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The origin and evolution of open habitats
in North America inferred by Bayesian
deep learning models

Tobias Andermann 1,2,3 , Caroline A. E. Strömberg4,
Alexandre Antonelli 2,3,5,6 & Daniele Silvestro 2,3,7,8

Some of the most extensive terrestrial biomes today consist of open vegeta-
tion, including temperate grasslands and tropical savannas. These biomes
originated relatively recently in Earth’s history, likely replacing forested habi-
tats in the secondhalf of theCenozoic.However, the timingof their origination
and expansion remains disputed. Here, we present a Bayesian deep learning
model that utilizes information from fossil evidence, geologic models, and
paleoclimatic proxies to reconstruct paleovegetation, placing the emergence
of open habitats in North America at around 23 million years ago. By the time
of the onset of theQuaternary glacial cycles, openhabitatswere coveringmore
than 30% of North America and were expanding at peak rates, to eventually
become the most prominent natural vegetation type today. Our entirely data-
driven approach demonstrates how deep learning can harness unexplored
signals from complex data sets to provide insights into the evolution of Earth’s
biomes in time and space.

The different types of vegetation and their spatial distribution form
the biotic landscape on which other species, including all terrestrial
animals, interact and evolve. From reconstructions of past vegetation
(paleovegetation) at different sites, we know that vegetation con-
tinually evolves through time as a response to changes in climate1,2,
interactions with faunal communities3, and large biological events
such as mass extinctions4.

Several major vegetation changes are documented in the fossil
record, including the shift fromecosystemsdominatedby free-sporing
plants to seed plants5 and the radiation and ecological expansion of
angiosperms4,6,7, which today dominate the natural vegetation in most
terrestrial biomes (excluding anthropogenic agricultural impacts). The
most important vegetation change in the Cenozoic is arguably the
origination and expansion of open grass-dominated habitats8 at the
expense of closed forest ecosystems9. Open grasslands were in recent
history (i.e., prior to recent anthropogenic impacts) themost extensive

terrestrial biome on Earth, covering over 40% of the Earth’s land
surface10. The oldest confirmed presence of open-habitat grasses in
North America dates back to the late Eocene (38–34Ma), yet the fossil
record indicates that thesewere rare elements of the vegetation and at
the time did not form sizable open ecosystems9,11. Based on the cur-
rently available paleobotanical evidence, it is likely that open grass-
dominated habitats first appeared as a novel biome relatively recently,
sometime during the late Oligocene to early Miocene (~28–20Ma8,12).
Yet, the precise timings and dynamics of open grassland origination
and expansion are still poorly understood andmuch debated (e.g., see
Strömberg9).

Previous studies have produced paleovegetation reconstructions
for individual sites based on the evaluation of (i) plant macrofossil
assemblages (i.e., fossilized leaves, seeds, wood, or other plant
organs); (ii) fossilized pollen; or (iii) phytoliths—microscopic silica
bodies produced in plant cells with a high fossilization potential and
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unique shapes, which can be attributed to specific vegetation
components13. While such reconstructions can provide an accurate
record of the vegetation at a given site, extrapolating these recon-
structions to larger geographic scales and through time is hampered
by the sparsity of fossil sites and the incompleteness of the fossil
record, both in terms of taxonomic coverage as well as time series.
Extrapolations are often done based on expert opinion, under con-
sideration of paleoclimatic models and other sources of
information14–16, at the cost of reduced reproducibility and limited
scalability.

Most modeling studies aimed at inferring past or future vege-
tation have been based on climate models and predefined tolerance
limits for certain biome types17,18. However, additional types of data
that are not normally integrated might considerably improve such
modeling approaches, such as the associations between the faunal
fossil record with the surrounding vegetation. For example, the
relationship between grassland biomes and large grazing mammals,
often identifiable by their hypsodont teeth, has long been used to
infer the presence of grasslands19,20 (but see Strömberg21, and Dunn
et al.22). Such information about plant-mammal interactions is com-
monly only used to infer the paleovegetation at individual fossil
sites9, although mammal fossil assemblages are sometimes used to
validate and correct vegetationpredictionsmade fromclimate-based
models18.

Mammal fossils are a useful data type because of their relatively
rich record. Mammals are one of the paleontologically best studied
groups with a relatively well-resolved fossil taxonomy, often
allowing for precise identifications of fossil mammals down to
genus or even species level. Many mammal fossil datasets are
publicly available through large online databases (e.g., Carrasco
et al.23). Yet, to our knowledge, no computational models exist that
explicitly utilize this information to predict vegetation. This may be
partly due to the fact that for most taxa, habitat associations are
difficult to establish with confidence, particularly so for extinct
taxa, and ambiguous for many mammal taxa that are not restricted
to a single vegetation type.

To improve themodeling of past environments,wepresent here a
Bayesian deep neural network (BNN) model that utilizes comprehen-
sive information on mammal fossils, plant macrofossils, modeled
paleoclimate and elevation estimates, as well as spatial and temporal
coordinates, including tectonic movement (PALEOMAP). We train the
model using independent vegetation datasets, including paleovege-
tation and modern vegetation information. To gather data on past
vegetation, we compiled a dataset of 331 independent points with
reconstructed paleovegetation, sampled across North America and
throughout the last 30 million years (Myr, see Supplementary Data 1).
In addition, we added information about past mammal-plant interac-
tions by compiling a dataset of more than 5000 fossil occurrences for
different mammal and plant taxa (Paleobiology Database, and Cen-
ozoic Angiosperm database24, see Supplementary Data 2), com-
plemented by current occurrences of these taxa (Global Biodiversity
Information Facility—GBIF). Importantly, our model does not require
any prior assumptions on temperature tolerance limits or ecological
interactions. Instead, it learns how these biotic and abiotic features can
be mapped to a vegetation type within a supervised learning frame-
work. This property provides great flexibility, as any available biotic or
abiotic predictor can be added to the model; it is the model itself that
decideswhichpredictors are useful for the vegetation inference, based
on the data provided. Once trained, the model can be applied to
estimate the most likely vegetation for any given point in time and
space (within the temporal and spatial scope covered by the training
data), as well the uncertainty associated with the prediction. We
implement our BNN model to infer past vegetation changes in North
America throughout the last 30Myr, focusing on the expansion of
open vegetation.

Results
Model description
We implement a BNN model to predict vegetation through space and
time (Figs. 1 and 2, see “Methods” for a more detailed description). We
focus on two vegetation types “open vegetation” (including open
grasslands, savannas and steppes, desert vegetation, and tundra) and
“closed vegetation” (forests). Additional and more nuanced vegeta-
tion categories could be implemented for other systems if sufficient
data were available for training. As features for this classification task
we use biotic data, consisting of fossil occurrences of 100 selected
mammal and plant taxa (see “Methods”), supplemented by current
occurrences of these taxa. Further, we use several abiotic features
including proxies for elevation, mean annual temperature, and pre-
cipitation through space and time25, paleocoordinates26, mean global
temperature from oxygen isotope data27, and mean global atmo-
spheric CO2 concentration estimates based on carbon isotope data
from fossil soils and stomatal pore density of fossilized leaves28.

