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This master thesis explores the challenge of algorithmic hypothesis generation
and its connection to potential inductive biases. In the scientific method, hy-
potheses are formulated and tested against data for validity. The process of
hypothesis generation is, however, not explicitly formulated. A structured ap-
proach to hypothesis generation would allow for a near algorithmic process that
could scale far beyond the current capabilities of science.

The thesis explored the concepts of entropy, symmetry and minimum descrip-
tion length for use as inductive biases. Two algorithms were implemented and
evaluated: one for symmetry finding and one for symbolic regression. The
theoretical results show a strong connection between entropy and minimum de-
scription length with a weaker connection to symmetry. Both implementations
indicate potential paths exist to partial or full automation of the hypothesis
generation process. In general, there do not seem to exist fundamental issues in
automating the process besides the challenge of its implementation.

Thus, the thesis demonstrates a clear path forward towards partial or complete
automation of the scientific method for physical research.
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1 Introduction

If you were to search an infinite space for an object you only know
approximately what it looks like, where would you start?

Compared to our ancestors, we are, by most metrics, living in a state of pros-
perity. Central to our ability to create prosperity is our ability to change and
harness the world around us. We build buildings to keep us warm and safe,
roads to travel and machines to perform mechanical work. We grow our food on
farms and synthesize life-saving medications using chemistry. We use physics
to build computers, siphon energy from sunlight and split the atom, for better
and for worse.

Key to all the examples above is that effective utilization of the world comes
from understanding cause and effect. A well-understood system can be manip-
ulated to yield the intended outcome, whether that be increased output, new
possibilities or higher efficiency. Historically, this knowledge has been used to
construct machines such as mills and cars, which perform our manual labour.
More recently, it has been used to create digital computers, which help us with
information processing to the degree that computers outperform humans in
many tasks.

One task which has not been augmented by technology is the process of scientific
inference. The measurement devices and calculations have improved, but the
general process of scientific discovery has not seen significant changes since the
formalization of the scientific method.

Where our previous inventions fall short, the rise of artificial intelligence and
machine learning may allow us to augment the scientific process. The changes
could potentially increase the output of scientists or make science more avail-
able by removing the significant overhead knowledge required. It could also
change the nature of research to be more concerned with meta-science, in which
researchers decide which phenomena need to be analyzed and how, while ma-
chines perform the practical steps. If the process could be formulated as an
algorithm, it could potentially allow for an exponential growth of knowledge,
ultimately maybe even surpassing the limits of human understanding.

The idea, as outlined above, is not unique to this thesis. Several groups are at-
tempting to formulate their own algorithms, for instance, using classic machine
learning [1], language models [2] and more specialized approaches [3]. Currently,
there is no guarantee that any algorithm is neither efficient nor optimal.

The problem may be approached top-down, where a set of successful heuristics
defines the algorithm. It may also be constructed bottom-up, attempting to use
fundamental relationships of nature to find the solutions. If the structure of
nature can be identified, an optimal strategy should be possible to realize.

In the thesis, we aim to explore the possibility of enhancing the process of
understanding itself using artificial intelligence. This is done in a bottom-up
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approach where we inspect the foundational components of science and identify
the potential paths to automate the process, starting with the scientific method.

1.1 Historical examples of inference

Obvious, given the success of science, is that we historically have been able to
infer successful hypotheses repeatedly, where successful refers to their practical
applicability. From the many important discoveries of the last millennia, we will
highlight three examples from James Maxwell, Albert Einstein and Wolfgang
Pauli.

Maxwell’s equations form a unified view of electromagnetism and constitute an
essential contribution to modern science. The equations encode the electromag-
netic framework in 20 equations, typically written as four differential equations
[4]. Most of the individual constituent components of Maxwell’s equations were
already discovered. What Maxwell introduced was the hypothetical notion of
the electromagnetic field [4], providing a causal explanation of electromagnetism
and its action on physically separated objects. With the field theory, he derives
the necessary displacement current and can formulate the unified equations of
electromagnetism [4]. From his unified equations, he also predicts the speed
of electromagnetic waves, which coincides with the measured speed of light,
supporting the idea that light is electromagnetic in nature [4].

Based on Maxwell’s equations, Einstein discovered special relativity. Using the
equations as a basis, he attempted to find spatial transformations that preserved
the form of the equations [5]. Einstein indicated that he had many attempts
at reconciling Galilean transformations of light before suggesting the Lorentz
transform [6]. In his discovery, Einstein relied primarily on Maxwell’s theoretical
framework of electromagnetism and less on the experimental evidence [5]. While
Lorentz independently derived the Lorentz transform before Einstein did, he did
not understand the physical implications of time dilation [6].

Finally, Pauli suggested the introduction of a new particle, now known as the
neutrino, to ameliorate the difference in theoretical predictions and experimental
evidence in the β-decay [7]. Specifically, experiments indicated that energy,
momentum and spin were not conserved in the reaction. Pauli’s contribution
was a single particle which corrected all of the missing conservation laws [7], but
was considered a ”desperate remedy” [8, p. 1]. The hypothesis was consistent
with the theory, but the particle was almost undetectable and not well received
by all contemporaries [8]. The basic idea was simple yet grew into a more
nuanced theory over time, strengthened by an increasing amount of indirect
evidence [8].

In all the listed cases, they seem to share two general properties:

1. Successful hypotheses rely on well-established principles or observations.

2. Successful hypotheses offer a causal explanation of the observations.
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The first property indicates that hypotheses are based on previous knowledge
and experience, hinting at the presence of a structure. The second is that a good
hypothesis should not only predict but also explain the observations beyond
the particular observed case. The above accounts rely on available published
knowledge as well as the testament of the scientists. Such recollections can
potentially be biased since it may be hard to recall the process of discovery.

1.2 The foundation of understanding

”The most incomprehensible
thing about the world is that it is
comprehensible.”

Albert Einstein, [9]

Unifying all the previously listed discoveries is that they are scientific in na-
ture, following the scientific method. Hypothesis generation is the first stage of
the scientific method, and all other steps follow from the given hypothesis [10,
p. 104]. Arguably, the understanding of a process is the hypothesis generation
itself. The central issue is that there exists no explicit method to generate a
hypothesis. Analysis of the process indicates it relies on experience and previous
observations [10, p. 104] or, in less informative terms, ”tremendous insight” [11,
p. 178].

Contrary to such observations, authors such as A.C. Benjamin [12] hold that
there seems to be more structure to hypothesis generation than typically at-
tributed to it. The search space of possible hypothesis one can consider is likely
infinite [13], as such, if there was no logical structure in hypothesis generation
then it is a ”miracle” that we would be able to find a correct hypothesis [13,
p. 3229]. For these reasons, we believe that there by necessity exists a ”logic of
discovery” and that it should be possible to formalize the process of hypothesis
generation.

If an algorithmic approach to hypothesis generation can be formulated, even if
highly inefficient, it would allow for a scalable approach to science limited only
by the computational resources and data at hand. Due to the fundamental na-
ture of the question, such a technology could potentially allow for exponential
growth in the understanding of the world. This would likely lead to informa-
tional imbalance and major competitive advantages in most fields, including
academia, economy and defence. Failure to implement such a technology, if
available to competitors, would almost certainly spell the end of the enterprise
given sufficient time.

1.3 The scientific method

At the core of modern science is the scientific method, a conceptual framework
for generating knowledge and understanding from observations using theoretical
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models. Central to the method is the notion of falsifiability: a scientific theory
should produce predictions that can be directly or indirectly falsified by empiri-
cal observations [14]. In simple terms, the scientific method can be summarized
as the process in figure 1.

Figure 1: Conceptual algorithmic loop of the scientific process, as outlined by
the figure in [15, Ch. 1.1].

In applying the process, one starts with a hypothesis about some phenomena.
For example, ”this coin always lands heads-up” is a valid hypothesis on the bias
of a particular coin. A hypothesis which is direct in its prediction and has a low
level of abstraction.

To test the hypothesis, one observes data which is testable against the predic-
tions of a hypothesis. In the case of the coin hypothesis, the scientist would
perform an experiment by flipping the coin repeatedly. Depending on the hy-
pothesis, this might be done using observational studies or experiments.

The explanatory power of a hypothesis is typically tested on the basis of sig-
nificance. In simple terms, significant observations can be defined as a set of
observations that significantly deviate from the hypothesis predictions [16, Ch.
10]. If the hypothesis fails to reach the set level of significance, typically evalu-
ated using probability theory, they are discarded as falsified and the final stage
of the loop is completed.

In our example, the coin is observed to land tails-up at least once, and the
hypothesis is thus falsified. To repeat the process, we should generate a new
hypothesis but immediately encounter an issue. Unlike the other parts of the
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process, there is no structured approach from which a hypothesis is generated
[10, Ch. 4].

Fundamentally, the scientific method can only falsify incorrect theories. It does
not concern itself with statements on what is true. This imbalance is closely
related to the challenge of hypothesis generation. Even though the process can
not tell the researcher what is true, knowledge of what is false can guide further
developments, as indicated by the example of Pauli in section 1.1.

In John Skilling’s paper ”Classic maximum entropy” [17], he outlines the re-
lation between special cases and general theories. If a phenomenon can be
expressed in terms of a general theory, then the theory will apply to all cases
[17], any special case will be covered by the general theory but may have a sim-
pler form. If a viable solution can be identified for a sufficient number of special
cases, one might have enough knowledge to infer the general theory, potentially
fully constraining it [17].

His reasoning hints at a process in which properties of a theory can be distilled
in a step-wise fashion by the relative success of constituent components. If the
underlying theories of nature have a finite complexity, the process should be
viable, given that the essential elements can be identified.

1.4 Epicycles of planetary orbits

Historical models of the world have been discarded in favour of new models for
different reasons. One good example is that of epicycles, a historical description
of planetary orbits [18]. The orbits were described by the sum of rotating
vectors with frequencies of multiples of the base rotation [19]. This construct is
conceptually equivalent to a Fourier series [20]:

f(t) =

N∑
n=0

cne
i2πnt/P . (1)

Where t is time, cn are coefficient of index n and P is the period. Fourier series
are known to trace a periodic curve to arbitrary precision, given a sufficient
number of coefficients [19]. The modern description using the elliptical orbits of
Kepler superseded the epicycle model, called the Keplarian view [18]. A Kepler
orbit can be expressed in the eccentric anomaly as [18]:

r =

(
a cosE
b sinE

)
. (2)

Where a, b are the semi-major and semi-minor axes of the orbits, respectively.
E denotes the eccentric anomaly, defined as the angle from the semi-major axis
from the ellipse’s centre. By setting x and y, in the typical sense of orthogonal
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coordinates, to correspond to the real and imaginary components of f(t) the
ellipse can be described as a Fourier series in the eccentric anomaly:

f(t) =
a− b

2
e−iE +

a+ b

2
eiE . (3)

To transfer the central description to a focal point, a constant c =
√
a2 − b2

can be subtracted from the x component. Thus, the shape of the ellipse is fully
described by two parameters, a, b or a, e. This description holds for describing
an object orbiting a focal point in the ellipse, as is approximately the case
for the sun and the Earth. The historical epicycle model used the geocentric
perspective instead of the heliocentric one [18]. In the geocentric frame, the
elliptical orbit of the moon can easily be parameterized, but Mars’ orbit will
require new parameters to explain the shape:

r̄mars =
ae − be

2
e−iEe +

ae + be
2

eiEe − am − bm
2

e−iEm − am + bm
2

eiEm . (4)

Where the index e,m denotes Earth and Mars. However, this equation does not
encapsulate the different time dependencies of Mars and Earth. Time depen-
dence is encoded in E through Kepler’s equation [21]:

2π

Po
(t− Tp) = E − e sinE. (5)

Where E is the eccentric anomaly of each celestial body, Po is the orbital period,
e is the eccentricity, Tp is the time at periapsis and the left-hand side is com-
monly referred to as the mean anomaly. Kepler’s equation forms a non-trivial
relationship between the eccentric anomaly of Earth and Mars, which compli-
cates the description of the orbits. Thus, the shape of Mars’ orbit requires the
formalization of the trajectory of each body and raises the number of param-
eters to eight. Both models and their parameters are summarized in table 1.
They constitute a simplified description of the orbit and do not include param-
eters that explain each orbit’s orientation and relative position, which would be
required in a full analysis.

Keplerian Epicycle

r(t) =

(
a cosE(t)
b sinE(t)

)
f(t) =

∑N
n=0 cne

inE(t)

a, b, Po, Tp Po, Tp, {cn}

Table 1: Summary of the base model and the corresponding number of parame-
ters. a is the body’s semi-major axis, b is the semi-minor axis, Po is the orbital
period and Tp is the time at periapsis. For the epicycle model, the additional
{cn} is the set of selected coefficients, fitting the orbit up to order N .
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To visualize this in an epicycle model, one may simulate the orbits of a sim-
plified system and identify the Fourier series coefficients. Assume a system
of three bodies: Mars, Earth and the Moon. Earth and Mars orbit around
the same focal point at the origin, a hypothetical sun, and the moon orbits
Earth in its focal point. Let all orbits have their periapses aligned along the
x-axis and be initialized at periapsis (T = 0), see figure 2. The parameters
used were: ae, amo, ama = 1.496E11, 2.279E11, 3.844E8 [m] and ee, emo, ema =
0.0167086, 0.0934, 0, based on data from NASA Planetary Fact Sheets [22]. To
maintain continuity in the analysis, the orbital period was simplified to 30, 360
and 720 days for the moon, Earth and Mars, respectively.

Performing a Fourier analysis in the angular domain yields the results in figure
3, using an angular period of 2πnrot where nrot is the number of local orbits
per total orbit. Both approaches use the same eccentric anomaly as the trajec-
tory parameter but differ in the number of coefficients with large magnitudes.
Explaining the orbit of Mars in the geocentric frame requires more coefficients
than in the heliocentric frame. The inverse is true of the moon’s orbit in the
heliocentric frame since it is orbiting the Earth.

As shown in figure 3, the correct central body description leads to significantly
fewer relevant terms since most components are more than ten orders of mag-
nitude smaller than the principal components. Given the eccentric anomaly
model, the number of parameters in the heliocentric epicyclical view of orbits
is not significantly different from that of the Keplerian model. It includes the
constant term, which can be inferred from the first-order terms, as shown in
equation 3.

We classify the heliocentric model as less complex than the geocentric model
since it has fewer relevant terms in the Fourier series. However, the lunar orbit
can be considered complex from the perspective of heliocentrism. The data
is unchanged, only observed in a different reference frame. As such, the data
should be regarded as factual but not objective. Since all models explain the
data well, none of them can be discarded on the grounds of falsification. Rather,
favouring the Keplerian view on the movement of celestial bodies is not data-
driven but due to other considerations.

1.5 Theory considerations beyond data

Historically, certain epistemological principles have been introduced and used in
the formation and valuation of theories. Theories in science are not only vetted
on their ability to explain data but also on their complexity. Most theories in
science have a simple written form, even ones explaining the movements of vast
amounts of particles. If the laws of nature are complicated, it seems unlikely that
science could formulate them in short equations. Among the most well-known
of the principles is Occam’s razor, typically quoted as [23]:

”Entities should not be multiplied beyond necessity”
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Figure 2: Simplified elliptical orbits of the bodies in heliocentric (top) and
geocentric (bottom) view. The moon’s orbit is present as very small fluctuations
around the Earth’s orbit.
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Figure 3: Fourier coefficients in the heliocentric (top) and geocentric (bottom)
view expressed in the eccentric anomaly of each body.

In summary, the principle deals with the excess complexity of theories, pos-
tulating that simple explanations are preferable over more complicated ones,
given sufficient accuracy. The wording necessity refers to the ability to explain
the data. Thus, one should use any sufficiently complicated theory capable of
explaining the data.

Given the example in chapter 1.4, the more complicated description, with re-
gards to the number of parameters, of the orbits should be discarded according
to Occham’s razor as it introduces unnecessary complexity and detracts from
the interpretability of the results.
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1.5.1 Compression in physics

The application of Occam’s razor can be seen as a removal of excess information
in a theory. Thus, a shorter but adequately good explanation is preferred or, in a
sense, a more compressed representation is favoured. Many branches of physics
rely on differential equations to describe nature, one example being mechanics.
Newton’s law of acceleration is [24]:

F = ma = mẍ.

Where F is the force acting on a particle and a = ẍ is the acceleration. The
equation relates the change in velocity with the force acting upon the particle.
To exemplify, for a constant force field in 1D, the evolution of the position can
be solved via integration:

ma = CF → x =
CF
2m

t2 + v0t+ x0, (6)

Where CF is the constant force field, t is time from t = 0, v0 is ẋ at t = 0 and
x0 is x at t = 0. This equation describes the full trajectory of the particle given
initial conditions and the force acting on the particle.

To reproduce the trajectory, one needs to store the initial conditions and the
force descriptor. The force descriptor combined with the theory describes a set
of potential paths the particle might take, and the initial conditions are used to
select the specific path in the set.

Assume one has a particle with a trajectory with positions y at times t. Given
that Newtonian mechanics applies to the system in question, and one would be
able to identify a description of the force and the initial conditions, the positions
could be described using this information. Since the system description and t:s
entirely determine the y:s, the user may ignore storing the y. The data is then
compressed into a representation containing the time data, the initial conditions
and the force description, see figure 4.

