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Abstract: In traditional methods for reliability analysis, one complex system is often 

considered as being composed by some subsystems in series. Usually, the failure of any 
subsystem would be supposed to lead to the failure of the entire system. However, some 

subsystems’ lifetimes are long enough and even never fail during the life cycle of the 

entire system. Moreover, such subsystems’ lifetimes will not be influenced equally under 
different circumstances. In practice, such interferences will affect the model’s accuracy, 

but it is seldom considered in traditional analysis. To address these shortcomings, this 

paper presents a new approach to do reliability analysis for complex systems. Here a 

certain fraction of the subsystems is defined as a “cure fraction” under the consideration 
that such subsystems’ lifetimes are long enough and even never fail during the life cycle 

of the entire system. By introducing environmental covariates and the joint power prior, 

the proposed model is developed within the Bayesian survival analysis framework, and 

thus the problem for censored (or truncated) data in reliability tests can be resolved. In 
addition, a Markov chain Monte Carlo computational scheme is implemented and a 

numeric example is discussed to demonstrate the proposed model. 

Keywords: Bayesian analysis, survival analysis, reliability, Markov chain Monte Carlo, 

cure rate model, power prior  

1. Introduction  

    In practice, under varying circumstances, failures of a portion of subsystems (or 

units) will lead to the failure of a complex system (or module). Meanwhile, the lifetimes of 

other portion of subsystems will far exceed the lifetime of the system itself. In other words, 

the latter will not lead to the failure of the system. To exemplify, compared with the whole 

life cycle of a compressor, the lifetime of some screws’ will far exceed the lifetime of the 

compressor. However, the failures of the gears may directly lead to failure of the 

compressor. This aspect is often neglected in traditional reliability analysis and is 

especially important when constructing a regression model such as the proportional 

hazards model. In the above example, a regression based model is vital since the lifetime 

for one kind of compressor could vary when used in different environment settings 

(different temperature, moisture, running skill, and the like). Hence, when considering 

environmental factors, the weights for all subsystems’ influences subject to different 

environments could not be viewed as equal. When some subsystems never fail, this will 

influence the regression and affect the degrees of freedom. 
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An additional factor that is commonly neglected is that the number of these subsystems 

can vary and should be treated as a random variable whose characteristics changes with 

different circumstances. Obviously, the accuracy of a model will improve by considering 

these aspects including interference for the covariates, which lays the foundation for us to 

utilize the model mentioned below in reliability analysis. 

Cure rate models, which have been used to model time-to-event data, are obtained by 

survival models incorporating a cure fraction. Perhaps the most popular type of cure rate 

model is the mixture model discussed by Berkson and Gage [1] as in (1).  

                          ππ +−= ∗ )()()( tS1tS
p

                        (1)  

Let )(tS p denote the survivor function for the entire population, let π  be defined as 

the fraction of the populations which is “cured”, and let )(tS ∗  represent the survivor 

function for the non-cured group in the population. The model given in (1) is increasingly 

popular when analyzing data from cancer clinical trials, where a certain fraction π  of the 

population is assumed to be “cured”. This is commonly referred to as the standard cure 

rate model. Common models for )(tS ∗ include the exponential and Weibull distributions. 

Clearly, as 1→π , )(tS p tends to 1, whereas as 0→π , )(tS p  tends to )(*
tS . The 

standard cure rate model has been extensively discussed in the statistical literature, 

including Gray and Tsiatis [2], Kuk and Chen [3], Taylor [4], Sy and Taylor [5], Peng and 

Dear [6], Betensky and Schoenfeld [7]. Furthermore, the book by Maller and Zhou [8] 

provided an extensive discussion on frequentist inference for the standard cure rate model. 

