖𝑘 if 𝜇 = 𝜈 = 0 ,

−𝐶𝑖𝑗𝑘𝑙 if 𝜇 = 𝑗, 𝜈 = 𝑙 ,

0 else ,

,

𝐷̃𝑖𝜇𝛾𝑙𝜈𝜂 =

⎧⎪⎪⎨⎪⎪⎩

𝜌ref .𝜏
2
ref .
𝛿𝑖𝑙 if 𝜇 = 𝜈 = 0, 𝛾 = 𝜂 = 0 ,

𝜌ref .𝑑
2
ref .
𝛿𝑖𝑙𝛿𝑗𝑘 if 𝜇 = 𝜈 = 0, 𝛾 = 𝑗, 𝜂 = 𝑘 ,

−𝐷𝑖𝑗𝑘𝑙𝑚𝑛 if 𝜇 = 𝑗, 𝛾 = 𝑘, 𝜈 = 𝑚, 𝜂 = 𝑛 ,

0 else ,

,

𝐺̃𝑖𝜇𝑘𝜈𝜂 =

{
−𝐺𝑖𝑗𝑘𝑙𝑚 if 𝜇 = 𝑗, 𝜈 = 𝑙, 𝜂 = 𝑚 ,

0 else ,

(69)

where rank 4, 5, 6 tensors, 𝐶𝑖𝑗𝑘𝑙, 𝐷𝑖𝑗𝑘𝑙𝑚𝑛, 𝐺𝑖𝑗𝑘𝑙𝑚, are given for the corresponding metamaterial. Their measurement
seems to be challenging [85–87], yet there exist different homogenization methods [88–93] that calculate these param-
eters [94–98]. Inertia related terms, 𝜌ref ., 𝑑ref ., 𝜏ref ., are all defined on the reference frame. We redo the same analysis as
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16 of 23 ABALI

before and separate time and space, in order to obtain

 =
1

2
𝜌ref .

(
𝑢∙
𝑖
𝑢∙
𝑖
+ 𝜏2

ref .
𝑢∙∙
𝑖
𝑢∙∙
𝑖
+ 𝑑2

ref .
𝑢∙
𝑖,𝑗
𝑢∙
𝑖,𝑗

)
− 𝑤 ,

𝑤 =
1

2
𝑢𝑖,𝑗𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙 +

1

2
𝑢𝑖,𝑗𝑘𝐷𝑖𝑗𝑘𝑙𝑚𝑛𝑢𝑙,𝑚𝑛 + 𝐺𝑖𝑗𝑘𝑙𝑚𝑢𝑖,𝑗𝑢𝑘,𝑙𝑚 .

(70)

In the case of elasticity, 𝑆 𝜇

𝑘,𝜇
= 0, we acquire the conservation laws in Equation (44), as follows:

 ∙
0 + 𝑖,𝑖 =0 ,

0 =𝜑𝑘
⎛⎜⎜⎝
𝜕
𝜕𝑢∙

𝑘

−

(
𝜕
𝜕𝑢∙∙

𝑘

)∙

−

(
𝜕
𝜕𝑢∙

𝑘,𝑖

)
,𝑖

⎞⎟⎟⎠ + 𝜑∙
𝑘

𝜕
𝜕𝑢∙∙

𝑘

+ 𝜑𝑘,𝑖
𝜕
𝜕𝑢∙

𝑘,𝑖

− 𝜏00 − 𝜉𝑖𝑖0 ,

𝑖 =𝜑𝑘
(

𝜕
𝜕𝑢𝑘,𝑖

−

(
𝜕
𝜕𝑢∙

𝑘,𝑖

)∙

−

(
𝜕
𝜕𝑢𝑘,𝑖𝑗

)
,𝑗

)
+ 𝜑∙

𝑘

𝜕
𝜕𝑢∙

𝑘,𝑖

+ 𝜑𝑘,𝑗
𝜕
𝜕𝑢𝑘,𝑖𝑗

− 𝜏0𝑖 − 𝜉𝑗𝑗𝑖 .