Our deep neural network consists of two initial hidden layers,
where distances derived from the raw mammal and plant fossil
occurrence data (Fig. 1) are transformed into taxon-specific features
(Fig. 2a, see “Feature generation” in “Methods” section for a more
detailed explanation). These features, in combination with additional
abiotic features, comprise the input data for the fully connected layers
of a BNN classifier, which quantifies the probability of each vegetation
type for a given point in space and time (Fig. 2b). Through this setup
the model is trained to infer the vegetation type based on the mea-
sured distances to nearby taxon occurrences, in combination with the
additional climatic and geographic features.

Predicting past vegetation
To train our BNN vegetation classifier, we compiled a total of 331
paleovegetation reconstructions based on phytolith and pollen
assemblages, paleosol data, and macrofossils from the peer-reviewed
literature (see “Methods”), ranging in age from the beginning of the
Oligocene (33.9Ma) to the present (Supplementary Figs. 1 and 2). To
further increase training data, we supplemented the paleovegetation
datawithdata on current vegetation. Sincecurrent vegetationpatterns
are heavily influenced by human activity, we retrieved the SYNMAP
Global Potential Vegetation data, representing the potential vegeta-
tion without human land alterations29. To find themodel configuration
that produced the best paleovegetation predictionaccuracy, we tested
a range of different model architectures, as well as different combi-
nations of input data (Table 1). We applied a five-fold cross-validation
approach to the training data when training each model; in this
approach each model is trained five times on a different 80% of the
input data, while using the remaining 20% as a test set. This allows to
determine the overall prediction accuracy of the model by averaging
the number of correctly predicted test set labels across all 5 test sets,
comprising all available data. We calculated the prediction accuracy
separately for paleovegetation and current vegetation, as well as a
combined weighted mean of the two (Table 1, Supplementary Fig. 3,
see “Methods” for more information).

The best model (model 1, Table 1) reached a prediction accuracy
of 88.7% (88.8% paleo, 87.6% current). The model included biotic
(taxon distances) and abiotic features and its architecture consisted of
one layer containing 8 nodes, and no feature pooling (see “Methods”
for more details). The prediction accuracy can be further improved by
applying a posterior probability (PP) threshold to the class predictions,
only making vegetation inferences for predictions that exceed this
threshold. In separate sensitivity analyses, we show that applying PP
thresholds, and thereby masking low-confidence predictions, leads to
more accurate predictions of vegetation patterns (see Supplementary
Discussion and Supplementary Figs. 4 and 5). The higher the PP
threshold is set, the higher test accuracies can be reached, at the cost
of an increasing number of test instances being predicted as
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“unknown”, as they fall below the threshold (Fig. 3, Supplementary
Fig. 6). Here, we determine a PP threshold for each of our trained
models to ensure a minimum test accuracy of 90%. For the best
model, a PP threshold of 0.63 was sufficient to reach an expected
target accuracy of >90%, while still making vegetation inferences for
92% of the test set (Table 1), the remaining 8% being classified as
uncertain.

Using the best of our trained models, we produced vegetation
estimates for North America throughout the last 30Myr in one-Myr
increments. To further improve the model for predicting past vege-
tation, we retrained one final production model using all available
paleovegetation points, including those 20% that werepreviously used
for model evaluation. The final model was trained on all 331 paleove-
getation points and 331 current vegetation points. To produce the data
for the prediction task, we calculated the cell-center coordinates of all
land cells in a0.5° × 0.5° grid across themajority of theNorthAmerican
continent, which we delimited by a cropping window with corner
points P1 (Lon = −180, Lat = 25) and P2 (Lon = −52, Lat = 80). We
accounted for tectonic movements, transforming the grid-cell center
coordinates into their equivalent paleocoordinates, using the
“PALEOMAP” model of the mapast R-package26. From the grid-cell
center coordinates, we extracted the taxon occurrence distances for
feature generation, aswell as all additional abiotic features, in the same
manner as for the training and test data (Fig. 1).

The vegetation patterns for North America predicted by our best
model show no significant evidence for the presence of open vegeta-
tion during the Oligocene epoch (23–30Ma, Fig. 3), as the 95% HPD

interval of estimated open habitat proportion during this period
includes 0 (0–14.9%). Starting at 23Ma (beginning of theMiocene) our
model predicts the presence of open vegetation with certainty, as the
posterior estimate of open habitat fraction significantly exceeds 0%
(Fig. 4). Throughout the Miocene, these open habitats continuously
expanded, forming a wide corridor roughly covering the region com-
prised of today’s American Great Plains (Fig. 3). Already by the end of
the Early Miocene (17Ma), this ecoregion (the American Great Plains,
as defined in Omernik et al.30, see Supplementary Fig. 7) was covered
by 68% (47–93%, 95%HPD) of open vegetation (Supplementary Fig. 8).
Around the time of the Miocene-Pliocene transition (5Ma) the rate of
open habitat expansion across the entire North American continent
began to accelerate rapidly, increasing the proportion of open vege-
tation from 20% (11–36%) in the Early Pliocene (4–5Ma) to 42%
(30–53%) by the beginning of the Pleistocene (2–3Ma). During the
Pliocene-Pleistocene transition, the rate of open habitat expansion
reached its maximum, eventually becoming the most prominent nat-
ural vegetation type in North America today.

To determine to what degree the mammal taxa (genera) used in
this study are associated with either open or closed vegetation, we
evaluated for each taxon the fraction of occurrences that fall within
eachvegetation type, basedon the vegetationpredictionsmadebyour
best model, and averaged through time. The most specialized open
habitat mammal genera identified by our predictions are Cratogeomys
(gophers), Onychomys (grasshopper mice), Baiomys (pigmy mice),
Tayassu (peccaries), Notiosorex (desert shrews), and Dipodomys (kan-
garoo rats), which have all of their current and fossil occurrences