However, due to some drawbacks of the standard cure rate model, such as the inability to 

introduce covariates in π  and causing significant inconvenience when utilizes the 

Bayesian framework, using prior information, an alternative definition of the cure rate 

model has been proposed, and investigated by authors including Yakovlev and Tsodikov 

[9], Chen, Ibrahim and Sinha [10], among others. This is commonly referred to the 

promotion time cure model. The promotion time cure model is strongly motivated from 

biological considerations, and the Bayesian formulation of this model is given by Chen, 

Ibrahim and Sinha [10]-[13], which is also the foundation of the model in this article. Up-

to-date research results can be found in Yin and Ibrahim [14], and Zeng, Yin and Ibrahim 

[15].  

The rest of this article is organized as follows. First, we introduce the standard cure 

rate model, and then the Bayesian formulation of the model for reliability analysis in 

complex system. In our model, we view a certain fraction of subsystems, whose lifetimes 

far exceed the lifetime of the system, as a “cure fraction”; second, we propose a regression 

model that includes covariate structure for the cure fraction. This is achieved by 

introducing environment covariates. Subsequently, the joint power prior which 

incorporates “historical data” is proposed. In this way, we propose a new way to optimize 

the reliability of complex system. Markov chain Monte Carlo (MCMC) methods, based on 

Gibbs sampling, is used to infer properties of the parameters’ posterior distribution. 

Finally, the end results for the model under random truncated conditions are presented; 

and the validity of the model is proved by the example. 
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2. Cure Rate Model in Reliability 

2.1 Standard Cure Rate Model 

    For the sake of convenience, complex systems are often considered to be composed 

in terms of some subsystems in series. This means that the failure of any subsystem will 

lead to the failure of the entire system. As shown in Fig.1, suppose that the complex 

system (or module) is composed by j ( 0NN1j LL ,,,= , where 0N  may be unknown) 

subsystems (or units). 
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Figure 1: Structure for Complex System in Series 

    Let the lifetime of each subsystems is denoted by jt , 0NN1j LL ,,,= . Suppose that, 

when running under different circumstances (different temperature, moisture, running skill, 

and the like), the failure of some subsystems (or units) will lead to the failure of the entire 

complex system (or module), whereas the lifetimes of another portion of subsystems far 

exceed the lifetime of the entire system, which is denoted byT . In other words, here the 

latter will not lead to the failure of the entire system. For example, compared with the 

whole life span of a compressor, some screws’ lifetimes will far exceed the lifetime of the 

compressor. However, the failures of the gears may directly lead to the compressor’s 

failure. Furthermore, the lifetime for one kind of compressor is different when used in 

different environments. When constructing a regression model (such as the proportional 

hazards model) to incorporate the covariates under different circumstances, those 

subsystems, whose lifetimes are long enough compared with the entire system, will rarely 

be influenced by the underlying circumstances. Let the random variable N （ 0NN ≤ ）
denote the number of subsystems that lead to the failure of the system under different 

circumstances. Accordingly, the number of subsystems that will not lead to the failure of 

the system equals NN0 − . In the following analysis we assume the lifetime of the entire 

system ),min( N1 ttT L= , and T are independent of
0N1N tt ,,L+ . For notation, let )(tR p  

represent the reliability function of the entire system, and let )(*
tR denote the reliability 

determined by the N  subsystems that lead to the failure of the system. Considering the 

standard cure rate model, we can get 

                       ππ +−= ∗ )()()( tR1tR p                                        (2) 
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where 00 NNN /)( −=π  indicates the fraction of the subsystems that will not lead 

to the failure of the system. Obviously, 1tR p =)(  as 1→π ( 0N → ), which means that 

the lifetime of the system will not be influenced by the included subsystems). Also, 

)()( tRtR p

∗= as 0→π  ( 0NN → ), which indicates that nearly any subsystem will lead 

to the failure of the entire system). We note that, here (2) becomes the traditional lifetime 

model. 