If the description is minimal, then it is expected that all regularity of the data is
encoded in the compressor/decompressor. What remains are the parts of data
that define each trajectory. In typical use of physics, the decompression element
is the differential equations describing the evolution of the state and the minimal
description is the initial state. The compressor component of physics is rarely
discussed but corresponds to the process of finding the initial conditions fitting
the data.

In terms of Occam’s razor, we prefer a theory that compresses the representation
to a high degree but still offers an accurate reconstruction of the data. One
may also consider that Occam’s razor can be interpreted in a meta-compression
setting: a single theory explaining two seemingly disconnected phenomena is
preferable to two separate theories.
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Figure 4: In a fully understood system the scientist should be able to take a
general data set ”Data” from the system and use the knowledge of the system
to compress it to a ”minimal description”. The minimal description can be used
with knowledge of the system to reconstruct the initial data set.

1.6 Machine learning

The above properties form a set of interesting considerations for theories, and
in light of the size of the search space of hypotheses, any guidance could prove
very helpful. To connect to the algorithmic component of the thesis, a brief
introduction to machine learning and its application is needed.

Machine learning is fundamentally an automated approach to finding regularity
in data [25]. In simple terms, machine learning seeks to minimize a measure
referred to as the loss function, or empirical risk, across a data set by optimizing
a set of model parameters [26, Ch. 2]. For a given problem, the learning process
may generally modify two quantities and their inherent parameters: the loss
function and the hypothesis class. The hypothesis, or model, is the structure the
model will use to perform its task [26, Ch. 2], for instance, predicting a function
output or labelling data. The empirical risk across a sample is calculated as [26,
Ch. 3]:

LE(H, ℓ) =
1

n

n∑
i=1

ℓ(H(xi), yi), (7)

where LE is the empirical risk, H is the hypothesis or predictor, evaluated, n is
number of samples, xi are the variables used to predict the output yi and ℓ is the
loss function. As should be clear, this framework is not significantly different
from that of hypothesis testing. It should be noted that any application of
machine learning has other practical considerations, for instance, an optimizer
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for parametric models.

The No Free Lunch (NFL) theorem is closely related to the question of the
structure of the hypothesis generation. In summary, the theorem states that
no optimization or search algorithm can be efficient for all classes of problems,
where efficient refers to any algorithm which performs better than a random
search [27]. As a corollary, to have an efficient search, the algorithm needs to
exploit the structure inherent to the problem at hand [27]. In the scientific
framework, it is typically called an inductive bias or prior information.

The NFL theorem is fundamental and relates to hypothesis generation. The
success of science and research indicates that humans have a structured approach
to hypothesis generation. By creating an algorithm in this framework capable
of encapsulating the structure discussed above, it should be possible to prune
and explore the space of hypotheses efficiently.

1.7 Outline

This thesis will use a bottom-up approach to explore a possible path to the
algorithmic approach of hypothesis generation. As explained in section 1.6, any
efficient search requires a prior, or more specifically, an inductive bias. We will
focus on three potential inductive biases through symmetry (section 3), min-
imum description length (section 2.4) and entropy (section 2.3), investigating
the concepts, their relationship and connection to theory generation.

This theoretical investigation of the necessary concepts for algorithmic hypoth-
esis generation culminates in the implementation of two algorithms. The al-
gorithms will encapsulate the search for symmetries and automatic hypothesis
generation for physics research.
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2 Background

The introduction covers the basics of the most central concepts and their rel-
evance. In order to formulate the criteria relevant to theory finding, we need
to quantify prediction accuracy and theory complexity. Accuracy refers to the
ability to model the data correctly, and complexity refers to a measure of how
complicated a theory is.

2.1 Knowledge and probability

Central to evaluating hypotheses is probability theory, a logical approach to
inference in a state of limited knowledge [15, Ch. 1]. At the core of the Bayesian
perspective on probability (but not invalid or irrelevant in the frequentist) is
Bayes theorem, a method to update one’s knowledge about an object [16, Ch.
2]:

p(H|X) =
p(X|H)p(H)∫
p(X|H)p(H)dH

, (8)

where p(.) denotes a probability density, X is a random variable, H is a model,
p(H|X) is the posterior density, p(X|H) is the likelihood function, p(H) is the
prior probability density. The denominator is the normalization factor, the ev-
idence p(X) =

∫
p(X|H)p(H)dH, which is the likelihood marginalized across

all models. In simple terms, the prior density is used to encode prior knowl-
edge of the problem and is updated as data is observed, forming the posterior
distribution.

A hypothesis is fundamentally a proposed theory about a phenomenon, leading
to some testable prediction. Hypotheses with no free parameters are called
simple hypotheses, and ones with parameters are called composite hypotheses
[16, Ch. 10]. In the frequentist paradigm, a hypothesis is true or false, using a
null to represent the assumed truth [15, Ch. 7]. The null hypothesis is the base
prediction, yielding the baseline for evaluating an experiment [28, Ch. 7], for
instance, how big a typical variation is and which measure to use.

Hypothesis testing, as described in the introduction, is commonly performed in
the framework of probability theory. For hypothesis testing done on the basis
of significance, one assigns a level of significance, a probability of observing an
event in the critical region w given the truth of the null hypothesis H0 [16, Ch.
10]:

P (X ∈ w|H0) = α. (9)

Where the critical region is the region in which an observation would reject
the null hypothesis. For example, if one has a null hypothesis that the data
follows a standard Gaussian distribution f(x) = 1/

√
2πe−x

2/2 [16, Ch. 4],
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assume the acceptance region is a double-sided interval [−2, 2] corresponding to
a significance of ≈ 4.2%.

Another important significance test is that of likelihood ratio, typically the most
powerful test of simple hypotheses [16, Ch. 10]. The likelihood is defined as [16,
Ch. 10]:

L(X|θ) = p(X|θ) =
∏
i

p(xi|θ), (10)

where p(xi|θ) is the probability density of event xi given the parameters θ and
p(X|θ) is the likelihood in probability density notation. The likelihood function
is a function of the data conditional on θ, the hypothesis parameters. The
likelihood ratio is related to the Bayesian posterior distribution ratio, which has
the name Bayes factor and encompasses both the observed and prior information
[15, Ch. 11]:

BF =
p(θ1|X)

p(θ2|X)
=
p(X|θ1)

p(X|θ2)

p(θ1)

p(θ2)
, (11)

where p denotes the probability density over the parameters θi. The evidence,
p(X), from equation 8 is marginalized over θ. As such, it becomes model-
independent and cancels in the ratio. The Bayes factor also includes a penal-
ization of high-dimensional models, referred to as Occam’s factor [15, Ch. 3].
It arises naturally in Bayesian model selection and is related to the ratio of the
prior and parametric volumes of models [15, Ch. 3].

This parsimony (preference for smaller models) is inherent to the structure and
indicates structural limits on the complexity of models. This seems closely
related to the structural search of section 1.6, which requires prior knowledge
to guide an efficient search, limiting the complexity of the search. The above
chapter introduced the probabilistic framework, forming the basis of hypothesis
testing and comparison. The concept of complexity is, however, best formalized
in computer science.

2.2 Computability

In computer science, algorithms are structured processes used to perform com-
putational work using computers. Central to any algorithm used in practice is
computability.

Computability of a function refers to its ability to be calculated or processed on a
computer [29, Ch. 1.7] and is a fundamental property of a function. Computers
are conceptually functions which operate on information and produce an output
and can be thought of as function approximators. The conceptual framework of
computing is evaluated using Turing machines, which are deterministic machines
operating on a tape of data using a finite set of rules of states [29, Ch. 1.7].
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To compute a function effectively, the computer needs to represent the problem
in a way that it can calculate. The function needs to have the right input and
output domain, accept all inputs and halt, meaning the calculation stops at
some point. A computational function with these properties is called recursive
and allows a computer to approximate a function to arbitrary precision [29, Ch.
1.7]. As proven by Gödel, there exist functions for which no Turing machine
may halt in finite time, commonly referred to as the halting problem [29, Ch.
1.7] and is an example of uncomputable functions.

The generality of Turing machines makes the notion of computability not only
a statement on whether a specific implementation may calculate a function
but also a statement on whether any computer can approximate it. Thus, the
importance of the statement on computability should be evident in the context
of algorithmic approaches.

2.3 Complexity and entropy

Complexity vaguely refers to a measure of how complex an object is but is
not a well-defined metric. One of the simplest and most natural measures of
complexity is simply the number of inherent parts, for instance, the number
of particles in a system or the number of players on a football field. Closely
related is dimensionality; the number of characteristic ”axes” along with an
object varies. One instance of this is complex numbers with two dimensions: one
real and one imaginary. Another is the number of parameters in the parameter
space of a function. While these measures are useful, a more formalized, general
description of complexity exists. Named after A. N. Kolmogorov [29, Ch. 1.9],
Kolmogorov complexity is a measure of absolute information and is one of the
key concepts of Algorithmic Information Theory (AIT).

Conceptually, the Kolmogorov complexity C(x) is the length of the theoretically
shortest program in bits, which generates the output x [29, Ch. 1.8]. The Kol-
mogorov complexity is an uncomputable quantity, meaning that it is impossible
to determine if the representation one has is the minimal one [30]. The quantity
also connects to randomness through the Martin-Löf definition, where a string
is random if the length of a string is close to its Kolmogorov complexity [29,
Ch. 2.4].

The prefix complexity is an extension of the Kolmogorov complexity. It is prefix-
code (or rather, a prefix-free code), a code in which none of the compressed
representations is an initial substring of any other representation [29, Ch. 3]. In
terms of the conditional Kolmogorov complexity, the prefix complexity is given
as [29, Ch. 3, p. 202]:

K(x|y) = Cψ0
(x|y). (12)

Where K(x|y) is the prefix complexity of the string x given knowledge of y,
the Kolmogorov complexity of x, and Cψ0 is the Kolmogorov complexity con-
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ditional on a theoretically optimal set of prefixes ψ0. This measure has several
advantages over the Kolmogorov complexity in that it is, among other things,
subadditive (K(x|y) ≤ K(x) +K(y) +O(1)) [29, Ch. 3.1]. Unlike Kolmogorov
complexity, the prefix complexity allows for unambiguous recovery of the com-
plete representation [29, Ch. 1.11]. The two complexities are asymptotically
equal up to a constant [29, Ch. 3]:

C(x) = K(x|C(x)) +O(1). (13)

Where C(x) is the Kolmogorov complexity of x, K(x|C(x)) is the prefix com-
plexity of x given knowledge of the length of the minimal compressed represen-
tation and O(1) is a constant ordo 1, meaning it is independent of the object
x.

2.3.1 Entropy

The second important measure of complexity is entropy, often referred to as
a measure of ”disorder” [31] or information [32]. There are several related
definitions of entropy, the most important from the perspective of complexity
being Shannon entropy. His definition relies on the probability of observed, or
observable, events i as [32]:

Hs(X) = KH

N∑
i=0

p(xi) log
1

p(xi)
.

Where KH is a unit-dependent constant and p is the probability mass distri-
bution of X with xi ∈ X, N represents the number of draws or observations.
For Shannon entropy, the theoretically maximum entropy is reached when all
observable events xi, xj have uniform probability p(xi) = p(xj),∀i, j with value
K lnN [33]. In this state, there is maximum uncertainty of the outcomes and
the entropy is analogous to Boltzmann’s entropy [34]:

Sb = kB lnΩ (14)

Where kB is Boltzmann’s constant, Ω is the number of valid permutations of
the system. The analogy refers to both being equal up to an additive constant,
dependent on the base of the logarithm. The conditional Shannon entropy is
[29, Ch. 1.11]:

Hs(X|Y ) = −
M,N∑

i=1,j=1

p(xi, yj) log
p(xi, yj)

p(yj)
(15)

Where p(xi, yj) is the joint probability distribution of state xi, yj , M is the
i:th highest numbered state and N is the j:th highest numbered state. The
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conditional entropy is a measure of information given knowledge of a part of
the system. It can be used to form descriptions of systems through algorithmic
entropy, sometimes also referred to as physical entropy, defined as [29, Ch. 8.6]:

Sa = K(x) +Hs(y|x), (16)

where K(x) is the prefix complexity of x, a descriptor of the system, and H(y|x)
is the Shannon entropy of the state y conditioned on x. Conceptually the
first term corresponds to the most compact description of the knowledge of the
system as of now. The second one corresponds to a lack of knowledge about the
state, given what is known in x [35]. This is a combined information statement
on both the system and the state of the system.

2.4 Compression of data

Compression, as outlined in the introduction, has a clear connection to the
understanding of phenomena. Fundamentally, compression relies on regularity
in data to create smaller representations of it [29, Ch. 1.8]. An example of a
practical compression scheme is Huffman codes, where the algorithm attempts
to code recurring sequences with short code representations and rare sequences
using longer representations [36].

Compressibility indicates that the system contains redundant information which
is not necessary for reconstruction. In contrast, an incompressible object does
not contain redundant information and thus requires the full length to be de-
scribed. In terms of prefix complexity, incompressibility means that the object’s
current representation size is equal to or smaller than its prefix complexity [29,
Ch. 3.3]. As mentioned in section 2.3, if the data can not be compressed, it is
random.

Most binary strings of a finite length can be considered to be incompressible
in the Martin-Löf sense. Given a binary string, the relative frequency of the
strings that can be compressed effectively is fcompr ≤ 2−k, where k is the
number of bits that have been compressed [37, Ch. 1.2], commonly referred
to as k-compressibility. The conclusion from above is that randomness is the
norm, while regularity and compressibility are rare properties.

Reflecting on the introductory discussion on compression in physics, section
1.5.1, there exists a correspondence between the algorithmic and the physical
concepts of compression. If one can express the structure of physical theories
in terms of information theory, then the complexity of a physical theory can be
formalized.

2.4.1 Minimum description length

The information-theoretic compression framework for theories is formalized in
the concept of Minimum Description Length (MDL). A theory or model of
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physics can be used as a basis for the regularity in data. Thus, it should be able
to be used to compress it.

The minimum description length (MDL) is a concept in information process-
ing, similar to Occam’s razor in epistemology [29, Ch. 5.4]. There are several
common but distinct definitions of MDL with several conceptual frameworks
denoted the ideal MDL. Use of the ideal MDL principle is the selection of the
hypothesis H which minimizes the quantity [29, Ch. 5.4]:

HiMDL = argmin
H

: K(H) +K(D|H), (17)

where K(H) is the prefix complexity of the hypothesis and K(D|H) is the prefix
complexity of the observed data D, given knowledge of the hypothesis H. The
quantity is measured in bits and is an objective measure of the information
contained in the system. The prefix complexity is uncomputable, but upper
semicomputable [29, Ch. 3.4], meaning it can not be calculated exactly but
an approximate upper bound can be estimated. The above limitation directly
shows the main issues with applying ideal MDL.

In practice, the MDL approach requires the use of approximations to be useful
[37, Ch. 1.5]. For instance, within a hypothesis class one may have a program
that allows for the calculation of any polynomial, given a set of parameters.
Since the complexity of any polynomial can be expressed in terms of its param-
eters and the program complexity, the difference in the model complexity is the
difference in parameter complexity, allowing for simple comparison.

To quantify a solution one needs to describe the model complexity as well as
the deviations between the data and the model prediction, commonly referred
to as a two-part code, or crude MDL [29, pp. 382–384]. As an equation, the
principle can be expressed as [37, Ch. 1.5]:

HcMDL = argmin
H

: L(H) + L(D|H), (18)

where H is the hypothesis, or model, in our hypothesis class, HMDL is the
optimal model, L(H) is the description length of the model and L(D|H) is
the description length of the data, given the model. Whereas the ideal MDL
specifies the quantities through the prefix complexity, the crude MDL requires
an intelligent formulation of the description lengths.

For probabilistic hypotheses, such as a polynomial with an added Gaussian noise
term, the description length of the data given a hypothesis can be effectively
described by the negative log-likelihood [37, pp. 15–16].

Ld(D|H) = − log2 p(D|H), (19)
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where Ld is the description length in bits (or nats if the natural logarithm is
used), p is the likelihood of the data D given model H. How to describe the
model is less obvious in the two-part MDL framework since the model length
is implementation-dependent. In practical terms, one may describe the model
using a lexicon of functions, variables, constants and parameters, as in [38].
With such a set of operators and operands, the complexity per component can
be expressed as:

Ld(H) = d log2N, (20)

where d is the number of components and N is the number of entries in the
set. Thus, one needs a sequence of length d, each with the data cost log2N .
Parameters come with the additional requirement that their value needs to be
specified. One approach [37, p. 137] is using a discretized domain, as is typical
in computing. Each parameter can then be described by a precision d, equal to
the informational content in the correct logarithm (for example, a Float32 is 32
bits/in log2).

In the MDL framework, there exists a natural ”prior” complexity, which is the
effective description size of the free data [37, Chap 14.2]. If no preference or
regularity is given, then each point is a draw of the uniform distribution over
the allowable values [37, Ch. 14.2]. In practice, this can also be conceptualized
as the n log2m, with n data points, each of m complexity [37, Chap 14.2]. For
instance, using 32 bits, one may represent 232 states. If these states are mapped
uniformly over the interval [a, b], then each step is b−a

232 , allowing a stepwise
representation from a to b. This concept quantifies the base complexity of data
and limits how complex a model can be used for a given amount of data [37,
Ch. 14.2].

