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Chapter 1

Introduction

1.1 Background

1.1.1 X-ray mirrors

The development of multilayer mirrors is necessary for the development of tele-
scopes for deep space astronomy[1], x-ray microanalysis[2] and the optics in free-
electron lasers[3]. Multilayer ultra thin mirrors are also necessary for the develop-
ment of compact soft x-ray microscopes[4], soft x-ray polarimetry[5] and the next
generation of extreme ultraviolet litography[6].

For all instruments that involve soft x-ray the main factor limiting the per-
formance is the optical elements[7]. If we can build optical elements with much
higher spectral resolution, stability and reflectivity we will develop many x-ray
fields. This can only be done if we have multilayer mirrors with smooth surfaces
and with a layer width that can be special made for the wavelength used[7].

1.2 Thesis outline

1. In chapter 2 I discuss the fundamental theory with all approximations and
equations.

2. In chapter 3 I discuss the program VASP that I have been using.

3. In chapter 4 I discuss what I have done and why. I also discuss all my results
and what they mean.

4. In chapter 5 I give a short summary of what my results mean.

5. In chapter 6 I talk a bit about what can be done in the future.

1



2 Introduction

1.3 Project Aims

The primary goal of this work was to study interface energy in Sc/Cr system as a
function of the multilayer thickness. In order to do that we have to investigate the
optimal positions for Sc and Cr atoms in a Sc/Cr multilayer mirror for wavelengths
in the X-ray spectra. I hope to find suitable structures that does not cost a huge
amount of energy for the experimentalists to build. But probably I can at least
help them to understand their results so they can do a more directed search for
an optimal layer structure.

1.4 Summary of the Computational Process

A short summary of the process to receive the results.

1. The first bulk energy is given by calculations of pure Sc and Pure Cr.

2. When I calculated the total energies I first set up my parameters so that I
allowed the atoms to move a bit in relation to each other while I minimized
the energy.

3. After I found the optimal positions for the atoms in my crystal I calculated
the total energy.

4. When I got the bulk energy and the total energy I calculated the interface
energy by equation 1.1.

Etotal = Einterface + Ebulk (1.1)



Chapter 2

Theory

2.1 Density function theory

I have used a method called Density function theory (DFT). DFT is a theory
commonly used for calculation on crystals with ground state energy.

2.1.1 First-principle calculations

The calculations in DFT are so called First-principle calculations. They start with
the laws of Quantum mechanics. First-principle calculations can be approximated
using non-relativistic treatment, so we use the Schrödinger equation instead of the
Dirac equation. For this project time is not important so the equation that we use
is the time independent Schrödinger equation:

ĤΨ = EΨ (2.1)

with a wavefunction that looks like this:

Ψ = Ψ(R1, R2, ..., Rn, r1, r2, ..., rm) (2.2)

where the R is the positions of the nucleus, r is the positions of the electrons, n is
the number of nucleus and m the number of electrons.

The Hamiltonian looks like this:

Ĥ = − ~2

2me

∑
i

∇i
2+

1
2

∑
i 6=j

e2

|ri − rj |
−~2

2

∑
k

∇k
2

Mk
+

1
2

∑
k 6=l

ZkZl

|Rk −Rl|
−

∑
i,k

eZk

|ri −Rk|
(2.3)

which can be written like this

Ĥ = T̂e + V̂ee + T̂n + V̂nn + V̂en (2.4)

T is the kinetic energy, V is the potential energy for electron-electron, electron-
nuclei and nuclei-nuclei interaction.
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4 Theory

Solving the Schrödinger equation is impossible for systems with more than 2
particles. Therefore we are forced to make some more approximations.

2.1.2 The Born-Oppenheimer Approximation

The first approximation that we do is to say that the nucleus is still relative the
other nuclei. That makes the potential energy of the nuclei constant and the
kinetic energy of the nuclei zero.

T̂n = 0 (2.5)

and

V̂nn = constant (2.6)

This approximation is justified by the fact that the nucleus weighs about 2000
times more than the electron which makes it more inert.

2.1.3 The Hohenberg and Kohn theorems

The density function theory is a quite clever theory. The general thought of it is to
replace all the electrons’ degrees of freedom with an electron density. 3m degrees
of freedom is then replaced by 3 degrees of freedom. Hohenberg and Kohn did this
by formulating two theorems on this matter[8].

