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“The plat like the future is not finite, it is continuously under construction as new 

experiences and information happen in the present, helping to interpret, deconstruct 

and reconstruct what happened in the past. This makes the past revocable and 

ongoing… presenting us with the memory to process the present so as to add flesh in 

terms of context (development), occasion, situation (needs, challenges) and language 

(communication).” 

 

“The proverbial cornerstone which has been our bane in achieving sustainable 

development and economic empowerment is participation. Participation in all levels 

of communication in my experiences of using popular theatre in my development 

engagements literally lit up the ember of collectivism. Collectivism, I realized became 

the missing link in most unsustainable development tasks and initiatives. What 

collectivism does among the people, is that it steers up responsiveness and the power 

to get involved with finding and solving the plethora of challenges that they 

encounter.”  

 

Forays from his unpublished and unpresented inaugural lecture  

Professor Jenkeri Zakari Okwori  

1962-2014 
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Abstract 

Sewer blockages can cause overflows and flooding, with consequences such as damage to property 

and environmental pollution, risks to public health and economic loss. Despite the causes being 

understood, blockages in sewer networks may occur unpredictably. The responsible staff for sewer 

networks at water utilities need to efficiently determine the most effective action (what), the specific 

network location needing attention (where), the optimal timing for intervention (when), and the 

appropriate remedial task (how), especially given the unpredictability of blockages. Today a reactive 

approach to asset management and maintenance is often adopted. Additionally, data availability, 

quality and interoperability between systems are not always at levels that can support decided 

objectives, proactive maintenance planning and asset management of pipe networks. Thus, the aim 

of this thesis is to propose and evaluate approaches that can support analytics-driven maintenance 

planning and asset management for sewer networks. These approaches aim to contribute to 

mitigating the impact of siloed data structures and enhance the understanding of blockage root causes 

from a spatial perspective. 

In this thesis, the challenges of data management in the asset management of pipe networks were 

investigated through focus group workshops and questionnaire surveys. A conceptual framework 

was developed based on findings from focus group workshops and surveys. The framework 

combines data quality assessments, interoperability evaluations between asset management tools, data 

collection, and informational benefits analysis. This framework aimed to identify the presence of 

data silos and plausible pathways towards more data-driven data management strategies. A 

performance assessment combining performance indicators associated with blockages and partial least 

squares regression (PLS) was conducted to draw inferences that could be useful at a strategic level. 

Furthermore, a spatial heterogeneity assessment of blockages and factors affecting blockages was 

carried out. This approach combined network kernel density estimation (NKDE), network k-

function, and geographically weighted Poisson regression (GWPR). Lastly, a vulnerability 

assessment was carried out that combined topological analysis using edge-based centrality measures 

and network cross-k-function. These approaches were applied to three sewer networks. 

The focus group workshops and questionnaire surveys identified several challenges affecting data 

management in the context of pipe network asset management. Many of the challenges could be 

ascribed to issues related to data quality and interoperability. Results from the preliminary application 

of the conceptual framework showed how it could be applied for identifying data silos and pathways 

to data-driven decision-making towards proactive management blockages in sewers. The observed 

spatial trends and patterns from network k-function analysis and network kernel density estimation 

showed spatial variability in the occurrence of blockages (single occurring and recurring). 

Geographically-weighted Poisson regression analysis showed spatial heterogeneity in factors 

influencing blockage propensity. The network cross-k-function analysis demonstrated that pipes 

with historical blockage incidents tend to be clustered around critical pipes with higher centrality 

values. These results could support vulnerability assessments in sewer networks and the development 

of targeted maintenance strategies. These approaches together could aid data-informed maintenance 

planning and asset management at the strategic, tactical and operational levels. 
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Sammanfattning 

Avloppsstopp kan orsaka översvämningar vilket kan medföra konsekvenser som skador på egendom 

och spridning av föroreningar och leda till ekonomiska förluster samt risker för folkhälsan. Trots att 

orsakerna till avloppsstopp är kända, inträffar ibland oförutsedda avloppsstopp i ledningsnäten. De 

som ansvarar för avloppsledningarna behöver kunna fastställa effektiva åtgärder (hur), den specifika 

punkt i nätverket som behöver åtgärdas (var) och den optimala tidpunkten för åtgärd (när). Idag sker 

ofta åtgärder på ledningsnät reaktivt. Vidare är inte alltid data för analys tillgänglig eller av god 

kvalitet. Det finns även problem med interoperabilitet mellan system som kan stödja uppsatta mål 

för proaktiv underhållsplanering och tillgångsförvalting av ledningsnät. Därför är syftet med denna 

avhandling att föreslå och utvärdera metoder som kan stödja analytiskt driven underhållsplanering 

och tillgångsförvalting av avloppsledningsnät. Dessa metoder syftar till att minska negativa effekter 

av så kallade datasilos och förbättra förståelsen av grundorsaker till avloppsstopp utifrån ett spatialt 

perspektiv. 

I denna avhandling undersöktes utmaningar med datahantering inom tillgångsförvalting i ledningsnät 

genom fokusgruppsworkshopar och enkätundersökningar. Ett konceptuellt ramverk utvecklades, 

baserad på resultat från workshoparna och en av enkäterna. Ramverket innefattade användning av 

datakvalitetsbedömningar och utvärdering av interoperabilitet mellan verktyg för tillgångsförvalting 

och datainsamling. Vidare analyserades fördelar med att identifiera förekomsten av datasilor och 

tänkbara tillvägagångssätt för att nå mer datadrivna strategier för datahantering. En 

prestandautvärdering som kombinerade prestandaindikatorer relaterade till avloppsstopp som 

kombinerades med regressionsanalys med minsta-kvadrat-metoden genomfördes för att dra slutsatser 

som kan vara av nytta på strategisk nivå. Vidare gjordes en spatial bedömning av avloppsstoppens 

förekomst och deras variationer över ledningsnätet samt faktorer som påverkar avloppsstopp. Denna 

analys kombinerade en täthetsanalys (kernel density estimation) med en network k-function samt en 

geografiskt viktad Poisson-regression analys. Slutligen genomfördes en sårbarhetsbedömning som 

kombinerade en topologisk analys baserad på grafteori och network cross-k-function. Metoderna 

tillämpades på tre avloppsnät. 

Fokusgruppsworkshoparna och enkätundersökningar identifierade en mängd utmaningar som 

påverkar datahantering i tillgångsförvalting av ledningsnät. Flera av utmaningarna kunde tillskrivas 

problem relaterade till datakvalitet och interoperabilitet. Resultaten från den preliminära 

tillämpningen av det konceptuella ramverket visade hur det kunde användas för att identifiera 

datasilor. De observerade spatiala trenderna genom analysen med network k-function och 

täthetsanalysen visade spatial variabilitet i förekomsten av avloppsstopp. Den geografiskt viktade 

Poisson-regressionsanalysen visade spatial heterogenitet i faktorer som påverkar förekomsten av 

avloppsstopp. Analysen med Network cross k-function visade att ledningar med historiska incidenter 

med avloppsstopp tenderade att grupperas kring rör med högre centralitetsvärden som med det 

bedömdes som mer kritiska för ledningsnätens funktion. Dessa metoder skulle tillsammans kunna 

bidra till en mer datainformerad underhållsplanering och tillgångsförvaltning på strategisk, taktisk 

och operativ nivå.  
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1 Introduction 

One of the most significant challenges where sewer asset management is concerned is data 

management (Ana and Bauwens, 2014; Tscheikner-Gratl et al., 2020; Le Gat et al., 2023). 

Many water utilities and municipalities lack accurate, accessible asset information, and 

whenever it is available, the data is typically stored in many forms in dispersed systems 

resulting in a requirement for a balance between data quality and integration for reliable 

analysis (Ugarelli and Sægrov, 2022). These challenges are especially pronounced in small- 

to medium-sized municipalities, as observed in the Swedish context (Emilsson et al., 2021). 

To overcome these challenges and enhance sewer asset management requires a shift towards 

improved data storage and data access by linking different datasets, and platforms, aligning 

strategic objectives and breaking down silos (Tscheikner-Gratl et al., 2020; Carriço et al., 

2020; Le Gat et al., 2023). 

Lack of strategic planning, the identification of priority areas, identifying influential factors 

and the selection of alternatives (maintenance actions) remain complex tasks that complicate 

maintenance planning (Alegre et al., 2013b). Water utilities are constantly faced with the 

challenge of deciding the most effective action (what), the part of the network that requires 

the said action (where), the time to take action (when) and the tasks that constitute the action 

needed to rectify the problems (how). Another deficit area is that in many water utilities 

maintenance and data management occur in isolation, with an overemphasis on data 

collection over practical analysis (Emilsson and Adrup, 2021).  

The adverse implications of these challenges as they relate to data management and effective 

maintenance in sewers are also further exacerbated by ageing infrastructure, climate change, 

urbanisation, (Carriço and Ferreira, 2021) and depopulation. A holistic, systematic, and 

coordinated strategy is required in order that assets can be optimally managed (Ugarelli and 

Sægrov, 2022). The concept of data-driven asset management in sewer networks advocates 

for a move away from decisions that rely on intuition, tacit knowledge and expert judgment 

to an approach based more on data-informed decisions in order to optimize the performance 

of maintenance (Laakso, 2020). 

Operational disturbances such as sewer pipe blockages have been identified as a significant 

cause of operational failures, that impact the overall functionality of sewer networks (Ashley 

and Hvitved-jacobsen, 2005; Arthur et al., 2009a; Stanić et al., 2014; Hassouna et al., 2019). 

The effective planning and scheduling of the maintenance of operational disturbances in 

sewers, such as blockages, can be complex and challenging due to the geographically 

dispersed nature of the root causes and the unpredictable (non-deterministic) failures 

(Fontecha et al., 2016). This complexity is exacerbated by data deficiencies, data utilisation, 



2 
 

predominately intuitive-driven decision-making, and a lack of planning tools (Fontecha et 

al., 2020). A deeper understanding of the network effects (how changes or incidents in one 

part of the network affect other parts of the network) of blockages is important for the 

efficient management and maintenance of sewers. For example, problems in certain pipes 

may have unintended consequences in other parts of the network, so understanding these 

effects can help to improve effective maintenance decisions (Parlikad and Jafari, 2016).  

This thesis proposes and investigates knowledge-based analytical approaches with a main 

focus on supporting proactive maintenance planning and asset management in sanitary sewer 

networks. This thesis focuses on data quality, data and systems interoperability, and 

improving management of sewer blockage phenomenon from a spatial perspective. 

In the context of this thesis, an analytics-driven approach refers to the methodological 

combination of specific methods, strategies, and analytical techniques. 

1.1 Aims and objectives 

The overarching aim of this thesis is to propose and evaluate approaches that can support 

analytics-driven maintenance planning and asset management for sewer networks. These 

approaches focused on contributions to mitigating the negative effects of siloed data 

structures and new methods for improving the understanding of operational disturbances 

such as blockages from a spatial perspective. The specific objectives of this thesis were to: 

1. Identify data management challenges in the asset management of pipe networks.  

2. Assess the link between data quality and interoperability as a means of identifying 

instances of data silos and their implications. Then based on this, provide suggestions 

on how data management routines can be improved. 

3. Evaluate the susceptibility of sewer networks to blockages, the variability of blockages 

and the spatial heterogeneity of factors that affect the occurrence propensity of sewer 

blockages, as well as to identify critical locations where blockage occurrence may 

have a disproportionate impact. 

1.2 Thesis structure 

This thesis is based on five papers, referred to as Papers I-V. Papers I and II focus on data 

management challenges and approaches that improve data management (data quality, 

interoperability) in order to support asset management by identifying the presence of siloed 

data structures and improvement pathways. Paper III focuses on an approach that uses 

performance indicators combined with a multivariate statistical method to draw inferences 

about proneness to blockages and associated maintenance strategies. Papers IV and V focus 

on the spatial heterogeneity assessment of factors that affect blockages and the vulnerability 
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assessment of sewer pipes based on edge-based graph centrality measures as a means of 

supporting maintenance planning, support proactive and targeted maintenance. The 

relationship between the papers is illustrated in Figure 1. 

 

Figure 1. Synthesis of the thesis illustrating the interaction between papers (I-V) and associated 

themes.  

This thesis comprises six chapters: 

• Chapter 1: This introductory chapter presents the thesis topic, research aim, 

objectives, and structure. 

• Chapter 2: Describes the state of the art of sewer maintenance approaches. It also 

describes data management-specific influences on data quality and interoperability in 

sewer asset management. It goes on to describe factors that affect blockage propensity 

and their confounded nature, statistical methods for assessing the relationships 

between factors that affect blockages and the need for analytics-driven approaches to 

sewer asset management.  

• Chapter 3: The approaches proposed and associated methods (a conceptual 

framework, performance assessment, spatial heterogeneity assessment and 

vulnerability assessment) investigated in this dissertation are detailed in this chapter. 

Additionally, data sourced from the analysed sewer networks is presented. 

• Chapter 4: The results from applying the proposed approaches and associated methods 

in three sewer networks are presented. 
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• Chapter 5: The chapter presents a discussion of the findings from the research, 

highlighting their significance and implications.  

• Chapter 6: The findings and conclusions from the dissertation are presented. 

The five research articles that support and provide depth to the preceding content are 

appended at the end of the thesis. 
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2 Background 

2.1 Approaches to sewer maintenance planning in the context of sewer 
blockages 

Current practices in sewer maintenance vary, with some water utilities and municipalities 

adopting a corrective or reactive approach while others employ a preventive or proactive 

maintenance approach. Both approaches could be overly expensive (Rodríguez et al. 2012), 

emphasising the need for effective planning with analytics-based solutions (Soriano-Pulido 

et al. 2019). Practical maintenance actions are expected to reduce the frequency of service 

disruptions and their unfavourable consequences. All maintenance cannot be performed 

concurrently because of limited resources and cost constraints, therefore, the most critical 

maintenance activities must be prioritised. In practice, some utilities delegate preventive 

maintenance planning to experienced employees. Based on their intuition and knowledge 

of the system, employees determine schedules of maintenance operations; however, such an 

employee only considers a limited number of possibilities in the time available for such 

planning (López-Santana et al. 2016). Studies such as DeSilva et al. (2011) emphasise the 

complexity of proactive maintenance planning, highlighting the challenge in effectively 

identifying and targeting at-risk sewers. This complexity is further complicated by varying 

management strategies and changes in the types of maintenance actions. Studies such as 

Syssner and Jonsson (2020) have highlighted, specifically in Sweden, that municipalities 

experiencing depopulation have not prioritised the maintenance of fixed assets related to 

wastewater, such as pipe networks. More than half of Sweden's 290 municipalities are 

considered to be experiencing depopulation (Grundel and Magnusson, 2023). Typically 

water utilities and municipalities are aware of their maintenance deficit but do not have an 

overall view of its consequences (Syssner and Jonsson, 2020). The reasons for not taking 

action are typically economic challenges and a lack of strategic planning. 

It is to be expected that effective maintenance policies reduce the frequency of service 

disruptions and their undesirable consequences (Fenner, 2000). Various studies such as those 

by Marlow et al. (2011), Hillas, (2014) and Faris et al. (2024) have highlighted that blockages 

are considered one of the important challenges for many water utilities and municipalities 

because of the complex interaction of various factors that vary spatially and temporally. 

Bailey, (2016) suggested that a sewer pipe’s blockage history strongly predicts the future 

likelihood of blockages in the same pipe. This is particularly helpful in identifying the sewers 

most likely to experience blockage in the future. Blockage history provides some justification 

for considering the spatial variability of blockages and the spatial heterogeneity of factors that 

affect blockages as critical elements in sewer maintenance planning. 
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Since maintenance practices vary widely among different water utilities and municipalities, 

there is a need for decision support systems or tools that aid more targeted maintenance. 

Additionally, more effective planning tools and approaches that leverage spatial analytics to 

address the complexities of proactive maintenance planning are needed. This includes 

identifying and targeting at-risk sewers and considering the spatial and temporal variability 

of factors that lead to issues like blockages. Some of the commonly researched approaches 

are condition and risk-based maintenance which are described in the sections below. 

2.1.1 Condition-based maintenance planning 

Condition-based maintenance of sewers uses various methods to assess the condition of 

sewer assets and prioritize maintenance activities. Closed circuit Television (CCTV) 

inspections are the main method used for condition-based maintenance planning in sewer 

networks (Caradot et al., 2018). However, assessing sewer conditions using CCTV in sewers 

faces multiple challenges, which have been highlighted in studies such as those by Caradot 

(2019) and Tscheikner-Gratl et al. (2020). Specifically, these challenges include the 

subjectivity of condition grades and the effectiveness of inspections hindered by low 

inspection rates, primarily attributed to budget constraints. Also, many water utilities and 

municipalities can only inspect a small fraction of their extensive sewer networks. This 

limited inspection coverage is considered common globally (Salihu et al., 2023). In Addition 

to this, undocumented rehabilitation efforts, where the rehabilitation of segments is not 

properly documented, contribute to the ambiguity (Tscheikner-Gratl et al., 2020). 

Moreover, inspections conducted for specific purposes, such as identifying house 

connections, can lead to an inaccurate inventory of defects (Li et al., 2019). 

Sewer condition grades provide information considered to be helpful in assessing the 

likelihood of blockages. The possibility of using this information is worth further 

investigation (Bailey, 2016). Laakso et al. (2018) incorporated spatial coordinates in analysing 

and predicting pipe conditions based on CCTV inspection. They found that spatial variation 

was observed in the occurrence of defects. Laakso et al. (2018) also stated two reasons 

suspected for the observed spatial variation. First, the network itself exhibits spatial variation, 

because pipes are not equally spread over the study area. Second, networks are often built 

sequentially by area, and the areas may differ in, for example, quality of installation work, 

bedding material, land use, and the number and type of users. The findings from the above-

highlighted studies indicate some of the deficiencies in condition-based maintenance 

planning based on CCTV inspection as well as highlighting how spatial analytics-driven 

approaches may be a useful way of argumenting maintenance planning based on CCTV 

inspections, especially in terms of analysing and understanding the occurrence of blockages. 
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2.1.2 Risk-based maintenance planning 

Risk-based maintenance approaches typically involve assessing the probability of a failure in 

the sewer combined with the consequences of that failure. A higher probability of failure 

and more onerous consequences signifies a higher risk level (Alegre and Coelho, 2012). In 

the context of a sewer asset management probabilistic analysis, probability classes are defined 

by intervals derived from linear, exponential, or logarithmic functions (Balekelayi and 

Tesfamariam, 2021). The decision-maker's role is pivotal, in shaping criteria based on 

problem characteristics and risk perception (Alegre and Coelho, 2012). Several risk-based 

approaches have been proposed and developed. Examples include the CARE-S blockage 

model (BT) Saegrov, (2015), Baah et al. (2015), Vladeanu and Matthews (2019) and Betgeri 

(2023). However, Tscheikner-Gratl et al. (2020) highlighted the fact that a lack of data is an 

impediment to adopting such approaches. The incorporation of vulnerability assessments 

may be crucial in improving current risk-based maintenance planning in sewer systems 

because these vulnerability assessments may not be adequately captured in traditional risk 

assessments (Ezell, 2007). Vulnerability may be a surrogate for consequence when data is 

unavailable or it can augment the overall risk assessment (Ezell, 2007). Using centrality 

measures for topological assessment in sewer networks reflects a move towards the 

application of graph theory and complex network theory to enhance vulnerability 

assessments. Recent studies have applied centrality measures in urban drainage networks. 

These studies have focused on identifying critical manholes, pipes and paths (Meijer et al., 

2018), assessing vulnerability (Ganesan et al., 2020; Simone et al., 2022; Simone, 2023), 

assessing redundancy (Hesarkazzazi et al., 2020), and predictively analyzing urban drainage 

networks, for transport function and urban planning (Reyes-Silva et al., 2020). Particularly 

noteworthy are relevance-based centrality metrics that integrated node disconnection risk 

and network connectivity, offering a more nuanced understanding of network vulnerabilities 

(Simone et al., 2022). Also, the tailored centrality metrics which consider specific aspects of 

urban drainage networks, such as node relevance, flow direction, and hydraulic properties 

(Reyes-Silva et al., 2020). However, there is a need for the incorporation of more dynamic 

network behaviours to enhance the accuracy and responsiveness of centrality measures for 

vulnerability assessment. The developed methodologies also need broader testing across 

various types and sizes of networks to evaluate their effectiveness and adaptability. 

Combining centrality-based measures with other types of methods or models may provide 

a more comprehensive understanding of network behavior and dynamics.  

While existing risk-based approaches, such as Arthur et al. (2009) and Ugarelli et al. (2010b) 

especially in the context of blockage management, have not taken into consideration 

adequately the spatial aspect of blockages. Incorporating the spatial dimension into risk-based 

maintenance planning in sewer systems remains underexplored. Considering the specific 
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geographical contexts of different sewer pipe segments may aid maintenance prioritization 

efforts, aiding in more targeted and efficient maintenance strategies. 

2.2 Influence of data quality and interoperability of systems on sewer 

asset management 

The effective maintenance and management of sewer pipes relies on the quality and 

interoperability of data. However, challenges in these areas hinder sewer asset management. 

Several studies, such as Rokstad et al. (2016), Tscheikner-Gratl et al. (2020) and Jin et al. 

(2021), have highlighted several of the challenges associated with data use and data quality. 

Some of the most frontline challenges firstly include inadequate historical data. In many 

water utilities the data, that is crucial for maintenance and operation, is neither frequently 

digitised nor stored in accessible formats in relational databases or systems (Ugarelli et al., 

2010b). Secondly, the complex and costly process of collecting data often lacks a clear 

correlation with the objectives of water utilities, leading to a gap in critical information 

(Rokstad, 2012). This gap manifests itself in several key areas such as a scarcity of detailed 

records on rehabilitation works, poorly documented models, insufficient measurement and 

calibration data, and an absence of environmental data (Tscheikner-Gratl et al., 2020). Such 

data quantity deficiencies directly impede the implementation of condition-based and risk-

based maintenance and the effective use of predictive models. Thirdly, the available data is 

often limited to recent years because of inconsistent collection and storage methods (Rokstad 

et al., 2016). These challenges underscore the influence of data, collection strategies, 

availability and storage on the management of sewer assets.  

A limited number of studies have investigated the influence of data quality on sewer asset 

management in the context of pipe networks. One such study by Ahmadi et al. (2014) 

examined the effect of data imprecision within utility databases, especially with respect to 

CCTV-based sewer inspections. Their findings highlighted a crucial insight: namely that 

having imprecise data is generally more beneficial than the absence of data on specific factors, 

emphasising the value of even imperfect data. Furthermore, studies by Caradot et al. (2020) 

and Fugledalen et al. (2023) delved into the consequences of data uncertainties within utility 

databases. Their research showed that such uncertainties can significantly influence the 

outcomes of models used in sewer asset management, leading to potentially suboptimal 

maintenance decisions. This highlights the critical need for reliable data to inform effective 

sewer management strategies. Additionally, the importance of data quality extends to its 

influence on the generalizability of predictive methods aimed at enhancing sewer 

maintenance routines. This aspect is particularly evident in the utilization of data-driven 

models, such as machine learning algorithms, for predicting sewer blockages (Ribalta et al., 

2023). Riel et al. (2017) used serious game theory to investigate how enhanced data quality 
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influences decision-making, particularly regarding pipe replacement. Their research showed 

a complex picture: while better data quality notably cost-effectively improved non-

collaborative decision-making, it was found that better data quality only partially impacts 

collaborative decision-making within utilities. This was due to a reliance on intuitive 

judgments over analytical reasoning, indicating that decision-making in sewer asset 

management may be a blend of data-driven analysis and intuition. Collectively, these studies 

illuminate the importance of data quality in sewer asset management. They demonstrate that 

while improved data quality can enhance specific decision-making processes, the reliance on 

intuition and experience is prevalent, complicating the straightforward application of data-

driven solutions. 

Interoperability is beneficial in sewer asset management, where discrete systems are to be 

integrated to enable the gaining of insights that provide more effective decision-making and 

management of sewers, exemplified by the smart sewer asset information model proposed 

by Edmondson et al. (2018). The need for interoperability between various systems at the 

utility level for sewer asset management has also increased due to the diversity of data sources 

used for sewer asset management, for instance, the increased volume of data from sensors 

installed in pipe networks (Tscheikner-Gratl et al., 2020). Publications such as Emilsson et 

al. (2021) and Arnell et al. (2021) also emphasise the need for increased data sharing to enable 

more proactive decision-making in asset management and leverage the benefits of 

digitalisation in water and wastewater organizations. However, achieving interoperability 

between systems in utilities faces a number of challenges related generally to the 

standardisation of data (Halfawy et al. 2003; Halfaway et al. 2006), schematic, syntactic and 

semantic heterogeneities in data, and data structure (Beck et al. 2008; Halfawy 2008; 

Muketha and Ondimu 2012; Bettin 2023). 

Despite solutions such as those proposed by Carriço et al. (2022) and various interoperability 

assessment methodologies such as Levels of Information Systems Interoperability (LISI) 

(DOD, 1998) and Levels of Conceptual Interoperability Model (LCIM) (Tolk and Muguira, 

2003), interoperability issues persist and vary between water utilities at various spatial scales, 

depending on the nature of their objectives, digital maturity level and other not very obvious 

reasons (Le Gat et al., 2023). 

Studies such as those by Jwan Khisro (2020) and Stjepandic and Korol (2022) have shown 

that data quality and system interoperability are inextricably linked. The prevalence issues 

pertaining to both at the utility level can propagate data silos and fragmented data structures, 

creating a severe barrier to sewer asset management, the application of data-driven 

approaches and to enhancement of proactive maintenance. Therefore, there is a need for 

decision support systems or tools that enables water utilities to assess the data quality and 

interoperability of available systems relative to their objectives towards refining their data 
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management routines to support sewer asset management and data-driven approaches (Le 

Gat et al., 2023). 

2.3 Challenges in sewer network maintenance 

Maintaining sewer networks is a complex and important task for utilities, requiring a balance 

of data, information, technical know-how, and robust management practices. One of the 

primary challenges lies in prioritising efforts, especially when historical maintenance data is 

sparse (Grigg, 2003; Ugarelli et al., 2010b). To address this, utilities increasingly rely on 

decision support systems that can guide the prioritisation of such efforts. However, 

implementing comprehensive asset management systems is fraught with difficulties, 

particularly when it comes to integrating them with existing information systems and 

processes (Emilsson et al., 2021). 

Over the years, maintenance strategies have evolved significantly. Early approaches, such as 

the Selective Rehabilitation Strategy (SRM), Hydroplan Procedure, computer-aided 

rehabilitation for sewer and stormwater networks (CARE-S) and the Australian Drainage 

Management System, described in Fenner, (2000) and Saegrov, (2015), prioritised parts of 

the network deemed critical. This prioritisation was guided by criteria such as the likelihood 

and consequences of failure and the cost-effectiveness of preventive measures. SRM for 

example, is underpinned by the 80/20 rule, which suggests that approximately 20% of the 

sewers are likely to cause 80% of the problems or costs (Fenner, 2000). These strategies 

mainly depend on data gathered through inspections (selective periodic CCTV inspections) 

and might inadvertently lead to a 'tunnel vision', where the focus on high-risk or critical 

assets overshadows the need for system-wide maintenance. This 'tunnel vision' could lead to 

neglecting less critical pipes that could still significantly impact the network. This could result 

in a fragile system where unaddressed, non-critical issues escalate over time, potentially 

causing larger-scale failures and disruptions.  

Based on the limitations of previous strategies, more risk-based approaches have been 

investigated. Fenner et al. (2000) further proposed a more proactive approach to sewer 

maintenance that combines a simple risk analysis with a Bayesian statistical technique towards 

a maintenance strategy that no longer focuses on a preselected subset of assets but should 

identify the correct subset for which maintenance activity. However, challenges included 

the fact that water utility databases lacked detailed asset-to-event linkage, limitations in 

existing databases and historical data available, and depended on the continued development 

and enhancement of information systems.  

Approaches like the failure mode, effects, and criticality analysis (FMECA) (Arthur et al., 

2009b) have also been proposed. This approach considers both the likelihood and the 
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consequences of failures. The effectiveness of the approach is constrained by its dependence 

on site-specific data, limiting its immediate applicability to diverse contexts where such data 

may not be readily available. With the FMECA, there is also a risk of not fully addressing 

the unique local variations in sewer systems, potentially resulting in suboptimal maintenance 

prioritisation.  

CARE-S is a strategic decision support system focused on the maintenance and management 

of sewer systems. As outlined by Saegrov, (2015), the primary objective of CARE-S is to 

guarantee the appropriate rehabilitation of specific sewer segments. Its emphasis is on 

ensuring that maintenance actions are performed on the correct section of the network. The 

blockage model (BT) within the CARE-S tool evaluates blockage likelihood using a factorial 

approach. It assumes a global relationship between influencing factors and the probability of 

blockages, while not specifically considering the spatial aspects of blockage occurrences. 

More generally, data availability, quality and interoperability with other existing tools and 

systems at the utility level prevent widespread adoption of the blockage model (Ana and 

Bauwens, 2014). 

In terms of scheduling maintenance, models such as the mixed integer optimization model 

by Turriago et al. (2014) and the Combined Maintenance and Routing (CMR) optimisation 

approach by Fontecha et al. (2016) and Fontecha et al. (2020) have been proposed. The 

models were evaluated to solve the problem of planning and scheduling preventive 

maintenance of sediment-related sewer blockages in geographically distributed sites subject 

to non-deterministic failures. The CMR model uses a uniform cell size to represent the 

network, which might not accurately capture the variability in the occurrence of failures, 

over the network, or the variability in site conditions and complexities. Another approach 

by Ma et al. (2017) implemented probability-based scheduling to optimize maintenance 

tasks. However, the effectiveness of the model is limited by the lack of availability of detailed 

pipe-specific data and the general incompleteness or imprecision of historical data. Draude 

et al. (2022) presented a multi-objective optimisation problem to formulate a maintenance 

schedule. However, the approach does not consider the possibility of emergency reactive 

maintenance that could disrupt the planned schedule. While substantial progress has been 

made in sewer maintenance scheduling, there is a need to develop more robust models that 

can accommodate the unpredictability of operational disturbances, network conditions, and 

the variability in site-specific complexities.  

Obradović et al. (2023) noted several challenges in sewer maintenance within urban 

environments, including varying maintenance approaches and frequencies influenced by 

pipe characteristics such as diameter, material, and age, as well as environmental factors such 

as soil type and dynamic aspects like population habits. Additionally, in densely populated 

areas with spatial constraints, sewer placement at maximum depths below other installations 
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further complicates management and maintenance (Obradović et al., 2023). Moreover, 

sewer pipe inspections are often selective, limited, and periodic, constrained by resource 

availability and the current state of technology for sewer system assessment. 

Maintenance planning is considered to be largely heuristic and subjective, indicating a need 

to shift towards more systematic and proactive strategies (Fontecha et al., 2016). Studies by 

Syssner and Jonsson, (2020), Santos et al. (2017), and Tuija Laakso, (2020) highlight the 

predominance of reactive maintenance strategies, especially in managing blockages within 

sewer systems. However, typical of such work, Cutting and Muggeridge (2010) and DeSilva 

et al. (2011) have argued for an optimal balance between reactive and proactive maintenance 

to manage blockages cost-effectively while enhancing system integrity. This optimal balance 

is not static; it may fluctuate with the seasons and vary spatially within the network from 

one location to another, complicating the task of defining a precise ratio. Furthermore, as 

noted by Hillas, (2014), the data management challenge hampers proactive maintenance 

planning, making statistical approaches to maintenance planning complex and problematic. 

Addressing this data management issue is pivotal in advancing towards a maintenance 

paradigm that can proactively mitigate deterioration and prevent malfunctions in sewer 

networks. 

2.4 Factors that affect the occurrence of blockages in sanitary sewers 

Understanding the factors that affect sewer blockage propensity is essential for effectively 

managing and maintaining sewer networks. However, the factors contributing to blockage 

occurrence are diverse and interconnected, as shown in Figure 2 and Table 1. Broadly, the 

technical factors can be grouped into hydraulic factors, structural factors, and maintenance 

practices (Figure 2).  

The hydraulic factors are mainly associated with the flow conditions in the pipes, the location 

of the pipe upstream or downstream of the blockage in the network and the forces that 

control sediment transport and accumulation in pipes. The latter are described in studies 

such as Ashley and Hvitved-Jacobsen (2005), Banasiak (2008) and McDermott et al. (2019). 

For instance, sediments with low settling velocities tend to form deposits during low or 

intermittent flow periods and are entrained at higher velocities (McDermott et al., 2019). In 

contrast, larger and denser sediments will probably settle during intermittent flow and 

infrequent peak flows. The entry points into sewer networks are also critical locations for 

the formation of sediment deposits (Bonakdari et al., 2015). Other hydraulic factors that 

influence sediment mobility and blockage formation include the sewer pipe gradient, flush 

volume, and the presence of fats, oils, and grease (FOG) (Pulido et al., 2019a). Intermittent 

flow conditions further complicate the deposition patterns of gross solids within the sewers. 

Sediment-related blockages are among the most common types of failures found in sewer 
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systems (Rodríguez et al., 2012a). When sediment-related blockages occur, they are also 

likely to produce flooding and disrupt other public services (Korving et al. 2006). The 

regulations and product design, disintegration, and settlement rate of flushable and 

unflushable hygienic products such as cotton wipes, baby wipes, etc., further complicate the 

flow conditions in pipes and the occurrence of blockages (Joksimovic et al., 2020). Studies 

such as Alda-Vidal et al. (2020) also highlighted the impact of human behaviour on blockage 

rates. The latter study acknowledged the importance of consumerism and hygiene practices, 

indicating a shift towards integrating social factors in models in order to understand the 

formation of blockages in sewers. Physical pipe attributes such as diameter, material, gradient, 

length, and age are some of the predominant factors that have been reported in previous 

studies (Table 1) and that influence blockage incidents across different locations. Factors such 

as diameter affect the passage of solids and the accumulation of deposits, subsequently 

influencing blockage rates, while material type and gradient are significant in determining 

the internal roughness and slope of the sewer pipes, respectively. They dictate the flow 

velocity and the self-cleansing ability of the pipes, with specific materials and gradients being 

more prone to causing blockages. The spatial variation in sewer pipe gradients, diameters, 

and conditions (such as roughness) can lead to distinct flow dynamics within different sewer 

segments. Sediment types and their sources can vary significantly within a sewer system, 

influenced by local businesses, residential areas, and natural environmental conditions. There 

is a need for more detailed spatial analysis to understand how these localised characteristics 

contribute to blockage propensity. 

The age of the sewer pipes also plays a pivotal role (Malm et al., 2013). Age can be considered 

a surrogate for deterioration, with older pipes considered more susceptible to blockage 

(Ugarelli et al., 2010a). The age and condition of sewer systems can vary widely within a 

city or region, with some neighbourhoods having modern, well-maintained pipes and others 

having older systems that are prone to blockages.  

Environmental factors that affect blockages also need to be considered more in analysing the 

occurrence of blockages. Tree-related and soil-related factors such as tree roots, tree species, 

tree root proximity, soil water content, soil salinity, settlement rate, and soil type have only 

been sparsely considered in the previous studies (Table 1). These environmental factors may 

also compound the effect of structural factors or deterioration on blockage propensity. For 

example, cracks in older pipes or joint misalignments that lead to blockages may be 

exacerbated by the increased soil moisture and salinity, encouraging the intrusion of roots 

into the pipes and the accumulation of FOG, rags, and wet wipes. Studies such as 

Mohammadi, (2019) have suggested that the influence of environmental factors has not been 

adequately investigated. 
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Earlier studies such as Arthur et al. (2008), (Table 1), have focused on a narrower set of 

factors, often directly related to the physical properties of the sewer systems, such as diameter, 

material, and age. However, more recent studies have expanded the range of factors 

considered to include more diverse and complex variables such as tree root proximity, 

socioeconomic factors, climate-related factors, and even behaviours influencing non-

disposable disposal. The statistical exploration of blockage incidents is also varied and 

nuanced (Table 1). The vast array of statistical methods employed, from simple GIS analyses 

for identifying hotspots to advanced algorithms such as Random Forest, have indicated that 

analysis methods have been tailored to each study's specific context and data. The variety of 

statistical methods applied reflects the importance of local context and tailoring analytical 

approaches to specific conditions, which can include unique environmental factors, patterns, 

and local behaviours. The expanded range of factors also has significant implications for 

policy regarding the maintenance and management of blockages. These factors indicate that 

effective management of blockages and sewer systems requires tools that can aid the 

development of policies and practices that are responsive to a wide array of influences. Water 

utilities and municipalities can allocate their limited resources more effectively with a better 

understanding of the various factors and their spatial distribution.  
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2.5 Statistical methods for blockage management 

As evident in Table 1, various statistical methods have been used to understand and predict 

blockages in different locations using diverse sets of factors which may in some cases be 

similar. This diversity among methods previously applied and factors assessed indicates sewer 

systems' complexity and the varying nature of operational disturbances such as blockages 

make it challenging to use one-size-fits-all methods. Additionally, the factors investigated 

are spatially heterogeneous, i.e. they do not have a similar level of influence in every location, 

given the stochastic nature of blockage events. In spite of this, many models or methods 

assume global relationships between various factors and blockage propensity, i.e., the 

influence of factors is constant in all locations within a sewer network (Table 1). Few 

methods have attempted to implement non-global (local) methods for blockage 

management, such as Pulido et al. (2019) which used the Log-Gaussian Cox Process but 

limited to sediment-related blockages only. Also, the limited availability of historical datasets 

or the requirement that datasets with particular distributions or assumptions have limited the 

applicability of these methods. Ngaruiya and Ngigi (2014) conducted an initial investigation 

using a generalised Geographically Weighted Regression (GWR) to understand the spatial 

heterogeneity of factors influencing sewer blockages. However, they only considered factors 

such as resident's income, vandalism, number of households, and areas with water supply 

issues. Factors related to the physical properties of sewer pipes were not included. 

Additionally, the generalised GWR is based on the assumption of a Gaussian distribution for 

blockages (Xie et al., 2017). 

 

Studies such as the one carried out by  Bailey et al. (2016) have highlighted that the 

geographical aggregation of operational disturbances such as blockages may also provide 

benefits in reducing the noise present in the data and the representation of the surrounding 

network in the inputs to the model for specific areas within a sewer network. The variability 

in the occurrence of operational disturbances such as blockages may generally be attributed 

to the irreproducible random natural variation (aleatory uncertainty) or certain other factors 

(epistemic uncertainty) (Kleiner and Rajani, 2007). To address this variability specifically, 

studies such as those carried out by Cherqui et al. (2015) and Post et al. (2017) have 

incorporated a geographical aggregation method, i.e. hotspot analysis of sewer blockage 

using the planar kernel density estimation method. Nevertheless, these methods do not 

consider the network structure and therefore complex spatial patterns are difficult to capture. 

These methods exemplify a move towards spatially nuanced analyses. Research into other 

spatial methods that allow for the examination of how factors that affect blockage propensity 

may vary by location, is also needed in order to provide a more granular view of local 

patterns. Such spatial methods may yield critical insights for policy-making and targeted 
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maintenance actions, because they consider the spatial variability that global models might 

overlook. 

2.6 Analytics-driven approaches to support sewer asset management 

The preceding sections highlight the challenges that water utilities encounter in managing 

sewer assets. These include issues such as being able to decipher the origins and factors 

driving sewer blockage occurrence, effective planning maintenance, lack of data to support 

decisions, too much data in some cases, and data management issues related to data quality 

and interoperability. The complexity of these challenges is also amplified by their interrelated 

nature, creating a multifaceted problem for utility managers. 

While there has been a shift towards data-driven approaches (statistical methods, machine 

learning algorithms) in sewer asset management, that aim for more rational and proactive 

decision-making as evidenced by studies such as Savić (2008), Riel et al. (2016), Rokstad et 

al. (2016) and Tuija Laakso, (2020) the practical reality is often far from ideal. Many sewer 

asset management strategies in practice rely on intuition and experience rather than data and 

analytics. Such an approach may lead to several shortcomings, including reduced 

transparency in decision-making processes, reduced cost-effectiveness, and the generation of 

unpredictable outcomes, as highlighted by Riel et al. (2014a) and Riel et al. (2016). 

This divergence between the theoretical benefits of data-driven management and its practical 

application underscores a significant knowledge gap. It highlights the need for more 

comprehensive strategies, such as that of Hampapur et al. (2011), to effectively bridge the 

gap between data-driven ideals and the on-the-ground realities of sewer asset management. 

2.7 Research gaps 

The knowledge gaps indicated in the previous sections are summarised and linked to the 

thesis objectives as follows:  

• Effective utilisation of data for sewer asset management remains a challenge. This 

challenge is twofold, involving the quality and the quantity of available data. 

Historical data, crucial for maintenance planning, is often not fully digitised, is 

inconsistent and is difficult to access, impeding its practical application. Furthermore, 

the issue of interoperability between various data sources and systems within utility 

management remains unresolved in many water utilities. These challenges highlight 

the need for assessment tools to enhance data management strategies that ensure data 

quality and seamless data integration across different platforms (Objectives 1 and 2). 

• Although data management challenges in pipe network asset management are 

acknowledged in the literature, there is a need for empirical studies that delve into 
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the specifics of these challenges across different water utilities. Such research can 

enhance the devising of more effective strategies to tackle these issues and gain insight 

into the reasons behind their persistence (Objective 1). 

• In sewer maintenance planning, adequate consideration has not been given to using 

spatial variability to aid maintenance planning. There is a need for statistical models 

that take account of local variations in operational disturbances such as blockages and 

the spatial heterogeneity of factors influencing blockages. Such methods could also 

support proactive and predictive models sensitive to local conditions and could adapt 

to the diverse and complex nature of sewer networks (Objective 3). 

• Numerous studies have reported that typically a reactive approach is adopted to 

manage sewer blockages in many water utilities and municipalities. While risk and 

condition-based maintenance methodologies have been proposed as a means of 

obtaining a more proactive or planned approach to maintenance, their adoption has 

been limited, often due to the lack of robust historical data, low rates of CCTV 

inspections, and inadequate inspection coverage. Spatial statistical methods such as 

Network k-function, Geographically Weighted Poisson Regression, along with the 

use of edge centrality measures may support improved maintenance planning and the 

development of proactive maintenance strategies (Objective 3). 