2.2 Alternative Model 

    As pointed out by Chen, Ibrahim and Sinha [10]-[13], although the standard cure rate 

model is attractive and widely used, it has two main drawbacks: (1) in the presence of 

covariates, a proportional hazards structure cannot be employed if the covariates are 

modeled through π  via a binomial regression model. It hence lacks the desirable 

property of proportionality when employing covariate analysis; (2) Bayesian inference 

with the standard cure rate model essentially requires a proper prior, which is a limitation 

when the model is used in practice. Governed by these limitations, we resort to the 

promotion time cure model. The Bayesian formulation of this model can be found in Chen, 

Ibrahim and Sinha [10]-[13]. Based on this model, we discuss how the method can be used 

in reliability analysis of complex system. 

From now on, we assume N  is a Poisson distributed random variable with meanθ , 

denoted )(~ θPoiN ; let ),,( N1ktk L=  represent the lifetime of the k th subsystem. 

We note here that failure here directly will lead to failure of the entire system. Given N , 

the random variables ),,( N1ktk L=  are assumed to be independent and identically 

distributed (i.i.d) random variables with a common distribution )()( tR1tF −=  that does 

not depend on N . The lifetime of the system ),min( Nk1tT k ≤≤= , and therefore, the 

reliability function for the entire system can then be given as 
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    We note that )exp()()( θ−=== 0NPtRp
 as ∞→t , where the cure 

fraction )exp( θπ −= ; Chen [10] has pointed out that aside from biological motivation; the 

model in (3) is suitable for any type of survival data which include a surviving fraction. 

The probability density function and hazard function corresponding to (3) is given by: 

               ))(exp()(
)]([

)( tFtf
dt

tR1d
tf

p

p θθ −⋅=
−

=                     (4) 

               )(
)(

)(
)( tf

tR

tf
th

p

p

p ⋅== θ                                      (5) 



Bayesian Survival Analysis in Reliability for Complex System with a Cure Fraction  

 
113 

    The cure rate model in (3) yields an attractive form for the hazard in (5). In 

particular, )(thp is multiplicative inθ and )(tf , and thus it has a proportional structure 

when the covariates are modeled throughθ . The proportional hazards property in (5) is 

also computationally attractive, as MCMC sampling methods are relatively easy to 

implement. For the N subsystems that will lead to the failure of the system, the reliability 

function, probability density function and hazard rate function are given by 
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    We can get (9) by incorporating (6) with (3), by that we can get the relationship 

between the model in (1) and (3). 
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    We note that, with )exp( θπ −= , 0→π  and )()( tRtRp

∗=  as ∞→θ ; 

1→π and 1tR p =)( as 0→θ . 

2.3 Likelihood Function with Random Truncation 

    In reliability analysis, the lifetime data is usually “truncated” (or “censored”) , which 

means the lifetimes are known for only a portion of the units under study, and the 

remainders of the lifetimes are known only to exceed certain values. The random truncated 

test can be described as follows: suppose the i th ( ni ,,1 L= ) unit has a life time iT  and 

truncated time iL ; iT and iL  are independent and their reliability functions are 

)( itR and )( itG , with probability density functions )( itf and )( itg , respectively. Suppose 

that only the lifetime ),( n1 tt L=t can be observed, where { }iii LTt ,min= . The ith 

individual will be considered lost (truncated or censored) if ii LT > . Denote the truncated 

indicators by iυ , where 1i =υ if ,ii LT ≤ and 0i =υ if ii LT > . Then the likelihood function 

based on the theory of Bayesian survival is then 
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    Now, suppose that we have n units in the test. Let iN denote the number of 

subsystems that will lead to the failure of the system for the ith unit, and let 
iNit , denote 

the lifetime of the iN th subsystem for the ith unit. It should emphasize that, the iN ’s are 

not observed, but rather viewed as latent variables in the model formulation. Further, 

suppose the 
iNit , s’ are i.i.d and Weibull distributed with shape parameterα and scale 

parameter γ . The probability density function is then )exp()( αα γαγ ttt −= −1
f . By 
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letting )log(γλ = , then ))exp(exp(),| λλαλα αα
tt(t −= −1

f , denoted by ),(~ αλWt . 