Fig. 1 | The process of feature generation. The workflow is shown exemplarily for
one point with current vegetation information (framed in red), located at the
coordinates −125, 60 (Decimal Degree System) and labeled as “closed” vegetation.
Our database, compiled for this study, contains other points with current or past
vegetation information, labeled as open (grass symbol) or closed (tree symbol).
Once the model is trained it can be applied to estimate the vegetation inter-
pretation for points in space and time, which are currently lacking such informa-
tion (represented by the question mark). For the selected point, defined by its

longitude (Lon), latitude (Lat), and age, we extract several abiotic features,
reflecting climatic, geographic, and temporal variables (seebox “Abiotic features”).
In addition, we extract the spatial distance to the closest occurrence of each taxon
in our occurrence database (see box “Biotic distances”). This is repeated for each
geological stage (n = 17), while also extracting the temporal distance between the
given point and the mid age of each geological stage. In the example the temporal
distance to the nearest horse occurrence in stage 1 is 0 (see cells highlighted in
red) because the vegetation point falls within this first geological stage.
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inside of grid cells with inferred open vegetation (Supplementary
Table 1). These are all small-bodied taxa which are still naturally
occurring in North America today (with the exception of genus
Tayassu) and whose living species are also today associated with open
habitats. On the other hand, we identified Sciurus (squirrels), Dasypus
(armadillos), Odocoileus (white-tailed and mule deer), Mammut (mas-
todons) as the most specialized closed vegetation mammal genera
(>75% of occurrences in closed vegetation). Squirrels, as well as some
species of armadillos today are still associated with closed, forested
habitat. Similarly, the genus Mammut, which included the North
American mastodon, is known to have been mostly forest-dwelling
until its relatively recent extinction31. Regarding the genus Odocoileus,
on the other hand, bothwhite-tailed andmule deer are known today to
occur in both open and closed habitats. These species may have their
origins as forest-dwelling species, having gradually adapted toward the
increasing area of open grassland vegetation, a trend reflected in our
data (3Ma: 0% open habitat occurrences, 1Ma: 21% open habitat
occurrences, 0Ma: 34% open habitat occurrences).

This demonstrates the potential of our model to estimate
mammal-vegetation associations from the predictions made by the
trainedmodel, rather thanhaving todefine these a priori. However, the
here-inferred habitat associations are not reflective of the importance
of these taxa for our trained model, as opposed to the taxa identified
by the feature importance evaluation below (Fig. 5). Further, for taxa
with few fossil occurrences, the here identified habitat associations are
potentially affected by incomplete sampling, as these taxa may have

occurred in both habitat types but only show occurrences in one of
them in our available occurrence data.

Sensitivity tests
We testedwhether the prediction accuracy of ourmodels improves by
supplementing the paleovegetation data with current vegetation data
when training the model. We found that the prediction accuracy for
both paleovegetation and current vegetation increases even when
adding only a small subset of the current vegetation data (331 of 11,048
grid cells) duringmodel training (comparemodel 15 vs. 8, Table 1). This
number of current vegetation points was chosen to match the 331
paleovegetation points that were compiled in this study. The predic-
tion accuracy for current vegetation patterns further improves when
more current vegetation data points are added during training, for
example when increasing the current data 2-fold (model 16) or 5-fold
(model 17), yet the prediction accuracy for paleovegetation starts to
decrease. This indicates that our model utilizes some of the informa-
tion that is gained from adding current vegetation information during
training, but that it overfits toward the present when the number of
current vegetation instances outweighs the number of paleovegeta-
tion instances. We therefore recommend for future studies using this
type of model for vegetation inference to only use a subset of the
available current vegetation data for training, particularly if the
paleovegetation data for training is limited, to avoid overfitting
towards the present vegetation pattern and towards the taxon-
vegetation interactions determined for that point in time. The most
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Fig. 2 | The BNN model architecture. a The spatial and temporal distances
extracted separately for 100mammal andplant taxa (Fig. 1), are the input of thefirst
two hidden layers in the BNN model. During training, the BNN optimizes weights
(represented by lines labeled with wX ) to reduce the multitude of spatial and
temporal distance measurements into one single “proximity” value for each taxon
(taxon nodes) relative to the given point in space and time. This process of feature
generation is equivalent to the convolutional layers in an image classifier, reducing
higher-dimensionality data into lower-dimensionality features for input into the
subsequent neural network layers. In someof our testedmodels the resulting taxon

features are pooled before being passed on to the next layer. b The taxon node
values (“Biotic features”) are then used in combination with the abiotic features as
input into the fully connected BNN classifier layers. Jointly with the weights of the
feature generation layers, the weights of the BNN classifier are estimated during
training through MCMC sampling, to optimally map the input data to the correct
output vegetation label (“open” or “closed”). Once trained, a posterior sample of
the weights is stored for eachmodel and is used tomake vegetation predictions for
points with unknown vegetation interpretation.
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suitable proportion of current vs paleovegetation points for a given
vegetation prediction task should be viewed as a hyperparameter of
the model, which can be fine-tuned via model testing (Table 1).

We then tested whether the addition of biotic features (taxon
distances) improves the prediction accuracy, compared to models
using only abiotic features, such as those used in previous studies
based primarily on climate17,18. We find that amixed-featuremodel that
is trained on both biotic and abiotic features (model 1) outperforms a
model that is trained on abiotic features only (model 4) by amargin of
3.6% prediction accuracy (Table 1). Further analyses of feature
importance for themixed-featuremodel show that several of thebiotic
mammal and plant features stand out as the features with a high
impact on the prediction accuracy of the model, for example the
generaUrsus (bears) and Equus (horses, Fig. 5). Yet, abiotic features, in
particular global temperature, latitude, and time, also provide a mea-
surable contribution toward the prediction accuracy of this model.
These findings suggest that alongside previously used abiotic pre-
dictors, in our studymammal and plant fossil occurrence data capture
relevant information that is used by the model to predict paleovege-
tation changes (Fig. 5). In combinationwith the outcome of ourmodel-
testing (Table 1), these results provide strong justification that models
utilizing both, biotic and abiotic features should be used for the task of
vegetation modeling.

Finally, we tested models in which pooling was applied to the
output of thefirst layers of the BNNgenerating features from thebiotic
data. Specifically, we applied max-pooling and mean-pooling to the
biotic features (n = 100) reducing them to one single faunal and one
single floral feature (n = 2), before feeding them into the fully con-
nected layers (Fig. 2). This approach greatly reduces the number of
weights that need to be estimated, leading to faster training and better
convergence of the MCMC that is used to sample the BNN weights.
Both the max-pooling and the sum-pooling approach (see “Methods”)
led to similar results, resulting in a slight dropof about 2% inprediction
accuracy of these models compared to a model not implementing

pooling (comparemodels 2 and 3 vs. model 1, Table 1). However, as in
other deep learning models, the benefits of substantially decreasing
thenumber of parametersmayoutweigh the information loss for some
datasets, rendering pooling a potentially useful tool for further
dimensionality reduction of the biotic features in future implementa-
tions of these models.

