Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 225 (2023) 35363545

www.elsevier.com/locate/procedia

27th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems (KES 2023)

A Genetic Algorithm for Optimizing Mobile Stroke Unit
Deployment

Muhammad Adil Abid**, Saeid Amouzad Mahdiraji?, Fabian Lorig®", Johan Holmgren?,
Radu-Casian Mihailescu?, Jesper Petersson®d

“Department of Computer Science and Media Technology, Malmé University, 21119 Malmo, Sweden
b Internet of Things and People Research Center, Malmé University, Sweden
¢Department of Health Care Management, Region Skdne, 21428 Malmo, Sweden
dDepartment of Neurology, Lund University, 22242 Malmd, Sweden

Abstract

A mobile stroke unit (MSU) is an advanced ambulance equipped with specialized technology and trained healthcare personnel
to provide on-site diagnosis and treatment for stroke patients. Providing efficient access to healthcare (in a viable way) requires
optimizing the placement of MSUs. In this study, we propose a time-efficient method based on a genetic algorithm (GA) to find the
most suitable ambulance sites for the placement of MSUs (given the number of MSUs and a set of potential sites). We designed an
efficient encoding scheme for the input data (the number of MSUs and potential sites) and developed custom selection, crossover,
and mutation operators that are tailored according to the characteristics of the MSU allocation problem. We present a case study on
the Southern Healthcare Region in Sweden to demonstrate the generality and robustness of our proposed GA method. Particularly,
we demonstrate our method’s flexibility and adaptability through a series of experiments across multiple settings. For the considered
scenario, our proposed method outperforms the exhaustive search method by finding the best locations within 0.16, 1.44, and 10.09
minutes in the deployment of three MSUs, four MSUs, and five MSUs, resulting in 8.75x, 16.36x, and 24.77x faster performance,
respectively. Furthermore, we validate the method’s robustness by iterating GA multiple times and reporting its average fitness
score (performance convergence). In addition, we show the effectiveness of our method by evaluating key hyperparameters, that is,
population size, mutation rate, and the number of generations.

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 27th International Conference on Knowledge Based and
Intelligent Information and Engineering Systems

Keywords: genetic algorithm; mobile stroke unit (MSU); optimization; healthcare; time to treatment

* Muhammad Adil Abid. Tel.: +46-070-014-2616
E-mail address: muhammad.adil-abid @mau.se

1877-0509 © 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)

Peer-review under responsibility of the scientific committee of the 27th International Conference on Knowledge Based and
Intelligent Information and Engineering Systems

10.1016/j.procs.2023.10.349

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2023.10.349&domain=pdf

Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545 3537

1. Introduction

A stroke is a serious life-threatening medical condition that occurs when a blockage of the blood vessels either
interrupts or reduces the blood supply to the brain. Without immediate treatment, the patient has a low chance of a
successful recovery. Stroke affects one in six people globally during their lifetime, with 15 million new cases and 5.8
million deaths annually. In Sweden, over 21,000 cases occur yearly, with 3,900 in the Southern Healthcare Region
(SHR) [8, 9]. Stroke also leads to long-term disability and financial hardship for individuals and families. It is generally
agreed that patients who receive treatment within an hour are substantially more likely to recover than those who
receive treatment later. However, immediate treatment of stroke patients is challenging due to logistical constraints
and difficulty in obtaining a correct stroke diagnosis.

There are three primary types of stroke: ischemic, hemorrhagic, and transient ischemic attack. Ischemic strokes
occur when one or more clots restrict blood flow to the brain, and they can be treated with thrombolysis and, in
some cases, thrombectomy. Hemorrhagic strokes occur when a blood vessel in the brain ruptures, and blood pressure-
lowering therapy is recommended as soon as possible. Transient ischemic attacks happen when blood flow to the
brain is temporarily blocked by a clot, but brain function is able to fully recover [5]. The main barrier to immediate
treatment is that different types of stroke require different treatments. Patients suffering from ischemic strokes should
typically be treated with drugs that dissolve blood clots. However, this form of treatment should never be provided to
patients suffering from bleeding (i.e., hemorrhagic stroke), as it would result in the patient’s death. Since patients with
different types of strokes often have similar symptoms, a brain imaging technique called computed tomography (CT)
is needed for diagnosis [6].