• A gap exists between proposed data-driven approaches and their practical use in water 

utilities and municipalities, often prompting a reliance on intuition rather than 

leveraging the potential of data-driven approaches. This gap highlights the need for 

more analytics-driven strategies that can provide deeper insights and a nuanced 

understanding of sewer maintenance planning (Objectives 2 and 3).  

• Many factors can affect blockage propensity, and findings from the literature (Table 

1) suggest that these factors are often confounding. This makes the isolation of which 

factors are driving the occurrence of blockages in a particular location complex 

leading to less effective maintenance approaches (Objective 3). 

 

• The influence of environmental and external factors such as soil type, tree roots, 

climate, and human behaviour on blockage propensity is not sufficiently explored. 

Understanding these impacts is important if effective maintenance strategies 

responsive to local environmental conditions and social behaviour are to be developed 

(Objective 3). 
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3 Methodology 

The research in this thesis is based on a diverse set of methods. Section 3.1 describes the 

details of focus group workshops and questionnaire surveys carried out to evaluate the 

challenges associated with data use and its management within the context of asset 

management of pipe networks. The outcomes from these workshops and questionnaire 

surveys formed the basis for a proposed conceptual framework, which assessed the presence 

of data silos by accessing data quality and interoperability between asset management systems. 

This framework is described in more detail in the results (section 4.2). Section 3.2 describes 

the performance indicators used for performance assessments of sewers in Sweden. This 

section further elucidates how these indicators were used for performance assessment. The 

various statistical methods employed to analyse performance indicators assess the spatial 

variability of blockages and the spatial heterogeneity of factors influencing blockage 

propensity are described in section 3.3. In sections 3.4 and 3.5, graph theory centrality 

measures applied to assess the criticality and vulnerability of sewer pipes, are described. 

Additionally, the random forest algorithm applied for the prediction of blockages is described 

in section 3.6. Table 2 presents an overview of the statistical, topological methods, and 

machine learning algorithms used in the analysis and how these techniques were 

synergistically applied. In section 3.7, the data used to evaluate the various methods and 

associated approaches is described. 

Table 2. Description of approaches for performance assessment, spatial heterogeneity assessment and 

vulnerability assessment. 

Approaches Methods Description  

Performance  
assessment 

• Partial least squares regression (PLS) 

• Performance indicators 

PLS was used to evaluate the relationship 
between selected performance indicator  

Spatial 
heterogeneity 
assessment 

• Network density estimation (NKDE) 

• Network k-function 

• Geographically weighted Poisson 
regression (GWPR) 

• Random forest (RF) 
 

NKDE and Network K-function were used 
to assess the spatial variability of blockages, 
and GWPR was used to assess the variation 
and intensity of influential factors for 
blockage propensity across different locations 
within sewer networks in order to obtain a 
more localised understanding of occurrence 

patterns 

Vulnerability 
assessment  

• Edge-based graph centrality measures 

• Network cross k-function 

Edge-based graph centrality measures were 
used to identify the most critical pipes within 
investigated sewer networks, and the 
Network cross k-function was used to assess 
the spatial relation between these critical pipes 
and the pipes where previous incidents of 
blockages had occurred. 
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3.1 Focus group workshops and questionnaire surveys 

3.1.1 Focus group workshops 

Three focus group workshops were conducted (2019-2021), both in the form of online and 

face-to-face meetings. Representatives from five to nine Swedish water utilities participated 

in each of the workshops. The objectives of the workshops were multifaceted, including: i) 

identifying the current data management challenges in the context of pipe network asset 

management, ii) identifying which type of information (data) was considered important in 

achieving strategic objectives, assessing data collection strategies and associated justifications, 

identifying which type of analysis or analytical methods were important to the water utility 

representatives, and iii) assessing how data is currently stored, used and exchanged in the 

context of pipe network management. 

Data from these workshops was recorded in various ways, including using paper forms, direct 

transcriptions of participants’ responses, and online documentation tools such as "Miro 

board". The core elements from the responses were collated using the "Scissors and Sort" 

technique (Stewart et al., 2012). This involved categorising responses based on 

commonalities in patterns, sentiments, and contradictions, or as outliers. The categories were 

then labelled to capture their overarching themes. The primary themes that emerged were: 

(i) network-level asset management for pipe networks, (ii) project-level renewal, focusing 

on data collection and utilisation, and (iii) the pivotal challenge of interoperability. These 

primary themes were further dissected into the specific subjects, questions, and responses 

provided in Paper I, Table 2. 

3.1.2 Questionnaire survey 1 

Based on the focus group workshops and literature findings, a set of information types 

considered relevant for asset management of pipe networks was identified. A questionnaire 

was developed based on these information types. They consisted of four broad sections, 

covering the potable water pipe network (7 data items), stormwater pipe network (9 data 

items), sewer network (12 data items) and combined pipe networks (13 data items) at the 

strategic, tactical and operational IAM levels. For more details, see Paper 1, supplementary 

data I. Each data item in the questionnaire had a 5-point Likert scale, ranging from least to 

most important. The objective of the questionnaire was to identify the type of information 

that was considered to be most important for asset management of pipe networks. 

Furthermore, it also assesses the level of consensus regarding the importance of information 

type across network types and between asset management planning levels (Strategic, tactical, 

and operational levels). The target group for this survey was an expert panel consisting of 

representatives from five Swedish municipalities and water utilities. These municipalities and 
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water utilities together support approximately 22.5% of Sweden's population with water 

services. The roles of respondents were project engineer, pipe network engineer, 

investigation engineer, and water and wastewater strategist. The technique used to carry out 

the survey was the Delphi method, recognised as a method to assess the consensus of an 

expert panel regarding a particular subject (Mitroff and LInstone, 1993; Gnatzy et al., 2011; 

David Garson, 2014). This questionnaire was distributed online via Survey Monkey, 

between August and October 2019. Reminders were sent out to avoid response drops-off 

from the expert panel. 

The statistical mean and standard deviation of responses were used to assess the consensus of 

responses from the expert panel. A consensus indicating high importance was defined as a 

mean response value between 4.4 and 5.0, accompanied by a standard deviation of less than 

0.5. 

3.1.3 Questionnaire survey 2 

A web-based questionnaire survey was conducted to investigate the views of employees at 

Swedish municipalities and water utilities on data integration for pipe network management. 

The study was based on the results from studies with the focus groups and literature reviews. 

The survey included eight main questions, focusing on: 

1. Objectives of data collection for pipe network management (one question). 

2. Data use for long-term network maintenance (one question). 

3. Data storage and exchange routines to support various pipe network analyses and 

operations (three questions). 

4. Factors affecting data integration, including technical, organizational, and meta-data 

issues (three questions). 

5. Perceived benefits of data integration (open question). 

A systematic approach was applied to develop the questionnaire and questions based on (Jebb 

et al., 2021). The steps in this systematic approach consisted of choosing relevant questions 

based on research objectives and existing literature. The Likert scale was selected to measure 

respondents' perceptions. A pilot test was then carried out to assess the clarity of questions. 

Feedback from the pilot test was used for refinements before subsequent distribution. The 

questionnaire was available from May to August 2022 via Survey Money, and the link was 

distributed to all 290 Swedish municipalities via email to the registrar. The registrar was 

asked to share the questionnaire link with suitable respondents. For details of the 

questionnaire, see Paper II; for survey questions, see Paper II supplementary material I.  
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The response rate to the survey was approximately 32 %, with 65 respondents representing 

92 out of the 290 Swedish municipalities since some water utilities consist of multiple 

municipalities. In terms of respondents’ roles: 

• 35% were water and wastewater engineers, 

• 37% held managerial positions such as chief executive, unit manager, operational 

manager, or unit head, 

• 15% were investigation and planning engineers, 

• 12% were project engineers, operation engineers, or held other roles. 

3.2 Performance assessment and indicators (PIs) 

The performance of sewer networks was considered the ability to transport sewage while 

maintaining hydraulic integrity, which depends on serviceability failures such as blockages 

(Ugarelli, 2015). Blockages, therefore, provided a rational basis for performance assessment. 

Performance indicators related to blockages (Table 3) were used to assess the performance 

of sewer pipe networks in Sweden in relation to size as an initial precursory step to more 

detailed investigations. Performance assessment also aided in drawing inferences regarding 

maintenance gaps in blockage management in the sewer networks.  

The PIs selected were based on Cardoso and Matos, (2003) and Cardoso and Matos, (2005a). 

The main strengths of the chosen PIs included (1) characterisation of the sewer network 

performance based on sewer blockage rate and (2) periodic assessment of the plausible gaps 

in maintenance actions. 

Table 3. Evaluated performance indicators.  

Performance 

Indicator 

Definition 

Sewer blockages (in 
combined and 
separate sewers) 

The number of blockages in sewers that occurred during the assessment period 
*365 / (assessment period in days) per total sewer length on the reference date 
(No. km-1 Year-1) 

Operation and 
maintenance costs of 
wastewater pipeline  

Running costs related to maintenance, cleaning and repair of the sewer system 
during the assessment period per total sewer length on the reference date (kr km-
1) 

Percentage pipeline 
network flushed.  

Length of sewers flushed during the assessment period per total sewer length at the 
reference date (per year) *100 (%) 

The municipality size classifications (Table 4) were used in the analysis. Data to do the 

analysis data was collected from Swedish Waters statistics VASS, see section 3.6. Using these 

size classifications, the PIs were further evaluated by using Partial Least Squares (PLS) 

regression (See section 3.3.1 for the description of how PLS was used). Generalized 

interpretations from PIs were also based on this size classification.  
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Table 4. Size classification of municipalities used for performance assessment (Swedish Association of 

Local Authorities and Regions, 2017). 

Classification  Range  Number of municipalities 

Large  Greater than 200,000 people     4 
Medium 50,000 – 200,000 people    41 
Small  15,000 – 50,000 people  106 

Less than Small  Less than 15,000 people  121 

* Data from 272 municipalities were used in the analyses since the data for a number of municipalities was incomplete or unavailable. 
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3.3 Statistical methods 

3.3.1 Partial Least Squares Discriminant Analysis  

Partial least Squares (PLS) regression is a method for multivariate data analysis for modelling 

the association between X and Y data matrixes (Shaffer, 2002). X represents the factors or 

predictors variables, and Y represents the responses. The advantage of the PLS regression 

method is its flexibility to be used in situations where traditional multivariate methods are 

limited, i.e. data sets with fewer observations (Lee et al., 2018).  

In this thesis, a PLS discriminant analysis was performed between performance indicators 

(percentage of network maintained (flushed) and maintenance cost) as the predictor variables 

and the blockage rate as the response variable. Data from 272 Swedish municipalities sourced 

from Swedish Water Statistics Databases (VASS) was used see Table 3 above and section 

3.7.1. The PLS analysis was conducted using SIMCA, where both predictor and response 

variables were mean-centred and scaled to ensure unit variance. An iterative methodology 

was adopted to fit the PLS model and to identify the most optimal model (i.e. the first two 

components). This model exhibited a goodness of fit (R2) and a goodness of prediction (Q2) 

of approximately 0.5. The model shows the relationship between the predictor variable 

(percentage of network maintained (flushed), maintenance cost, and response variable 

(blockage rate) for each municipal class (large, medium, small, and less-than-small). 

3.3.2 Network Kernel Density Estimation (NKDE) 

The Network Kernel density estimation, NKDE, was applied to assess the spatial variability 

of blockages along the networks investigated. It is a non-parametric method for estimating 

the density events (blockages) along segments (pipes) in a network based on the shortest path 

network distance between events (Tang et al., 2016). The advantage of the NKDE over 

more traditional methods like the planar Kernel Density Estimation (KDE) is that it takes 

into consideration that blockages only occur along pipes and do not occur in a continuous 

2D space. Additionally, NKDE is reported to be computationally more efficient than KDE 

when networks are large (Okabe and Sugihara, 2012). The spatial variability was assessed for 

both recurrent blockages and single-occurring blockages in each of the three investigated 

separate sewer networks (A, B, and C; see section 3.7.2). The expression for NKDE for 

blockages on a sewer network at a location u, based on Okabe et al. (2009), is presented in 

equation 1, 
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k(u) =
1

nh
∑ k(

d(u,xi )

h

n
i=i )          (Equation 1) 

where: 

- n is the number of observed blockages on the pipe network over the observation 

period, 

- xi represents each observed blockage location on the network, 

- d( u, xi ) is the shortest path network distance between the location u and the 

observed blockage xi, 

- h is the bandwidth of the kernel function, which determines the "reach" or 

influence of each blockage, an adaptive bandwidth used, 

- K is the kernel function, which weighs the influence of each blockage based on its 

distance from location u. In this analysis, a Gaussian kernel function was used. 

The NKDE calculates the density of blockages along the pipes within a sewer network. A 

high K(U) value at a particular location would suggest a higher concentration or risk of 

blockages in the vicinity. 

3.3.3 Network K-function and Network Cross K-function 

The network k-function is a method to analyse spatial patterns of events on a linear network. 

It has been applied in previous studies to, for example, analyse crime patterns, disease 

prevalence and traffic accidents. (Yamada and Okabe, 2001; Lessler et al., 2016;Fan et al., 

2018). The advantage of the network k-function is that it provides inferences regarding the 

spatial distribution of events (i.e., clustered, random or dispersed). The network k-function 

also considers edge effects, i.e. boundary constraints of networks and the assumption that 

events only occur along networks.  

In this thesis, the network K-function was used to statistically assess the spatial distribution 

of blockages along the pipes of the investigated sewer networks A, B and C, described in 

section 3.7.2. This statistical analysis determined if the proximity of blockages to one another 

was significantly higher or lower than expected under the assumption of Complete Spatial 

Randomness (CSR). The complete Spatial Randomness (CSR) hypothesis considers 

blockages on a network to be distributed uniformly and independently across a sewer 

network. Under CSR, blockages on a sewer network are independent of each other and are 

spread evenly throughout the sewer network, similar to a binomial point process process. 

The network K-function (𝑘𝑛𝑒𝑡 ), based on Yamada and Okabe, (2001), is presented in 

equation 2, 
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                     𝑘𝑛𝑒𝑡(𝑟) =
L

𝑛2
∑ ∑ 𝑤𝑖𝑗 (𝑟)𝐼(𝑟𝑖𝑗  ≤ 𝑟)𝑛

𝑗=1,𝑗≠i
𝑛
𝑖=1           (Equation 2) 

where: 

- L represents the total length of the network, 

- n is the total number of pipes with blockages on the network, 

- rij is the network distance between a location where a blockage has occurred i and 

another location j, 

- I is an indicator function that counts pairs of blockages that are within a specific 

distance from each other, i.e. the same pipe segment.  

- Wij(r) is an edge correction weight for the pairs of blockages i and j. The weight 

accounts for the fact that blockages near the border of the network have a reduced 

likelihood of having neighbours within a distance r due to the limited extent of the 

network at the border or edge. 

The indicator function represents an observational window capturing all pipe locations on 

the network reachable within the shortest path distance r. The indicator function essentially 

translates the two-dimensional area of a traditional observation window into the one-

dimensional length of the sewer network. 

The network K-function evaluates the spatial distribution of blockages (the observed K-

function curve) compared to a random set of points under CSR (referred to as the expected 

K-function curve represented by a shaded envelope in plots). The spatial pattern of blockages 

was identified by assessing the divergence between the blockage distribution and the 

distribution of the random points at a 95% confidence interval. This confidence interval is 

derived from 99 Monte Carlo simulations, as described by Yamada and Okabe (2001). When 

an observed k-function curve is above the expected k-function curve, blockages have a 

clustered spatial pattern. Conversely, an observed k-function curve below the expected k-

function curve indicates a dispersion (Lamb et al., 2016). The pattern is considered random 

if the observed k-function curve lies within the expected k-function curve. 

The network cross k-function is an extension of the network k-function. The network cross 

k-function is typically used to examine the spatial relationship between two different types 

of events along the same network (Yamada and Okabe, 2001). The network cross k-function 

was used to evaluate the spatial relationship between blockages and pipes with higher levels 

of criticality determined by edge betweenness centrality (described in Sections 3.4 and 3.5). 

Using Monte Carlo simulations (99), the spatial relationship between blockages and critical 

pipes was compared with randomly generated points from a binomial point process under 

CSR.  
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3.3.4 Geographically weighted Poisson regression (GWPR) 

Geographically Weighted Poisson Regression (GWPR) models allow relationships between 

predictors and response variables to vary depending on the location, aiding the identification 

of local patterns that might be obscured in global models (Nakaya et al., 2005). GWPR has 

been applied in various contexts, such as traffic and road accident analysis (Hadayeghi et al., 

2010), analysis of food malnutrition (Saefuddin et al., 2013) and disease prevalence modelling 

( Li et al., 2013) and more recently in an analysis of coronavirus disease 2019 (COVID-19) 

data (Murakami and Lu, 2021).  

In this thesis, GWPR was employed to analyze how the relationship between sewer 

blockages and various influencing factors varied in strength across different locations in the 

sewer networks A, B and C (Section 3.7.2) studied. Influential factors included physical 

factors such as pipe age, diameter, length and others, including environmental factors like 

proximity to restaurants, see section 3.7.2. The coefficients of the GWPR model (parameter 

estimates) were determined by fitting a Poisson regression model where the likelihood 

estimation was geographically weighted with weights defined by a kernel function centred 

on the coordinates of pipe locations (Nakaya et al., 2005). The generalized form of the 

GWPR model is presented in equation 3. 

 

𝐼𝑛𝑦𝑖 = 𝑝𝑜𝑖𝑠𝑠𝑜𝑛( ∑ 𝛽𝑘(𝐶𝑖)𝑥𝑖𝑘 + 𝜀𝑖     (𝑖=1,2,3…𝑛) )𝑀
𝑘=1                        (Equation 3) 

 

where:  

- yi represents the response variable (the total number of blockages per pipe over the 

assessment period) 

- Ci = (Ui, Vi) denotes the coordinates of a pipe within the network at an ith location. 

- 𝛽𝑘  is the parameter estimate unique to sewer pipes within the pipe network for a 

factor (𝑥𝑖𝑘) at ith location  

- ε represents an error term.  

- M is the total number of independent variables evaluated for the sewer network.  

The spatial heterogeneity was represented with parameter 𝛽 expressed as a matrix. The 

representation of the matrix is shown in equation 4, 

𝛽 = [

𝛽𝑖𝑜𝐶1 𝛽𝑖1𝐶1 … 𝛽𝑘𝐶1

𝛽𝑖𝑜𝐶2 𝛽𝑖1𝐶2 … 𝛽𝑘𝐶2

𝛽𝑖𝑜𝐶𝑛 𝛽𝑖1𝐶𝑛   … 𝛽𝑘𝐶𝑛

]                                                            (Equation 4) 

The weight of a pipe (W*) was influenced by its distance from the regression point. Pipes 

nearer this point were assigned a greater weight than those farther away. The parameters for 

each pipe which formed a row in the matrix are described by equation 5:  
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𝛽∗ = (𝑋𝑇𝑊𝐶1)−1 𝑋𝑇 𝑊𝐶1𝑌                         (Equation 5) 

Where: 

- XT is a matrix of the independent variables, i.e. factors described in section 3.7.1with 

a column of 1s for intercept,  

- Y is the dependent variable vector 

- WC1 denotes an x by x geographical diagonal spatial weights matrix, which is 

expressed as W*: 

𝑊∗ = [
𝑊1

∗ … 0
. . . … …
0 … 𝑊𝑛

∗
]                                      (Equation 6) 

where w1* was the weight given to each pipe in the calibration of the model used to 

determine blockage frequency for each pipe in the network. Weights were applied by a 

smoothly decaying function of the distance between pipes on the network according to a 

bi-square kernel function because it supports the minimisation of errors (Nakaya et al., 2005; 

Alves et al., 2016).  

The goodness of fit for the GWPR model was evaluated using the Corrected Aikake 

Information Criterion (AICc) through a golden search (Nakaya et al., 2016). The golden 

search minimises the AICc towards identifying the most fitting model. A decrease in AICc 

by less than three values was considered a significantly better fit (Li et al., 2013; Bui et al., 

2018). The initial and final AICc values for the GWPR models of the investigated networks 

are presented in Figure 3, along with the corresponding bandwidths. 

The presence of multicollinearity among the parameters was evaluated using the Variance 

Inflation Factor (VIF). VIF values of 10 or greater were considered a cut-off threshold, 

indicating the presence of multicollinearity (Pirdavani et al., 2014). The VIF values did not 

exceed ten among the parameter estimates for all factors investigated in networks A, B and 

C, except for neighbourhood population density in sewer networks A and C. However, 25-

50% of parameter estimates for neighbourhood population density had a VIF between 10 -

15. 
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Figure 3. AICc values and bandwidth for the GWPR models calibrated for sewer networks A, B, and 

C with bandwidths of 6000, 900 and 400, respectively. 

A spatial variability test evaluated the statistical significance of the observed relationships. 

This test involved shuffling the observations and recalibrating the GWPR model on 

randomized data while maintaining the same model specifications. Through a Monte Carlo 

simulation, this process was repeated 1,000 times. For each iteration, the parameter estimates 

derived from the randomized data were compared to those of the actual observations for 

each pipe in the network. By counting the number of times the parameter estimates of the 

real data exceeded those of the randomized data, pseudo-p-values were generated for 

hypothesis testing (Oshan et al., 2019). A pseudo-p-value below 0.05 indicated that the 

observed spatial relationship between the factors studied and the sewer blockages was not 

random at a 95% confidence level. 

The results of the statistically significant parameter estimates were then presented via maps. 

For each factor, a diverging colour scheme was used to show the area of influence of a 

particular factor on blockage propensity. Each map's parameter estimates or coefficients were 

interpreted as probabilities or likelihoods. These probabilities quantify the relationship 

between the blockage propensity and influential factors based on the exponential parameter 

estimates (Hilbe, 2014). The analyses were performed using GWPR4 standalone software 

(Oshan et al., 2019) and R. 
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3.4 Network topological analysis 

The suitability of four edge-based centrality measures (Table 5), along with three weight 

types, was assessed and compared towards identifying critical pipes where, if a failure 

happens, it can have a disproportionate impact on the network function. The four edge 

centrality measures were evaluated in sewer network B's two sub-networks (residential and 

central). The weight types included pipe location (based on Strahler's hierarchical stream 

order methodology (Gleyzer et al., 2004)), pipe diameter, and pipe age, described in more 

detail in Paper V.  

Table 5. Evaluated centrality measures and their description. See paper V for a more in-depth 

description. 

The investigated sub-networks were represented as unweighted, directed graphs. In the 

analyses, pipes were considered edges, while manholes, joints, bends, and other components 

connecting any two pipes were treated as nodes. Each edge's centrality value was computed 

and subsequently normalized between 0 and 1. This normalization followed the 

methodology proposed by Antoniou and Tsompa, (2008), which adjusted centrality values 

to fit within this range by subtracting the minimum and then dividing by the range 

(maximum subtracted from minimum). Pipes with higher centrality values, i.e. 0.7 and 

Edge centrality 
measure  

Description  

Edge betweenness 
(EBC) 

Measures the importance of an edge in a graph based on the number of shortest 

paths that pass through the edge. EBC calculates the fraction of shortest paths 

between all pairs of nodes that contain a particular edge (Ganesan et al., 2020).  

K-path 
(KEC) 

K-path edge centrality quantifies an edge's role in network flow by the fraction 

of random paths of up to k connections that include the edge. K-path edge 

centrality is calculated by dividing the count of random paths with the edge by 

the total paths count. Higher values indicate a more critical role in the network 

(De Meo et al., 2012). 

Nearest neighbour 
(NNE) 

NNE assesses an edge's centrality by the influence of the edge's weight in 

relation to the cumulative weights of edges adjacent to that edge. The idea 

behind this centrality measure is that an edge's importance is not just 

determined by the edge's weight alone but also by how the weight of the edge 

compares to the weight of other edges in the edge's immediate surroundings 

(Bröhl and Lehnertz, 2022). 

Shannon-entropy 
(SEC) 

Shannon entropy quantifies the amount of uncertainty or randomness in a 

system. When applied to networks, it can help identify the diversity or 

unpredictability of paths in which an edge participates. Each edge's weight 

represents the importance of that edge for ensuring flow. The relative 

importance of the edge is assessed by converting the weights into probabilities 

(pi). Higher entropy values indicate edges that may significantly impact the 

flow and are crucial for the network (Omar and Plapper, 2020). 



35 
 

above, were selected as the most critical pipes. A 0.7 threshold was chosen to balance the 

need for identifying crucial pipes with the practical constraints of maintenance planning. 

This approach also considers monitoring moderately critical pipes for future preventative 

measures. For example, the distribution of centrality values was then analysed between 

weight types and across sub-networks. Then, the spatial association between pipes with 

higher centrality values and pipes where previous incidents of blockages were assessed using 

the network cross k function, earlier described in section 3.3.3. 

3.5 Vulnerability assessment 

A vulnerability assessment was conducted on a residential and a central subnetwork of sewer 

network B, using the four centrality measures described in Section 3.4 and also detailed in 

Paper V. In this thesis, only edge betweenness centrality (EBC) was chosen for identifying 

critical pipes in this thesis following the preliminary vulnerability assessment (Paper V). The 

methodology then involved calculating EBC values for pipes across the sewer networks (A, 

B, and C) described in section 3.7.2. The spatial relationship was then assessed separately 

between pipes with higher EBC values (based on the threshold described in section 3,4) and 

locations of recurrent and single-occurring blockages to identify critical locations where 

blockage occurrence may lead to a disproportionate impact. The EBC was calculated for 

each pipe based on equation 7.  

𝐶𝐸𝐵𝐶 =  ∑
𝜎𝑉1𝑉𝑛(𝐸)

𝜎𝑉1𝑉𝑛
𝑉1≠𝑉𝑛 

                        (Equation 7) 

where: 

- ∑ Indicates a summation over all pairs of nodes, i.e. manholes, joints, and bends in 

the sewer network, 

-  𝜎𝑉1𝑉𝑛
is the total number of shortest paths from node V1 to node Vn, 

-  𝜎𝑉1𝑉𝑛
(𝐸) denotes the number of shortest paths from node V1 to node Vn that pass 

through the edge E. 

3.6 Machine learning algorithms – Random Forest (RF) 

In this thesis, the Random Forest (RF) algorithm (Breiman, 2001) was applied to predict 

blockage occurrence. Prediction accuracies were then compared with the spatial variability 

of blockages in the investigated networks to assess if a link may be found between spatial 

variability and the predictive nature of blockages in that particular network. A random-forest 

model was constructed to predict the occurrence of sewer blockages. The RF prediction 

model developed in this thesis included 1000 trees generated through bagging and a random 

subset of each node's data (Breiman, 2001). The data consisted of all the pipes in the sewer 

networks A, B and C, described in section 3.7.2, and blockage data described in Table 8. 
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For each sewer network, a separate RF prediction model was developed. According to 

Breiman (2001), the out-of-bag (OOB) error was used to minimise the generalisation error. 

The RF modelling dataset was randomly divided into one training and one validation set for 

the data used, using a 70/30 split (training/validation). Based on the mean Gini decrease, 

each network's four most important factors (Table 6) were used for predictions. Mean Gini 

Decrease measures the importance of each feature. 

Table 6. Factors most important for the prediction of blockages in each network. Ranking based on the 

Mean Gini decrease for each network investigated. 

Factor  A B C 

Pipe Length 1 1 1 

Pipe Age 2 4  

Number of service connections  3 2 2 

Population density  4   

Pipe Diameter 5 3  

Pipe Material  6 5 3 

Linear distance(proximity) to restaurants   6 4 

The accuracy of the Random forest ensemble predictions was assessed based on receiver 

operating characteristic (ROC) curves and the area under the ROC curve (AUC percentages) 

(Rahmati et al., 2016). An AUC value of 100 % indicates perfect prediction capability, while 

50% represents an entirely random prediction accuracy (Shaikhina et al., 2019).  

3.7 Data 

3.7.1 Network-level benchmarking data (VASS and SCB) 

Data for quantifying indicators and performance assessment was gathered from yearly records 

from 2007 to 2017, originating from 290 municipalities in Sweden. This information was 

sourced from the statistics database known as VASS, which the association Swedish Water 

manages. Data from seven municipalities was excluded from the analyses due to the 

unavailability of pertinent data. At the time of data collection, information for 2018 and 

2019 was either unavailable or incomplete in the database and, therefore, excluded as well. 

To complement the performance assessment, data about the population density of 

municipalities for these 290 municipalities was acquired from Statistics Sweden (SCB)and 

was used in performance indicators associated with population. The data collected from each 

database is presented in Table 7.   
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Table 7. Raw data used to calculate performance indicators for performance assessments separated by 

database. 

Database VASS SCB 

Data  
Number of blockage events Population density 

Total length of sewers  

Length of sewers flushed or cleaned  

Length of renovated sewers   

Total cost of operations and maintenance   

Number of inhabitants connected to the sewer network   

Number of basement flooding events  

Discharge from households  

3.7.2 Pipe network data 

The methods described in previous sections were applied on three sewer networks referred 

to as A, B and C. These sewer networks were all separate sanitary sewers. The catchments 

where these networks are located typically consist of one central sewer network in the city 

or municipal centre and separate networks in peripheral towns, villages, and rural 

communities. The general attributes of the three networks are detailed in Table 8. Data was 

mainly in shapefile format with attributes readable by GIS-based software and spreadsheets. 

Due to security concerns, the results and papers (IV and V) do not present the exact shapefile 

that depicts the precise layout and location of the pipe networks. However, a schematic 

representation of the catchments for these sewer networks showing the major sewer 

network, i.e., the municipal centre and the separate networks in peripheral towns, villages, 

and rural communities, are seen in Figure 4.  

Table 8. General characteristics of the sewer networks A, B and C and blockage data. 

 

Sewer network  A B C 

Land area (km2) 2,316 2,088 4,013 

Length of sewer network (km) 800 630 500 

Percentage of the population connected to 
the sewer network (%) 

90 87 89 

The average number of inhabitants 
connected to the pipe network per 

kilometre  

191 151 39 

Total number of blockages assessed and 
associated spatial coordinates  

(16,640) 
single occurring 

-11,660 
Repeat – 4,980 

(3,161) 
single occurring  – 

2,026 
Repeat – 1,135 

(1,522) 
single occurring 

- 979 
Repeat - 543 

Blockage data period 2003–2019 2015–2019  2008–2019 

Average blockage rate (no. km-1 year-1) 0.2 0.3 0.25 
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Figure 4. Schematic representation of the sewer networks A, B and C, showing the centre of the 
municipalities and the wastewater treatment plants’ locations, which indicate upstream and downstream 
flow directions. 



39 
 

The data regarding blockages and their coordinates, as described in Table 8, were used for 

the spatial heterogeneity assessment. The total number of blockages was used when carrying 

out NKDE and GWPR analysis, while both repeat (blockages that are recurring) and 

random (single occurring) blockages were used when carrying out network k-function and 

network cross k-function analysis. 

 

In the topological assessment, two sub-networks of sewer network B were evaluated: one 

residential and one central. The residential sub-network comprised 787 edges and 1,154 

nodes, with a total pipe length of 15.8 kilometres. Pipes were predominantly concrete and 

had 28 recorded previous incidents of blockages used for the evaluation. The central sub-

network comprised 1,248 edges and 1,186 nodes, with a total pipe length of 32.3 kilometres. 

The pipes in this sub-network were a mixture of materials, including concrete, clay, PE, 

PVC and others. There were 91 recorded previous blockage events. For further details, see 

Tables 2 and 3 in Paper V. 
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4 Results 

This chapter presents the summarised and synthesised results from the five included papers 

(Papers I-V). The identified challenges of data management in the context of asset 

management of pipe networks, gleaned from focus group workshops and questionnaire 

surveys I and II, are presented in section 4.1. In section 4.2, the proposed conceptual 

framework for objective-driven asset management is presented. The results from a 

preliminary application of the conceptual framework to assess data and systems for 

blockage management in the three investigated sewer networks are presented in section 

4.3. Results and inferences from the performance assessment are presented in section 4.4. 

The spatial variability assessment (NKDE, network k-function) of blockage occurrence 

in the three investigated networks and spatial heterogeneity assessment of influential 

factors that impact blockage propensity (GWPR) are presented in section 4.5. 

Topological analysis and vulnerability assessment based on edge betweenness centrality 

in conjunction with the network cross-k-function analysis are presented in sections 4.6 

and 4.7, respectively. 

4.1 Data management challenges in asset management of pipe 
networks 

The results from the focus group workshops and questionnaire surveys I and II identified 

various data management challenges associated with asset management of pipe networks. 

The following sections 4.1.1- 4.1.7 summarise these challenges. 

4.1.1 Data quality - low availability, integrity and consistency 

Various issues related to the documentation (paper vs digital records), as well as the 

completeness, accuracy, timeliness, sufficiency and availability of datasets were 

consistently highlighted as data management challenges by focus group workshop 

participants (Table 10). Aspects related to managing the complexities arising from the 

volume and variety of data in modern digital systems, such as large quantities of sensors 

generated data, were also highlighted. Additionally, in response to survey questions about 

data quality maintenance practices, more respondents agreed that there is a process for 

maintaining data quality in the pipe network than those who agreed that data quality is 

continuously monitored (Figure 5). This suggests a relatively higher confidence in quality 

maintenance processes than in ongoing monitoring practices. A substantial percentage of 

respondents, approximately 30-40%, also reported neutral opinions, suggesting either 

uncertainty or lack of knowledge about the processes in place or the data quality 

monitoring. These results might mean that while some aspects of pipe asset management 

data are well-maintained, other aspects might require attention, or improvement or 

contain potential difficulties.   
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Table 10. Challenges related to data quality in the management of pipe networks identified from 

focus group workshops. 

Category (Subtitle) Challenges 

Inventory Systems and Record-Keeping GIS-based vs. paper-based systems 

Integration challenges: paper and digital records 

Data Detail and Limitations Depth of records: from pictures to disturbance nature  

The challenge of incomplete data 

Application of IAM Tools Current adoption of advanced IAM tools 

Data digitisation and regular updates 

Financial and Coordination Records Sparse documentation on project costs and renewal 

reasons 

and coordination 

Historical Data Analysis The framework of available historical data 

Need for more robust historical records 

Digitalisation and Modern Tools Increase in smart tools: smart flow meters and sensors 

Integration concerns, collection of big data and its use  

 

Figure 5. Respondents' perceptions regarding data quality maintenance practices from questionnaire 

survey II. 

4.1.2 Data accessibility, security and limitations from the use of commercial 

legacy systems 

The survey responses indicated a consensus that diverse legacy systems, data privacy 

concerns and varying access levels, had more than a moderate impact on data integration 

(Figure 6). These responses suggest that in many water utilities, the combination of 

diverse commercial legacy systems, data privacy, security concerns and varying access 

levels to different systems can have tangible repercussions on effective data use and 
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decision-making. More specifically, data fragmentation is a significant challenge in 

organizations using diverse commercial legacy systems. According to Figure 6(a), about 

61% of respondents recognised that information often becomes trapped in various 

inaccessible systems. Additionally, as shown in Figure 6(b), approximately 70% of 

respondents acknowledged the complexity arising from the use of numerous systems and 

databases.) Moreover, data privacy and security concerns exacerbated the issue of 

fragmented data structures. These concerns can hinder the willingness to share or access 

certain datasets. As indicated in Figure 6(c), around 70% of respondents acknowledged 

that data privacy and cybersecurity issues have a significant impact on the integration of 

data, adding another layer of complexity to the challenges already presented by the 

multiple diverse legacy systems.  

The challenges posed by diverse legacy systems are further compounded by these systems 

having varying access and authorisation levels. This situation can result in inconsistencies, 

with different stakeholders having different versions or subsets of the data. Approximately 

70% of respondents agreed that issues related to varying levels of system access and 

different system authorisations (Figures 6(d) and 6(e)) added to the complexity of data 

integration.  

 

Figure 6. Responses related to the perceived impact of data accessibility, data privacy, cybersecurity 

concerns and the use of systems on data integration from questionnaire survey II. 
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4.1.3 Data storage and exchange routines  

Responses to the survey questions indicated that a large number of organizations manage 

their data using several different systems or databases. This suggests a complex data 

landscape where data integration might be a challenge (Figure 7(a)). This complex data 

landscape is then further complicated by a lack of automated connectivity between 

systems (Figure 7(c)). Although many respondents agreed that data was stored in a way 

such that it could be used by several systems more than 50% of respondents agreed that 

there was an absence of clear and coherent policies for data storage to allow multiple 

systems access it (Figure 7(d) and 7(e)). These responses suggest a need for improved data 

governance in water utilities in the context of pipe network asset management (Figure 

7(c) and 7(f)).  

Survey responses related to data exchange routines showed contrasting views. In response 

to the more direct question regarding whether manual routines were used to exchange 

data between systems (figure 7(b)), many respondents tended to agree. However, in 

response to questions about how data is changed and updated between systems (7(f), 7(g)) 

respondents reported predominantly neutral views while responses to 7(h) (Important 

data from one system is manually transferred to others) tended to be similar to the 

responses to 7(b) above. These responses indicate that within certain organisations, 

manual data handling routines are heavily relied upon, whereas in others, the decision to 

use manual routines might vary depending on the nature of the data and the systems 

involved. Additionally, while some organisations might have robust mechanisms to 

manage the impact of data changes across systems, others may still grapple with the 

challenges it presents. This reliance on manual methods for data exchange especially in 

complex asset management scenarios heightens the risk of inaccuracies, errors and delays, 

potentially leading to suboptimal asset management and decision-making.  
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Figure 7. Respondents' perceptions regarding data storage and exchange routines, questionnaire 

survey II. 

4.1.4 Meta-data documentation, structure, and representation in systems for 

managing pipe networks 

The 'data rich and information poor' dilemma in water utility asset management 

highlights a situation where data is abundant but there is a lack of actionable information 

(Jin et al., 2021). This predicament hampers effective decision-making. The role of 

metadata is crucial in this context. It serves to organise, describe, connect, and make data 

easily accessible, thereby transforming the abundant data into meaningful and usable 

information. This emphasises the importance of metadata in bridging the gap between 

having extensive data and deriving valuable insights from it for informed decision-making 

in asset management. In contrast, survey responses suggest that for many respondents, the 

impact of metadata-related issues was either unclear or they were unaware of the 

implication of lack of metadata (Figure 8, “Do not know” responses). For a considerable 

proportion of respondents, despite recognising the impact of metadata issues, they did 

not perceive them as critical to their work or organisation (Figure 8, “Minimal impact” 

and “Minor impact” responses). These results highlight a potential gap in awareness or 

understanding of the profound implications of metadata inconsistencies in real-world 

scenarios.  



 48 

Figure 8. Respondents' perception regarding the lack of meta-data documentation structure and 

representation and its impact on data integration for managing municipal pipe networks 

(Questionnaire Survey II). 

4.1.5 Lack of alignment or mapping between data collection objectives and 

the corresponding data use, storage and exchange routines 

The disparity between the most common objectives for data collection highlighted in the 

survey responses (Figure 9) and the practices concerning data storage, exchange (section 

4.1.3), and metadata documentation (section 4.1.4) points to a misalignment. This 

suggests that the objectives driving data collection are not consistently reflected in the 

methods used for storing, exchanging, and documenting data and its metadata. The 

survey responses depicted in Figure 9 showed that a significant majority of respondents 

collected data for three common objectives (over 70%). This included analysis of 

operational issues such as leakages and blockages (identified as A1), renewal planning (A2) 

and maintenance planning (A3). Such objectives typically necessitate integrating data 

from multiple sources or achieving a higher degree of data integration (Grigg, 2003). If 

these objectives are considered in conjunction, with responses regarding existing data 

storage and exchange routines, then these routines might not be sufficient or consistent 

enough to effectively support the common objectives of data collection. 
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Figure 9. Respondents' perceptions regarding the most common objectives of data collection and their 

intended use (Questionnaire Survey II). 

4.1.6 Lack of coherence between AM objectives and data management 

strategies and needs 

Differences in the perception of data relevance between asset management planning levels 

may indicate the existence of data silos. The consensus concerning information types 

considered important between asset management planning levels across various networks 

for the asset management of pipe networks based on responses from focus group 

workshops is presented in Figure 10. The mean and the standard deviation (in parenthesis) 

of their responses are shown. A lack of consensus in the responses is apparent both 

between the planning level and across networks, possibly reflecting the different decision 

support requirements for sewer networks. Different types of data are prioritized at various 

levels: at the strategic level, hydraulic capacity and the consequences of operational 

failures are most relevant. While at the tactical level, the focus shifts to data about the 

physical condition of the pipes. Finally, at the operational level, data concerning 

construction and renewal projects, as well as operational failures such as blockages, were 

the most important. The differences between networks may also suggest that some 

network managers operate in isolation, without a shared understanding or standardised 

approach to specific information types which might lead to inconsistencies or disparities. 
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Figure 10. Mean and standard deviation of responses regarding the importance of information type 

in decision-making considered across asset management planning levels and across network types 

(Questionnaire Survey I). Darker shades mean stronger agreement among respondents.  
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4.1.7 Organisational challenges  

The survey findings suggested that non-technical factors may play a role in influencing 

data integration processes within organisations. Specifically, as detailed in paper II, Figure 

3, approximately 80% of the respondents acknowledged the limited availability of human 

resources as a considerable challenge, while around 50% viewed the costs associated with 

implementing data integration solutions as having a significant impact. These results 

underscore the importance of addressing resource-related constraints to enhance the 

effectiveness of data integration strategies. 

4.2 Proposed conceptual framework for objective-driven asset 
management 

Broadly, the challenges identified and presented (4.1.1 - 4.1.7) above could be related to 

data quality, accessibility, security and interoperability. These challenges provide 

empirical evidence to support the hypothesis that increased data quality and 

interoperability between systems may lead to decreased data silos for a given set of asset 

management objectives. This assertion formed the basis for the conceptual framework for 

objective-driven asset management proposed and schematically described in Figure 11. 

The framework is aimed at mitigating the effects of data silos, ultimately leading to more 

informed decision-making. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure11. Conceptual relationship between data quality, data integration and systems 

interoperability (paper I). 
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The origin in Figure 11 represents the initial stage, where decisions are predominately 

based on tacit knowledge and intuition. 