As mentioned in section 2.3, probability theory and algorithmic information
theory share a close connection through Shannon’s entropy, asymptotically ap-
proaching the average prefix complexity over strings all the strings x of length
l(x) = n [29, Ch. 2.8]:

Hs(x)|l(x)=n ∼
∑
l(x)=n

p(x)K(x), (21)

where p(x) is the probability mass function over x and K(x) is the prefix com-
plexity. The algorithmic equivalent to the uniform prior on binary strings is the
universal distribution m(x). The coding theorem [29, p. 273] states:

log
1

m(x)
= log

1

QU (x)
= K(x), (22)

for all x up to an additive constant, where K(x) is the prefix complexity and
QU (x) is the universal a priori probability [29, p. 272]:
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QU (x) =
∑

U(Pc)=x

2−l(Pc). (23)

The U subscript denotes a reference prefix machine, the conceptual computer
running the program, and l(Pc) is the length of a program Pc, in bits, which
calculates the output x running on U . In other words, the sum is the sum over
all programs Pc which will output the string x, and the contribution for each
program which will output x is 2−l(p). More concisely, the universal distribution
is the distribution over all outputs x of a computer running a random program
Pc [39]. As can be noted from the coding theorem, if the string has a short
Kolmogorov complexity, it also has a high probability of being output.

With a prior and a connection to probability theory, there exist similarities with
the Bayesian approach. Under certain conditions, MDL and Bayesian hypothesis
selection will approach a similar hypothesis [29, Ch. 5.4]. The maximum a
posteriori hypothesis of the Bayesian approach is generated through:

argmax
H

: p(H|D) = argmax
H

:
ΠNi=1p(di|H)

p(D)
p(H)

→ argmin
H

: − log p(H)−
N∑
i=1

log p(di|H).

(24)

in the N → ∞ limit, where di are the individual data points observed in D.
Comparing this to the ideal MDL description of the data, as in equation 17,
there is a strong structural similarity between both forms, but one is measured
in probability and one in complexity. Under a set of non-trivial constraints,
the probability can be expressed in terms of complexity via the coding theorem
[29, Ch. 5.4]. Most importantly, the likelihood can be expressed in terms of
complexity as [29, Ch. 5.4]:

− log2 p(D|H) = K(D|H), (25)

up to a constant K(p(.|H)) + O(1), where p(.|H) is the general probability
distribution given a hypothesis H and K is the prefix complexity. Following
theorem 5.4.1 of [29, Ch. 5.4, pp. 389-390], the log-ratio of likelihoods of the
MDL and Bayesian approach has an upper limit related to the prefix com-
plexity of the probability distribution and prior distribution, proportional to
K(p(.|H)) +K(p(H)) +O(1). In simple terms, if the posterior and prior distri-
butions have low prefix complexities, both approaches should favour a similar
hypothesis [29, Ch. 5.4], at least in the large n limit where the likelihood will
dominate the selection.
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2.5 Conceptual summary

This chapter briefly introduced the most essential and general concepts, pri-
marily focusing on complexity. Probability theory is a coherent framework for
expressing and updating knowledge of a system. Second, the concept of algo-
rithmic complexity was introduced through Kolmogorov and prefix complexity,
absolute measures of information. Both concepts connect through entropy, a
measure of information using probabilities.

Using the formalized framework of algorithmic information theory, the applica-
tion of compression in physics is done through MDL. A brief exploration of the
literature shows how the MDL relates to the Bayesian model selection under
some non-trivial conditions.
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3 Algorithmic symmetry searching

As outlined in the previous section, the complexity of theories is an important
and logically coherent part of theory formation. Another important considera-
tion is symmetry, which is important since any physical law can be expressed
in terms of their symmetries [40]. Symmetries also have a correspondence with
conserved quantities, such as energy conservation, through Noether’s theorem
[41, p. 101]. Both properties could indicate that symmetries are, or could form,
an important part of an inductive bias.

In the following section, we will explore symmetries, their properties and their
connection to other properties. It also aims to give a background on key concepts
required to implement an algorithmic approach to symmetry finding, which we
implement in a machine learning algorithm.

3.1 Symmetries and groups

A symmetry is, simply explained, an operation upon a system that leaves the
observed property invariant [42, Ch. 1]. Ubiquitous symmetries include mir-
ror symmetry (left-right), rotational symmetry of spheres and circles, partial
rotations in cubes, pentagons, and so forth. Symmetry typically refers to the
invariance of a feature space (limbs, corners of geometrical figures, etc.) with
regard to a geometrical transformation (translation, rotation, etc.), but is not
limited to geometry.

As an example of the description above, imagine a free particle with three state
variables (and one initial condition). The position is described by the function
x(x0, v,m, t) where v is velocity, m is mass, t is time and x0 is initial position.
The subspace of the state space preserving position and energy are described
by:

dx0 + vdt+ tdv = 0 for position and
v2dm

2
+mvdv = 0 for energy, (26)

where the dx notation indicates an infinitesimal increment of the quantities. The
observed position is invariant under any transformation of m, meaning they are
symmetrical states in position. For energy to be preserved under transforma-
tions of m, a change in v needs to balance it to maintain symmetry.

In more mathematically rigorous terms, a symmetry is described in terms of
group theory. A group is a set of elements with specific mathematical properties.
The set needs a composition (some operation) which combines elements of the
set, commonly denoted ab as the composition of a and b, both members of the set
[42, pp. 6–10]. For all elements of the set, the composition should fulfil closure
and associativity, have an identity element and have an inverse [42, pp. 6–10].
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Expanding on the definition above, a group is a set of objects which together
follow a set of mathematical properties. Closure refers to the property that
the composition of two group elements is part of the group [42, pp. 6–10].
Associativity relates to the group member order in the composition, ab = ba [42,
pp. 6–10]. The identity element is an element which is the identity eb = b = be
and the inverse of elements b−1b = e [42, pp. 6–10].

Let a, b be states of a system. The symmetry transformation can then be defined
in terms of the states as [42, pp. 80–81]:

S(a) = b ≡ a, (27)

where S() is a symmetry transformation of the states and a ≡ b is the equiva-
lence relation. In this case, the states a ≡ b both leave the observed property of
the system invariant and equivalence in this sense refers to the preservation of
the observed property. If a and b are part of the input space of a function with
the property that f(a) = f(b), then the symmetry transformations S : a 7→ b
form a group.

As an alternative description of the symmetry description of a system, De Haro
et al. [43] provide an insightful definition where a physical system is divided into
a state space S, a quantity space Q and the dynamics space D. A symmetry
is then defined as an isomorphic map on the state space S 7→ S such that the
observed important quantities Q are invariant [43]. Notably, the authors make a
distinction between bare theory and realizations, where a realization of a theory
as a given model may not adequately capture the full symmetry of the theory.
An example of two isomorphic representations of one theory is the Heisenberg
and Schrödinger pictures of a quantum system [43]. A representation of a theory
does not need to be isomorphic with the theory and may be unable to capture
or express a symmetry or may only allow trivial symmetries [43].

The importance of symmetries has been known for a long time, as exemplified
by Curie’s symmetry principle. Curie’s original principle postulated that an
asymmetry gives rise to phenomena [44]. J. Rosen expanded upon the base
premise and asserts that the degree of symmetry in an effectively isolated system
will not decrease as it evolves [42, pp. 146–150]. This principle is analogous to
the entropy increase of processes and the author concludes that there exists a
correspondence between symmetry and entropy such that a high entropy implies
a high degree of symmetry [44].

3.1.1 Manifolds

Manifolds are simply explained lower dimensional objects which exist as a sub-
space in a higher dimensional space, forming a geometrical object. The existence
and properties of manifolds are relevant for symmetry searching as well as for
certain mechanical systems.
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More precisely, manifolds are sets of points with a corresponding continuous,
injective map from the manifold to the full space they reside in [41, Ch. 3.11].
The map is valid on a local neighbourhood around each point, meaning a small,
open subset around each point [41, Ch. 3.11]. Each point on the manifold, in
its local coordinates, is mapped into an equal or higher-dimensional point in the
full space, and the set of points forms an object residing in the space. See figure
5 for two examples.

Figure 5: Examples of 1D and 2D manifolds embedded in 3D space. Units and
axes are arbitrary.

A straight line is among the simplest manifolds and can be a manifold in 2D
space. By setting a local coordinate t ∈ R1 and local origin Ot, at some point
in space x, y ∈ R2 we may specify a map as M : R1 7→ R2:

M(t) = mOt
+ kdtt, (28)

where mOt
is the position of the origin in manifold coordinates and kdt are the

coefficients relating dx/dt and dy/dt.

The manifold may require and is allowed to have a finite amount of maps to
fully map all points in M in an injective manner [41, pp. 93–94]. Differentiable
manifolds are ones in which the isomorphic mapping to and from the manifold
is differentiable [45, pp. 20–22]. In practical terms, a hypersurface is an instance
of a manifold where each point on the surface can be expressed in coordinates
on the surface, mapping the connection to Rn via a function. A trivial manifold
in Rn is Rn itself through the identity map [41, pp. 93–94].

Manifolds relate to symmetries as they geometrically describe the subspace of
states which preserve the observable quantity. In the case of a free particle in
1D with a constant gravitational potential energy state is:
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Etot = gx+
mẋ2

2
. (29)

Given a state {x, ẋ}, the parameters m, g can form a manifold, the subset of
those parameters which leave the sum invariant. One can leave the parameters
invariant and map the states that preserve the property and form a manifold.

3.2 Noether’s theorem and the Lagrangian

Closely related to both manifolds and symmetries is Noether’s theorem, which
describes how conserved quantities and symmetries are connected. According
to Noether’s theorem, for each continuous symmetry of a Lagrangian system,
there is a corresponding conserved quantity [41, p. 101]. The theorem deals
with the action invariance due to infinitesimal changes.

The Lagrangian describes a mechanical system as L(q, q̇, t) = T −U where q is
the canonical position, q̇ is the canonical velocities t is the time, T is the kinetic
energy and U is the potential energy. The system follows Hamilton’s principle
of least action, where the solution forms the extremal of [45, pp. 59–61]:

S(q) =

∫ t1

t0

Ldt, (30)

which is commonly referred to as the action of the system. This equation is
solved using variational calculus, a method of finding minima or maxima using
infinitesimal variations. Around an extremal point, the first derivative is by
definition zero, and the first order Taylor expansions need to cancel [41, Ch.
4.1].

The process, as outlined by J. Schwichtenberg [41, Ch. 4.4], uses a small per-
turbation around the unknown optimum path q(t) = a(t)+ ϵ(t). Expanding the
Lagrangian in the perturbation and using the linearity of the integral, we set
the first-order perturbation integral of the system equal to zero for all ϵ. By
using the invariance of the endpoints of the action and rearranging, the ϵ can
be factorized, giving the first order integral as [41, Ch. 4.4]:

0 =

∫ t1

t0

ϵ(t)

(
d

dt

(
∂L
∂q̇

)
− ∂L
∂q

)
dt. (31)

Since the integral needs to be zero for all ϵ, the second factor in the integral
needs to be zero, forming the Euler-Lagrange equations [45, pp. 59–61].

Noether’s theorem, based on the above concepts, deals with the infinitesimal
changes to the quantities, leaving the action unchanged. The action is invariant
under the addition of a total time derivative to the Lagrangian L′ = L+dG/Dt,
yielding [41, pp. 101–105]:
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d

dt

(
∂L
∂q̇

δq+G

)
= 0. (32)

Thus, one can deduce that ∂L/∂q̇+G is a constant quantity in time, which is
the essence of Noether’s theorem. Expanding on this, the classical formulation
of Noether’s theorem is given as [45, pp. 88–91]:

”If the system (M,L) admits the one-parameter group of diffeomor-
phisms hs: M → M , s ∈ R, then the lagrangian (sic) system of
equations corresponding to L has a first integral I: TM → R. In
local coordinates q on M the integral I is written in the form

I(q, q̇) =
∂L

∂q̇

dhs(q)

ds

∣∣∣∣
s=0

.” (33)

Where M is a smooth manifold, L is the Lagrangian acting on the tangent
bundle TM which is the manifold containing all tangent vectors of M , hs is a
diffeomorphic mapping M →M using the one parameter s such that L(h∗v) =
L(v), or in other words keeps the Lagrangian invariant [45, pp. 88–91].

3.2.1 Lie algebra and groups

Noether’s theorem is an application of what is known as the Lie algebra, which
is a group of continuous symmetries formed by the generator XL such that [46]:

XL =
dh(s)

ds

∣∣∣∣
s=0

, (34)

where h(s) are the admissible transformations of the parameter s. The trans-
formations can be generated from the generator via incremental steps s/N re-
peatedly, with the limit of infinitesimal steps [46]:

h(s) = lim
N→∞

(
I +

s

N
XL

)N
= esXL . (35)

The Lie algebra of the Lie group, GL, is then the generators XL such that
esXL ∈ GL for real-valued scalars s [46]. This is described by hs in Noether’s
theorem but with the positional dependence of q explicitly included.

A Lie group can be described as both a group and a differentiable manifold
such that the group operator maps onto the manifold itself [41, Ch. 3.4]. The
self-mapping is differentiable in itself, commonly referred to as a diffeomorphism
[41, Ch. 3.4].
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3.3 Hamiltonian dynamics

The action integral, equation 30, was previously solved in the Lagrangian for-
malism but can also be solved in the Hamiltonian formalism. The Hamiltonian
and Lagrangian formulations are equivalent, but the Hamiltonian consists of a
set of 2n first-order equations instead of n second-order equations [45, Ch. 3]..
The canonical formulation of Hamilton’s equations is given as [45, p. 236]:

dp

dt
= −∂H

∂q
,
dq

dt
=
∂H
∂p

. (36)

Where p,q are canonical coordinates such that p = mdq/dt and H is the
Hamiltonian, H = T +U , which is the kinetic and potential energy respectively.
In the Hamiltonian view, each system is formulated as a manifold in the position
and momentum space, commonly referred to as the phase space, with a set of
important properties [45, Ch. 7]. Given a set of initial conditions, each position
and momenta form a bijective mapping onto the time domain [45, p. 236].

If the Hamiltonian lacks an explicit time dependence, then this manifold corre-
sponds to the energy-symmetrical states in phase space. This energy-preserving
manifold is the object that will be the main target of the algorithm.

3.4 Deep learning

To learn the representation, the algorithm uses deep learning, a sub-field of
machine learning utilizing deep neural networks as the objects to be optimized.
Neural networks can be explained as a set of non-linear functions in a struc-
ture in which the data is processed by these functions and passed between each
other in a structured manner using weighted channels [47, Ch. 6]. These net-
works can, for some classes and under some constraints, form universal function
approximators [48][49].

Of special interest for the algorithm are autoencoders, deep learning networks
which compress input data into a small latent space and then attempt to de-
compress the data into the original form [47, pp. 499–523]. The loss function
attempts to minimize [47, pp. 499–523]:

ℓ(x,y) = ℓ(x, g(f(x))). (37)

Where x is the input data, f(x) = z is the action of the compressor and g(z) = y
is the action of the decompressor, the structure being graphically represented
in figure 6, note the similarity to that of figure 4.

As expanded upon in section 2.4, compressing the data requires extracting the
regularity. Using a latent space smaller than the input, the regular features will
be stored in the compressor and decompressor, while the latent space stores
the unique components. The compressor and decompressor do however need to
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Figure 6: Visual structure of an autoencoder using fully connected, single layer,
encoder and decoders. The data is passed along the lines between the nodes, first
from each input node to each node in the hidden layer. The blue latent space
is smaller than the input and output spaces, forcing regularity to be encoded in
the hidden layers in order to accurately reconstruct the input, using the data in
the latent space. Red nodes have non-linear activation functions.

have limited capacity to avoid effectively creating a lookup table of the data
using the latent space as index [47, pp. 500–501].

3.4.1 Loss functions

As described in section 1.6, loss functions are scalar quantities summarizing a
measure of success or deviation from the reference solution. The loss function
is some function of the prediction and the correct outcome with a real, positive
valued output, specified over the hypothesis and label (or output) spaces [26,
pp. 26–27]. For use in the algorithm, the mean square error (MSE) is based on
the square loss function as [26, Ch. 9.2]:

LMSE(H) =
1

N

N∑
i

(H(xi)− yi)
2, (38)

where H is the predictor using variables xi to make a prediction, compared to
reference values yi for a sequence of N values. Used with the autoencoder:
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LMSE(f, g) =
1

N

N∑
i

(g(f(xi))− xi)
2, (39)

where f is the compressor, g is the decompressor and xi is the input. The MSE
also shares a close connection with the log-likelihood for a normally distributed
probabilistic model, see section 4.6.3.

In deep learning, the choice of the loss function is related to the choice of output
units [47, pp. 172–187]. In many cases, the loss function need not be strictly
positive or zero but should have a large enough and nicely behaved gradient.
[47, pp. 172–187]

When the autoencoder has learned to reconstruct data effectively, it has iden-
tified some regularity and can use that to compress it, see section 2.4. This
regularity is related to the manifold mentioned in section 3.3. Thus, learning
the regularity is closely connected to learning the symmetry of the data set.