In this work, we study the use of so-called Mobile Stroke Units (MSUs) in addition to standard ambulances. An
MSU is a specialized ambulance equipped with a CT scanner, allowing the ambulance staff to diagnose stroke patients
and give intravenous stroke treatment while the patient is still in the ambulance. As a result, the treatment time can
typically be cut down, at least corresponding to the time needed to transport the patient to an acute hospital. However,
regions typically only have a few MSUs in a region since the operational cost for an MSU is high; thus, it is important
to strategically place them in order to provide maximum benefits for the patients in the region.

In our companion study, Mahdiraji et al. [7] use an exhaustive search (ES) to solve the optimization problem of
allocating MSUs. Although an ES is straightforward and provides a solution, it is computationally expensive and
infeasible for greater search spaces due to the traversing through all candidate solutions. In fact, ES becomes unman-
ageably slow, impractical, and unusable for larger problem instances. Therefore, we found it worthwhile to explore
other optimization techniques that can efficiently determine the suitable solution for the placement of MSU locations.
One such technique is the use of a genetic algorithm (GA), which can provide solutions without explicitly evaluating
all possible combinations of MSU locations, thus reducing computation time. To efficiently solve optimization prob-
lems, GA has received a lot of attention in multiple domains, including portfolio optimization, vehicle routing, and
facility location [4]. Previous research has also established the effectiveness of GA in solving ambulance dispatching
and allocation types of optimization problems [1, 2, 3]. Given the efficiency of GA in solving optimization problems,
particularly for ambulance dispatching and allocation, it has inspired us to propose a GA method capable of efficiently
searching for the optimal locations for a number of MSUs.

The current paper addresses the optimization problem of allocating MSUs in a geographic region using GA. We
carried out a study aiming to develop a robust and efficient method to strategically place a number of MSUs at
different potential sites within a specific region to minimize time to treatment. We mainly focused on an efficient
encoding scheme for the input data (the number of MSUs and potential sites) and the design of the custom selection,
crossover, and mutation operators in accordance with the nature of the MSU allocation problem. We evaluated our
model’s performance by comparing it with a brute force technique (i.e., ES); see the companion paper by Amouzad
Mahdiraji et al.[7], which provides a scenario study for Sweden’s SHR. To demonstrate the feasibility and adaptability
of our proposed method, we consider multiple settings (i.e., the deployment of three, four, and five MSUs) on 39
potential sites in the SHR. We compare our proposed method’s performance in terms of time complexity. In addition,
we visualize the convergence of the optimization process, highlighting the evolution of the best-found MSUs location
over time and generations.

The key contributions are as follows:

1. Proposing a GA for finding the best MSU locations.
2. Designing input encoding procedure and GA operators.

3538 Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545

3. Performing systematic experimentation across multiple settings (3MSUs, 4MSUs, and 5MSUs) to assess the
robustness of the proposed algorithm.

The rest of the paper is structured in the following way: Section 2 reviews related work and Section 3 introduces
the formal definition of the MSU optimization problem. Section 4 presents the proposed GA. Our case study, as well
as the results from the experiments, are presented in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

In emergency medical services (EMS), several studies employed a GA for optimal ambulance location, relocation,
and fleet allocation problems. Zhen et al. [10] propose a simulation-optimization framework to assess the operational
performance of ambulance deployment plans. A GA, integrated into the framework, is used to identify a near-optimal
solution, that is, an ambulance deployment decision, in the solution space. The simulation model takes a potential
solution of the considered optimization problem and assesses the solution’s performance in a stochastic environment.
Liu et al. [11] present a double standard model, integrated with a GA, to assess emergency vehicle service fleet
allocation from their locations to incident sites to maximize service coverage standards. Further, McCormack and
Coates [12] combined a GA with a simulation model to optimize ambulance fleet allocation and station location to
maximize the total expected survival probability of different patient classes. Tili et al. [13] explore the use of a GA to
solve the ambulance routing problem in two scenarios: a simple ambulance routing problem and an open one. Their
model aims to serve a higher number of patients by using a fixed number of resources and minimizing the total travel
distance for the same number of requests. Zaheeruddin and Gupta [14] propose a novel optimization approach using
hybrid particle swarm optimization and a genetic algorithm for ambulance location problems, aiming to reduce the
ambulance response time.