Three plausible pathways, A, B, and C are depicted in Figure 11, each corresponding to 

different data management strategies that water utilities could employ to identify and 

mitigate the effects of data silos. Pathway A describes a path where interoperability 

between existing AM tools is prioritised over data quality. It enables the growth of 

digitalisation and the utilization of sensor data, leading to increased data availability. In 

pathway B in contrast to pathway A, data quality is prioritised. The focus is on 

maintaining medium to high-quality structured, relatively complete, accurate, and up-

to-date datasets. The challenge associated with this path is the lack of interoperability 

between tools, i.e., data integration. For example, inconsistencies may exist, when pipes 

in the hydraulic model do not have the same ID as in the Geographic Information System 

(GIS) inventory and data formats between both systems are inconsistent. Pathway C 

describes a more linear pathway towards data-driven asset management, driven by data 

quality and parallel interoperability. For example, such a pathway may consist of real-

time identification of hydraulic anomalies via enhanced interoperability between 

hydraulic models and SCADA systems (control of processes by data acquisition from 

several sensors, such as flow and pressure, in a structured and consistent way). From a 

practical standpoint, there is also a pathway D-E, which entails considering intangibles 

such as the complex interplay between alternative solutions, negotiations, and political 

priorities. This pathway ensures that the move towards objective-driven data IAM is 

aligned with the broader decision-making context, making it a comprehensive and 

adaptable approach. Each of these pathways represents a strategic approach water utilities 

can adopt to address the challenges resulting from data silos, with the objective of 

improving decision-making processes and outcomes in asset management. The most 

suitable pathway will depend on the water utility's specific needs, circumstances, and 

objectives. 

Based on this conceptualisation, a framework for objective-driven asset management was 

proposed (Figure 12). This framework encompassed: 

i. Data quality assessment: This evaluates the characteristics of datasets, e.g. 

availability, integrity and consistency, to ensure suitability for specific AM 

analytics. 

ii. Interoperability evaluation: This gauges the current state of data exchange, 

accounting for schematic, semantic, and syntactic differences among available AM 

tools. 

iii. Data collection and informational benefit analysis: This weighs the cost of data 

collection against the informational benefits it offers when used with current AM 

tools. Moreover, it simulates the potential benefits of integrating additional IAM 

tools with the existing datasets. 
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The detailed actions required to perform steps I, II and III (Figure 12), along with 

assessment criteria and guidelines, are described in Paper III, Supplementary Data 2. 

These components provide an approach for municipalities or water utilities to assess and 

refine their data management strategies, pinpointing areas where they can methodically 

transition to a more linear, objective-driven AM approach. 

Figure 12. Schematic of the conceptual framework for objective-driven asset management of 

municipal pipe networks (Paper I). 

4.3 Preliminary applications of the framework - sewer blockage 

management 

The framework was applied to datasets and tools for blockage management in the three 

sanitary sewer networks investigated. Details of the data availability are provided in Table 

11. Four AM tools were considered for blockage management: the GIS database, 

hydraulic model, failure records and customer complaints database. 

The assessment showed that while the data quality in sewer networks A and B was 

considered to be of medium level, there was limited interoperability between the 

available tools. This indicates that a data management strategy is more prone to data silos 

or fragmented data structures. In contrast, network C appeared to be in the initial stages 

of adopting a more streamlined approach to enhance data quality and tool 

interoperability, though less prone to the consequences of fragmented data structure, as 

depicted in Figure 13. 
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Table 11. Data availability status for blockage analysis in sewer networks A, B, and C.(x) 
indicates availability. 

 

 

Figure 13. Alignment between dataset quality and interoperability of tools for blockage 
management in sewer network A, Band C. For detailed data quality assessment and 

interoperability evaluations, see Appendix I. 

Class  Data Availability Status 

Network - A Network - B Network - C 

Static pipe 
data  

Age (date of installation) x x x 

Nominal diameter  x x x 

Material type  x x x 

Length  x x x 

Depth  x x x 

Number of service 
connections 

x x/unlinked  x/unlinked 

Soil type Unstructured/Unlinked   Unstructured/Unlinked Unstructured/Unlinked 

Inspection 
data 

Locations (Pipe ID) x x  

Date of inspection x x  

CCTV inspection rating  x x  

Condition class x x  

Documentation of defects   x x  

Failure data  Failure date x x x 

Location: 
Address/coordinates  

x x x 

Nature of failure x x x 

Asset ID x x x 
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Data quality assessment in the investigated networks showed limitations specifically for 

static data such as physical pipe characteristics. The most prominent issues included the 

absence of proper documentation, metadata, and clearly defined objectives for data use. 

Availability, completeness, and lack of intent for data use, were observed in relation to 

inspection data, including insufficient detail in failure descriptions within the failure data 

(Appendix I, Figure 1-3). 

Regarding interoperability among different tools, the evaluation suggests adopting a 

many-to-one data exchange approach in the investigated networks (Appendix I, Figure 

4). This was evident in sewer network B, where crucial data such as failure and inspection 

records, flow rates, and pipe capacities derived from hydraulic assessments were accessible 

through GIS databases. However, the complaints database was not directly linked to the 

failure database, leading to manual data exchange between the GIS database and the 

failure records. Similarly, in sewer network A, the data exchange routines between the 

GIS database, failure records, hydraulic model, SCADA system and the complaints 

database appeared to be carried out manually. 

The informational benefit analysis further emphasised the need for increased system 

interoperability between tools for blockage management in sewer networks A, B, and C. 

It suggested that combining more tools would increase planning-level informational 

benefits across all levels of asset management (Table 4, Paper III). 

The preliminary application was conducted with a limited understanding of the sewer 

networks investigated and their associated data, and the application served as a snapshot 

of the framework's potential. In order to fully understand the nuances, sensitivities, and 

biases inherent in practical usage, a more comprehensive application of the framework is 

necessary. For example, subjectivity biases could have influenced the current application. 

Consequently, future implementations would greatly benefit from incorporating machine 

learning algorithms to automate assessment steps, ensuring a more objective and accurate 

analysis. 

4.4 Susceptibility of sewer networks to blockages and the influence of 
maintenance deficit 

The PLS regression analysis between performance indicators (maintenance cost, 

percentage of the network flushed, and blockage rates) showed distinct relationships 

across each network size group. These differences were identified based on contour line 

patterns of the PLS regression surface. These patterns were then used to draw inferences 

about the impact of maintenance practices on the susceptibility of sewer networks to 

blockages. For example, for the municipal size group,” less than a small” the PLS 

regression surface showed that the contour lines were constant and closely spaced (Paper 

I, Figure 6d). Additionally, higher blockage rates were observed in the regions of higher 

operation and maintenance costs, irrespective of the percentage of network flushed. The 

constant and closely spaced contour line patterns indicate a strong and consistent 
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relationship between the variables studied. The relationship between the performance 

indicators suggests that less than small-sized sewer networks may face more blockages 

independently of the high operation and maintenance costs, and simply increasing 

network flushing may not be an effective solution. In the medium-sized group, the 

contour lines were widely spaced and not constant. Higher blockage rates were also 

observed in the region with higher percentages of the network flushed (Darker regions) 

(Paper I, Figure 6b). Widely spaced and not constant contour line patterns suggested a 

more variable relationship between the performance indicators. This pattern may further 

suggest that flushing of blockages in medium-sized sewer networks may be ineffective 

because other factors have a more pronounced effect on the occurrence of blockages. 

The large and small municipal-sized groups (Paper I, Figure 6a and c) showed similar 

patterns, the contour lines were constant and closely spaced. Higher blockage rates were 

also observed in the region of lower operation and maintenance costs irrespective of the 

percentage of the networks flushed. This suggested an underinvestment in maintenance 

or a lack of more nuanced maintenance planning. 

Even for two or more sewer networks in the same size group, deducing each network's 

susceptibility to blockages based on inferences about maintenance efficiency from the 

PLS regression surface was possible. For example, sewer networks A and B may both be 

classified as medium-sized but had different blockage rates of 0.19 and 0.39 

number/km/year respectively. Considering sewer network A's position on the response 

surface (Paper I, Figure 6b) and relatively low blockage rate compared to the national 

average of 0.25, number/km/year, maintenance practices may be considered adequate. 

However, enhancing maintenance coverage by increased flushing could be more 

beneficial in further decreasing the susceptibility to increased blockages. However, in the 

case of sewer network B, the blockage rate was higher than the national average of 0.25, 

number/km/year. The position of sewer network B suggested that the existing 

maintenance approaches may not be cost-effective. The elevated blockage rate could also 

serve as a pointer to specific areas within network B that may be more susceptible to 

blockages. A more targeted and preventive maintenance strategy may be necessary to 

address this.  

These observations provide support for using such performance indicators in combination 

with statistical analysis to optimise operation and maintenance strategies for strategic-level 

municipal decision-makers, especially in shrinking municipalities or water utilities.   
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4.5 Spatial heterogeneity 

4.5.1 Spatial variability of blockages within sewer networks  

Blockages demonstrated a non-stationarity spatial pattern, i.e. the spatial distribution of 

blockages showed distinct variability between the investigated networks. In terms of 

localised variability of blockages, repeat blockages and single-occurring blockages differed 

markedly across the investigated networks, suggesting varied underlying mechanisms. 

The observed spatial variability may also reflect the efficiency of maintenance practices. 

Furthermore, while the spatial variability of repeat blockages in a network or between 

different networks might be due to consistent network vulnerabilities or design flaws, 

single-occurring blockages could result from more unpredictable factors. To illustrate the 

above further Table 12 presents a comparison between three spatial methods, NKDE, 

network k-function and network cross k-function for assessing the spatial variability of 

blockages (random and repeat) in the three investigated networks as well as the RF mean 

prediction accuracies of blockage. 

The results from applying the three spatial methods (Table 12), while diverse in their 

approach, are more complementary than contradictory. Their combined application may 

provide a framework for analysing blockage patterns, thereby facilitating more informed 

and proactive maintenance planning. Examples of inferences from such combinations are 

described in the following paragraphs.  

The spatial variability of blockages in sewer network A showed that repeat blockages 

were primarily clustered in the central regions and around high-centrality pipes. This 

pattern suggested a need for targeted maintenance and potential infrastructure upgrades 

in these areas. On the other hand, single-occurring blockages appeared to occur more in 

the southern peripheral areas of the network. The prediction accuracy also suggested that 

the spatial patterns in Network A were strongly defined.  

In sewer network B, repeat blockages were more evident in the peripheral, particularly 

around high-centrality pipes in the north and southwest. This pattern implied that these 

areas could be at the forefront of proactive maintenance planning. Single-occurring 

blockages seemed more evident in the northern parts of the network, suggesting the 

maintenance strategy should be a mix of reactive approaches and monitoring. The 

prediction accuracy suggested that less distinct spatial patterns may affect the predictability 

of blockages.  

For sewer network C, repeat blockages had a dispersed pattern. Single-occurring 

blockages tended to be dispersed in the centre and clustered towards the northern 

peripheral areas around pipes with higher centrality values. Network C had the lowest 

prediction accuracy, further supporting the previous suggestion that less distinct spatial 

patterns may affect the predictability of blockage occurrence in sewer networks. The RF 

mean prediction accuracy might also play a role in maintenance planning. Higher 
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accuracy (as in Network A) could mean more reliable identification of problem areas, 

while lower accuracy (as in Network C) might necessitate a more generalised 

maintenance approach. 

The non-stationarity of blockages across the networks assessed also supports the holistic-

level insights from the performance indicators highlighted in the preceding section. This 

non-stationary nature of blockage illustrates the likelihood of blockage patterns evolving 

over time. Also, there is a need to identify the potential underlying causes, i.e. factors 

that drive this observed non-stationarity. A deeper understanding of these factors can 

inform more effective preventive maintenance planning. The proceeding section looks 

at this using spatial heterogeneity assessment to identify potential underlying factors that 

influence such non-stationarity in blockage occurrence in these networks. 
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4.5.2 Spatial heterogeneity of factors influencing the propensity of blockages  

Geographically weighted Poisson regression (GWPR) analysis provided an understanding 

of the spatial variability in the factors contributing to sewer blockages and was able to 

dissect the intricate interplay between various factors and how they differentially 

influenced blockage propensity in the investigated networks. Factors that had an 

influence on blockage propensity showed significant spatial heterogeneity i.e. their 

influence was not geographically constant across different parts of each sewer network 

(Paper IV figures 2, 3 and 4). Overall, pipe material, pipes with self-cleaning problems, 

and the proximity of pipes to restaurants were factors with the greatest influence on 

increased blockage propensity in the investigated sewer networks. Detailed plots for all 

the investigated factors are presented in paper IV. The following distinctive examples 

from the investigated sewer networks further illustrate the delineation of factors based on 

the heterogeneity of the relationships between factors and blockage propensity. 

In some cases, multiple factors influenced blockage propensity in the same location, but 

their influence differed in magnitude. In the northern peripheral areas of sewer network 

A, structural deterioration or structural problems were suspected to cause the increased 

likelihood of blockages. Specifically increased root intrusion showed an 11-17% influence 

on blockage propensity, with a gradient effect from the centre to the northern peripheral 

areas. CCTV grades and sagging potential also showed a similar relationship but with 

varying degrees of influence, 11-28% and 10-12%, respectively (Figure 14). In areas 

where the parameter estimates were near zero, these factors had a minimal impact on 

blockage propensity. 

 
Figure 14. Colour-coded GWPR parameter estimates indicating the positive magnitude of the 

spatial correlation between blockages and three factors in sewer network A. (I) CCTV grade, (II) 

sagging potential, and (III) tree root intrusion, with shades from light grey to red indicating increasing 

influence. The network's centre is marked with a black square dot. 
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By contrast, in other situations, it was observed that a single factor could exhibit a 

complex dual influence on blockage propensity, depending on the location within a 

network. For example, in the northeast of sewer network A, pipes with adequate self-

cleaning (pipes with steeper inclination) showed a significant degree of influence, 65%- 

80%, on blockage propensity (red, in Figure 15). Conversely, pipes with less than 

adequate self-cleaning (pipes with flatter inclination) in the southern part showed a 10% 

degree of influence on increased blockage propensity (black in Figure 15). Although the 

observed influence in the northeastern part may appear counterintuitive, it suggests the 

need for increased monitoring of the mechanisms that affect sediment deposition such as 

erosion, and entrainment forces as well as design appurtenances such as junctions and 

bends because these factors may cause sediment deposition even in steeper pipes 

(Banasiak, 2008; McDermott et al., 2019). 

 
Figure 15. Colour-coded GWPR parameter estimates indicating the positive/negative magnitude 
of the spatial correlation between blockages and self-cleaning in pipes. Blockage propensity was higher 

in pipes with steeper slopes (red) as well as in certain pipes with flatter slopes (black). GWPR 

parameter estimates range from light grey to red, indicating the magnitude of influence.  

Furthermore, the analysis of GWPR (Paper IV) revealed a consistent influence and 

magnitude of a specific factor across diverse sections of various networks. Across the sewer 

networks A, B and C, the factor “number of service connections” showed a 10-15% 

degree of influence on increased blockage propensity in the south/southwest, centre/east 

and northern peripheral areas, respectively (Paper IV, figure 2g, 3b and 4c). The influence 

of the increased number of service connections on increased blockage propensity 

suggested that blockages occur due to flow-related problems, the effect of pipe 

appurtenances or increased use of non-flushables. Similarly, a specific factor may also have 

a varying level of influence in the same section of various networks. For example, in the 
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central parts of sewer networks, A and C blockages were observed to be more likely in 

concrete pipes with 30-35% influence and 60-80% influence, respectively (Paper IV, 

figure 2(i1) and 4(b)). This suggests that certain factors affecting blockage propensity may 

be generalised across different sewer networks, but their impact may vary significantly.  

Previous studies such as those by Savic et al. (2006), Arthur et al. (2008), Ugarelli et al. 

(2009), Jin and Mukherjee (2010), Santos et al. (2017), Xie et al ( 2017), Pulido et al. 

(2019) have all identified factors such as pipe age, diameter, and length as factors the affect 

the propensity of blockage. However, in the investigated networks A, B, and C, these 

factors showed minor influence on increased blockage propensity.  

Environmental factors such as the proximity to restaurants, had a significant influence on 

blockage propensity. In sewer network B, a 45-55% influence on blockage propensity 

was observed in both central and southern locations with pipes closer to restaurants (Paper 

IV, figure 3c), while a 25-30% influence was noted in the central parts of network C 

(Paper IV, figure 4d). Proximity to restaurants suggests blockages related to fats, grease 

and oils accumulating in nearby pipes. Consequently, maintenance efforts in these areas 

should also prioritise the inspection and cleaning frequency for FOG traps. Proximity to 

restaurants was considered simplistically in terms of linear Euclidian distance without 

considering the flow direction of pipes. 

The results showed that GWPR could be used in maintenance planning and resource 

allocation in sewer networks, especially for targeted maintenance planning. The spatial 

heterogeneity of these factors can be used to support sewer maintenance planning in 

moving beyond one-dimensional, generalised strategies to more tailored, effective 

solutions for managing sewer networks. As well as provide a basis for evaluating the 

effectiveness of different blockage prevention strategies across varying geographic and 

socio-economic contexts. 

4.6 Topological analysis of sewer networks 

The GWPR analysis identified prevalent factors influencing blockage propensity in 

various parts of the investigated sewer networks. To enhance this, graph-based centrality 

measures might aid in the identification of the most critical pipes where disruptions may 

affect the entire sewer network thus providing a vulnerability assessment. However, 

various centrality measures exist. Therefore, in an analysis, precursory to the vulnerability 

assessment of investigated networks, a topological analysis was performed on two sub-

networks (residential and central) of sewer network B. The topological assessment 

evaluated the relevance of four edge-based centrality measures (Figure 16). The 

topological analysis assessed the relevance of the four edge-based centrality measures in 

determining how well they can identify critical pipes in the residential and central sub-

networks of Sewer Network B. This relevance is necessary for understanding which these 

centrality measures are more effective in identifying potential failure points and system 

stress in these specific parts of the sewer network. 
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Figure 16. Distribution of centrality values for pipes in residential and central networks for the four 

evaluated centrality measures (a-betweenness, b-Kpath, c-Nearest-neighbour and d-Shannon 

Entropy) and three investigated weight types (Location, Diameter and Age). Adapted from paper 

V. 

For two measures edge betweenness centrality (EBC) and k-path centrality measures 

(Figure 16 a and b), the median centrality values for pipes in both sub-networks were 

close to zero, and the interquartile range (IQR) were also narrow and near zero, with 

outliers at the higher end.  

 

This implied that these measures identified a few specific critical pipes within the sub-

networks that are essential for maintaining connectivity and flow. EBC and K-path 

centrality measures provided a global perspective of the most frequented pipe paths by 

sewage flow within the sub-networks and their importance. The identification of these 

pipes was not influenced by the type of weight used (location, diameter, age). A blockage 

in these pipes may have a significant impact, potentially disrupting the entire network. 
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The non-influence by weights was corroborated by findings from other studies, such as 

Reyes-Silva et al. (2020) in urban drainage networks, which reported that edge weights 

did not significantly influence edge betweenness centrality in an assessment of the 

transport and collection function of eight subnetworks. 

Nearest Neighbour Edge Centrality (Figure 16c) had a median centrality value slightly 

below 0.25, with a narrow IQR and outliers at the higher end, indicating that most pipes 

have similar significance although some play a dominant local role. The measure was 

sensitive to different weighting factors such as location, diameter, and age. This indicated 

that this measure may be more suitable for localised analysis and understanding of the 

significance of individual pipes in relation to their immediate surroundings. According to 

this measure pipes with high centrality values are significant within their local context. A 

blockage in these pipes may not disrupt the entire network but may severely impact local 

areas. 

Shannon Entropy Centrality (Figure 16d) showed a moderate level of unpredictability in 

pipe involvement in both sub-networks, with a median value of around 0.25. The 

distribution was wide with no outliers, suggesting no extreme hubs or bottlenecks. This 

suggested a balanced network with no specific pipes dominating the flow or connectivity. 

It shows the network's ability to handle a variety of flows. This further indicates that this 

measure may not pinpoint specific critical pipes but rather provides a general view of the 

network's ability to handle diverse conditions. High centrality values in this measure 

suggest pipes that contribute to the network's resilience by handling diverse flow 

conditions. Blockages in these pipes might not cause immediate or widespread disruptions 

but could reduce the network's overall capacity to handle varying flow. 

In summary, the centrality measures provide a framework for understanding which pipes 

are crucial in different contexts. Pipes with higher centrality values are more critical and 

their blockage can have varying levels of impact – from localised issues to widespread 

network disruption. This understanding can be important for prioritizing maintenance, 

preparing for emergencies, and implementing strategies to mitigate the risks of blockages 

in sewer networks. 

4.7 Vulnerability assessment of sewers based on edge centrality 
measures and historical blockage incidents 

A graph analysis using edge betweenness centrality (EBC) was performed to identify 

critical pipes investigated sewer networks A, B and C. Subsequently, the network cross 

K-function was applied to examine the spatial relationship between pipes with high edge 

betweenness centrality and those with recorded incidents of blockages in the past. The 

findings of both analyses are presented in Figures 17, 18, and 19. These figures show the 

intersection points between strategically important pipes (as indicated by high EBC) and 

locations with historical blockage events of both repeat and single-occurring types. A 

common trend across all investigated sewer networks was that there were instances where 



 65 

previous incidents of blockages tended to cluster around pipes with high EBC. However, 

the specific locations of these clusters varied among the networks. Inferences from Figures 

17, 18, and 19 and documented in Table 12 suggest a connection between increased 

clustering of blockages and increased maintenance needs. For example, the clustering of 

pipes with blockages around pipes with high centrality suggests these areas could be 

critical points in the sewer network that might require more frequent maintenance or 

monitoring. The insights derived from these analyses could be valuable in enhancing the 

comprehension of the potential vulnerabilities within the sewer networks.  

In certain parts of the investigated networks, recurring blockages (repeat) tended to 

cluster around high EBC pipes. This included the northeast and northwest of sewer 

network A, the northern, southwestern, and central areas of sewer network B, and the 

northern and northwest parts of sewer network C, as shown in Figures 17, 18, and 19 

respectively as well as appendix IV, network cross k-function plots. This suggests a 

consistent vulnerability in these regions. The clustering of repeated blockages, in 

particular, implied that certain factors may consistently contribute to blockages because 

of their prevalence in historical data, potentially as a result of intensified flushing or 

remedial activities. These results may aid in targeted interventions which could include 

for example regular maintenance and monitoring. 

Similarly, single-occurring blockages also tended to cluster around pipes with high EBC 

values in certain areas. This included the southern region of sewer network A, the 

northern, southwestern, and central areas of sewer network B and both the northern and 

northwest regions of network C (Figures 17, 18 and 19 as well as Appendix IV for 

network cross k-function plots). This indicates that while initially perceived as random, 

the spatial distribution of single-occurrence blockages suggests a pattern. This pattern 

might point to intermittent issues potentially causing unexpected disruptions in these 

parts of the investigated networks. 

In other parts of the investigated networks, pipes exhibiting higher EBC values 

demonstrated either a dispersed spatial pattern or no specific spatial correlation with pipes 

that had previously experienced incidents of blockage. Specifically, this included the 

central region of sewer network A, the southeast regions of sewer network B, and again, 

the central region of sewer network C (Figures 17, 18 and 19, as well as Appendix IV, 

for network cross k-function plots). These areas exhibited a lesser or no tendency of 

blockages, clustering around high EBC pipes, suggesting a lower overall risk of network 

disruptions from these locations. 

Overall, these results showed a spatial association between pipes with previous incidents 

of blockages and pipes with higher centrality values (EBC). The comparison across the 

three sewer networks highlights regions with shared characteristics in terms of blockage 

patterns and vulnerabilities. These spatial associations may aid in providing an 

understanding of how sewer network vulnerability due to blockages is spatially 

distributed. These results could also enhance the understanding of how different areas 
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might be differentially impacted by blockages and aid in identifying potential points for 

cascading failures within the sewer networks. 
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Figure 17. Heatmaps showing critical pipes, based on betweenness edge centrality(blue), red and 

black crosses indicating locations of repeat and single occurring blockages, respectively. Red and 

black ovals indicate single occurring and repeat blockage clustered around pipes with high centrality, 

with the increasing thickness of circles and ovals indicating an increasing level of clustering. 

Appendix IV, Figures 1 and 2 for network cross k-function plots. 
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Figure 18. Heatmaps showing critical pipes, based on betweenness edge centrality in blue with red 

and black crosses indicating locations of repeat and single occurring blockages, respectively. Red and 

black ovals indicate single occurring and repeat blockages clustered around pipes with high 

centrality. Also, the increasing thickness of circles and ovals indicates an increasing level of 

clustering. The dashed line indicates a dispersed pattern between pipes with high centrality and 

previous incidents of blockages. Appendix IV, Figure 3 for network cross k-function plots. 
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Figure 19. Heatmaps showing critical pipes, based on betweenness edge centrality in blue with red 

and black crosses indicating locations of repeat and single occurring blockages, respectively. Red and 

black ovals indicate single occurring and repeat blockages clustered around pipes with high 

centrality. The increasing thickness of the circles and oval indicates an increasing level of clustering 

between pipes with high centrality and previous incidents of blockages. The dashed line indicates a 

dispersed pattern between pipes with high centrality and the previous incidents of blockages. 

Appendix IV, Figures 4 and 5 for network cross k-function plots. 
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4.8 Cascade approach to support sewer maintenance planning and 

asset management 

Insights and results from the objective-driven asset management framework, network-

level inferences drawn from performance assessment and pipe-level deductions from 

spatial heterogeneity assessment, and vulnerability assessment may be of use in supporting 

sewer asset management at the strategic, tactical, and operational levels. An overview of 

the combined insights from the various approaches and their application investigated 

sewer networks is presented in Table 13.  
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5. Discussion 

5.1 Challenges with identifying and reducing data silos in sewer asset 
management 

5.1.1 Why should water utilities be concerned about data silos? 

Various challenges were identified related to data management that may have adverse 

implications for maintenance planning and asset management of sewers (Papers I and II). 

Asset management of pipe networks, especially sewer networks, is reliant on data (Riel 

et al., 2017). Some of the important challenges identified were related to two issues: first, 

the data storage and exchange routine were inadequate to support the common objectives 

for collecting data; Second, the questionnaire surveys did not identify any agreement on 

what type of information is most important for decision-making across the different levels 

of asset management. These results suggest that data silos may be present in many water 

utilities but that they are disguised as data management challenges because of the 

traditional way that data is collected and stored (Riel et al., 2014; Ugarelli and Sægrov, 

2022). 

The presence of data silos in water utilities can lead to inadequate information sharing 

and operational inefficiencies (Halfaway et al., 2006). This can hinder achieving set 

objectives, optimal utilisation of resources, and the ability to respond effectively to 

challenges (Carriço and Ferreira, 2021). Studies such as that of Arnell et al. (2023) 

highlight that reducing data silos was a critical step towards digitalization in water utilities. 

Daulat et al. (2022) emphasised that data quality, interoperability and the presence of data 

silos were often considered challenges to integrated multi-infrastructure asset 

management (IMAM) practices.  

The amount of data relevant for asset management is expected to increase because of the 

increasing diversity of sources, and water utilities need to change their data management 

platforms to adapt (Tscheikner-Gratl et al. 2020). For example, as water utilities continue 

to adopt new technologies such as Internet of Things (IoT- enabled) devices, sensors, 

and big data collection and analysis, the amount of data generated is expected to increase 

exponentially (Carriço and Ferreira, 2023). This presents both an opportunity and a 

challenge. On one hand, these technologies could provide valuable insights for 

maintenance planning and sewer asset management. On the other hand, the same 

technologies could also intensify the problem of data silos (Edmondson et al., 2018b).  

Overall, the presence of data silos in water utilities affects the operational efficiency of 

the utilities, the quality of decision-making, and future readiness. Overcoming data silos 

is important if utilities are to operate with optimum efficiency, make informed decisions, 

and remain adaptable in a data-driven future. 
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5.1.2 When should water utilities address the issue of data silos? 

A lack of consensus among different asset management levels regarding the types of 

information considered important for managing pipe network assets was observed (Paper 

I). This lack of consensus about what constitutes important information can have notable 

implications. Specifically, individuals in different positions within water utilities across 

various levels of asset management might not have access to the data they consider 

essential. Such a scenario creates an information gap where, in the absence of relevant 

data, these individuals may be inclined to depend more on their intuition or previous 

experience rather than making decisions based on a data-driven approach (Riel et al., 

2014; Riel et al., 2017). Tscheikner-Gratl et al. (2020) stated that in many utilities or 

municipalities, proactive management strategies may be based on employees’ intuition 

and tacit knowledge of the data and systems. Different experts may prioritise different 

data types, leading to inconsistent decisions (Thorne 2016). For instance, when planning 

maintenance and prioritising efforts, widely acknowledged factors such as pipe age and 

CCTV data are commonly considered, while other potentially important factors may 

well be overlooked (Thorne, 2016). Sewer inspection plans are also frequently drawn up 

based on operator experience and intuition (Roghani et al., 2019). Such inspection plans 

can lead to biased and inefficient inspection programs (Roghani et al., 2019). Although 

intuitive decision-making is not inherently negative, biases such as representativeness, 

availability, and anchoring heuristics are common pitfalls (Thorne 2016). Considering 

these examples, it becomes clear that addressing data silos is a complex but necessary task. 

However, it may not always be clear when the issue of data silos should be addressed. 

Depending on the type of objectives a water utility may have, data silos may not need to 

be discussed, for instance, in small water utilities with limited resources. Thus a systematic 

approach such as the objective-driven asset management framework proposed in this 

thesis could be useful for assessing whether data silos are present, and, if they are, for 

assessing the potential pathways for dealing with these silos relative to the set objectives 

of the water utilities concerned. 

5.1.3 Considerations in addressing data silo for water utilities 

To address data silos, strategies could include investing in integrated data management 

systems, adopting solutions for data integration, and implementing interoperability 

frameworks. Additionally, establishing guidelines or standards for open data sharing and 

policies that promote cross-collaboration are important. Considering the diversity and 

use of legacy systems, findings suggest that numerous commercially available information 

systems in use lack features for interoperability or data integration (Paper II). This 

observation has been corroborated by Bettin, (2023), who also emphasized the lack of 

such functionalities in current information systems. 

While there are tools such as middlewares, APIs, frameworks, and open data standards 

(Halfaway et al., 2006; Beck et al., 2007; Carriço and Ferreira, 2021) that aim to address 
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interoperability problems, data management challenges such as those identified from 

focus group workshops and questionnaire surveys II (Paper I and II) persist leading to the 

formation of data silos. Water utilities and municipalities may not have fully grasped the 

advantages of integrating available data to break down silos, as evidenced by the varied 

answers to questions about data storage and exchange routines in Questionnaire Survey 

II, (Paper II). This perspective is encapsulated in a statement by one of the survey 

respondents: 

"The benefits and costs of integrating different IT systems (and maintaining this integration) have 

not been adequately identified." 

Another potential reason for the persistence of data silos may be that current solutions are 

not feasible or practical. Many existing solutions attempt to resolve interoperability 

between systems using a many-to-one approach (Halfawy, 2008; Carriço and Ferreira, 

2021; Bettin, 2023). However, this is hindered by challenges related to inconsistency in 

data across the various systems, such as lack of metadata documentation, its structure, its 

representation and data quality (Paper II). Studies such as Arnell et al. (2021) also highlight 

the need for modular solutions tailored to specific objectives. Furthermore, there are 

non-technical barriers to adopting data integration solutions, including concerns about 

data privacy and cybersecurity, limited resources and expertise, and economic challenges 

Questionnaire Survey II (Paper II) as corroborated by Carriço and Ferreira, (2023). These 

barriers further compound the difficulty of breaking down data silos. 

While there are numerous solutions available for addressing data silos, a tailored approach 

that considers the specific needs and objectives of water utilities and municipalities, as 

well as the practical challenges associated with data integration, may be useful in 

effectively mitigating the effects of data silos.  

5.1.4 Diagnosing data silos - implications from applying the proposed 

framework for blockage management  

The proposed conceptual objective-driven asset management framework in this thesis 

provides a potential approach for water utilities to be able to identify the data silos and 

possible pathways forwards (Paper I). However, the framework has only been applied 

within a limited context in the investigated sewer networks A, B and C. Therefore, the 

findings from the framework still need to be validated. In the following paragraph, the 

implications of the framework application in sewer networks A, B, and C are 

contemplated, along with some potential limitations of the framework. 

The data management strategy of all three sewer networks, A, B and C, was assessed in 

relation to the management of blockages resulting in a general indication of the presence 

of data silos and fragmented data structures. This inferred the use of intuition-based 

decision-making. While intuition-based decision-making can be considered efficient in 

some scenarios, it may also lead to inconsistencies and biases that may have adverse 
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implications for pipe network maintenance planning and asset management (Riel et al., 

2014b). These inconsistencies and biases are considered through the lens of heuristics. 

Heuristics refer to cognitive shortcuts that bypass some information for decision-making 

when necessary data is unavailable, or there is either uncertainty or no link between the 

current decision and past experience (Gigerenzer and Gaissmaier, 2011). Traditionally, it 

is assumed that decisions made through heuristics are more error-prone compared to 

rational decisions, or those based on logic or statistical models (Gigerenzer and 

Gaissmaier, 2011). Three types of heuristics are considered typical to intuitive decision-

making in the context of sewer networks and water utilities: representativeness heuristics, 

availability heuristics and adjustment or anchoring heuristics (Thorne, 2016). Some 

plausible insights into understanding some of the limitations of data management 

strategies can be gained when the framework output implications for the investigated 

three-sewer networks are contextualised using these heuristics. 

Specifically, when the interaction between heuristics and the various pathways in the 

conceptual framework is considered, it may be expected that pathway A, (Figure 11) may 

be influenced by the availability of heuristics. While the data quality in Network A is 

evaluated as medium level, the limitations in the interoperability of data could introduce 

errors, impacting both analyses and subsequent decision-making (Halfawy, 2008). Since 

static pipe data had the best quality, such data may disproportionately influence decision-

making, indicating the possibility of availability heuristic bias (Thorne, 2016). Static pipe 

data may inadvertently be prioritised even if other, less immediately accessible data might 

be more relevant or crucial, such as environmental data like proximity of pipes to 

restaurants that can affect blockages. This may potentially lead to misguided strategies. In 

pathway B, (Figure 11) by focusing on maintaining the quality of datasets that fit a certain 

profile (structured, accurate, up-to-date), there's a risk of overlooking the importance of 

integration, thus reflecting the representativeness heuristic (Thorne, 2016). Pathway C, 

(Figure 11) aims for a linear approach, but the challenge is ensuring that the data is 

representative and available in an integrated format. In the broader context, pathway D-

E, (Figure 11) recognizes the importance of considering intangibles beyond just data. 

This includes political priorities and negotiations. This is a reminder that while data is 

crucial, asset management decisions are made in a complex environment with multiple 

stakeholders and considerations (Riel et al., 2016). Based on the preliminary application 

of the framework, some areas of improvement identified included:  

1. Subjectivity in assessment: There is still some level of subjectivity in the assessment 

of the quality and interoperability of data. Using machine learning algorithms or 

other automation tools for these assessments could eliminate the subjectivity of 

the assessments. 

2. Temporal resolution: Data silos can evolve, and the framework may not capture 

these dynamic changes accurately if only applied once to provide a single snapshot. 
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The framework's recurrent, periodic application may provide a more complete 

picture. 

3. Scalability issues: The framework will need to be applied to a more extensive 

sewer network. The complexity and diversity of data in more extensive networks 

may pose challenges in accurately diagnosing data silos. 

4. Interdisciplinary collaboration: For future applications of the framework, it may 

be beneficial if other stakeholders (such as various departments within water 

utilities, and consultants) collaborate because data silos can be influenced by 

organisational culture, politics, and other non-technical factors that the framework 

may not adequately address. 

5.2 Maintenance planning informed by analytics-driven approaches 

Responsible staff within sewer networks are continually tasked with determining the 

optimal course of action or actions that are cost-effectively good enough to address 

operational disturbances i.e., sewer blockages across geographically dispersed locations. 

Maintenance planning is also considered to be essentially heuristic and subjective in 

nature (Fontecha et al., 2016). Blockages can be more predictable (repeated) or 

unpredictable (random). Consequently, these responsible staff need data-driven 

approaches that can aid in the prioritisation of appropriate actions (what), the specific 

location in need of intervention (where), the optimal timing for intervention (when), 

and the necessary steps to resolve the issue (how) that will ensure the most cost-effective 

solution at acceptable levels of services. The variability and spatial patterns of blockages, 

heterogeneity in influential factors that affect blockage propensity and topological 

properties of networks (Papers IV and V) could support more data-informed planning in 

sewers at the strategic, tactical and operational levels of asset management. 

5.2.1 Maintenance planning supported by performance assessment and 

indicators (how) 

The assessment of blockage rates as a sole metric for evaluating the susceptibility and 

performance of sewer networks may be inadequate due to the complex interplay between 

blockage rates and various location-specific triggering factors (Marlow et al., 2011; 

Rodríguez et al., 2012). The disparities in blockage rates reported across different 

geographical locations further attest to this complexity. For instance, blockage rates of 

0.18/km/year were reported in Oslo (Ugarelli et al., 2010a), 0.096/km/year in 

Trondheim (Hafskjold et al., 2002), 0.002–0.9/km/year in Wales and western England 

(Bailey et al., 2015), 0.1–2.0/km/year in the UK (Arthur et al., 2008), 0.3–1.4/km/year 

in the UK (Hillas, 2014), 1.5/km/year in Bogota, Colombia (Rodríguez et al., 2012b), 

and 0.2–1.2/km/year in Australia (DeSilva et al., 2011). Such variations in blockage rate 

provided the justification for considering the relationship between blockage rate, 
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percentage extent of the network maintained (flushed/cleaned), and operation and 

maintenance costs via PLS to assess sewer network performance and susceptibility to 

blockages (Paper III). The implications derived from these relationships can support 

strategic-level informed decisions and improve maintenance strategies to achieve better 

performance and cost-effectiveness. For example, a positive interaction between the 

percentage extent of network flushed and blockage rate suggests that maintenance 

activities need to be improved to reduce blockages effectively. Similarly, a positive 

interaction between blockage rate and operation and maintenance costs would suggest 

that blockages lead to costly reactive maintenance and that more proactive maintenance 

could be beneficial (Ochieng and Ominde, 2020). 

A potential area for enhancement in the performance assessment approach investigated 

relates to data availability, and consistency, which could present challenges in discerning 

clear trends and patterns (Pinto et al., 2017). Additionally, incorporating location-specific 

indicators may increase the level of inference from performance indicators to reduce 

blockage reoccurrence and maintenance planning (Mattsson et al. 2014). However, 

location-specific indicators may be challenging to document. Examples of location-

specific indicators include repeat blockage locations (number/km/year) and sewer 

blockage locations (number/km/year) proposed via the CARE-S project (Cardoso and 

Matos, 2005b). The spatial variability assessment of blockages (Papers IV and V), suggests 

that clustering may be an effective location-specific indicator. The degree of clustering 

can provide detailed insights, aiding sewer managers in making strategic maintenance 

planning decisions. Additionally, the degree of clustering may offer explanations for 

certain deficiencies in maintenance strategies, as identified from the PLS regression 

surfaces. Studies such as Cherqui et al. (2015) and Post et al. (2017) have demonstrated 

through case studies that assessing the spatial variability of blockages could aid in achieving 

more targeted maintenance interventions for reducing blockages. Hence, adopting 

metrics related to the spatial variability of blockages may also be advantageous. The 

performance assessment carried out relied on a few performance indicators; while the 

performance assessment provides an adequate overview, it might not capture all nuances 

of the network's behaviour; hence, this approach needs to be augmented. 

5.2.2 Using insights from the spatial variability of blockages to support 

tactical and operational maintenance planning (where) 

In two of the three sewer networks investigated (A and C), recurrent blockages showed 

clustered spatial patterns suggesting non-stationarity (spatial variability of blockages) based 

on network k-function analysis (Table 12). The NKDE analysis also showed a higher 

density of blockages in the central parts of these networks (A and C) (Table 12). The 

observed spatial variability of blockages showed that blockages did not exhibit spatial 

randomness (CSR), indicating the presence of an underlying spatial structure. Thus, the 

observed spatial pattern may not merely result from random failures but other factors 
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could influence the underlying spatial structure (Paper IV). These findings are also 

corroborated by findings in Abokifa and Sela, (2019). These observed spatial patterns 

align with findings from other studies such as Rodríguez et al. (2012a), Ngaruiya and 

Ngigi (2014), Cherqui et al. (2015), Agnone et al. (2017), and Post et al. (2017). While 

previous studies have acknowledged and demonstrated the spatial variability of blockages 

in sewer networks, the results (Table 12) of this thesis differ in that they demonstrate that 

the variability in the occurrence of blockages may be more pronounced for blockages of 

a recurrent nature. The observed spatial pattern of recurrent blockages (Paper IV) suggests 

that in networks where such clustering was observable, certain areas of the network are 

more prone to blockages from more predictable causes, for example, design flaws, ageing 

or deterioration. Previous research on repeat blockages such as Hillas, (2014) has 

suggested that a high number of repeat blockage incidents were associated with 

ineffective maintenance practices. Additionally, using the predictability of such areas or 

use of prediction models in such areas may yield more benefits for proactive maintenance 

planning (Pulido et al., 2019a). However, random forest predictions did not show clear 

evidence to support this (Table 12).  

Single-occurring blockages tended to show a more dispersed spatial pattern, suggesting 

that the factors that influenced their occurrence were unpredictable (Table 12). These 

results from papers IV and V also emphasised the need for improved data collection that 

could aid in understanding the occurrence of single-occurring blockages in sewers. For 

example in areas of the network where aggregation of data about single occurring 

blockages shows a clustered or dispersed pattern. Examples of data that could improve 

the understanding of the occurrence pattern of such blockages include data on sources of 

non-flushable such as diapers or nappies, hard paper, a cleaning cloth (Joksimovic et al., 

2020), seasonality, i.e. the effect of dry periods before and after rainy periods on blockage 

occurrence (Draude et al., 2019), and aspects related to tree species, canopy cover, the 

salinity of soil and water (Alessandro et al., 2023). 