3.5 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a type of search algorithm for high-
dimensional spaces. To quantify the regularity, the algorithm aims to identify
an approximate distribution of regularity-preserving data transformation. If the
transformed data can be effectively reconstructed by the autoencoder, then the
regularity is present in the transformed data as well. To analyze this property
of the reconstruction, the algorithm needs a method to find the transformation
parameters which preserve the manifold.

Suppose a measure of deviation from the symmetry can be expressed as a poste-
rior distribution. Then MCMC is a numerical approach for efficiently sampling
the posterior distribution of high dimensional models [15, p. 312]. In simple
terms, the method ”walks” through the parameter space of a problem, sam-
pling points in regions with a relative frequency proportional to the PDF of the
posterior [15, p. 314].

MCMC is an extension of Monte Carlo methods. In Monte Carlo, one uses
random sampling to approximately solve problems. To demonstrate the basic
principle, the mean of a continuous random variable can be written as [16, Chap.
2.4]:

⟨X⟩ =
∫
X

Xp(X)dX, (40)

where X is the random variable and p(X) is the probability density function
of the variable. Similarly, if one can express the posterior probability density
p(X|D, I) as a function of data D and prior I, a function f(X) of the parameter
space has the expectation value [15, Ch. 12.1]:
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⟨f(X)⟩ =
∫
X

f(X)p(X|D, I)dX, (41)

where f(X) is some function on X. In the basic Monte Carlo framework, one
may uniformly pick points across the parameter space of X. According to the
weak law of large numbers, the above integral will be approximated by [15, Ch.
12.1]:

⟨f(X)⟩ = lim inf
n

1

n

n∑
i=1

f(xi)p(xi|D, I), (42)

where xi are uniform draws from X. In this regime, it is likely that many sam-
ples are taken in regions of low probability, meaning most of the calculations
won’t provide significant contributions to the average. In MCMC, the samples
are drawn from the target distribution through a random walk with the relative
number of samples approximating the probability distribution [15, Ch. 12.2]. In
the Metropolis-Hastings algorithm, the samples in the space of X are generated
using a transition kernel, a conditional probability distribution p(xi+1|xi) [15,
Ch. 12.2], where xi+1 is the new position from xi. The next step in the param-
eter space is generated using a proposal distribution, often symmetric, which is
the accepted or rejected based upon the Metropolis ratio [15, Ch. 12.2]:

r =
p(y|D, I)
p(xi|D, I)

q(xi|y)
q(y|xi)

, (43)

where y is the proposed position for xi+1 and q(y|xi) is the probability of the
proposal distribution for point y given current position xi. If r is greater than
one, the new position is accepted, and if it is less than one, the new position
has a r probability of being accepted [15, Ch. 12.2]. Note that if the proposal
distribution is symmetric, for instance, Gaussian or uniform, the second factor
is one. Then, only the ratio of posterior probabilities remains.

One weakness of the algorithm is that a considerable amount of time can be
spent in low-probability sections of the domain, and the sampler can also be
stuck in one of the probability modes [15, Ch. 12.4]. One way of avoiding this
is parallel tempering in which multiple independent chains are initialized with
different parameters (commonly denoted βn) [15, Ch. 12.5]. The chains sample
a rescaled posterior distribution and exchange positions with the neighbouring
chain n, n+ 1 given a swap probability [15, Ch. 12.5]:

rc = min

{
1,
p(xi,n+1|D,βn, I)p(xi,n|D,βn+1, I)

p(xi,n|D,βn, I)p(xi,n+1|D,βn+1, I)

}
, (44)

where p(xi,n|D,βn, I) is the rescaled posterior distribution ∝
p(xi|D, I)eβn ln(p(D|Xi,I)), n indexes the chain number and i the position in the
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chain. β is 1/τ where τ is the so-called ”temperature” of the chain. The lowest
temperature corresponds to the original distribution, while the higher temper-
atures have flatter distributions. These chains will have a higher acceptance
probability in regions of low probability of the original distribution. As can be
seen in equation 44, the neighbouring chains (in temperature) can swap posi-
tions with some probability and will always swap if the joint probability of the
swapped state is higher than the joint probability of the original state.

3.6 Symmetry search algorithm

Using the concepts and methods introduced above, we follow the approach of
Yoh-ichi Mototake [50] to perform the symmetry search. His approach was
partially implemented and evaluated for a single reference case.

Starting from a particle description, the phase space describes the canonical
position and velocity from which the energy state of the particle can be cal-
culated. Given a Hamiltonian system, the position in phase space at time ti
determines the position at ti+1, in other words, the state evolution is governed
by Hamilton’s equations.

If the Hamiltonian lacks explicit time dependence, the system has a symmetry in
total system energy: H(ti) = H(tj)∀i, j, and the system forms a manifold in the
phase space. The manifold representation can be learned by training a neural
network to reconstruct the state from a compressed representation [50]. If the
state to be reconstructed rests on the manifold, it will be reconstructed with
a low error through the network. States outside the manifold will be ”pulled”
towards it [50]. See figure 7 for a visual representation.

Using the strategy outlined in [50], the training data is transformed and passed
through the network to infer the knowledge stored in the network. Transformed
data invariant under the reconstruction follows the same conservation laws as the
original data. By using the reconstruction error as a measure, the approximate
allowable transformations can be sampled efficiently using MCMC.

3.6.1 Manifold learning

An autoencoder is used to learn the dynamics of the system given two consecu-
tive points in phase space [50]. The data used is on the form xi = (qi, pi, q

′
i, p

′
i)
T

where qi, pi is the phase space position and momentum at time ti and q
′
i, p

′
i is

at time ti+∆t [50]. The accuracy of the reconstruction process is described by
the mean square error [50]:

E(x|γ) = 1

N

N∑
i=1

(xi − fAE(xi|ϕ))2. (45)

Where N is the number of samples and fAE(xi|ϕ) is the operation of the au-
toencoder on the data xi after training given the hyperparameters ϕ. This
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Figure 7: Principle of operation. The learned representation in 1D fails to
reconstruct the state outside the manifold and ”pulls” the data points towards
the manifold. Inspired by figure 1 in [50].

hyperparameter reliance is implicit when referring to f or E below.

3.6.2 Network probing

To infer the conservation laws stored in the network, one aims to find the set
of transformations which allow for efficient reconstruction [50]. In other words,
the algorithm aims to find transformation parameters a with the transformation
x′
i = X(xi|a) such that:

fAE(x
′
i)− x′

i ≈ 0,∀i. (46)

Where f is the action of the autoencoder, X is some transformation of data
which minimizes the reconstruction error of the neural network and xi is the
i:th data point and x′

i is the transformed i:th data point.

The transformations, X(·|a) is realized as a linear transformation on q, p plus
a constant in each [50]. The transform is performed identically on the q, p and
q′, p′ states. Thus, each transformation requires (2d)2+2d parameters where d is
the dimensionality of the data [50]. In the case of 1D motion, the transformation
becomes:

X(xi|a) =
(
1 0
0 1

)
⊗
(
a11 a12
a21 a22

)
·


q
p
q′

p′

+


1 0
0 1
1 0
0 1

 ·
(
a01
a02

)
. (47)
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Where ⊗ denotes the Kronecker product and a = (a11, a12, ..., a02). This gen-
eralizes trivially to higher dimensions, with the linear transform being a square
matrix of 4d2 parameters and the constant vector containing 2d parameters:

X(xi|a4d2+2d) = I2 ⊗A(2d)2xi + J2,1 ⊗ I2 ·B2d. (48)

Where J2,1 is a column vector of ones, I2 is the identity matrix of shape 2× 2,
A(2d)2 is a square matrix of the first 4d2 parameters and B2d is a column vector
of the remaining 2d parameters. The transformed data X(xi|a) is processed by

the autoencoder and a new error is calculated E(X(x|a)) = 1
N

∑N
i=1[X(xi|a)−

fAE(X(xi|a))]2 [50]. The size of this reconstruction error is a measure of the
deviation from the underlying manifold learned from the data.

3.6.3 Analysis of the transformation space

Transforming the data requires 4d2 + 2d parameters and quickly becomes a
high-dimensional problem. To sample the parameter space, the paper uses
REMCMC. Refer to chapter 3.5 for more details. The target (or posterior)
distribution is modelled on the reconstruction error as [50]:

p(am|x) = 1

Zm
e
− N

2σ2
m
E(X(x|am)) · p(am). (49)

Where N is the number of samples, x is the full set of training data, am is the
m:th chain of proposed transformation parameters, Zm is a chain dependent
normalization constant, σm is the chain specific standard deviation and p(am)
constitute prior knowledge on the distribution. In this application, the prior
limits the solutions to an acceptable space and in out application was set to
uniform for transformations such that the determinant of the transformation
matrix 0.8 ≤

∣∣A(2d)2
∣∣ ≤ 1.2, and zero otherwise.

3.6.4 Inferring the symbolic relationship

The sampled set of parameters are sampling results from the distributions of
the transformations which preserve [50]:

Si =

{
qt, pt, qt+∆t, pt+∆t

∣∣∣∣ H(qt, pt) = Ei,

pt+∆t = pt −
∂H(qt, pt)

∂qt
, qt+∆t = qt +

∂H(qt, pt)

∂pt

}
.

(50)

In other words, the transformations to be sampled are the transformations which
preserve the energy state of the particle. This set of transformations forms a
differentiable manifold and infinitesimal transformations can be modelled as
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the tangent space around the identity transformation [50]. Using the implicit
functional form of the invariant transformations [50]:

f1(a(θ)) = 0,

f2(a(θ)) = 0,

...

fd−dθ (a(θ)) = 0.

Where fi is an unknown function and (a(θ)) are the transformation parameters
conditional on θ, a dθ dimensional vector. The number of equations is deter-
mined by the difference between the dimensionality of the transform and the
embedded manifold, d− dθ. If the Jacobian of this system of equations is non-
singular at the identity transformation, the variables can be explained using a
subset of a denoted b of length dθ [50]. These relationships can be regressed as
implicit equations [50]:

hi(ci, b) = 0, (51)

where i range from 1 to d − dθ and ci ∈ {a} − {b} with {b} ⊂ {a}. In other
words, we view the ci as a function of the b. The solution to the set of derivatives
of the above implicit hi equations: ∂hi(...)/∂bl = 0, at the identity of the initial
transformation A4d2 = I2d, gives a tangent vector for each bl and defines the
transformations as [50]:

(
δql

δpl

)
= ϵ

A(bl)

∂bl

∣∣∣∣
A4d2=I

(
q
p,

)
(52)

with A(bl)
∂bl

corresponding to the matrix form of the solution on the set of differ-

ential equations ∂hi(...)/∂bl. Thus, the method consists of identifying the Lie
algebra. To find these relationships, the equations are generated as [50]:

hk(ck, b1, ...bdθ ) =

db∑
s0=0

db∑
s1=0

...

db∑
sdθ=0

γs0s1...sdθβs0s1...sdθ c
s0
i b

s1
1 ...b

sdθ
dθ
. (53)

Where γ is a selection factor, β is the scale factor of the polynomial, dθ is the
selected dimensionality of the manifold, db is the selected highest polynomial
order, ci is the explained variable and bl are the explaining factors. These equa-
tions can be regressed using orthogonal distance regression [50], determining γ
and dθ in the process.
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3.6.5 Implementation and results

We implemented the data generation, neural network and sampling of trans-
formation parameters listed above using Python, TensorFlow (tf)[51] and Ten-
sorFlow Probability (tfp). The Hamiltonian description for the linear motion
gives the differential equations:

{
H(q,p) =

p2

2m

}
−→ ∂p

∂t
= 0 and

∂q

∂t
=

p

m
, (54)

where q is the canonical position, p is the canonical momenta and m is particle
mass. The equations can be trivially solved by hand and have no time scaling
issue. We generated the training data based on the reference case from [50], with
positions uniformly distributed q = U(0, 1) in m, momentum fixed p = 0.1kgm/s
and mass set to 1 kg.

We created an autoencoder using tf.keras.Sequential, basic structure based
on Tensorflow introduction to autoencoders [52], trained using the generated
data. Encoder and decoder using fully connected layers through
keras.layers.dense. Parameters used for the autoencoder are listed in table
2 and see figure 6 for a visual representation.

Parameter Linear motion

Network structure 4-10-1-10-4 1)

Activation function RELU
Data points 1000 1)

Optimizer ADAM
Loss function MSE

Batch size 30
Epochs 400

Table 2: Neural network parameters. 1) [50], appendix H, table III.

The transformation parameters were sampled with
tfp.mcmc.ReplicaExchangeMC using a tfp.mcmc.RandomWalkMetropolis in-
ner kernel with a normally distributed proposal function. The standard devia-
tion was based on the method in [50] but our implementation was rescaled by
a factor 1

2 :

σp =

{
C
2 or,

C
2(Nσ−2

l )d
if Nσ−2

l < 1,
(55)

where C is a constant and N is number of samples. σl is the l:th chain scaling
factor [50]:

35



σ−2
l = σ−2

minγ
l−1−L, (56)

where γ and σmin are constants, l is the chain index and L is the total number
of chains. The function parameters are listed in table 3.

Parameter Burn-in Samples Chains C γ d σmin
Value 50 000 50 000 8 0.03 1.9 0.7 5.4E-05

Table 3: Parameters used in REMCMC sampling algorithm.

Examples of the resulting sampling density for eight chains of the REMCMC
can be seen in figure 8 with calculated autocorrelations in figure 9. The Gelman-
Rubin test for 8 runs suggest convergence of a11, a21, a01 with a12 approaching
convergence.

Figure 8: Accepted samples of transformation parameters using 50,000 sam-
ples, 50,000 burn-in samples with 30 parallel RE-chains and eight independent
runs. Relations show the approximate distribution of allowable transformations.
Three of the graphs specifically show that a21 is heavily constrained.

36



Figure 9: Autcorrelation factors for REMCMC chains using a max lag of 500
samples. Autocorrelations suggest chains have not fully converged.

After sampling, we could not regress the resulting data using Scipy ODR, which
defaults to the zero solution. Our sampling data does resemble the reported
results from the paper but generally have a larger spread. The important re-
lationships in the transformation space 8 are the straight lines which indicate
the invariance of a01 and a11. The lines correspond to approximately conserved
momentum which also preserves the energy state.

3.7 Discussion

In this chapter, we discussed and implemented an algorithm for inferring sym-
metries present in data of particle dynamics. To learn the underlying manifold,
an autoencoder was trained to reconstruct the data of two successive points in
time. The learned relationship was then probed by measuring the reconstruc-
tion error of the autoencoder for transformed states. By sampling the transfor-
mation parameters using REMCMC, a distribution of approximate symmetry
transformations was acquired.

The algorithm is an interesting application of symmetry finding on realistic data
by sampling the transformation parameters. While the MCMC chains of our
implementation did not reach convergence according to the Gelman-Rubin tests,
half the parameters are converged, with one more approaching convergence. The
paper did implement a few limitations of the search space by inspection, which
is likely to affect the chain convergence positively. Such limitations are also
expected to improve the ODR regression step.

The resulting graphs in figure 8 show that the sampling parameter a21, the
second component of the linear translation is heavily constrained. This is the
expected result as the autoencoder would learn the constant velocity motion
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and should reject any transformations increasing the velocity. One limitation
of the algorithm is that it requires a large number of observations to learn the
manifold description of data. As such, it may prevent application in several
fields where data is scarce.

In our implementation, we only applied the algorithm to a simple case, but the
approach is possible to use on more advanced problems, as shown in the original
paper [50]. A similar method was also used in AI Poincaré [53] called walk-pull,
using the learned dynamics, MCMC sampling and principal component analysis
to look for symmetries. There are several papers suggesting different methods
for inspecting the symmetries in data [3][54][55][50][56], primarily using neural
networks.

A notable non-neural approach is checking if data is symmetric under transfor-
mations of the Lie group (GL, XL), where GL are the set of symmetry trans-
formations and × is the group operator. Data with inherent symmetry are
invariant to transformation - reverse transformation [57]. If Γϵ is a symmetry
transformation of the data, parameterized by ϵ, then [57]:

(x, f(x)) → Γϵ(x, f(x)) = (x′, f ′(x′)), (57)

where the resultant new state has transformed parameters x′ mapped to the
transformed output f ′(x′). This can be transformed back into the original state
with the inverse transform [57]:

Γ−ϵ(x
′, f ′(x′)) = Γ−ϵ × Γϵ(x, f(x)) = (x, f(x)), (58)

where Γ−ϵ denotes the inverse transformation. To use this property in practice,
one would transform the input data according to some symmetry transforma-
tion, generating (x′, f ′(x′)), and fit it using a method of the user’s choice [57].
The function and data are then inversely transformed back to (x, f(x)), and if
the function still approximates the data well, then the symmetry is inherent in
the data [57].

There seems to be no consensus on how symmetries should be identified in the
general case. Still, the principles above seem to be a pathway towards a general
symmetry-finding approach, primarily for continuous symmetries.
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4 Algorithmic hypothesis generation

A hypothesis generation algorithm is a machine learning algorithm which en-
compasses the full (or a vast) hypothesis space and has an efficient search mech-
anism to explore the potential solutions. As discussed in section 1.6, the search
strategy is the fundamental focus for such an algorithm due to the NFL the-
orem. The algorithm also needs to solve the challenge of human readability
to be classified as an acceptable generator. The subfield of generating human-
interpretable equations is typically called symbolic regression and is growing in
interest.