Moreover, some papers aim to find the optimal locations for MSUs in particular regions for improved prehospital
stroke care. Phan et al. [15] employ Google Maps to identify the optimal location for an MSU in Sydney. Rhudy Jr.
et al. [16] propose a geospatial analysis of the distribution of an MSU to optimize service delivery for stroke patients
in the city of Memphis. Dahllof et al. [17] present an expected value optimization approach to identify the optimal
location for an MSU in the Skane County of Sweden, exploring the impact of the optimal placing for an MSU for the
inhabitants of urban or rural areas. Recently, Amouzad Mahdiraji et al. [7] use ES to deploy MSUs for prehospital
stroke care in the SHR. ES systematically enumerates all possible MSU locations for the solution and checks whether
each solution satisfies the problem’s statement, and evaluates how good it is using an objective function. However,
when the number of possible MSU locations grows, the ES generates a search space that expands exponentially.
Hence, the computational cost associated with the ES is often infeasible in terms of time. In order to address the
limitation of time complexity, we develop a method based on an evolutionary approach that efficiently finds suitable
locations to place MSUs.

3. MSU Optimization Problem

Our study considers the problem of allocating a fixed number of MSUs to a set of existing ambulance stations in a
geographic region. This problem can be formulated as a mathematical optimization problem, where an optimization
problem, as described below, is to place MSUs for the inhabitants of the SHR.

We let I denote the set of existing ambulance stations located in the SHR region and N the number of MSUs to
allocate. We assume that each ambulance station always has at least one available regular ambulance. We further
assume that the considered geographic region R is divided into a set of smaller subregions r; all patients in subregion
r € R are assumed to be located in the same location, for example, the centroid of r.

We let t{i" denote the expected time to treatment for a patient located in subregion r if it is served by an ambulance
in station i € 1, and tf.‘fs U denotes the expected time to treatment for a patient located in 7 if it is served by an MSU
located in station i. Thus, the shortest expected time to treatment for a patient located in the subregion r € R when it
is served by a regular ambulance is tf4 = Irileiln{rfiA}. Please note that the #*4:s (r € R) and the t5V:s (r € R, i € I) can

be pre-calculated and are therefore parameters in the optimization model.

Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545 3539

To formulate the objective function of our optimization problem, we also need to introduce Q, (r € R), which
denotes the expected share of the stroke cases in subregion . We introduce our decision variables x; € {0, 1}, (i € I)
so that

1 if an MSU is placed in location i
X =
0 Otherwise.

Using the x;:s, we can calculate the shortest expected time to treatment for a patient in subregion » when it is served
by an MSU as

0 = min{fY + (1 - x;) - M), (1)

where M > 0 is a sufficiently large constant value. For example, M can be set to the value of the largest expected time
to treatment for any subregion r and any ambulance location i. Importantly, this equation will assign expected time to
treatment for those stations where no MSU is allocated to such a large value that they will not be considered by the
model.

The objective function of the optimization model, which also corresponds to the fitness function of our genetic
algorithm is the so-called weighted time to treatment over all subregions r € R formulated as:

minz = > Q, - min{,1¥SY),)

reR

where the values of the decision variables (x;,i € I) are implicitly captured in the calculations of the tﬁ”SU 'S (see
also Eq. 1). The MSU allocation, that is, the assignment of the x; values is subject to the constraint

Dxi=N, 3)

i€l

which forces the optimization algorithm to set exactly N of the x; variables to 1, corresponding to locating N MSUs
in the region under consideration. We refer the reader to our companion article by Amouzad Mahdiraji et al. [7] for a
more detailed description of the objective function.

4. Genetic Algorithm

The description of the method is divided into two sections. First, we discuss the GA’s key components (i.e., input
encoding, mutation, crossover operators, and fitness function). Second, we discuss the complete process of the GA
(i.e., initialization, selection, reproduction, and termination criteria).

4.1. Genetic Algorithm Key Components

4.1.1. Input Encoding

Considering N MSUs and [sites where N</I, we need to place N MSUs among [sites. For example, we have
I = 39 ambulance sites, and we need to place N = 3 MSUs at a time; consequently, the combination of the possible
locations for three MSUs’ placements can be any of the ones in the set: S = (1,2, 3),(1,2,4),(1,2,5), -+ ,(37,38,39).
For instance, the location (1, 2, 5) means that MSUs are placed on the 1st, 2nd, and 5th sites.