The spatial patterns of blockages identified (Papers IV and V) emphasise the importance 

of considering the spatial variability of operational disturbances in maintenance planning. 

Only a few studies, such as Fontecha et al. (2020), have considered the variability of 

blockages in developing combined maintenance and routing (CMR) methodology for 

maintenance planning. The spatial variability of other phenomena, such as rainfall, is 

typically considered for maintaining and functioning urban drainage networks (Cristiano 

et al., 2017; Courty et al., 2018). However, where sewer maintenance planning is 

concerned the spatial variability of operational disturbances, such as blockages, is not 

addressed with the same level of importance. Several factors may contribute to the 

perceived limited consideration of spatial variability in sewer maintenance planning. 

These may include the nature and availability of data, the analysis technique used, 

heuristics and organisational inertia. 
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A combined approach incorporating both global methods like the Network k-function 

and local ones such as NKDE and the network cross k-function was applied to provide 

a more holistic understanding of spatial distributions and the variability of blockages along 

sewer networks (Table 12). This dual perspective supports informed decision-making, 

capturing a more complete spectrum of spatial nuances. For instance, when both global 

and local methods independently highlight the same area as significant, it increases 

confidence in the results and validation. Beyond validation, there is also an inherent value 

in contextual understanding. Recognising local patterns, such as hotspots identified by 

NKDE, becomes more meaningful in the context of a global backdrop. If, for example, 

the Network k-function reveals an overall random distribution, a localised cluster then 

stands out as particularly noteworthy. This dynamic interplay between global and local 

insights allows more flexibility in the analysis. Sole reliance on one method, as in previous 

studies such as Ngaruiya and Ngigi, (2014),  Cherqui et al. (2015), Post et al. (2017), and 

Pulido et al. (2019a) may miss some details. For example, while NKDE (Table 12) might 

effectively spotlight local patterns, it might potentially neglect the overarching spatial 

context. On the other hand, a strictly global approach might miss more intricate local 

details.  

5.2.3 Spatial heterogeneity of factors influencing blockage propensity 

(where and what) 

Blockages in sewer systems can be attributed to a range of factors (Table 1 and Figure 2). 

These include the physical properties of the pipes such as diameter, length, and age, 

structural deterioration and factors such as root intrusion, sagging pipes and joint 

misalignments (Hillas, 2014; Cherqui et al., 2015). Others include design and 

construction flaws, environmental and operational conditions. Additionally, the choice 

and efficiency of maintenance practices can play an important role in preventing 

blockages (Obradović et al., 2023). However, due to the complex interplay of these 

factors, establishing a clear relationship between the causes of blockages and their 

occurrence is challenging. This complexity often leads to generalized maintenance 

practices applied across different areas of a sewer network, without consideration of each 

area's specific conditions and needs. 

Inferences from GWPR analysis showed that the influence investigated factors on 

blockage propensity varied both within each network and between different networks 

(Figure 14, 15 and paper IV). The GWPR analysis identified the more prevalent factors 

that influence blockage propensity in the various parts of the investigated networks. 

Inferences from GWPR analysis could inform the responsible staff in water utilities of 

the spatial extent of the sewer network in which specific actions could produce desirable 

results. Rather than undertaking a global-reactive approach to the maintenance of 

blockages and applying policies or actions across an entire network GWPR models 

highlighted delineated subareas where actions should be targeted to achieve more 
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desirable and efficient outcomes. These Inferences from GWPR analysis could support 

tactical and operational level asset management decision-making and proactive 

maintenance planning for blockage management. More specifically, the implications of 

these results include:  

• Support in identifying and prioritising CCTV inspection activities, specifically for 

extensive networks with limited resources as well as in deciding the optimal 

location for sensor placement and monitoring. For example, in the extreme 

northern peripheries of sewer network A, single-occurring blockages, while 

generally dispersed, tended to cluster significantly around pipes with high 

centrality values. Flow-related factors, such as lack of adequate self-cleaning and 

an increase in the number of service connections, showed an influence on 

increased blockage propensity in the same location. This suggests that sediment 

transport and deposition or the use of non-flushables such as wipes in toilets may 

be responsible for blockages. CCTV inspections may be needed to form a clearer 

maintenance plan. Pipes with self-cleaning problems and pipes with high centrality 

values may be considered as focal pipes for the start of investigations if resources 

are limited or if sensors are to be installed to monitor sediment deposition rate. 

• Used as an input for planning and scheduling sewer maintenance operations, such 

as in the proposed combined maintenance and routing optimisation procedure 

(Fontecha et al., 2020). For example, a clustered blockage pattern was observed 

for repeat blockages in the central regions of investigated networks. Increased 

blockage propensity was also observed with certain pipe materials (concrete, PVC, 

PE and clay) in the central parts of investigated networks. Design flaws and 

configuration problems can generally be attributed to the plastic pipe because they 

are probably newer, i.e., installed more recently (Malm et al., 2013). Clay pipes 

can be considered to be among one of the oldest pipes and most susceptible to 

collapse. Thus the influence of ageing infrastructure (deterioration) can be 

attributed to clay pipes. Retrofitting or replacing clay pipes, especially those with 

higher centrality values, may be beneficial.  

• Combined with other tools, such as hydraulic models, risk and cost assessments, 

GWPR results could aid in choosing and requiring redesigning as opposed to 

scheduling flushing or other maintenance activities.  

• Potentially better prediction models for blockages could be developed by locally 

tailoring the relationships between the rate of failure and the corresponding local 

predictors of pipe failure within specific independent clusters or within specific 

network areas. This also supports asset management because such failure 

prediction models constitute a critical component of comprehensive decision 

support (Abokifa and Sela, 2019). 
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To further substantiate the findings derived from the GWPR analysis (Paper IV), the 

relationships identified between factors influencing blockage propensity generally agreed 

with the conclusions reached in prior literature. Specifically, physical pipe attributes such 

as age, diameter, and length, despite showing significant association with increased 

blockage propensity, also showed negligible influence in investigated networks (Savic et 

al., 2006; Arthur et al., 2008; Ugarelli et al., 2009; Jin and Mukherjee, 2010; Rodríguez 

et al. 2012; Santos et al., 2017; Xie et al., 2017; Pulido et al., 2019). Steep-sloped pipes 

(self-cleaning velocity criteria) and pipes with a higher sagging potential influence 

increased blockage propensity in some parts. Conversely, in other parts, flatter gradient 

pipes (self-cleaning velocity criteria) and pipes with a lower risk of potential sagging also 

influenced increased blockage propensity. The latter is typically expected, especially for 

flatter gradient pipes and also corroborated by previous literature such as those cited 

above, but also Mattsson et al. (2015). While pipes with steep slopes pipes aim to prevent 

blockages through self-cleaning, inconsistent flows and turbulent flow in certain areas can 

still lead to increased sediment accumulation, especially in the peripheral areas of 

networks (Littlewood and Butler, 2003). Increased blockage propensity in certain pipe 

materials (concrete, plastic (PVC and PE), clay) in varied locations across the investigated 

networks (Paper IV). Studies such as Davies et al. (2001), Ugarelli et al. (2010), DeSilva 

et al. (2011), and Xie et al. (2017) have also reported correlations between pipe material 

and blockage propensity, though no spatial heterogeneity was observed. Sewers with 

more service connections showed a significant association with increased blockage 

propensity (Paper IV). An increased number of service connections suggests complexities 

such as increased flow volumes, varying flow rates, design flaws, and increased risk of 

foreign objects entering sewers (Arthur et al. 2008).  

Increased restaurant proximity to pipes showed a significant impact on blockage 

propensity (Paper IV). Though simplistic because flow direction was not considered, 

restaurant proximity to pipes still highlights the influence of restaurants' proximity to 

increased blockage propensity with implications for the maintenance of traps for fats, oils, 

and grease as shown in Nieuwenhuis et al. (2018), Cook et al. (2008), DeSilva et al. 

(2011), and Torres et al. (2017) investigated sub-factors such as soil characteristics, 

geology, topography, depth of water table, salinity, leaking sewers, tree species, nutrients, 

high moisture gradient, and construction quality. While these sub-factors were not 

directly examined in this thesis, they provide a broader context for understanding how 

root tree intrusion, may impact blockage propensity. However, the full scope of 

environmental influences on sewer deterioration remains under-explored as reported by 

Malek Mohammadi et al. (2020). Incorporating factors like groundwater levels and 

ground settlement into methods like GWPR could provide further insights into blockage 

mechanisms.  

It is important to note that the application of GWPR (Paper IV) was highly dependent 

on the availability of datasets and the specific local factors driving blockage occurrence. 
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For example, soil subsistence data, construction quality or pipe undermining may be used 

as an indicator for the sagging potential of sewer pipes, but this would be contingent on 

the availability of such data. As a result, the findings from one location may not be 

spatially transferable to another. The bandwidth selection in GWPR analysis which may 

be somewhat subjective and varies based on data and study area characteristics may impact 

results. An adaptive bi-square kernel was chosen for the analysis in this thesis and paper 

IV, automatically adjusting the bandwidth size based on the local density of data points.  

5.2.4 Vulnerability assessment of sewers  

The spatial relationship between pipes with high EBC and pipes with previous incidents 

of blockages based on the network cross k-function analysis was considered the basis for 

the vulnerability assessment of sewers performed in this thesis. EBC is a measure of the 

importance of an edge in a network based on the number of shortest paths that pass 

through the edge (Ganesan et al., 2020). In the context of a sewer network, an edge 

represents a pipe, and the betweenness centrality of a pipe reflects its role in connecting 

different parts of the network. Therefore, a pipe with a high centrality value is one that 

is linked to many other pipes and plays a critical role in the transport of wastewater. 

Additionally, it is anecdotally accepted that a larger number of previous failures along a 

pipe is often associated with a higher probability of future failure (Fan et al., 2022). 

Therefore, the clustering of pipes with previous incidents of blockages around pipes with 

higher levels of centrality could indicate a vulnerability for the sewer network.  

The proposed approach for the vulnerability assessment of sewers (Paper V) is not 

supposed to replace the hydraulic modelling and simulations needed for vulnerability 

assessment. However, the approach could support addressing complex problems in urban 

water networks, for instance assisting, in engineering judgment needed for analysis and 

management activities (Simone, 2023).  

The results of the analyses in the investigated networks (Figures 17, 18 and 19) provided 

information on the network-wide vulnerability as it relates to blockage occurrence for 

single occurring and recurring blockages. There was a clear tendency for both recurring 

and single-occurring blockages to cluster around pipes with higher centrality levels. The 

insights garnered from these findings could be valuable for enhancing the strategies related 

to vulnerability assessment and maintenance planning within sewer networks. For pipes 

with high levels of centrality associated with repeat blockages, targeted maintenance 

interventions may be required to address the underlying causes because these may be 

more predictable and the targeted maintenance should prevent their reoccurrence. 

Interventions could include regular cleaning and inspection and potential pipe repairs or 

upgrades. Pipes with high levels of centrality associated with single-occurring blockages 

pose a more significant challenge due to the unpredictable nature of such blockages. Such 

pipes may represent important locations for the installation of sewer monitoring sensors 

approach similar to the methodology described in Diao et al., (2023).   
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5.3 Applicability of investigated approaches and practical implications 

Urban water networks, comprising sanitary or combined sewers, storm sewers, and 

drinking water distribution pipes, are a crucial part of urban infrastructure. Asset 

management of these networks is considered essential to maintain their functionality and 

integrity (Alegre and Coelho, 2012). 

Given the increasing emphasis on the increased use of sensors and IoT devices, such as 

smart meters, for data collection in water utilities (Arnell et al., 2023), it is essential to 

consider that more data does not necessarily always translate to better outcomes. 

Eggimann et al. (2017) highlighted the importance of making informed decisions about 

the type and resolution of data to be collected based on the specific purpose of the data 

collection. Additionally, water utilities need to find a balance between the data they have 

and what they need (the data needs of the networks) and then choose the correct analysis 

methods based on the available data (Ugarelli and Sægrov, 2022). Thus, the proposed 

conceptual framework (Paper I) may be applied across various urban water networks to 

ensure synergy between water utility objectives and the associated data and systems for 

supporting such objectives. Studies such as Arnell et al. (2021) and Cantor et al. (2021) 

support the adoption of such frameworks. 

Reports such as those by Emilsson et al. (2021) highlighted the need for new approaches 

that facilitate proactive maintenance planning and decision support, especially in the 

Swedish context. The spatial heterogeneity assessment (Paper IV) and vulnerability 

assessment (Paper V) showed promising results that could support developing tailored 

and targeted maintenance planning strategies for increased proactive maintenance 

planning in the context of blockages in sanitary sewers. These approaches and associated 

methods may also be applied to other urban water pipes networks such as combined 

sewers, stormwater pipes and water distribution networks. Specifically, blockages 

typically occur in combined sewers and stormwater pipe networks and have adverse 

effects, including overflows and basement flooding (Mohammadiun et al., 2020). GWPR 

has been employed in other contexts such as analyses of road safety (Li et al., 2013), 

nutrition (Saefuddin et al., 2013), disease prevalence (Nakaya et al., 2005; Alves et al., 

2016), and more recently in the study of the spread of COVID-19 (Murakami and Lu, 

2021). Therefore GWPR may be particularly beneficial in the context of combined 

sewers, and stormwater pipe networks because of the variability of rainfall and antecedent 

dry days (Draude et al., 2019). GWPR may also enhance the understanding of how data 

about infiltration and inflow may influence blockage propensity. In combined sewers, 

the water level data from sensors in connection to rainfall events and blockages may, 

amongst other factors, be considered as predictors for combined sewer overflow 

occurrence (Rosin et al., 2022). In such a situation, the vulnerability assessment (Paper 

V) may be useful in identifying critical points in the network that are susceptible to 
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blockages that may cause the occurrence of overflows, facilitating the implementation of 

monitoring or proactive maintenance.  

Maintenance planning in the context of leakage detection, pipe breaks, water quality 

monitoring, and contamination source identification in the water distribution network 

could potentially be improved by considering spatial heterogeneity and vulnerability 

assessments (Papers IV and V). Studies such as those of Abokifa and Sela (2019) and Chen 

and Guikema (2020) have shown that failures in water distribution networks have spatial 

structures and patterns. These spatial patterns, especially clusters, may be associated with 

factors ranging from age, diameter, and material type, to environmental data, such as soil 

type and hydraulic data (Barton et al., 2019). Identifying and understanding the spatial 

patterns of breaks and leakages, for instance, along with the spatial heterogeneity of factors 

that affect their propensity in water distribution networks, can enhance failure prediction 

models and support water utilities in optimising their maintenance operations and asset 

management. 

In terms of operational risk-based decision-making, GWPR and edge betweenness 

centrality measures may be combined to develop a risk index. Such an index may be 

based on the probability of failure in the pipe network and the potential impact on the 

connectivity of the network due to the topological position of pipes within the network 

similar to the methodology proposed by Balekelayi and Tesfamariam, (2021). Such an 

index may be used to prioritise maintenance operations and allocate resources more 

towards improving the resilience and sustainability of urban water networks. 

5.4 Feasibility of the investigated spatial methods 

One of the main challenges in implementing the various methods applied in this thesis 

was the structure and quality of datasets available in the investigated networks. An 

overview of the feasibility of each of the spatial methods investigated based on its 

application within this thesis is presented in Table 14. 

The network k-function and GWPR analysis (Paper IV) provided insights considered 

promising in practical use for maintenance planning and asset management at water 

utilities' tactical and operational levels. However, these methods had the longest 

computational processing times within the context of the analysis carried out in this thesis, 

especially with more extensive (more variables) and larger networks (number of pipes).  

The network k-function and network cross k-function could be implemented most easily 

using open-source Python or R packages. However, a standalone software application 

may be assessed from Okabe and Sugihara, (2012). Studies such as Chan et al. (2022) 

have developed algorithms, i.e. count augmentation (CA) and neighbour sharing (NS), 

which could reduce the time complexity for computing network K-function. 
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In addition to the long processing time for the GWPR, it may be tedious to set up and 

calibrate. GWPR also becomes unstable if there are a lot of zeros near the regression 

point. The method requires an iterative testing process to find the best setting for a 

specific dataset being analysed. Studies such as Murakami and Lu (2021) proposed 

linearized GWPR (L-GWPR) by introducing a log-linear approximation into the 

GWPR model to improve computational efficiency and identification problems in the 

traditional GWPR model. Also, a geographically weighted artificial neural network 

(GWANN) could be investigated regards its stability when there are a lot of zeros near 

the regression point (Hagenauer and Helbich, 2022). The interpretation of GWPR and 

Network K-function could also be nuanced if certain variables require a more in-depth 

knowledge of the network. For example, when the variable proximity of pipe to 

restaurants was considered in GWPR analysis (Paper IV), a simplified version was used 

that did not consider the flow directions. 

Models built on open-source platforms such as Python's PySAL or R's spgwr package 

may be more advantageous for water utilities because they sidestep the lock-in effects of 

more traditional legacy commercial systems. 
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6 Conclusions 

The data management challenges identified in this thesis included data quality, data 

accessibility, security and the “lock-in effects” of using commercial legacy systems, lack 

of policies regarding data storage and exchange routines, lack of metadata as well as 

limited resources. Additionally, challenges included a perceived lack of alignment 

between current data storage and exchange routines and commonly identified objectives 

for asset management of the pipe networks. There was also a lack of coherence of 

objectives between asset management planning levels. These challenges could influence 

data quality and/or systems interoperability, contributing to the formation of data silos in 

pipe network asset management.  

The proposed conceptual framework was shown to be able to recognise links between 

data quality, interoperability and informational benefits relative to set objectives with the 

aim of identifying the presence of data silos and assessing the overall data management 

strategy. The framework may be adaptable to different applications within water utilities, 

as indicated by its application to different sewer networks (A, B, and C). The application 

of the framework could also aid water utilities in identifying needs for a broader 

organizational shift towards recognizing the value of integrated, high-quality data in 

driving effective asset management decisions.  

The performance indicator blockage rates significantly varied across different sewer 

networks due to a variety of local conditions and triggering mechanisms. A multifaceted 

approach could be beneficial for assessing and managing sewer networks. The inclusion 

of additional performance indicators, such as the extent of network maintenance 

(flushing/cleaning) and operation and maintenance costs, provided a more holistic 

understanding of the network's maintenance efficiency and effectiveness. Partial Least 

Squares (PLS) regression analysis showed relationships between various performance 

indicators. It aided in identifying patterns and trends that were not immediately apparent, 

thereby supporting strategic asset management. 

The results from investigated approaches (spatial heterogeneity and vulnerability 

assessment) indicated that these approaches can enhance understanding of the causes and 

spatial distribution of blockages in sanitary sewers. These approaches can support 

proactive maintenance planning, targeted maintenance and sewer asset management.  

The results from assessing the spatial variability of blockages in sanitary sewers, as 

indicated by the degree of clustering estimated through the network k-function or 

network cross k-function, suggested that these spatial methods could potentially be used 

periodically to evaluate maintenance requirements and effectiveness. For example, in 

areas where the presence of significant clustering of recurrent blockages was identified, 

an increased need for proactive maintenance of blockages in sewer pipe networks was 

indicated. Spatial variability of blockages may also be linked to improved predictability. 
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The Geographically Weighted Poisson Regression (GWPR) indicated that the method 

could identify the most prevalent factor or combination of factors affecting the propensity 

of blockages in segments of sewer networks. Pipe material, lack of adequate self-cleaning 

and the linear proximity of pipes to restaurants were the most significant factors and had 

the greatest degree of influence on increased blockage propensity in the investigated 

sewer network. 

Among the explored edge-based centrality measures, edge betweenness centrality (EBC) 

had promising results that could be used to support vulnerability assessments of sewers. 

EBC provided context that could aid in understanding how network vulnerability is 

spatially distributed. A common trend observed across the investigated sewer networks 

was the clustering of blockages, both those that were single occurring and repeated, 

around pipes with high EBC. This suggests that areas, where high EBC pipes coincide 

with a high frequency of blockages, should be given higher priority for maintenance and 

monitoring such as regular cleaning, and inspection. The approach may also aid in 

identifying hidden patterns of dependency and potential cascading failures within the 

network. 

.  
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ABSTRACT

Analytical tools used in infrastructure asset management of urban water pipe networks are reliant on asset data. Traditionally, data required

by analytical tools has not been collected by most water utilities because it has not been needed. The data that is collected might be charac-

terised by low availability, integrity and consistency. A process is required to support water utilities in assessing the accuracy and

completeness of their current data management approach and defining improvement pathways in relation to their objectives. This study pro-

poses a framework to enable increased data-driven asset management in pipe networks. The theoretical basis of the framework was a

literature review of data management for pipe network asset management and its link to the coherence of set objectives. A survey to identify

the current state of data management practice and challenges of asset management implementation in five Swedish water utilities and three

focus group workshops with the same utilities was carried out. The main findings of this research were that the quality of pipe network data-

sets and lack of interoperability between asset management tools are drivers for creating data silos between asset management levels,

which may hinder the implementation of data-driven asset management. Furthermore, these findings formed the basis for the proposed con-

ceptual framework. The suggested framework aims to support the selection, development and adoption of improvement pathways to enable

increased data-driven asset management in municipal pipe networks. Results from a preliminary application of the proposed framework are

also presented.

Key words: benefit analysis, data quality assessment, integrated asset management, interoperability assessment, sewer blockages

HIGHLIGHTS

• A link between data quality and interoperability relative to the data management approach and data silos between IAM levels was estab-

lished.

• A conceptual framework is proposed to assess the state of data management relative to data-driven IAM.

• A preliminary application of the framework to sewer blockage data and IAM tools in one municipality showed low interoperability with

medium data quality, i.e. intuitive IAM.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and

redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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GRAPHICAL ABSTRACT

INTRODUCTION

Asset management (AM) of urban water systems is described as a set of processes that water utilities undertake to ensure that
the service levels of assets, such as pipe networks, are maintained as economically as possible over a whole life cycle perspec-

tive (Alegre & Coelho 2012). Drivers, such as urbanisation, ageing infrastructure and climate change, are some of the most
important reasons for adopting AM (Ugarelli et al. 2010). However, AM implementation is often approached from a perspec-
tive of partial views and one size fits all solutions (Pathirana et al. 2018). Therefore, the integrated AM approach (IAM) was

adopted to overcome such shortcomings. An IAM approach for network infrastructures, such as pipe networks, advocates
addressing AM at different planning levels and requires the alignment of strategic objectives and chain management between
levels (Alegre & Coelho 2012). Alegre et al. (2013) highlighted the need for a review mechanism to measure compliance with

set goals and the importance of the alignment and coherence of strategic objectives between strategic, tactical and operational
levels, which is often missing in spite of being a requirement in municipal AM implementation.

Halfawy (2008a), Ugarelli et al. (2010) and Curt & Tourment (2019), amongst others, have highlighted the importance of
data and information for the IAM of urban water systems, i.e. pipe networks. Hafskjold (2010) and Alegre & Coelho (2012)

reinforced this with reports and conclusions from their work, which assesses AM of urban water systems. Hafskjold (2010)
further emphasised that reliable data is the foundation of successful AM and indicated that it is vital to get the most out of
existing data through proficient data recycling, quality control, analysis and interpretation. Since IAM is data reliant (Alegre

& Coelho 2012), a reasonable presumption would be that the alignment of strategic objectives and chain management
between IAM levels also depends on data reliability and data management. Therefore, the alignment of data collection, qual-
ity, storage and utilisation will analogously support the alignment of strategic objectives between IAM levels. Findings of Riel

et al. (2017), assessing the influence of data quality (DQ) on decision-making in networked infrastructures via a serious game,
indicated that increased DQ leads to decisions that ensure more cost-effective management of networked infrastructures. Fur-
thermore, Riel et al. (2017) found that collaborative decision-making between IAM levels aimed at set objectives was based

on intuitive judgements rather than analytical reasoning due to a lack of quality and data reliability.
Data by itself does not support IAM processes. IAM models (analytical tools) use data to assess metrics for set objectives

and criteria. These IAM tools use data regarding system performance, e.g. hydraulic capacity, structural conditions, oper-
ational and maintenance practices, to assess criteria such as asset condition, reliability, environmental impact, life cycle

cost, asset failure probability and consequences. The results from IAM tools can be used to assess the gap between the
status of pipe networks and the municipality’s objectives, which in turn can serve as a rationale for making IAM decisions.
However, IAM analytical tools yield little or no valuable information without quality input data and the availability of useful

historical data (Curt & Tourment 2019).
A review of AM methodologies, such as AWARE-P (Alegre et al. 2013; Cardoso et al. 2016), Rehabilitation of Urban Sewer

Networks (RERAU) (Humbel et al. 2014) and Computer-Aided Rehabilitation of Sewer/Water Networks, 2002–2005
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(CARE-S & W Projects) (Saegrov 2015), as well as Hafskjold (2010) and Yang et al. (2018), highlighted insufficient DQ and

uncertainties in data collection and used as constraints limiting IAM implementation. Accessibility (unavailability of data),
consistency (aggregation of data), interpretability, timeliness, accuracy, data quantity, integration and interoperability factors
were reported which affected the fitness of data for set objectives (Koronios et al. 2005; Halfawy 2008b; Woodall et al. 2014;
Parlikad & Jafari 2016; Rokstad et al. 2016; Carriço et al. 2020). There follows below a more detailed description of aspects
reported to influence objective-driven data IAM.

Data collection

Rokstad (2012) emphasised that data collection and recording is a primary source of degradation of DQ. Rokstad et al. (2016)
further indicated that IAM data collection should be based on the intended use of the data and that data needs to support the
strategic, tactical and operational levels of IAM. However, these levels are significantly different in terms of the degree of
detail and required accuracy of the data, but all need to be aligned towards the water utility’s strategic objectives, which is

often tricky to achieve (Flintsch & Bryant 2009). Therefore, the data collection strategies and requirements have to consider
how the collected data will be used at the various decision levels. Also, a lot of the data required by the new decision-support
tools have traditionally not been collected by the municipalities, thus often making data availability another impeding factor
with respect to the capabilities of IAM tools (Halfawy & Figueroa 2006; Tscheikner-Gratl et al. 2020). Also, data representa-

tiveness and survival bias during data collection have been reported to influence data use by IAM tools such as deterioration
models (Laakso 2020; Tscheikner-Gratl et al. 2020).

Data structure

Angkasuwansiri & Sinha (2018) proposed developing a standard data structure for sewer network AM, based on known fail-
ure modes and mechanisms. Tscheikner-Gratl et al. (2020) recommended a similar approach in their state-of-the-art review
on sewer AM. These standard data structures enable the development of specific minimum datasets for reliable IAM ana-
lytics. Angkasuwansiri & Sinha (2018) further proposed a standard data structure for sewer networks based on municipal

size (very small, small, medium and large) and data availability. The proposed data structure included 5–51 parameters,
depending on the size of the municipality. These parameters were grouped into five classes based on sewer network charac-
teristics: physical/structural, operational/functional, environmental, financial and others. Such a clearly defined and

proposed data structure has not been found in the literature for water and stormwater pipe networks. However, water utilities
may have locally defined data structures. Since obtaining new datasets may not always be easy, it may be more efficient to
map available data to informational benefits based on IAM tools in use.

Integration and interoperability

During the last two decades, significant advances have been made in developing solutions towards the integration and inter-
operability of municipal IAM tools, which include the development of standards, frameworks and middleware (Halfawy et al.
2002, 2003, 2006; Halfaway et al. 2006; Beck et al. 2007, 2008; Vanier 2014; Carriço et al. 2020). The complexity of data

integration and interoperability (levels at which the data can be operated as a single entity) is especially pronounced at
data storage and structure levels. Much inefficiency has been attributed to the use of inconsistent data models and formats
across IAM tools and diverse new data sources (Tscheikner-Gratl et al. 2020). This was reported to widen the already existing

interoperability gap between municipal IAM tools (Gay & Sinha 2014). Despite the link between DQ and interoperability, a
lack of interaction between DQ frameworks and interoperability still exists. In addition, the assessment of the interoperability
between IAM tools relative to set objectives is a necessary but lacking step in IAM data management for pipe networks.

Digital advances leading to increased computational capabilities have led to increased development of real-time data col-
lection, i.e. Internet of things, intelligent sensors and use, i.e. building information modelling, artificial intelligence and
machine learning analytics, predictions, big data use, virtual and augmented reality applications. Advances have led to
new data models, such as the smart sewer asset information model (Edmondson et al. 2018), data-driven decision support

tools such as new/hybrid variants of the evolutionary genetic algorithms and application of graph theory (Meijer et al.
2018; Oyebode 2019; Shende & Chau 2019). However, barriers preventing water utilities from adopting such models for
pipe networks are data availability and interoperability between existing data models and such new data models (Badea &

Badea 2019; Garramone et al. 2020). This interoperability hindrance to digitalisation has led to the development of new inter-
operability standards, such as the framework of the open specification for smart cities (Hernández et al. 2020). However, it is
important to acknowledge that it may not be necessary for all systems or data to be interoperable. Therefore, a need exists for
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decision support systems to assess the current state of interoperability relative to set objectives for pipe networks’ perform-

ance. There have also been limited or no methods to measure and evaluate the interoperability of IAM tools for pipe
networks in a systematic way (Kasunic & Anderson 2004).

Existing DQ frameworks for urban water pipe networks

Several general DQ assessment frameworks such as those described by Lee et al. (2002), Wang (1998), Pipino et al. (2002),
Carlo et al. (2011) and Sebastian-Coleman (2013) have been developed for DQ assessment (Cichy & Rass 2019). These frame-

works provide a broad basis for data assessment and profiling. However, limited specific DQ frameworks for pipe network
AM have been developed to assess municipal pipe networks’ DQ relative to set objectives (Lin et al. 2006). An overview of
some of these frameworks is presented in Table 1. The lack of robust quantitative DQ assessment dimensions is lacking in

these frameworks. Interoperability issues, specifically synaptic, semantic and schematic heterogeneity of data for IAM as
defined by Beck et al. (2008), are also not addressed by these existing frameworks.

The overall architecture of municipal databases for the IAM of pipe networks is expected to be defined with structured asset
hierarchy data. Asset data needs to be grouped appropriately with pre-established links to informational benefits and aligned

between IAM levels towards achieving set strategic objectives (Rokstad 2012). However, the lack of structured data, lack of stan-
dard datasets, inconsistent datasets, missing records, lack of records on past rehabilitation decisions, lack of data collection
guidelines, and lack of integration and interoperability between IAM tools are considered some of the major hindrances to

objective-driven data AM of municipal pipe networks (Halfaway et al. 2006; Rokstad 2012; Carriço et al. 2020).
The main objective of this study was to develop a conceptual framework including an application tool to enable increased

chain management of set IAM objectives by establishing a link between IAM decision-making and data management. The

methodology section highlights how this link is established by validating the literature findings using responses from an
online survey and three focus group workshops. This link then formed the basis for the conceptual data-driven AM frame-
work proposed in the discussion section, with results from a preliminary framework application. Data-driven IAM in the
context of this study refers to an understanding of the data needed to achieve set goals (objectives), i.e. the right quantity

and quality of data along with the appropriate level of data exchange between IAM tools to support set objectives and objec-
tive-driven data collection in IAM.

RESEARCH METHODOLOGY

The research model of Koronios et al. (2005) for the identification of DQ problems in AM, which combines both the tech-
nical, organisational and personal (TOP) perspectives approach (Mitroff & Linstone 1993) and the total DQ management

(TDQM) framework (Wang 1998), was adopted and applied as the primary methodology for the study. This methodology
focused on identifying evidence of data considered important for IAM analytics of municipal pipe networks from a data man-
agement perspective. It also focused on providing insights into the current data management practices with the aim of

validating the literature review findings. Figure 1 presents the bottom-up approach of how both the literature review and find-
ings from the survey and workshops have been used to develop the conceptual framework’s theoretical basis.

Table 1 | Overview of DQ frameworks specific to the AM of pipe networks

Framework Description

Enterprise AM
(EAM)a,b,c

EAM is based on the TDQMd framework and TOP approache

Reliability variablesf Eight step plan DQ framework for reliability data using in performance indicators such as mean time to failure
and mean time to repair.

Data integrationg,h The framework assesses and identifies factors that hinder the integration of data within water utilities for IAM

aLin et al. (2007).
bLin et al. (2006).
cKoronios et al. (2005).
dWang (1998).
eMitroff & Linstone (1993).
fHodkiewicz et al. (2008).
gBeck et al. (2007).
hBeck et al. (2008).
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The main advantage of this methodology is that it enables the capture of domain knowledge from practitioners in water

utilities. Domain knowledge is needed to identify the challenges of IAM analytics in municipal pipe networks from a data
management perspective to develop an appropriate conceptual model that reflects the reality of current practice.

Online survey

The online survey was carried out using a real-time Internet-based Delphi approach because it omits sequential rounds and
reduces the drop-off rate of experts (Gnatzy et al. 2011; Garson 2014). This approach is a well-known and already applied
technique for utilising an expert panel’s tacit experience and judgement to find consensus or informal opinions (Mitroff &

Linstone 1993).
The questionnaire for the online survey consisted of four broad sections, covering the potable water pipe network (7 data

items), stormwater pipe network (9 data items), sewer network (12 data items) and combined pipe networks (13 data items) at

the strategic, tactical and operational IAM levels (Supplementary data 1, section II). Each data item in the questionnaire had
a 5-point Likert scale, ranging from least to most important. The choice of information types investigated in the questionnaire
was based on the literature review (Table 1 of Supplementary data 1, section I) and tacit experience of practitioners.

The expert panel for this study consisted of representatives from five Swedish municipalities/water utilities with combined
estimated network coverage of 22.5% of the population of Sweden. The respondents were all involved in pipe network man-
agement. The roles and responsibilities of respondents included project engineer, pipe network engineer, investigation
engineer, and water and wastewater strategist.

The expert panel’s responses were evaluated using measures of central tendency (mean and standard deviation) to deter-
mine consensus (Garson 2014). In this study, a consensus of high importance was considered a mean of expert panel
responses ranging from 4.4 to 5.0 with a standard deviation of less than 0.5 at the strategic, tactical and operational levels

(Figure 2). Details of a consensus of medium and low importance are provided in Figure 2. The implication of a consensus
was considered at two levels. At the individual information level, a consensus was considered to be achieved when the mean
and standard deviation of the expert panel indicated that an item was most or least important at a specific IAM level. At the

overall level, a consensus implied an alignment of data considerations between IAM levels, capturing the domain knowledge
to provide insight into the current data management practices.

Focus group workshops

Three focus group workshops were held consisting of a mix of practitioners and engineers between 5 and 9 participants in
each workshop from the same five municipal Swedish water utilities/water utilities that participated in the online survey.
These workshops were themed around (i) network-level AM for pipe networks, (ii) project-level renewal/rehabilitation

(data collection and utilisation) and (iii) data integration and interoperability. Workshop themes were further subdivided
into subjects and questions. The questions considered the current state of the art of data collection, storage and analysis to
support IAM activities for each subject. The response from participants was documented in a paper form. Responses were

Figure 1 | Bottom-up strategy employed in this study to form the theoretical basis of the conceptual framework development. Feedback
loop with water utilities enables the applicator of the framework to understand set goals (objectives) of the utility.
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further synthesised using the scissor and sort technique (Stewart et al. 2012). An overview of workshop themes, subjects,
questions and responses is presented in Table 2.

Preliminary framework application

A preliminary application of the proposed framework to a Swedish water utility was performed to illustrate how this frame-
work could be applied to identify improvement pathways for data-driven IAM. The application was limited to the analysis of

DQ and interoperability between IAM tools available for sewer pipe blockages. DQ assessment criteria set out in Table 2 of
Supplementary data 2, section 1 were used to perform the DQ assessment based on the data categories in Table 3. Simul-
taneously, the interoperability evaluation was performed based on criteria defined in Supplementary data 2, section 2.

Figure 2 | Mean and standard deviation of responses at the IAM strategic, tactical and operational levels. The colour coding indicates
consensus (unified opinions) of importance for the IAM of potable water, stormwater, separate sewers and combined networks. Please refer
to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/hydro.2021.068.
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RESULTS AND DISCUSSION

Online survey and focus group workshops – evidence of current data management practices

The analysis of the responses to the questionnaire sent to five Swedish water utilities is shown in Figure 2. Data collection and
use are driven by the utilities objectives/challenges, and the strategic goal of the sampled water utilities in this survey was
resource-efficient, coordinated maintenance and renewal of water and sewer pipe networks through AM.

Table 2 | Overview of focus group workshop questions, themes, subjects, questions and responses

Workshop Subject Questions Responses

Network level: AM of pipe
networks

Data management Type of data documented Predominately physical characteristics of pipe
networks, i.e. age, diameter and material, and
pipe failures, i.e. operational disturbances

Structure and storage of
data

GIS-based inventory systems are used for records
50% responded that they used paper-based
records in conjunction with GISs

Operational failures and
maintenance actions

Type of data collected All records of operational disturbances on
networks, i.e. blockages, leakages and
infiltration, are recorded if reported

Records’ detail deficiency, i.e. pictures, size,
composition, reasons for the cause and nature
of disturbances, are limited

Method of data collection Customer complaints database, operational
personnel reports, sensors

Aims of data analysis Operational follow-up
Planning intervention measures

Annual statistical compilations troubleshooting
planning needs

Collected data is mainly analysed and used in a
limited capacity

Renewal and
rehabilitation approach

Adoption driver Trenchless method
Cost ground conditions

Relevant data
management problems
identified

Current data management
challenges

Deficient/incomplete data
Lack of application of advanced IAM tools
Data digitisation and updates

Project level: renewal/
rehabilitation projects – data
saving and its utilisation

Current situation What data is stored,
Location and structure
(unique codes, ID, etc.)

Predominantly physical pipe characteristics and
trench details in GIS stored in the GIS
database with unique ID and codes

Sparse records regarding project costs, reasons
for renewal and co infra coordination at the
street level mostly lacking structure
Historical data is available between 2 and 10
years

Data utilisation Use/application of
collected data

Troubleshooting
Planning
Benchmarking

Impediments to data
management for
renewal/rehabilitation

Lack of integration between tools
DQ

Lack of robust historical data records

Data integration and
interoperability

Requirements and current
status between IAM
tools/systems

Level of data exchange
between tools

Lack of interoperability between tools, i.e. GIS
inventory, hydraulic models, failure and
maintenance database, SCADA system and
customer complaints database
Increased adoption of digitalisation tools
(sensors), i.e. smart flow meters; however,
integration and interoperability of such data
remain a concern

Reported challenges of data management for pipe networks are highlighted in bold.

Journal of Hydroinformatics Vol 23 No 5, 1020

Downloaded from http://iwaponline.com/jh/article-pdf/23/5/1014/938612/jh0231014.pdf
by guest
on 30 January 2024



At the strategic level, hydraulic capacity, operational failures and their consequences were considered the most important
for AM of the potable water network. Simultaneously, the physical condition of pipes, construction and renewal methods, as

well as customer complaints, were deemed of low importance. For the sewer network (stormwater, sewers and combined
sewers), hydraulic capacity and consequences of operational failures, including flooding and overflows, were considered
most important. The physical condition of pipes and environmental consequences of operational failures were of medium

importance. However, the latter was considered important for the combined sewer network. Operational disturbances, cus-
tomer complaints, renewal methods cost and remaining life estimation were considered of low importance.

At the tactical level, for the potable water network, hydraulic capacity and consequences of operational failures, leakages/bursts,

were considered most important. Construction costs, customer complaints and exfiltration were deemed of medium importance
and physical pipe condition low importance. A difference was observed between the combined network and the sewer and storm-
water networks for the sewer networks. For the combined network, hydraulic capacity, consequences of operational failures,
physical pipe condition, overflows and basement floodings were considered of high importance. The environmental consequences

of operational failures, construction costs and operational disturbances, i.e. blockages and infiltration, were regarded as having
medium importance. Customer complaints, estimation of remaining life and flooding were considered least important. By con-
trast, the physical pipe condition and basement floodings were considered most important for stormwater and sewer networks.

Hydraulic capacity, construction costs and all consequences of operational failures were considered to be of medium importance,
while customer complaints and estimation of the remaining life of pipes were of low importance.

At the operational level, for both the potable water and sewer network, construction and renewal costs, as well as oper-

ations failures (leakages, burst, exfiltration, overflows, blockages), were considered most important. The physical condition
of pipes and customer complaints data were regarded as having medium importance. Hydraulic capacity and all conse-
quences of operational failure were considered to have low importance.

Table 3 | Data categories and availability for performing analysis related to blockages in sewer networks in the municipality

Class Data Availability status

Commissioning data As-built drawings Unstructured/unlinked
Design reports and specifications Unstructured/unlinked

Static pipe data Age (date of installation) x
Nominal diameter x
Material type x
Length x
Depth x
Slope Calculated based on elevation and length data
Number of service connections x/unlinked
Soil type Unstructured data available

Inspection data Locations (address/coordinates) x
Date of inspection x
CCTV inspection rating x
Condition class x
Inspection priority x
Inspection result: performance x
Documentation of defects x

Failure data Failure date x
Location (address/coordinates) x
Nature of failure x
Asset ID x
Installation year (pipe age) x

Maintenance data Asset ID x/unlinked
Type of maintenance/reason for maintenance x/unlinked

Customer complaints Records Structured/unlinked

Hydraulic model input Flows/flow depth/hydraulic conditions Unstructured/unlinked

A mark (x) indicates that data is available and relatively structured.
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Generally, leakages and pipe bursts were considered most important at all levels for the potable water network. Estimating

the remaining life of pipes was considered of least importance for all sewer networks.
The questionnaire responses indicated a lack of consensus between IAM levels, i.e. information type considered most

important at the strategic level was observed to be of low importance at the operational level and vice versa. The observed

lack of consensus with the responses reflects the different needs to support different decisions, meaning a data management
approach should take all the data value chains into account to support all the flow of information needed at the three decision
levels. When information type was considered in the larger context of overall AM objectives for all pipe networks, the lack of
consensus could also indicate the existence of data silos between IAM levels regarding data relevance. Similarly,

Martenssoon & Rumman (2019) concluded that some of the most significant challenges to show implementing IAM included
a lack of definition of strategic objectives and a lack of information sharing, leading to data silos between IAM levels.