Discussion
We presented a probabilistic prediction of paleovegetation and its
evolution for North America, based on a deep learning model. This
model extracts information from comprehensive yet underutilized
data sources, including raw geographic and temporal distances to
taxon occurrences, in conjunction with abiotic data such as climate,
elevation, and spatiotemporal coordinates. The spatial and temporal
distances that are required as input can be easily calculated for any
givenpoint in space and time, independent of its vicinity to the nearest
fossil record of a given taxon, which makes our model applicable to a
wide range of geographic and temporal contexts. Our approach is
entirely data-driven, as it requires no previous definitions or hypoth-
eses about mammal-plant interactions or climate tolerance limits of
given vegetation types.

Utility of BNNs
One advantage of our BNN model is that it allows for a multitude of
predictors (n = 108 in this case). In case of the mammal and plant
features, our BNN implementation is designed to automatically gen-
erate these features from the raw occurrence records (current and
fossil occurrences). In classic mechanistic models (e.g., linear regres-
sionmodels) such high numbers of predictors are usually problematic
because of the issue of collinearity of predictors, precluding these
models from accurately fitting the small number of parameters
towards the best unique solution. Neural networks on the other hand,
including BNNs, are not affected by the collinearity of predictors, since
due to the very high number of parameters in these models, many

Table 1 | Prediction accuracy of tested model configurations, with the accuracy of the best models highlighted in bold

Model ID Architecture Train instan-
ces current

Train instan-
ces paleo

Features Pooling Accuracy Accuracy
(paleo)

Accuracy
(present)

Selected PP
threshold

Predictions above
PP threshold

1 1 layer, 8 nodes 331 331 All None 0.887 0.888 0.876 0.630 0.921

2 1 layer, 8 nodes 331 331 All Sum 0.870 0.870 0.873 0.580 0.952

3 1 layer, 8 nodes 331 331 All Max 0.868 0.870 0.852 0.690 0.852

4 1 layer, 8 nodes 331 331 Only abiotic None 0.851 0.855 0.807 0.820 0.387

5 1 layer, 8 nodes 331 331 Only biotic None 0.883 0.885 0.861 0.600 0.943

6 1 layer, 8 nodes 331 331 Only biotic Sum 0.827 0.825 0.846 0.730 0.764

7 1 layer, 8 nodes 331 331 Only biotic Max 0.739 0.737 0.761 0.700 0.562

8 2 layers, 32-8 nodes 331 331 All None 0.874 0.873 0.879 0.670 0.924

9 2 layers, 32-8 nodes 331 331 All Max 0.871 0.870 0.882 0.680 0.879

10 2 layers, 32-8 nodes 331 331 All Sum 0.867 0.864 0.900 0.640 0.918

11 2 layers, 32-8 nodes 331 331 Only abiotic None 0.878 0.879 0.873 0.610 0.918

12 2 layers, 32-8 nodes 331 331 Only biotic None 0.868 0.870 0.852 0.620 0.921

13 2 layers, 32-8 nodes 331 331 Only biotic Sum 0.844 0.843 0.858 0.670 0.834

14 2 layers, 32-8 nodes 331 331 Only biotic Max 0.800 0.798 0.822 0.740 0.619

15 2 layers, 32-8 nodes 0 331 All None 0.849 0.870 0.644 0.680 0.906

16 2 layers, 32-8 nodes 662 331 All None 0.886 0.885 0.900 0.610 0.967

17 2 layers, 32-8 nodes 1655 331 All None 0.887 0.885 0.908 0.600 0.949

18 2 layers, 32-8 nodes 331 0 All None 0.622 0.595 0.891 1.000 0.000

19 2 layers, 32-8 nodes 662 0 All None 0.590 0.559 0.905 1.000 0.000

20 2 layers, 32-8 nodes 1655 0 All None 0.547 0.511 0.908 1.000 0.000

The overall accuracy of each model constitutes the weighted mean between the paleovegetation accuracy (factor 10) and the current vegetation accuracy (factor 1). The selected posterior
probability (PP) threshold was chosen to reach aminimum prediction accuracy of 90% across all 331 paleovegetation points, using cross-validation. For somemodels this accuracy aim could not
be achieved; in these cases, the posterior threshold was set to 1, leading to all vegetation predictions to be labeled as “unknown”, when applying this threshold. Source data are provided as a
Source data file.
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solutions exist for a given problem, and fitting individual parameter
estimates is not of concern32. This makes neural networks a suitable
model to apply to even highly correlated data, such as image data
which are characterized by highly correlated values between neigh-
boring pixels. Other types of machine learning models, which have
previously been used for the task ofmodeling vegetation (e.g., random
forest models33,34), have been shown to be affected by collinearity of

predictors, therefore often requiring an additional step of variable
selection before training the final model35. This, however, can lead to
the loss of biologically meaningful predictors and reduces the com-
parability between different implementations of models based on a
varying selection of variables. An additional advantage of our BNN
model is that it implements a direct way of quantifying the uncertainty
in the class predictions. In contrast, other machine learning models
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Fig. 3 | Vegetation predictions for North America throughout the last 25Myr.
The predictions are based on the best model resulting from our model evaluation
and sensitivity tests (model 1, Table 1). Column a shows the posterior probability
(PP) estimates for open habitat, where a PP of >0.95 (yellow) indicates strong
evidence for open habitat, whereas a PP of <0.05 (green) indicates strong evidence
for closed habitat. Columns b and c show categorical vegetation class predictions

for our vegetation classes “open” (yellow) and “closed” (green). The class predic-
tions are based on a PP threshold ensuring 90% prediction accuracy (b), and 95%
prediction accuracy (c), respectively. Thehigher the applied PP threshold, themore
sites will be classified as “unknown” (gray). Source data are provided as a Source
data file.
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rely on approximating such uncertainties through indirect methods
such as bootstrapping or other subsampling techniques of the pre-
dictor data (e.g., in random forest models36).

Emergence and spread of open vegetation
While our model predictions don’t exclude the presence of open
vegetation prior to theMiocene, the presence of open habitat can only
be inferred with confidence starting at the very beginning of the
Miocene (23Ma), based on the 95%HPD interval generated by our best
model. Our paleovegetation predictions support a scenario of a com-
parably slow but constant rate of open habitat expansion throughout
the Miocene epoch (5–23Ma), with a recent period of accelerated
open vegetation expansion starting 5Ma (Fig. 4). This time point,
marking the beginning of the Pliocene, coincideswith the expansion of
themore drought-adapted C4 grasses at the expense of C3 grasses and
other plants in large parts of the North American continent, con-
stituting a major landmark in the evolution of open grasslands8,37. This
transition has been linked to increased aridity, which could have also
led to the expansion of temperate grasslands during this period38.
Further, our model predictions place the peak expansion rate of open
vegetation at the Pliocene-Pleistocene transition (2–3Ma). This time-
period is characterized by a global drop in temperatures and the onset
of glacial-interglacial cyclicity39, putatively explaining the dis-
appearance of forests in the northern part of the continent, and
leading to an expansion of open vegetation in these areas (Fig. 3).