To encode our problem, we chose to use a binary encoding scheme to represent the chromosomes (MSUs’ loca-
tions) in terms of bits (Os and 1s). Binary encodings can provide significant advantages in optimization problems, such
as easy-to-manipulate individual bits in the representation. For our problem, one of the key benefits of a binary en-
coding is that it allows for the efficient representation of multiple variables within a single chromosome. Specifically,

3540 Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545

this approach enables the representation of both the number of MSUs (represented by the number of 1s) and potential
sites (represented by the number of bits) within the same chromosome. This encoding simplifies the representation of
the solution by using a fixed-length chromosome, where each bit corresponds to a potential site for an MSU. More-
over, it provides a standard way to apply genetic operators such as crossover and mutation to the chromosome during
the optimization process. Following the case of the three MSUs settings, each chromosome consists of three MSUs
represented using a 39 bits encoding. Therefore, we turn on three bits according to the locations of the MSUs, for
example, (1,2,5) — (110010000000000000000000000000000000000). Due to the binary encoding, we do not need
to perform any operations in the subsequent steps (crossover and mutation), which enables our model to manipulate
the representation efficiently and to implement crossover and mutation operations faster. In this example, we suppose
three MSUs’ placement among 39 potential sites, resulting in a search space of 9,139 possible solutions. Generally,
we can calculate the total number of solutions in the search space as

I n
(N) T NIT-N)! @

4.1.2. Mutation

The mutation is a genetic operator used to maintain genetic diversity from one generation of a population of
GA chromosomes to the next. The goal is to randomly change a bit (representing a location) in one chromosome,
increasing the population’s diversity. To achieve this, we use a hyper-parameter known as the mutation rate, which
determines the probability of a mutation occurring in a location of an MSU (i.e., a single bit of the chromosome).
The mutation rate ranges from O to 1, inclusive. To perform a mutation on a chromosome, we go through each MSU
location (bit) among I potential locations (bits) and flip it (from 0 — 1 or I — 0) based on the mutation rate to
generate the final output. Typically, 1/L is suggested as a good mutation rate, where L is the length of the bitstring (in
our case, the number of potential sites).

In our binary string, each ”1” bit denotes the presence of an MSU in a particular location in the 39 bits string,
and maintaining the appropriate number of ”1” bits (representing the number of MSUs) during the mutation process
is required, following Eq. 3. Our designed mutation strategy involves identifying the positions of all ”1” bits in the
input string and calculating the mutation rate per ’1” bit. We stop this process as soon as we have "flipped” one bit.
Each ”1” bit is evaluated individually, and if a mutation occurs, the process ensures that the number of 1" bits in
the string remains the same. Specifically, the mutated bit is swapped with a randomly selected 0 bit to maintain
the same number of MSUs in the offspring. To illustrate our mutation operator working, we consider MSU location
combination (1,2,5) as a parental chromosome to encode and perform mutation in accordance with the required
constraint of maintaining the number of MSUs (i.e., three MSUs at 39 ambulance sites), as shown in Fig. 1.

Before Mutation
110010000000000000000000000000000000000 - (1, 2, 5)
1

After Mutation
110000000000000000000000000000000001000 > (1, 2, 36)

Fig. 1: Mutation operator for the three MSUs setting (old placement in blue and new placement in red).

In the above example, we switch values of two bits (a one-bit and a zero-bit), corresponding to moving one MSU
(see before mutation). After applying our designed mutation operation, a new offspring is generated, which involves
transferring the flipped bit to a different position (i.e., the 36th bit). Thus, we successfully retained the required number
of MSUs.

4.1.3. Crossover
Crossover, also called “recombination”, is a genetic operator that combines the genetic information of two chro-
mosomes (often called the “parents”) to generate an offspring. In a crossover, we split both chromosomes at a certain

Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545 3541

point and swapped parts of the corresponding chromosome pieces with another chromosome. Using crossover, we
ensure the exchange of genetic characteristics between parents and thus create chromosomes that are more likely to
be better than the parents.