The observed lack of consensus in information types (Figure 2) between IAM levels may also indicate some expected con-

sequences. These consequences include the presence of data silos leading to a lack of data visibility, fragmentation and data
management inconsistencies in supporting strategic objectives. Findings from Laakso (2020) support the results above, high-
lighting the gap between potential and actual data collection and usage for water and sewer pipe networks. Additionally,

findings from a scoping review by Bento et al. (2020) indicated that organisational data silos might assume different
forms, i.e. information flow. Results also supported the use of the data and information management approach to define
silos, identify their effects on the functioning of organisations towards achieving goals and driving behavioural/cultural

change towards reducing the presence of silos.
A summary of the existing data management practices based on three focus group workshops is presented in Table 2. Var-

ious aspects of DQ and interoperability were observed as challenges to implementing IAM under each theme (bold) in
Table 2. The responses indicated the need to overcome the lack of data, DQ and interoperability between AM tools if

data management is to be improved in municipal pipe networks. The online survey and focus group workshops’ results
that DQ and interoperability between IAM tools influence the adoption of data-driven IAM of pipe networks are supported
by findings from previous studies (Rokstad et al. 2016; Carriço et al. 2020; Therrien et al. 2020).

DQ, interoperability and data-driven decision-making – the theoretical basis for the conceptual framework

Findings from the literature survey, the questionnaire and focus group workshops were conceptualised into an assumption

that formed the suggested framework’s theoretical basis. The conceptualised assumption is that increased levels of DQ
and interoperability between IAM tools will lead to a decreased presence of data silo between IAM planning levels and
increase data-driven IAM and vice versa. Examples of this assumption include that standardised representation of municipal
pipe data may improve DQ and interoperability between IAM tools. A common and consistent data structure mapped to the

strategic objectives of IAM may ensure the alignment between IAM levels and reduce the presence of data silos. Studies sup-
porting this assumption include Khisro (2020), which demonstrated through their findings that DQ and interoperability are
conjointly interrelating. Their results indicated that a lack of understanding of the relationship between DQ and interoper-

ability leads to information management silos. Furthermore, higher levels of DQ can decrease the complexity and increase
the reliability of interoperability.

By conceptualising this assumption towards data-driven IAM, decision-makers may get better insights into understanding

dependencies and improvement pathways for alignment across IAM levels to support set objectives. This conceptual relation-
ship is schematically presented in Figure 3 and illustrates that an increase in interoperability between IAM tools and the
quality of datasets encourages a shift towards data-driven IAM. This shift may occur via pathways that entail data manage-

ment models adopted or developed by municipalities. Figure 3 also highlights the significant factors which intrinsically
affect interoperability and DQ for pipe networks. Ultimately, to move towards a more linear adoption of data-driven IAM
in urban water pipe networks, there is a need to select an appropriate improvement pathway based on the set needs of
DQ and interoperability.

The origin represents a region of AM implementation based on tacit knowledge and expert judgements. Points A, B and C
in Figure 3 illustrate three examples of different kinds of decision-making pathways based on the data management models
applicable in pipe network IAM by municipalities. Pathway A is mainly driven by interoperability between the current IAM

tools. Such a pathway, for instance, enables increased adoption of digitalisation and increased availability of data from sen-
sors but is prone to data collection bias, lack of data structure and accuracy. Pathway B is driven by DQ. For instance, such a
pathway may possess medium high-quality datasets, i.e. structured, relatively complete with only a few missing records,
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accurate and updated. However, interoperability between available tools is low, i.e. pipes in the hydraulic model do not have

the same ID as in the Geographic Information System (GIS) inventory, and data formats between both systems are inconsist-
ent. Pathway C shows a linear move towards data-driven IAM, driven by DQ and interoperability in parallel. For example,
such a pathway may consist of real-time identification of hydraulic anomalies via enhanced interoperability between hydrau-

lic models and SCADA systems (control of processes by data acquisition from several sensors such as flow, pressure, and
H2S). From a practical view, the pathway D-E entails how data-driven IAM may be put into practice considering the balance
alternatives, negotiations and political prioritisations involved in achieving objective-driven data IAM decision-making.

Conceptual framework – data-driven IAM

The illustrated conceptual relationship (Figure 3) prompts the need for a framework that assesses the current status of DQ and
interoperability between municipal pipe network datasets and AM tools in the progression towards ultimately advancing

data-driven IAM. The proposed conceptual framework is presented in Figure 4. The DQ assessment (i) enables the evaluation
of datasets for specific AM-based analytics. The interoperability evaluation (ii) assesses the current state of data exchange via
schematic, semantic and syntactic heterogeneities between available AM tools. The data collection and informational benefit
analysis (iii) evaluates the cost of data collection relative to the informational benefits obtainable from using this data with the

available AM tools. The data collection and informational benefit analysis further allow the simulation of what informational
benefits might be obtained from additional IAM tools with the available datasets. Together, all three assessments provide
information to municipalities on existing data management models’ performance, highlighting critical areas where routines

for increased linear adoption of data-driven IAM can be planned. This proposed framework includes a spreadsheet-based
tool. The framework’s structure (schematically presented in Figure 4) allows for the analyses of the framework’s core aspects
(i, ii and iii) to either be applied in parallel or sequentially.

Figure 3 | Conceptual relationship between interoperability and DQ towards advancing objective-driven data IAM.
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The description of the methods used in each step of the framework to perform assessments and evaluations, including
specific metrics and criteria, is provided in detail in Supplementary data 2.

Preliminary application of the suggested framework to sewer blockage management

The first results based on the analyses from the preliminary application of the suggested framework on sewer blockage man-
agement in one municipality showed that static, inspection and failure data categories were observed to be most available and
structured for blockage management (Table 3). Commissioning data, hydraulic model inputs and maintenance data were the

most unavailable. The DQ assessment results for available data related to sewer blockages are presented in Figure 5.

Figure 4 | Schematic structure of the proposed conceptual data management framework for standard data management model advance-
ment for data-driven IAM.

Figure 5 | DQ assessment of data relevant to sewer blockages, the DQ is indicated on a scale between 0 (low quality) and 1 (high quality).
Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/hydro.2021.068.
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The average DQ rating was 0.55, 0.50 and 0.35 for each of the categories: static pipe data, inspection data and failure data,

respectively. The aggregated average DQ rating of all three categories was 0.47. Static pipe data was observed to be relatively
complete, accurate and accessible but needing improvements in metadata documentation, verification and definition of aims
for data use. The inspection data category was observed to have a high level of stored data, accessibility and verification, but

needing improvements in completeness, accuracy, documentation of metadata, the definition of analysis aims and resolution.
The failure data category was observed to be effectively stored, very accessible and have good resolution. However, accuracy,
completeness, verification and definition of the analysis aim for the data were lacking.

Lee & Strong (2003) associated various aspects of DQ with data roles synonyms to IAM levels. These associations include,

i.e. first, the role of data collection may be related to the operational level of IAM with DQ dimensions of accuracy, comple-
teness, accessibility and analysis (practical usability for define intent). Secondly, the role of data custodian may be associated
with the tactical level of IAM with DQ dimensions accuracy, completeness and resolution of data. Thirdly, the role of data

consumers might be related to the strategic level of IAM, with DQ dimensions analysis (practical usability for defined intent).
Based on these associations, the DQ for strategic IAM level decision-making may be considered low. At the tactical level, DQ
is lacking regarding supporting inspection planning and failure analysis, and DQ appears highest to support operational-level

planning and decision-making.
Figure 6 presents the results of the interoperability evaluation based on a procedure and criteria defined in Supplementary

data 2, section 2. The overall score (0.17) indicates the level of interoperability between all IAM tools under consideration

between 0 (no interoperability) and 1 (set level of interoperability). The target level of interoperability is only achieved by
two IAM tools, i.e. the GIS database and failure record database. All other IAM tools were assessed to have no
interoperability.

The aggregated DQ assessment score along with the overall interoperability score is plotted (Figure 7) to illustrate the cur-

rent state of IAM for sewer blockage management in the municipality.
The current state of IAM for blockage management (Figure 7) is characterised by medium DQ and low interoperability

between IAM tools in the municipality. The interoperability analysis between available tools was observed to be low overall

except for the GIS database and the failure records database, which were schematically integrated. Overall, the current state
of DQ and interoperability suggests that blockage management is based more on intuitive IAM as opposed to data-driven
IAM. The current state of DQ and interoperability also indicates the possible presence of data silos, implying a lack of a

data management approach that ensures the alignment of set strategic objectives across IAM planning levels for efficient
blockage management. These conclusions are supported by discussions with the municipal AM engineer.

Improvement pathways may be considered relative to defined objectives; however, for this specific example, objectives
have not been defined. Therefore, data-driven IAM for blockage management may be achieved by improving the interoper-

ability level between current IAM tools, i.e. improving the overall interoperability score to at least the same score as the DQ
assessment. Furthermore, the results serve as a baseline to help in the definition of objectives. The informational benefits that
may be gained from current IAM tools could be assessed to further aid planning and setting of objectives.

Figure 6 | Interoperability assessment matrix between available IAM tools (A–D) for blockage management analyses in the municipality. The
grey colour indicates the target interoperability level. The perceived interoperability level is reported in the non-shaded cells horizontally and
vertically between pairs of tools. The normalised average is equal to the vertical column sum divided by the sum of all vertical columns’
expected interoperability score (3/18). The sum of all normalised averages gives the overall interoperability score (bold).
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Table 4 shows the results of a partial simulation of the information benefit analysis using the available data for blockage man-
agement (Table 3) and current IAM tools (A–D) (Figure 6). The four current IAM tools were mapped to 26 expected IAM
informational outcomes (Table 4 of Supplementary data 2). The total number of tools currently available was grouped into

four combinations (tool combination ID, Table 4). The benefits were assessed as the percentage completeness of all the possible
informational outcomes attainable with current tools, weighted with the DQ based on Equation (3) of Supplementary data 2.

Considering the interoperability evaluation (Figure 6), combination ID 2 was most representative of the current interoper-

ability status of AM tools in the municipality for blockage management and showed only 17% informational benefits
obtainable. Ensuring that the target level of interoperability (3) between all four currently available IAM tools is achieved,
informational benefits could be improved to about 62% (combination ID 4), without increasing data collection costs

substantially.
The current state of blockage management in the municipality may be considered as largely intuitive with medium DQ and

low interoperability. The informational benefit analysis indicated that improving interoperability between all IAM tools to the
set target level could yield additional benefits without a substantial increase in data costs, thus ultimately moving the current

state of blockage management into the domain of data-driven IAM. Based on this research, it is not possible to make a more
comprehensive recommendation of improvement routines because the preliminary application only considered a particular
aspect of IAM for sewer networks. Consequently, only limited improvement pathways can be recommended. When the

Figure 7 | The current state of IAM for managing sewer blockages in the municipality (red dot). The linear line (blue) indicates a linear
adoption between intuitive IAM (bottom left) and data-driven IAM (top right). Please refer to the online version of this paper to see this figure
in colour: http://dx.doi.org/10.2166/hydro.2021.068.

Table 4 | Informational benefits (%) of currently available tools for blockage management in the investigated municipality

Tool combination ID 1 2 3 4
Number of tools 1 2 3 4

GIS database (inventory) x x x x

Hydraulic model x x

Failure records database x x x

Complaints management x

Informational benefits (%) 6 17 30 62

A mark (x) indicates that a tool is considered part of a combination.

All input costs are based on assumptions for this preliminary application of the framework.
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framework is applied across all pipe networks covering all aspects of IAM within the municipality, the results could facilitate

feasibility advice for robust and integrated improvement routines.
Studies such as Kasunic & Anderson (2004) and Sas & Avgeriou (2020) indicated that scenario-based or architectural

styled assessments are better to understand interoperability measures and associated trade-offs involved between systems

i.e. IAM data and tools. Similarly, the preliminary application results also indicated the need to consider possible trade-
offs from framework outputs and recommendations relative to set objectives. For example, increased interoperability
levels may also lead to increased exposure of municipal systems to cybersecurity threats and risks. Increased levels of DQ
and interoperability may also have associated increased costs.

CONCLUSIONS

Routines need to be developed or adopted to enable increased objective-driven data IAM. This paper describes ongoing work
to enable the development and selection of routines that increase data-driven IAM for urban water pipe networks. Specific

conclusions from the study include:

1. The literature review showed that DQ and interoperability of IAM tools are influential factors for data-driven IAM. The

online questionnaire with five Swedish municipalities and three focus group workshops validated the results from the lit-
erature review.

2. Based on the literature review results, the online questionnaire and focus group workshops, a schematic link was estab-

lished between DQ, interoperability and the presence of data silos between IAM levels.
3. The link between DQ, interoperability and the presence of data silos between IAM levels was embodied in a conceptual

framework for assessing the state of data management relative to data-driven IAM.
4. A preliminary application of the framework to sewer blockage data and IAM tools in one municipality showed low inter-

operability between IAM tools with medium DQ. The informational benefit analysis further showed that the current AM
tools yielded only 17% informational benefits for IAM planning and decision-making and that this could be improved to
62% with an increase in interoperability between current tools.

The analysis also highlighted some pathways towards improvement and possible informational benefits that might be
realised depending on the municipality’s decision-level target and investment cost. Routines for data management model

improvement could not be advised based on this preliminary application, solely improvement pathways such as an increase
in interoperability levels between available IAM tools for blockage management. Future research includes a more compre-
hensive application of the whole framework to one or more water utilities. An application of the framework in water

utilities of varying sizes and locations is also needed to assess the sensitivity of input parameters and their effects on the fra-
mework outputs. Feedback loop with water utilities also needs to include other aspects such as water quality.
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Supplementary Data 2  
1. Data quality assessment  

 
The purpose of data quality assessments is to understand data conditions and conclude their impact 
concerning expectations or particular purposes (Laura Sebastian-Coleman, 2013). Data quality assessment in 
this framework takes the form of data profiling, which uses data quality dimensions to assess the quality of 
data sets. Data assessment in this framework mainly refers to the column and structural profiling of AM-
related data in municipal pipe networks: 
I. Column profiling assesses the quality of data in the attribute columns of pipes within the municipal 

database. It consists of inspection of data content through a column profile analysis, which entails 
ratio estimation between deficient records and the count of records associated with the columns. A 
normalised scale to create benchmark values of existing data is critical for identifying cardinality and 
valid value sets. 
 

II. Structure profiling tests assumptions of relationships or uncovers those that have not been assumed 
or identified as part of data modelling. 

 
Figure 1 shows the data quality assessment approach with column and structural profiling of municipal pipe 
networks databases 

 
 
 

Figure 1: Schematic process of data quality assessment applied to pipe networks  
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The proposed data quality assessment approach may generally apply to pipe networks in the scenarios 
described in Table 1.  
 
Table 1: Levels for data quality assessment application, including objectives and expected outcomes.  

Scenario  Objective  Outcome 
Overview 
assessment: 
comprehensive, 
across a data set or 
related data sets 
 

• Develop an overview of data 
quality  

• Identify and measure the 
baseline condition of: 
• critical data 
• high-risk data  
• data that does not meet 
expectations  

 

• Measurement results 
• Improved intent for data use  
• Documentation of data properties 

with the evaluation of criticality, 
risk, and suitability, as well as 
improvement opportunities 

• Recommendations for long-term 
data collection and storage 

 
Tool-specific 
assessment  

• Suggest changes in data 
collection or processing that 
would result in measurable 
improvement over the previous 
state 

• Detect and investigate changes 
in data patterns 

• Measurement results showing 
improvement in data quality 

• Reports on the condition of existing 
data, including the identification of 
changes in data patterns 

• Root cause analysis for data issues 
• Recommendations for remediation 

and improvement 
 
Data quality dimensions function as a metric to provide measurement or assessment of quality with a scale 
(Woodall et al., 2014). The column and structural profiling results may be presented in data categories or as 
an aggregated average of all criteria between 0 – 1. Table 2 shows the data quality assessment dimension 
and criteria.
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2. Interoperability assessment using the LCIM/LISI hybrid methodology  
 

The simplified evaluation of interoperability between IAM tools related to sewer blockages carried out in this 
thesis was based on classified interoperability problems, specifically syntactic, schematic and sematic 
heterogeneities, as described in Table 3.  
 
The adapted evaluation model is a hybrid of two exiting methodologies, the Levels of Conceptual 
Interoperability Model (LCIM) (Tolk and Muguira 2003) and Levels of Information System Interoperability 
(LISI) model (DOD, 1998). The adapted model assesses the quality of interoperation between two existing 
IAM tools relative to a set target level. It evaluates the syntactic, schematic and semantic data exchange 
differences between the tools with the explicit aim of developing a unified or harmonised system, 
characterised by unified schema at the meta-level. The adapted model is based on the philosophy of the LCIM 
and the application procedure of the LISI model, and results are presented in the form of an interoperability 
matrix. The matrix shows the perceived level of interoperability between pairs of AM tools based on the 
assessment levels presented in Table 3. The overall interoperability between all AM tools is then assessed on 
a normalised scale between 0 and 1, where 0 indicates lack of interoperability between models and 1 
indicates unified or harmonised data exchange between models. 
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3. Data collection - informational benefits analysis using CB methodology  
 

The CB methodology (figure 2) proposed and described by Rokstad et al. (2016) addresses the 
gap between the availability of data and its ultimate use. It aims to find a suitable level of data 
collection, where the data collection efforts are in proportion to the value of the informational 
benefits obtainable. This is carried out by addressing the following questions:  

i. What will be the cost of data for a given combination of AM tools?  
ii. What combination of tools is optimal for a municipality with respect to data cost and 

information output?  
iii. What data should be prioritised for collection when a new collection system is 

introduced? 
The CB methodology establishes a relationship between data collection cost and informational 
benefits. The cost associated with collecting different data classes related to the AM of pipe 
networks and the benefit of these data yields are measured as achieved informational 
benefits. It represents a step in the direction of formalisation and rationalisation of an 
evaluation process that should always be present before selecting AM tools in IAM of pipe 
networks 
 
The analysis of blockage management data and AM tools in Municipality B with the CB 
methodology was performed with AM tools as the common denominator. In this context, AM 
tools were considered instruments that transform raw data into practical informational 
outcomes. The analysis was performed via a spreadsheet-based model. The analysis was 
based on the assumption that a specific set of input data items treated through a particular 
set of AM tools will produce a specific set of informational outcomes. An overview of data 
inputs, AM tools and informational benefits used in the analyses are presented in Table 4. The 
total cost of data collected was computed based on a combination of Equations 1 and 2, while 
informational benefits were determined based on Equation 3. 
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Figure 2: Structure of CB methodology  

. 
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Table 4:Overview of typical data class, data items, IAM tools and Informational –benefits  

Data items  AM tools  Informational benefits  

Asset ID GIS inventory Inventory 
Coordinates of asset Hydraulic model Acquiring cost/depreciation 
Date of installation Failure records database Cost of replacement 

Height(s) Complaints management  
Value of performance (deprival 
cost) 

Length  Life cycle cost  
Material  Reliability-cost relationship 
Nominal diameter  Condition-cost relationship 
Orientation  Cost of maintenance 
Type of asset  Structural condition 
Bedding material  Performance 
Consumption   Reliability 
Depth of cover  Cost of failure 
Groundwater level  Hydraulic criticality 
Number of commercial connections  Hydraulic risk 
Number of private connections  Economical risk 
Soil type  Level of service 
Surface material  Customer-minutes lost 
Traffic  Cost of inspection 
Consumption  Work order 
Customer connection point 
coordinates 

 
Capacity 

Customer ID  Pressure 
Asset ID  Customer satisfaction 
Date of decommissioning  Economical condition 
Date of inspection  Investment need 
Gauging  Strategic investment need 
Asset ID  Prioritised investments 
Company code   
ID of inspected asset   
Inspection method   
Inspection result: condition   
Inspection result: performance   
Asset ID   
Date of maintenance   
Diameter   
Failed object type   
Failure date   

Installation year   

Location: Address   

Material   

Nature of failure   

Registration date   

Asset ID   

Date of repair   
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where Cbase is the base cost (hours/years), Ctool is the acquiring cost of the tool (Euros/year), Cworkhour is the 
average cost of work hour (euros/hour), WHsetup is the work hours necessary to set up the tools (hours), ULtool 
is the expected usable lifespan of the tool (years), and WHmaintenance is the work hours necessary to maintain 
the use of the tool (hours/year). 

𝐶/"-"	+-$* = 𝑛.1,-.,+ ∗ 𝑡.1,-.,+ +
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4'1

∗ 𝑡!".561,7,+…………………………………………………………..………….….….(2) 

Cdata item i= the cost of data item I (min/year), ncont.,I is the number of item i that needs to be registered by year, 
tcont.,I is the unit cost to collect items i (minutes), nbacklong,i is the number of backlogged items i, tbacklog,I is the 
unit cost to collect a backlogged item i (minutes), and BHi is the backlog correction horizon (time until all data 
should be registered) in years. 
 
 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠[%] = ∑ "8∗$89

8:;
∑ "89
8:;

……………………………………………………………………..….(3) 

 
where wi= the weighting factor for benefit i (0,100%) The weight wi is determined based on data quality 
assessment scores for this framework. If the benefit (i) is present, then xi is 1, and if the benefit (i) is lacking, 
then xi is 0. The number of possible benefits of the group is described by n. 
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A B S T R A C T   

This study involved a survey of Swedish water utilities to evaluate their pipe-network data-collection objectives, 
usage, storage, and exchange routines. Factors impacting data integration (and the associated benefits) were also 
identified. Results showed that current data storage and exchange routines can be augmented to support 
commonly identified objectives and data utilisation needs, especially in larger water utilities. Levels of awareness 
of the opportunities for and benefits gained through asset management processes and data integration varied 
between utilities. Further research on the benefits of data integration in pipe network asset management is 
required to develop an evidence base on benefits accrued in practice, especially considering metadata, the di-
versity of legacy systems still in operation, costs and policy use.   

1. Introduction 

Municipal asset management (AM) systems are considered data- 
intensive (Alegre and Coelho, 2012). AM systems transform data into 
useful information, which allows utility managers to assess the gap be-
tween the status quo and the asset management objectives (Rokstad 
et al., 2016). Many water utilities face a challenge with their municipal 
AM data and systems being distributed and heterogeneous (Opar-
a-Martins et al., 2015; Carriço et al., 2020). This challenge arises pri-
marily from these systems’ being mostly stand-alone with limited or no 
capability to share and exchange information with other systems. Such 
data and system configurations inadvertently foster a silo mentality 
which necessitates a reliance on intuition and tacit knowledge and re-
sults in complexities in decision-making within water utilities (Van Riel 
et al., 2014; Van Riel et al., 2017). Such decision-making complexities 
are especially the case in many Swedish water utilities where long-term 
planning is reported to be limited, and there are gaps in information 
sharing (Martenssoon and Rumman, 2019; Emilsson and Adrup, 2021). 
These challenges and associated complexities underscore the necessity 
of decision-making based on data-driven strategies (Hampapur et al., 
2011). Despite frameworks and models for data-driven decision-making 
such as Eggimann et al. (2017), Amador-Jimenez and Mohammadi 
(2020), Kerwin and Adey (2020) and Meydani et al. (2022) as well as 
software solutions (e.g., ESRI, baseform, copperleaf, Oracle), barriers 

persist. Some of the most prominent are intrinsic challenges that prevent 
data integration and system interoperability. Implementing efficient 
municipal asset management systems requires addressing these 
challenges. 

Efficiently integrating various function-specific and enterprise-wide 
systems for pipe network asset management (Vanier, 2014) is one of 
the most highlighted solutions for data integration. The fundamental 
question remains: can a unified approach to the interoperability of AM 
systems for pipe networks support better data management and infor-
mation flow between various work processes? Several promising theo-
retical and practical solutions have previously been reported. These 
include using data warehouses, middleware (Carriço et al., 2020) and 
standard data models (Halfawy et al., 2006) such as a GIS database. 
Some difficulties in practically implementing such solutions include (1) 
the consequences of using commercial systems (Carriço et al., 2020), (2) 
Inconsistencies during the data collection (Rokstad, 2012) and (3) the 
identification of which AM systems need to be interoperable (Halfawy 
et al., 2003). When commercial systems are used, the question of who, in 
actuality, owns the data has been raised (Carriço et al., 2020). Com-
mercial systems may also prevent water utilities from having full au-
tonomy to use and analyse data according to their objectives. Generally, 
commercial systems have limitations and do not always match all the 
needs and goals of a utility. Uncertainties, biases and anomalies in the 
data collection phase, such as null, outlier, and incorrect values, need to 
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be treated (identified, evaluated, and, if needed, corrected). In a pre-
study including a focus group workshop, the findings suggested that not 
all pipe AM systems need to be interoperable. Therefore, AM data needs 
and strategic objectives for varying utility sizes, resource availability 
and data maturity levels should be understood to determine interoper-
ability needs and desired levels. 

Other challenges have been reported to affect interoperability (Par-
likad and Jafari, 2016). These challenges include cybersecurity concerns 
and increased digitalization through the development of real-time data 
collection, such as IoT and intelligent sensors (Carriço and Ferreira, 
2021). Furthermore, advanced analytics in areas such as building in-
formation modelling, artificial intelligence, machine learning, big data, 
and virtual and augmented reality further compound the challenges 
faced in achieving interoperability (Ahonen et al., 2019; International 
Water Association, 2022). Cloud storage services, 5G broadband tech-
nology, and blockchain technology are promising solutions for 
achieving interoperability (Arnell et al., 2023). These technologies offer 
scalability, multitenancy, elasticity, and on-demand access, which are 
crucial for future-proofing. 

Moreover, they have the potential to increase data-driven IAM 
adoption. However, there are several challenges associated with using 
these technologies. For example, cost, data security, privacy concerns, 
and the complexity of IT infrastructure and processes are some of the 
most apparent issues (Ahonen et al., 2019). Addressing these challenges 
will be essential to ensure these solutions’ successful implementation 
and adoption. 

Okwori et al. (2021) contextualised objective-driven integrated asset 
management (OD-IAM) as the link between data quality and systems 
integration with specific objectives for managing pipe networks in water 
utilities. In this way, OD-IAM enables water utilities to effectively ach-
ieve their goals by using high-quality data and interoperable systems to 
support data-driven decision-making. This contextualisation needs 
further substantiation. Specifically, aspects linking system interopera-
bility to OD-IAM still need to be empirically investigated and are 
considered part of the challenges of IAM implementation (Polenghi 
et al., 2021). Studies that can provide a guide to improve data integra-
tion and systems interoperability related to municipal or water utility 
pipe networks are also limited to supporting informed decision-making 
(Leal et al., 2019; Carriço et al., 2022). 

This study aimed to contribute to the understanding of the impact of 
data integration on the application of data-driven approaches, the 
presence of data silos, and data management practices in the context of 
pipe network asset management (AM). The objectives were to evaluate 
the connections between data-collection objectives, data storage, and 
exchange routines and assess the key drivers, challenges, and benefits 
associated with data integration. This study also suggested improvement 
pathways to the challenges. The findings of this research contribute to 
developing a roadmap for policy and practical applications for digita-
lization and adopting data-driven strategies in pipe network manage-
ment. In the context of this study, data integration refers to the 
capability or ability of different systems to exchange data in an auto-
mated manner (i.e., systems interoperability). 

2. Methods 

An online survey questionnaire was designed to get the perception of 
the Swedish municipalities and water utilities regarding the alignment 
of objectives to data integration needs and the challenges and benefits of 
data integration within municipal pipe networks. The questions were 
designed with input from focus group workshops and literature studies. 
The questionnaire comprised seven closed-ended questions with sub- 
questions and one open-ended question. The survey focused on the 
following. 

I. Identification of the data collection objectives for the mainte-
nance and management of pipe networks.  

II. The respondents’ perceptions about data utilisation routines for 
long-term maintenance and management of the pipe networks.  

III. The respondents’ perceptions about data storage and exchange 
routines for the pipe networks’ operations, maintenance, renewal 
and strategic planning.  

IV. Perceptions about technical, organisational and meta-data- 
related factors reported as impactful to data integration.  

V. Perceptions on perceived benefits of data integration. 

The questionnaire was created using the Survey Monkey web-based 
tool (2022). It was sent out in May 2022 and was open until August 
2022. It was distributed to technical professionals in the 290 munici-
palities working with the pipe networks. The survey was initially 
delivered to the central registrar at the municipality or water utility, 
which was asked to forward the questionnaire to the technical personnel 
with adequate knowledge of pipe network maintenance and manage-
ment. This group comprised water and wastewater engineers and in-
dividuals in managerial roles, such as chief executives, unit managers, 
operational managers, unit heads, investigation and planning engineers, 
project engineers, and operations engineers. Refer to supplementary 
material I for the developed survey questions. 

2.1. Survey questionnaire design 

The methodology used to develop the questionnaire was based on 
(Jebb et al., 2021). The methodology entails a systematic approach to 
developing questions that utilize the Likert scale to measure re-
spondents’ perceptions on a particular subject. This systematic approach 
consisted of choosing relevant questions based on research objectives 
and existing literature. A pilot test assessed these items for clarity and 
relevance. Feedback from the pilot test lead to refinements. Subse-
quently, the questionnaire underwent validation to confirm its structure 
and consistency. The finalized survey was then distributed to the 
intended audience. 

Ethical standards, including participant privacy and informed con-
sent, were maintained throughout this process. Fig. 1 specifies what 
these systematic steps entailed that are particular to this present study. 

As part of the piloting process, the questionnaire was refined and 
fine-tuned in two rounds to enhance understandability. This approach 
leveraged the tacit knowledge of a municipality’s retired head of water 
services. Their experience was valuable in improving the questionnaire 
and ensuring it was clear and understandable. 

2.2. Response rate statistics 

Sixty-five respondents participated in the survey and represented 92 
of the 290 Swedish municipalities since some water utilities provide 
water services for several municipalities (an approximately 32% 
response rate). The percentage distribution of respondents by role con-
sisted of 35% water and wastewater engineers, 37% had managerial 
positions, e.g. chief executive, unit manager, operational manager, or 
unit head, 15% were investigation and planning engineers, and 12% 
were project engineers, or operation engineers and others. The per-
centage distribution of respondents according to utility type and size, i. 
e., the number of inhabitants served by the pipe network within the 
municipalities or utilities, is presented in Table 1. 

2.3. Statistical analysis 

The survey results are presented using diverged stacked and stacked 
bar charts showing the percentage distribution of responses, indicating 
the frequencies of responses that are in agreement or disagreement, and 
identifying outliers. The method used for creating diverged stacked bar 
charts is based on Heiberger and Robbins (2014). 
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2.3.1. Principal component analysis and multiple correspondence analysis 
Principal Component Analysis (PCA) is an exploratory multivariate 

analysis for reducing the dimensionality of datasets and increasing 
interpretability while reducing information loss (Husson et al., 2022). 
PCA summarises the variation in data, identities, relationships, and as-
sociations between variables capable of explaining the variation in 
relatively large datasets. A detailed explanation of the PCA methodology 
can be found in Shaffer (2002) and Husson et al. (2022). In this study, 
two PCAs were performed to identify associations and correlations 
which can provide additional insights from the survey responses. The 
first PCA was carried out between surveyed objectives for data collec-
tion, data utilisation routines, data storage and exchange routines, and 
variables for utility type and size. The second PCA was carried out be-
tween surveyed technical, organisational and metadata factors that 
affect data integration and systems interoperability and responses for 
data storage and exchange routines. The various associations and cor-
relations identified by the PCA were further explored by carrying out 

multiple correspondence analyses with questionnaire responses for in-
dividual sub-questions. For example, responses to questions A and B can 
be analysed to evaluate if respondents who” strongly agreed” with A also 
“strongly disagreed” with B or vice versa. Multiple correspondence an-
alyses can generally be understood as a type of PCA for categorical data, 
where the geometric definition of PCA is considered rather than its 
statistical definition. A detailed description of multiple correspondence 
analysis methodology can be found in Greenacre and Pardo (2007). 
Results from the PCA and multiple correspondence analyses are pre-
sented via asymmetric biplots in supplementary data II. 

2.3.2. Word count analysis 
Responses to the open question regarding the perceived benefits of 

increased systems interoperability in asset management and decision- 
making for pipe networks were analysed by the count of adjectives 
used to qualify various potential benefits of systems interoperability. In 
this study, the words were manually counted to identify repeated 

Fig. 1. Flowchart showing methodology and steps in developing the questionnaire based on (Jebb et al., 2021).  

E. Okwori et al.                                                                                                                                                                                                                                 



Utilities Policy 86 (2024) 101689

4

adjectives. Commonly used words without contextual meaning were 
excluded, for example, words like “as” and “was”. Furthermore, findings 
were sorted from high-frequency to low-frequency words (Rouder et al., 
2021). 

3. Results 

3.1. Assessment of collection, usage, storage, and exchange routines of 
data to support asset management 

The respondents’ perceptions regarding objectives for data collec-
tion, data utilisation, data storage and exchange routines between sys-
tems for management of the pipe networks are presented in Fig. 2. 

The reported objectives for data collection typically represented 
some of the common strategic, tactical, and operational objectives for 
asset management of pipe networks (Fig. 2a). The objectives that were 
observed to be more common among respondents (60–80% of re-
spondents) compared to others included analysis of operational distur-
bances (A1), renewal planning (A2), maintenance planning (A3), and 
planning for network expansion (A4). Risk and impact assessment (A5), 
analysis of network capacity (A6), and reporting purposes (A7) were 
considered objectives by approximately 50% of respondents. Only 35% 
and 6% of respondents agreed that the estimation of project costs (A8) 
and geotechnical assessments/soil investigations (A9) were objectives 
for data collection. Additionally approximately 60 % of the respondents 
indicated that data was utilised for strategic and tactical decision- 
making and managed by several diverse systems and databases 
(Fig. 2b, B1–B2). 

Survey responses were indicative that current data storage and ex-
change routines were inadequate to support data utilisation by multiple 
systems or AM models simultaneously. Evidence to support this can be 
seen in responses from the data storage routines investigated, where 
only 36% of respondents indicated that data was stored in a manner that 
it could be used by several systems and databases (Fig. 2c, C1). Addi-
tionally, 73% of respondents indicated a lack or uncertainty in the 
availability of policy that specifies how data should be stored or 
managed so it can be used by multiple systems (Fig. 2, C2). Responses 
about data exchange routines (Fig. 2b, B3) showed that 44% of re-
spondents reported that data was managed using manual routines, 56% 
that systems/databases did not exchange data with automatic routines 
and 30% were uncertain (Fig. 2b, B7). Fig. 2d also showed that slightly 

more than a third of respondents had neutral perceptions of how data is 
exchanged, while 20%–34% responded that data was exchanged 
manually between systems. An excerpt from respondents that further 
supports these findings is presented below. 

“Much data is currently collected in VA-banken*. We have a func-
tioning connection for data exchange between VA-banken and the 
billing system, which contains records for all services and water 
consumption (charged) for all properties for which the municipality 
provides water services. A connection between VA-banken and other 
systems/databases (finance, hydraulic models, water samples ana-
lyses, customer complaints databases) are still lacking.” 

*VA-banken is a software for managing water and sewerage network 
information. It lets users record pipeline data, report issues, prioritize 
tasks, and evaluate network status. 

The quote also emphasizes using VA-banken as a central repository 
for collecting and storing data but lacks a connection to other critical 
systems or data. This situation is hypothesized to be common in mu-
nicipalities and utilities in managing pipe network data, as noted by 
previous studies such as Halfawy et al. (2002) and Emilsson et al. 
(2021). 

However, one respondent pointed out that prioritization is necessary 
when resources are limited, especially when it comes to connecting 
databases and systems to facilitate data exchange and conduct more 
advanced analyses: 

“It is important to decide how data should be managed. Establishing 
a link between systems so data can be exchanged is often expensive 
and requires maintenance. However, it may be cost-effective to link 
databases if possible.” 

The quoted statement also emphasizes that the perceived costs 
associated with setting up and maintaining data exchange connections 
between systems can pose a challenge to establishing effective data 
exchange routines. This perception of cost extends to the person-hours 
required to enhance system interoperability and the availability of 
requisite expertise. It is crucial to align strategic asset management 
objectives with decisions about which systems to link to overcome this 
challenge (Okwori et al., 2021). Specifically, one approach is to base 
decisions about data exchange on the objectives for managing pipe 
networks, as this can provide a valid justification for determining which 
systems should be interconnected. 

Defining the AM objectives for pipe networks includes having 
measurable criteria, metrics and targets related to various objectives 
(Grigg, 2003). For utilities to efficiently define and accomplish their 
objectives, data related to pipe networks and associated analytical sys-
tems are required. The responses in Fig. 2 show that the most common 
objectives for collecting data are analysis of operational disturbances, 
renewal, and maintenance planning. These objectives typically require 
data from multiple sources (Grigg, 2003). The survey findings also 
indicated that a significant proportion of respondents (67%) agreed that 
collected data is used to make strategic and tactical decisions related to 
pipe networks. This observation underscores the essential function that 
data plays in guiding decision-making related to the management of 
pipe networks. 

3.2. Linking utility size, objectives, and data management routines: results 
from principal component and multiple correspondence analyses 

Principal component analysis (PCA) and multiple correspondence 
analysis were used to examine the linkages between utility size, utility 
type, data collection objectives (A1-A9), data utilisation routines 
(B1–B7), storage routines (C1–C2), and exchange routines (D1-D3). The 
following sections present associations highlighted by the results, 
illustrated in Supplementary Data II, Figs. 1–5, and account for 
approximately 44% of the variance in the responses. 

The analysis revealed that respondents from larger utilities serving 

Table 1 
Descriptive information of survey respondents 
Swedish Association of Local Authorities and Regions, 2017 and Svenskt Vatten 
(2022).  

Survey respondents based on water utility type (percentage of total respondents) 

Municipality: The municipality water department is responsible for the 
management of water and sewerage services and operations 

34 
(53%) 

Water Utility - The water services are managed by a municipal water 
company or other municipal association to manage water and sewerage 
services and operations. The utility can be a pure water or sewerage 
company 

29 
(45%) 

Other, i.e., organisational structures that do not fall into any of the 
categories described above or maybe water and sewerage companies 
jointly owned by several municipalities, or Several municipalities form a 
joint municipal association 

1 (2%) 

Survey respondents based on the number of habitants connected to the pipe 
networks within the municipality (percentage of total respondents) 

More than 200,000 -municipalities with a population of at least 200,000 
inhabitants with at least 200,000 inhabitants in the largest urban area 

3 (5%) 

50,000–200,000- Medium-sized towns – municipalities with a population of 
at least 50,000 inhabitants with at least 50,000 inhabitants in the largest 
urban area. 

19 
(30%) 

15,000–50 000 - municipalities with a population of at least 15,000 
inhabitants in the largest urban area 

34 
(38%) 

Fewer than 15,000 - municipalities with a population of fewer than 15,000 
inhabitants in the largest urban area, 

18 
(28%)  
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more inhabitants were likelier to agree that objectives such as analysing 
operational disturbances, renewal and maintenance planning (A1-A3), 
and utilizing data for strategic and tactical decision-making (B1) were 
important. They also exhibited a positive correlation between these 
critical objectives and data usage for strategic and tactical decision- 
making. Conversely, smaller utilities, serving fewer inhabitants, were 
more likely to agree that data was manually queried between systems 
(D1) and manually updated between systems (D2). One respondent from 
a smaller utility provided insights highlighting the challenges smaller 
utilities face in digitalization and data integration. This respondent 
emphasized that smaller utilities are still in the process of digitalization 
and rely primarily on hardcopy maps, which suggests a predominant 
reliance on tacit knowledge and experience for decision-making and 

management within the pipe networks. 
Additionally, the respondent noted that most strategies and de-

velopments within AM for pipe networks are geared toward larger 
utilities, leaving smaller utilities lacking insight into AM and digitali-
zation. Smaller utilities face different Asset Management (AM) and data 
integration challenges compared to larger utilities, and understanding 
how smaller utilities can cope and move forward may be more critical. 
Another view is that utilities with vast scale and complexity require 
more sophisticated software solutions than utilities with limited budgets 
and simpler needs, which may find more value in straightforward, 
simple, more cost-effective solutions (International Water Association, 
2022). 

The analysis revealed no definitive patterns regarding data storage 

Fig. 2. Respondents’ perception regarding data collection objectives(a), its utilisation (b), storage(c), and exchange (d) routines between systems for management 
and maintenance of the pipe networks. 
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and exchange routines relative to utility type. However, it was observed 
that water utilities were less likely to have a clear policy regarding data 
management for use by multiple systems (C1) and were also less likely to 
manage data in a way that can be used by multiple systems (C2). 
Conversely, municipalities tended to agree more that data was manually 
queried between systems (D1) and manually updated between systems 
(D2). 

3.3. Technical, organisational, and metadata-related factors affecting 
data integration in managing pipe networks 

Survey responses related to various investigated technical, organ-
isational, and metadata-related factors that may affect data integration 
in the context of managing pipe networks are presented in Fig. 3. 

Regarding technical factors surveyed, data privacy and cybersecurity 
concerns (T3) and the diversity of data sources (T2) were considered to 
have the most adverse impact on data integration. The effect of com-
mercial legacy systems usage was, on the other hand, considered the 
least impactful factor on data integration (T1). Based on additional 
comments from respondents, the cost of data integration between the 
systems and their associated maintenance and IT infrastructure (e.g., 
size of servers and administration) was also highlighted. 

Limited human resources (O3) and problems related to limited ac-
cess, permissions (O2), and authorisation (O5) to various systems for 
data management were considered most adversely impactful to data 
integration from an organisational perspective. Respondents considered 
the lack of policy (O4) and cost of data integration solutions (O1) to have 
a lesser impact on data integration. Challenges such as O1 –O5 can result 

in deficiencies in the data structure and composition, leading to inade-
quate prioritization, limited long-term maintenance planning, and a lack 
of objectives for data management. This observation was further sup-
ported by the comments from a respondent, which are presented below: 

“There is poor strategic management regarding prioritisation and 
long-term maintenance planning, including limited maintenance. 
Regarding data management, there are ambitions, but no goals set or 
responsible persons.” 

The results from the survey indicated a varied understanding of 
metadata and its significance in data integration among the respondents. 
Specifically, between 25% and 30% of the respondents expressed un-
certainty about the role of metadata. Additionally, 20%–25% indicated 
that their perception was that metadata played a minimal or minor role 
in data integration, as shown in Fig. 3M. This disparity could suggest 
that either metadata is not deemed crucial by these respondents or there 
is a general lack of awareness regarding its importance in data 
integration. 