Our findings are in line with the scenario-based primarily on
phytolith data, which places the origination and initial expansion of
open habitat grasslands in the Great Plains by the earliest Miocene9,37.
However, other types of paleovegetation data have led to the for-
mulation of scenarios that are different to the scenario proposed here.
For example, paleovegetation reconstructions based on the fossil
pollen record andmacrofossils place the expansion of open habitats in
North America much earlier, in the late Eocene (38–34Ma), although
these open habitats were not grass-dominated40; on the other hand,
pollen and macrofossils suggest the expansion of grassy habitats
during the Middle to Late Miocene41. In contrast, paleovegetation

reconstructions based on paleosols suggest the presence of open
habitat grasslands as early as the late Eocene42. This seems to imply
that the interpretations of different paleovegetation data types are
incompatible, leading to different conclusions. However, in this study,
we trained our models with a joint dataset of phytolith, pollen, mac-
rofossil, and paleosol data (Supplementary Data 1), as well as current
vegetation information. The finding that our best models reach com-
paratively high prediction accuracies of around 89%, evaluated on a
test set containing all data types, shows that these seemingly hetero-
genous data types can be successfully combined to increase the
robustness of paleovegetation predictions. Unlike previous proposed
scenarios of grassland evolution, our predictions are not to the same
degree affected by inherent biases associated with a single vegetation
data type, but instead represent a best estimation informed by the full
evidence currently available.

Outlook
We restricted our model to only two broad vegetation classes—“open”
and “closed”—due to the current availability of paleovegetation data
points for training. As increasingly larger and more spatially complete
paleovegetation datasets are being compiled based on pollen, phyto-
liths, and macrofossil assemblages, this will provide sufficient training
data for more detailed inferences of paleovegetation. Strategically
collected data may allow predicting more detailed vegetation types,
for example distinguishing between taiga, temperate and tropical
forest, as well as between tundra, temperate grasslands and shrub-
lands, and tropical steppes.

In future studies, our deep learning method could be used with
high-resolution temperature and precipitation data in combination
with the detailedQuaternary fossil record, to predict recent vegetation
changes at spatiotemporally finer scales. For example, such models
could be applied to predict vegetation changes linked to the Qua-
ternary glacial cycles and to the human expansion and megafauna
extinction (e.g., Sandom et al.43 and Jeffers et al.44). Our BNN model
provides an integrated framework to predict vegetation changes in
deep time as well as the recent past.
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Fig. 4 | Predicted fraction of open vegetation through time. Fractions are cal-
culated as the proportion of all terrestrial cells across North America predicted as
open vegetation with the best model (model 1). The solid yellow line shows the
mean estimates across all posterior samples, while the shaded area shows the 95%
highest posterior density (HPD) interval. The blue line shows themean rate of open
habitat expansion, calculated across each preceding 1-million-year time bin. The
colored bar forming the x-axis marks the geological epochs covered by our pre-
dictions, including the Pleistocene (PE), Pliocene (PL),Miocene, andOligocene (not

shown is the Holocene, from 0.01Ma to present). The small panels show histo-
grams of the posterior estimates of open vegetation fraction (95% HPD), marking
important points in time for open vegetation evolution. These points highlight (i)
23Ma, the earliest timewhere ourmodel predicts the presenceof open vegetations
with confidence (>95% HPD); (ii) 5Ma, beginning of Pliocene and the start of an
acceleration in open vegetation expansion; and (iii) 2–3Ma, beginning of Pleisto-
cene epoch, marking the highest rate of open vegetation expansion. Source data
are provided as a Source data file.
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Methods
Data
Spatial and temporal range. We focused on a geographic area that is
defined by a cropping window with the corner points P1 (Lon = −180,
Lat = 25) and P2 (Lon = −52, Lat = 80), covering the majority of the
North American continent (e.g., Fig. 3). We focused on the last 30Myr,
a time span encompassing most of our available sites with paleove-
getation information (Supplementary Fig. 1). From the following data
sources, we only selected those data points that fall within this
spatiotemporal range.

Our approach described below required discretizing the input
data of past vegetation labels and fossil occurrences into time-bins. For
this, we chose the age boundaries of geological stages defined in the
International Chronostratigraphic Chart, v2020/0345, since these
stages are expected to represent meaningful temporal units for ana-
lyzing both faunal and floral patterns. A total of 17 geological stages fell
within our selected time frame of the last 30Myr. We discretized
the ages of all data points (vegetation data and fossil occurrences) that
fell within a given stage by setting them to the midpoint of the
respective stage.

Paleovegetation data. We reviewed a large body of peer-reviewed
literature containing paleovegetation reconstructions and compiled a
database of 331 sites with paleovegetation data for North America
(Supplementary Data 1). These sites represent individual vegetation
reconstructions based on fossil evidence (phytoliths, pollen, macro-
fossil assemblages) of distinct locations in time and space. We con-
densed the vegetation interpretation of the compiled vegetation data,
which in many cases described specific vegetation ecosystem com-
ponents, into the broader labels “open” versus “closed” vegetation.
This resulted in 180 sites being labeled as closed and 151 as open, their
dating rounded to the midpoint of the nearest geological stage (Sup-
plementary Data 1). For several of these sites we found multiple
vegetation reconstructions in the reviewed literature, for example
whenmultiple sediment samples were taken from the same horizon of
a given formation, belonging to the same geological stage. We treated
these spatiotemporal duplicates as a single data point, excluding sites

with mixed vegetation information (i.e., containing both open and
closed vegetation reconstructions).

Current vegetation data. To supplement the limited number of
paleovegetation sites, we compiled data about the current vegetation
within our study area. In order to obtain current vegetation patterns,
we downloaded the SYNMAPGlobal Potential Vegetation data29. As for
the paleovegetation data, we collapsed the more detailed biome data
into broader categories by coding the SYNMAP biome IDs < 37 as
“closed” and biome IDs ≥ 37 as “open”. The resolution of the SYNMAP
current vegetation raster was 0.5° longitude × 0.5° latitude, which
equates to a spatial resolutionof ~50× 50kmgridcells (at the equator).
We extracted all current vegetation grid cells that fell within our
defined cropping window, excluding all sea water cells as well as large
continental lakes. This resulted in 11,048 terrestrial grid cells with
current vegetation information. For these grid cells, we extracted
the coordinates of the cell-center as well as the corresponding
vegetation label.

The compiled paleovegetation and current vegetation points
constitute the pool of vegetation information from which we sampled
subsets to train our model. From here on we refer to these data points
as our training instances. We trained several BNN models, using dif-
ferent combinations of the paleovegetation points (n = 331) and cur-
rent vegetation points (n = 11,048).