In our binary encoding scheme, it is essential to choose a crossover operator that can act in accordance with
the given constraints (i.e., controlling the number of Is, where a ”’1” represents an MSU). Conventional crossover
operators do not typically consider any constraints; as a result, they may generate offsprings that violate the (desired
number of 1’s or MSUs) constraint. To overcome this issue, we found the shuffle crossover a close match to our
problem since using this operator allows us to control the number of 1s in a bit string representing MSU placements.
Drawing inspiration from the shuffle crossover, we developed a crossover operator based on shuffling the bits between
two parental chromosomes using mathematical set operations (i.e., union, intersection, subtraction, and symmetric
difference). In this crossover operator, we first randomly shuffle the genes in both parents. Then, we apply the 1-
point crossover technique by selecting a midpoint as a crossover point to create two offsprings. To demonstrate our
crossover operator, we use the 3MSUs setting as an example. In our example, we select the two MSU locations (1, 2, 3)
and (37,38, 39), which we treat as parental chromosomes. We then perform the crossover operation while ensuring
that the required constraint of having three MSUs at 39 ambulance sites is met. The process is illustrated in Fig. 2

Before Crossover

Parent1: 100 1/10000000000000000000000000000000000 -> (1, 4, 5)
Parent2: POO 0/00000000000000000000000010001000100 -> (29, 33, 37)

After Crossover

—
Offspring1:/100/0] 00000000000000000000000] 000001000100 -> (1, 33, 37)
Offspring2: 0001 10000000000000000000000010000000000 -> (4, 5, 29)

Fig. 2: Crossover operator working for 3MSUs setting (offspring 1 in blue and offspring 2 in red).

In the above example, our designed crossover operator generates offspring solutions by swapping genetic infor-
mation between two parent solutions. The crossover operator maintains the number of 1s in the generated offspring
solutions, ensuring that the number of MSUs in the offspring solutions is the same as that of the parents. This is
achieved by selecting a subset of the different bits between the two parent solutions and randomly swapping them
between the two offspring solutions while preserving the common bits between the parents. The resulting offspring
solutions are then composed of the selected bits from the parents.

4.1.4. Fitness Function

In the GA, the fitness function aims to compute the quality of the chromosomes. To calculate the fitness function,
we use the objective function of the optimization model (see Section 3) to evaluate the goodness of the chromosomes
(referred to as “MSU locations”) that minimize the expected time to treatment for the entire SHR region (considering
both regular ambulances and MSUs). To achieve this, we use the weighted average expected time to treatment, that is,

>0, - min{ef, 5Y), 5)

reR

as our fitness function and the goal is to minimize this function.

4.2. Genetic Algorithm Process

4.2.1. Initialization
We initialized our GA by randomly selecting a set of chromosomes with no bias toward solutions. This helps to
ensure diversity in the population since it allows the GA to consider a wide range of solutions, including ones that

3542 Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545

may not be as fit according to the fitness function but may have characteristics that could lead to better solutions in
the future. The number of chromosomes in the initial population is the population size. This step sets the stage for the
optimization process and determines the range of solutions the GA will consider.

4.2.2. Selection

After ranking the fitness of the chromosomes in ascending order, we select the top fittest 40% of chromosomes in
the population and let them pass to the next generation on the basis of merit “the fitter the chromosome, the higher the
survival chance”.

4.2.3. Reproduction

Reproduction refers to creating a new generation of solutions from the current population. Using crossover (i.e.,
combining parts of the parent solutions to create the offspring) and mutation (i.e., introducing small random changes
to the offspring), we explore new regions of the search space and potentially discover better solutions to the problem.
For reproduction, we select the remaining chromosomes in the population (other than the top 40% fittest) as candidates
for crossover and for mutation in a percentage distribution (i.e., 30% for mutation and 30% for a crossover).

4.2.4. Termination

Our termination criteria are based on the number of iterations. We stop the optimization process after creating a
certain number of generations, for example, 100 or 200.

5. Computational Study

5.1. Scenario Description

In order to assess the efficiency of our GA optimization method for MSU placements, we applied the method to
Sweden’s SHR. The SHR covers four counties comprising 49 municipalities, with 13 acute hospitals and 39 ambulance
sites. An overview of the SHR is provided in Fig. 3, where the green triangles and purple circles represent the locations
of ambulance sites and acute hospitals, respectively.

[‘“’ﬁ\.ﬁﬁ”‘\,}n“ ~ h!
CTAe \ q3A@ N
™,) P
S Lz N (D) Wig
DA
J a}
A® [
o AN
L g
! [

A ambulance site location
@ -acute hospital location

0 25 50 km
L Se—]

Fig. 3: An overview of the SHR, where ambulance sites and acute hospital locations are shown by green triangles and purple circles, respectively.
The circled numbers show the corresponding ambulance site ID.