3.4. Associations between data storage, exchange routines, and factors 
affecting data integration 

The Cross-sectional analysis between surveyed data storage, ex-
change routines, and factors that may impact data integration provides 
insights into the challenges faced by managing pipe networks. The PCA 
and multiple correspondence analyses were conducted on various fac-
tors surveyed. Figs. 6–9 in Supplementary Data II provide biplots that 
illustrate the results of these analyses. Although the PCA analysis only 

Fig. 3. Respondents’ perceptions regarding technical (T), organisational (O), and metadata-related (M) factors that impact data interoperability relative to the 
set objectives. 
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accounted for approximately 36% of the variance in the responses, the 
multiple correspondence analyses allowed for deeper associations to be 
identified. Therefore, the multiple correspondence analyses analysis 
provided a more detailed understanding of the factors that impact data 
integration. 

One notable finding was that the lack of metadata documentation 
and system unification could be linked to increased manual routines for 
data exchange. Respondents who reported that data was manually 
queried (D1), updated (D2), or transferred (D3) between systems also 
tended to report that the lack of metadata documentation (M2), lack of 
similar metadata structure (M1), and discrepancies in data representa-
tion (M3) adversely affect data integration The correlation between the 
variables/correlation coefficient was estimated at 0.5; see Supplemen-
tary Material II, Fig. 10. 

The evaluated technical factors affecting data integration, such as 
diversity and the commercial nature of systems used, are also hypoth-
esized to be drivers impacting organisational factors. For instance, re-
spondents reported that factors such as limited authorisation to different 
systems (O5), limited human resources (O3), and cost (O1) had adverse 
impacts on data integration and also tended to answer that the use of too 
many diverse commercial legacy systems had an impact, and vice versa. 
The degree of association between variables was estimated at 0.5; see 
Supplementary Material II, Fig. 11. Using standardized data models, 
such as standardized datasets and a unified system schema, could 
address organisational challenges associated with data integration. This 
approach includes improving data and system accessibility and over-
coming human resource limitations (Halfaway et al., 2006). 

Approximately 70% of respondents considered data privacy and 
cybersecurity concerns (T3) related to cloud storage solutions to have a 
moderate to severe adverse impact on data integration. These re-
spondents also agreed that there was a lack of policy regarding how data 
should be managed to support usage by multiple systems (C1) and that 
the data was not managed in a way that supported multi-systems uti-
lisation (C2). The degree of association between variables was estimated 
at 0.6; see Supplementary Material II, Fig. 12. This finding suggests that 
respondents considered that cloud storage could improve data integra-
tion. However, data privacy and cybersecurity challenges need to be 
sufficiently addressed. Similar sentiments have also been given by Arnell 
et al. (2023). 

3.5. Perceived benefits of data integration for pipe network AM 

The responses to the open-ended question regarding the perceived 
benefits of data integration revealed several advantages for managing 
pipe networks. These benefits include improved data management, 
prioritized strategic planning, enhanced renewal efforts, more data- 
informed decisions, and efficient operations management. A word 
count analysis of the adjectives used to quantify these advantages 
included adjectives such as “better”, “improved”, and “increased” used 
16 times. Similarly, terms such as “time-saving”, “quick”, and “access” 
were mentioned 15 times. Descriptive words such as “correct”, “accu-
rate”, and “updated information” also appeared ten times. 

Meanwhile, adjectives like “efficient”, “easier”, “safer”, and 
“advanced” were cited fewer than eight times. While the overall senti-
ments about the benefits of data integration were positive, the per-
centage of respondents who responded to the open question accounted 
for only 25% of respondents. This finding supports the argument that the 
benefits of data integration need to be substantiated more practically in 
the day-to-day operations of water utilities. 

To further emphasise the advantages and benefits of data integration, 
one respondent indicated: 

“It would give a better overall picture of the entire system as a whole 
and enable more advanced analyses. Better efficiency and collabo-
ration between different departments. Higher quality of the data.” 

Another respondent emphasized that increased data integration can 

lead to 

“Better and more efficient decision-making. More effective opera-
tional support.” 

The role of data integration as a mechanism to enable co-infra co-
ordination or multi-infrastructure coordinated maintenance was also 
highlighted. Additionally, merging data from various systems can 
improve the database’s precision and dependability, making it better 
suited for decision-making (Carriço and Ferreira, 2021). Another 
respondent indicated that data integration will lead to the following: 

“Faster and more fact-based decisions regarding water and sewer 
network renewal and expansion. Lower environmental impact (pre-
vent sewer overflows, infiltration, and inflow) and fewer operational 
disruptions. Better (more accurate) early cost estimates for renewal 
and network expansion projects.” 

While the perceived benefits of data integration for asset manage-
ment in pipe networks reported were generally positive, the notion that 
the benefits have not been adequately identified or quantified has been 
highlighted by a respondent, which indicates that: 

“The benefits and costs of integrating different IT systems (and 
maintaining this integration) have not been adequately identified.” 

4. Discussion 

4.1. Relevance of data integration in asset management and digitalization 
for municipal pipe networks 

Whilst evidence on the benefits of integrating data to enhance the 
efficiencies of objective-driven asset management of pipe networks is 
growing in the literature (e.g. Okwori et al., 2021), municipalities and 
water utilities face ongoing challenges in implementing integrated data 
and synchronized systems for structured analytics and decision-making 
(Fileto, 2001; Carriço et al., 2020; Emilsson et al., 2021). The results of 
this study supported these findings, indicating that whilst the potential 
benefits of data integration are recognised, more evidence on the types 
and magnitudes of benefits accrued in practice is required to facilitate 
the adoption of data integration practices in the day-to-day operations of 
water utilities. To better substantiate these benefits, one approach is to 
focus on improving integration, i.e., interoperability between systems 
between different datasets, leading to identifying and quantifying syn-
ergies, such as those accrued by the combination of outputs of hydraulic 
models, SCADA systems, and IoT devices. By leveraging these synergies, 
it is possible to achieve better performance and hydraulic efficiency for 
pipe networks (Hampapur et al., 2011). 

These synergies could also improve proactive asset management 
(Carriço et al., 2020), collaboration, and multi-utility coordination 
(Vanier, 2014; Daulat et al., 2022). Despite attempts to leverage such 
data synergies, data suggests that water utilities and municipalities are 
yet to fully realise the potential benefits in practice with a combination 
of site-specific, organisational and operational factors identified. For 
example, data integration requirements of water utilities vary greatly, 
necessitating more modular solutions tailored to specific objectives, as 
evidenced by the range of responses to questions related to data storage 
and exchange routines. Further, approximately 60% of organisational 
reliance on legacy and commercial systems hinders effective data inte-
gration. For example, one respondent highlights a commercial system’s 
inability to adequately address the needs of managing the pipe networks 
effectively. 

“The same system is used throughout the organisation. However, our 
system is best suited for fibre and electricity.” 

In addition, responses indicated that the trade-off between perceived 
costs (including person-hours) and the potential benefits of data inte-
gration requires further research at both strategic and operational levels 
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of asset management within water utilities where perspectives on where 
an appropriate balance should fall. 

4.2. Perceived challenges of data integration for asset management of pipe 
networks in the Swedish context 

This study identified perceived challenges and drivers to achieving 
data integration for effective asset management in pipe networks from 
practitioner perspectives. The challenges can be categorized into two 
groups: direct (respondent lead) and indirect (emerged from data 
analysis). 

The first category relates to limited resources, limitations due to the 
diversity and use of commercial legacy systems (Carriço and Ferreira 
2021), concerns about data privacy and cybersecurity (Ahonen et al., 
2019) and semantic, syntactic, and schematic heterogeneities inferred 
from the inconsistency of data storage routines and data exchange 
routines. Whilst these challenges have been identified by previous 
studies and options for their mitigation suggested, e.g. Halfawy et al. 
(2002), Beck et al. (2007, 2008), Panetto et al. (2016), and more 
recently, Fossatti et al. (2020), the fact that such challenges exits indi-
cate the proposed solutions are not feasible in practice, or a reluctance to 
implement change at an organisational level (i.e., institutional inertia). 

The indirect challenges involved data collection objectives consid-
ered common by respondents such as analysing operational distur-
bances, renewal planning, maintenance, network expansion, and risk 
assessments. These objectives may require high levels of data integration 
from varied sources, as emphasized by Grigg (2003), Rokstad et al. 
(2016), and van Riel et al. (2014). However, differences in data storage 
and exchange responses suggest a potential misalignment between these 
objectives and current storage and exchange practices. The multiple 
correspondence analysis (supplementary material II, Figs. 2–4) also 
suggests that smaller utilities (serving relatively lower population den-
sities and associated support infrastructure) often use manual data ex-
change, further impacting the ease with which data sets can be 
integrated. Further indirect challenges observed regarding gaps are 
discussed in the following section. 

4.3. The gap between theory and practice 

The survey results evidence the gap between the theoretical concepts 
of data integration, as outlined in literature, and the lack of evidence 
supporting the realisation of these benefits in practice. Specific areas 
include. 

4.3.1. Data quality 
Studies by e.g. Jwan Khisro (2020) and Daraio et al. (2022) 

emphasized that data quality is critical for enhanced interoperability. 
However, the results of the present survey showed mixed responses 
related to data quality maintenance practices. Specifically, whilst 44% 
of respondents reported that their organisation has a process to maintain 
data quality, 41% responded neutrally, with 16% identifying that their 
organisation did not currently have a process to maintenance 
data-quality. Similarly, 39% of respondents agreed that data quality in 
their organisation is continuously monitored, 31 % had neutral opin-
ions, and 30% disagreed. The range of approaches to data-quality 
management identified here highlights inconsistencies in data quality 
assurance practices within and between organisations, with impacts on 
the potential for data integration and the type and magnitude of benefits 
accrued. 

4.3.2. Meta-data documentation, structure, and representation 
The survey indicated a gap in understanding the impact of metadata- 

related factors on data integration at the structure and exchange levels 
for Swedish water utilities. Specifically, at least 30% of respondents did 
not understand how the lack of metadata documentation and the simi-
larity of its structure between systems and representation could impact 

data integration. Twenty-five percent of the respondents also acknowl-
edged that metadata had minimal or moderate impacts on data inte-
gration. This finding suggests that about 70% of the respondents either 
did not recognize the importance of metadata-related factors or 
considered it to have a minimal impact. However, previous studies such 
as Halfawy et al. (2003), Beck et al. (2007, 2008), Halfawy (2008), and 
Carriço et al. (2022) have emphasized the significance of semantic and 
syntactic heterogeneities in metadata documentation, structure, and 
representation that affect data integration. 

4.3.3. Diversity and use of commercial legacy systems 
The survey findings indicated that most respondents did not view 

commercial legacy systems hindering data storage and exchange. 
However, previous research have suggested otherwise (Fileto, 2001; 
Carriço and Ferreira, 2023). Such systems often have “lock-in effects”, 
inhibiting data use across different platforms. Water utilities often use 
multiple systems that are not mutually compatible. This incompatibility 
complicates data integration, which is accentuated by technological 
gaps between old and new systems (Iqbal et al., 2003; Muketha and 
Ondimu, 2012). Furthermore, these legacy systems may reduce a utili-
ty’s data autonomy, limiting its operational effectiveness (Carriço and 
Ferreira, 2023). 

4.3.4. Data integration policy 
The survey findings suggested that the prevalence of manual data 

routines may be associated with a lack of policy. Evidence of this can be 
observed, with results indicating that 56% of respondents reported an 
absence of policy within their organisations regarding data storage for 
utilisation by multiple systems. The multiple correspondence analysis 
(supplementary material II, Fig. 5) also showed a high degree of asso-
ciation among respondents that indicated policy for data usage by 
multiple systems was absent, and more manual routines were used for 
data exchange (coefficient of association of 0.6). Policy is considered a 
driver of organisational decision-making in utilities (Almeida et al., 
2022). 

4.3.5. Lack of human resources 
Approximately 80% of respondents considered limited human re-

sources to maintain or improve systems to have a moderate to severe 
impact on data integration. This finding aligns with Emilsson et al.’s 
(2021) report on asset management in Swedish water organisations. 
However, it may not be universal, as only a few studies, such as Carriço 
et al. (2022), have reported similar in Portuguese water utilities. 

4.3.6. Cost of data integration solutions 
The cost associated with establishing and maintaining data integra-

tion can be considered from different standpoints: the availability of 
competence, i.e., technological skills necessary for integration tasks and 
time allocation, which depend on economic and financial circumstances. 
Notably, the survey findings indicated a considerable level of con-
sciousness regarding competency but not as much for time allocation. 
These costs can be considered one of the major barriers to data inte-
gration (Ahonen et al., 2019). 

4.4. Implications for stakeholders, practice, and plausible pathways 
forward 

The perceived challenges to data integration highlighted in the 
preceding section may pose several implications for various stake-
holders, i.e., water utilities, regulators, software developers and re-
searchers. Below, some of the more apparent implications are presented. 

Potential inconsistencies in data storage and exchange routines and 
perceived associated misalignments that may arise from such routines 
may result in adverse effects such as data silos and data fragmentation 
Halfawy (2008). Hence, there is a need for a process that aligns data 
integration needs with the strategic objectives of asset management in 
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pipe networks. The methodology proposed by Noshahri et al. (2021), 
which categorises data needs based on sewer inspection methods, offers 
an illustrative example of such a process. Furthermore, as Arnell et al. 
(2021) emphasized, such a process is crucial, given the varying digiti-
sation needs across different utilities. 

The need for standardisation and open architecture frameworks and 
solutions, such as using middleware or Application Programming 
Interface (APIs), has been consistently highlighted in previous studies as 
solutions to data integration and interoperability issues. Examples of 
these studies and frameworks include Halfawy et al. (2006), Vemula-
pally and Sinha (2009), Angkasuwansiri and Sinha (2018), Hernández 
et al. (2020), Jin et al. (2021) and Webber et al. (2022). However, the 
discrepancy between theory and practice regarding metadata docu-
mentation, representation, and structure poses significant challenges to 
using and adopting such frameworks and solutions to achieve more 
synchronized data and systems. Another plausible reason for the slow 
adoption of such standardised protocols or frameworks could be the lack 
of a coherent policy regarding how data can be stored so it can be used 
by multiple systems, which is also highlighted in this study. 

The diversity of commercial legacy systems in water utilities may 
lead to “lock-in effects,” limiting data access and use for asset manage-
ment of pipe networks. This challenge has been highlighted by re-
searchers like Kasunic and Anderson (2004) and Carriço et al. (2020), 
who state that modern technologies offer potential solutions. Cloud 
storage can centralize data, blockchain can ensure consistency, and 5G 
can reduce latency (Mathew, 2008; Carriço and Ferreira, 2021; Ugarelli, 
2021; Haddara et al., 2021). However, concerns about data privacy 
appear to hinder the adoption of these solutions, as noted by Ahonen 
et al. (2019), and a potential walkaround to these concerns has been 
proposed by (Arnell et al., 2023), some of which include Information 
classification and clear data ownership. 

Implications of poor data quality for data integration and interop-
erability of systems may intensify semantic heterogeneities like unit 
mismatches, spatial reference variances, and scale discrepancies (Beck 
et al., 2007). For example, unreliable data can skew analyses, leading to 
costly maintenance errors. It can also misguide resource allocation, 
causing disproportionate maintenance efforts. Additionally, integrating 
diverse data sources becomes challenging. Hence, a more profound 
comprehension of data quality, maintenance, and implications for data 
integration and system interoperability is essential. 

4.5. Comparative contextualisation of survey findings and limitations 

The survey findings provided valuable insights into the challenges of 
data integration for asset management in pipe networks as perceived by 
practitioners. Whilst the response rate of approximately 32% indicates 
that the survey covered a broad range of responses, further research is 
needed. For example, the identified challenges associated with the 
absence of policies for data storage, facilitating its use across various 
systems is a consistent finding in Swedish-based studies and reports such 
as Syssner and Jonsson (2020), Arnell et al. (2021), Emilsson and Adrup 
(2021), Arnell et al. (2023) and Bennich et al. (2023). In contrast, we 
identified challenges related to metadata, the diversity and lock-in ef-
fects of commercial legacy systems, effects of data quality, and concerns 
over data privacy and cybersecurity (especially in cloud storage) that 
have been widely reported in more international contexts. Examples 
include Vemulapally and Sinha (2009), Opara-Martins et al. (2015), 
Panetto et al. (2016), Carlo et al. (2011), Garramone et al. (2020), Jin 
et al. (2021), Carriço and Ferreira (2023) and International Water As-
sociation (2022) This study provides a detailed picture of current 
practices in Swedish water utilities. However, future research could 
address developments through a longitudinal study, which may involve 
replicating the survey in Sweden and other countries after a set period to 
trace the evolution of practices. 

5. Conclusion 

The main finding of this study was that data storage and exchange 
routines were perceived to be inadequate to support the expected levels 
of data integration needed for commonly identified data collection ob-
jectives. This misalignment gives rise to data silos and fragmented data 
structures, which in turn negatively impact asset management within 
pipe networks. The degree of this misalignment can differ depending on 
the size of the utility and its digital maturity level. 

The study also identified several perceived data integration chal-
lenges in the context of pipe network asset management in Sweden. 
Previous research has also highlighted these challenges, suggesting 
persistence and indicating that current solutions might be impractical or 
not widely adopted. The identified challenges also shed light on the 
reasons for this reluctance. These challenges and potential pathways 
include the need to practically substantiate the benefits of data inte-
gration in the pipe-network asset-management context, which was also 
highlighted in the survey results. Discrepancies in perception between 
theory and practice can be considered one of the plausible reasons for 
the lack of substantiation. There are several areas where such discrep-
ancies were observed to be more prominent, such as metadata docu-
mentation, structure, representation, commercial legacy systems, cost of 
data integration and a lack of policy guiding how multiple systems 
should use data. The heterogeneity and lock-in effects of commercial 
legacy systems and data privacy and cybersecurity concerns were also 
emphasized. It is hypothesized that mitigating challenges associated 
with the lock-in effects and data privacy will positively influence iden-
tified organisational factors that affect data integration, such as inade-
quate resources and restricted system access. 

The identified challenges provide a roadmap for stakeholders to 
enhance data synergies for more objective-driven management of pipe 
networks. 
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Information about your organization  
a) Enter the name of the organisation and your position 
  
b) How is your water utility classified? 
Organizational form Tick 
Municipality o     
Water Utility  o     
Other    
  
c) How many people are connected to the municipal water and sewer network? Even 

those connected only to one of the systems should be included. 
  
  
  
  
  
  

 
Objectives for data collection, data utilisation, data storage, and 
exchange routines between systems for the management of the 
pipe networks: 
a) Identify the objectives your organization has for collecting and using data for the 

management and maintenance of the pipe networks. 
  

 
Code 

In your opinion how much do these objectives 
represent your organization's goals for the 
management of the pipe networks? 

Strongly 
Disagree 

 Strongly 
Agree 

1 2 3 4 5 
A1 Analysis of operational disturbances, for example, 

leakages, blockages etc. 
o  o  o  o  o  

A2 Renewal planning  o  o  o  o  o  
A3 Planning maintenance o  o  o  o  o  
A4 Planning future network expansion needs  o  o  o  o  o  
A5 Risk and impact assessments to identify critical 

pipes and vulnerabilities 
o  o  o  o  o  

A6 Analysis of capacity in pipe networks o  o  o  o  o  
A7 For reporting purposes i.e., reporting to VASS o  o  o  o  o  
A8 Project cost estimation o  o  o  o  o  
A9 Geotechnical assessments o  o  o  o  o  
 If you have other objectives not listed above, 

please indicate them below  
     

 
 
 

Number of persons Tick 
More than 200,000 o     
50 000 - 200 000 o     
15 000 -50 000 o     
Fewer than 15,000 o     



2 
 

b) Data use and management 
Data related to sewer networks may refer to information about pipe sections, environmental 
conditions and statistics collected for later documentation or analysis. For example, it may be about: 

I. Physical data on wiring such as age, material, pipes (diameter, slope, length), pipe wall 
thickness, and laying depth 

II. Hydraulic capacity, connection tightness, etc. 

III. CCTV inspection files and fault data for VA wiring harnesses 

IV. Environmental factors including soil type, soil subsidence, vegetation maps 

V. Financial data such as cost of operation, maintenance, renewal projects, capital costs and 
investment project costs. 

How is data for long-term maintenance and management of the pipe networks in your municipality 
used and managed? 
  
 
Code 

  Strongly 
Disagree  

  Strongly 
Agree 

Routines 1 2 3 4 5 
B1 Data is used to make strategic and tactical decisions about, 

for example, renewal rates 
o     o     o     o ] o     

B2 Data is handled using several different systems/databases  o     o     o     o     o     
B3 Data is primarily handled with or transmitted with manual 

routines  
o     o     o     o     o     

B4 A process is in place to maintain the quality 
of data regarding the sewer network. 

o     o     o     o     o     

B5 Data quality is continuously monitored o     o     o     o     o     
B6 Data is primarily collected for reporting purposes - for 

example, Svenskt Vattens VASS 
o     o     o     o     o     

B7 Data is handled through a set of automatically 
connected/interacting systems. 

o     o     o     o     o     

c) Data Interoperability/ data integration between systems for the management of 
the pipe networks in your organization  

C1. Is data and information stored and managed in a way that allows this knowledge to be used by 
multiple systems for operation, maintenance, renewal and strategic planning around the 
municipality's pipe networks?  

 
Strongly 
Disagree 

 Strongly Agree 

1 2 3 4 5 
 
C2. Does your organization have a policy or guideline document that specifies how data should be 
stored and used by multiple systems for operation, maintenance, renewal and strategic planning 
around the municipality's pipe networks? 

  

Strongly 
Disagree 

 Strongly Agree 

1 2 3 4 5 



3 
 

d) The statements below represent theoretically possible avenues for how data and 
information can be exchanged between different systems for the operation, 
maintenance, renewal and strategic planning of the sewer network in your 
organization. Assess whether any alternative is correct for you – and to what 
degree. 

 
Code  Strongly 

Disagree 
 Strongly 

Agree 
1 2 3 4 5 

D1 If a system needs data that exists in another system, 
a user must manually search for that data, and 
transfer it to the system. 

o  o  o  o  o  

D2 If important data is modified in one system, the 
changes will not be reflected in other systems 
automatically  

o  o  o  o  o  

D3 If important data is captured in one system, it is 
manually entered into other systems 

o  o  o  o  o  

 Other (specify)      

 
Technical, organisational, and metadata-related factors affecting 
data Integration in managing pipe networks: 

 
 

 
Code 

In your opinion do these technical factors impact the level of 
data integration between different systems? 

Minimal 
impact 

 Significant 
impact 

1 2 3 4 5 
T1 Use of commercial systems to store data limiting access and use of 

data by other systems. 
o  o  o  o  o  

T2 Too many diverse systems for managing different types of data o  o  o  o  o  
T3 Data privacy and cybersecurity concerns that prevent the use of 

emerging technologies such as cloud storage, and 5g technology 
from improving data integration 

o  o  o  o  o  

 Other (specify)      



4 
 

 

 

Interoperability/Data Integration 
a) This question is about interoperability and decision-making. Interoperability refers 

to the ability of systems/databases/models/maps/layers/files, etc. to exchange 
data, connect and communicate with each other for better data availability and use 
to provide input for decision-making. 
 

If interoperability of the different systems for asset management of the sewage or water supply 
networks were to be increased, what benefits do you think your organization would have? 
  

 

 
Code 

In your opinion do the following organizational factors 
impact the level of data integration between different 

systems?  

Minimal 
impact 

  Significant 
impact 

1 2 3 4 5 
O1 Too expensive/extremely expensive to implement solutions 

that facilitate data integration between standalone systems  
o     o     o     o     o     

O2 Only a few in the organization have full permissions as users 
and system access . 

o     o     o     o     o     

O3 Limited human resources to safely maintain or improve 
systems  

o     o     o     o     o     

O4 Lack of policy,support and/or recognition within the 
organisation rgarding the nedd for betweer data intergation 

o     o     o     o     o     

O5 Different people have full access to different systems that 
should communicate with each other. 

o     o     o     o     o     

 Other (specify)           

 
 
 
Code  

Metadata means that a set of information/data describes other 
information/data - enabling one system to understand information/data in 
other systems. 
Examples of metadata include such diverse factors as data format, scale, 
resolution of data, units, dates, pipe IDs, and coordinates. 
From your point of view, how much do you think the following factors 
related to metadata affect the level of your data integration between 
different systems? 

Minimal 
impact 

 Significant 
impact 

1 2 3 4 5 

M1 Lack of similar metadata structure for different systems for example Spatial 
metadata alignment between GIS and other systems. 

o  o  o  o  o  

M2 Lack of documentation of metadata in systems being used. o  o  o  o  o  
M3 Discrepancies in the representation of data in different systems for example 

different names for the same data in multiple systems  
o  o  o  o  o  

 Other (specify)      
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Data integration in objective-driven asset management for municipal pipe 
networks – salient challenges, gaps, and potential drivers?  
 
E. Okwori*, M. Viklander and A. Hedström 
Department of Civil, Environmental and Natural Resources Engineering, Lulea University of 
Technology, 971 87, Sweden 
 
1. Principal component analysis (PCA) and multiple correspondence analysis (MCA) 

biplots 
1.1 The PCA analysis between utility size (the number of inhabitants served by the utility), 

utility type, data collection objectives (A1-A9), utilisation routines (B1-B7), storage 
routines (C1-C2), and exchange routines (D1-D3)  

 
Figure 1: Principal component analysis of survey responses for data objectives, utilization 
routines, data storage and exchange routines, including variables for utility type and size. 
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1.2 MCA biplots between utility size, objectives for data collection, data utilization routines, 
data storage and data exchange routines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: MCA analysis between utility size, and responses for objectives for data collection (A1-A3) and data utilization routine (B1 and B5) 

Figure 3: MCA analysis between utility size, and responses for data utilization routine (B3) and data exchange routines (D1 and D2) 
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Figure 4: MCA between data objectives (A1, A2, A3), data utilization routines (B1, B5) and the number of inhabitants served 
and (III) data collection objectives (A4, A8), utilization routines (B6, B7), data storage routines (C1, C2) and utility type. 

 
Figure 5: MCA between utility type, and responses related to data utilization routine (B1 and B3), data exchange routines 
(D1 and D2) 
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1.3 PCA biplot between surveyed data storage, exchange routines and factors that may 
impact data integration 

 

 
Figure 6: PCA biplot between survey responses for technical(T1, T2, T3), organizational (O1-O5) and metadata (M1, M2, 
M3) factors that may affect interoperability and responses for data storage (C1, C2) and exchange (D1, D2, D3) routine. 
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Figure 8: MCA between technical (T1, T2), and organisational factors (O1, O3, 05) that affect data integration and systems interoperability 

Figure 7: MCA between responses related to Mata-data related factors (M1, M2, M3), data utilizations routines(B3) and data 
exchange routines (D1, D2, D3) 
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Figure 10: MCA between responses related to data exchange routines  (D1, D3, D3), meta-data related factors that affect 
data integration (M1, M2, M3). 

Figure 9: MCA between responses related to data utilisation routines (B7), data storage routines (C1,C2). 
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Figure 11: MCA between responses related to organisational factors that affect data integration (O1, O3, O5) and technical 
factors (T1). 
 

 
Figure 12: MCA between responses related to Technical factors that affect data integration (T1) and data storage routines  
(C1 and C2). 
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Figure 13: MCA between responses related to data storage routines  (C2) , data exchange routines (D1,D2,D3) and data 
utilization routines (B3). 
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Abstract

Sewer pipe networks are expected to operate with minimal or no interruptions. The complex nature of randomly
occurring failures in sewer networks arising from blockages significantly adds to the cost of operation and main-
tenance. Blockages are significant due to sewage backup or basements flooding, resulting from their
occurrence. Therefore, continuous performance assessment of sewer pipe networks is necessary to ensure
required levels of service at an acceptable cost. This study provides insight into the performance of the sewer
pipe networks by assessing the proneness of the network to blockages. Furthermore it draws inferences at a hol-
istic strategic level of influential explanatory factors of blockage proneness, using data available in the Swedish
Water and Wastewater Association’s benchmarking system. Results indicate that medium sized municipalities
are prone to at least 30% more blockages per km per year compared to other municipalities. A hypothesis of
explanatory factors includes reduced flow volumes and flow depth. Flow velocities below self-cleaning velocity
in sewer pipe networks, encouraged by sluggishness of flow are responsible for increased possibility for sediment
deposition and accumulation in sewers leading to blockages. This is also exacerbated by the deposition of non-
disposables (wet wipes, baby diapers, hard paper, etc.), accumulation of fats, oils and grease in sewers and
increased water conservation measures.

Key words: benchmarking, wastewater

INTRODUCTION

The complex nature of interdependencies of the various components of a sewer pipe network
(Venkatesh 2011), and urban challenges are some of the key frontline reasons to move towards
more resilient urban infrastructure (Hedström et al. 2016). In this regard the performance assessment
of pipe infrastructure networks has increasingly become more critical (Cardoso et al. 2004;
Mazumder et al. 2018; Tscheikner-Gratl et al. 2020).
Existing asset management approaches for pipe infrastructure performance assessments are con-

stantly experiencing tensions between governance policy and strategic/tactical goals of water
utilities towards selecting a systematic and effective method for prioritization of maintenance
(choice between redesign and rehabilitation) which ensures efficiency of outcomes. Performance indi-
cators may be used to improve efficiency of maintenance actions and ensure desired outcomes, based
on set objectives (Pinto et al. 2017). The use of performance indicators (PIs) as a rationale for identi-
fication of critical areas for maintenance shows how operational disturbance data in sewer pipe
networks at the strategic network level can be used to establish an overview of the state of pipe
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infrastructure assets. Performance indicators also serve as mechanisms for benchmarking and prior-
itisation. However, it has been acknowledged that performance indicators provide an estimation of
the status and are therefore precursors for more detailed investigations in the critically identified
areas (Alegre & Coelho 2012; Rokstad 2012).
Maintenance actions, among other reasons are performed in order to maintain the function and

extend the remaining service life of an asset, by improving its condition and/or reducing its condition
deterioration rate and improving performance (Grigg 2003). Maintenance operations have a critical
role in ensuring the reliability of urban water infrastructures particularly sewer pipes. It is expected
that effective maintenance actions reduces the frequency of service disruptions and their undesirable
consequences. However due to limited resources and cost constraints, all maintenance cannot be per-
formed simultaneously as such the most critical maintenance activities need to be prioritized. In this
sense, sewer blockages are one of the main challenges faced by municipalities.
Van den Berg & Danilenko (2010) and Miszta-Kruk (2016) stated that sewer blockages serve as an

indication of various problems in the sewer networks such as hydraulic deterioration, structural integ-
rity and operation and maintenance (O&M) efficiency. Previous research which focused on this
include Rodríguez et al. (2012) illustrating that hydraulic deterioration of sewer systems, among
other factors, arises from sediment accumulation and an indicator of this process is the presence of
sediment-related blockages in sewer pipe networks. (Hafskjold et al. 2002; Arthur et al. 2009;
Hillas 2014), amongst others, drew conclusions that a significant number of sewer pipes in operation
prior to the establishment of self-cleaning velocity requirements in standards are observed to be
experiencing more blockages compared to sewer pipes designed in accordance with minimum self-
cleaning velocity requirements. Conclusions drawn by Chinyama (2013), investigating the poor per-
formance of urban sewerage systems, also supported this and showed that 68% of blockages
occurred in sewers having velocity below the self-cleaning velocity. This was attributed to the differ-
ence between conditions of the flow regime design assumptions of population per household and
water consumption estimated to determine the design peak discharge and the actual conditions in
operation. Other studies which illustrate the link between blockages and exertions on the sewer
pipe network include Blanksby et al. (2002), who reported that pipe defects are some of the biggest
perceived causes of blockages by sewerage operators. Water UK (2017) attributed most blockages
to the disposal of non-flushable wipes occurring at locations with backdrop pipes, bends, interceptor
trap and low/intermittent flow. Cherqui et al. (2015) attributed 45% of blockages in sewer pipes to
accumulation of fat, oil and grease (FOG) and 35% to be due to human behavioural patterns. Despite
the importance of performance indicators for sewer pipe network and the link between blockages and
other problems within the sewer pipe network. A survey by Mattsson et al. (2014) of six Swedish
water utilities showed no monitoring of sewer blockage on the basis of performance indicators or
functional criteria.
The efficiency of the operation and maintenance efforts of municipalities on sewer networks may

also be assessed based on the management of blockage related failures. Existing approaches to the
management of blockages apply a combination of proactive and reactive measures which have
been described by authors such as Thomson (2008), DeSilva et al. (2011) and Fontecha et al.
(2016). However effective blockage management should be an optimized balance between proactive
and reactive maintenance to maximize service outcomes at the lowest cost within operational budget-
ing constraints (DeSilva et al. 2011). Conventionally, reactive approaches are applied to assets with a
perceived low consequence of failure, usually operated till failure occurs and associated with low
recurrence blockages while proactive approaches are applied when the perceived consequence and
cost implications of failure are considered to be high specifically high recurrence blockages. Accord-
ing to Ugarelli et al. (2009) the expenditure on blockages are regular costs to municipalities.
Blockage management should not only be viewed as temporary relief to obstructions which require

reactive actions but precursors to more in-depth problems within the sewer pipe network prompting
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more detailed investigations (Arthur et al. 2008) towards proactive management. Furthermore, the
number of blockages occurring, and frequency of return should be considered as indicators which
provide insight into the magnitude of problems within the sewer pipe network (Cardoso & Matos
2005). The ability to predict the number of blockages and estimate the frequency of return and esti-
mate consequences is necessary for effective management of blockages (Arthur et al. 2009).
Furthermore, increased proactive corrective actions are required to reduce the occurrence of low con-
sequence failures, and prevent high consequence failures (Anbari et al. 2017). These actions need to
consider blockages with high return frequency and the associated problems to efficiently mitigate
cumulative and frequent costs and other associated consequences.
The primary objective of this paper was to use blockages and associated performance indicators at a

strategic level to assess the performance of sewer pipe networks and benchmark municipalities sewer
networks based on size as an initial precursory step to more detailed investigations. Furthermore, the
objective was to develop a hypothesis of factors which necessitate occurrence of blockages in the
sewer networks at the strategic level which require more in-depth investigations.
Below, in the Methods section, the descriptions of the municipality classifications, performance

indicators and associated factors, including a description of the methods used for assessments are
detailed. The Results and discussion section illustrate results of performance indicators comparisons
between municipality clusters and trends from influential factors for blockages. At the end of the
paper, the conclusions are drawn, and recommendations provided.

METHODS

Performance indicators

The use of standardized PI systems are recommended compared to ad-hoc systems developed for
specific objectives. The use and choice of performance indicators is also highly affected by data avail-
ability, quality and accuracy (Rohrhofer et al. 2008). Therefore the selection of performance indicators
often requires a trade-off between standardized and ad-hoc performance indicators in order to provide
useful insights in performance evaluation.
Performance indicators used for assessment of blockages in this study provide a rational basis for

decision making at the strategic level for sewer pipe networks. They are based on standardised IWA
recommended indicators (Cardoso & Matos 2003). Their main strengths include the following. (1)
Characterization of sewer pipe network and susceptibility assessment of sectors or clusters where
proactive maintenance can be implemented. (2) Indicators also allow for assessment of the impact
of maintenance actions periodically, as well as assessment of maintenance impact with target or refer-
ence values. Performance indicators also do not account for the effects of location and cost of
consequence of blockage failures due to the lack of data. Other data needed for analyses, such as
population statistics, population density, land use and discharge, could be normalized by total pipe
length of sewer network in the municipality for more symmetrical comparisons.
To facilitate the assessment of blockages, municipalities were grouped into four clusters based on popu-

lation sizes, in accordance with the Swedish Association of Local Authorities and Regions (2017)
(Table 1). A description of the selected performance indicators for this study is presented in Table 2.
Input data for assessment of blockages using the performance indicators listed in Table 2 were based

on yearly recorded information from municipalities documented in a statistics database managed by the
Swedish Water and Wastewater Association (VASS). Data from 290 municipalities are documented in
VASS. In this study, seven municipalities were excluded from the analyses since relevant data were not
available. Other information associated with performance indicators were collected from Statistics
Sweden. Data available in VASS for the sewer pipe networks were most complete for performance
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indicators considered in this study between the period 2007–2018 (prediction and assessment dataset
(2007–2017) and validation dataset (2018)). The statistical values reported to the VASS database are
sourced from municipalities across Sweden via surveys with specific questions regarding their oper-
ations on a yearly basis. The reported data are verified by VASS administrators in conjunction with
local municipality administrators before being published on the website http://www.vass-statistik.se/.
Most likely there are sources of uncertainties related to reporting errors from personnel at
municipalities.

Statistical analysis of trends and relationships between performance indicators

A statistical analysis was carried out using Microsoft Excel to evaluate the blockage occurrence trend
over the assessment period by regression lines. A positive slope indicating an upward trend implies an
increase in blockages and a negative slope indicating a downward trend implies a decrease in
blockages.
A partial least square discriminant analysis (PLS-DA) was performed to assess influence of perform-

ance indicators on the occurrence of blockages in sewer pipe network clusters. The PLS-DA approach
discriminates variables (performance indicators) based on information that influences the dependent
variable (No. blockages/km/year) to separate observations (large, medium, small and less than small).
A detailed description of the PLS-DA modelling and analysis technique can found in Lee et al. (2018).

Table 1 | Classification of municipalities for assessment

Classification Range

Large Greater than 200,000 people

Medium 50,000–200,000 people

Small 15,000–50,000 people

Less than small Less than 15,000 people

Table 2 | Evaluated performance indicators adopted by Cardoso & Matos (2005)

Performance Indicator Definition

Sewer blockage (in combined and
separate sewers)

Number of blockages in sewers that occurred during the assessment period
*365/(assessment period in days)/total sewer length at the reference date
(No. km�1.Year�1)

Connection ratio (No. of inhabitants connect
to the sewer network)

How much of the municipality’s population is connected to the general sewer
pipeline network at the date of reference (No. inhabitants km�1*100)

Sewer renewal rate Length of defective sewers renovated during the assessment period/total
sewer length at the reference date

Operation and maintenance cost of
wastewater pipeline

Running costs related to maintenance, cleaning and repair of sewer system
during the assessment period/total sewer length at the reference date
(kr/km)

Percentage pipeline network maintained
(flushed/cleaned)

Length of sewers cleaned/flushed during the assessment period/total sewer
length at the reference date *100 (%.)

Blockage rate Average number of stops/average pipe length (No. Blockages/km)

No. of incidents of basement flooding Number of incidents of basement flooding in sewers that occurred during the
assessment period� 365/assessment period in days)/total sewer length at
the reference date (No. km�1.Year�1)

Flow discharge Average discharge over the assessment period/total sewer length at the date
of reference (m3.km�1)

Degree (ratio) of spread of sewer network Population density (No. people. Km�2)
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Furthermore the influence of the performance indicators on the number of blockage events occur-
ring per km per year was investigated by fitting the data to an overdispersion Poisson regression
model described by Cupal et al. (2015), using R statistical software. Furthermore, the model was
used to predict specific aspects of generalized system behaviour defined by the data over the assess-
ment period, specifically number of blockages, which is characterized by a continuous stochastic
process in which events occur independently of each other at a constant rate described by Xie
et al. (2017), known as a Poisson process. This process justifies the assumption of random behaviour
of blockages underpinning the failure behaviour of blockage to not be entirely predictable and likely
to deviate at different times between years (Jin & Mukherjee 2010). This process has also yielded
some of the most suitable abilities to model blockage likelihood (Santos et al. 2017). To validate
predictive aspects of generalized system behaviour, a comparison between predicted values (based
on data from the assessment period) and observed values (validation dataset (2018)) was performed
using a two-sample Kolmogorov-Smirnov (KS) test to evaluate if there were any statistically significant
differences between the datasets. The KS test reports the maximum difference between the two cumu-
lative distributions (D), and calculates a p-value from that and the sample sizes. The null hypothesis
states that both groups are of identical distributions and the null hypothesis is not rejected if the
p-value is greater than 0.05 level of significance.

RESULTS AND DISCUSSION

Performance indicators

Over the assessment period 2007–2017, a total of 56,500 blockages in the sewer pipe networks were
registered and 2,800 blockages in the stormwater pipe networks across municipalities, while figures
for combined sewer systems were not available. Figure 1 shows a comparison of distributions between
No. blockages/km/year in the sewer and stormwater pipe networks.

The observed ratio of blockages in the stormwater pipe compared to sewer pipe networks was 1:20
over the assessment period. This was corroborated by Ugarelli et al. (2010), who made similar obser-
vations for blockages in the networks of Oslo, Norway. Sewer pipe networks between the 25th–50th
and above percentile of medium- to small-sized municipalities were also observed to have higher
blockages per km per year compared to the median value observed.
Ugarelli et al. (2010) reported sewer blockage rates in Oslo of 0.176 blockages/km/year and

Hafskjold et al. (2002) of 0.096 blockages/km/year in Trondheim, both in Norway. In Wales and

Figure 1 | Distributions and median number of blockages/km/year in relation to municipal size for (a) sewer pipe and (b)
stormwater pipe networks.
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parts of western England blockage rates have been reported by Bailey et al. (2015) in the interval of
0.002–0.9 blockages/km/year. However, much higher blockage rates have been reported in the UK.
Arthur et al. (2008) reported rates between 0.1 and 2.0 blockages/km/year and Hillas (2014) rates
between 0.3 and 1.4 blockages/km/year. In Bogota, Colombia, a blockage rate of 1.5 has been pub-
lished (Rodríguez et al. 2012), and corresponding values reported from four utilities in Australia
were between 0.2 and 1.2 (DeSilva et al. 2011). It can be observed that even within countries that
blockage rates reported vary by various degrees. Blockage rates obtained from Swedish municipalities
range between 0.02 and 0.61, see Figures 1(a) and 2. However blockage rates have been reported to
not be an appropriate metric for comparison between sewer pipe networks in utilities, cities or
countries (Marlow et al. 2011). This is largely due to complex relationships between blockage rates
and triggering mechanisms which vary between locations (Rodríguez et al. 2012).
Furthermore comparisons to a reference value establishes a benchmark state which can be used for

assessment between sewer pipe networks (Alegre & Coelho 2012). Malm et al. (2012), recommended
a guideline cut-off value for number of blockages per km per year in sewer pipe networks in Sweden
of greater than 0.25 per km per year to be classified as having less than good endurance, and blockage
rates greater than 0.5 per km per year to be considered as bad. The 75th percentile of medium-less
than small municipalities can be classified as having less than good endurance or bad.
Figure 2 presents the average blockage rates geographically and Figure 3 presents distributions and

average values of connection ratio (%) and population density between the municipalities.