Fossil data.We downloaded all availablemammal fossil data of the last
30Ma from the Paleobiology Database (https://paleobiodb.org/,
downloaded in October 2018). We removed all entries that were not
identified to species level, as well as all spatiotemporal duplicates. In
several cases, the fossil data downloaded from the major databases
contained minor spelling inconsistencies in the genus names and
species epithets. To correct these misspellings, which can lead to an
overestimation of the number of genera and species in the dataset, we
used the algorithm implemented in the PyRate package46, which
automatically identifies common typos in scientific names. Finally, we
removed all aquatic families from the dataset (dugongs, pinnipeds,
and whales).
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Fig. 5 | Impact of individual features on model prediction accuracy. The dis-
playeddelta-accuracy values (y-axis) constitute ameasureof how important a given
feature is for the trained model to make accurate vegetation predictions. This is
determined by measuring the drop in prediction accuracy when the information
content of a given feature is removed (permutation feature importance). Highdelta
accuracy values indicate high feature importance. Points show the mean delta-
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samples. The inserted panel (“All features”) displays an overview of the delta-
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important features for the trained model. Note that the feature importance
determined in this way is not an absolute measure of how important a given pre-
dictor is for the task of vegetation prediction, but rather it is an assessment of how
much a givenmodel relies on a given predictor. The identity of themost important
features may change depending on the model architectures, even when based on
the same data. However, the most important features identified in this manner are
expected to contain relevant information for the given task, in this case for
reconstructing vegetation. Source data are provided as a Source data file.
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For each fossil occurrence, we determined the mean age of the
respective stratigraphic age interval. We reduced the taxonomic
resolution of themammaldata to genus-level with themain purpose to
reduce the number of taxa, while increasing the spatial and temporal
extent of each taxon as well as to avoid taxonomic biases such as over-
splitting or lumping of species in different genera, depending on
taxonomic authority. These potential taxonomic biases are expected
to have a smaller impact on genus level compared to species level. To
further reduce the number of taxa to only the most informative ones,
we only kept genera that were present in more than half of the geo-
logical stages covered in this study, based on the first and last occur-
rence date of each genus in the fossil record (assumed presence in at
least 9 of 17 stages). This resulted in 65 selected mammal genera
(Supplementary Table 1). While the model can potentially handle any
number of taxa, taxawithoccurrences spanningmultiple locations and
time bins are expected to be most informative in our supervised
learning approach.

As an addition to the mammal fossil data, we compiled a large
dataset of plant macrofossils from the Cenozoic Angiosperm
database24. Due to the sparse fossil record of plants with a taxonomic
resolution of species or genus level, we decided to reduce the taxo-
nomic resolution of the plant fossil data to family level. As with the
mammal fossil data, we took the mean age of the stratigraphic age
interval of each fossil occurrence and only selected plant families that
were present in North America during at least 9 of the 17 geological
stages. This resulted in 35 selected plant families (Supplementary
Table 1). The final fossil data, consisting of the selected mammal and
plant taxa (n = 100), amounted to a total of 5514 fossil occurrences
(4770 mammal and 744 plant fossils, Supplementary Data 2).

Current occurrences. To complement the occurrence data extracted
from the fossil record, we extracted current occurrences for all
selected taxa from the Global Biodiversity Information Facility (GBIF,
www.gbif.org, accessed in September 2019). For allmammal generawe
downloaded the data through the R-package rgbif47, only allowing
human observations (as opposed to, e.g., machine observations or
fossil data) and restricting the search to North American occurrences
(Canada, Mexico, or USA), using the following command:

occ_search(taxonKey=taxon_id, return=“data”, hasCoordinate=-
TRUE, country=c(‘US’,‘CA’,‘MX’), basisOfRecord=‘HUMAN_OBSERVATION’)

Due to the large data volumes for the selected plant families,
which result in very long waiting times and occasional time-out errors
when using the rgbif package, we instead downloaded the current
occurrences of the selectedplant families directly from theGBIF online
interface (download https://doi.org/10.15468/dl.nxuyg8).

After filtering these occurrences to exactly match the cropping
window defined in this study (see above), this resulted in a total of
1,299,782 current occurrences for the selected extant mammal and
plant taxa (109,027 mammal and 1,190,755 plant occurrences,
Supplementary Data 2). Finally, all fossil and current occurrences of
the selected taxa were merged into one data-frame and jointly
treated as occurrence data, independently of the data origin as
fossil or GBIF observation. For all further steps, we only selected
those occurrences that fell within the cropping window defined as
described above.

While the current distribution of taxa—and in effect their recor-
ded spatial occurrences—are affected by human impact (a bias that is
not present in the fossil occurrence data), we are assuming here that
these current occurrences are still informative about a taxon’s habitat
preference. This assumption holds true, unless there is reason to
assume that taxa completely shift their habitat preference from open
to closed habitat or vice versa, due to human impact. For the purpose
of this study, we don’t expect this assumption to be violated. Only if
this assumptionwasviolated for a substantial number of taxawouldwe
expect this potential bias to affect our model predictions.

Climate and elevation models. The paleoprecipitation and tem-
perature data were reconstructed based on global climate raster data
with a spatial resolution of 1° longitude × 1° latitude (rawdata provided
by Christopher Scotese). These rasters derive from the PALEOMAP
Project, which has produced paleogeographic maps at 5-Myr
intervals25 and has assembled related precipitation and temperature
data based on theHadleyCM3paleoclimate simulations48. Similarly, we
downloaded global elevation rasters through time, generated by Sco-
tese and Wright49. Because the paleoclimate and elevation estimates
are only available in 5Myr intervals, we linearly interpolated the values
into 1Myr year intervals to reach higher temporal resolution. Since no
directly measurable and spatially explicit and complete data exists to
inform ourmodels about climate and elevation through deep time, we
apply these estimates—which themselves have been generated
throughmodeling—as part of the input data for our models. To test to
what extent potential biases or errors in thesemodeleddatamayaffect
our model predictions, we added increasing levels of noise to these
data before making predictions with our models. For each of these
predictors (precipitation, temperature, and elevation) we randomly
resampled values for each grid cell fromauniformdistribution ranging
between ±10%, 20%, and 50%of the original value. Thesemodified data
were then used in combination with all other features to make vege-
tationpredictions, to quantify how suchuncertainties in thedata affect
ourmodel predictions. This hadnodetectable effect onour vegetation
predictions, as can be seenbasedon the produced vegetationmaps for
the 50% perturbated climate and precipitation grids (Supplementary
Figs. 9 and 10).