• The local external potential, Vext(r) is within a constant, determined by the
electron density of the ground-state n(r).

• The total energy function, E[n(r)] is minimized for the correct electron
ground-state density, n(r) with a given local external potential, Vext(r).

With these theorems Hohenberg and Kohn reduced the many-body problem with
many one-body problems. But one problem remans to solve. How can we calculate
the total energy with all these electron-electron interactions?

2.1.4 The Kohn and Sham equations

One year after Hohenberg and Kohn presented their theorems Kohn and Sham
presented a way to solve the electron-electron interaction problem. By replacing
all the interacting electrons with non-interacting quasi particles and making these
quasi particles yield exactly the same electron density n(r) they made our problem
possible to solve[9]. [

− ~2

2me
∇2 + Veff (r)

]
ψi(r) = εiψi(r) (2.7)

ψi(r) is the single particle orbitals and Veff (r) is the potential that our quasi-
particles act in and can be expressed like[10]:
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Veff (r) = Vext +
∫

n(r′)
|r − r′|

dr′ +
δExc [n(r)]
δn(r)

(2.8)

n(r) =
N∑

i=1

|ψi(r)|2 (2.9)

The problem is now down to the exchange-correlation energy, E[n(r)] part.
Equation (2.7), (2.8) and (2.9) are the Kohn-Sham equations and they can be

solved by an iterate method.

2.1.5 The Local Density Approximation

One idea for solving the exchange-correlation energy problem was first suggested
by Kohn and Sham[9] in 1965 as the Local density approximation, (LDA). Kohn
and Sham assumed that many crystal materials could be described as homogenous
electron gases. With a homogenous electron gas the effect of correlation and
exchange is local. Therefore the exchange-correlation function looks like this:

ELDA
xc [n(r)] =

∫
εxc[n(r)]n(r)dr (2.10)

where εxc is the exchange-correlation energy density per particle in a uniform
electron gas and n is the density of that electron gas.

LDA often works best for systems with an electron structure close to a homoge-
nous gas and worst for systems like a single atom[11]. Systems that are not optimal
for LDA usually only underestimate the lattice parameters of the equilibrium point
with 1-3 % and the exchange-correlation energy by 7 %[12].

2.1.6 The Generalized Gradient Approximation

Another approximation that we can use is the Generalized Gradient Approxima-
tion (GGA). GGA is a more complex approximation then LDA and often gives a
better result1. In the GGA the form of the exchange-correlation energy from LDA
is improved with a local density gradient. The exchange-correlation energy then
looks like equation (2.11)[13].

EGGA
xc [n(r)] =

∫
f [n(r),∇n(r)]n(r)dr (2.11)

There are several different GGA functions with different strength and weak-
nesses, because there is not a unique way to add gradients to a function. Whether
it is better to use LDA or some GGA depends on the type of calculation. I have
used GGA for the calculations in this project.

1A result closer to data given by studies of real matter.



6 Theory

2.1.7 Limitations of DFT

In the DFT method we put all our approximations in the LDA or the GGA part. If
the LDA or the GGA is not a good approximation the DFT is a less good method
to use. If the LDA or GGA is a good approximation it is easy to calculate the
ground state and get the systems Hamiltonian. Once we have the Hamiltonian for
the system we can calculate all excited states for example temperature over zero
or core-level shifts. That is why the DFT method is so popular.

Another problem is that errors move through the system. An approximation
in a real calculation results in a ground state that is not quite correct, which give
us a Hamiltonian with an error. This makes our calculated excited states a differ
the actual excited state. As when you calculate pure iron (Fe) with LDA the result
tells us that Iron has in its ground state a nonmagnetic fcc-structure and not a
ferromagnetic bcc-structure, as we all know that it has[12, 14, 15].

To reveal if GGA or LDA is a good approximation, I calculated the the energies
for pure Cr and pure Sc using GGA and LDA. I found when comparing to known
values that the Generalized Gradient Approximation well suited the calculations
in our project.