4.1 Symbolic regression

Symbolic regression is the machine learning framework for generating symbolic
expressions from data. Symbolic expressions have several advantages over nu-
merical models, most importantly interpretability [58]. To exemplify, a simple
symbolic regressor could be constructed as a program which accepts data, xi
and yi, and tests polynomial functions in ascending order:

yi = θ0,

yi = θ1xi + θ0,

...

The best function, according to some metric, would then be returned to the user
and used as a solution. This algorithm is likely inefficient for many cases and
incorporates an implicit search strategy in limiting the hypotheses to polynomi-
als and searching low-order polynomials first. Several more details need to be
specified before the regressor can be implemented, including the optimisation
process, multivariate search strategy, loss function and data structure.

As discussed in section 1.6, the NFL theorem requires the regressor to have an
intelligent strategy for generating hypotheses since the search space is vast. The
core function of symbolic regressors is the ability to intelligently select a solution
and present it in an easily understandable form. As such, the algorithm also
needs to include methods for evaluating properties such as complexity, if it is
an important consideration.

The full problem of symbolic regression is likely NP-hard [58], supporting the
problem’s perceived difficulty. One successfully applied symbolic regressor [3]
uses up to 19 operations and variables which gives a high branching factor for
each selection. However, the number of valid combinations is significantly lower
than the full search space [38].

The area is actively researched, and several approaches exist, including symme-
try/conservation law search using learned relations [59] [53], tree searches [60]
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Classical machine learning Neural networks (NN) Hybrid
Genetic algorithms Language models ML on NN

Monte Carlo tree search Sequence-to-sequence ML with NN support

Table 4: Rough characterization of symbolic regression methods with examples.

[38], transformers [2], genetic programming [61] as well as hybrid approaches
[3]. The general approaches can broadly be split up into three domains. See
table 4 for a summary.

Purely neural algorithms may provide a human interpretable sequence as an out-
put, given a set of data. However, it may be difficult to understand the cause for
selecting the model. This is primarily due to the ”black box” nature of neural
networks, making it hard to examine and explain the process [62]. In classical
machine learning, a lack of understanding of causality or interpretability is usu-
ally of little concern due to the more explicit nature of their process. For hybrid
approaches, the interpretability of the process depends on the implementation.
See table 5 for examples of common algorithms.

Paper/Algorithm Method Note Ref.
AI Feynman Hybrid Subproblems [3]

AI Feynman 2.0 Hybrid Subproblems [63]
SymPhysLearn MCTS [60]
Exhaustive SR Exhaustive search [38]
SymbolicGPT Transformer [2]

PySR Genetic alg. Directed evo. [64]
Nested MCTS MCTS [1] [65]

Table 5: Hypothesis generation for a selection of algorithms for symbolic regres-
sion.

In symbolic regression, deep learning is used to perform various tasks in the
process, such as interpolation [3] and symmetry finding [59] [50]. They can also
be used for end-to-end regression by using language models [66] or as represen-
tations for objects to provide non-symbolic answers.

4.1.1 Benchmarks

Symbolic regressors use several benchmarks to evaluate their performance. Some
are specific to the tested algorithm/paper, but two often cited benchmarks are
the Nguyen equations [67] as well as the Feynman benchmark [68] from the AI
Feynman paper [3]. Both contain univariate and multivariate equations which
are used to create reference data to perform symbolic regression on. The Nguyen
equations have specified bounds on the amount of data, while the Feynman
paper used a growing data set.
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4.2 Bracket-free notation

A symbolic regressor outputs an equation as the solution to the problem. An
equation may also be used as an intermediate state in the algorithm. In both
cases, the notation must be unambiguous for the output to be meaningful.
Typical equations, written in a human-readable form, can end up in ambiguous
states without brackets. For example:

x/2− x. (59)

Without brackets, it is not obvious whether the equation is −x/2 or x/(2−x), as
is evident by several similar trending posts on social media. One solution to this
is to use prefix or postfix notations, commonly referred to as Polish Notation
and Reverse Polish Notation [69], where the operator is placed before or after
the operands. In late operator prefix [69]:

x+ y ≡ +xy and x+ x/y ≡ +x/xy. (60)

Reading it from left to right, first, the + requires two operands, the first being
x and the second y. The second equation starts with an operator + with x as
one operand and / as the second. Since / is an operator, it looks to the next
two operands, with x as the numerator and y as the denominator. The tree can
also be written in early operator postfix notation [69]:

x+ y ≡ xy+ and x+ x/y ≡ xxy/+. (61)

The postfix notation is easier to read backwards. The first equation starts with
+, giving the implicit state + where the is undetermined, requiring two
operands to close the expression. By convention, the second operand (reading
backwards) is y, and the first is x. This forms the complete expression x+ y.

For the second equation, the initial step is the same. The + operator once
again requires two operands, but the second operand after + is an operator,
/. This operator forms a subexpression and we look for two operands for the
implicit state / . The first following operand becomes the second operand in
the expression. y comes first followed by x, forming x/y. This subexpression is
now evaluated and can be entered as an operand into the first giving + x/y.
Repeating the process for the final x, one arrives at x + x/y. In both cases,
knowledge of the number of operands per operator (two in this case) allows for
unambiguous reading of the equation. [69] The need for this is clear when using
operators with one operand:

ex + x ≡ x expx+ .
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In this case, one needs to know that exp only requires one operand since assum-
ing two operands will yield a nonsensical state. This extends to any operation
and number of operands, such as an integral, which requires four operands:
lower limit, upper limit, expression and integration variable. Like in the case
of non-commuting operators (i.e. -, /, int), the order of operands is fixed and
determines the function of the operands.

4.3 Composite loss metrics

As outlined in section 1.6, any machine learning algorithm requires a metric to
rank the solutions coherently. In the symmetry searching algorithm, the MSE
was used to quantify the manifold-preserving qualities of the transformation
parameters. While the MSE captures the deviation from the target, it does not
quantify any loss based on complexity. To extend the loss function to include
secondary factors, one can introduce a regularisation term, penalising unwanted
attributes of a solution.

Of the many choices which exist, we decided to focus on the Bayesian Infor-
mation Criteria (BIC) and MDL metrics due to their ability to balance the
complexity of a solution with accuracy. While the MDL has been covered ear-
lier, the BIC is an interesting candidate loss function, sharing a close connection
to the posterior probability. Fundamentally, the BIC is a combined loss met-
ric based on the log-likelihood combined with a parameter-based regularisation,
generated from Bayesian modelling considerations [70]:

BIC = k lnn− 2 lnL(D|θ), (62)

where k is the number of parameters in the model, n is the number of obser-
vations in D and L is the likelihood function. The BIC comes from the max-
imisation of relative Kullback-Leibler (KL) information/divergence between the
model evidence distribution p(X|H) relative to the underlying data evidence
[70]. The evidence is:

p(D|H) =

∫
p(D|H,θ)p(θ)dθ, (63)

where p(D|H,θ) is the likelihood and p(θ) is the model prior on the parameters,
see section 2.1. The evidence is the normalising constant in Bayes theorem, see
section 2.1. This means that the most favourable model should predict a data
distribution as similar to the underlying data distribution as possible.

Following the process of Stoica et al. [70], this is done by maximising the
model evidence averaged across the true distribution as

∫
pR(D) log p(D|H)dD,

where R denotes the real data distribution, p(D|H) denotes model evidence
distribution and D is the data [70]. In order to get the evidence of the data, the
likelihood and prior of the model need to be integrated. Under a few constraints,
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the likelihood can be expanded around the maximum likelihood parameters as
θ̂ [70]:

p(D|H,θ) ≈ p(D|H, θ̂)e− 1
2 (θ̂−θ)T Ĵ(θ̂−θ). (64)

Where Ĵ is the Fisher information matrix [70]:

Ĵ = −∂
2 log p(D|H,θ)

∂θ∂θT

∣∣∣∣
θ=θ̂

, (65)

evaluated at the maximum likelihood parameters θ = θ̂. This expansion allows
for the marginalisation over θ to calculate the evidence for a given model in
equation 63. Having solved the model evidence, the true data evidence needs to
be assessed to maximise KL information. This evidence is, however, unavailable,
but the KL information can be estimated using log p(D|H) as an approximation
[70].

The approximation yields equation 62 with two additional terms proportional
O(k) and O(1), corresponding to an integration constant and the prior [70]. In
the asymptotic n → ∞ limit, both contributions will become insignificant [70],
and the BIC reduces to equation 62. The BIC is closely related to the maximum
a posteriori solution and should predict the same solution in large n [70].

4.4 Monte Carlo Tree Search

Beyond the basic structure of how to write and rank the equations, an algorithm
needs a method to search the equation space. One approach to this is the
Monte Carlo Tree Search (MCTS), a method for finding optimal or near-optimal
solutions to problems [71]. The method relies on the UCT metric for searching
the tree [72]:

UCT = Q+

√
2 log n

N
. (66)

Where Q is the score of the explored node normalised to [0, 1], typically the
mean of the children node scores, and N,n are the number of visits to the
(potential) child node and parent node, respectively. The

√
2 can be rescaled

to rebalance exploration and depth but will be fixed for the applications in the
thesis. The method relies on building a tree of states and progresses through
node selection, expansion, rollout and finally backpropagation [72].

The node selection traverses the tree using the UCT metric, selecting the top-
scoring node in each case. Upon finding a node with unexplored options, one
option is selected at random, and the tree expands with one new node. From
the expanded node, a rollout is performed, a random sequence of actions until
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a final state is reached. The result of that playout is backpropagated through
the tree, updating the Q,n and N for each node until the first root node, see
figure 10.

Figure 10: Visualization of the general MCTS process based on [72], with a
branching factor of 3. Changes marked in red, si denotes initial state. 1 -
Selects si3 since an unexplored node is available from si. 2 - Creates new node
si3 of selected state and expands tree. 3 - Simulates succesive random states:
si3 → si32 → si322 → ..., until end state. 4 - Results of simulation updates si3
and then si and process restarts.

Extensions of the basic MCTS include Option Monte Carlo Tree Search (O-
MCTS), in which the tree search uses options that expand the tree according to
a rule [72]. If efficient rules for exploration can be specified, then the addition
of options should avoid unnecessary searches and states. MCTS has previously
been investigated for symbolic regression in the base form and in the form of
nested search [1] [65].

4.5 Active learning

Active learning is a technique and concept used in machine learning in which the
most informative data points are specifically selected or generated and used for
training [73]. The technique is useful in cases where information is expensive or
limited. The application is problem-specific and requires the selection of several
properties [74], including a sampling and query strategy.

Depending on the context, the request might be for new data or the correct la-
bels for already available samples. The query strategy determines the selection
strategy for requests and determines which data property is important. Previ-
ous strategies for labelling tasks include query by committee, expected model
change, and Fisher information ratio [74]. The method can, at its core, be
summarised as an optimisation problem:
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xnew = argmax
x

f(x|M,xold), (67)

where the system attempts to find a new parameter selection x based on avail-
able data xold. The query is performed based on some function f on the prop-
erties M of the system that offers a maximal benefit. The quantity offers large
creative freedom to the user and can be, for instance, entropy or variance. Active
learning has received significant attention in research, having explored options
such as recommendation systems and deep learning [73].

4.6 Hypothesis generator

The above concepts can together be used to form a symbolic regressor. Starting
with the hypothesis generator it uses an MCTS-inspired approach, differing in
three senses from the original MCTS algorithm. First, growth is performed using
a select subset of nodes, aiming to close the tree quickly. Second, the algorithm
grows until an end state and is evaluated immediately without a rollout step.
Third, the structure blocks further exploration of invalid subtrees.

The process starts at the root node, the system control node. First, the algo-
rithm searches the space for expandable nodes using get_propagation_node.
Upon reaching a proper node, the tree expands at that node until it forms a com-
plete equation. The method get_options assigns which operators or operands
are available and used. To promote parsimony and prevent runaway expressions,
the method tries to close the expression as fast as possible using the variable
open_slots as a guide, see explanation below. When an equation is formed,
it is evaluated, and results are propagated up along the tree. The tree is con-
structed using postfix notation, the proper syntax is enforced in get_options.
The general process can be seen in figure 11 with pseudocode in algorithms 1 -
4.
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Figure 11: One step of the evolution process using variable set {X,Y } and
operation set {+,−}. The selected node is marked with a black ring, complete
equations in green and incomplete equations in yellow. After step 5, the process
can be continued from 1 by including the transparent nodes.

Algorithm 1 Evolve

Require: X = X data, Y = f(∗X) = Y data and interface.
Require: Sym = set of allowed operators.
Require: N0 = instance of MCTS control node.

if Node has no options then
Node = Get propagation node (Node)

end if
Options = Get options(Node)
Grow(N, Options)
while Open slots > 0 do

Options = Get options(N, Sym)
Grow(Node, Options)

end while
Score, Params = Evaluate (Node, X, Y)
Backpropagate (Node, Score)
Update solutions (N0, Node)

We formulate and use the open slots variable to ensure that only syntactically
valid equations can form in the postfix notation. Any binary operator requires
two operands to close the expression. Similarly, using two binary operators
requires two operands for the first and two for the second. However, one of the
operators will form a subexpression, which can be used in the other operator,
allowing for a syntactically valid expression with Nop+1 operands. This is best
visualized as a tree structure with operators as branches and operands as leaves.
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This corresponds to parsing the string from left to right, adding one required op-
erator for each operand passed. From this point of view, this measure can guide
the selection of syntactically valid equations without a complete expression. It
generalizes to operators with an arbitrary number of operands by changing the
”cost” of an operator, and a complete equation is formed every time open slots

is zero. For the measure, each operand provides +1 while each operator costs
−(Nop − 1), where Nop is the number of operands the operator requires.

This is because each operator looks backwards to find items to operate on. If
there is an insufficient number of objects to operate on, it will not evaluate,
meaning some leaves in the tree are unassigned. Likewise, if the measure is
positive, there are unassigned operands which can not fit into the tree.

For example, the equation xy+, analyzed from left to right, first has open slots

= 0, since x is a complete equation. Parsing to y gives +1, a state with dangling
variables. Finally, + gives −1, bringing the total to zero, and x+y is a complete
equation.

4.6.1 Propagation and growth

The tree is propagated using the UCT algorithm, picking the highest-ranking
node each time a new one is selected. When propagation is done, an option is
selected, see algorithm 2, and a new node is created as a child of the explored
node.

Algorithm 2 Get propagation node

Require: node
Candidates = []
for Node in Children do

if Node != Exhausted then
Candidates.Append(Node.UCT)

end if
end for
return Candidates[Index(Max(UCT))]

4.6.2 Options

Option selection can be performed using any metric but is at baseline performed
by random choice. The provided set of operands and operations are flexible in
that they can use any structure that fits the open slot value. For instance,
when zero slots are open, a variable or unitary operator needs to be introduced
to maintain a syntactically valid state. However, any closed algebraic structure
(x+ y, ex, x2 + x/y − ex−y

2

, etc.) can substitute for operands.

To quickly evaluate the direction in the tree, the option selection attempts to
close the equation immediately by following the rules seen in the Get options,
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algorithm 3. Each node keeps track of visited options which are removed from
the selection sets.

Algorithm 3 Get options

Require: Node
if Open slots = 0 then

Option = Random.Choice({Operands}+ {Unary operations})
end if
if Open slots = 1 then

Option = Random.Choice({Binary operations})
end if
return Option

4.6.3 Scoring and evaluation

When the algorithm finds an expression which can be evaluated, the code will
convert the postfix string to infix and then translate it into an equation using the
Sympy [75] parse_expr function. The function is then wrapped in a likelihood
function wrapper assuming a Gaussian likelihood. If the equation contains free
parameters, the code optimises the parameters using the Scipy [76] function
optimise. minimise . The initial parameter guess is ones(N_{Param}). If

the optimiser fails, it retries with uniform(0,1,N_{Param}). The log-likelihood
is estimated using the model:

yi = f(xi) + ϵi, (68)

where yi is the measured value, f(xi) is the trial function at point i and ϵi is
an assumed Gaussian error with a fixed mean and standard deviation of µ = 0
and σ set by the user. The effective log-likelihood calculation becomes:

logL(f, σ) =
n∑
i=1

(yi − f(xi))
2

2σ2
, (69)

where n is the number of data points. The scoring of the equation is done using
BIC or MDL. Both the BIC and MDL use a regularisation along with the log-
likelihood, thus penalising certain structures in the solution. For all solutions,
the normalisation in the likelihood is dropped since it is a constant and does
not affect the exploration. The MDL score is based on the above likelihood:

MDL = − log(L(f, σ)) + Ld(f) + nparam · 32 log2 e, (70)

where L is the likelihood, Ld(f) is the description length of the equation and
nparam is the number of parameters in the equation. The description length
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is calculated as Ld(f) = d logLopset based on the number of operators and
variables, Lopset, in the lexicon, and d is the length in number of components.
The contribution from parameters is based on the size of 32-bit floats converted
to loge basis. The BIC is calculated as defined in section 4.3.

For the full background of the description length see section 2.4.1 and section
4.7 for the lexicon of operators and operands. To transfer the score to an UCT-
compatible score, an order preserving normalisation is performed:

SUCT =
1

1 + SMetric
, (71)

where SMetric is the score in BIC or MDL, inspired by [60]. Backpropagation is
performed after each full equation where the Q score of each node is the mean of
all backpropagations through the node. The total UCT is calculated according
to equation 66.