As additional predictors, we downloaded estimates of mean glo-
bal temperature that are based on oxygen isotope data27, and mean
global atmospheric CO2 concentration estimates based on carbon
isotope data from fossil soils and stomatal pore density of fossilized
leaves50. In theory, there are many other predictors that would be
useful for the task of vegetation prediction, such as seasonal climatic
variables and fluctuations of different elements in the atmospheric
composition. However, the limitation is usually that these predictors
are not available throughout the whole time frame covered in this
study (last 30Myr), particularly not in a spatially explicit manner as
spatial grids. Future studies may be able to compile such data
throughout deep time (based onmeasurements or modeled data) and
be able to apply them as additional predictors in models similar to the
ones presented here.

Feature generation
An essential element of applying neural networks is the process of
feature generation, whichdescribes the transformation of the rawdata
into numerical features that can be fed into the neural network. Each
input data point, which is commonly referred to as an instance, con-
sists of a list of associated feature values. In our case, the training
instances consist of specific points in space-time with available vege-
tation information, and the associated features contain the informa-
tion about nearby occurrences of the selected taxa (biotic features), as
well as other information about climate, geography, and time (abiotic
features), in relation to the given point.

Biotic features. For a given instance (vegetation point), defined by its
spatial and temporal coordinates, we extracted the geographic dis-
tance between this instance and the closest occurrence of each taxon,
and we did so for each geological stage (Fig. 1). To calculate these
distances, we transformed all geographic data into the Albers equal
area projection and then calculated the distance between a given pair
of coordinates in this projection. If a taxon was present in all stages,
this resulted in 17 geographic distances extracted for this taxon, one
for each stage. These spatial distances were calculated using the cur-
rent coordinates (instead of the paleocoordinates) of each point,
assuming that the relative spatial distance between any two given
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points within North America is not affected (or negligibly so) by con-
tinental movements during the last 30Myr, although their absolute
coordinate values have changed through time.

In addition, we extracted the temporal distances between the
selected taxon-occurrences and the given vegetation point, by mea-
suring the difference between the age of the training instance and the
midpoint of the geological stage of a given taxon occurrence. This
resulted inNpairsof geographic and temporaldistances to each taxon,
where N is the number of stages this taxon occurred in. We designed
our BNN model to estimate parameters to summarize the spatial and
temporal distances of the selected occurrences of each taxon into one
taxon-specific feature value, representing a measure of general
“proximity” of each taxon, which we explain in more detail
below (Fig. 2).

Abiotic features. In addition to the biotic features, we extracted the
temperature, precipitation, and elevation associated with the space-
time coordinates of a given instance. For this step we transformed the
coordinates of each given vegetation label into the equivalent paleo-
coordinates at the time of the record, using the “PALEOMAP”model of
the mapast R-package26. We extracted the modeled temperature,
precipitation, and elevation of these paleocoordinates from the ras-
terized climate and elevation data25 as three separate features. In
addition, we extracted the mean global temperature and the average
atmospheric CO2 concentration at the given time point. Finally, we
added the absolute paleocoordinates (longitude and latitude) as well
as the age of the vegetation point as three additional features.

Our neural network was trained on a total of 100 biotic features
(one for each selected taxon), 4 climatic features, 1 elevation feature,
and 3 spatiotemporal features, resulting in a total of 108 features for
each instance.

To avoid potential biases based on the absolute values of given
features, we scaled all features to a range between 0 and 1. The
rescaling was done jointly for all training and prediction instances, in
order to avoid differences in rescaling-factors between features in the
training instances and those in the prediction instances.

Selecting training and test data
For the training of our neural network we had a total of 11,379 points
with vegetation information available, consisting of 331 paleovegeta-
tion points and 11,048 current vegetation points. To test whether the
larger number of current vegetation instances might bias our past
vegetation predictions, we explored different combinations of paleo-
vegetation and current vegetation instances during training of the
model (Table 1).

To evaluate the prediction accuracy of our trained models, we
performed a five-fold cross-validation, training each of the five cross-
validation models on 80% of the available instances, while sparing the
remaining 20%as a test set. The instances for eachcross-validation fold
were selected ensuring the same proportion of paleovegetation
instances and current instances in each cross-validation fold. We then
determined the prediction accuracy of the model as the average test
set prediction accuracy across all 5 cross-validation folds, which we
determined separately for all paleovegetation instances and all current
instances. The final prediction accuracy of each model was then
determined as the weighted mean between the paleovegetation pre-
diction accuracy and the current vegetation prediction accuracy of the
model, weighing the paleovegetation component ten times higher, as
it represents the accuracy across ten geological stages that are covered
by our paleovegetation data (Supplementary Fig. 1), while the current
data only represent a single geological stage.

Neural network configuration
We developed a BNN classification model that maps raw spatial and
temporal distances of selected taxon occurrences (fossil or current) to

a set of vegetation classes. These distance features can be com-
plemented by any set of additional features, such as the abiotic fea-
tures used in this study. The BNN model consists of multiple hidden
layers generating a numerical representation of the features in multi-
dimensional space, as well as an output layer that maps the nodes of
the last hidden layer to the output classes, in this case open and closed
habitats. Given the flexibility of our model and the fact that it is based
on absolute distance measures, it may be applied to any vegetation
prediction task, independently of the spatial and temporal scale of
the data.

The first two hidden layers are only applied to the taxon distance
features, not to the additional abiotic features. In these layers, the raw
spatial and temporal occurrence distances are combined into a single
value per taxon, which represents a measure of proximity of each
taxon to a given input instance.

The raw distances are provided in pairs of one spatial and one
temporal distance measurement, both associated with a specific
occurrence of a taxon. We indicate with Δsij and Δtij the spatial and
temporal distances for a species i 2 f1, . . . ,Ig at a geological stage j 2
f1, . . . ,Jg (Fig. 1). These are used as input in a first hidden layer (Eq. 1) of
a sparse neural network with parameter sharing resulting in one node
for each species and geological time:

h 1ð Þ
ij = g wsΔsij +wtΔtij

� �
ð1Þ

wherews andwt are weights associatedwith space and time distances,
respectively, shared among all species and occurrences and g �ð Þ is the
swish51 activation function (Eq. 2):

swish xð Þ= x × 1 + exp �xð Þð Þ�1 ð2Þ

The swish activation function was used after each hidden layer in
the model. To reduce the number of estimated parameters for better
convergence, the space and time weights are shared among all
occurrences under the assumption that the relative importance of
space and time in determining the proximity of a given occurrence is
expected to be the same for all occurrences of different taxa.