We used two data types for the analysis: demographic data obtained from Statistics Sweden and stroke-specific
data provided by the Southern Regional Health Care committee of Sweden. To facilitate our analysis, we divided the
region of interest (ROI) into a set of non-overlapping 1x1 km squares (which is our set R). Please note that the union
of all squares U,z equals the entire SHR area. The locations of ambulance sites and acute hospitals are acquired using
Google Maps and official documentation provided by the healthcare authorities in the region. The stroke data included
the number of stroke cases for 21 age groups: (0,4), (4,8), ...,(95,99), (100,). In addition, the demographic data

Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545 3543

contained the number of inhabitants for each age group and each of the 1x1 km squares covering the SHR. The SHR
has a population of approximately 1.9 million and an area of 24, 000 square kilometers. To show the generalization of
our method, we applied our GA method to find the locations of three, four, and five MSUs in the SHR. To represent
these settings, we used the notations 3MSUs, 4MSUs, and SMSUs, respectively. Our method searches for the suitable
placement combination and evaluates a different number of potential solutions depending on the number of MSUs.
Specifically, we evaluated 9,139 potential solutions in the 3MSUs setting, 82,251 potential solutions in the 4MSUs
setting, and 575,757 potential solutions in the SMSUs setting, using Eq. 4. All of the experimental results were
measured in terms of the expected time to treatment.

5.2. Comparison of Genetic Algorithm with Exhaustive Search

To show the effectiveness of our GA method, we compared our results with our companion study by Amouzad
Mahdiraji et al. [7], which employs an exhaustive search (ES) to find the optimal sites to place MSUs in the SHR. For
comparison analysis, we implemented ES to find optimal fitness function values and reported the results in terms of
execution time.

The data presented in Table 1 compares the execution time for two algorithms on 3MSUs, 4MSUs, and SMSUs
settings. Undoubtedly, the GA converges significantly faster than ES in all of the MSUs allocation settings. We also
reported the best hyperparameters (population size, mutation rate, and the number of generations), as they have a
significant impact on the performance of GA. Careful selection and tuning of these parameters are necessary to in-
crease the possibility of obtaining good results. The GA method dramatically reduces the execution time by 8.75x,
16.36x, and 24.77x when compared to ES in finding optimal placements for 3MSUs, 4MSUs, and SMSUs, respec-
tively, when compared to ES. For a fair comparison, both algorithms are implemented using Python and tested on an
Apple Mac-Book Pro (2021), and the results are compared in terms of execution time (minutes).

Table 1: Execution time of ES and GA for the three, four, and five MSUs settings

Genetic Algorithm
Hyperparamter Settings

Exhaustive Search

#MSUs | Execution Time (mins) | Execution Time (mins) | Population size | Mutation Rate | # Generations
3 1.4 0.05 120 0.06 100
4 23.56 1.44 200 0.38 100
5 250.33 10.09 300 0.12 200

5.3. Method Robustness and Sensitivity Analysis

To demonstrate the robustness of our proposed method, we ran the GA 20 times with different random seeds
and reported the average results. Additionally, we conducted a sensitivity analysis to highlight the impact of the key
hyper-parameters, such as varying mutation rates and population sizes, on the performance and convergence of the
GA. To illustrate these results, we considered the 3MSUs setting. Fig. 4 clearly shows that our method converges to
the optimal solution for all tested mutation rates and population sizes. These are average performance figures resulting
from running our GA method 20 times, which shows that in each run, our method converges to the optimal solution.
Moreover, under different hyperparameters, the GA achieves the optimal fitness value of 1.036 across the population
sizes 75, 100, and 120 when the mutation rates are 0.038, 0.05, and 0.06, respectively. The fitness values show a
general decreasing trend over time, indicating that the algorithm progresses towards the optimal solution. The results
of our experiments indicate that the GA is able to consistently find an optimal solution regardless of the mutation rate,
as evidenced by achieving the optimal fitness value of 1.036 in all cases. Overall, the 0.06 mutation rate exhibited
faster convergence across all population sizes compared to the 0.38 and 0.05 rates. In conclusion, our results indicate
that a mutation rate of 0.06 is optimal for the 3MSUs setting.