Let X  denote pn× vector of covariates for the i th unit, hence X  represents the 

covariates studied in reliability trials, that may be the main environment factors that 

influence the life distribution, which we have to chose when the model being constructed. 

Meanwhile, let β  be the pn×  vector of the regression coefficients and denotes the 

degree of influences of covariates. Let the observed data for current study denoted 

by ),( Xυ,t,nD = . By incorporating it with (9), iN  ( )(~ ii PN θ ) as well as 

covariates )exp( ' βθ ii x= , the likelihood function can be written as 
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where ))exp(exp(),|( λλαλα αα
i

1

ii tttf −= − . To express our final model, we hence need 

to infer the values ofα , λ and β . 

3. Bayesian Analysis based on MCMC 

3.1 The Priors  

    Let )(⋅π denote the prior or posterior distributions for the parameters. Here we use the 

traditional method and assume that β has the noninformative prior, 1∝)(βπ . We note 

that )(βπ is an improper prior. It is pointed out in [9] that, for Weibull models 

),(~ αλWt , with unknownα and λ , a typical joint prior assumption is to takeα and λ  

to be independent, where α  has a gamma distribution denoted by ),(~ 00G ηκα  

and λ has a normal distribution. However, in our example given later, we have found that 

the assumption of gamma prior on λ is more applicable. Hence we assume that λ has a 

gamma prior distribution represented by ),(~ 00G ψωλ .  

When performing reliability analysis for complex system, sometimes, reliability data 

of similar systems or historical reliability data for past studies is very helpful to interpret 

the results of the current study. To introduce the “historical data” in the current study, we 

consider the power prior for those data. 

Suppose we have historical data from a similar previous study, denoted 

by ),( 000 X,υ,t00 nD = . 0n  is here the sample size of the historical data, 0t  and 0υ  are 

the observed values in the previous study, and 0X  is the pn0 × matrix of covariates based 

on the historical data. The power prior is defined as the likelihood based on historical 

data 0D , raised to a power 0a .  The power 0a  is hence a scalar parameter that controls 

the influence of the historical data on the current data. Using this model we get  
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      )()(),( 0c⋅⋅∝⋅ ππ 0a

000 DLaD                                  (12) 

where )( 0c⋅π is the initial prior for historical data and 0c is a specified hyperparameter for 

the initial prior (such asα , λ and β mentioned above ). Here ],[ 10a0 ∈ , and when 0a0 = , 

the prior does not depend on the historical data as )(),( 0c⋅∝⋅ ππ 00 aD . 

Hence 0a0 = corresponds to a prior specification with no incorporation of historical data; 

while as 1a0 = , )()(),( 0c⋅⋅∝⋅ ππ 000 DLaD and (12) corresponds to the update of 

)( 0c⋅π using Bayes theorem. When the value of 0a is between 0 and1, the hierarchical 

power prior specification is completed by specifying a prior distribution for 0a . This leads 

to a joint power prior distribution as shown in (13) 

         )()()(),( 0ζ00

a

000 acDLDa 0 πππ ⋅⋅∝⋅                              (13) 

where 0ζ is hyperparameter vector for 0a . Common choices for )( 0ζ0aπ  is the beta 

distribution, the truncated gamma distribution, and the truncated normal distribution. 

These three priors for 0a  all share similar theoretical properties and computational 

properties. Furthermore, in practice they yield similar results when the hyperparameter is 

appropriately chosen. For convenience, we will use a beta distribution for )( 0aπ , denoted 

by ),(~ 000 feBa and thus )()(
1f

0

1e

00
00 a1aa

−− −∝π . Further motivation supporting this 

choice can be found in [10]. 