Chapter 3

Calculation Methods

3.1 The Vienna ab initio simulation package, VASP

In this project I have done electronic structure calculations using the projector
augmented wave method, [16], PAW. VASP is the program that I have used for
my calculations. The PAW method is included in VASP [17]. The wave function
in the PAW method is a superposition of plane waves and expansions into atomic
pseudo orbitals in just one basis set[18]. The plane waves are good for describing
the wavefunction far away from the nucleus and the expansion into atomic orbitals
are good for describing parts near the atomic nucleus.

When we use computers to efficiently solve the Kohn-Sham equations (2.7),
(2.8) and (2.9) we have to use the PAW method to expand the wave functions in
a basis set. This can be done without a great loss of generality.

The method is based on a linear transformation that maps the set of all electron
valence functions ψi to the smooth function ψj [18].

|ψi〉 =
∑

j

cj |ψj〉 (3.1)

If equation (3.1) is inserted in equation (2.7) we get:∑
j

cj |Ĥeff |ψj〉 = εi
∑

j

cj |ψj〉 (3.2)

If we then multiply equation (3.2) with 〈φk| from the left we get:∑
j

cj〈ψk|Ĥeff |ψj〉 = εi
∑

j

cj〈ψk|ψj〉 (3.3)

Where the matrix of the Hamiltonian is:

Hkj = 〈ψk|Ĥeff |ψj〉 (3.4)

And equation (3.5) is the overlap integral of the different basis functions

7



8 Calculation Methods

Okj = 〈ψk|ψj〉 (3.5)

Then it is possible to see that equation (3.3) can be written as∑
j

cj (Hkj − εiOkj) = 0 ∀k (3.6)

This set of linear algebraic equations has of course only non-trivial solutions if:

det [Hkj − εiOkj ] = 0 (3.7)

Solving this set of equations gives us the eigenvalues εi and the coefficients cj .
These eigenvalues, εi of the Schrödinger equation give the electronic band structure[18].
When we have the band structure it is possible to see if a material is an isolator,
semiconductor or metal. A semiconductor has a bandgap between 0 and 4 eV, the
isolator over 4 eV and a metal 0 eV.

We have to know that the eigenvalues calculated in equation (3.6) do not cor-
respond to a single electron system. The Kohn-Sham orbitals do not fit the single
electron state very well and that results in DFT underestimating the bandgap in
a semiconductor by a few eV[18].



Chapter 4

Results and discussion

What is well known is that Sc has its lowest energy in hcp structure. When I was
calculating the energies for pure Sc I found that bcc structure had the highest
potential energy. In Majkovas article[19] we can see that the length of a Sc - Cr
multilayer increase just 2.4 % when heating the multilayer and that it does not
affect the reflectivity much. This increase in length could be a result of a structural
change in the Sc and/or Cr layers. Conclusively the structure should not affect us
that much.

When calculating the equilibrium states for pure Sc and pure Cr I found that
Sc is much bigger then Cr, about 25 % bigger. Sc as bcc has a lattice constant of
3.65 Å and Cr in bcc structure has a lattice constant of 2.91 Å. There is a problem
with calculating surfaces structure of elements with a big mismatch in size because
it is hard to find positions for the atoms that do not generate big forces.

Then I calculated the energies for pure Sc and pure Cr using the equilibrium
states, which gave me my bulk energies for pure Sc and pure Cr.

After that I calculated the total energy of my layer structures. These layer
structures are discussed in the sections below.

4.1 Interfaces in Sc/Cr multilayers

I have calculated the energy in the interface between layers of Sc and Cr and
I have tried to minimize this energy. To do this I have checked some different
structures. I chose to test only three structures because time and computer power
was a limitation. By a lot of thinking and a rotating paper method (see section
4.2.3) I found that one of these three structures should have the lowest energy.

• bcc-Sc on bcc-Cr rotated 45 degrees

• fcc-Sc on bcc-Cr rotated 45 degrees

• bcc-Sc on bcc-Cr rotated 18,4 degrees

9



10 Results and discussion

VASP is a program that calculates the total potential energy in a chosen system
we can choose this system to be just one Sc bulk, one Cr bulk and one interface.

It is easy to realize that the potential energy in the multilayer has to be a sum
of the energy in the bulk times the number of bulks plus the energy in the interface
times the number of interfaces.