Algorithm 4 Evaluate

Require: Terminal node
Eqn = Parse expression (Node)
Log likelihood = -Log(Sum((Eqn(X data, Parameters) - Y data)2)/σ2)

if Equation has parameters then
p 0 = Ones(NParams)
ML param = Minimize(Log likelihood, p 0)
if optimise fails then

p 1 = Random(0,1,NParam)
ML param = Minimize(Log likelihood, p 1)

end if
end if

Max likelihood = Log likelihood(ML param)
if Metric = ”BIC” then

BIC = 2 · Max likelihood + NParam· Log(NData)
return BIC, ML Parameters
end if

if Metric = ”MDL” then
MDL = Max likelihood + Ld(Eqn) + NParam· Log(Precision(Params))

return MDL, ML Parameters
end if

4.6.4 Data updating

Any data set may be limited in its power to explain a phenomenon. Upon man-
ual request, the algorithm can request new data points from the target equation,
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estimated by the point of maximum variance between the top solutions:

xnew = argmax
x

:

Nsol∑
n=1

fn(x)
2

Nsol
− 1

Nsol

Nsol∑
n=1

fn(x), (72)

where fn is the n:th top solution and Nsol is the number of solutions considered
while finding a new point. The variance is optimised using Scipy’s minimize
function and new calculated boundaries. After a new datapoint is received, all
the basis solutions are reevaluated, and the chain is updated. The new limits
on data are set using the bounds of available data as the width:

Wi = max(xi)−min(xi), (73)

whereWi is the domain width in dimension i and xi are the samples in dimension
i. The width is then used to extend the allowable domain as:

xi newMax = max(xi) +
Wi

2
· ui, (74)

where xi and Wi are the i:th dimension of x and W while ui is a draw of a
uniform random variable U(0, 1) to avoid inter-variable correlations in the new
data. The lower boundary is updated in a similar manner.

4.6.5 Hamiltonian module

The algorithm also includes a Hamiltonian module which can be used to search
for potentials which fit the data. The expansion and search of the tree is per-
formed as normal, but the output equation is used to produce the Hamiltonian
system:

dp

dt
= −∂H

∂x
,
dx

dt
=
∂H
∂p

, (75)

where x is canonical position and p is canonical momenta, refer to section 3.3
for details. The module assumes cartesian coordinates and a time-independent
Hamiltonian, allowing for the simplified search:

dp

dt
= −∂V (x)

∂x
,
dx

dt
=

p

m
. (76)

Where V (x) is a position-dependent potential and m is the mass of the observed
particle. The trial solution is differentiated using Sympy and then solved for
given initial conditions and time points using Scipy odeint. Equations contain-
ing parameters are optimised using the same strategy as above. The sum of
squares is calculated in position space and used to calculate scores according to
the metric of choice.
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4.7 Benchmarking

The code was benchmarked using the Nguyen and Feynman symbolic regression
benchmarks. The full equation sets used can be found in Appendix B. For all
equations, the available set of constants and functions were:

Constants: [1, 2, 3, e, π, Par1/a],

Operations: [+,−,×, /, log, exp,pow, sqrt, sin, cos].

The full output of all runs is consolidated in Appendix C. A summary of the
results follows below. optimiser settings for all runs were: method = "Powell",
maxiter = 100 and xtol = 1E-3. All computations were performed on a 13”
2020 MacBook Pro with 8GB of RAM and a 1.4GHz Intel i5 quad-core processor.

4.7.1 Nguyen equations

For the Nguyen benchmark [67], there seems to be little difference in the correct
predictive power of BIC or MDL in the noiseless case. MDL consistently pro-
duces smaller expressions than BIC. See figure 12 and table 6 for an example of
convergence over the number of iterations and consolidated predictions.

Nguyen equation search

Ref. eq. BIC Correct % MDL Correct %
x3 + x2 + x 0 0

x4 + x3 + x2 + x 0 0
x5 + x4 + x3 + x2 + x 0 0

x6 + x5 + x4 + x3 + x2 + x 0 0
sinx2 ∗ cosx− 1 0 0
sinx+ sin(x+ x2) 0 0

log(x+ 1) log(x2 + 1) 0 0√
x 100 40

sinx+ sin y2 0 0
2 ∗ sinx ∗ cos y 0 0

Table 6: Correct predictions of the Nguyen equations on 5 runs across each
equation with a search time of 50s. Noiseless data, σ = 1.0.

Several equations approach unity in UCT score for the noiseless evaluation of
the Nguyen equations, see figure 12. In the case of MDL, the maximum score is
capped by the use of the complexity term, meaning that a correct inference at
best reaches 1/(1 + l(fj)), where l(f) is the length of f in number of elements.

The algorithm fails to find the correct solution for all equations except for
number eight, see table 12. Equation nine does approach the correct solution
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Figure 12: Mean UCT score for top solutions of 5 runs of 50s with BIC as a
function of explored equations.

in several cases but does not find it. For both the MDL and BIC, the number
of evaluated solutions is typically on the order of 104 for a runtime of 50s, with
a slight slowdown as a higher number of evaluations are performed. Noisy data
does not seem to affect the outcome to a large degree, see table 7.

Nguyen equation search with noisy data

Ref. eq. BIC Correct % MDL Correct %
x3 + x2 + x 0 0

x4 + x3 + x2 + x 0 0
x5 + x4 + x3 + x2 + x 0 0

x6 + x5 + x4 + x3 + x2 + x 0 0
sinx2 ∗ cosx− 1 0 0
sinx+ sin(x+ x2) 0 0

log(x+ 1) log(x2 + 1) 0 0√
x 60 100

sinx+ sin y2 0 0
2 ∗ sinx ∗ cos y 0 0

Table 7: Correct predictions of the Nguyen equations on 5 runs across each
equation with noise, for a search time of 50s. Noise: N(0, 0.1), σ = 0.1.
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Both for MDL and BIC the predicted equations do have forms approximating
the correct solutions. For the polynomials, many of the solutions have Taylor
expansions similar to the correct solution, for example, xex ≈ x+ x2 + x3/2 +
x4/6 +O(x5).

When using the active learning module, the top ten solutions are used to select
the new point. After running for half the duration, the algorithm resamples
the spaces and updates the solution space. The resampled solutions seem to
perform similarly to the standard approach, where some problems improve and
some decrease in final UCT score, see figure 13 and table 8.

Nguyen equation search with resampling

Ref. eq. BIC Correct % MDL Correct %
x3 + x2 + x 0 0

x4 + x3 + x2 + x 0 0
x5 + x4 + x3 + x2 + x 0 0

x6 + x5 + x4 + x3 + x2 + x 0 0
sinx2 ∗ cosx− 1 0 0
sinx+ sin(x+ x2) 0 0

log(x+ 1) log(x2 + 1) 0 0√
x 100 100

sinx+ sin y2 0 0
2 ∗ sinx ∗ cos y 0 0

Table 8: Correct predictions of the Nguyen equations on 5 runs across each
equation using resampling after 25s for a total search of 50s. Noiseless data,
σ = 1.0.

Some solutions seem to converge faster than in the non-resampled case. See,
for instance, Nguyen equation 7. The resampling does generate problematic
solutions in the multivariate case with negative UCT scores as can be seen in
figure 13.

53



Figure 13: Mean UCT of top solutions for 5 runs of 50s using BIC with resam-
pling after 25s.

4.7.2 Feynman equations

For the Feynman equations [68], the regressor finds few of the solutions. In
some cases, it finds the correct solution but uses an unnecessary parameter
that typically defaults to 1 or 0. The MDL and BIC metrics seem to perform
similarly with a slight advantage to MDL, see table 9 - 10.

In figure 14, several equations approach unity, showing that the suggested equa-
tions agree well with the data, even if it does not match the reference equation.
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Feynman equation search

Eq. BIC % MDL %
√
2e−

θ2

2

2
√
π

0 0
√
2e

− θ2

2σ2

2
√
πσ

0 0

√
2e

− (θ−θ1)2

2σ2

2
√
πσ

0 0√
(−x1 + x2)

2
+ (−y1 + y2)

2
0 0

Gm1m2

(−x1+x2)
2+(−y1+y2)2+(−z1+z2)2

0 0
m0√
1− v2

c2

0 0

x1y1 + x2y2 + x3y3 0 0
Nnµ 60 100

m(u2+v2+w2)
2 0 0

q1q2
4πϵr2 0 0

Table 9: Percentage correct predictions for Feynman equations 1-10, noiseless
data with σ = 1.0.

Figure 14: Mean UCT score for top solutions of 5 runs of 50s with BIC as a
function of explored equations.
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Feynman equation search with noisy data

Eq. BIC % MDL %
√
2e−

θ2

2

2
√
π

0 0
√
2e

− θ2

2σ2

2
√
πσ

0 0

√
2e

− (θ−θ1)2

2σ2

2
√
πσ

0 0√
(−x1 + x2)

2
+ (−y1 + y2)

2
0 0

Gm1m2

(−x1+x2)
2+(−y1+y2)2+(−z1+z2)2

0 0
m0√
1− v2

c2

0 0

x1y1 + x2y2 + x3y3 0 0
Nnµ 40 60

m(u2+v2+w2)
2 0 0

q1q2
4πϵr2 0 0

Table 10: Percentage correct predictions for Feynman equations 1-10, data with
noise:N(0, 0.1) and σ = 0.1.

4.7.3 Hamiltonian module

The Hamiltonian solver was tested using four simple potentials for five runs
of 100s, evaluated at 100 positions equally spaced in time t ∈ [0, 2]. The ODE
solver used a relative tolerance of rtol = 1E−4 with a maximum number of iter-
ations mxstep = 200. Mass was fixed at m = 1.9kg with optimiser settings the
same as above. Initial conditions were independently randomized as U(0.5, 2.0)
for both position and velocity.

A typical run of solutions compared to the reference can be seen in figure 15.
The algorithm consistently found the correct potential in roughly half the cases,
see table 11. MDL seems to outperform BIC in this application slightly. In
the case of 8x, the BIC gets a numerically acceptable solution but suggests
additional constants or factors such as ax/m or ax+m. Both formulations give
the same trajectory for constant m, but the additional term is not considered
an acceptable solution.

The number of evaluations is roughly two orders of magnitude smaller than the
normal operation, see figure 16.
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Potential search using Hamiltonian module

Potential BIC % MDL %
x2 40 100
5x2 0 0
8x 01) 80
1
x2 0 0

Table 11: Percentage correct predictions for select potentials using the Hamil-
tonian module, σ = 1.0. 1) Reaches 80 % success but contains unnecessary
components, for instance, squared parameters and added constants.

Figure 15: A typical run of the algorithm using the Hamiltonian module on a
reference potential 5x2
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Figure 16: Mean UCT of top solutions for 100s search using BIC scoring metric
and no noise. Dip in score for x2 related to numerical issues in solver.

4.8 Discussion

The algorithm was inspired by the directed structural approach of MCTS. It
can be seen as a variation on the O-MCTS approach using only options, with
no rollout. The approach seems competitive compared to traditional MCTS for
symbolic regression. Using the values from [1], the UCT score reaches similar
levels for one to two orders of magnitude fewer iterations on Nguyen equation
7 while using the BIC. See figure 12. Note that this assumes that the error in
the paper is the sum of squares, which is reasonable given the application and
description in the paper. The MDL results are not fit for direct comparison.

Compared to the two other algorithms in the same paper, EJC and nested
search, the performance of our algorithm seems roughly similar on Nguyen 7
regarding UCT score [1]. To compare the algorithms properly, the loss metric
used in the paper needs to be confirmed.

Our algorithm generally struggles to find the correct expression for most prob-
lems, except for the short expressions. The algorithm’s success in Nguyen equa-
tion eight is likely due to the structure of the search. The tree must explore x

to progress at all. Given that x traces
√
x fairly well for low x, the node will

likely be selected for deeper exploration, leading directly to x sqrt.

The resampling strategy did not seem to affect the UCT scores significantly but
gave a slight improvement in correct predictions for Nguyen 8. See figure 13
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and table 8. The multivariate equations showed negative scores after resam-
pling, likely caused by a data structure mismatch. The UCT scores should be
monotonically increasing over time, as is the case for the univariate equations.

In Hamiltonian operation, some potentials with some initial conditions seem to
diverge. This is most likely related to the ODE solver, which, under certain
conditions, returns invalid values, resulting in the dip in figure 16. In both the
Hamiltonian and the resampling case, the issues are most likely related to the
specific implementation and not related to the method.

4.8.1 Algorithm structure

The option selection used in the algorithm is performed since most strings, even
those made from the selection above, are not valid equations. For example, an
expression can be written with general operators and variables corresponding
to branches and leaves in a binary tree. The tree will require that the number
of variables for binary operators be:

Nvar = NOp + 1. (77)

In practice, the traditional MCTS relies upon random rollout, meaning a prob-
ability of selecting a variable or operator for each step. Thus, the valid permu-
tations, with regards to the balance of each type for a given length of string,
become a binomial distribution p = 0.5 with k = (Ntot + 1)/2. The probability
of selecting the correct number of variables and operators, giving no preference
to order, is less than 30% for a depth of 10, see figure 17.

If the probability is skewed by using an unbalanced number of variables and
operators, the probability of finding the correct number generally decreases for
long expressions. An even smaller subspace is valid if one also considers the
order of operands and operators. Thus, a random search is unlikely to generate
valid expressions, and a significant time can be spent searching syntactically
invalid space.
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Figure 17: Probility of selecting the correct amount of variables given the prob-
ability of selecting a variable (p). The minimum number is limited to 3 for
clarity.

The postfix approach combined with the tree structure offers a benefit in the
search space: invalid subtree search limitation. Unlike the prefix notation, where
equations grow inside out, postfix uses a wrapping approach:

Prefix: f( , ) → f(g( , ), ) → f(g(x, ), ) → f(g(x, y), ) → f(g(x, y), z).

Postfix: x→ x, y → g(x, y) → g(x, y) → g(x, y), z → f(g(x, y), z).

If g(x, y) is evaluated and found to be unfit, for instance, if g = / and y = 0,
then no expression containing g(x, y) can be a valid solution. Thus, the tree
[x, y, g] can be marked as exhausted, and no children of that tree need to be
explored, greatly limiting the search space.

The implemented MCTS in the algorithm performs poorly on both the Nguyen
and Feynman benchmarks and rarely finds the correct solution. For some equa-
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tions, this is a result of the search structure which limits a significant portion
of the search space. By concurrent selection of nodes in a way which closes the
equation, the max limit on the open complexity is one. This leads to issues
for certain of the Nguyen equations. In some cases, it constrains the possible
allowable searches, for instance for equation one:

x3 + x2 + x = x3^x2^+x+ = x1+x*x*x+.

The first postfix example has an open complexity string of (0, 1, 0, 1, 2, 1, 0, 1, 0)
while the second has (0, 1, 0, 1, 0, 1, 0, 1, 0). Thus the first is rejected by the
option provider meaning only certain paths can be evaluated. In other cases,
for instance for equation six, the correct solution can’t be reached (at least not
through a straightforward path):

sin(x) + sin(x+ x2) = xsin x2^x+sin +.

The explanation is that the ”inside” expression of the second sinus term requires
an open complexity of two to form since the complexity string is (0, 0, 1, 2, 1,
2, 1, 1, 0).

The MDL application penalizes long expressions by adding to the score for each
component in the equation. For any expression length longer than zero the
UCT score can not reach unity anymore, even if the error is zero. For long
expressions, the exploration term in UCT will become dominant even if the
data is sufficiently informative. In retrospect, the MDL might constitute a valid
scoring option but not without modifications to the original algorithm.
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5 Discussion

The thesis aimed to investigate how hypotheses are formed using the bottom-up
approach to identify potential inductive biases. The analysis focused on three
main concepts: Symmetry, entropy and MDL. Two codes were produced to
investigate how these approaches can be implemented: one implementing the
process in [50] for symmetry finding and one MCTS-inspired code for general
symbolic regression. In the exploration and implementation, several interesting
questions of a general nature arose and will be discussed below briefly.

5.1 Complexity of a Hamiltonian system

In the MDL framework, the model is evaluated on the size of the compressed
representation of the data. For any typical equation, the system is of the form:

f(x) = y. (78)

As such, the output y is defined in terms of the input and the function. Dis-
regarding deviations from the model, the full complexity of the system is then
given by the complexity of the model plus the complexity of the input data:

Ce(D) = Ce(f) + Ce(x). (79)

Where Ce is the effective complexity of the description, D is the combined data x
and y. Normally, the complexity of the input x is not included when comparing
models since it has an equal contribution in the different models. However, it
should be recognized in the most general case.

The simplest representation of the data, corresponding to a prior estimate of
the complexity, is the cost of simply storing the data set as-is. In other words,
each data point is encoded using a small set of data corresponding to the values,
which is then repeated independently for all points in the data set. This storage
option represents the position of randomness, that there is no regularity to be
compressed.