3.2 The Posteriors  

    Once we have settled on a model, the task is now to infer the desired parameters α,λ, 

and β. For this purpose, we resort to Monte Carlo integration which essentially draws 

samples from the required distribution, and then forms sample averages to approximate 

expectations. MCMC draws these samples by running a cleverly constructed Markov chain 

for a long time. There are many ways of constructing these chains. Perhaps one of the 

simplest MCMC sampling algorithms found in the Bayesian computational literature is the 

Gibbs sampler. Literature about MCMC method using Gibbs sampler is too vast to be 

listed here. Details are referred to [16] and references therein. In this article, the method is 

used to integrate over the posterior distribution of model parameters given the data, this to 

make inference for the desired model parameters. Under the model assumptions above, the 

joint posterior density of ),,,( 0aλαβ based on current study data set ),( Xυ,t,nD =  and 

historical data set ),( 000 X,υ,t00 nD = is then given by 
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and βX
'

0=i0θ . Denote ),( 0obs DDD = , then the joint posterior of ),,,,,( 00 NNaλαβ can be 

written as: 
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Samples from this distribution can now be used for inference regarding the desired 

parameters. As mentioned we use Gibbs sampling to achieve samples. This strategy does 

sampling in one dimension at a time. For this purpose, the distributions of each parameter 

conditioned on the others are required. These can be written as 
� 1DNNaDNNa obs00obs00

m

m ×∝− )|,,,,,(),,,,,,|( )( λαπλαπ βββ  

� )exp()|,,,,,(),,,,,,|( )(
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m

m
0DNNaDNNa αηαλαπλααπ κ −××∝ −− ββ  
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m

m
00 1DNNaDNNa −−− −×∝ ψω λλλαπαλλπ ββ  
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m

0m0
00 a1aDNNaDNNa −−− −×∝ λαπαλαπ ββ  

4. Illustrative Example  

4.1 The Data 

We now consider the example data discussed in [17]. The reliability data treats lifetimes of 

pressure vessels for a Space Shuttle at four different fiber stresses (29.7MPa, 27.6 MPa, 

25.5 MPa, 23.4 MPa; MPa means MegaPascals ) and for eight spools in a random 

truncated test. To exemplify the use of the power prior, randomly choose 81 of the data as 

reliability data in the current study as shown in Table1, whereas the other 27 data are 

chosen as historical data as shown in Table 2. Suppose that i22i110 xx βββ ++=βx
'

i  

where 0β , 1x , 2x , 1β , 2β denote the intercept, the four stress level, the eight different 

spools, and the regression coefficients of 1x and 2x , respectively. We note that in [17], the 

influences of the spools are viewed as an unknown random effect. Let us use four settings 

for the power prior 0a0 = , ),(~ 1200Ba0 , ),(~ 1400Ba0 , 1a0 = , separately. The means 

for )( obs0 DaE  therefore equals 0, 0.14, 0.29, 1 respectively. Furthermore, let us 

use ).,(~ 0101Gλ  and ).,(~ 0101Gα  which are common in Bayesian analysis. Let the 

failure time it be the observed data if failure happened during the test. For the truncated 

data, we only know that it exceeds the observable time iL , which are denoted by asterisk. 
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Table 1:  Failure Time in Random Truncated Test for Current Study  