(71)

Since we are interested in the terms multiplied by 𝜑𝑘 and 𝜉𝑖 , only the following terms are sought after

𝜑𝑘

⎛⎜⎜⎝
⎛⎜⎜⎝
𝜕
𝜕𝑢∙

𝑘

−

(
𝜕
𝜕𝑢∙∙

𝑘

)∙

−

(
𝜕
𝜕𝑢∙

𝑘,𝑖

)
,𝑖

⎞⎟⎟⎠
∙

+

(
𝜕
𝜕𝑢𝑘,𝑖

−

(
𝜕
𝜕𝑢∙

𝑘,𝑖

)∙

−

(
𝜕
𝜕𝑢𝑘,𝑖𝑗

)
,𝑗

)
,𝑖

⎞⎟⎟⎠ = 0 (72)

and

−𝜉𝑖∙
𝑖0
− 𝜉𝑗𝑗𝑖,𝑖 = 0 ,

𝜉𝑖
(∙

𝑖0
+𝑖𝑗,𝑗

)
= 0 .

(73)

For the generalized elasticity, from the terms multiplied by 𝜑𝑘, we acquire(
𝜌ref .𝑢

∙
𝑘
−
(
𝜌ref .𝜏

2
ref .
𝑢∙∙
𝑘

)∙
−
(
𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑖

)
,𝑖

)∙

+

(
−
𝜕𝑤

𝜕𝑢𝑘,𝑖
−
(
𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑖

)∙
+

(
𝜕𝑤

𝜕𝑢𝑘,𝑖𝑗

)
,𝑗

)
,𝑖

= 0 ,

𝜌ref .𝑢
∙∙
𝑘
− 𝜌ref .𝜏

2
ref .
𝑢∙∙∙∙
𝑘

−
(
𝜌ref .𝑑

2
ref .
𝑢∙∙
𝑘,𝑖

)
,𝑖
+
(
−
(
𝐶𝑘𝑖𝑗𝑙𝑢𝑗,𝑙 + 𝐺𝑘𝑖𝑗𝑙𝑚𝑢𝑗,𝑙𝑚

)
− 𝜌ref .𝑑

2
ref .
𝑢∙∙
𝑘,𝑖
+

+
(
𝐷𝑘𝑖𝑗𝑙𝑚𝑛𝑢𝑙,𝑚𝑛 + 𝑢𝑚,𝑛𝐺𝑚𝑛𝑘𝑖𝑗

)
,𝑗

)
,𝑖
= 0 ,

(74)

In the case of a homogeneous material, where 𝜌ref . is constant in space, and a centro-symmetric metamaterial, 𝐺𝑖𝑗𝑘𝑙𝑚 =

0, analogous to the previous case, we may use stress 𝜎𝑘𝑗 = 𝐶𝑘𝑗𝑙𝑚𝑢𝑙,𝑚 and double stress 𝑚𝑘𝑖𝑗 = 𝐷𝑘𝑖𝑗𝑙𝑚𝑛𝑢𝑙,𝑚𝑛, in order to
obtain

𝜌ref .𝑢
∙∙
𝑘
− 𝜌ref .𝜏

2
ref .
𝑢∙∙∙∙
𝑘

− 2𝜌ref .𝑑
2
ref .
𝑢∙∙
𝑘,𝑖𝑖

− 𝜎𝑘𝑖,𝑖 + 𝑚𝑘𝑖𝑗,𝑗𝑖 = 0 . (75)

For the generalized mechanics, the energy-momentum tensor becomes

𝛼𝛽 = −𝛿𝛼𝛽 + 𝑢𝑘,𝛼
𝜕
𝜕𝑢𝑘,𝛽

+ 𝑢𝑘,𝛾𝛼
𝜕

𝜕𝑢𝑘,𝛾𝛽
, (76)
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we write it in terms of space and time,

00 = −  + 𝑢∙
𝑘

𝜕
𝜕𝑢∙

𝑘

+ 𝑢∙∙
𝑘

𝜕
𝜕𝑢∙∙

𝑘

+ 𝑢∙
𝑘,𝑖

𝜕
𝜕𝑢∙

𝑘,𝑖

=
1

2
𝜌ref .