Etotal = Einterface + Ebulk (4.1)

Ebulk = n ∗ Ebulk(Sc) +m ∗ Ebulk(Cr) (4.2)

n is the number of Sc atoms and m the number of Cr atoms in the crystal. By
equation (4.1) and (4.2) we got our interface energy.

Einterface = Etotal − n ∗ Ebulk(Sc)−m ∗ Ebulk(Cr) (4.3)

4.2 Structural models for interfaces

4.2.1 bcc-Sc on bcc-Cr rotated 45 degrees setup

I started by entering atom-positions of Cr - bcc on top of Sc - bcc, rotated 45
degrees in VASP. The distance miss-match for Sc (000) - Sc (100) divided to Cr
(000) - Cr (110) is about 11%, that is 5,5% per atom. This miss-match will
bring some forces in the crystal but it should probably be OK. Because of the big
difference in lattice parameter I was able to put two Cr cells on one Sc cell. And
because VASP require periodic boundary conditions during the calculation there
have to be an extra pair of Cr on top (as you can see in figure 4.1 and 4.3) so that
the crystal could duplicate in z - direction. Actually it is more like two whole and
two half Cr cells on top of one cell Sc, though I will still call it 1Sc1Cr.

After I calculated the total energy of 1Sc1Cr I then calculated the total energy
of 2Sc2Cr. The 2Sc2Cr structure is the same as 1Sc1Cr but with one more Sc cell
on top of the Sc layer and two more Cr cells on top of the Cr cell layer. I present
this model in figure 4.1 by adding Sc atom layer 1 and 2 to the original Sc atom
layer 3 and 4. I also calculated the total energy for 4Sc4Cr and 8Sc8Cr.

In figure 4.1 we see how layers of Cr and Sc are put together from a y-z view.
Figure 4.2 shows how Sc and Cr fit together from an x-y view. In figure 4.1 and
4.2 the circles represent Sc atoms and the dots represent Cr atoms. Atom layer
two in figure 4.1 is the body centered atoms to the atoms in layer one. With the
same relation between layer three and four. The atoms in layer two and four are a
half atomic distance down in x - direction. This is represented with smaller rings
in layer two and four. On top of Sc layer one to four there is three layers of Cr.
Cr has smaller distances and there goes approximately two Cr unit cells on one Sc
unit cell as we can see in figure 4.2 therefore we must put two atoms in layer 5 per
atom in layer 4. We can see in figure 4.2 that the Cr atoms in the layer on top of
the last Sc layer is not right above the Sc atoms and they differ in x - axis. That
is why some Cr atoms look smaller in figure 4.1 than the other Cr atoms. They
are positioned like some Sc atoms a bit down in x - direction. The atoms in layer
six and layer five are forming bcc cells, with the atoms in layer six as the body
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Figure 4.1. Layer picture, bcc structure, 2Sc - 1.5Cr - 1Sc
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Figure 4.2. Layer picture, bcc structure, (x,y) - direction
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centered atoms. Layer seven is an extra layer of Cr to make it possible to put Sc
on top of the Cr layers which we want to do when we build multilayers.
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Cr y=0.5
Cr y=1
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Sc y=0.5

Original position of Sc and Cr in bcc on bcc structure
xz - view

Figure 4.3. Layer picture, bcc structure, 1Sc cell - 1.5Cr cell

I have used the smallest part of the crystal, which if repeated generates the
whole crystal to save computer power. When I was calculating 1Sc1Cr I used the
structure in figure 4.3.

4.2.2 fcc-Sc on bcc-Cr rotated 45 degrees setup

The difference between fcc-Sc on bcc-Cr and bcc-Sc on bcc-Cr is not that big.
Because an fcc-structure cell can be seen as two bcc-structure cells rotated 45
degrees. The only difference is a factor 1√

2
in z-direction. So I use the same

setup as when I calculated bcc-Sc on bcc-Cr but with
√

2 times longer distances
in z-direction. Then I calculated the energies for 1Sc1Cr, 2Sc-2Cr and 4Sc-4Cr.