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

29.7 2 2.2 29.7 4 254.1 27.6 1 930.4 25.5 1 14032 

29.7 7 4 29.7 1 444.4 27.6 6 1254.9 25.5 4 29808 

29.7 7 4 29.7 8 590.4 27.6 4 1275.6 25.5 1 31008 

29.7 7 6.1 29.7 1 755.2 27.6 1 1755.5 23.4 7 5376 

29.7 6 6.7 29.7 1 952.2 27.6 8 2046.2 23.4 6 7320 

29.7 7 7.9 29.7 1 1108.2 27.6 4 6177.5 23.4 3 8616 

29.7 2 8.5 29.7 4 1569.3 25.5 7 503.6 23.4 2 14400 

29.7 2 9.1 29.7 4 1750.6 25.5 3 1087.7 23.4 6 16104 

29.7 2 10.2 29.7 4 1802.1 25.5 2 1134.3 23.4 5 20231 

29.7 5 13.3 27.6 3 24.3 25.5 2 1920.1 23.4 5 35880 

29.7 7 14 27.6 3 69.8 25.5 2 2383 23.4 1 41000* 

29.7 3 14.6 27.6 2 71.2 25.5 3 2442.5 23.4 1 41000* 

29.7 3 18.7 27.6 2 199.1 25.5 2 3708.9 23.4 1 41000* 

29.7 2 22.1 27.6 2 403.7 25.5 8 4908.9 23.4 4 41000* 

29.7 7 45.9 27.6 2 432.2 25.5 2 5556 23.4 4 41000* 

29.7 7 61.2 27.6 2 514.1 25.5 8 7332 23.4 4 41000* 

29.7 5 87.5 27.6 6 514.2 25.5 8 7918.7 23.4 8 41000* 

29.7 8 98.2 27.6 6 541.6 25.5 6 7996 23.4 8 41000* 

29.7 2 111.4 27.6 8 554.2 25.5 8 9973    

29.7 6 144 27.6 1 664.5 25.5 1 11487    

29.7 2 158.7 27.6 2 694.1 25.5 5 11727    

Table 2: Failure Time in Random Truncated Test for Historical Study  

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

Stress 

(MPa) 

Spool 
it / iL  

(hour) 

29.7 7 4.6 29.7 8 638.2 27.6 4 1536.8 23.4 7 4000 

29.7 5 8.3 29.7 4 1148.5 25.5 6 225.2 23.4 5 9120 

29.7 3 12.5 27.6 3 19.1 25.5 2 1824.3 23.4 6 20233 

29.7 6 15 27.6 3 136 25.5 8 2974.6 23.4 1 41000* 

29.7 2 55.4 27.6 1 453.4 25.5 6 6271.1 23.4 4 41000* 

29.7 3 101 27.6 2 544.9 25.5 8 9240.3 23.4 8 41000* 

29.7 5 243.9 27.6 4 876.7 25.5 4 13501 23.4   

4.2 Analysis 

    Using a burn-in of 10000 samples, and basing our analyses on 290000 Gibbs 

samples, we get the following posterior summaries using the different 0a priors 

( 0DaE obs0 =)( 、0.14、0.29、1), as shown in Table 3. The results include posterior 

mean, posterior standard deviation, MC errors, and 95% highest posterior density (HPD) 

intervals for the included model parameters with different power prior 0a . Table3 shows 

that, the MC errors are small <0.06）that improves the effective of the model. Also, we 

find that the 95% HPD interval for 2β  includes 0, which means that the influences given 

by different spools are in fact uncertain. This conclusion is consistent with the one given in 

[13], in which the influences given by different spools are viewed as an unknown random 

effect. Additionally, posterior mean for regression coefficients ( 0β , 1β , and 2β ) do not 

change a great deal if 0a changes form 0 to 1. However, the 95% HPD intervals become 

shorter, which means that we trust for “historical data” more, and that is because the 

“historical data” we used here are essentially coming from “current study”. On the other 
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hand, if the value for some coefficient changes a lot, it indicates that the coefficient is a 

potentially important factor and need to be studied further (see [18]).    

Table 3: Posterior Summaries for the Data  

)( 0aE  
Parameter Mean Stand. 