(
𝑢∙
𝑖
𝑢∙
𝑖
+ 𝜏2

ref .
𝑢∙∙
𝑖
𝑢∙∙
𝑖
+ 𝑑2

ref .
𝑢∙
𝑖,𝑗
𝑢∙
𝑖,𝑗

)
+ 𝑤 ,

0𝑖 =𝑢
∙
𝑘

𝜕
𝜕𝑢𝑘,𝑖

+ 𝑢∙∙
𝑘

𝜕
𝜕𝑢∙

𝑘,𝑖

+ 𝑢∙
𝑘,𝑗

𝜕
𝜕𝑢𝑘,𝑗𝑖

= − 𝑢∙
𝑘

(
𝐶𝑘𝑖𝑙𝑚𝑢𝑙,𝑚 + 𝐺𝑘𝑖𝑗𝑙𝑚𝑢𝑗,𝑙𝑚

)
+ 𝑢∙∙

𝑘
𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑖
− 𝑢∙

𝑘,𝑗

(
𝐷𝑘𝑗𝑖𝑙𝑚𝑛𝑢𝑙,𝑚𝑛 + 𝑢𝑙,𝑚𝐺𝑙𝑚𝑘𝑗𝑖

)
,

𝑖0 =𝑢𝑘,𝑖
𝜕
𝜕𝑢∙

𝑘

+ 𝑢∙
𝑘,𝑖

𝜕
𝜕𝑢∙∙

𝑘

+ 𝑢𝑘,𝑗𝑖
𝜕
𝜕𝑢∙

𝑘,𝑗

= 𝑢𝑘,𝑖𝜌ref .𝑢
∙
𝑘
+ 𝑢∙

𝑘,𝑖
𝜌ref .𝜏

2
ref .
𝑢∙∙
𝑘
+ 𝑢𝑘,𝑗𝑖𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑗

,

𝑖𝑗 = − 𝛿𝑖𝑗 + 𝑢𝑘,𝑖
𝜕
𝜕𝑢𝑘,𝑗

+ 𝑢∙
𝑘,𝑖

𝜕
𝜕𝑢∙

𝑘,𝑗

+ 𝑢𝑘,𝑙𝑖
𝜕
𝜕𝑢𝑘,𝑙𝑗

= −
1

2
𝜌ref .

(
𝑢∙
𝑘
𝑢∙
𝑘
+ 𝜏2

ref .
𝑢∙∙
𝑘
𝑢∙∙
𝑘
+ 𝑑2

ref .
𝑢∙
𝑘,𝑙
𝑢∙
𝑘,𝑙

)
𝛿𝑖𝑗 + 𝑤𝛿𝑖𝑗 − 𝑢𝑘,𝑖

(
𝐶𝑘𝑗𝑙𝑚𝑢𝑙,𝑚 + 𝐺𝑘𝑗𝑙𝑚𝑛𝑢𝑙,𝑚𝑛

)
+

+ 𝑢∙
𝑘,𝑖
𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑗

− 𝑢𝑘,𝑙𝑖
(
𝐷𝑘𝑙𝑗𝑚𝑛𝑜𝑢𝑚,𝑛𝑜 + 𝑢𝑚,𝑛𝐺𝑚𝑛𝑘𝑙𝑗

)
.

(77)

By using the latter, we obtain the generalized 𝐽-integral

∫
(∙

𝑖0
+𝑖𝑗,𝑗

)
d𝑉 = 0

(
∫ 𝑖0 d𝑉

)∙

= −∫
𝜕
𝑛𝑗𝑖𝑗 d𝐴 , (78)

as follows: (
∫

(
𝑢𝑘,𝑖𝜌ref .𝑢

∙
𝑘
+ 𝑢∙

𝑘,𝑖
𝜌ref .𝜏

2
ref .
𝑢∙∙
𝑘
+ 𝑢𝑘,𝑗𝑖𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑗

)
d𝑉

)∙

= ∫
𝜕

(
𝑛𝑖 + 𝑛𝑗

(
𝑢𝑘,𝑖

(
𝐶𝑘𝑗𝑙𝑚𝑢𝑙,𝑚 + 𝐺𝑘𝑗𝑙𝑚𝑛𝑢𝑙,𝑚𝑛

)
− 𝑢∙

𝑘,𝑖
𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑗
+

+ 𝑢𝑘,𝑙𝑖
(
𝐷𝑘𝑙𝑗𝑚𝑛𝑜𝑢𝑚,𝑛𝑜 + 𝑢𝑚,𝑛𝐺𝑚𝑛𝑘𝑙𝑗

))
d𝐴 .