For a Hamiltonian-type system, the data to be compressed consists of the po-
sitions q and the momenta p given at time t. If one were to ”naively” store
the phase space data, it would require 2 × nsample × ndim × d, where nsample
is the number of samples and ndim is the dimensionality of the position space.
d is the complexity of each data point in bits. For simplicity in the analysis,
assume double precision (64 bits). Thus, we can conclude that the information
theoretical cost at each point in time is roughly 128 bits per sample and dimen-
sion, corresponding to 16 bytes. The time data also needs to be stored, but it
is shared by both models.
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In a Hamiltonian system, the trajectory can be fully described in terms of the
initial conditions, time points and the potential. As such, the base description
length can be estimated as follows:

Ce(D) = Ce(t) + Ce(V ) + Ce(x0) + Ce(P (...)) (80)

Where x0 are the initial conditions, V is the potential and t is the time points.
There also exists an overhead complexity related to the program, which calcu-
lates the trajectory from the parameters, here denoted Ce(P (...)).

In practice, the initial condition complexity becomes the description length of a
single data point, multiplied by the number of dimensions times two (since initial
momentum is also needed). The complexity of the potential is more difficult to
describe since the way the potential is encoded affects the descriptive length.
For a rough complexity estimate in this framework, one needs a complexity
description of a code. The code should describe the potential, describe the
Hamiltonian, differentiate the potential and solve the ODE at the provided time
points. This creates a significant overhead since all the required components
must be included in the analysis.

The complexity of the parameters in a Hamiltonian program is trivial: 2×ndim×
d, corresponding to the initial conditions. If we again assume float64 numbers,
the corresponding size will be 16 bytes per dimension. A direct measurement of
the model is unfeasible. A rough upper limit estimate can be calculated using
the size of symbolic regressor code from chapter 4.6 and its dependencies used,
which amount to a few gigabytes, or on the order of 109 bytes. Since most of
the code in the dependencies is unused, this is a clear overestimate.

Comparing the model size of the program with the initial condition size shows
we can immediately disregard the initial condition complexity. Compared to
the storage of data this is significantly larger and we would have to naively
store on the order of 108 samples in order before the Hamiltonian model would
constitute compression.

While the number seems vast it should be considered that this comparison is
unfair since most of the overhead is valid for any Hamiltonian system. In other
words, if the cost of this computational complexity is viewed in isolation, it fails
to consider the large gain one might have compressing all available trajectories.
Thus in a similar fashion to the meta-complexity briefly discussed in the intro-
duction, if a code can compress a practically infinite number of solutions, then
it may not be valid to view in isolation.

Arguably, if all trajectories are interesting (but not sampled), it would be accu-
rate to assign the cost of this overhead as an average cost across all possibilities.
Given the vast size of this space, the average overhead cost would approach
zero. What would remain is the compressed representation in initial conditions
and the description of the potential.
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Constrained by this view, a simple encoding of the potential as a string would be
as a set of ASCII characters, all with the complexity of 8 bits. Assuming a typical
string with an equation is on the order of 101 symbols long, then compression
will start to be effective around 101 samples, a significant improvement.

The argument is an argument in the ideal MDL sense, where the compression is
explained in terms of a program that can be used to output the sought string. In
the practical MDL framework, the user is free to make practical approximations
for which we might disregard the overhead costs for this reason.

The reasoning also applies to general compression algorithms widely used on
the internet. If one downloads a compressed file and then an algorithm for
decompression, the total compressed representation of the data is thus the data
plus the algorithm. If one then downloads another set of data with the same
compression, is the complexity cost paid again or should the dataset be extended
into both downloads?

As such, we propose that the MDL framework may be overly restrictive in
the analysis of models. While the framework works well for models within the
class and shares overhead, it is not obvious if one can accurately evaluate a
method based on a subset of the data. Potentially, one needs to consider that
for a general theory, the interesting property is not the compression of a special
case but the ability to effectively compress all relevant cases. One should also
highlight that if the goal is to encapsulate all regularity in the model, then it is
likely that the model would become complex for complex systems.

5.2 The MDL paradox

The MDL attempts to formalize the view of complexity in terms of algorithmic
complexity, which it manages in the ideal case and to a lesser degree in the
crude case. However, it does not necessarily conform to the human view of
complexity. For instance, compare the equation:

f1(x) =
2

x
, (81)

with:

f2(x) = 2 + x. (82)

In the MDL application used in section 4.6 of the thesis, both are equally com-
plex if both operators are available in the operation space. The output space
of the first function could be argued to be more complicated than the second
due to the presence of the singularity. The second function has one non-zero
derivative, while the first has infinitely many and is discontinuous at x = 0.
As such, it is not clear that these two functions can be considered equal in the
sense of complexity.
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Imagine one has a data set with two hypotheses, both of which have high fitness
and similar complexity. One traces a short curve between all points and the
other moves almost erratically between the data points. For instance, compare
f(x) = cosx+m, where m is a free parameter to be optimized before use, with
g(x) = cos 10x in figure 18.

Figure 18: Example of two hypotheses with similar fitness and complexity but
different perceived complexity. m is set to zero in the figure, being the most
likely parameter value, but it is allowed to vary freely in the general case.

If the data is sampled such that the points align with the periodicity, then both
are valid solutions to the problem, perhaps even to arbitrary precision. The
first equation has a larger parameter space, suggesting it would be complicated
according to the BIC criterion. If one were to evaluate the function behaviour
on a ”human” basis, it would be hard to justify the extra movements between
the points.

From the perspective of MDL, there is little difference between the two options
as both offer comparable compression of the data. From a human perspective
(the author’s at least), the second function looks unintuitive, not because it
doesn’t fit the data, but because it has excessive movement in the output space.

When comparing in-class hypotheses, one may also run into the problem of
composite functions. For instance, arcsin is a composite function of exponents
yet acceptable as a single operator in many cases. One method to ameliorate the
difference is assigning different operators different complexities or using special
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complexity penalties, such as in [77] or [64]. The general approach to this issue
is an open problem.

Unlike the discussion in section 5.1, this is more likely related to the specific
practical MDL approach. In the ideal MDL, the representations would all be
minimal representations of each kind, meaning that the complexity of a com-
posite function may differ from the approximate measure. To exemplify, in our
symbolic regressor algorithm, the complexity of cos and sin is equal to that of
any other operator. Sin is implemented in many different ways in computers.
One implementation of sin, using the CORDIC algorithm, requires addition,
subtraction and bitwise operations [78]. Thus, sin is likely more complicated
than the addition operation. However, it is unclear if it is more complex than
division or multiplications.

5.3 Symmetries in equations

In practical terms, the inductive bias of symmetries comes from constraining a
function’s possible behaviour. For instance, if one knows a mirror symmetry of
f(x) = y around x = 0 one can immediately rule out all odd functions from the
hypothesis space. In a similar fashion, symmetries of continuous multivariate
functions are transformations of x such that the total change is zero:

∇f(x) · dxs = 0. (83)

Where f is some scalar function of x and dxs is an infinitesimal step in the
symmetry ”direction”. From this definition, it should be clear that a symmetry
can involve a subset of the parameter space, for instance, if one has the relation:

f(x) = f(x, y, z) =
1√

x2 + y2 + z2
, (84)

then a symmetry transformation can be realized as a 2D or 3D rotation, pro-
viding a significant reduction in potential allowable solutions to the problem of
finding f . In AI Feynman 2.0 [63], this is expressed through their definition of
generalized symmetry. If one can find a subset of parameters for which one may
form an independent subexpression [63]:

f(x1, x2, x3, ...) = g(h(x1, x2), x3, ...), (85)

where g is f expressed in terms of the sub-function h of x1, x2. From this it
should be clear that if h is invariant under some transformation h(x1, x2) =
h(x′1, x

′
2) then so is g(h(x′1, x

′
2), x3, ...). In the paper, their implementation is

expressed in terms of the gradients through the chain rule since
∇x1,x2f(x1, x2, x3, ...) ∝ ∇h(x1, x2), allowing for direct comparison between
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the normalized gradients [63]. Thus, knowledge of h would clearly be helpful in
evaluating the full equation f .

Symmetry also influences solutions in the parametric space. Given a model
with a parametric symmetry, the symmetry allows the model to map multiple
values of the parameters to the same value in output space. Using the Bayesian
framework, a simple constructed example would be a linear model:

M1 = kx, and M2 = |k|x. (86)

With the parameters on the space of the real numbers, one can effectively model
the second model using the first and an extreme prior in the negative k space.
Both models will yield the same likelihood for a given data set in the positive
output space. But all the prior probability in negative k will fold over to the
positive k domain. A more convincing example might be sin θx compared with
sin(x+ θ). While the behaviour is different in both functions, the periodicity of
the second allows the prior to be limited to [0, 2π].

5.4 Relationship between entropy, symmetry and MDL

Previously we have discussed the potential inductive biases independently, now
we will attempt to highlight the possible connections. The three concepts come
from different fields of science but all relate to different descriptions of structure.

Entropy is typically associated with thermodynamics and statistical mechanics,
being a measure of the multiplicity of states. In simple terms, the Boltzmann
entropy of a state is correlated to the number of ways to realize the specific
combination. According to Rosen et al. [79], a maximally disordered state
corresponds to one with the highest number of symmetries since entropy is
positively correlated with symmetry. Lin [80] posits that with Shannon/Gibbs
entropy, the maximum entropy is reached when all states are indistinguishable
from one another, meaning maximum symmetry. This belief is not shared by E.
Bormashenko [31], who argues that increased entropy is the lack of symmetry
using N-magnet systems as an example.

The discrepancy in the discussion is likely due to the difference in the mathe-
matical and individual perspectives on symmetry. In math, a symmetry is an
isomorphism that leaves the observed metric invariant. This definition of en-
tropy implies that Bormashenko’s proposed state already has several inherent
symmetries. To illustrate, imagine a two-particle system P s2 which can occupy
two different states s0, s1. If the metric is the number of particles in state s1,
then each state can be characterized in terms of their symmetry transforma-
tions. Given the metric M and transformations Si, the symmetries affect the
state as:

M(P ) =M(Si(P )). (87)
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Where M is the sum of all states s1. In the case of two indistinguishable par-
ticles, there is only the identity symmetry of the edge states (2 s0 or 2 s1)
since all permutations are identical. For the combined states, another allowed
symmetry is the exchange of particle states. Thus, the mixed state metric is
invariant under more transformations, which is conceptually equivalent to hav-
ing more acceptable permutations. Forcing a mirror symmetry, equivalent to an
identity transformation on the edge states, would break the exchange symmetry
and only allow an identity transformation on each state. The Gibbs/Shannon
entropy:

−(2
ln(1/4)

4
+

ln(1/2)

2
) > −2

ln(1/2)

2
. (88)

Thus, the enforced symmetric state has less entropy. This is more apparent for
any individual macrostate of N particles. The number of combinations of k s1
states is given by the binomial coefficient. Noting that each state is an isomor-
phism of another state, it becomes obvious that N over k is not only the number
of permutations, it’s also related to the number of symmetry transformations.
Enforcing the mirror symmetry on this system such that particle i:

Pi+N/2 = Pi. (89)

Where N is an even integer. Since half the states are determined by the sym-
metry, this is equivalent to picking N/2 over k/2. In all but the edge cases,

(
N
k

)
is larger than

(
N/2
k/2

)
since:

(
n/2

k/2

)
=

k/2∏
i=0

k − i

n− i

n/2−k/2∏
j=0

n− k − j

n− k/2− j

(n
k

)
. (90)

See details in Appendix A. All the factors are strictly smaller than one, unless
k = 0 for which both systems have the same multiplicity. Imposing the mirror
symmetry condition limits other less apparent symmetries. This can also be
conceptualized as the new system being smaller, thus requiring less complexity
to explain.

A similar argument relating entropy and symmetry has been put forward by
Shu-Kun Lin [80], who holds that symmetry is in correspondence with entropy
through:

S = − log σ = logws, (91)

where S is the Boltzmann entropy with Kb set to unity, σ is the inverse mul-
tiplicity of symmetry transformations and ws is the apparent number of the
symmetrical states. As discussed earlier in the section, this relationship is clear
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in the Boltzmann entropy, which is the limiting case of Gibbs or Shannon’s en-
tropy with p(xi) = p(xj)∀i, j, see section 2.3. The other entropies can assume
smaller values, meaning the system has a lower degree of apparent symmetry
and is also further from equilibrium [80]. It should be noted that Lin’s line of
reasoning only applies to closed systems but remains an interesting connection
between symmetry and information.

As mentioned in section 2.3, entropy is closely connected to the concept of
MDL. To summarize, the MDL is a method for model selection such that the
total representation is as small as possible. In contrast, the maximum entropy
approach can be described as finding a solution such that the data is maximally
informative through its connection to information. As shown by Li and Vitányi
[81], the maximum entropy approach can be considered a special case of the
MDL approach under certain conditions. They exemplify it using die casts,
which have a maximal MDL description [81]:

lmax = k log2 n+ log2

(
n

n1, n2, ..., nk

)
+O(log2 log2 n), (92)

where lmax is an upper limit on description length in bits, k is the number of
outcomes and n is the number of tries. By using Stirling’s approximation for the
multinomial, the equation can be simplified [81]. Expanding on their solution
process, the intermediate stage is:

k log2 n+ n log2 n− n log2 e−
k∑
i=1

(ni log2 ni − nilog2e)

= k log2 n+ n log2 n−
k∑
i=1

ni log2 ni,

(93)

where terms of orderO(log2 n), O(log2 ni) andO(log2 log2 n) have been dropped.
By multiplying each ni term by n/n and extracting the nominator outside the
sum, the first term can be combined with the sum:

lmax = k log2 n− n

k∑
i=1

ni
n

log2
ni
n
, (94)

where the first n log2 n is split into (n1+n2+ ...nk) log2 n, which is the result of
Li and Vitányi. The second term is proportional to the Shannon entropy with
probabilities corresponding to relative frequencies. Thus, a maximum entropy
solution for the die casts is analogous to minimizing the description length [81].
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5.5 Important paths and constraints

One of the main issues of symbolic regression is the vast search space a small
handful of operators and variables generate. As outlined in 1.6, an efficient
search algorithm must make a prior decision on how to search.

Given the syntactical context of the symbolic regressor (the bracket-free nota-
tion/equations built from components), the first obvious constraint is to limit
the search to syntactically correct expressions, as outlined in section 4.8. There
are also functionally equivalent expressions (xx+ = x2*) that don’t need to be
evaluated. As commented on by Bartlett et al. [38], the number of unique equa-
tions is smaller than the full combinatoric space, sometimes orders of magnitude
smaller.

In many cases, the possibility of constraining the search further also exists by
only considering forms which provide the correct unit. For instance, if one tries
to compose new quantities from {x,m, t} with units {m, kg, s} and operators
{+,−,×, /} the unconstrained number of combinations with one operator is
2 ·3!+2 ·32 = 30. Upon requiring units to make sense (kg+m is not compatible,
kg×m is.) the number drops to 2 ·3+3!+32 = 21. If one constrains the output
unit to be velocity (ms−1), only one combination remains.

With three operands and non-commuting operators, the valid permutations are
27 per operator set. With two non-commuting operators in a single tree struc-
ture, four operator combinations per tree and two valid trees yield 216 com-
binations. Allowing less complex equations, all the previous permutations are
also valid, bringing the total to at least 240. Thus, one can safely assume that
the total number of permutations is well above 200. Yet only the same single
combination has the correct output dimension. The effect of this constraint is
expected to be on a few orders of magnitude for a total number of operators
and operands ≈ 101. Note that this constraint applies on top of the above
syntactical constraints. Combining both could potentially limit the search by
several orders of magnitude.

5.6 Inference on limited data

The discussions on complexity, biases and search space have not yet touched
upon the issue of limited data. Several theorems used in data analysis only hold
in the large N limit, a large amount of samples. In practical science, the number
of data points is finite and, in the case of expensive experiments or observations,
few compared to the large N limit.

One good example is the BIC, which approaches the log probability of the maxi-
mum likelihood estimate asymptotically inN [70], in addition to two constraints.
Likewise, the Shannon entropy will approach the average prefix complexity for
large N [82]. While the mathematical structure only holds in large N the tools
seem useful even in small or medium N . But one question remains:

Is it possible to decisively make the correct inference on limited data?
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In the MDL framework, the basic complexity of the data set is simply the cost of
encoding each observed value. Given a single data point, it is unlikely that one
could create a program simpler than storing the value, even if the relationship
is simple. If one extends this to two points, one is still unlikely to find a shorter
program even though both the points now ”help” each other to encode the other.
In practical terms, if one knows that the data follows some polynomial, then for
two points the linear polynomial would offer a perfect fit with lower complexity
even if the data follows a higher-order distribution. Thus, It is obvious that
there isn’t sufficient evidence to use a complex model in the MDL framework in
the low data regime. A complex model requires a complex data set to justify,
even if it is the ”true” model.

In the Bayesian framework, a single data point is most effectively encoded as a
single zero:th order polynomial. Given a model yi = fj(xi) + ϵj with Gaussian
error:

p(θ|D) =
1√
2πθ20

e−
1
2 (θ1−y0)

2/θ20∫
p(D|θ)p(θ)dθ

p(θ) (95)

For simplicity, limit the prior standard deviation and constant to two indepen-
dent uniform distributions in ]0, 10]. Upon observing a single value at y = 5 the
posterior distribution of the data is:

p(θ|D) =
e−

1
2 (θ1−5)2/θ20√

2πθ20

1

C

1

100
, (96)

where C is a normalizing constant. By inspection we deduce that the posterior
is maximized by setting the mean to the observed value, irrespective of the
standard deviation. With θ1 fixed, maximizing p(θ|D) means minimizing θ0. In
the limit of limθ0→0, the Gaussian becomes a Dirac delta distribution, meaning
the point is most effectively stored as the value itself. For a higher-order model,
the maximal likelihood will be unchanged since both fit perfectly, but their prior
volume and parametric volume will be larger, penalizing the solution through
Occam’s factor.