Deviation 

MC 

Error 

95% HPD Interval 

0β  -3.072 1.483 0.05717 (-6.233，-0.1835) 

1β  0.1126 0.05307 0.002049 (0.00863，0.2247) 

2β  0.007262 0.04824 4.538E-4 (-0.08777，0.1006) 

λ  0.01001 0.009936 3.046E-5 (2.556E-4，0.03669) 

0 

α  0.106 0.008689 1.634E-5 (0.08911，0.1231) 

0β  -3.027 1.318 0.05101 (-5.652，-0.5075) 

1β  0.1108 0.04696 0.001815 (0.02078，0.2042) 

2β  0.009525 0.04394 4.666E-4 (-0.07708，0.09523) 

λ  0.008063 0.008022 2.628E-5 (1.982E-4，0.02964) 

0.14 

α  0.1066 0.007791 1.529E-5 (0.09149，0.1219) 

0β  -2.823 1.305 0.05075 (-5.556，-0.2461) 

1β  0.1034 0.04658 0.00181 (0.0114，0.2007) 

2β  0.00936 0.043 4.746E-4 (-0.0751，0.0939) 

λ  0.007623 0.007594 2.447E-5 (1.923E-4，0.02813) 

0.29 

α  0.1067 0.007608 1.419E-5 (0.09192，0.1217) 

0β  -3.016 1.221 0.04653 (-5.401，-0.7153) 

1β  0.1104 0.04365 0.001663 (0.02799，0.1963) 

2β  0.009645 0.04291 4.692E-4 (-0.07445，0.09437) 

λ  0.007621 0.007599 2.395E-5 (1.91E-4，0.02802) 

1 

α  0.1067 0.007624 1.526E-5 (0.09191，0.1218) 

    In conclusion, the cure fraction with 1a0 = can be given 

by )]...exp(exp[ 21 x0096450x110400163 ++−−=π , (compared with )exp( θπ −= ), and 

the reliability can be given by:  

         )]).exp(()...exp(exp[)( .10670

21p t00762101x0096450x110400163tR −×++−−=  

Table 4: Cure Fraction π  

π  1 2 3 4 5 6 7 8 

29.7 0.2726 0.2685 0.2647 0.261 0.2576 0.2544 0.2515 0.2489 

27.6 0.3538 0.35 0.3463 0.3426 —— 0.3353 —— 0.3283 

25.5 0.4363 0.433 0.4295 0.426 0.4223 0.4185 0.4147 0.4108 

23.4 0.5146 0.5117 0.5086 0.5054 0.5019 0.4982 0.4944 0.4904 

 “—”denotes the results cannot be given due to original incomplete data 

    Table 4 gives the associated values for the cure fraction π  for the system. We mark 

these values in Fig2. From Fig.2 we can see clearly that, due to the differences between 

different spools (random effect referred in [17]), the points do not obey superposition. 

However, the cure fraction with the same stress seems much closer. The cure fraction 

( 0≠π ) shows the model’s rationality once more. Based on the trend curve in Fig.2, one 

can obviously find that, when stresses become larger, π becomes smaller, which means 

the ratio for subsystems which may influence the life of the system become larger (change 
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form 25% to 51%). That conclusion is consistent with the situation in practice and is not 

possible based on frequents or Bayesian analysis of the current data alone.  
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Figure 2: Plot for Cure Fraction π  

5. Conclusion 

    In this article, we have introduced the cure rate model to perform reliability analysis. 

Based on these ideas, we have explored on an alternative model in which its Bayesian 

formulation is used for reliability analysis in complex system. By using a regression model 

for the cure fraction as well as application of the power prior, we have provided a new 

method to perform reliability analysis in complex system; by which, some conclusions 

cannot be obtained by traditional methods. The results have also illustrated that, the model 

can improve robustness, including making estimates for regression coefficients more 

accurately. As a consequence, these also make inference for the lifetime of the complex 

system more accurate. Because the method needs fewer hypotheses, this predominance is 

more distinctly when there is not enough prior information and there exist truncated data 

in the model. We have used MCMC methods (Gibbs sampler) to integrate over the high-

dimensional probability distribution in order to make inference for model parameters and 

to make predictions. A limiting factor in our analysis is that the it s’ are assumed i.i.d, in 

future works we will address this issue.  
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