(79)

We emphasize that inertial terms arise on the surface integral. Such a result is challenging to obtain without a formal
structure as presented herein. In the case of the stationary case, for a centro-symmetric material, 𝐺𝑖𝑗𝑘𝑙𝑚 = 0, we obtain

0 = ∫
𝜕

(
−𝑛𝑖𝑤 + 𝑛𝑗

(
𝑢𝑘,𝑖𝐶𝑘𝑗𝑙𝑚𝑢𝑙,𝑚 + 𝑢𝑘,𝑙𝑖𝐷𝑘𝑙𝑗𝑚𝑛𝑜𝑢𝑚,𝑛𝑜

))
d𝐴 . (80)

By utilizing 𝜎𝑘𝑗 = 𝐶𝑘𝑗𝑙𝑚𝑢𝑙,𝑚 and𝑚𝑘𝑙𝑗 = 𝐷𝑘𝑙𝑗𝑚𝑛𝑜𝑢𝑚,𝑛𝑜 for obtaining traction 𝑡𝑘 = 𝜎𝑘𝑗𝑛𝑗 and double traction 𝑠𝑘𝑙 = 𝑚𝑘𝑙𝑗𝑛𝑗 ,
the generalized 𝐽-integral reads

0 = ∫
𝜕

(
−𝑛𝑖𝑤 + 𝑢𝑘,𝑖𝑡𝑘 + 𝑢𝑘,𝑙𝑖𝑠𝑘𝑙

)
d𝐴 . (81)

Hence, we understand that even a stable crack propagation is steered by not only traction but also double traction. The
latter term may be proposed with the help of its structure, but the term from the kinetic energy 𝑢∙

𝑘,𝑖
𝜌ref .𝑑

2
ref .
𝑢∙
𝑘,𝑗
𝑛𝑗 would

be missed easily. It is rather difficult to predict its significance in the formulation. We stress that 𝑑ref . is challenging to
measure. In the literature, there are different simplifications for reducing the number of inertial terms [99, 100]. We refer
to [101], for a numerical analysis with an experimental comparison for the role of 𝑑ref .,
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18 of 23 ABALI

7 CONCLUSION

We have revisited the extended Noether’s formalism in continuum mechanics by using tensor algebra and applied
directly to elastodynamics. Apart the well-known balance equations, we have observed how the 𝐽-integral is obtained
with the Eshelby stress tensor, which is of importance in modeling damage mechanics. In this way, we understand that
this formalism includes all necessary information for a theory. Hence, it seems to be useful in order to generalize the con-
ventional mechanics. A necessity for generalization may be explained by introducing dissipation as a reason of non-local
interaction among particles [102], for its English translation, see [103]. Such effects may be modeled by generalized con-
tinua [104–107], especially at smaller length-scales, where the continuum length-scale converges to the microstructure
[108]. By using a variational method, generalized mechanics is acquired in a straight-forward manner [109, 110]. How-
ever, its generalization to damage mechanics has difficulties, since damage mechanics is not acquired directly from the
variational formalism. One possible approach is a hemivariational approach [111–113] but its extension in multiphysics
is challenging.
With this work, we expect to shed some light on this formalism and motivate to develop numerical methods based on

a purely variational formulation [114]. In this manner, possible explanations arise for difficult concepts such as contact
formulations [115]. We understand that the additional equations from the extended Noether formalism is necessary to
fulfill in order obtain physically correct models in fracturemechanics [116, 117]. These configurational forces are employed
to compute the crack propagation in linear elasticity [118] and elasto-plasticity [119]. Herein, we have derived the analogous
equations for the generalized mechanics.
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ENDNOTE
1From a philosophical point of view, the co-moving frame shall not be called an inertial frame since we cannot distinguish between the forces
due to the gravitational forces and due to the acceleration (inertial).

2Often, its study is conducted by using differential forms [66]. We will not make much use of this so called exterior calculus and use the fact
that tensors in oblique coordinate systems under (affine) transformations produce same calculus as the invariant theory of (differential) forms
[67, Section 9].