Unsurprisingly, both MDL and the Bayesian framework hold that simple data
can not justify a complex model. This is in itself a strong indication that the
answer to the question is no; it is not possible to make decisive inferences on
limited data. The argument also applies to figure 18 in section 5.2. The models
become distinguishable if more data is sampled between the observed points.
However, if the underlying model is not part of the hypothesis space, then no
amount of data will find the correct relationship.

Several contemporary symbolic regressors use neural networks as part of their
algorithm. The networks usually require a large training dataset and, depending
on the application, might need large amounts of specific data. In AI Feynman,
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the neural network used for testing is trained on 80,000 samples. Similarly, the
symmetry search algorithm implemented in our paper uses 1000 points to learn
the linear motion relationship. This data needs to be considered part of the
process, even if the data used for inference is just a subset of the samples. Any
approach which relies on this large pool can not constitute a solution to, for
instance, the Nguyen equations. For clarity, one should clearly separate two
training cases:

1. Trained on auxiliary data.

2. Trained on problem data.

The first case should be considered perfectly acceptable in the benchmark since
the training data is disconnected from the problem and would constitute general
knowledge. The second case constitutes problem-specific knowledge and offers
an unfair advantage in one specific task in limited data inference. In general,
when solving problems, the second kind is unavailable to us especially when
considering expensive experimental data.
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6 Conclusion

In this thesis, we investigated the foundational principles researchers use to de-
rive and formulate testable hypotheses. The hypothesis generation process is a
fundamental part of the scientific method and arguably at the core of under-
standing. The process is, however, not formalized to the degree that it can be
implemented into an algorithmic approach. Nor is it clear from the literature if
it can be formulated algorithmically. Therefore, this thesis studied the hypoth-
esis generation process in physics to investigate the possibility of formulating
an algorithmic approach to hypothesis generation. If such an algorithm could
be formulated, it would likely significantly accelerate the scientific progress.

In the process, we investigated three well-established concepts for their use as
inductive biases in the algorithmic process: symmetry, entropy and minimum
description length. In chapters 2 - 3, we introduce the concepts and their re-
spective properties. Using the concepts, we implemented two algorithms, one
for symmetry searching in chapter 3 and one for symbolic regression in chapter
4. Finally, we discuss the implications and results in chapter 5. Below, we will
briefly summarize the work, and conclusions as well as provide an outlook for
future work and potential applications of the results.

6.1 Concepts for inductive biases

The minimum description length is a robust framework to apply Occam’s razor
in practice. In summary, MDL holds that a theory that maximally compresses
the data is preferred. The concepts used are well researched and has, with
some limitation, good practical approximations, see section 2.4.1. While the
framework provides a clear path in several constrained cases, the implementation
might require further clarification for a general solution using the method.

The second concept of entropy is widely used in science and has a close con-
nection to MDL through Shannon entropy. Shannon entropy relates the prob-
abilistic descriptions of systems to the information contained in them, with the
maximum entropy when all the allowable states have uniform probability. The
maximum entropy principle is application-dependent but generally holds that
one should adopt a view such that each point of data is maximally informative.

Symmetry is an interesting and ubiquitous tool in science, present in almost
all fields. The main property of symmetry in hypothesis generation is that
it constrains the relationship in the variable space. A known symmetry gives
insight into the full form of the theory, as any theory can be expressed in terms
of its symmetries [40]. The approach and importance of symmetries in theory
building is widely recognized and the process of symmetry inference is actively
researched.

In an attempt to uncover other underlying structures, the connection between
the concepts was also investigated. The link between MDL and entropy is strong
through the noiseless coding theorem, as well as through optimal coding and
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Shannon entropy. Symmetry is defined in terms of group theory and differs
significantly from MDL and entropy. In the case of statistical mechanics, there
is a clear link between symmetry and entropy. Given a macrostate of a system,
the entropy is related to the equivalent microstates or equivalent permutations.
These equivalent permutations are correlated to symmetry transformations on
the state, see section 5.4.

6.2 Symmetry searching algorithm

To construct a symmetry-searching algorithm we, follow the implementation of
[50]. The algorithm uses machine learning to identify the symmetric manifold
present in a Hamiltonian system. In the process, the algorithm seems to infer the
correct distributions of data compared to the reference paper, but we could not
regress the symbolic relationships. Learning a manifold representation seems
to be a viable alternative in cases with enough data to train a neural network.
Similar approaches can be found in the literature [53].

The general principles used will likely form the basis of a viable symmetry-
searching algorithm in more general cases. In the current form, the algorithm
samples important relationships which need to be analyzed by other algorithms.
As such, the algorithm might grow hand-in-hand with the symbolic regressors
used for inferring the specific relationships.

6.3 General symbolic regressor

In chapter 4, we implemented a symbolic regression algorithm, inspired by
Monte Carlo tree search, to serve as a general hypothesis generator. The regres-
sor builds a tree of options, representing different components of an equation. By
enforcing syntactically correct expressions in the tree using rules, and evaluating
the resulting equations’ performance, each result guides further exploration of
the equations. Similar symbolic regressors exist in literature [65].

In our algorithm, we implemented four novel ideas for the regressor which we
denote: quick evaluation, subtree limitation, active learning and the MDL. The
ideas attempt to promote parsimony, limit the search space and use data effi-
ciently, principles related to the inductive biases explored earlier.

The first two ideas refer to the growth strategy of the algorithm, quick evaluation
attempting to grow the tree such that it can be evaluated readily and subtree
limitation attempting to stop any exploration in space which is syntactically
valid but logically invalid. The strategy enforces correct syntax in the rules
for growth and limits how many components each guess may grow. Since the
tree uses postfix notation, any valid subexpression is preserved in the tree. If
a subexpression is invalid then so is any expression containing that subtree,
meaning it can be blocked from further exploration. The growth strategy does
not cover the full equation space currently and requires some changes to become
general. Both strategies combined potentially improved the efficiency of the
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algorithm.

The active learning component used the variance between the top solutions to
generate interesting positions and then update the tree with the new data. The
new positions would be highly informative for distinguishing the top solutions
and provide new data which guides further growth. The approach did not seem
to provide significant improvements in resolving the underlying function, or in
scoring.

Using MDL as the scoring mechanism allowed for a natural restriction on the
length of the generated expressions and gave smaller expressions as a result.
However, The MDL interacted with the UCT score in the sense that long but
correct expressions were penalized. The UCT score of the solution in the correct
case is dominated by the description length, lowering the effective score. This
means the code would focus more on exploration as the solutions became longer,
which was an unintended but predictable change.

The regressor does seem to be an improvement over traditional MCTS for sym-
bolic regression, see section 4.8, at least for the evaluated case. While it is
not competitive with contemporary algorithms such as AI Feynman or Sym-
PhysLearn in its current configuration, several clear paths for improvement
could potentially close the gap.

6.4 Outlook

The main question of the thesis is if it is possible to automate the scientific
process with a specific focus on hypothesis generation. At this point, the thesis
has not identified any obstacle to such an approach beyond being challenging.
As such, we hypothesize that there likely exists a pathway towards a general
hypothesis generator, starting with generators that suggest partial theories or
constraints such as symmetries.

For instance, given a trajectory, a basic symbolic regressor can be used to infer
a model potential used in Hamiltonian dynamics, as demonstrated in the thesis.
This could be used for finding effective potentials, which is useful both from a
modelling and inference perspective.

Problems with large data sets available could start by identifying important
inherent symmetries. Using a trained neural network, a researcher may identify
regions where the problem likely is invariant to specific changes in a subset
of the variables. Using this limitation the high-dimensional problem might be
decomposed into a set of smaller problems which are easier to solve.

6.5 Open questions

The following questions arose during the thesis and would be interesting to
investigate further.
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Unit augmented MCTS

Can the MCTS be augmented to only sample syntactically and unit-valid space?
By limiting the search space in some intelligent manner, the efficiency of each
evaluation would be much improved.

Scarce data symmetry search

Among the investigated symmetry search algorithms, there is an abundance of
methods which rely on large amounts of data. An algorithm that could indicate
the potential presence of symmetries in the small data regime would be highly
interesting.

Complexity of universally valid compressors

The Hamiltonian dynamics framework allows for efficient compression of any
trajectory into a force descriptor and a set of initial conditions. If one uses this
to compress a single sampled trajectory the compression might be mediocre or
negative. The compression can be increased by simply including more samples
from the same trajectory or by including another trajectory. How would one
evaluate such a functional compressor in the MDL/complexity framework? See
section 5.1 for a longer explanation.
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A Appendix A - Mathematics

Binomial identities

Given the binomial coefficient,
(
n
k

)
the relation to its neighbouring coefficients

can be found as:

(
n

k

)
≡ n!

k!(n− k)!
→
(
n− 1

k − 1

)
=

(n− 1)!

(k − 1)!(n− k)!
.

Since n! = n(n − 1)! one can extract the largest factors in the n! and k! and
rewrite:
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)
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k

n

(
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)
.

Similarly, to move one step in n, one may identify the change in factors:
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k!(n− k − 1)!
=
n− k

n

(
n

k

)
.

Using both of these relations, one can show that
(
n/2
k/2

)
always is smaller than

(
n
k

)
unless k = 0, n. Let n, k ∈ N be two even numbers where k ≤ n/2. Since k < n :
k/2 < n/2, there are fewer integer steps to move to k/2 than to n/2. Using
the first relation above, one may move to the intermediate stage by repeated
application:

(
n− 1

k − 1

)
=
k

n

(
n

k

)
→
(
n− k/2

k/2

)
=

k/2∏
i=0

k − i

n− i

(n
k

)
.

Using the second relation, we may change n to the sought n/2 by repeated
application:

(
n− 1

k

)
=
n− k

n

(
n

k

)
→
(
n/2

k/2

)
=

n/2−k/2∏
j=0

n− k − j

n− k/2− j

(n− k/2

k/2

)

Putting both together, one may write:

(
n/2

k/2

)
=

k/2∏
i=0

k − i

n− i

n/2−k/2∏
j=0

n− k − j

n− k/2− j

(n
k

)
.
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Since k ≤ n/2, all individual factors in both series are smaller than one and
bigger than zero except in the edge case k = 0 when both binomial coefficients
are one. Showing that

(
n/2
k/2

)
≤
(
n
k

)
. This can be extended to k > n/2 by

substituting k = n− k since
(
n
k

)
is symmetric around n/2.
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B Appendix B - Symbolic regression benchmarks

Nguyen

The Nguyen benchmark [67] contains ten equations: eight univariate and two
bivariate.

Equation Data distribution # of points
x3 + x2 + x U(−1, 1) 20

x4 + x3 + x2 + x U(−1, 1) 20
x5 + x4 + x3 + x2 + x U(−1, 1) 20

x6 + x5 + x4 + x3 + x2 + x U(−1, 1) 20
sinx2 ∗ cosx− 1 U(−1, 1) 20
sinx+ sin(x+ x2) U(−1, 1) 20

log(x+ 1) log(x2 + 1) U(0, 2) 20√
x U(0, 4) 20

sin(x+ y2) U(−1, 1)× U(−1, 1) 100
2 ∗ sinx ∗ cos y U(−1, 1)× U(−1, 1) 100

Table 1: Nguyen benchmark equations with data parameters. U(a, b) denotes a
uniform distribution with lower limit a and upper limit b.

Feynman

The Feynman benchmark [68] is based on equations from the Feynman lectures
on physics and contains 100 univariate and multivariate equations. Below, we
list all the equations used in the paper. All equations in the Feynman tests used
20 points.
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Equation Variables Data
√
2e

− θ2

2

2
√
π

θ U(1, 3)

√
2e

− θ2

2σ2

2
√
πσ

σ, θ U(1, 3)2

√
2e

− (θ−θ1)2

2σ2

2
√
πσ

σ, θ, θ1 U(1, 3)3√
(−x1 + x2)

2 + (−y1 + y2)
2 x1, x2, y1, y2 U(1, 5)4

Gm1m2

(−x1+x2)
2+(−y1+y2)

2+(−z1+z2)
2 m1,m2, G, x1, x2, y1, y2, z1, z2 U(1, 2)1), U(3, 4)2)

m0√
1− v2

c2

m0, v, c
U(1, 5), U(1, 2),

U(3, 10)

x1y1 + x2y2 + x3y3 x1, x2, x3, y1, y2, y3 U(1, 5)6

Nnµ Nn, µ U(1, 5)2

m(u2+v2+w2)
2

m, v, u, w U(1, 5)4
q1q2
4πϵr2

q1, q2, ϵ, r U(1, 5)4

Table 2: First 10 Feynman equations with variable and data distributions used.
U(a, b)n denotes a uniform distribution with lower limit a, upper limit b and
n is the number of consecutive variables using the same limit. Limits have the
same ordering as the listing order. 1) Limit applies to m1,m2, G and positional
variables with subscript 2. 2) Limit applies to positional variables with subscript
1.
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C Appendix C - Symbolic regressor output

Below is the full output of the symbolic regression algorithm with all UCT
graphs and top equations. Refer to the implementation chapter for information
on the graphs and tables. Note that all equations in the tables are simplified
using Sympy for presentation purposes. The exact output from the algorithm
may be slightly different (x1+1- = x).

Nguyen equations

Figure 1: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Nguyen equations with a search of 50s using
BIC scoring.
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Figure 2: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Nguyen equations with a search of 50s using
MDL scoring.

Nguyen equation search using MDL

Eq #. 1st 2nd 3rd 4th 5th

1 x x x x x
2 x x x x ex

3 xex x+ ex ex x x
4 ex ex x ex ex

5 cos (e) cos (e) cos (e) cos (e) cos (e)
6 x x x x x
7 x x x x x
8

√
x 1 1 1

√
x

9 x x x x x

Table 2: Top solutions to the Nguyen equations for a search of 50s using MDL
scoring.

90



Figure 3: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Nguyen equations with a search of 50s using
BIC scoring with added Gaussian noise (N(0,0.1)).
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Figure 4: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Nguyen equations with a search of 50s using
MDL scoring with added Gaussian noise (N(0,0.1)).
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Figure 5: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Nguyen equations with a search of 50s using
BIC scoring with resampling after 25s with the top 10 solutions used for active
learning.
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Figure 6: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Nguyen equations with a search of 50s using
MDL scoring with resampling after 25s with the top 10 solutions used for active
learning.

Nguyen equation search using MDL with resampling

Eq #. 1st 2nd 3rd 4th 5th

1 x xex xex xex x
2 ex ex x x ex

3 33x

8
eex

π
x (x+ e) x eex

3

4 ex
2

− 1 ex ex (x+ 2)x ee
x−2

5 cos (e) cos (e) cos (e) cos (e) cos (e)
6 x x x x x
7 x x x x x
8

√
x

√
x

√
x

√
x

√
x

9 xe
1
2

a
−a+cos (e)

y
a
3y

a
xy

a
y

10
a+ y

a
x

y (a− x) a3y3

x
aey

3y
πy

ay

Table 6: Top solutions to the Nguyen equations for a search of 50s using MDL
scoring and resampling at 25s with the top 10 solutions used for active learning.
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Feynman equations 1-10

Figure 7: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Feynman equations 1-10 with a search of 50s
using BIC scoring.
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Figure 8: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Feynman equations 1-10 with a search of 50s
using MDL scoring.
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Figure 9: Average UCT score of top solution as a function of number of evalu-
ations for five independent runs. Feynman equations 1-10 with a search of 50s
using BIC scoring with added Gaussian noise (N(0,0.1)).
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Figure 10: Top UCT score as a function of number of evaluations. Average
score of top solution for five independent runs. Feynman equations 1-10 with a
search of 50s using MDL scoring with added Gaussian noise (N(0,0.1)).
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Hamiltonian solutions

Figure 11: Average UCT score of top solution as a function of number of eval-
uations for five independent runs. Hamiltonian exploration for 100s using BIC
scoring, σ = 1.0.

Hamiltonian potential search using BIC

Potential 1st 2nd 3rd 4th 5th

x2 2x π3x3 log
(
x2 − 3

)
x2 −m+ x2 − 2

5x2 ax

e
e

x
a (ax)x ex2

√
ax

8x ax
m

x3 + x− 2 a2x ax+m a (−x+ eπx)− π
1
x2

sin (m)
x

m+cos (3)
x

√
m
x

sin (2)
x

sin (m− x) + 2

Table 11: Top solutions of listed Hamiltonian potentials for a search of 100s for
five independent runs using BIC scoring. a denotes free parameter.
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Figure 12: Average UCT score of top solution as a function of number of eval-
uations for five independent runs. Hamiltonian exploration for 100s using BIC
scoring, σ = 1.0.

Hamiltonian potential search using MDL

Potential 1st 2nd 3rd 4th 5th

x2 x2 x2 x2 x2 x2

5x2 ex 4x2 πx 3x πx

8x ax ax x
a

log (cos (x)) ax
1
x2 m log (2− x) log (cos (x)) 2

x
m
x

Table 12: Top solutions of listed Hamiltonian potentials for a search of 100s for
five independent runs using MDL scoring. a denotes free parameter.

107