After combining spatial and temporal distances into one spatio-
temporal distance value in thisway, we estimate specific taxon-weights
for each taxon and geological stage, which are then used to collapse
the multiple spatiotemporal distances across different geological
stages into one single feature value for each taxon. This happens in the
second hidden layer (Eq. 3):

h 2ð Þ
i = g ∑J

j = 1h
1ð Þ
ij W

2ð Þ
ij

� �
ð3Þ

whereW 2ð Þ is amatrix of weights associatedwith each geological stage
j specific to taxon i. The second hidden layer h 2ð Þ thus includes one
node for each species, which provides the input, along with additional
abiotic features f , to a fully connected neural network. Depending on
the chosen pooling strategy, these taxon feature values are either fed
as individual features into the next layer (no pooling) or are summar-
ized into one faunal and one floral feature, by either extracting the
maximum output value from layer h 2ð Þ (max-pooling) or by summing
all output values (sum-pooling) across all mammal and plant taxa,
respectively.

Following the initial two layers, the taxon-features (h 2ð Þ, n = 100 or
n = 2, depending on pooling strategy) are fed together with the addi-
tional abiotic features (f , n = 8) into a fully connected neural network
and eventually mapped to the binary vegetation classes in the output
layer (Fig. 2b). Given a set of input features x = fh 2ð Þ,f g of size M the
next hidden layer (Eq. 4) with n nodes is obtained through:

h 3ð Þ
n = g ∑M

m= 1xmW
3ð Þ
mn

� �
ð4Þ
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whereW 3ð Þ is amatrix ofM ×nweights. Finally, the output of theneural
network (Eq. 5) is binary and quantifies the probability associated with
each class (closed and open habitats):

yo =σ ∑nh
3ð Þ
n W 4ð Þ

no

� �
ð5Þ

where o= 2, W 4ð Þ is a matrix of n×2 weights, and σ �ð Þ is the softmax52

function (Eq. 6):

σ xk
� �

=
exp xk

� �

∑oexp xo

� � ð6Þ

We tested different network configurations in terms of number of
layers and nodes per layer, different pooling strategies, as well as dif-
ferent combinations of training features and instances, and selected
the best model based on the highest test set prediction accuracy
(Table 1).

The parameters of the model (ws,wt,W
2ð Þ,W 3ð Þ,W 4ð Þ) were jointly

estimated using a Metropolis Hastings Markov Chain Monte Carlo
(MCMC) algorithm53. During training, all weights of the model are
initially drawn randomly from a normal distribution centered in 0 and
are then updated via MCMC sampling. We used a standard normal
distribution as prior on all weights (parameters of the model). During
model testing we ran an MCMC chain for 200,000 generations for
each cross-validation replicate, sampling every 200 iterations. We
selected the bestmodel based on the highest prediction accuracy, and
then trained a final production model with these best model settings
using all available instances (no test set) for 400,000additionalMCMC
generations, departing from the parameter values estimated during
cross-validation.

Our BNN implementation allows not only to estimate the most
probable vegetation label for a given point in time and space, but also
to calculate the posterior probability of this label, providing an
inherent measure of uncertainty. We calculated the posterior prob-
ability of each class label for a given instance as the mean class prob-
ability across all posterior samples. This ability makes BNNs an
attractive alternative to regular neural network algorithms, which
allow no such uncertainty modeling, although analogous approxima-
tions exist, such as Monte Carlo dropout54.

Feature importance
To determine the relative importance of each feature used in our
model, we applied the method of permutation feature importance
(sensu Breiman55). In this approach, the values of a given feature are
randomly shuffled across all instances of the test or training set. This
process masks any existing information that lies within the data of a
given feature. The class labels for all instances are then predicted using
the modified feature matrix. The resulting prediction accuracy is then
compared with that of the original feature matrix and the difference
between these accuracies (Δacc) is interpreted as ameasure of relative
importance of the shuffled feature for the classification task. We
repeated this process for each feature column in our feature matrix
(n = 108), using the complete training set, and ranked the features
based on their Δacc values (Fig. 5).

Predicting vegetation labels
To produce continuous vegetation maps across North America, we
constructed a 0.5° × 0.5° grid across the cropping window defined in
this study andextracted the coordinates of the cell-center for eachgrid
cell (n = 11,731). For these points, we extracted spatiotemporal taxon
distances and abiotic features in the same manner as for the training
instances. We repeated this process in 1Myr steps starting in the pre-
sent (t =0) throughout the last 30Myr (t = 30), producing 31 feature-
datasets of North America through time, considering tectonic

movement (mapast26). Based on the BNN weights sampled during
training by the MCMC (excl. burn-in) we determined the posterior
probabilities of each vegetation label for each given point (Fig. 3).

To produce more spatially explicit subsets of the North America
grid, we downloaded shape files delineating the ecoregions of North
America (Level 1 ecoregions30, downloaded fromhttps://www.epa.gov/
eco-research/ecoregions-north-america). We identified all grid cells
that fall within each ecoregion and extracted the vegetation predic-
tions for these cells, to track the spread of open vegetation in each of
these ecoregions separately.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The Supplementary Information accompanying this manuscript con-
tains Supplementary Discussion, Supplementary Figures 1–10, and
Supplementary Table 1. In addition, Supplementary Data 1 and 2 are
available in the Zenodo repository https://doi.org/10.5281/zenodo.
6492100. The repository also contains all datasets analyzed and gen-
erated during the current study, as well as source data for all figures
and tables. Specific data sources used in this study were: (i) paleove-
getation reconstructions from peer-reviewed literature (see Supple-
mentary Data 1); (ii) current vegetation information from SYNMAP
Global Potential Vegetation data (https://databasin.org/datasets/
112a942ec4294e5284e63d5e6bf14b29/); (iii) mammal fossil data from
Paleobiology Database (https://paleobiodb.org/, see Supplementary
Data 2); (iv) plant fossil data from Cenozoic Angiosperm database
(https://doi.org/10.1086/685388, see Supplementary Data 2); (v) cur-
rent taxon occurrences from GBIF (download https://doi.org/10.
15468/dl.nxuyg8); (vi) elevation rasters through time (https://
zenodo.org/record/5460860); (vii) paleotemperature and paleovege-
tation data through time (https://doi.org/10.1146/annurev-earth-
081320-064052). Restrictions apply to the availability of these data,
which were used under license for the current study, and so are not
publicly available. Data are, however, available from the authors upon
reasonable request and with permission of Christopher Scotese
(cscotese@gmail.com).

Code availability
All code used in this study, as well as a full data tutorial and installation
instructions for training BNN models and predicting vegetation
through time, are available on the project’s GitHub repository (https://
github.com/tandermann/paleovegetation56). The main BNN function-
alities canbe loadedas a stand-alone andopen-source Pythonpackage,
which is available on GitHub (https://github.com/dsilvestro/npBNN,
v0.1.12), allowing the application of the described BNN approach for
any classification or regression task, not only restricted to the task of
vegetation prediction.
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