5.4. Performance Convergence based on the Best Fitness Values - 3MSUs, 4MSUs, and SMSUs Settings

As illustrated in Fig. 5, we conducted experiments for the 3MSUs, 4MSUs, and SMSUs settings and reported the
performance of our method based on the best fitness scores after running the algorithm over multiple generations.
The figure clearly shows that in all settings, we efficiently achieved the optimal fitness values — represented by the

3544 Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545

,_,
o
@
a

1.050

2 1 -+ Mutation rate = 0.038 2 1 - Mutation rate = 0.038 Z 1 - Mutation rate = 0.038
£1052] ¢ -+ Mutation rate = 0.050 g 1048 b - Mutation rate = 0.050 g ' e Mutation rate = 0.050
4] --e-- Mutation rate = 0.060 - 4 ---- Mutation rate = 0.060 5 1.055 R - Mutation rate = 0.060
; 1.050 4 »»»»» Optimal Fitness Value E 1.046 Q. rrrrr Optimal Fitness Value E o e Optimal Fitness Value
o 1* o - o 1®
£ * £ R E1050 %
£10471 g £1.04a £ o)
g ! g B P WY
ghtos) S1042 3 e
£1.0a2 t‘&' ' ATILIEE B
£ ¢ ¢ V™,
& !‘-bﬁ £1.040 H g Y %
©1.040 N v e P k)
& 3 $1.040 -
§ \\’k $1.038 e, g *\-_4"-%
21037 N p— H e, S
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation Generation
(a) Population Size: 75 (b) Population Size: 100 (c) Population Size: 120

Fig. 4: Performance convergence with respect to different mutation rates across multiple population sizes for the 3MSUs setting.

red line on the x-axis in each sub-figure. In Fig. 5(a), the 3MSUs setting, the GA runs for 100 generations, with 20
runs per generation. The best fitness value of each generation was recorded and plotted to visualize the progress of the
optimization process. The results of the GA are plotted, with the best fitness value of each generation represented by a
black dot-dashed line. We observed that the best fitness value monotonically decreased as the number of generations
increased, indicating that the GA was able to find better solutions as it progressed. The best fitness value reached a
minimum of 1.036, which is the optimal solution — horizontal red dot-dashed line represents the optimal fitness value.
In Fig. 5(b), the 4MSUs setting, the graph shows the evolution of the best fitness value over the generations of the
genetic algorithm — x-axis red-dashed line represents an optimal fitness value of 0.988. A similar performance trend

is observed for the SMSUs setting, illustrated in Fig. 5(c) — the x-axis red-dashed line, which represents an optimal
fitness value of 0.951.

1.0400

! ®— Best Fitness Value 1.004) « —e— Best Fitness Value ™1 —@— Best Fitness Value
1.0395 | —==- Optimal Fitness Value 1002 | ~=-~-- Optimal Fitness Value 6470 - ——~- Optimal Fitness Value
[i [i . i
> ! 3 i \I
T 1.0390 | =2 1000 g |
> i > | = -
@ | 0 0998 | S 0965 o
0 1.0385 | o i @ i
E=] i S09% | ¢ i
i i i i |
' £ 0.960
% rossol | %0994 | & |
@ ! @ | % !
10375 | 0992 | i g -
' i 0.955 !
|
10370 | 0990 i 1
0.988
0 20 40 60 80 100 0 25 50 75 100 125 150 175 200 09500625 50 75 100 125 150 175 200
Generation Generation Generation
(a) 3MSUs (b) 4MSUs (c) SMSUs

Fig. 5: Performance convergence based on the best fitness values across multiple MSUs settings.

6. Conclusion

Our study proposes a novel GA method that efficiently optimizes the placement of MSUs across potential am-
bulance sites. We demonstrate the effectiveness of our model by significantly outperforming an exhaustive search to
solve the MSU allocation problem in terms of execution time. Our experimental results show that the GA method
is efficient in finding optimal sites for three, four, and five MSUs — 8.75x, 16.36x, and 24.77x times faster than an
exhaustive search. In this method, we designed the complete process of GA according to the MSU allocation problem,
which primarily includes an efficient encoding scheme for the input data (the number of MSUs and potential sites) and
the design of selection, crossover, and mutation operators in accordance with the optimization problem. We believe

our efforts will be helpful in the healthcare domain, particularly in opening the doors for further research on optimal
locations for MSUs.