Observation from Figures 2, 3(a) and 3(b) show that municipalities with the higher blockage rates,
above 0.25 per km per year, were observed to have less than 200 inhabitants/km connected to the
sewer network as well as a connection ratio of less than 85% and population density of less than
500 km2. Based on the above, inferences are that in sewer pipe networks, a reduction in the
number of inhabitants connected per km of pipe length increases the proneness to blockage occur-
rence. Hedström et al. (2016) reported the Norrland region be experiencing two times higher
average benchmark values for sewer blockages compared to the average in Sweden. Hedström
et al. (2016) further attempted to explain these differences with depopulation trends, using a
regression model but found no such statistical correlation. To further explore the relationship between

Figure 2 | Map of Swedish municipalities showing the blockage rate geographically with a corresponding geographically
division of Swedish main regions (Wikimedia Commons 2009).
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depopulation and increased blockage likelihoods this study uses a partial least squares regression
(PLS) model to explore the relationship between population decrease and increased blockages in
municipal sewer networks across Sweden. A PLS regression response surface between number of
inhabitants connected to the sewer network per km, population density and dependent variable
No. blockages/km/year was plotted. Increased number of blockages appear to be occurring in the
region of lower population density and inhabitants connected to the sewer networks, see Figure 4.

A working hypothesis is that networks experiencing higher rate of blockages are suspected to have
flow conditions (reduced flow volumes, and sewers not achieving self-cleaning velocity) which
increases the possibility for sediment deposition and solid accumulation in sewers leading to
blockages. Banasiak (2008) investigated the in-sewer sediment deposit behaviour and its influence
on the hydraulic performance of sewer pipes and stated that an efficient self-cleansing sewer is one
having a sediment-transporting capacity that is sufficient to maintain a balance between the quantity
of deposition and erosion.
Figure 5 presents the distribution and average values of percentage of sewer network maintained

and sewer renewal rate.

Figure 3 | (a) Connection ratio: share of municipality’s population connected to the general sewer pipeline network and (b)
population density.

Figure 4 | Second order PLS regression response surface showing the interaction between the independent variables
(numbers of inhabitants connected to the sewer pipe network and population density) and the dependent variable (No.
blockages/km/year) for sewer networks in Sweden.
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Observations from percentage of pipe network maintained indicate that large-sized municipalities
maintain their sewer networks 20% more, compared to medium-sized municipalities while medium-
sized municipalities 15% more compared to small and less than small municipalities. Figure 5(a) may
also be considered to be a prognosis of maintenance needs. The median sewer renewal rate shows no
significant difference between municipalities. Medium- to less than small-sized municipalities have
lower percentages of their networks maintained and consequently experience at least 30% more
blockages per km per year. This is illustrated further with the PLS response surface in Figure 6(a)
and 6(c) showing the relationship between Total cost of maintenance per km, the percentage of the
network maintained and No. blockages/km/year in large and small municipalities. It can be observed

Figure 5 | Percentage of (a) pipe network maintained (% Length of pipes flushed vs total length of pipe network) and (b) sewer
renewal rate distributions.

Figure 6 | PLS-regression response surface indicating the holistic relationships between blockage rates, cost of sewer pipe
maintenance per km and percentage of the pipe network maintained. Darker shades indicate maximum blockage rates.
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that as the spending increases with a corresponding increase in the network maintenance the No.
blockages/km/year decreases. However, Figure 6(b) shows in medium-sized sewer networks, low
O&M costs and higher blockage rates occur in the region where the highest percentage of the net-
work is maintained. Figure 6(d) shows high blockage rates in regions of highest O&M cost
irrespective of maintenance percentage in less than small-sized networks. This prompts the assump-
tion that improving that balance between proactive and reactive management of blockages, to favour
more proactive measures may be useful to improve blockage management in medium- and less than
small-sized sewer pipe networks.
Table 3 presents operation and maintenance cost per km of the pipe network figures which provide

an indication of the availability of resources in municipalities.

The number of occasions of basement flooding provide an indication of the impact/consequence of
blockages. An almost linear relationship was observed between the increased occurrence of basement
flooding and blockages in the sewer pipe networks when the blockage rate is above 0.5. This is in line
with previous findings that indicated the pipes which experienced more blockages had an increase
likelihood of basement flooding (Ugarelli et al. 2010). Increased basement flooding likelihoods also
provides an indication of sewer networks with higher consequence of failures where performance
can be improved by implementation of risk-based operation and maintenance programs such as
fuzzy inference systems (FIS) (Anbari et al. 2017).

Statistical analysis of relationships between performance indicators

Large municipalities showed a negative slope in blockage occurrence indicating a decrease in rate of
blockage occurrence while all other municipality clusters showed neutral slopes implying a constant
rate of blockage occurrence over the assessment period. Results from the overdispersion Poisson
regression model showed that and connection ratio, and blockage rate had the most statistically sig-
nificant influence on the number of blockages (No. blockages/km/year) for predictions. Refer to
Table 4 for Poisson regression model output.

Table 3 | Operation and maintenance cost performance indicator assessed for different municipality classifications.

Municipality classification Large Medium Small Less than small

Performance indicator O&M cost (tkr/km) O&M cost (tkr/km) O&M cost (tkr/km) O&M cost (tkr/km)

Operation and maintenance cost 200 140 120 80

Ratio of large 1 0.7 0.6 0.4

Kr is indicative of the Swedish Krona, the official currency of Sweden; tkr – Thousand Krona.

Table 4 | Overdispersion Poisson regression model output for total number of blockages in Swedish sewer pipe networks

Coefficients Estimate Std error P-value

Intercept 9e-01 2e-01 2e-04

Blockage rate 4eþ00 2e-01 2e-16

Percentage of pipe networks maintained 2e-03 1e-03 3e-01

Connection ratio 3e-02 3e-03 5e-16

Sewer renewal rate 3e-02 2e-02 3e-02

Operation and maintenance cost �3e-04 1e-04 4e-03

Land use percentage �2e-02 7e-03 2e-02

Population density �5e-05 1e-04 7e-01

Flow discharge 2eþ01 7eþ 00 3e-02

Significance level (α)¼ 1e-02 (0.01).

H2Open Journal Vol 3 No 1
54 doi: 10.2166/h2oj.2020.027

Downloaded from http://iwaponline.com/h2open/article-pdf/3/1/46/862917/h2oj0030046.pdf
by guest
on 30 January 2024



A predictive relationship was developed based on blockage rate (number of blockages/network
length (km)) and the number of blockages based on coefficients listed in Table 4. This may support
budgeting and the planning process in municipalities, predicting the expected numbers of blockages
that can be expected to occur per year. This is illustrated in Equation (1).

NB ¼ (exp:(2:97þ 3:20(blockage rate))�L)=365 (1)

NB is total number of blockages anticipated per year and L is the total length of sewer pipe network
(km). Figure 7 presents empirical cumulative density function (ECDF) curves for predicted and
observed blockages across all municipalities considered.

The null hypothesis could not be rejected for comparison between the two sample datasets at a 95%
confidence level, which means that no significant difference is observed between predicted and
observed distributions. The values for the test parameters, D and p-value, have been reported in
Figure 7. The derived equation may be helpful for planning but may show some disparity between pre-
dicted and eventual observed blockages as blockage occurrence is mostly still characterized as
random. More data are required to validate this model.

CONCLUSION

This study illustrated how performance indicators can be used for strategic performance assessment
of sewer pipe networks. The main conclusion from this study was that sewer pipes are experiencing
more blockages compared to stormwater pipes, indicating sewer pipes are experiencing more pro-
blems arising from performance inefficiencies such as reduced flow volumes, non-disposables being
disposed in sewer pipes, increased deposition of FOG, etc., catalysed by deterioration and aging
pipe infrastructure. Blockages in medium- to small-sized municipalities over the assessment period
did not show an increase or decrease in occurrence.
In sewer networks where suspected reduced flow volumes in comparison to design flows result in

flow velocities below self-cleaning. Recommendations after more investigation and confirmatory tests,

Figure 7 | K.S-test comparison between predicted and observed blockages in municipalities for the year 2018. Fn(x) defines the
cumulative probability distribution quantiles for number of blockages. Maximum distance between the ECDF curves of the two
samples (D)¼ 0.1087 and p-value¼ 0.07.
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include a temporary reduction in cross-sectional area of critical pipes to improve flow conditions and
reduce blockages, the use of trenchless technologies and techniques such as re-lining and slip lining
which are reversible are recommended.
Lower operation and maintenance costs per km highlights limited monetary and/or personnel

resources in medium- to small-sized municipalities. Furthermore in response assumptions are that a
disparity may exist between reactive vs proactive approaches to management of blockages mostly
in medium and less than small-sized municipalities, more proactive initiatives may be required to
improve blockage management. Redesigning certain pipes may be a sustainable method to reduce
interruptions from blockages proactively at a one-time cost compared to recurring operation and
maintenance costs. However this needs to be considered in terms of consequence to the whole
sewer network.
Data regarding repeated blockage locations, physical properties of the pipe networks (such as age,

material, diameter) at the holistic level may provide more critical insights to blockage proneness. Fur-
thermore, the proposed equation for estimating the anticipated number of blockages may be improved
by taking into account other critical factors at the tactical level (such as pipe dimeter, self-cleaning
velocity, pipe sagging and spatial-temporal patterns) which may differ between municipalities.
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a b s t r a c t 

Efficient management of sewer blockages requires increased preventive maintenance planning. Conven- 

tional approaches to the management of blockages in sewer pipe networks constitute largely unplanned 

maintenance stemming from a lack of adequate information and diagnosis of blockage causative mecha- 

nisms. This study mainly investigated a spatial statistical approach to determine the influence of explana- 

tory factors on increased blockage propensity in sewers based on spatial heterogeneity. The approach 

consisted of the network K-function analysis, which provided an understanding of the significance of the 

spatial variation of blockages. A geographically-weighted Poisson regression then showed the degree of 

influence that explanatory factors had on increased blockage propensity in differentiated segments of the 

sewer pipe network. Lastly, blockage recurrence predictions were carried out with Random Forest en- 

sembles. This approach was applied to three municipalities. Explanatory factors such as material type, 

number of service connections, self-cleaning velocity, sagging pipes, root intrusion risk, closed-circuit 

television inspection grade and distance to restaurants showed significant spatial heterogeneity and vary- 

ing impacts on blockage propensity. The Random Forest ensemble predicted blockage recurrence with 

60–80% accuracy for data from two municipalities and below 50% for the last. This approach provides 

knowledge that supports proactive maintenance planning in the management of blockages in sewer pipe 

networks. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Sewer pipe network blockages are one of the challenges faced 

by municipalities and water authorities ( Fontecha et al., 2016 ). 

Maintenance of sewer blockages can be made more efficient 

by planning preventive maintenance operations ( Fontecha et al., 

2016 ). However, preventive maintenance planning and execution 

are difficult to perform effectively because blockage failures often 

result from a combination of factors or processes that are chal- 

lenging to isolate ( Jin and Mukherjee 2010 ). Recent findings in- 

dicate that random and recurrent sewer blockages are increasing, 

despite municipalities’ attempts to implement preventive mainte- 

nance ( Xie et al., 2017 ). 

Previous research regarding the identification of causative 

mechanisms of sewer pipe blockages has been performed using ei- 

ther physical or stochastic models ( Santos et al., 2017 ). Stochas- 

tic models have shown improved results, mainly in attempts to 

predict blockage-related failures in sewer pipes ( Santos et al., 

∗ Corresponding author. 

E-mail address: emmanuel.okwori@ltu.se (E. Okwori). 

2017 ). Another benefit of stochastic models is their capability 

of managing data scarcity and the complexity of sewer block- 

age occurrence ( Pulido et al., 2019 ). Stochastic models developed, 

which have had some measure of success characterising block- 

ages in sewer pipe networks include the Non-homogeneous Pois- 

son Process ( Rostum, 20 0 0 ), Evolutionary Polynomial Regression 

( Savi ́c et al., 2006 ), Zero-inflated Non-homogeneous Poisson Pro- 

cess ( Rajani and Kleiner, 2001 ), Weibull Accreted Lifetime Model 

and Linear Extended Yule Process ( Le Gat, 2014; Martins et al., 

2013 ). 

Key factors that have shown a strong correlation to increased 

incidents of sewer blockages include, but are not limited to, 

pipe age, diameter, material, length, gradient/slope, sagging, tree 

root intrusion, presence of Fats, Oils and Grease (FOG), construc- 

tion quality and human behavioural patterns ( Savic et al., 2006 ; 

Cook et al., 2008 ; Ugarelli et al., 2009 ; Jin and Mukherjee, 2010 ; 

Rodríguez et al., 2012 ; Mattsson et al., 2014 ; Cherqui et al., 2015 ; 

Santos et al., 2017 ; Xie et al., 2017 ; Nieuwenhuis et al., 2018 ; 

Pulido et al., 2019 ). However, blockage occurrence persists due 

to a complex combination of factors, and isolation of the most 

prevalent factors or set of factors is critical to the development of 

https://doi.org/10.1016/j.watres.2021.116934 
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efficient maintenance solutions ( Rodríguez et al., 2012 ). In addi- 

tion, correlations between sewer blockage propensity and exter- 

nal environmental factors, such as foodservice outlets, high-density 

dwellings, and potential tree root intrusion, have not been ad- 

equately corroborated by statistical methods. Reasons, why such 

analyses have not been explored thoroughly, includes the lack of 

historical failure data and necessary geographical data, such as the 

location/proximity of trees to the sewer pipes and proximity of 

food service establishments to pipes, as well as a lack of digital- 

isation of these types of data. 

Previous approaches used to investigate the spatial variability 

of blockages by hotspot analysis with Kernel Density Estimation 

(KDE), ( Cook et al., 2008 ; Cherqui et al., 2015 ; Agnone et al., 2017 ) 

assumed blockages to occur on a continuously plane ( Lamb et al., 

2016 ). This assumption leads to an overestimation of clustering of 

blockages or false conclusions because blockages do not occur any- 

where on a continuous plane, only in pipes on sewer networks. 

The network K-function was developed to overcome this limitation 

and has been applied in a few studies, such as traffic collision in- 

cidents on a road network ( Fan et al., 2018 ). However, it has not 

yet been applied to assess the spatial variability of blockages and 

its link to factors affecting blockages. 

Statistical approaches are reportedly preferred for modelling 

sewer blockages due to the extensive and complex amount of fac- 

tors influencing blockages ( Post et al., 2017 ). Previous approaches 

employed were generally a form of multilevel model regres- 

sion (global regression). These approaches estimated blockage and 

blockage patterns using associated explanatory variables, which 

imply global relationships. Although reasonable, these global rela- 

tionships may mask some local relationships, which can provide 

more in-depth insight into the occurrence of random and recurring 

blockages ( Bui et al., 2018 ). 

Geographically Weighted Regression (GWR) is a spatial statisti- 

cal approach which models local relationships. An initial attempt 

to investigate factors affecting blockages with a generalised form 

of GWR was carried out by Kimani Ngaruiya and Ngigi (2014) . 

However, the investigation only considered a limited number of 

factors (income, vandalism, number of households and areas with 

high/low water supply due to rationing), and did not include the 

physical properties of sewer pipes. Furthermore, the generalised 

form of GWR assumes a Gaussian distribution for blockages, which 

has been reported as not being a strictly accurate way to char- 

acterise blockages for stochastic modelling ( Xie et al., 2017 ). The 

Geographically Weighted Poisson Regression (GWPR) variant as- 

sumes a Poisson distribution for blockages rather than a Gaus- 

sian distribution and has been reported to be more appropri- 

ate for modelling count data ( Nakaya et al., 2005 ). GWPR has 

been used in various contexts, including traffic collision prediction 

modelling ( Hadayeghi et al., 2010 ), analysis of food malnutrition 

( Saefuddin et al., 2013 ), and country-level vehicle crash modelling 

(Zhibin Li et al., 2013 ). However, none of the previous studies on 

sewer pipe blockages has used GWPR to model the intensity of 

blockages or assess the impact of factors affecting blockages on a 

sewer network. 

Due to its applicability to large datasets and nil requirement 

for conformance to particular statistical distributions ( Jin and 

Mukherjee, 2010 ), Random Forest (RF) ensembles ( Breiman, 2001 ) 

have increasingly been investigated for predicting blockages 

( Bailey et al., 2016 ; Hassouna et al., 2019 ). However, the re- 

sults of those studies have shown that the performance of RF 

ensembles for blockage predictions can be improved. Therefore, 

( Santos et al. (2017) and Hassouna et al. (2019) have suggested 

investigations with datasets consisting of different factors towards 

improved robustness of blockage predictions. Furthermore, there is 

a need to assess the efficiency/use of RF ensembles for blockage 

predictions. 

This study’s main objective was to evaluate a procedure for 

analysing sewer blockages using the network K-function and 

GWPR. The procedure captures the spatial heterogeneity between 

blockages and factors that necessitate the occurrence of block- 

ages and works towards improving the understanding of influen- 

tial factors affecting blockages in sewers. The increased robustness 

of Random Forest (RF) ensembles via prediction of blockage recur- 

rence and determination of the most important variables for pre- 

dicting blockages were also investigated in this study. 

2. Materials and methods 

Data, methods, analysis steps and expected outcomes of the 

evaluated procedure for analysing sewer blockages are summarised 

and presented in Fig. 1 . Data collected to evaluate the procedure 

was sourced from both the physical properties of the pipe net- 

work and external environmental factors, potentially influencing 

increased blockage propensity. 

The procedure presented in Fig. 1 was demonstrated in three 

municipalities A, B and C. The characteristics of the sewer sys- 

tems and summary of blockage records in these municipalities are 

presented in Table 1 . Figs. 1 –3 in supplementary data, provide 

schematic representations of the sewer networks. 

Blockage rates for the three municipalities are reported to be 

about twice the Swedish average ( Hedström et al., 2016 ) and less 

than, greater or equal to the recommended threshold-value of 0.25 

no/km/year ( Annika Malm et al., 2012 ) for the municipalities A, 

B and C, respectively. Furthermore, when compared with block- 

age rates reported in other locations, blockage rates in the inves- 

tigated municipalities were found to be higher than rates reported 

in Norway (Trondheim 0.096 per/km/year ( Hafskjold et al., 2002 ) 

and Oslo 0.176 per/km/year ( Ugarelli et al., 2009 )) and lower than 

rates reported in Australia 0.3–0.65 per/km/year ( Marlow et al., 

2011 ), the United Kingdom 0.2 – 0.9 per/km/year ( Hillas, 2014 ; 

Bailey et al., 2015 ) and Bogota 1.5 per km/year ( Rodríguez et al., 

2012 ). The main reasons for blockages reported in these studies in- 

cluded age, diameter, material type, gradient, flow regime, property 

density, non-disposables (wet wipes) and sediment deposition. 

2.1. Data 

The factors investigated in the study were selected based 

on data availability in municipalities where the procedure was 

demonstrated ( Table 2 ). The factors are categorised into the Phys- 

ical Properties of the Pipe Network (PPN) and External Environ- 

mental Factors (EEF). Table 2 also includes the description, unit, 

range, and availability status of factors. The data for these factors 

are sourced from municipal databases for water and wastewater 

as well as publicly available external databases with data such as 

population census information, e.g. Statistics Sweden (SCB). 

The completeness of the datasets available for municipality A, 

B and C was assessed and is presented in Table 3 . Only factors 

with incomplete data are presented in Table 3 , along with the cor- 

responding percentages of incompleteness. Factors with 35% and 

above missing data were excluded to decrease the uncertainty 

(bold in Table 3 ). 

2.2. Methods 

Sewer blockage data and its influential factors were analysed 

following the procedure described in Fig. 1 . The procedure first 

investigated the presence of spatial variability of blockages ob- 

served in the sewer pipe network using the network K-function 

method ( Section 2.2.1 ). Subsequently, the relative degree of im- 

pact of factors influencing blockages was determined using GWPR 

2 
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Fig. 1. Procedure for spatial assessment of the impact of factors affecting blockages and prediction of sewer pipe blockage recurrence. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Characteristics of the sewer systems in municipalities investigated. 

Municipality A B C 

Land area (km 
2 ) 2316 2088 4013 

Catchment type A Peri-urban Peri-urban Peri-urban 

Sewer system type Sanitary (separate) Sanitary (separate) Sanitary (separate) 

Length of sewer pipe network (km) 800 6300 500 

Percentage of the population connected to the sewer network (%) 90 87 89 

Average number of inhabitants connected to the pipe network per kilometre 191 151 39 

Total number of blockages assessed 16,640 2390 1522 

Blockage data period 2003–2019 2015–2019 2008–2019 

Average blockage rate (no/km/year) 0.2 0.3 0.25 

A Catchment type is defined as peri-urban based on Braud et al. (2013) . The catchments consisted of one central sewer network in the city, i.e. municipal centre, and 

separate networks in peripheral towns, villages and rural communities. The sewer system of municipality A includes one major and thirteen smaller networks, while that of 

municipality B includes one major and eight smaller networks and municipality C includes one major and three smaller networks. 

( Section 2.2.2 ). Finally, blockage recurrence predictions were per- 

formed with the aim of improving the robustness of Random For- 

est ensembles, described in Section 2.2.3 . 

2.2.1. Network K-function 

The network K-function was used in this study to analyse 

the spatial variability of random and recurrent blockages in the 

sewer pipe network. The spatial variability assessment was per- 

formed by testing the null hypotheses that blockages were in- 

dependently/uniformly distributed over the sewer pipe network. 

The network K-function ( k net ) is defined and described based on 

Yamada and Okabe (20 0 0) ; see Eq. (1) . 

k net ( r ) = 

ι( L ) 

n ( n − 1 ) 

n ∑ 

i =1 

n ∑ 

j � =0 

1 { d L 
(
x i x j 

)
≤ r} (1) 

ι(L ) denotes the total length of the network. The pipe locations 

where blockages have occurred are denoted by x 1 , . . . . . . .. x n , with 

n denoting the total number of pipes with blockages. d L ( x i x j ) de- 

notes an observation window with all network pipe locations that 

can be reached which are shorter than the shortest path distance 

( r ), which replaces the Euclidean planar distance on the sewer pipe 

network. In essence, d L ( x i x j ) represents a two-dimensional area of 

an observation window by a one-dimensional length of the net- 

work. The network K-function assumes random arbitrary points 

chosen via a homogeneous binomial point process and computes a 

theoretical pattern across the sewer pipe network ( Fan et al., 2018 ). 

This theoretical pattern indicates statistically significant spatial in- 

dependence of observations at a 95% confidence interval, computed 

via Monte Carlo simulations ( Yamada and Okabe, 20 0 0 ). The k net 
is compared with the theoretical pattern to evaluate spatial vari- 

ability. The results of the network K-function analysis were plotted 

with "spatstat" package in R statistical software ( Baddeley et al., 

2016 ). 

2.2.2. Geographical weighted Poisson regression (GWPR) 

GWPR is a spatial statistical method for investigating non- 

stationary spatial processes ( Alves et al., 2016 ). In this study, 

GWPR was used to identify the strength of the association (sig- 

nificance and magnitude of impact) between blockages and factors 

( Table 2 ). GWPR modelling was performed separately for each of 
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Table 2 

Factors included in the GWPR modelling approach and Random Forest predictions for municipalities evaluated. 

Factor Category B Description Unit Range A Municipality 

Pipe diameter PPN Nominal diameter mm 50–1600 A, B, C 

Pipe length PPN Length km 0–3 A, B, C 

Pipe age PPN Number of years the pipe has been in service Years 0–120 A, B, C 

Pipe material PPN Type of material used in the pipe manufacture, 

e.g. concrete, PVC. 

No. of 

types 

13 A, B, C 

Pipe depth C PPN Depth to the crown of the pipe m 0–200 A, B 

Indication of adequate 

self-cleaning D 
PPN This factor assesses whether the pipe slope is 

sufficient to guarantee self-cleaning conditions 

% 0–2 A 

Closed Circuit TV (CCTV) grade E PPN According to EN62676 Grade 1–5 A, B 

Potential pipe sagging F PPN Parameter based on CCTV records indicating the 

potential for a pipe to experience sagging 

Grade 1–3 A 

Number of service connections PPN The number of laterals (i.e. properties) connected 

to a sewer main 

No. 0–40 A, B, C 

Neighbourhood population density EEF Population density within 1 km 
2 grid of pipe 

location 

People/km 
B 10–5500 A, B, C 

Neighbourhood population density 

age range 0–5 years 

EEF Population density of young children within 1 

km 
2 grid of pipe location 

People/km 
B 10–1000 A, B, C 

Neighbourhood population density 

age range 85–100 years 

EEF Population density of the elderly within 1 km 
2 

grid of pipe location 

People/km 
B 10–1000 A, B, C 

Risk of tree root intrusion G EEF Combines the number of trees within 2 m 

proximity of pipe with the presence of roots to 

determine a risk grade 

Grade 0–5 A 

Distance to restaurants/food 

service locations 

EEF Computes bird distance between the nearest 

location of restaurants and pipes in the sewer 

network, without consideration of flow direction. 

km 5–50 A, B, C 

A Range: indicates the minimum and maximum values for each factor based on the data sources. 
B PPN: physical property of the pipe network, EEF: external environmental factors. 
C Pipe depth is determined by the difference between the ground elevation maps (2 m) and the depth of the pipe crown. 
D The indication of adequate self-cleaning velocity is the gradient (threshold of 0.3%). Pipes with a gradient of less than 0.3% are rated zero, pipes with a gradient equal 

to 0.3% are rated one and pipes with a gradient over 0.3% are rated two. 
E Grades in range 1–5. 1 indicates good rating or lowest risk of structural deficiencies and 5 indicates poor rating or highest risk of structural deficiencies. 
F Potential pipe sagging is based on an assessment of the straightness of pipe in profile or deviation from design slope with CCTV inspection data, graded from 1–3. 1 

indicates the lowest potential, and 3 indicates the highest potential for pipe sagging. 
G Risk of tree root intrusion is based on an assessment of CCTV inspection data and GIS analysis of treemaps with grades ranging from 0 to 5, with 0 −1 indicating no 

risk to low risk based on the number of trees in 2 m proximity to pipes and 2–5 indicating higher risk levels based CCTV inspection data. 

The total number of blockages per pipe over the stipulated period and the factors in Table 2 with sufficient completeness as per Table 3 are considered the dependant 

variable and explanatory variables respectively in GWPR modelling and Random Forest predictions for the three municipalities. 

Table 3 

Percentage estimation of missing data for factors considered in Table 2 . 

Factor A B C 

Diameter 6 50 0 

Age 2 6 77 

Material 32 1 10 

CCTV grade 0 80 N/A 

Risk of tree root intrusion 0 N/A N/A 

N/A – data not available for the specific factor in consideration, bold values indicate 

factors excluded. 

the three municipalities evaluated. The coefficients obtained from 

the GWPR modelling (parameter estimates) were estimated by ap- 

plying a Poisson regression model, where the likelihood estima- 

tion was geographically weighted with weights defined by a ker- 

nel function centred on pipe location coordinates ( Nakaya et al., 

2005 ). The GWPR model expression for this study is presented 

in Eq. (2) . 

In y i = poisson 

( 

M ∑ 

k =1 

βk ( C i ) x ik + ε i ( i =1 , 2 , 3 ... n ) 

) 

(2) 

where C i = ( U i , V i ) denotes the coordinates of a pipe within the 

network at an i th location, y i describes the total number of block- 

ages per pipe over the assessment period, βk is the parameter 

estimates unique to sewer pipes within the pipe network for a 

factor ( x ik ) ( Table 2 ) at the i 
th location and ε represents an er- 

ror term/noise, respectively. M is the total number of independent 

variables (factors as per Tables 2 and 3 ) evaluated for each munic- 

ipality. The spatial heterogeneity is then investigated, expressed as 

a matrix, as shown in Eq. (3) . 

β = 

[ 

βio C 1 βi 1 C 1 . . . βk C 1 
βio C 2 βi 1 C 2 . . . βk C 2 
βio C n βi 1 C n ... βk C n 

] 

(3) 

Where n is the number of pipes in the analysed pipe network, 

and its distance is determined by each pipe weight (Wn ∗) to 
the regression point. Pipes closest to the regression points have 

a higher weight compared to pipes further away. The parame- 

ters for each pipe forming a row in the matrix are described by 

Eq. (4) . 

β∗ = 

(
X T W C 1 

)−1 
X T W C 1 Y (4) 

Where X T is a matrix of the independent variables with a column 

of 1 s for the intercept , Y is the dependant variable vector, and 

W C 1 denotes an x by x geographical diagonal spatial weights ma- 

trix, which is expressed as W 
∗. 

W 
∗ = 

[ 

W 
∗
1 . . . 0 

... . . . . . . 

0 . . . W 
∗
n 

] 

(5) 

w 
∗
1 is the weight given for each pipe in the network during the 

calibration of the model. Weights were applied through a smoothly 

decaying function of the distance between pipes in the net- 

work according to a bi-square kernel function because it supports 

minimisation of errors ( Nakaya et al., 2005 ; Alves et al., 2016 ). 
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Spatial variability maps (parameter estimates) between factors 

and increased blockage propensity were developed. These maps 

showed the degree of influence of these factors on the network as 

percentages, determined through the interpretation of parameter 

estimates based on Hilbe (2014) . A threshold of 10% and above was 

used to indicate significant and impactful factors. The standalone 

software GWR4/MGWR (MGWR 1.0, SPARC website ), developed by 

Oshan et al. (2019) , was used for this analysis in conjunction with 

the "GW model" package in R statistical software and QGIS 3.84. 

The GWPR modelling results were calibrated by bandwidth size, 

determined by the corrected Akaike information criterion (AICc) 

comparison ( Pirdavani et al., 2014 ). The optimal AICc value for 

the most suitable bandwidth for the modelling was determined 

by successively narrowing the range of values inside the window 

in which the optimal value exists for each municipality model 

( Bivand, 2017 ). 

The results were first validated using the variance inflation fac- 

tor (VIF) to diagnose the presence of multicollinearity in the GWPR 

results (parameter estimates) ( Nieuwenhuis et al., 2018 ). The pres- 

ence of multicollinearity amongst the parameter estimates implies 

that estimates are not unique and, as such, no convincing interpre- 

tation can be drawn ( Pirdavani et al., 2014 ). VIF values less than 

or equal to 10 have been reported as a reasonable cut-off thresh- 

old, indicating the presence of no multicollinearity ( Pirdavani et al., 

2014 ). Secondly, a calculated pseudo-p-value smaller than 0.05 in- 

dicated statistically significant spatial relationships between the 

factors and the sewer blockages in the network at a 95% con- 

fidence level (i.e., non-random). Statistically significant relation- 

ships (parameter estimates) were determined during the modelling 

process via a spatial variability test that shuffled observations in 

space, then re-calibrated the GWPR model on randomised data 

while keeping the model specification constant. Furthermore, the 

test then compared the parameter estimates from the randomised 

observations to the parameter estimates for each pipe in the net- 

work. This process was repeated 10 0 0 times via a Monte Carlo 

simulation. The number of times the parameter estimates of the 

fitted model was higher than that of the randomised data was used 

to construct pseudo-p-values for hypothesis testing ( Oshan et al., 

2019 ). 

When presenting the GWPR results (maps of parameter esti- 

mates for each factor), Mennis (2006) recommended approaches 

to mitigate the challenge of misinterpreting mapped results. These 

approaches were incorporated into the GWPR modelling process 

and mapping. 

2.2.3. Random forest ensembles 

The critical parameters for RF prediction include the number 

of trees (10 0 0 trees used here). The trees were generated through 

bagging and a random subset of the data trained each node. The 

out-of-bag (OOB) error was used to minimise the generalisation 

error ( Breiman, 2001 ). Four factors were selected randomly by the 

Random Forest algorithm based on importance ranking, i.e. mean 

Gini decrease. The RF modelling dataset was randomly divided into 

one training and one validation set for each municipality using a 

70/30 split (training/validation). The data consisted of all the pipes 

in the sewer pipe network with the total number of blockages ex- 

perienced for each of the three municipalities, along with factors 

previously presented in Tables 2 and 3 . 

The accuracy of the blockage recurrence predictions in this 

study was presented using receiver operating characteristic 

(ROC) curves and area under the ROC curve (AUC percentages) 

( Rahmati et al., 2016 ). An AUC value of 100% indicates perfect pre- 

diction capability, while 50% represents an accuracy which is en- 

tirely a random predictor ( Shaikhina et al., 2019 ). Random Forest 

predictions were carried out using mob Forest package in R statis- 

tical software ( Garge et al., 2019 ). 

Table 4 

Summary of network K-function results for recurrent and random blockages. 

Municipality Recurrent blockages Random blockages 

A Clustered Dispersed 

B Random Dispersed 

C Clustered Random 

3. Results 

3.1. Spatial variability in blockage occurrence using cluster analysis 

The network K-function analysis results indicated the strongest 

degree of non-independence in municipality A, implying that the 

most substantial evidence of the spatial relationship between 

blockages in the sewer pipe network compared to B and C 

( Table 4 ). Detailed network K-function plots are presented in Sup- 

plementary Data, Fig. 4 . 

The network K-function analysis is mainly a descriptive mea- 

sure for testing for the presence of complete spatial randomness 

on a network, prompting an exploratory investigation of reasons 

for the observed spatial variability of blockages in the sewer net- 

work. Furthermore, clustering or dispersion may be due to mul- 

tiple factors in varying locations. The results of the network K- 

function, therefore, require further investigation to determine the 

influential factors which drive the spatial variability of blockages 

observed in this study in municipalities A, B and C. 

3.2. Factors influencing the occurrence of blockages in the sewer pipe 

network 

The significance and magnitude (degree of influence) of the 

spatial distribution for each factor influencing increased sewer 

blockages in the sewer network are presented below. The spatial 

changes (positive/negative) in the magnitude of parameter esti- 

mates across the pipe networks indicate the local influence of the 

factors on blockage propensity ( Fotheringham, 2009 ). 

Fig. 2 shows the maps of parameter estimates for ten factors, 

including three sub-factors (different pipe materials), evaluated for 

the sewer pipe network of municipality A. The maps show that pa- 

rameter estimates are not global, therefore indicating spatial het- 

erogeneity of the factors. Locations where the magnitude of the 

parameter estimates are zero, irrespective of colour, indicate loca- 

tions where the relationship between factors and blockage occur- 

rence propensity is statistically insignificant. Parameter estimates 

of zero indicate that measures taken to change these factors would 

not affect blockage propensity in the sewer pipes in these locations 

within the municipality. Pipe age, self-cleaning velocity, number 

of service connections and clay pipe material showed a positive 

correlation to increased blockage propensity from the municipality 

centre (marked with red/black dot) towards the south and south- 

west of municipality A. 

Concrete/poly/PE pipe materials and pipes in close proximity 

to restaurant locations showed a positive correlation to increased 

blockage propensity in the city centre of municipality A ( Fig. 2 ). 

Root intrusion, CCTV grade and sagging potential showed a posi- 

tive correlation to blockage propensity with a sort of gradient ef- 

fect from the centre towards the north, northwest and northeast 

peripheries of municipality A ( Fig. 2 ). 

Other factors assessed for municipality A which are not pre- 

sented in Fig. 2 include Length, which showed a positive correla- 

tion to an increased blockage propensity increased ( + ) northwards 

of municipality A. Neighbourhood population density of the age 

group 85–100 years also showed a positive correlation to an in- 

creased blockage propensity in the centre of municipality A. Pipe 
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Fig. 2. Colour-coded GWPR parameter estimates indicating positive/negative magnitude of correlation between blockages and factors (a-k) for Municipality A. The municipal- 

ity centre is marked with (red/black dot). Parameter estimates of zero (0) indicate locations within the pipe network where the correlation between the factor and blockage 

occurrence is non-significant. The observed influence of factors on increased blockage propensity indicates a. decreasing pipe diameters (-), b. increasing age of pipes ( + ), 

c. higher self-cleaning velocities indicating steeper pipe gradients( + ), lower self-cleaning velocities indicating flatter pipe gradients (-), d. increasing structural deterioration, 

( + ) e. increased risk of tree root intrusion (number of trees in 2 m radius proximity to pipes) ( + ), f. increase in sagging potential ( + ), decrease in sagging potential (-), g. 

increase in number of service/lateral connections ( + ), h. increase in population density( + ), decrease in population density (-), i. material: increased susceptibility to blockages 

in concrete, clay, POLY & PE in these locations ( + ) and k. decrease in linear distance of pipe to restaurants/food service locations (-). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Colour-coded GWPR parameter estimates indicating positive/negative magnitude of the correlation between blockages and factors (a-c) for municipality B. The mu- 

nicipality centre is indicated with a red/black dot. Parameter estimates of zero (0) indicate locations in the pipe network where the association between the factor and 

blockage occurrence is non-significant. The observed influence of factors on increased blockage propensity indicates a. increasing age of pipes ( + ), b. an increase in number 

of service/lateral connections ( + ), c. a decrease in linear distance of pipe to restaurants/food service locations (-). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

depth showed a negative correlation to increased blockage propen- 

sity in northeast and north of municipality A. 

Fig. 3 shows the maps of parameter estimates for the three fac- 

tors which showed the most significant heterogeneity in the sewer 

pipe network of municipality B. The parameter estimates were ob- 

served to vary and were zero in locations of statistically insignif- 

icant relationships. Pipe age showed a positive correlation to in- 

creased blockage propensity from the municipality centre (marked 

with a red/black dot) towards the west and east. The number 

of service connections showed a positive correlation to increased 

blockage propensity towards the west from the centre. 

Distance to restaurants showed a negative correlation to in- 

creased blockage propensity in the central parts. Other factors as- 

sessed for municipality B, which are not presented in Fig. 3 in- 

cluded pipe depth which showed a negative correlation to in- 

creased blockage propensity in the east-central parts. 

Fig. 4 shows the mapped parameter estimates for four fac- 

tors which showed the most significant heterogeneity to blockage 

propensity in the sewer pipe network of municipality C. The centre 

of the municipality is marked with a red/black dot. Pipe length in 

the immediate vicinity north, pipe material (concrete) in the centre 

of the municipality, number of service connections in the northern 

periphery and pipes in close proximity to restaurants/food service 

locations in the centre of the municipality all showed a positive 

correlation to increased blockage propensity. 

Similar patterns of the investigated factors that influenced 

blockage propensity could be observed in all three municipalities, 

indicating that the patterns might represent relationships to block- 

ages that may exist holistically. Fewer factors appear to be signifi- 

cant in municipalities B and C compared to A, which may generally 

be attributed to data quality and strength of spatial variability. 

The AICc-calibration results are presented in Section 3 of the 

supplementary data. The estimated distribution of VIF values for 

the parameter estimates of each factor evaluated for the sewer 

pipe networks in municipalities A, B and C are presented in Fig. 5 . 

VIF values did not exceed 10 for all factors except one, indicating 

no multicollinearity. However, the VIF values for neighbourhood 

population density for some parameter estimates exceeded 10, in- 

dicating some multicollinearity, in GWPR results, which implies 

no dependencies were found amongst the parameter estimates 

( Wheeler, 2006 ). Therefore, the parameter estimates are uniquely 

defined and, as such, conclusive interpretations may be derived 

from them. More specifically, the VIF values for neighbourhood 

population density for municipalities A and C were higher than 10 

for an estimated 25%– 50% of parameter estimates. 

Table 5 summaries the statistically significant factors along with 

their degrees of influence (magnitude of parameter estimates). The 

geographical parts of the sewer pipe networks where these factors 

were found to be both significant and show relatively strong in- 

fluence are also highlighted. Finally, Table 5 presents an indication 

of which factors are important for blockage recurrence predictions 

based on Random Forest ensemble mean Gini decrease values. 

3.3. Blockage predictions 

ROC curves showing AUC values are presented in Fig. 6 . The 

ROC curves for municipality A yielded an AUC of 76% with a con- 

fidence interval between 73% and 80%, illustrating a mean recur- 

rence prediction accuracy of 76%. For municipality B, an AUC of 

68% with a confidence interval between 65% and 74% was ob- 

served. The estimated AUC value for municipality C was below 50%, 

indicating low prediction accuracy. Data quality was suspected as 

one of the possible reasons for the low AUC values observed in the 

dataset for municipality C. 

4. Discussion 

4.1. Significance of spatial variation 

The spatial variability of blockages, when assessed with the 

ordinary kernel density estimation (KDE) method ( Ngaruiya and 

Ngigi, 2014 ; Cherqui et al., 2015 ; Post et al., 2017 ; Pulido et al., 

2019 ) is reported to yield biased estimates ( Okabe et al., 2009 ). 

To overcome this, the network KDE was developed ( Yu et al., 

2015 ). However, the network KDE does not adequately consider ge- 

ometric network characteristics such as topology and connectivity 

( Lamb et al., 2016 ; Okabe, 2017 ). The network K-function accounts 

for both the bias and network geometric characteristics. 

When compared, the results of the analyses using the network 

K-function (Supplementary data, Fig. 4 ) and network KDE (Supple- 

mentary data, Fig. 5 ) showed that the network KDE indicated clus- 

tering of blockages in municipalities A, B and C. The influence of 

the geometric characteristics of the network can be observed with 

the results from network K-function. Hence, it could be observed 

that municipalities B and C had significantly less clustering and 

dispersion compared to municipality A. To support the effect of 
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Fig. 4. Colour-coded GWPR parameter estimates indicating positive/negative magnitude of the correlation between blockages and factors (a-d) for municipality C. The munic- 

ipality centre is indicated with a red triangle. Parameter estimates of zero (0) indicate locations in the pipe network where the correlation between the factor and blockage 

occurrence is non-significant. The observed influence of factors on increased blockage propensity indicates a. an increase in pipe length( + ), b. material indicating increased 

susceptibility to blockages in concrete at these locations ( + ), c. an increase in the number of service/lateral connections ( + ), and d. a decrease in linear distance of pipe to 

restaurants/food service locations (-). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Boxplot showing the distribution of variance inflation factors (VIF) for the factors considered across the pipe networks for municipality A, municipality B and mu- 

nicipality C. All factors are below the threshold value of 10, except for neighbourhood population density in municipalities A and B where an estimated 75% are below the 

threshold values. 