4.2.3 bcc-Sc on bcc-Cr rotated 18.4 degrees setup

The idea to rotate the Cr layers 18.4 degrees compared to the Sc layers came from
my so called Rotated Paper Method, RPM. RPM is a quite simple and fast method
to see which crystal structures could generate a low interface energy. The trick
is to print or draw a one cell thick layer, of the materials that you want to put
together, on two separate papers in a relevant proportion according to each other.
The materials have to be printed in all the structures that they may have, in their
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lowest energy and in a direction that you want to use. To generate a possible
structure from RPM you lay one paper of one material on top of a paper of the
other material and try to find positions of the atoms that may cause low structural
forces as I mentioned at the beginning of section 4.2.1. When you think you have
found atoms that do not shift that much in distance you take these atoms as a
starting pattern and generate your primitive cell. Then you take your primitive
cell and take a good look at it to see if there are any atoms in it that could generate
a high potential energy. If there are atoms generating high potential energy in your
primitive cell you have to remove one of these atoms or find another primitive cell.
Keep in mind that you in VASP can let your atoms move a bit to find a better
structure.

I found by RPM a primitive cell that could suite our purpose. When rotating
my bcc-Sc 18.4 degrees compared to my bcc-Cr sheet I found a distance miss
match for Sc (000) - Sc (120) divided to Cr (000) - Cr (220) is about 0.84 %,
that is almost nothing per atom compared to the 45o shift. The atoms inside my
primitive cell seemed to fit well in a starting-structure for VASP to calculate. This
primitive cell setup is shown in figure 4.4.
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Figure 4.4. Layer picture, New crystal structure, (x,y) - direction and (y′,z) - direction

Figure 4.4 shows the setup positions for Sc and Cr a crystal that I call the New
crystal. To the left is the crystal described from z−y′ view, where y′ =

√
x2 + y2.

Sc is represented like in figure 4.1, 4.2 and 4.3 by circles and Cr by dots. The right
part of the figure shows the crystal from the x-y view. The two lines in the right
part of the figure shows the 18.4o shift between Sc and Cr.
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4.3 Relaxed structures

In order to optimize atomic positions for the structural models suggested above,
I carried out self-consistent DFT calculations for Sc/Cr multi-layers in which I
relaxed the system so the forces between the atoms could be minimized. This
made each atom move to a position with a lower potential energy.

4.3.1 45 degree shift

In figure 4.5 I show interlayer distances versus layer number.
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Figure 4.5. Layer distance

There are two columns in figure 4.5, the left one is based from bccSc-bccCr
and the right one is based from fccSc-bccCr. On the y-axis we got the interlayer
distance, which coordinates are normalized to the half bcc lattice constant in the
atomic distances for Cr.

The vertical lines in figure 4.5 separate areas with Cr-Cr boundary with Sc-Cr
and Sc-Cr with Sc-Sc. The areas called IM is the intermediate areas where the Cr
atoms are interacting with the Sc atoms more than in other areas. The horizontal
lines are the average inter atomic distances. The Cr-bcc line is of course equal
to 1. Sc-bcc line is =

√
2 because of the 45 degree rotation. If the inter atomic

distance is bigger than
√

2 we call the structure fct and if the interatomic distance
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is less than
√

2 we call it bct. Bcc, fcc, fct and bct are in fact the same structure
but with different distances and different unit cells [20].

In figure 4.5 we see that the calculations that I start from bccSc - bccCr go
to bctSc - bccCr for eight layers. But for four and two layers they stay bccSc -
bccCr. The calculations based on fccSc - bccCr go to a bccSc - bccCr structure
for 2 layers and 4 layers. This is interesting and tells us that for small layer the
ideal structure is bccSc - bccCr. It is too soon to tell what the ideal structure is
for eight layers because I was unable to calculate the structure that I started from
fccSc - bccCr with eight layers. However, for big number of layers Sc seems more
likely to go to bct structure and for less number of layers Sc is more likely to go to
fct structure. For all systems Cr keeps bcc structure with small deviation at the
interface with Sc.

4.3.2 18.4 degree shift

In figure 4.6 and 4.7 I show the original atom positions and the final positions
after I relaxed the system.
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Possition of Cr and Sc in New Crystal, orginal and relaxed.
rotation angle is 18.4 degrees

Figure 4.6. The position change for 18.4o model for xy - direction

Figure 4.6 shows the new crystal with 18.4o shift from the x-y view. The
original positions of the atoms are the dotted squares and the dotted circles and
the positions of the relaxed system are the squares and circles drawn with a full
line. The smaller circles and squares lie deeper in the crystal than the bigger ones,
which is illustrated in figure 4.7.