Muhammad Adil Abid et al. / Procedia Computer Science 225 (2023) 3536-3545 3545

Acknowledgements

This work is financed by the Kamprad Family Foundation for Entrepreneurship, Research & Charity. This work is

also partially supported by the Wallenberg Al, Autonomous Systems and Software Program — Humanities and Society
(WASP-HS), funded by the Marianne and Marcus Wallenberg Foundation.

References

(1]
(2]
(3]

[4

—

[5

—_

[6

—_

[7

—

[8

=

(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

Comber, A. J., Sasaki, S., Suzuki, H., and Brunsdon, C. (2011). A modified grouping genetic algorithm to select ambulance site locations.
International Journal of Geographical Information Science, 25(5), 807-823.

Huang, C. Y., & Wen, T. H. (2014). Optimal installation locations for automated external defibrillators in Taipei 7-Eleven stores: using GIS
and a genetic algorithm with a new stirring operator. Computational and mathematical methods in medicine, 2014.

Gupta, H., & Mehrotra, D. (2021, September). Optimizing Ambulance Deployment using Genetic Algorithm. In 2021 9th International Con-
ference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1-5). IEEE.

Wirsansky, E. (2020). Hands-on genetic algorithms with Python: applying genetic algorithms to solve real-world deep learning and artificial
intelligence problems. Packt Publishing Ltd.

Saenger, A. K., & Christenson, R. H. (2010). Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treat-
ment. Clinical chemistry, 56(1), 21-33.

Krishnamurthi, R. V., Barker-Collo, S., Parag, V., Parmar, P., Witt, E., Jones, A., ... & Feigin, V. L. (2018). Stroke incidence by major patho-
logical type and ischemic subtypes in the Auckland regional community stroke studies: changes between 2002 and 2011. Stroke, 49(1), 3-10.
Mahdiraji, S. A., Holmgren, J., Mihailescu, R. C., & Petersson, J. (2021). An Optimization Model for the Tradeoftf Between Efficiency and
Equity for Mobile Stroke Unit Placement. In Innovation in Medicine and Healthcare: Proceedings of 9th KES-InMed 2021 (pp. 183-193).
Springer Singapore.

World Stroke Organization (2019) Facts and figures about stroke. https://www.world-stroke.org/world-stroke-day-campaign/why-stroke-
matters/learn-about-stroke/ (Accessed May 2023)

The Swedish Stroke Register (2020) Stroke registrations. https://www.riksstroke.org/sve/forskning-statistik-
ochverksamhetsutveckling/statistik/registreringar/ (Accessed May 2023)

Zhen, L., Wang, K., Hu, H., & Chang, D. (2014). A simulation optimization framework for ambulance deployment and relocation problems.
Computers & Industrial Engineering, 72, 12-23.

Liu, Y., Roshandeh, A. M., Li, Z., Kepaptsoglou, K., Patel, H., & Lu, X. (2014). Heuristic approach for optimizing emergency medical services
in road safety within large urban networks. Journal of transportation engineering, 140(9), 04014043.

McCormack, R., & Coates, G. (2015). A simulation model to enable the optimization of ambulance fleet allocation and base station location
for increased patient survival. European Journal of Operational Research, 247(1), 294-309.

Tlili, T., Abidi, S., & Krichen, S. (2018). A mathematical model for efficient emergency transportation in a disaster situation. The American
journal of emergency medicine, 36(9), 1585-1590.

Zaheeruddin, & Gupta, H. (2022). Optimized Ambulance Allocation Using Hybrid PSOGA for Improving the Ambulance Service. IETE
Journal of Research, 1-12.

Phan, T. G., Beare, R., Srikanth, V., & Ma, H. (2019). Googling location for operating base of mobile stroke unit in metropolitan Sydney.
Frontiers in neurology, 10, 810.

Rhudy, J. P., Alexandrov, A. W., Rike, J., Bryndziar, T., Hossein Zadeh Maleki, A., Swatzell, V., ... & Alexandrov, A. V. (2018). Abstract
WP215: Geospatial Visualization of Mobile Stroke Unit Dispatches: A Method to Optimize Service Performance. Stroke, 49(Suppl-1),
AWP215-AWP215.

Dahllof O, Hofwimmer F, Holmgren J, Petersson J (2018) Optimal placement of Mobile Stroke Units considering the perspectives of equality
and efficiency. Procedia Computer Science 141:311-318