3 In solving partial differential equations canonical transformation has another meaning of bringing the set of equations into a Jordan normal
form. Here the same name is used for a different formalism.
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APPENDIX
Transformation examples
Suppose that 𝑥𝑖 = (𝑥, 𝑦, 𝑧) refer to physical coordinates expressed in a Cartesian system and the transformation is the
orthogonal rotation around +𝑧-axis,

𝑥′ = 𝑥 cos(𝜀) + 𝑦 sin(𝜀) , 𝑦′ = −𝑥 sin(𝜀) + 𝑦 cos(𝜀) , 𝑧′ = 𝑧 , (A1)

where 𝜀 is the rotation angle. Suppose that 𝑥𝑖 = (𝑡, 𝑥, 𝑦, 𝑧) refer to space-time where the transformation is to a moving
system in the direction of 𝑥. Between inertial systems, the following is called a Galileian transformation:

𝑡′ = 𝑡 , 𝑥′ = 𝑥 − 𝜀𝑡 , 𝑦′ = 𝑦 , 𝑧′ = 𝑧 , (A2)

where 𝜀 is the constant velocity. Suppose now that 𝑥𝑖 = (𝑥, 𝑦, 𝑧, 𝑐𝑡) is space-time in aMinkowskian system and a possible
special Lorentz transformation reads

𝑥′ = 𝑥 cosh(𝜀) − 𝑐𝑡 sinh(𝜀) , 𝑦′ = 𝑦 , 𝑧′ = 𝑧 , 𝑐𝑡′ = −𝑥 sinh(𝜀) + 𝑐𝑡 cosh(𝜀) , (A3)

where 𝜀 is called rapidity of the transformation and the speed of light, 𝑐, is a universal constant, thus we have used (𝑐𝑡)′ =
𝑐𝑡′.

Measure’s role in irreversibility
We demonstrate in a simplified form how the measure gets a role in the irreversibility. Although the given example below
is out of our scope in mechanics, it is beneficial to see this relation. Probably, this application is the only physical example,
where themetric evolution is known. In cosmology [120–122] the universe is expandingwith a (known) parameter𝑎 = 𝑎̄(𝑡)

everywhere the same, leading to the metric for that expanding universe:

𝑔𝑖𝑗 =

⎛⎜⎜⎜⎝
𝑎2 0 0

0 𝑎2 0

0 0 𝑎2

⎞⎟⎟⎟⎠ , 𝑔 = det(𝑔𝑖𝑗) = 𝑎6 ,
√
𝑔 = 𝑎3 . (A4)

Thus, the infinitesimal volume element reads d𝑉 =
√
𝑔 d𝑥 = 𝑎3 d𝑥 and is time dependent. The rigid motion of galax-

ies, for example in one direction, 𝜒, will be calculated. We use the same short notation, 𝜒∙ = 𝜕𝜒∕𝜕𝑡, and build the
Lagrangean in that time dependent (expanding) metric

𝐿 = ∫  d𝑥 = ∫ (
1

2
𝜌𝜒∙𝜒∙ − )𝑎3 d𝑥 . (A5)

The latter gives the energy density with the ground state  = 𝜌𝑈𝜒 depending solely on themotion 𝜒, the ground state has
different names in the literature: dark energy, vacuum energy, as well as cosmological constant.We plug in the Lagrange
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density into the Euler–Lagrange equations, use the material frame, 𝜌∙ = 0, and obtain

𝜕
𝜕𝜒

−
𝜕

𝜕𝑡

𝜕
𝜕𝜒∙

= 0 ,

−𝜌𝑈𝑎3 −
𝜕

𝜕𝑡

(
𝜌𝜒∙𝑎3

)
= 0 ,

𝑈𝑎3 + 𝜒∙∙𝑎3 + 3𝑎2𝑎∙𝜒∙ = 0

𝑈 + 𝜒∙∙ + 3ℎ𝜒∙ = 0 ,

(A6)

where we have used the so-called Hubble constant ℎ = 𝑎∙∕𝑎. Obviously, due to the expansion with velocity related to ℎ,
there is a damping in this partial differential equation such that the process is irreversible. We use this analogy and under-
stand plasticity in mechanics as an irreversible change of the reference frame (herein the metric). Of course, the situation
is far more difficult since additional governing equations need to be solved. In this simple example from cosmology, the
Hubble constant is a given constant.
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