Table 5 

Statistically significant factors, their degree of influence on increased blockage propensity based on geographically weighted Poisson regression (GWPR), including location 

and importance ranking for predictions based on Random Forest (RF) mean Gini decrease parameter. 

Municipality Factors 

GWPR RF 

Location Significance Degree of influence (%) 1 Importance ranking 2 

A Diameter Centre- Southwest x - x 

Length North x - x 

Age South /Southwest x - x 

Material 

- Concrete Centre x 30–35 x 

- Clay South x 50–60 x 

- POLY & PE Centre x 35–50 x 

Indication of adequate 

self-cleaning velocities 

Northeast/South x 65–80 / −10 - 

CCTV grade Centre towards 

northern peripheries 

x 10–12 x 

Potential pipe sagging - x 11–28 - 

Risk of tree root intrusion - x 11–17 - 

Number of service connections South/Southwest x 10–15 x 

Pipe depth North/northeast x 

Neighbourhood population 

density 

South x - x 

Neighbourhood population 

density 85–100 

Centre x - - 

Distance to restaurants/food 

service locations 

Centre x - - 

B Diameter - - - x 

length centre x - x 

Age West/East x - x 

Material - - - x 

Number of service connections Centre/East x 13–15 x 

Pipe depth Centre/East x 

Distance to restaurants/food 

service locations 

Centre x - (45–55) - 

C Diameter - - - x 

Length North x - x 

Material - - - - 

- Concrete Centre x 60–80 x 

Number of service connections Northern peripheries x 10–13 x 

Distance to restaurants/food 

service locations 

Centre x - (22–26) - 

1 Only significant factors with above 10% degree of influence are considered as impactful towards affecting blockage propensity. 
2 Only factors with a mean Gini decrease value above 100 were considered as necessary for predicting blockage recurrence using Random Forest ensembles. 

9 



E. Okwori, M. Viklander and A. Hedström Water Research 194 (2021) 116934 

Fig. 6. ROC curves for municipalities A (left) and B (right) true positive vs false positive percentages on the axes, indicating the accuracy of prediction with AUC values. Black 

solid lines indicate the upper and lower boundaries of the confidence interval. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

geometric characteristics of the network. It could be observed that 

fewer factors were able to explain the spatial variability observed 

in municipalities B and C with GWPR results. Unknown uncertain- 

ties, data availability and completeness may also contribute to the 

strength of spatial association observable ( Oort, 2006 ). 

4.2. Influence of factors on increased blockage propensity and 

location variability 

The magnitude (degree of influence) between factors and in- 

creased blockage propensity provided strong evidence that these 

relationships were not global (not the same in all locations) along 

the sewer network and may vary between networks. These non- 

stationary relationships were observed to occur in various forms. 

Explicitly, different factors showed a strong degree of influence in 

different locations, single factors showed both positive and neg- 

ative influence in different locations, and different factors showed 

significant correlations in the same location with varying degree of 

influence. This provides evidence that holistic network-wide block- 

age maintenance approaches/treatments may be ineffective. More 

tailored, cluster-based approaches would, therefore, be required. 

Specific examples illustrating the above are presented below. 

In municipality A, the factors aged pipes, smaller diameters, 

clay pipes and increased number of service connections all showed 

a significant correlation to increased blockage propensity in the 

southern part of the network. However, the percentage of the de- 

gree of influence on increased blockage propensity ranges from 

0.4 – 0.5%, 0.1%, 49 – 65% and 11 – 15% respectively. Deduction 

indicates clay pipes and trunk sewers with multiple joints/bends 

are most susceptible to blockages in the southern part of 

municipality A. 

From the centre towards the northern peripheries in municipal- 

ity A, except the northwest, pipes with increased sagging potential 

showed a stronger degree of influence, 11 – 15% more compared to 

pipes with higher root intrusion risk and higher CCTV grades. This 

explains to some degree why pipes in this area may be plagued 

with structural problems which may result in increased sediment 

deposition and higher vulnerability with close proximity to trees, 

ultimately leading to the occurrence of blockages ( Marlow et al., 

2011 ; DeSilva et al., 2011 ; Torres et al., 2017 ). Reduced depth of 

pipes correlating to increased blockage propensity is also observed 

in this area. Further, reinforcing that structural problems which 

may arise from traffic wheels loads, and shifting soil are also con- 

tributory in this part of municipality A ( Davies et al., 2001 ). 

Pipes having higher self-cleaning velocities showed a strong 

degree of influence, 65 – 80%, in the northeast of municipality 

A, while pipes with lower self-cleaning velocities in the south 

showed a degree of influence of 10%, all towards increased block- 

age propensity. It may generally be inferred that only pipes 

with lower self-cleaning velocities experience sediment deposi- 

tion ( Hillas, 2014 ; Xie et al., 2017 ), i.e. as observed in the south. 

However, pipes with higher self-cleaning velocities have also been 

reported to experience sediment deposition, suspected to re- 

sult from the accumulation of coarser sediment particles at the 

head of sewer pipe networks ( Bachoc, 1992 ; Ashley and Hvitved- 

Jacobsen, 2005 ). 

In the central parts of the municipalities, concrete and plastic 

pipes showed a strong degree of influence to increased blockage 

propensity, 28 – 50% in municipality A and, with the exception of 

plastic pipes, 65 – 82% in municipality C. Decreased distance of 

pipes to restaurants also showed a relatively strong degree of in- 

fluence, namely 45 – 55% in municipality B and 22 – 26% in mu- 

nicipality C. This provides some evidence to support the suscep- 

tibility of pipes in close proximity to restaurants to FOG build-up 

or low operation and maintenance of grease interceptors, reinforc- 

ing findings from Mattsson et al. (2014) and Nieuwenhuis et al. 

(2018) . 

Holistic trends from the GWPR results indicated that specific 

factors, i.e. pipe age, length, depth and diameter were observed 

to have a significant correlation to increased blockage propen- 

sity similar to previous studies which reported significant corre- 

lations ( Pohls et al., 2004 ; Savic et al., 2006 ; Arthur et al., 2008 ; 

Ugarelli et al., 2009 ; Jin and Mukherjee, 2010 ; Ugarelli et al., 

2010 ; Rodríguez et al., 2012 ; Marlow et al., 2011 ; Post et al., 2017 ; 

Xie et al., 2017 ). In addition, Malek Mohammadi et al. (2020) re- 

ported these factors amongst others to be able to indicate the most 

statistical significance for sewer pipe blockages and are the most 

available in municipal databases. However, in the present study, 

these factors showed a low and varying degree of influence on in- 

creased blockage propensity within each municipality evaluated. 
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Previous stochastic approaches presented by Cherqui et al. 

(2015) , Post et al. (2017) and Pulido et al. (2019) have mainly fo- 

cused on global relationships with spatial representations attempt- 

ing to highlight the contributions of factors to the variability of 

blockages observed. Furthermore, these studies only considered the 

environmental factors for population density and ground settle- 

ment due to data availability. In the present study, especially the 

environmental factors distance to restaurants and risk of tree root 

intrusion showed significant spatial variability and influence to in- 

creased blockage propensity, which shows that environmental fac- 

tors are significant parameters which should be taken into consid- 

eration when modelling blockages. 

4.3. Robustness of RF ensembles for predicting blockages 

The mean proportion of correctly classified blockages to falsely 

classified blockages for the municipalities A, B and C were 

77%, 68% and below 50%, respectively, based on the municipal 

datasets consisting of factors previously described in Tables 2 and 

3 . Bailey (2016) used a similar set of factors with RF en- 

sembles and reported similar accuracies between 68% and 71%. 

Hassouna et al. (2019) used other factors (weather data, pollution 

events and event duration monitors) with RF to predict sediment- 

related blockages and reported an accuracy of 95%. Weather (rain- 

fall and temperature) and pollution-related events have been re- 

ported to have higher variability ( Courty et al., 2018 ) compared to 

the factors evaluated in this study. Furthermore, it was observed 

that the network K-function and RF results indicated that predic- 

tion accuracy and the strength of spatial variability of blockages 

appeared to decrease between municipalities A, B and C in a simi- 

lar trend. This prompts the presumption that improved accuracy of 

blockage recurrence predictions may be related to the strength of 

spatial variability in blockage occurrence pattern. 

4.4. Further development of the analysis procedure 

Factors listed in Table 3 , having more than 35% missing data 

were not included in the models for each municipality. However, 

these factors may have shown significance and impact to increased 

blockage propensity, if included along with other factors not avail- 

able in municipalities where the procedure was demonstrated. 

Therefore, further research is required to determine the thresh- 

old of data sufficiency. Secondly, the application of the procedure 

could also be expanded to other factors, especially environmental 

factors such as groundwater level, water depth in pipes, infiltration 

and inflow, ground settlement and a more in-depth evaluation of 

the effects of restaurants proximity on increased FOG accumula- 

tion in sewer pipes (upstream vs downstream located pipes) etc. 

These factors are known to affect blockages ( Davies et al., 2001 ; 

Malek Mohammadi et al., 2020 ), and if included in the analy- 

sis procedure, new insights may complement the existing knowl- 

edge on mechanisms of blockages. Furthermore, the application 

of the demonstrated procedure is highly dependant on the avail- 

able datasets, the spatial variability of blockages and the local 

mechanisms driving blockage occurrence. For instance, soil sub- 

sistence data could be used as an indicator for sagging poten- 

tial of sewer pipes. However, the choice of datasets utilisation 

remains highly dependant on availability. Consequently, the re- 

sults from one type of location may not be spatially transferable. 

GWPR and Geographically Weighted binomial Negative Binomial 

Regression (GWNBR) have both been reported to be appropriate 

for count data such as blockages ( da Silva and Rodrigues, 2014 ). 

Therefore, an evaluation and comparison of both methods for im- 

proved heterogeneity assessment of blockages may yield improved 

results. 

4.5. Application of the procedure to support sewer asset management 

Based on discussions of results with managers of the sewer 

networks in municipalities A, B and C, it was gleaned that mu- 

nicipalities B and C were proactively targeting known blockage 

hotspots with thoroughly planned pipe flushing activities. How- 

ever, municipality A only performed reactive flushing of blockages. 

These two different management strategies may explain why more 

clustering of blockages was found in municipality A along with a 

higher mean prediction accuracy with RF ensembles. Therefore, a 

cluster assessment with the network k-function may be consid- 

ered as a tool to evaluate the effectiveness of the proactive block- 

age management efforts, i.e. proactive flushing for recurrent block- 

ages. Secondly, according to Müller (2007) , the inspection of sew- 

ers, i.e. via CCTV, may be carried out via fixed intervals or need- 

orientated strategies. Bin Ali et al. (2011) further stated that need- 

orientated strategies were more effective for sewer inspections, re- 

quiring sewer managers to identify critical sewers for selective in- 

spection. Therefore, in municipalities such as municipality A where 

a network-wide inspection program is underway, the network k 

function and GWPR results may be used to support the planning 

of need-orientated CCTV inspection to identify critical sewers. The 

GWPR results may also be used to identify pipes or areas where 

recurring blockages may occur, i.e. the location of sewers where 

factors such as root tree intrusion or sagging correlate with a high 

propensity to blockages recurrence for proactive maintenance plan- 

ning . In addition GWPR results may further be used as input for 

planning and scheduling maintenance operations in sewers, such 

as the proposed combined maintenance and routing optimisation 

procedure ( Fontecha et al., 2020 ). The GWPR results in combina- 

tion with other tools, e.g. hydraulic models, risk and cost assess- 

ments may also be used to decide which pipes or in which areas 

a redesign of the sewers would be a more viable option compared 

to proactive flushing or other maintenance activities. In addition, 

when GWPR results are considered together with factors observed 

to be important for blockage predictions ( Table 5 ), the spatial het- 

erogeneity of parameter estimates seems to potentially be a suit- 

able identifier for predictors of blockages within clusters on the 

network. 

5. Conclusions 

A procedure that captures the spatial heterogeneity between 

sewer pipe blockages and factors which influence blockages occur- 

rence was evaluated. The procedure includes the following meth- 

ods: Network K-function, Geographically Weighted Poisson Regres- 

sion and Random Forest ensembles. The procedure showed high 

capability for assessing spatial variability and illustrating the de- 

gree of influence for factors influencing blockages within the sewer 

pipe network and resulted in blockage recurrence predictions in 

varying degree. More specifically: 

Accessing spatial variability using the network K-function, re- 

current blockages showed most significant clustering in municipal- 

ities A and C, and no clustering was observed in B. The network K- 

function also took into consideration the overestimation bias and 

geometric characteristics of the network. Discussions with sewer 

pipe network managers indicated rigorously rigorous flushing ac- 

tivities in certain areas in municipalities B and C where the block- 

ages were not as clustered as in municipality A. It is therefore 

suspected that the presence of significant clustering of recurrent 

blockages may be linked to an increased need for flushing-related 

maintenance in sewer pipe networks. 

The GWPR captured the spatial heterogeneity (significance and 

degree of influence) in the relationships between sewer pipe block- 

ages and all associated factors evaluated. Furthermore, the results 

showed the sewer pipe networks as differentiated segments, high- 
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lighting the most prevalent factors for increased blockage propen- 

sity in these segments. GWPR results and RF predictions together 

suggest that cluster-based maintenance approaches and predictions 

may yield better results compared to a network-wide approach. 

RF ensembles demonstrated relatively good predictions for 

blockage recurrence in municipalities A and B compared to mu- 

nicipality C. Municipalities A, and B also showed the strongest ev- 

idence of spatial variability with the network K-function. It can 

therefore be inferred that stronger spatial variability of blockages 

could improve the predictability of pipes with high susceptibility 

to recurrent blockages. 

The procedure elucidated in this study provides support for 

pipe inspection prioritisation, proactive maintenance planning and 

redesign of sewer pipe networks. Specifically, the percentage de- 

gree of influence serves as a parameter which can provide input to 

maintenance prioritisation, planning, and scheduling decisions. 
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 7 
Abstract 8 

In this study, the spatial relationship between edge-based centrality measures and the 9 

occurrence of blockages in sanitary sewer networks was analysed using vulnerability 10 

indicators. By analysing two sub-networks, one residential and the other a central 11 

network, significant spatial associations between pipes with high centrality values and 12 

those exhibiting adverse conditions (poor CCTV grades, previous blockages, and low 13 

self-cleaning capabilities) were identified. Path-based centrality measures, particularly 14 

edge betweenness and K-path edge centrality, were less influenced by weights when 15 

identifying critical pipes. In contrast, non-path-based measures like Nearest neighbour 16 

edge centrality could identify localised spatial patterns between critical pipes and pipes 17 

in adverse conditions within the sewer networks investigated. The results in this paper 18 

show that the spatial patterns between critical pipes identified based on edge centrality 19 

measures and pipes in adverse conditions were not random and could support proactive 20 

maintenance planning and the development of more resilient networks. Additionally, 21 

the impact of network structure, connectivity, and differences in the composition of pipe 22 

attributes could contribute to variations in the strength of observable spatial 23 

associations. 24 

Keywords: network resilience, proactive maintenance planning, asset management  25 

Introduction 26 

The ability of sewer networks to withstand disturbances is crucial for operation and maintenance 27 

(Barthélemy, 2011a). Vulnerability in the context of this study refers to the criticality or importance 28 

of a pipe, such that an operational disturbance such as a blockage can disproportionately impact 29 

larger portions of the sewer network (Zhang et al., 2017). Common methods that have been used 30 

for assessing sewer network vulnerability include risk assessment tools (Cardoso et al., 2007; 31 



 

 2 

Marlow et al., 2011), condition assessment using CCTV inspections (Caradot et al., 2020), and 32 

hydraulic and hydrodynamic modelling (Möderl et al., 2009). However, these methods are limited 33 

by a lack of network data to support risk assessments and tools (Ugarelli and Sægrov, 2022). 34 

Condition class is typically derived from CCTV observations and is regarded to have no direct 35 

correlation to the measurable characteristics of pipes, such as material properties, geometry, and 36 

hydraulic capacity. CCTV condition class is also considered a structured and standardised approach 37 

to aggregate opinions (Tscheikner-Gratl et al., 2020). However, due to the simplicity of CCTV 38 

condition class, it lacks the ability to provide a deeper understanding of the underlying reasons and 39 

methodologies for rehabilitation decisions (Tscheikner-Gratl et al., 2020). Some drawbacks of 40 

hydraulic and hydrodynamic modelling for vulnerability assessments include output uncertainties 41 

due to data availability, quality limitations, and calibration issues (Bijnen et al., 2017). 42 

Furthermore, risk assessments, CCTV condition class, and hydraulic modelling do not typically 43 

consider the influential role of the sewer network’s topological properties on vulnerability. Studies 44 

such as Simone et al. (2022) argue that to better understand and analyse sewers in terms of 45 

vulnerability, a tailored complex network theory approach, such as edge-based centrality measures, 46 

can provide valuable insights.  47 

The topology of sewer networks can play an important role in the occurrence and impact of 48 

operational failures, such as blockages (Reyes-Silva et al., 2020), suggesting that the topological 49 

properties of sewers are linked to vulnerability (Ganesan et al., 2020). Meshed or looped topologies 50 

are less vulnerable to failures than branched topologies (Zhang et al., 2017). Most sewer networks 51 

are generally considered to have branched topologies. The topology of sewer networks may also 52 

facilitate the occurrence of cascading failures, i.e. failures in one part of the network that can affect 53 

the functionality of other interconnected parts (Dong et al., 2020). For example, bridging pipes 54 

connecting different network parts is critical in analysing such cascading failures (Dong et al., 55 

2020). Graph theory centrality measures have recently been suggested to identify such critical 56 

bridging pipes and other topologically important pipes or manholes in urban drainage networks 57 

(Demšar et al., 2008; Meijeret al., 2018), and aid vulnerability assessments (Ganesan et al., 2020; 58 

Simone, 2023). Despite the extensive development of numerous centrality metrics over the past 59 

decade, only a few have been used and accepted in practice (Wan et al., 2021). While centrality 60 

measures such as betweenness, closeness, degree, and eigenvector are commonly utilised for node 61 

centrality analysis, relatively few accepted metrics are available for measuring the centrality of 62 
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individual edges (Ficara et al., 2022). The few edge centrality measures that do exist typically 63 

centre around the concept of betweenness centrality, the concept of bridging, or are based on the 64 

spectrum of the network’s Laplacian (Bröhl and Lehnertz, 2022). The applicability of these edge 65 

centrality measures has not yet been adequately evaluated in the context of sanitary sewer 66 

networks. Combining risk assessment tools, condition assessment methods, and hydraulic and 67 

hydrodynamic modelling with edge-specific graph centrality measures may provide a more 68 

comprehensive assessment of vulnerabilities and failure propensity in sewer networks.  69 

The objective of this paper was to examine the potential spatial relationships between operational 70 

failures and the topological characteristics of sanitary sewer networks (SSNs), and their 71 

implications for maintenance planning. Specifically, by examining the spatial relationship between 72 

the criticality of sewer pipes (determined using edge-based graph centrality measures) and the 73 

vulnerability indicators of CCTV condition grades, previous incidents of blockages and low self-74 

cleaning potential of pipes was evaluated. The suitability of edge centrality measures and their 75 

associated weights in the context of SSNs was compared and analysed. 76 

Methodology 77 

Using graph theory centrality measures, the criticality of edges (pipes) in networks was evaluated. 78 

The sewer networks investigated were represented as weighted and directed graphs, with pipes as 79 

edges and manholes, joints, bends, etc., as nodes. The centrality values across the networks were 80 

calculated for each pipe and normalised on a scale from 0 to 1. The normalisation followed the 81 

approach used by Antoniou and Tsompa (2008), which involved adjusting centrality values to fall 82 

between 0 and 1 by subtracting the minimum and then dividing by the range (max minus min). 83 

Pipes with higher centrality values, i.e. 0.7 and above, were considered the most critical. 84 

The network cross K-function was then used to examine how the centrality values of pipes were 85 

spatially related to their vulnerability indicators. These indicators included CCTV condition grades, 86 

previous incidents of blockage, and low self-cleaning potential. Following the Swedish 87 

classification system (Svenskt Vatten (SWWA), 2006), Closed-Circuit Television (CCTV) 88 

condition grades for pipes were categorised from 1 to 4. Pipes with grades 3 and 4 were considered 89 

in adverse condition due to various defects, such as cracks, misaligned joints, sediment deposition, 90 

root intrusion, and other issues. Self-cleaning capabilities of pipes in the sewer networks were 91 

assessed based on how the pipe slope compared to the inverse of its diameter. If the slope was 92 
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flatter than the inverse of the diameter, it indicated a low self-cleaning potential (J Ackers et al., 93 

2003). A two-sided Maximum Absolute Deviation (MAD) test was also used to directly compare 94 

spatial patterns of the various centrality measures, weights, and vulnerability indicators (Baddeley 95 

et al., 2014). The spatial associations identified were also compared to historical maintenance data, 96 

specifically the frequency of maintenance actions and their temporal distribution (2014-2023) for 97 

residential and central networks. The municipality compiled maintenance data from which data for 98 

this study was sourced. 99 

The methodology was applied to two sanitary sewer networks: one in a residential area and the 100 

other in the central part of the city. The subsequent subsections provide descriptions of the 101 

centrality measures investigated along with associated weights and the network cross K-function 102 

used to assess spatial associations within the sewer networks and identifiability analysis. 103 

Graph theory centrality measures and topological properties of SSNs 104 

Centrality measures investigated in this study are tailored towards identifying critical or important 105 

edges (i.e. pipes) that are most or least influential in comprehensively understanding the structural 106 

and functional characteristics within a given network topology (Wan et al., 2021). The centrality 107 

measures used are classified into path-based and non-path-based methods. The analysed path-based 108 

included betweenness edge centrality and K-path edge centrality measures. Non-path-based 109 

methods included Nearest neighbour edge centrality and Shannon entropy edge centrality 110 

measures. These measures (Table 1) were selected because of their ease of interpretation and 111 

reduced computational requirement.  112 
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Weights  118 

Pipe weights in graph centrality measures represent attributes such as relationship strength, 119 

intensity, distance, cost-associated flow or the inherent importance of the pipes within the network 120 

(Meijer et al., 2018). Weights are typically positive numerical values assigned to the pipes in the 121 

network. In a study, three main types of weights were investigated, with all four centrality 122 

measures. These weights include: 123 

• Pipe location: In gravity sewers, pipes within the sewer network can possess inherent 124 

relevance independent of the network’s topology (Giustolisi et al., 2020). For instance, 125 

certain pipes may represent crucial locations, such as sewer pipes connected to important 126 

facilities (e.g. hospitals, water, and treatment plants). The Strahler hierarchical stream order 127 

methodology (Gleyzer et al., 2004) was used to order the pipes in the sub-networks 128 

investigated in this study. The Strahler order is a numerical measure of the network’s 129 

branching complexity, beginning with the peripheral parts of the networkʼs assigned 130 

relevance starting from 1 at a confluence of two pipes. The weight increases by n+1 131 

downstream of the network until the treatment plant (Simone et al., 2020). The Strahler 132 

order values were considered pipe weights. 133 

• Pipe diameter: Certain pipes within the sewer network, such as pipes with larger diameters, 134 

may play a more crucial role in conveying flow to the wastewater treatment plants. 135 

Diameter can also simplistically reflect higher population density areas connected to the 136 

network, amplifying the consequences of operational disturbances such as blockages. 137 

Therefore, the pipe diameter was considered another type of pipe weight and interpreted as 138 

pipes with higher diameters being more critical for the function of the sewer network 139 

(Reyes-Silva et al., 2020; Hesarkazzazi et al., 2020). 140 

• Pipe age is critical in the deterioration modelling of sewer pipes (Malek Mohammadi et al., 141 

2020; Caradot et al., 2021). Studies such as van Riel et al. (2014) reported age as one of the 142 

most relevant parameters for the renewal planning of sewers. Hence, the age of sewer pipes 143 

was used as a structural weight. Older pipes were considered more critical based on a higher 144 

propensity to structural failures than newly installed ones. 145 

Network cross K-function analysis 146 
In this study, the network cross K-function was used to test the null hypothesis that the relationship 147 

between two distinct sets of data points on a network are spatially independent or random. The null 148 
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hypothesis is based on complete spatial randomness (CSR) theory (Yamada and Okabe, 2001). 149 

Specifically, the relationship between investigated centrality measures and vulnerability indicators 150 

was assessed. The network cross K-function quantifies the spatial interrelationships between two 151 

types of points constrained to a network. Monte Carlo simulation comparisons between the 152 

distribution of the two sets of points, events and locations being investigated, and random 153 

points/events or locations are generated based on the binomial point process. The analysis results 154 

were then presented as a curve and a simulation envelope. The curve indicates the spatial pattern 155 

of the two sets of points, events or locations investigated at a significance level of 0.05, referred to 156 

as the observed network cross K-function 157 

 curve. The simulation envelope represents the non-acceptance of the null hypothesis, i.e. a random 158 

spatial pattern. When the observed curve lies above the simulation envelope, the relationship 159 

between sets of points is considered clustered, implying a significant, influential relationship 160 

between sets of points (Yamada and Okabe, 2001). When it is located below the simulation 161 

envelope, the pattern is considered dispersed, implying a weak association between sets of points. 162 

The spatial pattern is considered random when the observed curve lies within the simulation 163 

envelope (Kunene and Scientiae, 2020).  164 

The Maximum Absolute Deviation (MAD) test was used in the Monte Carlo simulations to 165 

measure the difference between the observed curve and the simulation envelope under the null 166 

hypothesis for clustered relationships between centrality measures and vulnerability indicators. The 167 

MAD values were calculated as the maximum absolute difference between the functions over a 168 

specified range. A smaller MAD value suggested that the observed spatial patterns were closely 169 

aligned with the null hypothesis, i.e. showing a random pattern. A larger MAD value indicated a 170 

more significant deviation from the null hypothesis, i.e. a clustered or dispersed pattern.  171 

Data  172 

The topological parameters of both (residential and central) networks, described in Meijer et al. 173 

(2022) and Barthélemy (2011b), are presented in Table 2. The distribution of pipe attributes, weight 174 

types, and vulnerability indicators for both networks are also shown in Table 3.  175 
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 Table 2: Topology parameters of the residential and central networks  176 

Category  Topological parameters Residential Network  Central Network  
Type 
(Buhl et al., 
2006) 

Meshness level 
 

Higher levels of meshness within the 
network (Meshness coefficient M= 0.2) 

Lower levels of meshness within the 
network (Meshness coefficient M=0.03) 

Size  Number of edges, i.e. pipes 787 1248 
Number of nodes, i.e. manholes, 
pump stations, joints  

 
1154 

 
1186 

Structure 
(Yuan and 
Yan, 2021) 

Assortativity coefficient: location-
weighted  

0.7 0.8 

Assortativity coefficient: diameter 
weighted 

0.5 0.8 

Assortativity coefficient: age  
weighted 
 

0.6 0.3 

Connectivity 
 
(Telesford et 
al., 2011) 
 
(Broido and 
Clauset, 2019) 

Node degree distribution of 
residential and central networks vs. a 
random graph: Deviations from the 
random graph’s degree distribution 
indicate structural characteristics, 
such as the small-world effect, 
clustering, or hubs with highly 
connected nodes. 
 
Scale-free networks may exhibit a 
degree distribution of many nodes 
with low degrees and a few with 
extremely high degrees.  

 

Shows a deviation from the random 
graph indicating both small-world 
effect and scale-free network  

 
It shows more of a deviation from the 
random graph, indicating an increased 
small-world effect and scale-free 
network compared to the residential 
network. 

  177 
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Table 3: Pipe attributes, weights, and vulnerability indicators for the residential and central network 178 

Category  Characteristics  Residential Network  Central Network  
Pipe 
attributes  

Total pipe 
length (km) 

15.8 32.3 

Pipe material 
type  

  
Weight type  Pipe age  

 
 

 

Diameters 
range (mm) 

  
Vulnerability 
indicators  

CCTV 
condition 
grades  

  
Previous 
incidents of 
blockages  

28 91 

Pipe with self-
cleaning 
problems 
(True) if the 
slope is less 
than the inverse 
of diameter, 
otherwise False  

  

  179 
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Results and discussion 180 
Pipe centrality distribution and associated weights 181 

The distribution of centrality value for pipes, in both the residential and central networks (Figures 182 

1a & b), showed similarities when the path-based methods edge betweenness centrality and K-path 183 

edge centrality measures were employed, irrespective of the type of weight used. The median 184 

centrality values for pipes in both networks were close to zero, and the interquartile range (IQR) 185 

was narrow and near zero, with outliers on the higher end. This implies that the majority of analysed 186 

pipes did not lie on the shortest paths between nodes. In other words, most pipes were not critical 187 

for the flow or connectivity in the network. However, the outliers on the higher end pinpointed a 188 

few crucial pipes. Removing or disrupting these pipes could adversely affect the network’s 189 

functionality. 190 

Figure 1: Distribution of centrality values for pipes in residential and central networks for the four centrality measures 191 
betweenness (a), K-path (b), Nearest neighbour (c), and Shannon entropy (d), and three weight types (location, 192 
diameter and age) investigated. 193 
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The distribution of centrality values for non-path-based measures suggested that weights 194 

influenced path-based centrality measures less, and may be more practical to use in identifying 195 

critical pipes when obtaining accurate weight values is complex, uncertain or unavailable. This 196 

observed distribution aligned with findings from Reyes-Silva et al. (2020), which observed that 197 

edge weights did not substantially influence edge betweenness centrality in assessing eight various 198 

sub-networks, which comprised between 427 and 1,358 edges, and a total sewer length ranging 199 

from 60 km to 185 km. However, another study aimed at identifying preferential paths in a 200 

stormwater network to improve redundancy and mitigate overflows found edge betweenness 201 

centrality analysis to be sensitive to the weight type used (ratio between length and volumetric flow 202 

rate based on Manning equation) (Hesarkazzazi et al., 2020a). This suggests that further research 203 

is needed to increase the understanding of the sensitivity of weights in path-based centrality 204 

measures with various network types and sizes. Additionally, most of the critical pipes identified 205 

by path-based centrality measures tended to be located on the main sewer path of the investigated 206 

sub-networks. However, the pipes directly connected to the outlet of the studied networks typically 207 

had lower centrality values, i.e. were less critical. This was in alignment with Reyes-Silva et al. 208 

(2020) and Simone et al. (2022), who indicated that pipes near the wastewater treatment plants 209 

might have lower centrality values due to fewer possible shortest paths, especially when the 210 

wastewater treatment plants are located at the outskirts. This suggests the need to investigate the 211 

impact of the outlet location on the centrality values and various weighting schemes to optimise 212 

the use of edge-based centrality measures.  213 

For the non-path-based centrality methods, the pipe centrality values tended to vary for each sub-214 

network and weight type since the edge weights were more integral in the calculations. For Nearest 215 

neighbour edge centrality (Figure 1c), the median of the distribution of centrality values was 216 

slightly below 0.25 for the pipes in both networks when the weight type “location” was considered. 217 

The IQR was relatively narrow, with outliers on the higher end. This distribution suggested that 218 

pipe weights were relatively uniformly distributed or that the significance of neighbouring pipes 219 

often balanced the significance of a pipe. However, the higher values (the outliers) indicated that 220 

these pipes may play a dominant role in their local regions in both networks.  221 

When diameter was considered the weight type, a slightly higher median value was observed 222 

compared to the location-weighted analysis, with outliers at both the upper and lower ends of the 223 

distribution. This suggested that most pipes in the network did not significantly differ in weight 224 
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from their immediate neighbours. Pipes with higher centrality values on the upper end could be 225 

considered crucial and may play important roles in their local regions, with their removal 226 

potentially causing intense, localised impacts. Conversely, outliers on the lower end may locally 227 

indicate weaker or less critical pipes. These outliers were considered essential for pointing out 228 

potential vulnerabilities in the network, prioritising network integrity or connectivity, and 229 

strategically planning maintenance and resource allocation.  230 

Regarding the weight type “pipe age”, the distribution of centrality values for the residential 231 

network showed a wide IQR, with only one outlier on the higher end. In contrast, a narrow IQR 232 

with a median around 0 and one outlier at the higher end was also observed for the central network. 233 

This indicated a considerable variability in the significance of pipes within the residential network. 234 

While some pipes closely match the weight of their neighbouring pipes (in terms of pipe age), 235 

others vary significantly. The narrow IQR in the central sub-network may imply that most of the 236 

network might have been developed or refurbished around the same time, simplifying maintenance 237 

planning, as most pipes might have similar deterioration patterns. Previous findings, such as Bröhl 238 

and Lehnertz (2022), have highlighted that Nearest neighbour edge centrality is particularly 239 

suitable for highlighting local network bottlenecks. Moreover, it enhances the characterisation of 240 

the path structure within complex networks. Therefore, incorporating this measure alongside path-241 

based centrality can yield a more comprehensive understanding of network dynamics and 242 

behaviour.  243 

In the context of Shannon entropy centrality (Figure 1d), the values for pipes in the central network 244 

showed a wide IQR with no outliers for all three weight types investigated, with a median value of 245 

around 0.25. This distribution suggested that the pipes generally had a moderate level of 246 

unpredictability in their path involvements, i.e. while the network was designed to handle a variety 247 

of flows, no specific pipe stood out as an extreme hub or bottleneck based on the metrics used. The 248 

distribution of centrality values for the residential network showed a wide IQR with a median of 249 

around 0.25 when weighted by pipe location and age. However, the median was about 0 when 250 

weighted by diameter. When considering location and age as weights in the residential network, 251 

the pipes showed a similar unpredictable role as in the central network. This could indicate that 252 

older pipes or pipes in specific locations played different roles in the connectivity and flow patterns 253 

in the network. However, when the diameter was used as the weight, most pipes had a very 254 

predictable role, suggesting that the size of the pipes (diameter) is more uniform in this network. 255 
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Spatial association between edge centrality measures and vulnerability indicators and 256 
implications for maintenance planning  257 

The network cross k-function analysis for the residential network was conducted at a 95% 258 

confidence level (Okabe and Sugihara, 2012; Kunene and Scientiae, 2020). The results indicated a 259 

non-random spatial association between pipes with higher centrality values and adverse 260 

vulnerability indicators, i.e., pipes with CCTV condition grades 3 and 4, pipes with previous 261 

blockage incidents, and low self-cleaning potential (Table 4). Ganesan et al. (2020) and Simone 262 

(2023) indicated similar results in their studies. 263 

Among the centrality measures, edge betweenness and K-path edge centrality showed the most 264 

significant spatial association and displayed a strongly clustered pattern. Particularly, pipes with 265 

high betweenness centrality demonstrated a significant spatial clustering, with pipes with CCTV 266 

condition grades 3 and 4 and previous blockage incidents, as emphasised by MAD values. On the 267 

other hand, pipes with higher centrality based on K-path edge centrality showed stronger clustered 268 

patterns associated with pipes with low self-cleaning potential. For detailed network cross K-269 

function plots for the residential network, see supplementary data I. These results could imply that 270 

pipes with higher centrality values may be more likely to cause network disruptions due to 271 

structural failures and blockage events. 272 

Additionally, these results suggested a plausible interaction between structural failures and 273 

blockage occurrence; for example, the occurrence of blockages may be due to structural-related 274 

problems. Increased structural failures like cracks may also permit higher levels of infiltration into 275 

the pipes, which aid in reducing sediment deposition (Beheshti and Sægrov, 2018) and, thus, lower 276 

blockage occurrences around pipes with higher centrality values. 277 

For the central sub-network, analogous to the residential, there was an observation that pipes with 278 

higher centrality values, determined by path-based centrality measures, exhibited a stronger degree 279 

of spatial association with pipes in adverse conditions (Figure 4). For detailed network cross K-280 

function plots for the central network, see supplementary data II. The strength of the spatial 281 

associations was also observed to be stronger in the residential network compared to the central 282 

network. However, the strength of these spatial associations may be affected by other network 283 

attributes not evaluated in this study. 284 
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The non-path-based centrality measures, Nearest neighbour edge and Shannon entropy exhibited 285 

clustered spatial associations with adverse CCTV condition grades when weighted by pipe age and 286 

diameter. However, these non-path-based measures showed a random spatial association in relation 287 

to pipes with previous incidents of blockages (Table 3). Both investigated non-path-based methods 288 

showed a clustered pattern in relation to pipes exhibiting low self-cleaning potential. 289 

In contrast to the residential network, the non-path-based centrality measures of the central network 290 

displayed a less distinct spatial pattern in connection to pipes with adverse conditions. For example, 291 

pipes with adverse CCTV grades tended to cluster around pipes with higher Shannon entropy 292 

centrality in the residential network. In contrast, in the central network, a combined (slightly 293 

clustered/dispersed) pattern was observed when weighted by pipe diameter and age. The above 294 

indicates that while some pipes with adverse CCTV grades tend to be located in close proximity to 295 

pipes with high centrality, there were also instances of dispersion, i.e. grouped away from pipes 296 

with high centrality. In the case of the Nearest neighbour centrality, a predominantly random spatial 297 

pattern was observed in the central network vs. a more clustered pattern in the residential network 298 

in relation to pipes with adverse CCTV grades when weighed with location and diameter. Among 299 

the non-path-based centrality measures used, only the Shannon entropy centrality measure in the 300 

central network showed a significant spatial association, i.e. slightly clustered and dispersed pattern 301 

with pipes that had previous incidents of blockages across all weight types investigated. 302 
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The difference in the degree of spatial associations between sub-networks may be influenced by 309 

topological factors such as structure and connectivity. For example, assortativity tended to be more 310 

pronounced in the central network compared to the residential network. This was especially true 311 

when pipe diameter and location were considered weights. These suggest that lower assortativity 312 

networks may have more pronounced spatial relationships. The central network also showed more 313 

evidence of being scale-free. Scale-free networks may be more vulnerable to targeted failures 314 

(Amaral et al., 2000; Aarstad et al., 2013). Meng et al. (2018) also suggested that network structure, 315 

topology, and connectivity significantly influenced the occurrence and magnitude of failures in 316 

separate sewers. Another observation in this study was the differences in pipe age and material 317 

composition between networks, which may have contributed to the distinctive spatial patterns 318 

between centrality values and adverse conditions in pipes. Specifically, the investigated network 319 

with a less diverse composition of pipe material showed more variable spatial associations. For 320 

example, the residential network consisted of predominantly concrete pipes, while the central 321 

network consisted of a mix of concrete, clay, plastic pipe materials and others. The uncertainty in 322 

data of pipe conditions (CCTV grades) may vary across different networks (Fugledalen et al., 323 

2021), and the implications of such variations on the variability of spatial association need to be 324 

further investigated. 325 

The variability in strength and type of spatial association between the residential central sub-326 

networks may also have implications for maintenance planning. For example, studied maintenance 327 

actions in the analysed residential network were more irregular (Figures 2 and 3). In the central 328 

network, maintenance actions were more frequent, possibly leading to less distinct patterns. The 329 

strength of spatial associations may also be used as an indicator to identify temporal variability in 330 

operational problems or maintenance needs. For example, significant deviations in entropy 331 

centrality values over time can highlight anomalies. Pipes with high centrality values showing a 332 

significant spatial association with vulnerability indicators may be suitable locations for sewer 333 

monitoring (Simone et al., 2022), such as installing sensors or in-depth CCTV inspections to aid 334 

proactive measures. Such pipes may also be in locations where redundancy or redesigns may be 335 

beneficial. For example, in locations where blockages tend to cluster around pipes with higher 336 

centrality values, it may be cost-effective to redesign critical pipes to increase flow redundancy 337 

(Hesarkazzazi et al., 2020b) compared to conventional approaches like regular pipe flushing.338 
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 341 

Figure 3: Temporal comparative analysis of operational disturbances between Residential and Central Networks from 2014 to 342 
2023 compiled by the municipality from where data for this study was sourced. Numbers indicate the total number of operational 343 
disturbances that occurred. 344 
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Conclusions 345 

The results showed significant spatial clustering between pipes with higher centrality values and 346 

pipes with adverse CCTV condition grades, previous blockage incidents, and low self-cleaning in 347 

the two sewer networks investigated. These findings suggest a level of spatial aggregation and 348 

colocation between high centrality pipes and those prone to failure than could be expected under 349 

random conditions. Path-based centrality measures, such as edge betweenness and K-path edge 350 

centrality, were more practical measures due to being less influenced by weights in identifying 351 

critical pipes in sewer networks, especially when accurate weight values are difficult to obtain. 352 

Combined with spatial approaches, like the network cross K-function, edge-based centrality 353 

measures were indicated to give realistic preliminary analyses that could be useful in analysing 354 

complex sewer networks where there is a lack of data, high data uncertainty, or modelling 355 

problems. Other factors like assortativity, small-world and scale-free network effects, and pipe 356 

physical characteristics (such as pipe age) may also influence spatial association. This complexity 357 

requires further research to interpret spatial association for sewer maintenance. 358 

Spatial clustering between pipes with higher centrality and vulnerability indicators in sewer 359 

networks can form the basis for developing data-driven maintenance strategies. Insights from their 360 

use can aid in more targeted maintenance strategies for SSNs, leading to enhanced proactive 361 

maintenance planning, optimization, and remedial actions such as redesigning sewers to include 362 

more redundancies for failure prevention. Additionally, the distinct topological differences 363 

between residential and central networks necessitate tailored maintenance approaches, with 364 

residential networks showing the need for more diverse strategies. Such nuanced understanding 365 

may enhance the efficiency and reliability of sewer maintenance planning. 366 

Integrating different methodologies, such as those investigated in this study, provided an approach 367 

to identifying critical points and potential weaknesses in sanitary sewer networks. The synergistic 368 

effect of an integrated approach may enable a more systematic and robust evaluation of sewer 369 

network vulnerabilities. This study presented an initial step towards a methodology that uses edge-370 

based centrality measures to develop asset management of sanitary sewer networks. However, 371 

more investigations are needed for other sewer networks to validate the findings from this study. 372 
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