Figure 4.7 shows the new crystal with 18.4o shift from the z-y view. The
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Figure 4.7. The position change for 18.4o model for yz - direction

original positions of the atoms are just like in figure 4.6, the dotted squares and
circles. The positions of the relaxed system is the squares and circles drawn with
a full line. There is no difference in showing the crystal from z-x view instead of
z-y view. I choose to show it from the z-y side.

As you can see in figure 4.6 and 4.7 my pre calculations of the atoms’ positions
were good because they are close to the final positions. This make the calculations
easier to converge. When I know that my starting positions are close to the final
positions I can have hopes that a total energy calculation for a system with more
layers will converge.

4.3.3 Interface energy per interface area

I have calculated the interface energy of Sc-Cr multilayers by calculating the dif-
ference between total energy and bulk energy. I could not calculate the interface
energy for 8fccSc-8bccCr because VASP did not converge, perhaps there were too
many atoms in the primitive cell. Computer power also stopped me from calculate
structures of bcc-Sc on bcc-Cr for 18.4 degree shift with more than 2 layers.

Figure 4.8 shows the interface energy per interface area versus the number of
layers. In the figure we see three lines. The one with circles is based on bcc-Sc -
bcc-Cr with a 45 degree shift, the one with squares are based on fcc-Sc - bcc-Cr
with 45 degree shift and the one with triangles are based on the new crystal with
18.4 degree shift.

As you can see in figure 4.8 I found that for only one layer of Sc and one and a
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Figure 4.8. Interface energy per interface area

half layer of Cr the structure with 18.4 degree shift is the one that costs the lowest
amount of energy to put together. But for two layers and more it is better to
use a 45 degree shift with bcc-Sc and bcc-Cr. This indicates that a more amorph
structure is better for small number of layers.

Cr is a much more stifful material then Sc which we can see in figure 4.5 when
bcc based Sc goes from bcc to bct structure with an increasing number of layers.
As discussed in section 4.2.2, Sc has an optimal lattice constant of 3.65 Å, in bcc
structure (aSc = 3.65Å). But in a system with Cr as in figure 4.2 and 4.3, Cr
is forcing Sc to a lattice constant of

√
2 ∗ aCr = 4.12 Å. So putting bcc-Cr and

bcc-Sc together is enlarging the Sc structure. When we increase the number of
layers we have Sc atoms at a longer distance from Cr atoms which makes the Sc
atoms more free, so they decrease there inter atomic distances. This is what we
see in figure 4.5 when the distance between the Sc atoms is decreasing when the
number of layers is increasing.

The fact that we get aSc

aCr
= 1.15 results in aSc = 3.35 Å(we know from be-

fore that aCr = 2.91 Å). From internet site www.webelements.com we see that
aSc(hcp) = 3.309 Å, which is really close to the aSc from figure 4.5. This may be
an indication that Sc tends to form hcp structure.
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Chapter 5

Summary

This is a short summary of my conclusions.

1. For the simplest interface models the interface energy increases with decreas-
ing number of layers, from 8 to 4 number of layers. This is indicating an
increasing force for amorphization at small multilayer thicknesses.

2. The interface energy is found to be smallest for the 18.4 degrees interface.
This indicates a tendency in the system to form complex interfaces at small
thicknesses.

3. Fcc based multilayers are clearly unstable at large thicknesses.

4. For bcc based multilayers with many layers, the structure is close to bct with
c/a ratio of 1.15 inside the layer.
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Chapter 6

Further work

6.1 Further work

First of all we have to model proper amorph multilayers which will be able to
describe experimental data.

It would be nice to see what value there is on the interface energy of the
structure with a 18.4 degree shift for 4 and 8 layers. And where the atoms between
the interface layers go when we relax the system. Do they remain in bcc structure
or do they move?

Another thing left to do is to generate a model that describes impurities of N,
O etc. in the multilayer. We have to show how sensitive the mirror is to impurity.
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